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Abstract 
 
In this work, molecular separation of aqueous-organic was simulated by using combined soft 

computing-mechanistic approaches. The considered separation system was a microporous 

membrane contactor for separation of benzoic acid from water by contacting with an organic 

phase containing extractor molecules. Indeed, extractive separation is carried out using 

membrane technology where complex of solute-organic is formed at the interface. The main 

focus was to develop a simulation methodology for prediction of concentration distribution of 

solute (benzoic acid) in the feed side of the membrane system, as the removal efficiency of the 

system is determined by concentration distribution of the solute in the feed channel. The pattern 

of Adaptive Neuro-Fuzzy Inference System (ANFIS) was optimized by finding the optimum 

membership function, learning percentage, and a number of rules. The ANFIS was trained using 

the extracted data from the CFD simulation of the membrane system. The comparisons between 

the predicted concentration distribution by ANFIS and CFD data revealed that the optimized 

ANFIS pattern can be used as a predictive tool for simulation of the process. The R2 of higher 

than 0.99 was obtained for the optimized ANFIS model. The main privilege of the developed 

methodology is its very low computational time for simulation of the system and can be used as 

a rigorous simulation tool for understanding and design of membrane-based systems. 
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1. Introduction 
 
Separation using membrane technology has attracted much attention recently due to the unique 

advantages of this technology compared to other conventional separation and purification 

technologies [1-6]. The main privilege of membrane separation technology is the high control 

over separation due to operation in small channel dimensions. Indeed, membrane separation can 

be conducted at a microscale in which high separation efficiency is attained [7-13]. However, 

among various membrane operations, membrane contactor (MC) systems have great capability 

for separation/reaction at a small scale [14-16]. The membrane contactors are commonly porous 

polymeric membranes used for contacting two liquid or gas phases. The most commonly used 

module of membrane contactors is hollow-fiber membrane contactor (HFMC) which has found 

applications in various sectors [17]. These membrane systems provide very high surface area per 

unit volume and the operation is conducted at microscale [18-21]. 
 
In terms of structure, membranes are classified as non-porous and porous in which porous 

membranes provide better separation performance in terms of mass transfer flux due to the large 

pore size of membranes [22-30]. However, they do not have a high separation factor in 

molecular separation. In order to optimize and design membrane contactors for a particular 

application, modeling of the process can be used as a predictive tool to understand the process 

and reduce the cost of process development and intensification. Different models can be used for 

design and optimization of porous membrane contactors in which the main focus is on mass 

transfer as well as momentum transfer in the module. Computational fluid dynamics (CFD) has 

been shown great ability in modeling and simulation of mass transfer in different systems [31-

33]. For membranes contactors, the modeling is conducted by deriving the governing mass 

transfer along with momentum transfer equations in all phases of the system [34-36]. The 
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derived equations are then solved using an appropriate numerical scheme such as finite element 

or finite volume. Recently, finite element approach has been used extensively for modeling and 

numerical simulation of mass transfer in hollow-fiber membrane contactors for gas and liquid 

separation. 
 
The main problem associated with CFD approach in modeling and numerical simulation of mass 

transfer in porous membrane contactors is the computational expenses which demand high 

computational time for a numerical solution. Soft computing approach based on fuzzy systems 

and artificial neural network (ANN) [37-40] have been used recently in modeling and simulation 

of processes and demand low computational expenses, while great predictive performance has 

been reported for these approaches [41-43]. However, the accuracy of soft computing methods 

depends on the architecture of the algorithm used, and the data used for training. 
 
The idea of combining CFD approach and soft computing can be used to capture the advantages 

of both methods and tackle the drawbacks associated with each method. The method has been 

recently used for modeling and simulation of multiphase chemical reactors and shown to be a 

promising approach [41, 42, 44, 45]. This novel approach takes in the data generated by CFD in 

order to train artificial intelligent system, and once the system has been trained it can be used for 

prediction of the process without the need for implementation of CFD for the whole system. 

However, the percentage of data used for training and testing, as well as the structure of the 

intelligent system play a crucial role in the accuracy of the model. In the current work, a novel 

simulation methodology is developed by combining CFD and Adaptive Neuro-Fuzzy Inference 

System (ANFIS) for simulation of porous membrane contactors. The combined model is 

established by optimization of ANFIS pattern parameters including the percentage of learning 
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data, type of membership function, and a number of rules. The model is developed and tested for 

removal of benzoic acid from water in a hollow-fiber membrane contactor. 

 

 
2. Simulation methodology 
 
2.1. CFD simulation 
 
For CFD simulation of the system, three compartments are considered as the model domains, i.e. 

feed, membrane, and shell [46, 47]. The feed solution which is aqueous contains benzoic acid 

(BA) and water, while the organic phase in the shell side includes a complexing agent. By 

contacting two aqueous and organic phases, a complex of BA-organic is formed and is 

transferred to the shell side. The BA is removed from the system by convective flow of shell 

side. 
 
For the CFD simulation of the membrane system, mass and momentum transfer equations are 

solved. The equations can be represented as follows [20, 48-54]: 
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where C, D, and U refer to concentration, diffusivity, and velocity of fluid respectively. r and z 

are the radial and axial coordinates, respectively. The diffusion coefficient of solute is taken from 

literature [55]. For solving Navier-Stokes equations, finite element method (FEM) was used. 

FEM was coupled with adaptive meshing and error control using numerical solver of 

UMFPACK version 4.2. 
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2.2. ANFIS model 
 
The data generated by CFD simulation of membrane contactor is used to train ANFIS. The data 

are fed in ANFIS in terms of local concentration distribution at different nodes in the feed 

channel of HFMC. The local concentration distribution of BA at various nodes are obtained by 

solution of the mass transfer equation (Eq. 1) coupled with the momentum equation (Eq. 2). The 

Adaptive-Network-based Fuzzy Inference System (ANFIS) which has an inference fuzzy pattern 

for simulation of the non-linear behavior of systems was used to predict the concentration 

distribution of solute [41, 42, 56-58]. Takagi and Sugeno method which is based on IF-THEN 

rule is used for the ANFIS method [59-61]. ANFIS should be trained by a portion of input data, 

and the trained system is then tested to validate the model. The training data are classified at 

various levels of membership functions. To find out the optimum pattern of ANFIS for 

prediction of the process, the ANFIS parameters including the membership function, learning 

percentage, and a number of rules were changed. The different patterns were compared in terms 

of R2 to find out the best fit. 

 
 
3. Results and discussion 
 
3.1. Effect of P factor 
 
P factor which is defined as the percentage of the learning data is the main parameter in the 

ANFIS model. For this study, the percentage of training data were changed between 2-90 % at 

three levels, i.e. 0.02, 0.1, and 0.9. The less training data, the faster model, however, the accuracy 

of testing should be taken into account. The results of comparisons between three different 

percentages of learning data are illustrated in Fig. 1 for the training data. It is seen that the best 

fir for the training is obtained for the P factor of 0.02. However, the test data are represented in 
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Fig. 2 which indicates that the worst fit is obtained when 2 % of data are used for training. When 

10 % of CFD data are used for the training of ANFIS, R2 of 0.98 is obtained, while for 90 % of 

data, R2 of 0.99 is observed. It can be seen that 10 % of data would be the optimum P factor for 

the ANFIS, and for the P factors higher than 0.1, no substantial improvement is observed. 
 
The optimum number of P factor was then used in order to predict the process. The comparison 

between CFD and ANFIS results as well as concentration distribution of BA in the feed channel 

of HFMC is illustrated in Figs. 3 and 4, respectively. It is observed that the predicted 

concentration distribution by ANFIS matches quite well with the data generated by CFD 

simulation for the P factors of 0.1 and 0.9. Furthermore, the concentration distribution of BA in 

the membrane contactor (see Fig. 4) indicates that the concentration of BA at the outlet of feed 

side reaches 0 which implies the efficiency of membrane contactor in the removal of organic 

compounds from aqueous solutions. 
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Fig. 1: Comparing CFD with ANFIS results in training stage for different percentage of learning data. Number of rules=6, iterations=500, membership 

function=gaussmf. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Comparing CFD with ANFIS results in testing stage for different percentage of learning data. Number of rules=6, iterations=500, membership function=gaussmf. 
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Fig. 3: Comparing CFD with ANFIS results in prediction stage for different percentage of learning data.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: ANFIS prediction results for different percentage of learning data. 
 
 



 
 
 
 
 
3.2. Effect of membership function 
 
Another ANFIS parameter which was changed in this study is membership functions. To find out 

the best membership function for simulation of the process, three different membership function 

including gauss2mf, dsigmf, and pimf were used. These membership functions are the default 

functions in MATLAB software. The comparisons between various membership functions for 

the training and testing stages are shown in Figs 5 and 6, respectively. Also, the prediction plots 

are illustrated in Figs. 7 and 8. The results revealed that the type of membership function does 

not have a significant effect on the training, testing, and prediction of concentration distribution. 

Almost, the same R2 was obtained for all training and testing. 
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Fig. 5: Comparing CFD with ANFIS results in training stage for different ANFIS membership functions. Number of rules=6, iterations=500, P=0.7.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6: Comparing CFD with ANFIS results in testing stage for different ANFIS membership functions. Number of rules=6, iterations=500, P=0.7. 
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Fig. 7: Comparing CFD with ANFIS results in prediction stage for different ANFIS membership functions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8: ANFIS prediction results for different ANFIS membership functions. 
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3.3. Effect of number of rules 
 
The effect of a number of rules on the accuracy of ANFIS prediction is shown in Figs. 9-11. The 

fitting for the training and testing are shown in Figs. 9 and 10, respectively, while prediction is 

shown in Fig. 11. Three number of rules were changed to find out the best pattern for the ANFIS 

model. 4, 6, and 8 rules were considered in the ANFIS development, while it is seen that the best 

results are obtained with 6 rules. Increasing the number of rules from 6 to 8 does not improve the 

fitting significantly, and 6 can be chosen as the optimum number of rules. The concentration 

distribution of BA in the membrane contactor is depicted in Fig. 11 for a various number of 

rules. It is seen that the concentration profile cannot be predicted by using 2 rules, whereas the 

concentration distribution is established by using 6 rules and 8 rules. 
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Fig. 9: Comparing CFD with ANFIS results in a training stage for a different number of rules. Membership function=gaussmf, iterations=500, P=0.7.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10: Comparing CFD with ANFIS results in testing stage for a different number of rules. Membership function=gaussmf, iterations=500, P=0.7. 
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Fig. 11: ANFIS results as a function of and position for a different number of rules. 
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4. Conclusions 
 
A novel simulation methodology based on CFD-ANFIS was developed in this study to predict 

the concentration distribution of benzoic acid in a membrane contactor. The CFD data obtained 

from mass transfer simulation of the process was used in order to train the ANFIS model. The 

parameters of the ANFIS model were optimized to find the optimum ANFIS pattern for 

simulation of the process. It was revealed that the optimum ANFIS pattern can be developed 

using 10 % of learning data, and 6 rules. It was also indicated that the type of membership 

function does not have a significant effect on the predictability of the model, and almost similar 

results were obtained for all three considered functions. The results of this novel simulation 

methodology revealed that this model is robust and powerful in the simulation of membrane 

separation processes and can be used at low computational expenses compared to other 

mechanistic models. 
 
 
Nomenclature  
C [mole m-3] Concentration of benzoic acid 
D [m2 s-1] Diffusion coefficient 
F [N] Force 
p [Pa] Pressure 
P [%] Percentage of learning data 
r [m] Radial distance 
t [s] Time 
T [K] Temperature 
U [m s-1] Velocity 
z [m] Axial distance 
Greek symbols  
η [kg m-1 s-1] Viscosity 
ρ [kg m-3] Density 
Abbreviations  
ANFIS  Adaptive Neuro-Fuzzy Inference System 
ANN  Artificial neural network 
BA  Benzoic acid 
CFD  Computational fluid dynamics 
HFMC  Hollow-fiber membrane contactor 
MC  Membrane contactor 
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