(/] =Tsrs Tl
PR — A D

Muroran Institute of Technology Academic Resources Archive

A study of optimal facility location problem
In disaster management and humanitarian
logistics

000000000 (D000DO000bOOOoOoboooooboooog
Ooo0oaod Oo0o000DOo0oooooooooon

00 BOONMEE Chawis

O0oo Oooooo

Oo0oad oood

oood 0[O0 4260

Oo0oooo OOo0o00o0o0OoOoOoo00ooooon
Oo0oooono 2018-09-26

URL http://doi.org/10.15118/00009701




Muroran I'T

MURORAN INSTITUTE OF TECHNOLOGY

DISSERTATION A STUDY OF OPTIMAL FACILITY LOCATION PROBLEM IN
DISASTER MANAGEMENT AND HUMANITARIAN LOGISTICS

Chawis Boonmee



A STUDY OF OPTIMAL FACILITY LOCATION PROBLEM
IN DISASTER MANAGEMENT AND HUMANITARIAN

LOGISTICS

by

Chawis Boonmee

A dissertation submitted in partial fulfillment of the requirements for the degree

of Doctor of Engineering

Examination Committee:

Nationality:
Previous Degree:

Scholarship Donor:

Prof. Kimura Katsutoshi
Prof. Nakatsugawa Makoto
Assoc. Prof. Mikiharu Arimura (Chairman)

Thai

Bachelor of Industrial Engineering
Chiang Mai University, Thailand
Master of Industrial Engineering
Chiang Mai University, Thailand

Ministry of Education, Culture, Sports, Science
and Technology Japanese Government (MEXT)
Scholarship

Muroran Institute of Technology
Division of Sustainable and Environmental Engineering

Japan

September 2018



ACKNOWLEGEMENT

The author wishes to express his profound gratitude to his advisor, Assoc. Prof. Mikiharu
Arimura, for his patient guidance, constructive comments, friendly discussions, enduring
supervision, and all valuable efforts for the accomplishment of his study. He is also grateful to
Assis. Prof. Takumi Asada, and Assis. Prof. Takumi Asada for their support and for serving as
members of his examination committee.

The author also wishes to express his adviser thanks to Assis. Prof. Chompoonoot
Kasemset, Assis. Prof. Warisa Wisittipanich, and Mr. Piya Hengmeechai for giving knowledge
and recommendation. Great appreciation is also due to the Banta municipality and Banta
district at Chiang Rai province, Department of mineral resources, and Natural Disaster
Research Unit of Civil Engineering Department of Chiang Mai University (CENDRU) in
Thailand for the provision of useful data. I would like to thanks to my family, Ms. Maree
Boonmee, Ms. Kingkan Wongmuang, and Mr. Tinn Wongmueng for support and
encouragement when I feel downhearted.

Sincere gratitude is extended to the Ministry of Education, Culture, Sports, Science, and
Technology for providing the scholarship and the Muroran Institute of Technology for giving
the opportunity to study and providing a rewarding experience.

Lastly, the author would like to express his appreciation to all his colleagues especially
Sustainable Urban & Transport Laboratory students at the Muroran Institute of Technology for
their valuable help and support during his long time stay at Muroran IT

This study is dedicated to the author’s beloved parents whose guidance and support have
made it possible for the author to pursue the goals and dreams in his life.

il



Topic: A study of optimal facility location problem in disaster management
and humanitarian logistics

Author: Chawis Boonmee
Degree: Doctor of Engineering
Course: Course of Advanced Sustainable and Environmental Engineering
Advisor: Associate Professor Mikiharu Arimura
ABSTRACT

Since the 1950s, the number of disasters has increased continually around the world. This has
resulted in enormous problems in human life, economic system, and environment. Owing to
those problems, disaster management, and humanitarian logistics issue become an important
research for helping at-risk persons to avoid or recover from the effect of the disaster. To
enhance and develop the disaster management and humanitarian logistics in facility location
problem, this thesis aims to study a disaster management and humanitarian logistics in facility
location problem. Facility location problem is one of the problem in disaster management and
humanitarian logistics for providing appropriate facility locations in disaster supply chain
management such as distribution centers, warehouses, shelters, medical centers, and garbage
dumps. This thesis applied an optimization approach in this study in which all of the problems
are formulated as a mathematical model with respect to the proposed conceptual models for
solving the problem. This thesis proposed four contributions to address and develop in this
study that consists of; (1) an integrated multi-model optimization and fuzzy AHP for shelter
site selection and evacuation planning, (2) the mathematical programming model for improving
evacuation planning and shelter site selection in flood disaster situation, (3) a bi-criteria
mathematical optimization model for hierarchical evacuation and shelter site selection under
uncertainty of flood events, and (4) a location and allocation optimization model for integrated
decision on post-disaster waste supply chain management: on-site and off-site separation for
recyclable materials. Furthermore, this also presented a comprehensive review of the existing
studies and research gaps on the facility location problems that are related to disaster
management and humanitarian logistics. All contributions of this thesis will be a great
significance not only in helping policymakers or governors consider and manage the strategic
placement of each facility location but also in helping victims during the emergency situation
as well.

Keyword: Disaster management, Humanitarian logistics, Facility location problem,
Optimization approach, Mathematical model
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Chapter 1

1.1 Background

Disaster management (DM) is the organization and management of resources and
responsibilities for dealing with all humanitarian aspects of emergencies, in particular
mitigation, preparedness, response and recovery in order to relief, reduce, or avoid the impact
of disasters [1]. The goals of DM can segregate into three points [2]; (1) reduce, or avoid, losses
from hazards; (2) assure prompt assistance to victims; (3) achieve rapid and effective recovery.
DM activities are conducted across four consecutive stages: mitigation, preparation, response,
and recovery which is known as “Disaster management cycle (DMC)”, is illustrated in Figure
1.1. The DMC illustrates the ongoing operation in which governments plan for and reduce the
effect of disaster through pre-disaster and post-disaster. The benefit of suitable actions at all
activities in the DMC lead to greater preparedness, better warnings, reduced vulnerability or
the prevention of disaster, and reduced loss of human life and economic system. In mitigation
stage, this aims to minimize the impacts of disaster. The activity in this stage includes the
building codes; vulnerability analyses updates; zoning and land use management; building use
regulations and safety codes; preventive health care; and public education. In preparedness
stage, this is planning activities to be conducted following disaster occurrence that increase
chances of survival and minimize financial and other losses. The purposes of this stage aim to
enhance by having response procedures and mechanisms, developing short-term and long-term
strategies, public education, building efficient warning systems and planning about
humanitarian logistics including food, water, medicines and other essentials. Preparedness
stage measures include preparedness plans, emergency drill, emergency communications
systems, evacuations training; inventory strategies and public educations. In response stage,
the goals of this stage aim to provide immediate assistance and reduce the effect of disasters
during their aftermath to prevent additional suffering, financial loss, or other losses. Such
assisting refugees with transport, shelter, consumer goods should be strongly provided in this
stage. In recovery stage, this aims to restore the affected area back to a normal situation after
the disaster. Recovery stage measures include temporary housing, debris, health and safety
education, and reconstruction. Humanitarian logistics is one of operation that is involved to
following three stages in DM activities: preparation, response, and recovery. Humanitarian
logistics (HL) is the process of planning, implementing and controlling the efficient, cost
effective flow and storage of goods and materials, meanwhile collecting information from the
point of origin to point of consumption for purpose of relieving the sufferings of vulnerable
people.

Since the 1950s, the number and severity of disasters have exponentially increased, with
the number of affected people, loss of human life, and loss of economic system having
increased in proportion as shown in Figure 1.2. In 2016, 315 naturally triggered disasters were
recorded, with the economic damages estimated to be US$ 210 billion, resulting in the deaths
of 8,250 people [3]. Owing to an increasing number of disasters, many researchers have paid a
great deal of attention to the concept of DM with humanitarian logistics, with the objective of
helping at-risk persons to avoid and recover from the effects of a disaster [4]. Optimization,
decision making, and simulation being proposed as the main approaches in DM and HL,
especially the optimization approach is one tool that has tended to apply in disaster research to
solve the problems of disaster planning and humanitarian logistics. Optimization approach is
find an alternative with the highest achievable performance under the provided conditions by
minimum undesired criteria or maximum desired ones. The optimization technique will
reformulate the problem in form that is convenient for analysis in which it can describes the
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problem much more concisely. This tends to make the overall structure of the problem more
comprehensible, and it helps to reveal important cause-and-effect relationships. In this way, it
indicates more clearly what additional data are relevant to the analysis. It also facilitates dealing
with the problem in its entirety and considering all its interrelationships simultaneously.

Facility location problems involving the location and selection of distribution centers,
warehouses, shelters, medical centers, and other locations are an important approach in DM
and HL. Facility location modeling is an approach to strategic planning design for pre- and
post-disaster operations and is important for effective and efficient DM and HL planning [5].

| 1
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Figure 1.1 The disaster management cycle (DMC) [2]
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In recent research, emergency humanitarian logistics optimization models have been
emphasized as an important element in disaster facility location problems. Some problems with
regard to facility location problem and some research gaps in DM and HL still need to enhance
and develop.

According to the above mentions, this thesis aims to enhance and develop the disaster
management and humanitarian logistics in facility location problem in which the optimization
approach is applied to solve in this research. The remainder of this chapter is organized as
follows: section 1.2 presents objectives and research questions. Section 1.3 presents
methodologies and contributions. Ultimately, outline of dissertation is presented in section 1.4

1.2 Objectives and Research Questions

From the above mention, the disaster management still needs to improve and develop for
augmenting efficiency of disaster management thought supply chain. Although this field is
widely known, it still has some research gaps in the disaster management and humanitarian
logistics. The main objective of this research is:

“To augment the efficiency disaster management and humanitarian logistics in
facility location problem though optimization approach”

To achieve the aim of this research, then many questions arisen. The research questions
are described as follows;

Main question 1: How to improve or develop the disaster management and humanitarian relief
logistics in facility location problem for the efficient operations?

Sub Question 1. What is the main problem or research gap of the disaster management
and humanitarian relief logistics in facility location problem?

Sub Question 2. What is the benefit of improvement and development?

Main_guestion 2: How the optimization approach can apply in facility location problem of
disaster management and humanitarian relief logistics?

Sub Question 1. What the minor approach can apply in optimization approach?

According to the questions of this research, this research will select the problem that
should improve and develop in the disaster management and humanitarian relief logistics. The
frameworks, mathematical optimization models and solution methods are proposed with
respect to the different problem in each facility location problem. Each problem will be solved
associate with the other relevant problem. The main advantage of this research will be a great
significance not only in helping policymakers or governors consider the spatial aspect of the
strategic placement of each facility location problem but also in helping victims during the
emergency situation as well.

1.3 Methodologies and Contributions

The mechanism of this research is illustrated in Figure 1.3. A comprehensive analysis of
disaster management and humanitarian logistics is examined in the first part in which it is
represented in Chapter 2. This section aims to conduct a survey on the facility location



Chapter 1

problems that are related to disaster management and humanitarian logistics based on both data
modeling types and problem types and to examine the pre- and post-disaster situations with
respect to facility location, such as the location of distribution centers, warehouses, shelters,
debris removal sites and medical centers. Moreover, research gaps will be identified and be
addressed in further research studies to develop more effective disaster relief operations in
which all perspectives are addressed such as environment, economics, risk, process or system,
information, etc. After that the problems are selected for solving, each facility location is
identified the problems and research gaps. Each problem is represented into different chapters
that presents in Chapter 3 — Chapter 6. Each chapter in this research is analyzed and identified
the problem. The conceptual model or framework is designed for solving those problems. After
the conceptual model is formulated, the mathematical model is formulated base on optimization
approach and some tools are chosen to apply to in the solution method such as Epsilon
Constrain, Fuzzy Approach, Analytic hierarchy Process (AHP), Particle Swarm Optimization
(PSO) and Differential Evolution (DE). Then, the conceptual model will be validated by some
case study for evaluating the efficiency of solution approach. Finally, the conclusions and
discussions are presented.

The contributions of this research are summarized according to results of different
chapters are as follow:

1. The existing studies and research gaps on the facility location problems that are
related to disaster management and humanitarian logistics. (Chapter 2)

2. An integrated multi-model optimization and fuzzy AHP for shelter site selection and
evacuation planning. (Chapter 3)

3. The mathematical programing model for improving evacuation planning and shelter
site selection in flood disaster situation. (Chapter4)

4. A bi-criteria mathematical optimization model for hierarchical evacuation and
shelter site selection under uncertainty of flood events. (Chapter 5)

5. Location and allocation optimization model for integrated decision on post-disaster
waste supply chain management: on-site and off-site separation for recyclable
materials. (Chapter 6)



Chapter 1

Shelter
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Figure 1.3 Conceptual framework
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This research consists of eight chapters. Following the introduction chapter, remainder
of this research is organized as below.

Chapter 2 gives a literature review of key concepts in facility location problem in disaster
management and humanitarian logistics. Since the 1950s, the number of natural and man-made
disasters has increased exponentially and the facility location problem has become the
preferred approach for dealing with emergency humanitarian logistical problems. To deal with

6
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this challenge, an exact algorithm and a heuristic algorithm have been combined as the main
approach to solving this problem. Owing to the importance that an exact algorithm holds with
regard to enhancing emergency humanitarian logistical facility location problems, this chapter
aims to conduct a survey on the facility location problems that are related to emergency
humanitarian logistics based on both data modeling types and problem types and to examine
the pre- and post-disaster situations with respect to facility location, such as the location of
distribution centers, warehouses, shelters, debris removal sites and medical centers. The survey
will examine the four main problems highlighted in the literature review: deterministic facility
location problems, dynamic facility location problems, stochastic facility location problems,
and robust facility location problems. For each problem, facility location type, data modeling
type, disaster type, decisions, objectives, constraints, and solution methods will be evaluated
and real-world applications and case studies will then be presented. Finally, research gaps will
be identified and be addressed in further research studies to develop more effective disaster
relief operations.

Chapter 3 shows an integrated multi-model optimization and fuzzy AHP for shelter site
selection and evacuation planning. Due to an increasing severity of recent disasters, shelter site
selection and evacuation planning have become an essential function for the purpose of helping
at-risk persons to avoid or recover from the effect of a disaster. Therefore, this chapter aims to
propose an integrated mathematical optimization and fuzzy analytic hierarchy process for
shelter site selection and evacuation planning. The mathematical models are formulated under
different constraints and model types, in which the objective of each mathematical model is to
minimize the total travel distance. The mathematical models are coded and run in optimizer
tool for creating plans. Then, Fuzzy Analytic Hierarchy Process is applied to choose the
appropriate plan under uncertainty and vagueness of the expert’s opinion. A numerical example
with a real case study of a Banta municipality in Thailand is given to demonstrate the
application of our conceptual model. This chapter will be great significance in helping decision
makers consider placement of emergency shelters and evacuation planning with respect to both
qualitative and quantitative measurement. Moreover, this chapter can be a guide of the
methodology to be implemented to other problems as well.

Chapter 4 presents improving evacuation planning and shelter site selection for flood
disaster. Evacuation planning and shelter site selection are the most important function of
disaster management for the purpose of helping at-risk persons to avoid or recover from the
effect of a disaster. This chapter aims to propose a stochastic linear mixed-integer mathematical
programming model for improving flood evacuation planning and shelter site selection under
a hierarchical evacuation concept. The hierarchical evacuation concept is applied in this study
that balances the preparedness and risk despite the un-certainties of flood events. This study
considers the distribution of shelter sites and communities, evacuee’s behavior, utilization of
shelter and capacity restrictions of the shelter by minimizing total population-weighted travel
distance. This chapter conducts computational experiments to illustrate how the proposed
methodical model works on a real case problem in which this chapter proposed Thai flooding
case study. Also, this chapter performs a sensitivity analysis on the parameters of the mentioned
mathematical model and discuss our finding. This study will be a great significance in helping
policymakers consider the spatial aspect of the strategic placement of flood shelters and
evacuation planning under uncertainties of flood scenarios.

Chapter 5 represents the developed research from the chapter 4. This chapter proposes a
stochastic linear mixed-integer programming model for flood evacuation planning to optimize
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decision related to shelter site selection under a hierarchical evacuation concept and
probabilistic scenarios. The proposed model considers two criteria as objective function: travel
distance and risk index of shelter. This chapter not only provides flood shelters and distribution
of communities but also determines hierarchical evacuation concept, evacuee’s behavior,
financial constraint, and uncertainty of flood events. Since problem is formulated, the epsilon
constraint approach is selected to solve this problem. This chapter validates the mathematical
model by generating a base case scenario using numerical data for Chiang Mai, Thailand. The
results are proposed and discussed which represent several alternatives to decision makers.
This chapter will be great significance in helping decision makers consider the spatial aspect
of the strategic placement of flood shelters and flood evacuation planning under uncertainty of
flood scenarios.

Chapter 6 deals with the issue of post-disaster waste supply chain management. Since
the 1950s, the number of disasters has increased continually around the world. This has resulted
in enormous amounts of waste in post-disaster situations and this can have a serious impact on
the environment. Post-disaster waste management is one of the most important operational
management systems that have been developed to help affected communities recover and
restore conditions back to a stable situation after a disaster. Hence many researchers have paid
a great deal of attention to this problem with an aim to overcome these challenges. Location
and allocation optimization have become the preferred approach for dealing with post-disaster
waste management problems. In addressing this situation, this chapter aims to present the
developed system of post-disaster waste supply chain management strategy (PWSCM) along
with the integrated decision-making system for the on-site and off-site separation of recyclable
materials. A mathematical model of mixed-integer linear programming is proposed in which
the objective aims are to minimize the financial effects through assessment of the fixed costs
and variable costs, RSR, and the penalty costs associated with the negative environmental and
human effects of post-disaster scenarios and to maximize revenue from any sellable waste. The
proposed model considers all networks in the debris operation process that consists of waste
collection and separation sites, processing and recycling sites, disposal sites and market sites.
Moreover, the RSR technologies have also been considered in the proposed model. The output
of this study will be the determination of locating the appropriate temporary waste collection
sites, processing sites, and landfills, and to facilitate debris flow decisions. Due to the
limitations of competence of an exact solution method for such a large problem for which it is
difficult to achieve acceptable results in a reasonable time, this study also presents two effective
metaheuristic approaches with particular encoding and decoding schemes; Particle Swarm
Optimization (PSO) and Differential Evolution (DE) to solve PWSCM. To illustrate the
performance of the algorithms, the numerical results in small-, medium-, large- and very large-
sized problems were evaluated and compared with a set of certain generated problems. The
results showed that, for the very large-sized problem, there was a level of superiority associated
with the proposed algorithm by PSO to DE and the exact solution method. Finally, the
numerical tests for PWSCM improvement will be discussed. The performance of the proposed
PWSCM improvement system was superior to both the on-site separation model and the off-
site separation model.

Finally, Chapter 7 provided the summary of the difference tasks in this research, presents
the conclusions along with some point for direction of the research.
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The outline of flow of the research is illustrated in Figure 1.4 Below.
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2.1 Introduction

Since the 1950s, both the number and magnitude of disasters have been continuously
increasing, with the number of affected people having increased in proportion (about 235
million people per annum on average since the 1990s). In 2014, 324 natural disasters were
recorded, with economic damages estimated to be US$ 99.2 billion [1]. According to the
International Disaster Database, Asia and the Americas have been the continents most affected
by disasters such as floods, earthquakes, storms, and landslides [2]. Disaster is any occurrence
that causes damage, destruction, ecological disruption, loss of human life, human suffering,
deterioration of health and health services on a scale sufficient to warrant an extraordinary
response from outside the affected community or area [3]. Such situations may include natural
disasters such as drought, earthquakes, floods or storms, and epidemics, or man-made
disruptions such as nuclear or chemical explosions [4-6]. According to the increasing number
of disasters, many academicians have paid more attention to “Disaster management (DM)” for
helping at-risk persons to avoid or recover from the effect of the disaster [7]. DM activities are
conducted across four consecutive stages: mitigation, preparation, response, and recovery.
Coppola [8] defined mitigation as reducing the probability of disaster occurrence and
decreasing the degree of the hazard; furthermore, he defined preparation as planning activities
to be conducted following disaster occurrence that increase chances of survival and minimize
financial and other losses. Response was defined as reducing the impact of disasters during
their aftermath to prevent additional suffering, financial loss, or other losses. Finally, recovery
was defined as restoring the affected area back to a normal situation after the disaster. Disaster
situations can be divided into two stages: a pre-disaster or proactive (mitigation and
preparation) stage and a post-disaster or reactive (response and recovery) stage. Humanitarian
logistics is one of operation that is involved to following three stages in DM activities:
preparation, response, and recovery. Humanitarian logistics (HL) is the process of planning,
implementing and controlling the efficient, cost effective flow and storage of goods and
materials, meanwhile collecting information from the point of origin to point of consumption
for purpose of relieving the sufferings of vulnerable people [9-10].

Because of the increasing severity of recent disasters, research has paid more attention to
DM dealing with humanitarian logistics, with optimization, decision making, and simulation
being proposed as the main approaches. Disaster research has tended to employ modeling and
optimization to solve emergency humanitarian logistics problems. Labib and Read [11]
proposed a hybrid model for learning from failures that examined the multifaceted nature of
disaster research and the hybrid modeling approaches within this domain and tested a reliability
framework and multiple-criteria decision analysis techniques on the 2005 Hurricane Katrina
disaster. Verma and Gaukler [12] proposed a deterministic and stochastic model for the pre-
positioning of disaster response facilities at safe locations and demonstrated its usefulness with
a case study on a Californian earthquake. Scott [13], Kongsomsaksakul et al. [14], Mete and
Zabinsky [15], Salman and Yiicel [16], Bayram et al. [17], Marcelin et al. [ 18] and Jabbarzadeh
et al. [19] also studied emergency humanitarian logistics’ facility location problems.

Recent research has also included surveys on effective DM. Altay and Green [20]
reviewed the disaster operation management (DOM) in which this article focuses on lifecycle
phase. Then, Galindo and Batt [21] extended the article of Altay and Green [20] with new
advance and presented an original evaluation about the most common assumptions in OR/MS
research in DOM. Caunhyeet et al. [22] reviewed an optimization model for emergency
logistics that was classified into three main categories: (1) facility location, (2) relief
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distribution and casualty transportation and (3) other operation. Each literature is analyzed and
structured based on the goals, constraints, data modelling type, and decisions. Safeer et al. [23]
surveyed the modeling parameters for the objective functions and constraints in humanitarian
logistics distribution that classified into two terms: casualty transportation and evacuation and
relief distribution. Ozdamar and Ertem [2] presented a survey that focused on the response and
recovery planning phases of the disaster lifecycle. This article classified in terms of
vehicle/network representation structures and their functionally. The review structured based
on objectives, constraints, structures of available mathematical model and solution methods.
Furthermore, information systems in humanitarian logistics was also presented. Anaya-Arenas
et al. [24] proposed systematic review of contributions related the relief distribution networks
in response to disasters by categorizing them according to location and network design,
transportation, location and transportation, and other important topics. Zheng et al. [25] studied
research advances in evolutionary algorithms for disaster relief operations. The research is
classified into five categories and represented the summary of related papers on evolutionary
algorithms for solving the problem. Habib et al. [9] reviewed mathematical model in
humanitarian logistics by covering all the phases of disaster, and provided the summary of
modelling techniques and solution methodologies.

Facility location models involving the location and selection of distribution centers,
warehouses, shelters, medical centers, and other locations are an important approach in DM.
Facility location modeling is an approach to strategic planning design for pre- and post-disaster
operations and is important for effective and efficient DM planning. In recent research, as noted
above, emergency humanitarian logistics optimization models have been emphasized as an
important element in disaster facility location problems. To overcome this challenge, two
approaches can solve this problem, (1) heuristic algorithm and (2) exact algorithm. Normally,
the emergency humanitarian logistics’ facility location problems are NP-hard, most researches
are usually solved by heuristic algorithm because it can solve with less time and can solve
complicated problem, but the result of this approach is poor quality when compare with exact
algorithm. Although the first approach is overcome the second approach, but the second
approach is necessary to use for checking the heuristic algorithm, and moreover some case can
be solved by exact algorithm as well. Hence exact algorithm is important to learn unavoidably.

Following on from this previous research, emergency humanitarian logistics’ facility
location problems are lacking a literature review based on data modelling types and problem
types that is basic element of exact algorithm for enhancing or developing humanitarian
logistics problem. Therefore, this chapter aims to propose a survey of research work on
emergency humanitarian logistics® facility location optimization model based on data
modelling types and problem types. Not only to survey this research, but also to present basic
mathematical models simultaneously for introducing interested people to discipline. Moreover,
each literature is analyzed and structured based on objectives, conditions, disaster types, facility
location types, data modelling types, applications, solution methods, categories, and case
studies. Finally, research gaps and future research possibilities are then identified.

The remainder of this chapter is organized as follows: Section 2.2 presents the scope of
the literature review. In Section 2.3, facility location models are classified into four categories:
deterministic, stochastic, dynamic, and robust. Section 2.4 presents an application and case
study. In Section 2.5 future research that illuminates the research gaps is presented along with
a framework analysis. Finally, a conclusion is given in Section 2.6.
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2.2 Scope of literature review

In this chapter, emergency humanitarian logistics’ facility location optimization models
are examined. To develop the literature database, emergency humanitarian logistics’ facility
location optimization models were searched for in journals, books, and conference proceedings
and then classified according to the facility location problem and optimization method
categories: deterministic, stochastic, dynamic, and robust. Finally, applications and case
studies were reviewed. Journal search engines such as the transport research board publication
database, the IEEE database standard, Science direct, and the Springer journal database were
interrogated using “disaster,” “facility location,” “humanitarian logistics,” “optimization
model,” and “emergency” as the key search strings. Further, the references in each paper,
including books and conference proceedings, were scrutinized to reveal any additional relevant
papers. Most articles identified in the literature search came from a range of journals: Social-
Economic Planning Science, European Journal of Operations Research, Computers &
Industrial Engineering, Applied Soft Computing, Expert Systems with Applications,
Transportation Research Part B and Part E, Computer & Operation Research, Int. J. Production
Economics, Journal of Cleaner Production, the Journal of Risk Research, and the Journal of
the Eastern Asia Society for Transportation Studies.

2.3 Literature breakdown and analysis

From a general viewpoint, Arabani and Farahani [26] found that facility location
problems could be defined across the two elements of space and time, in which space was “a
planning area where facilities are located,” and time was “the time the location is identified”
(developing a new facility or revising an existing facility). Essentially, however, space and
time should be analyzed concurrently. Emergency humanitarian logistics’ facility location
problems included the identification of locations such as fire stations, emergency shelters,
distribution centers, warechouses, debris removal sites and medical centers. Potential facilities
were identified based on the geography of the respective areas and divided into two: continuing
facility location problems (facilities located in the planning areas) and discrete facility location
problems (facilities located in candidate locations) [26]. Most facility emergency humanitarian
logistics’ location optimization models were combined with other logistics problems such as
stock pre-positioning, relief distribution, casualty transportation, evacuation planning, resource
allocation, commodity flows, and other operations [22]. Facility location optimization models
are usually based on mixed integer linear programming (MILP) with binary location variables.
Most reviewed models were single level and the least reviewed models were bilevel.
Emergency humanitarian logistics’ facility location optimization models varied depending on
(1) facility location planning objectives, (2) the situation (certainty, uncertainty, and data risk),
(3) duration (short term or long term), (4) the number of locations, (5) the service pattern, and
(6) the commodity types required.

From the surveyed models, the factors that affected the mathematical model and solution
methods were first examined. To expedite this process, the models were separated based on
data modelling types and problem types: deterministic facility location problems, stochastic
facility location problems, dynamic facility location problems, and robust facility location
problems.
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2.3.1 Deterministic facility location problems

Deterministic facility location problems are used to select or locate shelters, distribution
centers, warehouses, and medical centers by determining the place and input parameters such
as the possible number of individuals affected, the location, shelter capacity, transportation
costs, and fixed cost, with all parameters being known and constant over time. This problem
formed the basis for the dynamic, stochastic, and robust models. Deterministic facility location
problems can be separated into four different types.

1. Minisum facility location problem

This problem selects or locates P facilities (the maximal number of facilities that can be
placed) and seeks to minimize the total transport distance (including transport time or transport
cost) between the demand points and selected facilities. The formulation for this mathematical
model is as follows [27, 28]:

Indices and Index sets

1 Set of demand nodes; i € /

J Set of facility sites; j € J

Decision variables:

X, =1 if a facility is located at eligible site j, and 0 otherwise.
Y, = 1 if facility j services demand point 7, and 0 otherwise.

Input parameters:

d, the distance between demand point 7 and candidate facility ;

cap,  the capacity of facility

P the maximal number of facilities that can be placed
w, the weight associated to each demand point (demand or number of customers /
people)
Minimize > > wd,Y, 2.1
7 J
Subject to Z X, =p (2.2)
i
>y, =1 Vi (2.3)
—
Z wY, <cap, X, vj (2.4)
XY, {01} Vi, vj (2.5)

The objective function (equation (2.1)) minimizes the total distance between the demand
points and candidate facilities. Equation (2.2) states that there are P facilities to be located at
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site j. Equation (2.3) ensures that each demand point i is assigned to facility j. Equation (2.4)
allows assignment only to sites where facilities are located and ensures that the capacity at each
located facility is not exceeded. Equation (2.5) sets binary conditions for the model variables.
If the capacity at facility j is unlimited, equation (2.4) can be replaced with equation (2.6).

Y, <X, Vi, v (2.6)

The distance function is generally identified as rectilinear, Euclidean, or squared
Euclidean. However, emergency humanitarian logistics problems consider distance to be the
actual distance between the demand points and the facilities. Therefore, dj; is defined as an
actual distance and a constant (no distance function). This problem, known as the P-median,
was developed by Hakimi [27]. Since that time, it has been widely applied to emergency facility
location problems. McCall [29] developed a mathematical model with the prepositioning of
assistance pack-up kids during disaster that aims to minimize victim nautical miles and
shortages. Verma and Gaukler [12] proposed a deterministic model and a stochastic model that
explicitly considered the impact a disaster could have on disaster response facilities and
population centers in the surrounding areas. The deterministic model estimated the expected
transportation costs over all disaster scenarios and assumed that the costs were linear and
depended on the distance to be traveled and the supplies to be shipped. The proposed model
was tested using data from a Californian earthquake. According to relief warehouse, Horner
and Downs [30] proposed a warehouse location model for locating the relief goods to affected
zones that minimize the cost of distributing of relief goods. Others related relief warehouse was
proposed by Lin et al [31] and Hong et al. [32]. To formulate multi-objective model or multi-
criteria model. Abounacer et al. [33] proposed a multi-objective location-transportation model
for disaster response with the aim of determining the number, position, and mission of the
required humanitarian aid distribution centers (HADC) within a disaster region. The identified
objectives were to minimize total transportation duration from the distribution centers to the
demand points, minimize the number of agents (first-aiders) needed to open and operate the
selected distribution centers, and minimize the non-covered demand for all demand points
within the affected area. Barzinpour and Esmaeili [34] proposed a multi-objective relief chain
location distribution model for urban disaster management. This model was developed for
preparation phase which considers both humanitarian and cost-based objectives in a goal-
programming approach. Similarly, Ransikarbum and Mason [35] presented multiple objective,
integrated network optimization model for making strategic decisions in the supply distribution
and network restoration phases during post-disaster management. The proposed model
determined fairness/equity based solutions under constrain of capacity, resource limitations
and budget. The objective functions consist of maximizing equity or fairness, minimizing total
unsatisfied demand, and minimizing total network cost. In multi-level optimization,
Kongsomsaksakul et al. [14] presented an optimal shelter location model for flood evacuation
planning using bilevel programming to minimize total evacuation time (the upper-level
problem) and to choose destinations (shelter), and evacuation routes (the lower-level problem).
The combined distribution and assignment (CDA) model was adapted to a lower-level problem,
with the bilevel programming being solved with a genetic algorithm. Marcelin et al. [18]
proposed a p-median based modeling framework linked to a geographic information system
for providing people with hurricane disaster relief that aimed to minimize the total demand
weighted travel costs between each neighborhood and the nearest relief facility. Moreover,
Irohara et al. [36] developed tri-level programming model for disaster preparedness planning.
The facility location and inventory pre-positioning decisions are proposed in the top level of
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the model while the second level determines the damage inflicted by the disaster and the third
level considers response and recovery decisions, respectively. The proposed model was
validated with a case study on hurricane preparedness in southeast USA by using a dual-ascent
approach.

2. Covering problem

The covering problem has been applied to wide range of emergency humanitarian
logistics’ facility location problems [37]. The objective of the covering problem is to cover the
demand points within distance or time limits. Normally, this problem is suitable for hospitals,
fire stations and shelter site.

A. Set covering problem

The set covering problem deals with site selection and aims to minimize the total number
of facilities or the total fixed cost of open facilities by covering all demand points. The
formulation for the set covering problem is as follows [37]:

Input parameters (addition):

c, fixed cost of facility j
L, distance limit within which a facility can service demand point i
N, the set of eligible facility sites located within the distance limit and that are

able to service demand point i (N, ={j|d, <L} )

Minimize de,X, (2.7)
7
Subject to > X, =21 Vi (2.8)
fore J
X, e{0,1} vj (2.9

Equation (2.7) is the objective for the set covering problem, which is to minimize the
total fixed cost of opening facilities or the total number of facilities. Equation (2.8) ensures that
all demand points are assigned to at least one selected facility within the distance limit.
Equation (2.9) defines the binary variables in the model.

Toregas et al. [37] first proposed the set covering problem for emergency humanitarian
logistics with the aim of minimizing the total number of facilities needed to cover all demand
points. Dekle et al. [38] and Ablanedo- Rosas et al. [39] used a set covering problem for an
emergency medical center location problem. Hale and Moberg [40] formulated a deterministic
set covering problem and a four-step secure site decision process, in which the proposed model
secured the site locations presented in step four by identifying the minimum number and
possible locations for off-site storage facilities. Similarly, Dekle et al. [38] proposed a set
covering model for covering of demand in the disaster target zone that aims to locate the
disaster recovery centers in pre-disaster context. Hu et al. [41] presented a mathematical model
for enhancing earthquake shelter location selection and the districting planning of service areas
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jointly that aims to minimize the total travel evacuation distance and total cost. The second
objective was formulated from set covering problem. Finally, they proposed a non-dominated
sorting genetic algorithm for solving the proposed mathematical model. Aksen and Aras [42]
proposed a bilevel fixed-charge location problem, in which the defender (upper level) sought
to locate and operate a set of facilities and the attacker (lower level) aimed to maximize the
accessibility costs both capacity expansion costs and post-attract demand-weight travelling
costs. Abounacer et al. [33] studied a multi-objective emergency location-transportation
problem that had three main objectives, one of which was a set covering problem that sought
to minimize the total number of agents needed to operate the open HADC.

B. Maximal covering problem

The maximal covering problem designates site selection as P facilities and focuses on
maximizing the total number of demand points covered within the distance limitations. The
formulation is as follows [43]:

Decision variables (addition):

Z =1 if demand point i is covered by a facility within .S distance, and 0 otherwise.
Maximize z wZ, (2.10)
Subject to X2z Vi (2.11)

jeN,

Z X =P (2.12)
JEN; ‘

X,,Z €{0,1} Vi, Vj (2.13)

The objective is to maximize the total number of demand points covered within the
distance limitations (equation (2.10)). Equation (2.11) ensures that demand point i is assigned
to a selected facility, and also ensures that all facilities assigned to demand point 7 are located
within the given distance limit. Equation (2.12) states that there are P facilities to be located in
the eligible facility location. Equation (2.13) defines the binary variables in the model.

Both the set covering problem and the maximal covering problem are integer linear
programming problems. Church and Velle [43] developed constraint (2.10), which was
reformulated as the following equation (2.14), in which the objective function aimed to
minimize the number of uncovered demand points within a maximal service distance.

Equations (2.14) and (2.15) were derived by substituting Z; =1—Z, and also by following

equations (2.16) and (2.17) that are the same constraints as explained for equations (2.12) and
(2.13), respectively. The new formulation was utilized in solving this problem using linear
programming (LP).

Decision variables (Addition):

Zi =1 if demand point 7 is not covered by a facility within S distance,

and 0 otherwise.
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Minimize Z w,Z,i (2.14)
Subject to Z X +7.>1 Vi (2.15)
jeN; !
ZXJ =P (2.16)
je,
X,,Z €{0,1} Vi, Vj 2.17)

Jia et al. [44] proposed a model and solution approaches for determining the facility
locations of medical supplies in response to large-scale emergencies. The problem was
formulated as a maximal covering problem with multiple facility quality-of-coverage and
quantity-of-coverage requirements. The objective was to maximize demand by ensuring a
sufficient quantity of facilities at the stated quality level. A genetic algorithm, a located-
allocated heuristic, and a Lagrangian relaxation heuristic were then developed to solve the
problem. Murali et al. [45] developed a facility location problem to determine the points in a
large city at which medication should be distributed in times of epidemic. Variations in the
maximal covering problem were used to maximize the number of people receiving medication.
The proposed model selected opened facilities and supplies, with demand being assigned to
each location. Santos et al. [46] proposed a maximal covering problem with Lagrange
optimization to optimize the number of strategic locations by relaxing constraints to obtain
optimal demand coverage for each facility location. The objective was to optimize the number
of demand points covered by the optimal number of facility locations. The problem was solved
using a locate-allocate heuristic and a large-scale hypothetical anthrax attack emergency in Los
Angeles County was used as a demonstration case study. Abounacer et al. [33] proposed a
maximal covering problem with one of the objectives being to minimize the number of
uncovered demands. Chanta and Sangsawang [47] studied an optimization model to find
appropriate locations for temporary shelters in flood disasters, in which a bi-objective
programming model was formulated to minimize total distance and maximize the number of
people covered in the affected zones.

3. Minimax facility location problem

The minimax facility location problem, also known as the “P-center” problem, attempts
to minimize the worst system performance within P facilities. The P-center focuses on a
demand point being served by the nearest facility and how all demand points can be covered.
The P-center problem can be applied to emergency humanitarian logistics’ facility location
planning for hospitals, fire stations, and other public facilities. The formulation for this problem
is as follows [27]:

Decision variables (addition):

D the maximum distance between a selected location and a demand point
Minimize D (18)
Subject to > X, =P (19)

i
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>y, =1 Vi (20)
.
Y, <X, Vi, Vj 20
Dx>YdyY, Vi (22)
J
XY, 0,1} Vi, V) (23)

The objective function is shown in equation (2.18), which seeks to minimize the
maximum distance between a selected location and a demand point. Equations (2.19) — (2.21)
are the same constraints as explained for equations (2.2), (2.3), and (2.6). Equation (2.22) forces
D to be equal to the maximum distance, and equation (2.23) defines the binary variables in the
model.

Talwar [48] studied the location of rescue helicopters in South Tyrol, Italy and utilized
the P-center to optimize the locations for three rescue helicopters to serve the growing demand
arising from tourist activity accidents. One of the models in this research sought to minimize
the maximum or worst response times and heuristics were applied to test this model. Ye et al.
[49] presented an emergency warehouse location problem model for a Chinese national
emergency warehouse location problem using the P-center problem. The constraints population
distribution, economic condition, transportation, and multi-coverage for some vital areas were
included in the proposed model and a variable neighborhood search (VNS)-based heuristic
algorithm was developed to solve the proposed model.

Normally, this problem is used as a risk guarantee for the longest distance between a
demand point and a selected facility. The minimax facility location problem is quite different
from the minisum facility location problem and the covering problem. The minisum facility
location problem considers the locations of general facilities such as distribution centers and
inventory, and the covering problem is similar to the minimax facility location problem as it
concentrates on optimizing overall system performance within particular distance or time
limits. However, the minimax facility location problem attempts to minimize the worst
performance of the system by minimizing the longest distance or time between demand points
and the selected facility within P facilities.

4. Obnoxious facility location problem

In contrast to sections 3.1.1-3.1.3, which focused on optimizing the distance between a
demand point and a selected location (the nearer the better), the obnoxious facility location
problem seeks to have demand points far from facilities but try to have it as close as possible
such as chemical plants, nuclear reactors, garbage dumps, or wastewater treatment plants [36].
The objective function, therefore, is opposite to those outlined in sections 3.1.1-3.1.3, as
follows:

. Maxisum facility location problems aim to select facility locations and maximize
the total distance between a demand point and a selected location [50].

. Minimum covering problems aim to select facility locations and minimize the
number of demand points covered [51].
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. Maximin facility location problems aim to select facility locations and maximize
the minimum distance between a demand point and a selected location [52].

In the field of emergency humanitarian logistics, this problem is one of opportunity for
overcome this challenge. According to recovery stage in post disaster, some facility locations
need to locate far from affected area but try to have it as close as possible such as debris (waste)
or recycling site. The advantage of this problem can help to operate in post disaster for avoiding
cause harm to the health of human beings and pollute or disgusted the environment after the
disaster occurrence. A few obnoxious facility location problems have been proposed for
emergency humanitarian logistics. Fetter and Rakes [53] developed a facility location model
for locating temporary disposal and storage reduction (TDSR) in support of disaster debris
cleanup operations. The proposed model aims to minimize the total fixed and variable costs of
debris collection that consist of opening and closing cost of TDSRs, fixed cost of making RSR
(reduction, separation, and recycling) technology available at the TDSR locations, operation
cost of removing debris, variable cost of applying RSR technology, and the revenue received
from selling recycled material. Hu and Sheu [54] proposed a revers logistics system for post-
disaster debris management to minimize economic, risk-induced and psychological cost. The
multi-objective linear programming is formulated to apply in Wenchuan Country of China.
Others post-disaster debris operations are proposed by Lorca et al. [55], Pramudita et al. [56],
and Sahin et al. [57].

2.3.2 Dynamic facility location problem

The first discussion examined deterministic emergency humanitarian logistics’ facility
location problems by deciding on a period of time (single-period model) in which the
parameters were constant. However, generally, in real-world problems, the facility location
problem is a decision that has long-term effects, so the parameters of the system such as the
demand points, operating costs, distribution costs, and environmental factors may vary over
time and facility additions can occur at different times (multi-period model). That is, not only
where but also when to build a facility becomes a critical decision. Ballou [58] first proposed
the dynamic facility location problem, after which Scott [13] proposed an efficient approach
using dynamic programming.

There are two main factors in the dynamic facility location problem that affect the
decision to select an appropriate location for the facility: cost and time. Cost is a trade-off
between incurring expenditure to establish the new facility or modify a current facility, the
opening and closing times for which are determined over the course of the planning time
horizon [25]. This deterministic model can be reformulated as a dynamic deterministic model,
in which there are 7 time periods (¢ € 7). The model formulation is as follows [59]:

Minimize Iy I (2.24)
szr/ (x,,y,)+Zr,z,
=1 j=1 =2

Subject to z, = 0ifd_, = (fort=2,...,7) (2.25)

(1.t >

lelseifd_,>0
In equation (2.24), there are m, candidate destinations (candidate sites) in period ¢. The

first term in equation (2.24) is the transport cost between a facility located at (xt, y,) and
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destination j. Note that (x,, y[) is coordinates at period 7. The second term in equation (2.24)

is the relocation cost, 7, which defines the relocation cost in period #, with d,_, is the distance

-1t

by which the facility is relocated in period ¢. Equation (2.25) is affected by this distance.

Moeini et al. [60] proposed a dynamic facility location model for locating and relocating
a fleet of ambulances. The proposed model controlled the movements and locations of
ambulances to provide better coverage of the demand points. The objective focused on
minimizing both the demand points covered and the costs related to relocating the vehicle.
Afshar and Haghani [61] presented a mathematical model that controlled the flow of several
relief commodities from the source to the receiver by considering vehicle routing, pick-up or
delivery schedules, the optimal location for several layers of temporary facilities, several
capacity constraints for each facility, and the transportation system. Similarly, Khayal et al.
[62] proposed a network flow model for the selection of temporary distribution facilities and
the allocation of resources for emergency response planning. The objective function sought to
minimize the logistics and deprivation costs of the relief distribution and consisted of the fixed
costs, transportation and distribution costs, and the delay penalty costs. A case study was
conducted using sample data from 15 cities in South Carolina, USA.

2.3.3 Stochastic facility location problem

For optimization under uncertainty, there have been two approaches, one of which is
stochastic optimization, in which the uncertain parameters are allocated to a probability
distribution. The stochastic facility location problem has been examined across a wide range
of professional and academic fields, as it can respond well to real-world problems. The
stochastic model can develop from deterministic model, in which the uncertain parameters can
add in objective or constrain. For example, Salman and Yiicel [16] formulated a stochastic
integer programming model that determined the location of emergency response facilities
(ERFs), with an objective to maximize the expected total demand within a predetermined
distance parameter over all possible networks (equation (2.26)). The proposed model is as
follows:

Indices and index sets (Addition);

S Set of periods; s € S

Decision variables (Addition):

O,; =1 if demand point i is covered by a facility at location j in scenario s, and 0
otherwise.

E’ =1 if demand point i is covered in scenario s, and 0 otherwise.

Input parameters (Addition):

P(s) the occurrence probability of scenario s

A

8 = 1 if demand point i is covered by a facility at location j in scenario s, and 0
otherwise.
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Maximize > P(s)wE; (2.26)
Subject to Z,:):'j <P (2.27)
E < Z o; Vi,Vs (2.28)
O, < g;Xj Vi, V), Vs (2.29)
0.X.E {01} Vi, V., Vs (2.30)

i

Equation (2.27) allows at most P open ERFs. Equation (2.28) enforces that demand point
i is covered in scenario s only if it is covered by at least one open facility. Equation (2.29)
ensures that demand point i is covered by facility j in scenario s only if there is a surviving path
shorter than the coverage distance limit between demand point i and facility j in scenario s.
Equation (2.30) defines the binary variables in the model. The proposed model is a maximal
covering problem. A Tabu search algorithm was proposed to solve Istanbul earthquake
preparedness problems.

Similarly, Akgiin et al. [7] studied DM risk for a demand point, so the proposed model
sought to minimize the risks and select locations such that a reliable facility network to support
the demand points could be constructed. The risk at a demand point was determined as the
multiplication of the (probability of the) threat, the vulnerability of the demand point (the
probability that it is not supported by the facilities), and the consequence (value or possible
loss at the demand point due to threat). Balcik and Beamon [63] proposed maximal covering
location model that integrates facility location problem and inventory decision problem for
humanitarian relief chain under uncertainty scenarios. The proposed model considers multiple
item types, captures budgetary constraints and capacity constraints. Others maximal covering
problem is proposed by Murali et al. [45] that presented a maximal covering location problem
with chance constraints to determine the points in a large city where medication should be
distributed to the population, with the aim of maximizing the number of people serviced under
both uncertain and limited time/resource conditions, and a hypothetical anthrax attack in Los
Angeles County was solved using a locate-allocate heuristic. Duran [64] developed inventory
location model which determined a set of typical demand instances and given a specified
upfront inventory and finds the configuration of the supply network that minimize the average
response time over all the demand instances. This article obtained the typical demand instances
from historical data, and the supply network consists of the number and location of warehouses
and the quantity and type of items held in inventory in each warehouse. Klibi et al. [65] studied
the strategic problem of designing an emergency supply network to support disaster relief over
a planning horizon. The proposed approach involved three phases: scenario generation, design
generation, and design evaluation; a two-stage stochastic programming formulation was
proposed using a sample average approximation method to solve the problem. The approach
was assessed using a case study inspired from real-world data provided by the Northern
Carolina emergency management division. Similarly, Rawls and Turnquist [66] proposed an
emergency response planning tool that considers the location and quantities of various types of
emergency supplies to be pre-positioned under uncertainty. The proposed mathematical model
provides an emergency response pre-positioning strategy for hurricanes or other threats that
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determines uncertainty of demand and uncertainty regarding transportation network
availability after an event. This study was tested with real case in the Gulf Coast area of the US
by using the Lagrangian L-shaped method for solving the problem. Others stochastic
programming in emergency humanitarian logistics’ facility location problems were proposed
by Manopiniwes and Irohara [67], Psaraftis et al. [68], Wilhelm and Srinivasa [69], Chang et
al. [70], Rawls and Turnquist [71] and Mete and Zabinsky [72].

2.3.4 Robust facility location problem

The second of the two optimization approaches under uncertainty is robust optimization.
For this problem, the probabilities are unknown, so the uncertain parameters are identified
using discrete scenarios or continuous ranges. Robust optimization differs from stochastic
optimization and sensitivity analysis in that robust optimization includes slack in the solution
[73]. A few papers have addressed uncertainty parameters in the objective function, which is
also known as a “penalty function,” under varying scenarios [22]. Bertsimas et al. [74]
addressed the general robust optimization as follows:

Minimize Jo(x) (31)
Subject to fiou)<=0,Vu, €U, i=1,...m (32)
xeR",U, c R*

Where X is a vector for the decision variables, f,and f, are as before, u, indicates

1

uncertain parameters (disturbance parameters), and U, indicates are uncertainty sets, which,

1

for this model, will always be closed. The objective of equation (2.31) is to determine minimum
costsolutions x” from all the feasible solutions for all realizations of the disturbances u, within

U, .1f the set of U, is a singleton, the corresponding constraint has no uncertainty or certainty.

Originally, this problem offered some measure of feasibility protection for optimization
problems containing parameters that were not exactly known. There have been many formulas
developed to tackle this challenge such as the extended Bertsimas-Sim (delta) Formulation and
the extended chance constrained formula. For more detail, see Bertsimas et al. [74] for a review
of the theory and applications of robust optimization.

Mulvey et al. [75] first proposed robust optimization, and since that time, it has been
seen as an effective approach for the optimal design and management of supply chains
operating in uncertain environments. Robust optimization has been used across many
professional or academic fields, but its use in emergency humanitarian logistics is not
widespread. Paul and Hariharan [76] proposed stockpile location and allocation planning for
effective disaster mitigation, within which robust optimization and scenario planning were
conducted to determine the final solution. Bozorgi-Amiri et al. [ 77] presented a multi-objective
robust stochastic programming approach for disaster relief logistics under uncertainty that
focused on demand, supplies, and the cost of procurement and transportation. The proposed
model sought to locate the appropriate node for opening relief distribution centers so that the
objective function minimized total cost and maximized demand coverage in the affected zone.
Jabbarzadeh et al. [19] proposed a robust network design model for the supply of blood during
and after disasters. The proposed model aimed to determine supply chain design decisions
under a set of scenarios. The objective of the proposed model was to minimize the total supply
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chain costs for locating permanent facilities and moving temporary facilities, operational costs,
inventory costs, and blood transportation costs. To transform the nonlinear model to an LP
model, it was based on Mulvey et al. [75] and Yu and Li [78]. Similarly, Das and Hanaoka [79]
presented robust network design with supply and demand uncertainties in humanitarian
logistics that aims to minimize total cost of the network as well as the variance of total cost.
This proposed model attempts to seek the location of relief distribution center (RDC), inventory
level in each RDC and distribution of relief in different locations and procurement of relief.
Finally, a case study on the earthquake in Bangladesh was used for validation of the proposed
model.

From the examination of the deterministic, stochastic, dynamic, and robust facility
location problems, the objectives, constraints, and solution methods associated with the
emergency humanitarian logistics’ facility location problem optimization model were
summarized (Table 2.1). As can be seen, most of the identified objectives consist of risk,
covered/uncovered demand, satisfied/unsatisfied demand, the number of selected facilities,
evacuation time, transport time, transport distance, transport cost, the fixed cost at the selected
facility, operating costs at the selected facility, and the number of demand points. Weight was
also commonly applied to the objective function. Several constraints were added to facility
selection such as facility capacity requirements and bounds. Constraints can be applied to other
problems such as traffic assignment [17], commodity flows [33], and inventory [65]. For
optimum solutions, exact algorithms have been commonly used. However, for large-scale data,
exact algorithms can take a long time to solve, so advanced algorithms such as genetic
algorithms [14], Tabu searches [16], clustering algorithms [76], and locate-allocate heuristics
[44] are essential. For simplification, many techniques have been proposed to modify the
models, especially for the stochastic and robust optimization models, such as the epsilon-
constraint method and the sample average approximation method. Problem type, data
modelling type, and facility location type are shown in Table 2.2, which presents a
classification of the facility location problems and models identified from previous research.
Most facility location problems were found to be minisum, set covering, miximal covering,
and minimax facility location problems. Obnoxious facility location problems were the least
proposed problems. As the deterministic model is the basis for the stochastic, dynamic, and
robust facility location models, it has been used extensively in more complex facility location
stochastic models such as Akgiin et al. [7], Verma and Gaukler [12], and Salman and Yiicel
[16]. Dynamic and robust facility location problem models are not as widely spread as
expected, and most tend to focus on shelters, distribution centers, warehouses, and medical
centers. Some research has studied sub-facilities such as temporary distribution centers [61,62]
and temporary shelters [80].

2.4 Application and case studies

Facility location problems have been applied to a wide range of problems such as
evacuation, vehicle movements, transportation routes, relief distribution logistics, stock pre-
positioning, casualty transportation, resource allocation, commodity flows, traffic control, and
warehouse locations. Abounacer et al. [33] studied a facility location problem with a
transportation problem for disaster response. Afshar and Haghani [61] proposed a
mathematical model that integrated a relief commodity flow problem, a facility location
problem, a vehicle routing problem, and a transportation problem. Bayram et al. [17] developed
a model that optimally located shelters and assigned evacuees to the nearest shelter site.
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Similarly, Kongsomsaksakul et al. [14] proposed a shelter location-allocation model for flood
evacuation planning. The proposed model was formulated from a facility location problem and
a CDA problem. Khayal et al. [62] presented a network flow model for dynamic selection of
temporary distribution facilities and resource allocation for emergency response planning, in
which a facility location problem, an allocation problem, a community flow problem, and a
supply assignment problem were included in the formulation model. Feng and Wen [81]
proposed a model that was formulated as a multi-commodity, two-model network flow problem
(private vehicle flow and emergency vehicle) based on a bilevel programming problem and
network optimization theory. Moeini et al. [60] proposed a dynamic location model for the
locating and relocating of a fleet of ambulances. Kilci et al. [80] proposed MILP to select the
location of a temporary shelter site, in which a facility location problem, an assignment
problem, and a modified pairwise analysis were included. Following on from previous
research, some case study, they can generate by exact algorithm because they can formulate
real case by using a few variables and a few parameters. Moreover, some models, they used
some technique to reduce the number of variable, parameter, and constraints such as Das and
Hanaoka [[79, Irohara et al. [[36, and Bozorgi-Amiri et al. [ .[77At the present, there are many
advance software companies can overcome this challenge in which it can solve exact algorithm
efficiency. However, heuristic algorithm is still necessary for solving large problem.

Emergency humanitarian logistics’ facility location problem structures depend on the
research goals. The most prevalent disaster investigations were found to be earthquakes,
hurricanes, floods, dam inundations, and epidemics, and some papers proposed optimization
models for general disaster scenarios. Numerical examples and real case studies were
developed and illustrated to validate the mathematical models shown in Table 2.3.

2.5 Future research direction

In future research, facility location problems could be applied to many techniques such
as decision making and simulation. To further the already valuable work, optimization models
could also be used for dynamic or robust emergency humanitarian logistics’ facility location
models, which would allow for the incorporation of uncertain time periods, uncertain
environments, facility location risks, the possibility of facility locations, uncertain demand,
disruption events, different fluctuation patterns, and facility expansion.

The relationship between facility location types and disaster stages is shown in Figure
2.1. Disasters can be divided into the pre-disaster (mitigation and preparation) and post-disaster
(response and recovery) stages. In the mitigation stage, future research could seek to treat
hazards by relocating inhabitants farther from the risk area (arc (1)). As safety area planning is
a long-term plan, dynamic and robust models could be adapted into mathematical models. In
the preparation stage, research could investigate optimum planning and preparation for facility
locations such as warehouses, shelters, permanent distribution centers, and permanent medical
centers so as to increase the chances of survival and minimize financial and other losses.

Stochastic, dynamic, and robust facility planning models can be used to respond to real
situations. For example, as distribution warehouses should be located near disaster sites but
still place in safety area because they are the reception points for commodities and donations
(domestic and international), suppliers, and NGOs, research could focus on when to transfer
goods. Ye et al. [49] and Paul and Hariharan [76] developed a deterministic and robust model
for emergency humanitarian logistic warehouses, but did not include a stochastic or dynamic
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model (arc (2)). For the response stage, emergency decision makers will have major role in this
stage for managing available resources while the disaster is still progress that call this part as
“Disaster in progress”. This part, emergency decision makers are included but they just decide
emergency decision when unexpected case or emergency case occurred. The most important
considerations are shelters and medical centers that can respond to demand and ensure the
wounded are transferred to medical centers. When permanent medical centers are located in
the risk areas, the medical center needs to be able to evacuate patients to shelters as quickly as
possible. Therefore, permanent medical centers should be located in safe areas, so further
research could examine where to locate or relocate permanent medical centers. Immediately
following the disaster, temporary shelters need to be rapidly identified, so emergency decision
makers need to be able to identify suitable evacuation shelters as quickly as possible (arc (3))
[85-88]. Finally, in the recovery stage, research could investigate optimum locations for
temporary distribution centers (sub-distribution centers) to ensure efficient commodity
distribution, and also to determine the optimum placement of temporary medical centers to
ensure that the wounded are treated rapidly. Dynamic temporary distribution center and
medical center selection methods have been proposed, but none have included robust models.
In addition, obnoxious facility location problems have not been widely employed in DM
research, so while optimum facility locations as close as possible to the disaster areas have
been investigated, considerations regarding facilities far from potential epidemic zones, such
as centers for disease control and prevention (an epidemic may occur following a disaster) and
garbage dumps for debris removal have not been fully studied (arc (4)). The relationships in
this stage need to be further investigated as warehouses send commodities (food, medicine,
clothes, etc.) to shelters and medical centers (medicines, medical equipment). Likewise, when
an epidemic breaks out, both permanent and temporary medical centers send patients with
illnesses or infections to centers for disease control and prevention.

Facility location problems can be supported or developed to combine aspects such as
routing problems, evacuation problems, relief distribution problems, casualty transportation
problems, inventory problems, resource allocation problems, traffic control problems, debris
management problems, and community flow problems as elucidated in Zheng et al. [25]. In
some situations, two disasters may occur, such as an earthquake followed by a tsunami.
Therefore, more research is needed that considers multi-disaster scenarios. Moreover,
integrated disaster stage management is also important for decision making in emergency
humanitarian logistics’ facility location problems. Normally, the researchers always focus on
each stage and a few researches concentrate on integration disaster stage management, so
integrated disaster stage management is a major gap that should be considered.

The objective function model could also be designed differently to create a single-
objective or multi-objective model that could be single level or bilevel. Most objectives have
focused on minimum time, minimum cost, minimum distance, minimum number of located
facilities, and coverage by a maximum number of demand points. New objective functions
could be developed by integrating the facility location problem with the other above-mentioned
problems. Further, new objectives focused on environmental effect, reliability, risk, and ease
of access could be developed. Constraints could also be added, such as an assessment of
evacuee behavior (demand) and age of population (old age and childhood). For more realistic,
the researchers should determine the uncertainty factors such as demand, supply and time.
Moreover, quantitative and qualitative measurements could be added to the parameters so as
to include quality measurements in facility location problems such as availability, accessibility,
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functional ability and risk. According to informed judgement of experts, it is one element that
we should emphasize and bring to apply in mathematical model. However, the key question is
not only “How can we optimize the facility location in emergency humanitarian logistic
problems” but also “How can we seek the suitable facility location in emergency humanitarian
logistic problems that we can commandeer and use” as well.

Current emergency humanitarian logistics’ optimization models have some limitations
due to the large-scale data, so it can be complex to calculate and finding the optimum can take
an excessive amount of time and computing power. Therefore, the development of advanced
algorithms that can be applied to emergency humanitarian logistics is necessary to add to the
present stable of genetic algorithms, tabu searches, locate-allocate heuristics, Lagrangian
relaxation heuristics, particle swarm optimization, ant colony optimization, biogeography-
based optimization, artificial immune systems, and hybrid algorithms. See Zheng et al. [25] for
a review of the research advances in evolutionary algorithms (EAs) applied to disaster relief
operations.

Target - Safety Areas - Permanent Distribution centers - Temporary distribution centers - Centers for diseases control
facility - Warehouses - Permanent Medical centers - Temporary medical centers and prevention
location - Shelters - Garbage dumps - Temporary shelters
Pre-disaster Post-disaster
Disaster Mitigation Preparation Response Recove
stages 5 P P Ty
3 ¥ ¥ 3
Facili Distribution Medical nter for di Garbage
.ty Safety Area Warehouse Shelter stributio edica Center for d scases 8
location center center control and prevention dumps
L

— arc(l) —»arc(?) —>»arc(3) —>»arc(4d)

Figure 2.1 Relationship model between disaster stages and facility location types.

2.6 Conclusions

This chapter reviewed optimization models for emergency humanitarian logistics’
facility location problems. Four main models were investigated: deterministic, stochastic,
dynamic, and robust. The deterministic facility location problem addressed facility location
problems for minisum problems, covering problems, minimax problems, and obnoxious
problems. This review attempted to survey the objectives, conditions, case studies,
applications, disaster types, facility location types, solution methods, and emergency
humanitarian logistics’ facility location problem categories. The literature’s main objective
was found to be focused on responsiveness, risk, and cost-efficiency. In emergency
humanitarian logistics problems, responsiveness and risk are the major criteria, with most
models aiming to minimize response time, evacuation time and/or distance, transportation costs
(distance and time), the number of open facilities, facility fixed costs or operating costs,
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uncovered demand, unsatisfied demand, and risk, along with maximizing the demand points
covered. Depending on the problem type, the literature showed that the problem types could
be merged with other problems and that the facility location problem could be applied along
with other techniques such as decision theory, queuing theory, and fuzzy methods. Owing to
the prevalence of earthquakes, hurricanes, floods, and epidemics in the world, these were the
main focus of emergency humanitarian logistics research. An exact solution was found to be
one efficiency technique, but advanced algorithms were found to be most effective for large-
scale problems. Finally, research gaps and future research were identified as assisting in
developing future disaster operations. This review has highlighted the extensive range of
emergency humanitarian logistics’ facility location optimization models that have been
developed since the 1950s.
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Table 2.1 Objectives, constraints, and solution methods for emergency humanitarian logistics’
facility location problem optimization models

Constraints
Authors Objective et Requirements Other Solution method
and bounds
Abounacer et al. Transportation Facility, Number of agent, Transportation Epsilon-constraint
[33] distance, the vehicle, link number of trip problem method, Exact Pareto

Afshar and Haghani
[61]

Akgiin et al. [7]
Aksen and Aras
[42]

Balcik and Beamon
[63]

Barzinpour and
Esmaeili [34]

Bayram et al. [17]

Bozorgi-Amiri et al.

[77]

Chang et al. [70]

Chanta and
Sangsawang [47]

Chen et al. [84]
Dar and Hanaoka

[79]

Dekle et al. [38]

Dessouky et al. [82]

Duran et al [64]

number of agent
need to operate the
opened HADCs,
Uncovered demand
Unsatisfied demand

Risk

Cost incurred
before and after the
interdiction attempt
Total expected
demand covered by
the established
distribution centers
Cumulative
coverage of
population, setup
costs, transportation
costs, equipment
holding costs,
shortage costs
Evacuation time

The expected value
and the variance of
the total cost of the
relief chain,
satisfaction levels,
shortages in the
affected areas
Transportation,
facility opening,
equipment rental,
penalties, shipping
distance of rescue
equipment
Number of demand
zones, Weight
distance

Distance

Cumulative cost of
pre- and post-
disaster
circumstances
Facilities for each
area with a given
distance

Demand-weighted
distance

Average response
time

Facility,
vehicle,
Supply

Facility

Facility

Facility,
transportation

Facility

Facility

Facility

Facility

Facility

Facility

Facility

Facility

performed
(Vehicle), Daily
work time for a
vehicle, time limit
Number of facility

Number of facility
Number of facility

Budget

Number of facility

Number of
facility, distance
limit

Number of
assignment
Delivery capacity
of supplier

Identify the
location of the
facility for each
area

Number of
facility, distance
limit

Number of
facility, total
inventory allowed

Commodity flow,
vehicle flow,
transportation
network design,
linkage between
vehicle and
commodity

Inventory problem

Demand and supply

Traffic assignment,
balance flow,
evacuation
management
Commodity flow,
inventory

Prioritized facility
allocation

Financial problem

Inventory problem

front

Exact algorithm

Exact algorithm
Tabu search, Sequential
solution method

Exact algorithm

Exact algorithm (Goal
programming)

Second order cone
programming
techniques

Exact algorithm (Lingo)

Sample average
approximation

Epsilon-constraint
approach, Exact
algorithm

Exact algorithm

Exact algorithm

Pick-the-Farthest (PTF)
Algorithm

Exact algorithm

Exact algorithm
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Table 2.1 (Continues)

Constraints
Authors Objective Capacity Requirements Other Solution method
and bounds
Fetter and Rakes Fixed cost and Facility Number of - Exact algorithm
[53] variable cost of facility, the ability
facility, making to characterize the
technology, debris from
operation, specific regions
transportation, and
revenue
Hale and Moberg Number of opened Facility Minimum and - Exact algorithm
[40] felicities maximum distance
Hong et al. [32] Total logistic cost - Distance between - Exact algorithm
warehouse and
facility, number of
facility, demand
Horner and Downs Cost of distributing ~ Facility Number of Demand fulfilment  Exact algorithm
[30] relief goods facilities, constraint
Huetal. [41] Cost of opening, Facility - - Genetic algorithm
travel evacuation
distance
Irohara et al. [36] Costs of Facility Distance, number assignment of Dual Ascent Solution
establishing the of evacuation communities
centers, cost of centers
maintaining the pre-
positioned
inventories, the
recovery costs post-
disaster
Jabbarzadeh et al. Fixed cost and Facility The number of - Exact algorithm (Branch
[19] variable cost of (permanent blood supply of and bound: Lingo)
facility, operational ~ and donor group,
cost, transportation temporary) storage capacity
cost, inventory cost
Jiaetal. [44] Covered demand Facility Number of facility — Quality level Genetic algorithm,
Locate-allocate heuristic,
Lagrangean relaxation
heuristic, Exact
algorithm
Kedchaikulrat and Cost structure and Facility, Size of the facility - Exact algorithm (Pareto
Lohatepanont [83] AHP score vehicle dominance)
Khayal et al. [62] Fixed cost, Facility, - Commodity flow, Exact algorithm
transportation cost supply supply assignment,
of resource resource transfer,
allocation, distributi demand satisfaction
on cost, delay
penalty cost
Kilci et al. [80] Weight of operating  Facility - Pairwise utilization ~ Exact algorithm
candidate shelter difference
Klibi et al. [65] Transportation and Facility, Budget, vendor Inventory level, risk ~ Two-stage stochastic

Kongsomsaksakul
etal. [14]

Lin et al. [31]

Manopiniwes and
Irohara [67]

procurement cost,
Penalty associated
to satisfying point
of distribution
demands
Evacuation time

Shortage penalty
cost, delay delivery
penalty cost,
shipping cost,
unfairness of
service cost

Cost of opening,
shipping cost,
response time

quantities of
items

Facility, link

Facility

Facility,
Vehicle

supply quantities

Link

Number of depots,
trucks, travel time,
delivery items
quantity

Number of
vehicles, Number
of distribution
centers, available
response time

level

Combined
distribution,
assignment problem

programming, Sample
average approximation
method, Monte-Carlo
procedure, multi-criteria
decision-making method
Genetic algorithm

Two-phase heuristic

approach

Exact algorithm (Goal
Programming)
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Table 2.1 (Continues)

Constraints

Authors Objective Capacity Requirements Other Solution method

and bounds

McCall [29] Victim nautical Facility Budget, delivery Unsatisfied Exact algorithm

miles, shortage) limit, the number demands
of stockpile, the
number of
community
Mete and Zabinsky ~ Warehouse Vehicle Inventory shortage - Exact algorithm
[72] operation, upper bound
transportation time threshold
Moeini et al. [60] Cost of Relocation - Number of Relocation problem  Exact algorithm
of the vehicle, ambulances, time
Covered demand
Murali et al. [45] Number of demand  Facility Number of - Locate-allocate heuristic
points facility, supply
available during
emergency
Paul and Hariharan ~ Fatality cost, the Facility Budget Senility, type of Disaster event
[76] cost of maintaining medical condition, simulation-HAZUS-MH,
a stockpile unique nature of Clustering Algorithm,
each type of disaster ~ Patient grouping
algorithm, Exact
algorithm
Psaraftis et al. [68] Facility opening, - - - Exact algorithm
stock acquisition,
transportation,
operations, unmet
demand, delay

Ransikarbum and Fairness/equity, Facility, road ~ Number of flow conservation Exact algorithm (Goal

Mason [35] unmet demand, disrupted nodes Programming)

network cost and disrupted arcs,

Budget

Rawls and Costs of commodity  Facility, link Demand, number Resource allocation  Exact algorithm
Tumquist [71] acquisition, of facilities,

stocking decision, inventory level

transportation,

shortage, holding
Rawls and Facility opening, Facility, link Number of facility - Lagrangian L-shaped
Turnquist [66] transportation, method

unmet demand,

holding

Salman and Yicel Covered demand - Number of facility ~ All-pairs shortest Tabu search

[16] path problem

Santos et al. [46] Number of demand Facility Number of - Exact algorithm

points facility, distance
limit
Talwar [48] Weight distance, Facility Number of facility - Weiszfeld algorithm,
Un-weight distance Two-point and three-
point search heuristics

Verma and Gaukler ~ Transportation cost  Facility Number of facility ~ Supplier Exact algorithm,

[12] Modified L-shaped,
Sample average
approximation method,
Master problem heuristic

Wilhelm and Facility opening Facility Time-phased - Heuristics based on

Srinivasa [69]

Ye etal. [49]

and expansion,
stock acquisition,
operations
Number of
warehouses

cleanup
requirement

Number of
warehouses,
distance limit

linear programming

Variable neighborhood
search, Exact algorithm
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Table 2.2 Problem types, data modelling types, and facility location types for emergency humanitarian
logistics’ facility location problems

Classification of facility location  Classification of data

problems modelling
g
Author w § . & Facility location type
= 5 = ¥ 2 £ £
2 g £ £ g £z £z
£ 5 i = £ 2 2 g 2
= @ = = =) a @ a &
Abounacer et al. [33] x x Distribution centers (HADC)
Afshar and Haghani [61] x x Temporary distribution centers
Akgun et al. [7] x Pre-positioning
Aksen and Aras [42] x Shelters
Balcik and Beamon [63] x Distribution centers
][3;::]2 inpour and Esmaeili x x Distribution centers
Bayram et al. [17] x x Shelters
Bozorgi-Amiri et al. [77] x x x Relief distribution centers
Chang et al. [70] x x Rescue resource storehouses
Chanta and Sangsawang o « Shelter
[47]
Chen et al. [84] x % Shelter
Dar and Hanaoka [79] x x Relief distribution centers
Dekle et al. [38] x Disaster recovery centers
Dessouky et al. [82] x x Warehouse (Medical supplies)
Duran et al [64] x x Warehouse
Feng and Wen [81] x x Shelter
Fetter and Rakes [53] x Debris removal site
Hale and Moberg [40] x Storage facilities
Hong et al. [32] y » " Distribu_tion warehouses and break of
bulk points
Horner and Downs [30] x % Distribution centers
Huetal. [41] x x Shelters
Irohara et al. [36] x x Evacuation centers
Jabbarzadeh et al. [19] o » « Blood facilities, blood centers and
blood donors
Jia et al. [44] x Medical supply distribution centers
Kedchaikulrat and o o Warchouses
Lohatepanont [83]
Khayal et al. [62] x x Temporary Distribution centers
Kilci et al. [80] x Temporary shelters
Klibi et al. [65] x x Distribution centers
Kongsomsaksakul et al. [14]  x x Shelters
Linetal. [31] x x Temporary depots
?ggiloplnlwes and Irohara x x Relief distribution centers
Marcelin et al. [18] x x Distribution facilities
McCall [29] x x Stockpiles
Mete and Zabinsky [72] x x Warehouses
Moeini et al. [60] x Ambulances
Murali et al. [45] x x Point of disbursement
Paul and Hariharan [76] x Warehouse
Psaraftis et al. [68] x x Equipment stockpiling facilities
Ransikarbum and Mason .
35] x x Relief warehouse
Rawls and Tumquist [71] x x Storage facilities
Rawls and Turnquist [66] x % Pre-positioning of supplies
Salman and Yicel [16] % Shelters
Santos et al. [46] x % Shelters
Talwar [48] x x x Location of rescue helicopters
Verma and Gaukler [12] x x x Disaster response facilities and
population centers
Wilhelm and Srinivasa [69] x x Storage locations
Ye etal. [49] X X Warehouses
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Table 2.3 Disaster types and case studies for emergency humanitarian logistics’ facility location

problems

Authors Disaster type Case study

Abounacer et al. [33] General Numerical experiments

Afshar and Haghani [61] General Numerical experiments

Akgiin et al. [7] Earthquakes Turkey

Aksen and Aras [42] General Numerical experiments

Balcik and Beamon [63] Earthquake National Geophysical Data Center

Barzinpour and Esmaeili [34] Earthquake Tehran

Bayram et al. [17] General Transportation network test problem, OR
library, Istanbul road network

Bozorgi-Amiri et al. [77] Earthquakes Iran

Chang et al. [70] Flood Taipei City

Chanta and Sangsawang [47] Flood Bangkruai, Thailand

Chen et al. [84] Earthquake Beijing. China

Dar and Hanaoka [79] Earthquake Bangladesh

Dekle et al. [38] General Florida county

Dessouky et al. [82] Epidemic Anthrax disaster, Los Angeles

Duran et al. [64] General CARE International

Feng and Wen [81] Earthquakes Taiwan

Fetter and Rakes [53] Hurricane Chesapeake

Hale and Moberg [40] General Seven city example in the northeast

Hong et al. [32] General South Carolina

Horner and Downs [30] General Leon County, Florida

Huetal. [41] Earthquake Chaoyang District of Beijing

Irohara et al. [36] Hurricane southeast USA

Jabbarzadeh et al. [19] Earthquakes Iran (IBTO)

Jia et al. [44] Epidemic Anthrax disaster, Los Angeles

Kedchaikulrat and Lohatepanont [83] General Thai Red Cross

Khayal et al. [62] General South Carolina, USA

Kilci et al. [80] Earthquakes Kartal, Istanbul, Turkey

Klibi et al. [65] General North Carolina

Kongsomsaksakul et al. [14] Inundation of dam and reservoir Longan network in Utah

Linetal. [31] Earthquake Angeles County

Manopiniwes and Irohara [67] Flood Chiang Mai, Thailand

Marcelin et al. [18] Hurricane Leon country, Florida

McCall [29] General Australia

Mete and Zabinsky [72] Earthquake Seattle

Moeini et al. [60] General Val-de-Marene, France

Murali et al. [45] Epidemic Anthrax attack, Angeles

Paul and Hariharan [76] Earthquakes, Hurricane Northridge, Kartina

Psaraftis et al. [68] Oil spills New England

Ransikarbum and Mason [35] Hurricane South Carolina

Rawls and Tumquist [71] Hurricane North Carolina

Rawls and Turnquist [66] Hurricane Gulf Coast area of the US

Salman and Yicel [16] Earthquakes Istanbul

Santos et al. [46] Flood Marikina City, Philippines

Talwar [48] General South Tyrol, Northern Italy

Verma and Gaukler [12] Earthquakes California

Wilhelm and Srinivasa [69] Oil spills Galveston Bay Area

Ye etal [49] General China

34



Chapter 2

3.8 References

(1]
(2]
(3]

(4]

[3]

[6]

[7]
(8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Guha-Sapir, D., P. Hoyois, & R. Below. 2015. Annual Disaster Statistical Review 2014,
The Numbers and Trends. Brussels, CRED.

Ozdamar, L., & Ertem, M. A. (2015). Models, solutions and enabling technologies in
humanitarian logistics. European Journal of Operational Research, 244(1), 55-65.
World Health Organization. 2007., Risk reduction and emergency preparedness: WHO
six-year strategy for the health sector and community capacity development. Available
from: http://www.who.int/hac/techguidance/preparedness/emergency
preparedness_eng.pdf. Accessed 11 November 2015.

Lehtveer, M., & Hedenus, F. (2015). Nuclear power as a climate mitigation strategy—
technology and proliferation risk. Journal of Risk Research. 18(3), 273-290.

Lidskog, R., & Sjodin, D. (2015). Risk governance through professional expertise.
Forestry consultants’ handling of uncertainties after a storm disaster. Journal of Risk
Research. 1-16.

Xu, J., Wang, Z., Shen, F., Ouyang, C., & Tu, Y. (2016). Natural disasters and social
conflict: A systematic literature review. International journal of disaster risk reduction,
17, 38-48.

Akgiin, 1., Giimiisbuga, F., & Tansel, B. (2015). Risk based facility location by using
fault tree analysis in disaster management. Omega, 52, 168-179.

Coppola, D. P. (2011), Introduction to international disaster management. Butterworth-
Heinemann.

Habib, M. S., Lee, Y. H., & Memon, M. S. (2016). Mathematical models in humanitarian
supply chain management: A systematic literature review. Mathematical Problems in
Engineering, 2016.

Sauer, A. (2016). Humanitarian Supply Chain Performance Management: Development
and Evaluation of a Comprehensive Performance Measurement Framework Based on the
Balanced Scorecard. Doctoral dissertation, Munich Business School, German.

Labib, A., & Read, M. (2015). A hybrid model for learning from failures: The Hurricane
Katrina disaster. Expert Systems with Applications. 42(21), 7869-7881.

Verma, A., & Gaukler, G. M. (2015). Pre-positioning disaster response facilities at safe
locations: An evaluation of deterministic and stochastic modeling approaches.
Computers & Operations Research. 62, 197-209.

Scott, A. J. (1971). Dynamic location-allocation systems: some basic planning strategies.
Environment and Planning. 3(1), 73-82.

Kongsomsaksakul, S., Yang, C., & Chen, A. (2005). Shelter location-allocation model
for flood evacuation planning. Journal of the Eastern Asia Society for Transportation
Studies. 6, 4237-4252.

Mete, H. O., & Zabinsky, Z. B. (2010). Stochastic optimization of medical supply
location and distribution in disaster management. International Journal of Production
Economics. 126(1), 76—84.

Salman, F. S., & E. Yiicel, (2015). Emergency facility location under random network
damage: Insights from the Istanbul case. Computers & Operations Research. 62, 266—
281.

Bayram, V., Tansel, B. C., & Yaman, H. (2015). Compromising system and user interests
in shelter location and evacuation planning. Transportation research part B:
methodological. 72, 146—163.

35



Chapter 2

[18]

[19]

[20]

(21]

[22]

(23]

[24]
[25]
[26]
[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

Marcelin, J. M., Horner, M. W., Ozguven, E. E., & Kocatepe, A. (2016). How does
accessibility to post-disaster relief compare between the aging and the general
population? A spatial network optimization analysis of hurricane relief facility
locations. International journal of disaster risk reduction, 15, 61-72.

Jabbarzadeh, A., Fahimnia, B., & Seuring, S. (2014). Dynamic supply chain network
design for the supply of blood in disasters: a robust model with real world
application. Transportation Research Part E: Logistics and Transportation Review, 70,
225-244.

Altay, N., & Green, W. G. (2006). OR/MS research in disaster operations management.
European journal of operational research. 175(1), 475-493.

Galindo, G., & Batta, R. (2013). Review of recent developments in OR/MS research in
disaster operations management. European Journal of Operational Research. 230(2),
201-211.

Caunhye, A. M., Nie, X., & Pokharel, S. (2012). Optimization models in emergency
logistics: A literature review. Socio-Economic Planning Sciences. 46(1), 4—13.

Safeer, M., Anbuudayasankar, S. P., Balkumar, K., & Ganesh, K. (2014). Analyzing
transportation and distribution in emergency humanitarian logistics. Procedia
Engineering, 97, 2248-2258.

Anaya-Arenas, A. M., Renaud, J., & Ruiz, A. (2014). Relief distribution networks: a
systematic review. Annals of Operations Research, 223(1), 53-79.

Zheng, Y. J., Chen, S. Y., & Ling, H. F. (2015). Evolutionary optimization for disaster
relief operations: a survey. Applied Soft Computing. 27, 553—-566.

Arabani, A. B., & Farahani, R. Z. (2012). Facility location dynamics: An overview of
classifications and applications. Computers & Industrial Engineering. 62(1), 408—420.
Hakimi, S. L. (1964). Optimum locations of switching centers and the absolute centers
and medians of a graph. Operations research. 12(3), 450—459.

Revelle, C. S., Eiselt, H. A., & Daskin, M. S. (2008). A bibliography for some
fundamental problem categories in discrete location science. European Journal of
Operational Research, 184(3), 817-848.

McCall, V. M. (2006). Designing and prepositioning humanitarian assistance pack-up
kits (HA PUKSs) to support pacific fleet emergency relief operations. Doctoral
dissertation, Monterey California, Naval Postgraduate School, California

Horner, M. W., & Downs, J. A. (2010). Optimizing hurricane disaster relief goods
distribution: model development and application with respect to planning strategies.
Disasters. 34(3), 821-844.

Lin, Y. H., Batta, R., Rogerson, P. A., Blatt, A., & Flanigan, M. (2012). Location of
temporary depots to facilitate relief operations after an earthquake. Socio-Economic
Planning Sciences, 46(2), 112-123.

Hong, J. D., Xie, Y., & Jeong, K. Y. (2012). Development and evaluation of an integrated
emergency response facility location model. Journal of Industrial Engineering and
Management. 5(1), 4.

Abounacer, R., Rekik, M., & Renaud, J. (2014). An exact solution approach for multi-
objective location—transportation problem for disaster response. Computers &
Operations Research. 41, 83-93.

Barzinpour, F., & Esmaeili, V. (2014). A multi-objective relief chain location distribution
model for urban disaster management. The International Journal of Advanced
Manufacturing Technology, 70(5-8), 1291-1302.

36



Chapter 2

[35]

[36]

[37]
[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]
[51]

[52]

Ransikarbum, K., & Mason, S. J. (2016). Multiple-objective analysis of integrated relief
supply and network restoration in humanitarian logistics operations. International Journal
of Production Research. 54(1), 49—68.

Irohara, T., Kuo, Y. H., & Leung, J. M. (2013). From preparedness to recovery: a tri-
level programming model for disaster relief planning. In International Conference on
Computational Logistics (pp. 213-228). Springer Berlin Heidelberg.

Toregas, C., Swain, R., ReVelle, C., & Bergman, L. (1971). The location of emergency
service facilities. Operations research, 19(6), 1363-1373.

Dekle, J., Lavieri, M. S., Martin, E., Emir-Farinas, H., & Francis, R. L. (2005). A Florida
county locates disaster recovery centers. Interfaces, 35(2), 133-139.

Ablanedo-Rosas, J. H., Gao, H., Alidaee, B., & Teng, W. Y. (2009). Allocation of
emergency and recovery centres in Hidalgo, Mexico. International Journal of Services
Sciences, 2(2), 206-218.

Hale, T., & Moberg, C. R. (2009). Improving supply chain disaster preparedness: A
decision process for secure site location. International Journal of Physical Distribution &
Logistics Management. 35(3), 195-207.

Hu, F., Yang, S., & Xu, W. (2014). A non-dominated sorting genetic algorithm for the
location and districting planning of earthquake shelters. International Journal of
Geographical Information Science. 28(7), 1482-1501.

Aksen, D., & Aras, N. (2012). A bilevel fixed charge location model for facilities under
imminent attack. Computers & Operations Research. 39(7), 1364—1381.

Church, R., & Velle, C. R. (1974). The maximal covering location problem. Papers in
regional science. 32(1), 101-118.

Jia, H., Ordoiiez, F., & Dessouky, M. M. (2007). Solution approaches for facility location
of medical supplies for large-scale emergencies. Computers & Industrial Engineering.
52(2), 257-276.

Murali, P., Ordéiiez, F., & Dessouky, M. M. (2012). Facility location under demand
uncertainty: Response to a large-scale bio-terror attack. Socio-Economic Planning
Sciences. 46(1), 78-87.

Santos, M. G., Merifio, M., Sore, N., & Quevedo, V. C. (2013). Flood Facility Location-
Allocation in Marikina City Using MCLP with Lagrange. The 14th Asia Pacific
Industrial Engineering and Management Systems Conference, Philippines, December 3—
6.

Chanta, S., & Sangsawang, O. (2012). Shelter-site selection during flood disaster.
Lecture Notes in Management Science. 4, 282-288.

Talwar, M. (2002). Location of rescue helicopters in South Tyrol. In proceeding of 37th
Annual ORSNZ Conference, Auckland, New Zealand.

Ye, F., Zhao, Q., Xi, M., & Dessouky, M. (2015). Chinese National Emergency
Warehouse Location Research based on VNS Algorithm. Electronic Notes in Discrete
Mathematics. 47, 61-68.

Church, R. L., & Garfinkel, R. S. (1978). Locating an obnoxious facility on a network.
Transportation science. 12(2), 107-118.

Berman, O., Drezner, Z., & Wesolowsky, G. O. (1996). Minimum covering criterion for
obnoxious facility location on a network. Networks. 28(1), 1-5.

Drezner, Z., & Wesolowsky, G. O. (1980). A maximin location problem with maximum
distance constraints. AIIE transactions. 12(3), 249-252.

37



Chapter 2

[53]

[54]

[55]

[56]

[57]
[58]
[59]

[60]

[61]

[62]

[63]
[64]

[65]

[66]

[67]

[68]

[69]

[70]

Fetter, G., & Rakes, T. (2012). Incorporating recycling into post-disaster debris disposal.
Socio-Economic Planning Sciences. 46(1), 14-22.

Hu, Z. H., & Sheu, J. B. (2013). Post-disaster debris reverse logistics management under
psychological cost minimization. Transportation Research Part B: Methodological. 55,
118—141.

Lorca, A., Celik, M., Ergun, O., & Keskinocak, P. (2015). A decision-support tool for
post-disaster debris operations. Procedia Engineering, 107, 154-167.

Pramudita, A., Taniguchi, E., & Qureshi, A. G. (2014). Location and routing problems
of debris collection operation after disasters with realistic case study. Procedia-Social
and Behavioral Sciences, 125, 445-458.

Sahin, H., Kara, B. Y., & Karasan, O. E. (2016). Debris removal during disaster response:
A case for Turkey. Socio-Economic Planning Sciences, 53, 49-59.

Ballou, R. H. (1968). Dynamic warehouse location analysis. Journal of Marketing
Research. 271-276.

Wesolowsky, G. O. (1973). Dynamic facility location. Management Science. 19(11),
1241-12438.

Moeini, M., Jemai, Z., & Sahin,E. (2015). Location and relocation problems in the
context of the emergency medical service systems: a case study. Central European
Journal of Operations Research. 23(3), 1-18.

Afshar, A., & Haghani, A. (2012). Modeling integrated supply chain logistics in real-
time large-scale disaster relief operations. Socio-Economic Planning Sciences. 46(4),
327-338.

Khayal, D., Pradhananga, R., Pokharel, S., & Mutlu, F. (2015). A model for planning
locations of temporary distribution facilities for emergency response. Socio-Economic
Planning Sciences, 52, 22-30.

Balcik, B., & Beamon, B. M. (2008). Facility location in humanitarian relief.
International Journal of Logistics. 11(2), 101-121.

Duran, S., Gutierrez, M. A., & Keskinocak,P. (2011). Pre-positioning of emergency
items for CARE international. Interfaces. 41(3), 223-237.

Klibi, W., Ichoua, S. & Martel, A. (2013). Prepositioning emergency supplies to support
disaster relief: a stochastic programming approach. Faculté des sciences de
I'administration, Université Laval

Rawls, C. G., & Turnquist, M. A. (2010). Pre-positioning of emergency supplies for
disaster response. Transportation research part B: Methodological. 44(4), 521-534.
Manopiniwes, W., & Irohara, T. (2016). Stochastic optimisation model for integrated
decisions on relief supply chains: preparedness for disaster response. International
Journal of Production Research. 1-18.

Psaraftis, H. N., Tharakan, G. G., & Ceder, A. (1986). Optimal response to oil spills: the
strategic decision case. Operations Research, 34(2), 203-217.

Wilhelm, W. E., & Srinivasa, A. V. (1996). A Strategic, Area-wide Contingency
Planning Model for Oil Spill Cleanup Operations with Application Demonstrated to the
Galveston Bay Area. Decision Sciences. 27(4), 767—799.

Chang, M. S., Tseng, Y. L., & Chen, J. W. (2007). A scenario planning approach for the
flood emergency logistics preparation problem under uncertainty. Transportation
Research Part E: Logistics and Transportation Review, 43(6), 737-754.

38



Chapter 2

[71]

[72]

[73]
[74]
[75]
[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

(87]

Rawls, C. G., & Turnquist, M. A. (2012). Pre-positioning and dynamic delivery planning
for short-term response following a natural disaster. Socio-Economic Planning Sciences.
46(1), 46-54.

Mete, H. O., & Zabinsky, Z. B. (2010). Stochastic optimization of medical supply
location and distribution in disaster management. International Journal of Production
Economics. 126(1), 76—84.

Marla, L. (2007). Robust optimization for network-based resource allocation problems
under uncertainty. M.Sci diss. Massachusetts Institute of Technology.

Bertsimas, D., Brown, D. B., & Caramanis, C. (2011). Theory and applications of robust
optimization. SIAM review. 53(3), 464-501.

Mulvey, J. M., R. J. Vanderbei, & Zenios, S. A. (1995). Robust optimization of large-
scale systems. Operations research. 43(2), 264-281.

Paul, J. A., & Hariharan, G. (2012). Location-allocation planning of stockpiles for
effective disaster mitigation. Annals of operations research. 196(1), 469—490.
Bozorgi-Amiri, A., Jabalameli, M. S., & Al-e-Hashem, S. M. (2013). A multi-objective
robust stochastic programming model for disaster relief logistics under uncertainty. OR
spectrum. 35(4), 905-933.

Yu, C. S., & Li, H. L. (2000). A robust optimization model for stochastic logistic
problems. International Journal of Production Economics. 64(1), 385-397.

Das, R., & HANAOKA, S. (2013). Robust network design with supply and demand
uncertainties in humanitarian logistics. Journal of the Eastern Asia Society for
Transportation Studies. 10(0), 954-969.

Kilei, F., Kara, B. Y., & Bozkaya, B. (2015). Locating temporary shelter areas after an
earthquake: A case for Turkey. European Journal of Operational Research. 243(1), 323—
332.

Feng, C. M., and Wen, C. C. (2005). A bi-level programming model for allocating private
and emergency vehicle flows in seismic disaster areas. In Proceedings of the Eastern Asia
Society for Transportation Studies. 5(5), 1408—1423.

Dessouky, M., Ordonez, F., Jia, H., & Shen, Z. (2013). "Rapid Distribution of Medical
Supplies.” Patient Flow. Springer US, 385—410.

Kedchaikulrat, L., & Lohatepanont, M. (2015). Multi-Objective Location Selection
Model for Thai Red Cross’s Relief Warehouses. In Proceedings of the Eastern Asia
Society for Transportation Studies. 10.

Chen, Z., Chen, X., Li, Q., & Chen, J. (2013). The temporal hierarchy of shelters: a
hierarchical location model for earthquake-shelter planning. International Journal of
Geographical Information Science, 27(8), 1612—1630.

Boonmee, C., Takumi, A., & Mikiharu, A. (2017). A Bi-Criteria Optimization for
Hierarchical Evacuation and Shelter Site Selection under Uncertainty of Flood Events.
Journal of the Eastern Asia Society for Transportation Studies, In press.

Boonmee, C., Takumi, A., & Mikiharu, A. (2017). Improving Evacuation Planning and
Shelter Site Selection for Flood Disaster: Thai Flooding Case Study. Journal of Japan
Society of Civil Engineers, Ser. D3 (Infrastructure Planning and Management), Vol.
73(5), p- 253-267.

Boonmee, C., Naotaka, 1., Takumi, A., & Mikiharu, A. (2017). An Integrated Multi-
Model Optimization and Fuzzy AHP for Shelter Site Selection and Evacuation Planning.
Journal of Japan Society of Civil Engineers, Ser. D3 (Infrastructure Planning and
Management), Vol. 73(5), p. 225-240.

39



Chapter 2

[88] Naotaka, I., Takumi, A., Boonmee, C., & Mikiharu, A. (2016). Built on The Local
Disaster Prevention Education tool using Evacuation Drill Probe Data. Journal of Japan
Society of Civil Engineers, Vol. 72(5), p. 331-339. (Japanese)

40



Chapter 3
An Integrated Multi-Model Optimization and

Fuzzy AHP for Shelter Site Selection and
Evacuation Planning



Chapter 3

3.1 Introduction

Since the 1950s, both the number and magnitude of disasters have been continuously
increasing, with the number of affected people has increased in proportion (about 235 million
people per annum on average since the 1990s). Base on annual disaster statistical review 2014
[1], 324 natural disasters were recorded, with economic damages estimated to be US$ 99.2
billion. According to the international disaster database, Asia and America have been the
continues most affected by natural disasters such as earthquakes, storms, floods, landslides, etc
[2]. The World Health Organization (WHO) defines a ‘disaster’ as any occurrence that causes
damage, destruction, ecological disruption, loss of human life, human suffering, deterioration
of health and health services on a scale sufficient to warrant an extraordinary response from
outside the affected community or area [3]. Such events may include natural disasters and
epidemics or man-made disruptions [4]. Because of the increasing severity of the disaster,
research has paid more attention for the purpose of helping at-risk persons to avoid or recover
from the effect of the disaster that known as “Disaster management” (DM). The DM activity
consists of four stages: mitigation, preparation, response, and recovery [5].

During a disaster situation, people in an affected zone have to decide where to evacuate
to safety. The shelter is a public safe place provided and organized by the government in order
to support people in an affected area. Shelter site selection and evacuation planning are the
most important function of DM. To find out the best planning, the modeling, optimization,
decision making, and simulation are the major approach to overcome these challenges [6].
Since by deciding the best plan for shelter site and evacuation planning, local government can
help at-risk persons to avoid or recover from the effect of the disaster. According to related
existing papers, there are two problems that should be determined; (1) the existing papers
normally focus on either qualitative measurement or qualitative measurement and propose only
one standard model for shelter site selection and evacuation planning in which in some case,
the model cannot apply to the real case problem and cannot respond to the perspective of
decision makers. (2) To decide the best planning with relative to the perspective of decision-
makers and the qualitative and quantitative criteria, this decision becomes complicated in the
case of multiple conflicting criteria and imprecise parameters. Besides, the uncertainty and
vagueness of expert’s opinion are the prominent characteristics of the problem.

Therefore, this chapter aims to propose our conceptual model by using an optimization
technique and Fuzzy Analytic Hierarchy Process (Fuzzy AHP) for selecting shelters and
evacuation planning. The optimization technique is used to overcome the first problem, while
the Fuzzy AHP is used to overcome the second problem. The highlight of this study not only
present proposed several mathematical models under different constraints and model types,
how to select an appropriate plan with relative to the perspective of decision-makers, but also
present an integrated qualitative and quantitative measurement for considering DM plan as
well.

The remainder of this study is organized as follows: Section 3.2 presents a review of
related literature. Section 3.3 shows methodology of research. Section 3.4 addresses proposed
mathematical models. A case study is given in section 3.5. Section 3.6 shows the computational
results. Finally, the conclusion and future research are presented in section 3.7.
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3.2 Literature review

Facility location problems and assignment problems are a basis for shelter site selection
and evacuation planning. Facility location problems can be divided into four main parts that
consist of minisum facility location problems, covering problems, minimax facility location

problems, and obnoxious facility location problems [7]. There are many related papers dealing
with sheltering and evacuation operations. Chanta and Sungsawang [8] proposed bi-objective
optimization model to find appropriate temporary shelter sites. The objective of this study aims
to maximize the number of victims that can be covered within a fixed distance and to minimize
the total distance of all victims to their closest shelters. Santos et al. [9] presented flood facility
location-allocation in Marikana city by using maximal covering location problems (MCLP)
with Lagrange optimization model. This study attempt to select shelter by considering flood
level constraint. In a related study, Anping [10] proposed two mathematical models that are
variations of the maximum set covering problem for selecting the shelter site location after a
disaster. Li and Jin [11] considered the stochastic nature of hurricanes and proposed this
randomness by generating different scenarios and respective occurrence probabilities.
Moreover, Dalal et al. [12] presented the problem same as Li and Jin [11] by using a clustering
approach. Kilci et al. [13] proposed a Mixed Integer Linear Programming (MILP) for selecting
the temporary shelter sites. Not only assigning each district to the closest open shelter area,
providing the capacity of shelter areas, controlling the minimum utilization and pair-wise
utilization difference of open shelter areas, but also making sure that each open shelter area has
the main road connection and a health institution within a limited distance. Kongsomsaksakul
et al. [14] studied optimal shelter location for flood evacuation planning, bi-level programming
model was formulated. Another bi-level programming model was proposed by Feng and Wen
[15] for managing the emergency vehicle and controlling the private vehicle flows in
earthquake disaster. They consider a multi-community, two-model network flow problem base
on the concept of bi-level programming and network optimization theory. Furthermore, the
shelter location and evacuation planning were studied with respect to traffic management by
Bayram et al. [16] The proposed model is Mix Integer Non-Linear Programming (MINLP) that
optimally locates shelters and assigns evacuees to the nearest shelter sites by assigning them to
shortest paths, shortest and nearest with a given degree of tolerance.

Not only mathematical model but also multiple criteria decision-making (MCDM) have
been proposed to apply for shelter site selection and evacuation planning. Chu and Su [17]
proposed the application of TOPSIS method in selecting fixed seismic shelter for evacuation
in cities. This chapter proposed evaluation system that consists of 3 first-level indices and 9
second-level indices related to influential factors such as the risk of hazard, location & size and
rescue facilities. Moreover, Bozorgi-Amiri and Asvadi [18] studied proposing a decision
support system for prioritizing relief logistic center’s locations (RLC) to facilitate providing
emergency helps when natural disasters occur. This study focuses on availability, risk,
technical, cost and coverage in locating relief logistic centers. The analytic hierarchy process
(AHP), lexicographic goal programming (LGP) and two-step logarithmic goal programming
(TLGP) are applied for prioritizing RLC’s locations.

Base on comprehensive literature review, most reviewed papers propose only one
standard model or one plan in which some case, the model cannot apply to the real case problem

and response to the perspective of decision-makers or local government. Moreover, the related
existing literature in this field is lacking an integrated quantitative measurement and qualitative
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measurement for evacuation planning and shelter site selection. As above-mention problems
are scarce, we propose such a problem in our study. This chapter aims to propose the conceptual
model for selecting shelter site and evacuation planning that considers both quantitative
measurement and qualitative measurement simultaneously by integrating mathematical
optimization technique and multiple criteria decision-making technique. Furthermore, the
uncertainty and vagueness of expert’s opinion are considered in this study as well. The detail
of a conceptual model is described in next section.

3.3 Methodology

In this section, we address a conceptual model which separates in two phases: (1)
mathematical optimization phase and (2) multiple criteria decision-making phase. The
conceptual model is shown in Figure 3.1 and given detail as follows:

Formulate

. Solve model
- Population a mathemalncal model ,
- Candidate shelter 3
- Capacity v v
- Distance Model 1 H Plan | Determine
- etc. 4’| }7 Criteria, Weight
—»  Model II — Planll — v '
m N Analytic Hierarchy Appropriate
b e Process (AHP) planning
) o A
[ [
Find
—b{ Model n H Plan n }7 Criteria and Sub-criteria
< Mathematical Optimization > < Multiple Criteria Decision Making :>

Figure 3.1 The conceptual model of the research

3.3.1 Mathematical optimization

This phase explains the method of optimization technique in which this section considers
quantitative measurement. The several models or several plans are created in this phase for
being the alternatives of evacuation planning. Firstly, the data of case study is collected and
studied such as population in each community, the position of candidate shelters and
communities, the distance between communities and candidate shelters, and the capacity in
each candidate shelter. Then, the mathematical models are formulated under different
constraints and model types (deterministic model, stochastic model, and robust model). Next,
the mathematical models are coded and run in the optimized solver. Finally, the result of
mathematical models is presented to decision makers for determining the appropriate
model/plan in which the detail of methodology is described in section 3.2.

3.3.2 Multiple Criteria Decision Making (MCDM)

Multiple Criteria Decision Making (MCDM) is a decision management under attribute,
objective, goal, and criteria. Fuzzy Analytic Hierarchy Process (Fuzzy AHP) is an approach in
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MCAM for determining comparative judgments by decision makers. The proposed alternatives
from mathematical models are evaluated for selecting the best plan. This phase focuses on
qualitative and quantitative measurement for determining accessibility, availability,
sustainability, total distance, and risk perspective. The typical Fuzzy AHP method consists of
seven steps as follows:

Step 1. Define the problem and determine a goal, main criteria, and sub-criteria. The attributes
are sought from some literature reviews and decision maker’s brainstorming.

Step 2: Structure the decision hierarchy from top to lowest. The first level is target or goal of
the research. The second level is main criteria. The third level is sub-criteria. Finally, the fourth
level is alternatives in which the result of mathematical models is alternatives in this study.

Step 3: Construct a scale of numbers that indicate how many time more important or dominant
on. A Linguistic term of Yasemin Claire Erensal et al. [19] is applied to use in this study that
is shown in Table 1. A triangle fuzzy number, shown as A = (a, b, c), is defined as following
equation (3.1) and Table 3.1.

0 x<a
. ) |G&=a)/(b-a) a<x<b 31
Triangle(x:a,b,c) = (c—x)/(c—b) b<x<c 3.1

0 x=>c

Table 3.1 Linguistic variable and fuzzy scales

Linguistic term Fuzzy number Triangle fuzzy number
Equally important i (1,1,1)
Weakly important 3 (2,3.4)

Fairly important 5 (4,5.6)
Strongly important 7 (6,7,8)

Absolutely important 9 (9,9.9)

2 (1,2,3)

The intermittent values 4 (3,:4.5)
between two adjacent scales 6 (5,6,7)
8 (7,8,9)

Step 4. Make a pairwise comparison in each attribute. According to the corresponding
triangular fuzzy number of these linguistic terms, for example, if the decision maker mentions
“Criterion 1 (A) is fairly important than Criterion 2 (B)”, then it takes the fuzzy triangular scale
as (4,5,6). On the other hand, the comparison of Criterion 2 (B) to Criterion 1 (A) will take the
fuzzy triangular scale as (1/6,1/5,1/4). For more detail, see Junior et al. [20] for definition. The
pairwise comparison matrix is showed as equation (3.2), where ¥;; indicates 7" decision
maker’s preference of i criterion over j criterion, via fuzzy triangular number.
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For more than one decision maker, the decision maker’s preferences are calculated as in the
equation (3.3). Then, it is proposed in equation (3.4).

R ~r
DIE (3.3)
Xy =——
R
- .;Cll .;Cln
A=+ 3.4
.;Cnl ;Cnn

Step 5: According to Buckley [21], geometric mean method/eigenvector is proposed to
calculate fuzzy comparison values of criterion as shown in equation (3.5). Next, the equation
(3.6) is used for determining the relative fuzzy weight of each criterion. After that, the equation
(3.6) is de-fuzzified by equation (3.7) which was proposed by Chang and Yang [22]. Finally,
the equation (3.7) needs to be normalized by following equation (3.8).

1/n
a, =(H§cﬁj i=12...n (3-5)
I

wi=q ® g ®..0q,)" =(aw.bw,cw) (3.6)
_aw + 4bw, + cw, (3.7)

! 6

M
N, =—1 (.8)

LM,

Step 6: Calculate relative contribution weight. Consistency Ratio (CR) test is proposed to check
the relative comparison data that calculates as equation (3.9). If the obtained CR is less than
0.1, the comparisons made will be acceptable. Consistency Index (CI) indicates the offset
degree from consistency which is obtained as following equation (3.10).

cr=CL (3.9)
RI
A —n
Cf = Hon =1 (3.10)
n—1

Where 7 is the size of matrix of pairwise comparison, RI is random index which showed in
Table 3.2, and 4,,,, is the largest value of the matrix that is calculated as equation (3.11)

n ki
2 G.11)

i=1 r

i

max

n
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Table 3.2 Randomly generated consistency index for different sizes of matrix [23]
n 3 4 5 6 7 8 9 10
RI 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

Step 7: Find the normalized weight of both criteria and alternatives. Then by multiplying each
alternative weight with related criteria, the score for each alternative is calculated. Finally, the
result is found, the highest score is proposed to suggest to the decision makers for the
appropriate plan in evacuation planning and shelter site selection.

3.4 Proposed mathematical model

The mathematical models are proposed for shelter site selection and evacuation planning.
The objective in each model is to minimize travel distance between affected communities to
candidate shelters. All mathematical models are formulated under different constraints and
model types. Following the objective of this study, we aim to proposed several alternatives for
selecting the best alternative in the perspective of decision-makers or local government.
Therefore, four mathematical models are proposed for this case study that considers the
assignment of communities to the nearby shelter sites, providing the capacity of shelter sites,
the distance limit, the number of shelter sites limit, and the number of demand. Each proposed
mathematical model presents the difference in attitude or viewpoint, solution, and character
that depends on the considered parameters and model types. The first model formed the basis
for the second, third and fourth model. Hence, this solution is a basic solution that all
parameters being known and constant over time. To consider uncertain criteria, the second
model is formulated in which this model focuses on the uncertain distance during the
evacuation. The uncertain distance might occur during evacuation since the evacuee of each
affected zone can go to the shelters with several routes. So, this is one of the criteria should be
considered. Meanwhile, another of the important criteria should be determined is an uncertain
situation of the expected population in which this can affect to shelter site selection and
evacuation planning as well. So, the third model is formulated for supporting this factor.
Finally, two parameters are conjointly determined that is formulated in the fourth model. To
formulated mathematical models, the assumption is considered as follows: According to baffle
protection, the affected zone can assign to the shelter within only one shelter. All mathematical
models are formulated as follows:

3.4.1 Model 1

This model is a deterministic model in which all input parameters being known and
constant over time. This problem selects P facilities and seeks to minimize the total travel
distance between affected zones and shelters. This model is well known as “Minisum facility
location problem”. The model is a Mixed Integer Linear Programming (MILP) that describe as
follows:

Index
1 Set of affected zones i
J Set of candidate shelters j
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Parameter

dij Distance between affected zone i and candidate shelter j
of Capacity of candidate shelter j

h; Population in zone i

P The maximal number of facilities that can be placed

R Distance limit

M The large number

Decision variable
Xj 1 = if candidate shelter j is selected,

0 = otherwise

Yij 1 = if demand zone i is assigned to candidate shelter j, 0 = otherwise
Zy; The population in zone i is assigned to candidate shelter j
Minimize Y >d, *y, (3.12)
Subject to dYx, <P (3.13)
y; <X, Vi, j (3.14)
d,*y, <R Vi, j (3.15)
>z, <c, *x, vj 3.16)
2z =h Vi (3.17)
z; <M*y, Vi, j (3.18)
Yy, =1 Vi (3.19)
x;, ¥, €41,0} Vi, j (3.20)
2,20 Vi, j (3.21)

Equation (3.12) is shown objective function that to minimizes travel distance between
affected zone to candidate shelter. Equation (3.13) ensures that the number of shelters does not
exceed P locations. Equation (3.14) states that affected community is only assigned to the
selected location. Equation (3.15) states that the distance limit between affected community
and shelter. Equation (3.16) put a constraint on the holding capacity of shelters, ensuring that
the population served cannot exceed the maximum capacity of each shelter. Equation (3.17)
put a constraint on the evacuation demand of each community. Equation (3.18) and (3.19)
ensure that affected communities can be served by one shelter. Equation (3.20) and (3.21) state
the mathematical definitions of these variables.
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3.4.2 Model 11

This model, we propose a stochastic programming model, in which the uncertain
parameters are allocated to a probability distribution. The uncertain parameters can add in
objective or constraint. The Model I is developed to be a stochastic model. Chance-constrained
model is used to apply in this model for the purpose of considering uncertain distance as shown in
equation (3.22).

p{jjd,,*y,, sb}Za (3.22)

i=l j=1

Equation (3.22) is added to the deterministic model. Where b is defined as the maximum
acceptable total distance, a is defined as a confidence level [24]. However, we can modify the
equation (3.22) to non-linear programming for coding in optimizer tool by using normal
distribution concept that refers from Kell and Wallace [25]. The equation (3.22) is reformulated
following equation (3.23) - equation (3.33). We start by defining Y is total distance as Equation
(3.23) which consists of average and variance as shown in Equation (3.24) and (3.25).

Y=334d,*y, b (3.23)
E0) =S Eld, 1%y, b (3.24)
Py =3 Y VId, 1% (3.25)

i=1 j=1

That equation Y-, Y-, d;j * y;j < b can be revised to normal distribution form as
following Equation (3.26) to Equation (3.32).

P{anzn:d,j*y,j sb}Za (3.26)

i=1 j=1

i=l j=1

P{ii%*n —bSO}Za (3.27)

P{r<oj>a (3.28)

i=1 ] i=1 j=1

Jiz Vid, 15 JﬁiV[d,-,-] "y

DIOTREES )3 T I oL
g — < >a (3.29)

i=1 j=1

izn:E[dz/]*yz/ —b

Pz 42 >a (3.30)

Jiiwdﬂ*xf

i=l j=1
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Zn:iE[dw]*yU —b
¢ () < ——= (3.31)

3taly

i=l j=1

>34, ]y, v @234, ]} <b (3.32)

According to y; is decision variable {0,1}, Hence the equation (3.32) can be reformed to
equation (3.33).
Y,y '@ XY v [d, ], <b (3.33)
i=1 j=1 i=1 j=1

For this section, the robust model is presented for supporting the uncertain situation in
this study. The principle of Yu and Li [26] is applied to create a mathematical model for shelter
site selection and evacuation planning. The model considers several situations with respect to
probability principle. This model is represented in a Mixed Integer Linear Programming
(MILP) that formulate as follows:

Index (addition)

3.4.3 Model 111

S Set of scenario s

Parameter (addition)

his Population of zone i in scenario s
Ds Probability in scenario s
A Variability weight
W Weighting penalty (risk-aversion weight)
Decision variable (addition)
O Non-negative deviation variable per scenario
O Under-fulfillment of affected zone i in scenario s
Objective
Minimize 2P *TD +2%Y p, *KTD‘ZPs*TDj”Q} (3.34)
+ZW*ZZPSA*5,X S
Subject to (13) - (16), (18) - (21)
Dz, +6,—h, >=0 Yi,s (3.35)
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> >d,*y,=TD (3.36)
TD-Y p *TD+6, Vs (3.37)
0.,5,>0 Vi, s (3.38)

The first and second terms of objective function in equation (3.34) are mean and
variance of the total distance, aim to measure solution robustness. The third term in equation
(3.34) measures the model’s robustness to the infeasibility of the control constraint. Equation
(3.35) is a control constraint, the population at zone 7 in each situation is assigned to selected
shelter and determine the under-fulfilled of demand in each zone. Equation (3.36) is the total
travel distance between demand zone to candidate shelter. Equation (3.37) is the auxiliary
equation. Lastly, the integrality restrictions are presented in equation (3.38).

3.4.4 Model IV

This model is formulated by combining between Model 11 and Model I1I that consider both
uncertain distance and several situations. The equation (3.33) is added to the constraint of
Model III and the objective function in equation (3.34). This model is a Mixed Integer
Nonlinear Programming (MINLP).

3.5 Case study

Landslides and flash flood are a common geological phenomenon in many parts of the
world [1]. In 2014, the landslide and flash flood have occurred in many countries such as Nepal,
India, Sri Lanka and Thailand [27]. Many people have stricken by these phenomena which
destroy both human life and asset. The department of mineral resource, the ministry of natural
resources and the environment in Thailand have been surveyed risk areas of landslide and flash
flood occurrence in 2012. They found that 6 provinces are risk area that consists of Chiang
Mai, Chiang Rai, Nan, Phars, Uttaradit, and Chumphon. Chiang Rai province is the largest
risk area, 25 municipalities or 528 villages can occur landslide and flash flood [27]. In this
study, we present Banta municipality in Chiang Rai for validating our conceptual model in
which more than 50% of the area is risk areas as shown in Figure 3.2. Note that the brown-
shaded area does not mean that all of the areas will be hit by disaster, but it means that there
are some areas in this brown-shade zone might hit by this disaster, in which it still has some
safe area in this zone that do not locate in the way of landslide and flash flood. The area of
Banta municipality is 58.99 square kilometers, with around 12,866 people in 20 communities.
Ministry of Natural Resources and Environment developed a warning system for these disasters
which can predict the emergency situation following the process in Figure 3.3. The population
can evacuate to shelter within one to three hours after the department of mineral resource
announced. The local government can predict the situation and warn for evacuation before the
disaster occurs around one to three hours by observation of rain gauges system and surveillance
operation points.

In this study, a case study in Banta municipality is given to test the conceptual model.
This case study has 20 affected communities and 13 candidate shelters that shown in Figure
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3.4 (The shelters are referred from the report of Department of Mineral Resources [28]). We
assume that the distance limit in each route is 5 kilometers and the maximum of selected shelter
is 10 shelters. According to the Model II considers uncertain distance with related to normal
distribution that presented in section 3.4.2, the distance parameter is collected by finding
several routes from origin to destination. Then, all distances of each assignment from affected
zones to shelters are calculated for finding the average distance value and variance distance
value. Finally, average and variance values are input in input data. The maximum acceptable
total distance and the confidence level are assumed as 20 kilometers and 0.90, respectively.
According to Model III and IV consider several situations under uncertain population or
demand, we present to determine 4 scenarios. The 1% scenario, the number of people is less
than the current population as 5 percent. The 2" scenario, the number of people is equal to
current population. The 3™ scenario, the number of people is more than the current population as 5
percent. Finally, the 4™ scenario, the number of people is more than the current population as 10
percent. The probability in situation 1 — 4 is assumed as 0.15, 0.55, 0.3, 0.2, respectively.

Figure 3.2 Risk areas in Banta municipality in Chiang Rai [28§]
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Figure 3.4 The position of villages and candidate shelters in Banta municipality [29]

3.6 Computation results

According to the methodology of this research, the result is separated into two main parts.
The first part, the mathematical optimization is presented that shows the result of each model
and the sensitivity analysis. The second part, the MCDM is showed which represents the
determining weight of criteria, the determining the score of alternatives with respect to criteria,
and the discussion of the result is proposed in this section.

3.6.1 Mathematical Optimization results

In this part, we code all mathematical models in LINGO 15 on a laptop with Intel Core
i7 CPU 2.4 GHz and 4 GB of RAM. All run was solved in less than 15 minutes. The result of
all mathematical model is shown in Table 3.3 and Figure 3.5. From Table 3.3, the optimal
solution of the Model I is 18.01 kilometers which compose of shelter 1, 2, 4, 5, 6, 7, 8, 10, 11
and 12. All population in affected zones are assigned to a shelter. For the Model I, the optimal
solution is 19.25 kilometers, the selected shelters are same as the Model I and all population
are assigned to a shelter. For robust model, the @ value was tested for finding the suitable value.
The result showed that the ® at 0.025 is suitable for this case study since at least all of
population in situation 1 can be covered while some situation can be covered as well. For Model
111, the optimal solution is 18.91 kilometers. In this solution are shelter 1, 2, 3, 4, 5, 6, 8, 10, 11
and 13. All populations in the 15 and the 2™ scenario are covered, but some populations in the
34 and the 4™ scenario are uncovered. In the Model IV, the optimal solution is 17.91 kilometer
that composes of shelter as same as the Model I1I. For population assignment, all populations
in the 1st scenario are covered, while some populations in 2nd, 3rd, and 4th scenario are
uncovered. According to the output of results, the assignment of each model is different.
However, the result of an assignment in some zone is similar, consists of zone 5, 8, 9, 10, 12,
15, 16, 18, 19 and 20.
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For more detail, we also presented sensitivity analysis of a number of limited shelters
that shown in Figure 3.6 and Table 3.4 From Figure 3.6, we first run all models by varying the
number of limited shelters from 13 to 7, in a decrement of 1, to present the different objective
function and assignment. The system needs at least 7 shelters for the relief response to be
feasible. The result is found that the total distance is increased when the number of limited
shelters is reduced. At first glance, the gradual increase in the maximum of selected shelter appears
to reduce the total travel distance, However, when we reduce the number of selected shelter,
the total travel distance is exponentially increased. For Model I and Model II at the number of
limited shelters as 12 and 13, the total distance is stable at 15.91 and 17.6 kilometers,
respectively. However, when the number of selected shelters less than 12, the total distance is
continually increased. For Model Il and Model VI at @ equal to 0.025, the tendency is continually
increased when the number of selected shelters are reduced. The total travel distance of Model
III is higher than Model IV during the number of selected shelters at 9-13 shelters. On the other
hand, during the number of selected shelters at 7-8 shelters, the Model IV starts to decrease lower
than the Model III. The average travel distance of Model II is the highest. Then by following
Model II1, Modell IV, and Model I, respectively. The decision makers can determine the plans
following this sensitivity analysis by considering the maximum limit of selected shelter. To
determine appropriated plan perfectly, the results of mathematical models will be determined
in next step for choosing the appropriate plan.

Table 3.3 The result of a case study in Banta municipality, Chiang Rai Province, Thailand

Model type: Model | Model 11 Model 111 Model IV
Model class: MILP MINLP MILP MINLP
Optimal solution: 1?'01 1.9'25 1.8'91 1.7'91
kilometer kilometer kilometer* kilometer*
Selected shelter: 1,2,4,5,6,7, 1,2,4,5,6,7, 1,2,3,4,5.6, 1,2,3,4,5.,6,
8,10,11,12 8,10,11,12 8,10,11,13 8,10,11,13

Zone 1 5 1 3 3

Zone 2 1 4 1 4

Zone 3 7 7 3 3

Zone 4 10 10 13 13

Zone 5 11 11 11 11

Zone 6 6 6 5 6

Zone 7 7 7 6 5

Zone 8 10 10 10 10

Zone 9 1 1 1 1

Zone 10 8 8 8 8

Zone 11 12 12 10 10

Zone 12 2 2 2 2

Zone 13 4 5 4 5

Zone 14 12 12 13 13

Zone 15 8 8 8 8

Zone 16 4 4 4 4

Zone 17 10 10 13 13

Zone 18 10 10 10 10

Zone 19 11 11 11 11

Zone 20 2 2 2 2

Note: The gray bar shows the same obtained solution from four mathematical models. * At ® equal 0.025, at least
all of population in the 1st situation is covered.
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Figure 3.5 The results of four mathematical models

Table 3.4 The result of sensitivity analysis for the number of shelters

The number of

7 8 9 10 11 12 13
shelter
Total
i 28.05 238 20.41 18.01 16.31 1591 1591
distance
Model
12,3456, 12,334,567,
1 Selected 13458, 134568 124567 124567, 12,3.4,5,6,7,
7.8.10,11, 89.10,11,12,
shelters 10,13 ,10,13 810,13 8,10,11,12 b 89.10,11,12 1
Total
. 30.02 2579 21.71 19.25 18 17.6 17.6
distance
Model
1,23.45,6, 123,4,56,7,
I Selected 13458, 134568 124567 124567, 1,2,3.4,5,6,7,
7.8,10,11, 89,10,11,12,
shelters 10,13 ,10,13 ,8,10,13 8,10,11,12 1 89,10,11,12 A
Total
i 252 238 21.46 1891 17.76 17.26 17.11
distance
Model
123456, 1234567, 1234567,
11 Selected 13568 134568 123456 123456,
7.8,10,11, 810,11,12,  89,10,11,12,
shelters .10,13 ,10,13 810,13  810,11,13
13 13 13
Total
. 26.6 24.03 20.48 17.91 16.84 16.31 16.28
distance
Model
1,2,3,45,6, 1,234,567,
v Selected 13,568, 123568 123456 123456, 12,3.4,5,6,7,
7.8,10,11, 89,10,11,12,
shelters 10,13 ,10,13 ,8,10,13 8,10,11,13 3 89,10,11,12 A3
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Figure 3.6 The derived total travel distance of each model under the different total number of
selected shelter.

3.6.2 MCDM results

After mathematical optimization phase is used to create the plans, the multiple criteria
decision-making phase is brought to evaluate proposed alternatives from mathematical models
for selecting the best appropriate plan. In this study, we used the AHP approach for comparison
and analysis, in which it can take into consideration the relative priorities of factors or
alternatives and represents the best alternative. Owing to the uncertainty and vagueness of
expert’s opinion for comparison and analysis, we apply fuzzy set theory to AHP in this study
that known as “Fuzzy AHP”. All proposed alternatives are evaluated by 10 administers. This
phase focuses on qualitative and quantitative measurement. Following literature review and
brainstorming with local government, five main criteria are set as a principle or standard by
which each model is judged or decided for reflecting the final solution (Target or level 1). The
five main criteria could reflect on the main advantage of each model with respect to the
perspective of decision makers. All of the criteria in AHP is independent (no correlation) in
which AHP will use it for decision by pairwise comparison of different alternatives with respect
to various criteria. The five main criteria consist of accessibility, availability, sustainability,
total distance, and risk perspective. The measurements of this study, there are the quality of
being able to be used or obtained of each shelter (Availability), the quality of being able to be
reached or entered of related organization or accessory (Accessibility), the ability to be
sustained, long-term planning supported, flexibility upheld, or confirmed of plan
(Sustainability), a situation involving exposure to danger (Risk) and distance of evacuation
(Distance).

The frame of the suitable plan selection for shelter site selection and evacuation planning
can represent as following Figure 3.7. The description of the sub-criteria is presented in Table
3.5. From Figure 3.7, this study consists of four levels. Level 1 is a goal that seeks the
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appropriate plan for selecting shelter and evacuation planning. Level 2 is main criteria which
consider accessibility, availability, sustainability, distance, and risk. Level 3 is a sub-criterion
that separates from the main criteria; “Accessibility” criterion composes of evacuation, medical
care services, and material reverse warehouse. “Availability” criterion consists of shelter.
“Sustainability” criterion comprises of long-term planning. “Distance” consists of the total
distance of evacuation. “Risk™ criterion composes of distance from the source of danger,
geological hazard, and topographic risk. The lowest is level 4 which proposes alternatives, the
results from the mathematical optimization phase are used to be alternatives.

Table 3.5 The description of criteria for selecting shelter site and evacuation planning

Criteria

Description

A: Accessibility

Al: Evacuation planning
A2: Medical care services

A3: Material reverse warehouse

Each affected zone should reach to shelter easily”

The medical care services should reach to shelter easily
for helping evacuee [17]

Material reverse warehouse should reach to shelter easily
for distributing emergency survival bag [17]

B: Availability

B1: Shelter

The shelter should have serviced availability when
disaster occurrence such as building, area, facility, etc.
[18]

C: Sustainability

C1: Long-term planning and
flexibility

The model can apply at present as well as future.
Moreover, the plan should have flexibility in perspective
of population or demand changing [30]

D: Distance

D1: Total distance of
evacuation

The total travel distance between affected zone to shelter”

E: Risk

E1: Distance from source of
danger

E2: Geological hazard

The way between zones and shelters should be clear of
poisonous gasses, inflammable, explosive or radioactive
substances, high voltage transmission lines, and
vulnerable structures, etc. The distance from the source of
risk should meet national standards or requirements
concerning major source of risks and fire protection [17]
The shelter for evacuation should avoid dangerous or
adverse locations that are subject to natural disasters

such as faulted zones, soil liquefaction, ground
depression, landslide, debris flow, etc.[17]

E3: Topographic risk

The sites should be clear of danger of flood (breaking of
river or reservoir dykes); they should be located on flat
and expansive terrains; shelter for evacuation in the
northern part of the country should avoid wind gaps;
sites in the southern part of the country should avoid
marshy lands, bottomlands and pounded terrains [17]

* Refer from administrator’s brainstorming
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To choose an appropriate model for shelter-site selection and evacuation planning
Availability Sustainability Distance

chy processes for selecting a suitable plan

Figure 3.7 The structure of analytic hierar
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Next, the decision makers evaluate the criteria weight and alternative score. In this study,
the pairwise comparison matrix was evaluated by 10 administrators in Banta municipality. For
determining the weight of criteria, this analysis should be repeated in 3 times; main criteria,
sub-criterion of accessibility and sub-criterion of risk. For determining the score of alternatives
with respect to sub-criteria, this calculation is repeated for 9 times. However, it will be
burdensome to explain for each 12 of them. So, main criteria weight calculation and alternative
score calculation of “Long-term planning and flexibility” criterion is handled to represent in
this part. According to evaluation for determining the weight of main criteria, the average
pairwise comparison is represented as following Table 3.6 and can be formed as Table 3.7.
After that, the eigenvector /geometric mean of fuzzy comparison values of each criterion is
calculated by Equation (3.5).

Table 3.6 Pairwise comparison of main criteria

Criteria 1 Versus Criteria 2 Average weight
A VS B 2
A VS C 1
A VS D 1
A VS E /2
B VS C /3
B VS D /2
B VS E /3
C VS D 3
C VS E 1
D VS E /3

Table 3.7 Comparison matrix of main criteria

A B C D E
A (1,1,1) (1,2.3) (1,1,1) (1,1,1) (1/3,1/2,1)
B 13,1210 | (LLD) | U413.12) | (4531210 | (1/413.172)
C (1,1,1) (2,3.4) (L1,1) (2,3,4) (1,1,1)
D (LL1) (1,23) | (1/4.1/3.1/2) (LL1) (1/4,1/3,112)
E (1,2.3) (2,3.4) (L1,1) (2,3,4) (11,1

For example of weight calculation, the geometric mean of fuzzy comparison values of
“Accessibility” is presented in equation (3.39). The eigenvector/geometric means of fuzzy
comparison values of each criterion are shown in Table 3.8. Moreover, the total value, the
reverse value, and increasing value are also represented in the three-last row of the table.

1/n
&,‘ :(l;lgcnj =[(lx1><l><lx%)'”;(lexlxlx%)“S; (1><3><1><l><1)”5} (3.39)

=[0.803:1.000:1.246]

In next step, Geometric means of fuzzy comparison values are calculated by equation
(3.6) for finding the fuzzy weight in each criterion. The fuzzy weight of “Accessibility (A)” is
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presented for example as equation (3.40). All of the fuzzy weight is shown in Table 3.9.
Afterward, the fuzzy weight of each criterion is de-fuzzified by equation (3.7) and then it is

normalized by equation (3.8) as tabulated in Table 3.10.

wi =[(0.803x 0.146);(1x 0.180);(1.246 x 0.228)] (3:40)
=[0.117:0.1800.284]
Table 3.8 Geometric means of fuzzy comparison values
Main criteria q

A: Accessibility 0.803 1.000 1.246
B: Availability 0.370 0.488 0.758
C: Sustainability 1.320 1.552 1.741
D: Distance 0.574 0.740 0.944
E: Risk 1.320 1.783 2.169
Total 4.386 5.563 6.858
Reverse 0.228 0.180 0.146
Increasing Order 0.146 0.180 0.228

In next step, Geometric means of fuzzy comparison values are calculated by equation
(3.6) for finding the fuzzy weight in each criterion. The fuzzy weight of “Accessibility (A)” is
presented for example as equation (3.40). All of the fuzzy weight is shown in Table 3.9.
Afterward, the fuzzy weight of each criterion is de-fuzzified by equation (3.7) and then it is

normalized by equation (3.8) as tabulated in Table 3.10.

wi =[(0.803x 0.146):(1x 0.180):(1.246 x 0.228)] (3:40)
=[0.117:0.180;0.284]
Table 3.9 Relative fuzzy weight of each criterion
Main criteria q
A: Accessibility 0.117 0.180 0.284
B: Availability 0.054 0.088 0.173
C: Sustainability 0.192 0.279 0.397
D: Distance 0.084 0.133 0.215
E: Risk 0.192 0.320 0.494
Table 3.10 Average and normalized relative weight of each criterion
Main criteria M, N,
A: Accessibility 0.187 0.181
B: Availability 0.096 0.093
C: Sustainability 0.284 0.275
D: Distance 0.139 0.134
E: Risk 0.328 0.317
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Finally, the relative contribution weight is validated by CR test. Firstly, the largest value
of the matrix is calculated by equation (3.11). After calculating A,,,,, the CI is calculated by
equation (3.10) in which the size of the matrix (») is 5. Lastly, CR is found by equation (3.9)
in which R/ is 1.12. The calculation is represented as follows;

A =26071/5= 5214 (3.41)
C]=/1max—n=5.214—5=0'054 (3.42)
n—1 5-1
_Q=M=0_048 (3.43)
RI 1.12

As CR of main criteria is less than 0.1, hence the pairwise comparison made of main
criteria is relative. This methodology is repeated for 2 more times for sub-criteria of
“Accessibility” criterion and “Risk” criterion. All of the weights are presented in Figure 3.8. From
Figure 3.9 and Figure 3.10, the highest weight of main criteria is “Risk™ as 0.317, and then it
is followed by “Sustainable” as 0.275, “Accessibility” as 0.181, “Distance” as 0.134, and
“Availability” as 0.093, respectively. In the main criterion of “Accessibility”, the weight is
separated into three parts. The first part is Evacuation (A1), is placed as 54.63% or 0.099 in
which it is the biggest portion. The second part is Medical care services (A2) that is located as
20.94% or 0.038. The third part is Material reverse warehouse (A3) that is placed as 24.43%
or 0.044. Furthermore, the main criterion of “Risk™ can be divided into three parts that consist of:
distance from Source of danger (E1) as 11.16% or 0.037, Topographic risk (E3) as 40.41% or
0.128, and Geological hazard (E2) as 47.98% or 0.152. For “Availability” criterion,
“Sustainability” criterion, and “Distance” criterion, only a sub-criterion is provided, so the sub-
criterion of them is 100%.

0.099

Al

0.181 0.038
> A > A2

0.044
A3

0.093 0.093
B Bl

0.275 0.275
Target C Bl

0.134 0.134
D D1

0.037
El

0.317 0.152
E E2

0.128
» E3

Figure 3.8 The structure of Fuzzy AHP with relative weight from the calculation
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Figure 3.9 The comparison of relative weight in each main criterion
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Figure 3.10 The structure of AHP with weight from the calculation

After obtaining the normalized non-fuzzy relative weight for main criteria and sub-criteria,
the same method is applied to seek the alternative scores. For example of score calculation,
determining the score of alternatives with respect to “Long-term planning and flexibility”
criterion is represented. The pairwise comparison evaluation of alternatives with relates to
“Long-term planning and flexibility” criterion is proposed in Table 3.11 and can be formed as
pairwise comparison matrix in Table 3.12. After that, the eigenvector/geometric mean of fuzzy
comparison score and a relative fuzzy score of each alternative are sought that shown in Table
3.13 and Table 3.14. Then, the average fuzzy score and the normalized relative score of each
alternative with respect to “Long-term planning and flexibility” criterion is calculated and
shown by following Table 3.15. In order to check the consistency of data, the pairwise
comparison made is checked by CR test. The same methodology is proposed as following
equation (3.41) - (3.43). The pairwise comparison of alternatives is made for 7 more times.
Lastly, the normalized non-fuzzy relative weight of each alternative for each sub-criterion are
found and presented in Table 3.16. The weight of sub-criteria and weight of each alternative for
each sub-criterion are calculated for an individual score that tabulated in Table 3.17.

To select the appropriate model or plan, the result from Table 3.17 show that alternative
3 (Model III) has the largest total score as 0.311, and then it is followed by alternative 4 (Model
1V) as 0.271, alternative 1 (Model I) as 0.240, and alternative 2 (Model II) as 0.185, respectively.
Thus, the alternative 3 or Model III is the appropriate plan for this case study among four of
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them, with respect to five main criteria, nine sub-criteria and fuzzy preferences of the
administrators (decision makers) in Banta municipality, Chiang Rai, Thailand.

Table 3.11 Pairwise comparison of alternatives with respect to “C1” criterion

Alternative 1 Versus Alternative 2 Average weight
Model 1 VS Model 11 1
Model 1 VS Model 11T /2
Model I VS Model IV 2
Model 11 AN Model 11T /3
Model 111 VS Model IV 2
Model 111 VS Model IV 2
Table 3.12 Comparison matrix of alternatives with respect to “C1” criterion
Model I Model 11 Model 111 Model 1V
Model | (1,1,1) (1,1,1) (1/3,1/2,1) (1,2,3)
Model I1 (1,1,1) (1,1,1) (1/4,1/3,1/2) (1,2,3)
Model 111 (1,2,3) (2.3,4) (1,1,1) (1,2,3)
Model 1V (1/3,1/2,1) (1/3,1/2,1) (1/3,1/2,1) (1,1,1)
Table 3.13 Geometric means of fuzzy comparison values
Alternative q
Model | 0.760 1.000 1.316
Model 11 0.707 0.904 1.107
Model III 1.189 1.861 2.449
Model IV 0.439 0.595 1.000
Total 3.095 4.359 5.872
Reverse 0.323 0.229 0.170
Increasing Order 0.170 0.229 0.323
Table 3.14 Relative fuzzy weight of alternatives with respect to “C1” criterion
Alternative q
Model | 0.129 0.229 0.425
Model 11 0.120 0.207 0.358
Model III 0.203 0.427 0.791
Model 1V 0.075 0.136 0.323

Table 3.15 Average and normalized relative weight of alternatives with respect to ““C1”

criterion
Alternative M, N,
Model 1 0.245 0.229
Model 11 0.218 0.203
Model III 0.450 0.421
Model IV 0.157 0.147
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Table 3.16 The normalized non-fuzzy relative weight of each alternative for each sub-
criterion

Sub-criteria Model 1 Model I1 Model 11 Model IV
Al 0.240 0.153 0.276 0.331
A2 0.173 0.173 0.327 0.327
A3 0.127 0.127 0.373 0.373
Bl 0.173 0.173 0.327 0.327
Cl 0.229 0.203 0.421 0.147
DI 0.374 0.098 0.202 0.374
El 0.170 0.124 0.264 0.442
E2 0.173 0.173 0.327 0.327
E3 0.327 0.327 0.173 0.173
Table 3.17 Aggregated results for each alternative according to each sub-criterion
Sub Weight Modell | Modelll | Modelll | Model IV
criteria
Al 0.099 0.240 0.153 0.276 0.331
A2 0.038 0.173 0.173 0.327 0.327
A3 0.044 0.127 0.127 0.373 0.373
Bl 0.093 0.173 0.173 0.327 0.327
Cl 0.275 0.229 0.203 0.421 0.147
D1 0.134 0.374 0.098 0.202 0.374
El 0.037 0.170 0.124 0.264 0.442
E2 0.152 0.173 0.173 0.327 0.327
E3 0.128 0.327 0.327 0.173 0.173
Total 0.240 0.185 0.311 0.271

To select the appropriate model or plan, the result from Table 3.17 show that alternative
3 (Model III) has the largest total score as 0.311, and then it is followed by alternative 4 (Model
1V) as 0.271, alternative 1 (Model I) as 0.240, and alternative 2 (Model II) as 0.185, respectively.
Thus, the alternative 3 or Model IlI is the appropriate plan for this case study among four of
them, with respect to five main criteria, nine sub-criteria and fuzzy preferences of the
administrators (decision makers) in Banta municipality, Chiang Rai, Thailand.

From Figure 3.11 show that the Model I have the advantage for Total distance of
evacuation and Topographic risk, while the Model 11, it has a good point at Topographic risk
only. The advantage of Model Il is consisted of Medical care services, Material reverse
warehouse, shelter, Long-term planning and flexibility, and Geological hazard, while the
Model IV has a prominent point on Evacuation planning, Medical care services, Material
reverse warehouse, Shelter, Total distance of evacuation, Distance from source of danger, and
Geological hazard. Although the Model IV is more good point than the others, it is not an
appropriate plan for this case study, because the decision makers concentrate on “Risk”,
“Sustainability”, and “Availability” in which the Model III has a large weight portion in those
criteria. Therefore, this is the reason why the alternative 3 or Model III significantly
outperforms the others.
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Figure 3.11 The structure of AHP with a score from the calculation

3.6.3 Current problem — to — solution findings

As stated earlier, the target area of this case study has a risk to occur landslide and flash
flood. However, in the reality of this problem, the shelter site selection and evacuation plan of
local government are lacking to consider many factors both of quantitative and qualitative
measurement such as the capacity of shelter, the expected population, risk, accessibility, etc.
In which when the disaster occurs, the errors and inefficient performance issues might occur
including unsuitable opened shelters, delays, amiss assignment, insufficient capacity of shelter,
etc.

In this study, we determined that our proposed conceptual model can overcome those
happenable problems, in which both quantitative and qualitative measurement is determined
under expert’s opinion. From the result of the case study, in the viewpoint of local
governments, the selected plan (Model III) can overcome the previously expected plan. This
plan confirms that the selected shelters can suppose evacuees such as capacity, accessibility,
risk, and availability because some previously expected shelter sites are not suitable, in which
it is lacking accessibility criterion, availability criterion and sufficient capacity of shelter.
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Moreover, this plan can reduce the risk of suffering of victims during evacuation and rest in a
shelter and this can support the future situation as well.

However, this model should consider the behavior of evacuation®! and the traffic
congestion including mode of evacuation when the evacuees evacuate because those are the
main factor that might affect the evacuation system. Although this our conceptual model can
overcome all of these problems, it still has some problems. When the number of criteria or the
number of alternatives (models) is increased, the evaluation might more difficult and complex
to analysis, in which the analysis might error and affect to the final solution.

3.7 Conclusions

This study proposes a conceptual model for shelter sites selection and evacuation
planning by considering both qualitative measurement and quantitative measurement. The
optimization technique and multiple criteria decision making are applied in this study. Our
conceptual model is tested with a real case study in Banta Municipality, Thailand. Firstly, an
optimization technique is proposed to create plans for shelter site selection and evacuation
planning. The mathematical models are formulated under different conditions and model types
for considering the assignment of a community to a nearby shelter, the capacity of shelter, the
distance limit, the number of shelter sites, and the number of demand. In this study, four
mathematical models are formulated. After proposed mathematical models are coded and run
in optimizer tool, the result of four models is evaluated by local government (Decision makers)
in which Analytic Hierarchy Process (AHP) technique with the fuzzy approach is applied to
analyze all models. The alternative models are inspected with respect to five main criteria
namely; accessibility, availability, sustainability, and risk. Moreover, it also is inspected with
respect to eight sub-criteria that compose of evacuation, medical care services, material reverse
warehouse, shelter, long-term planning and flexibility, total distance of evacuation, distance
from source of danger, geological hazard, and topographic risk. As the result, we found that
the Model 111 outperforms the other models.

This chapter will be great significance in helping decision makers consider placement of
emergency shelter and evacuation planning with respect to qualitative measurement,
quantitative measurement and the uncertainty and vagueness of expert’s opinion. In addition,
by standing our methodology clearly and numerically, our conceptual model can be a guide of
the methodology to be implemented to other problems as well. To recommend for others
application, the mathematical model does not need to formulate same as this study. The
researchers can design following research’s opinion and used several objective functions or
several constraints since it might show more efficient solution than this research. Moreover,
although the Fuzzy AHP is useful for this study, it still consists some limitations and some
problem such as subjective nature of decision makers, the complexity of analysis (too many
criteria), and difficulty of quantifying importance for some criteria.

In further research, the models should add some conditions and criteria for more realistic.
Moreover, Fuzzy TOPSIS, ELECTRE, PROMETHEE, and hybrid approach (Fuzzy AHP -
TOPSIS) can be applied in this study for selecting an appropriated planning, the result can be
compared.

Acknowledgment: We sincerely thank Banta municipality and Banta district at Chiang Rai
province and Department of mineral resources in Thailand for supporting the data.
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4.1 Introduction

Recently, the world has affected by many disasters such as earthquakes, storms, floods,
landslides, etc. Since the 1950s, the number of disasters has been continuously increasing, as
shown in Figure 4.1 [1]. According to the international disaster database, they propose that
Asia and America are the most affected continues by natural disasters such as hydrological
disaster, geophysical disaster, meteorological disaster, climatological disaster [2]. The World
Health Organization (WHO) defines a ‘disaster’ as any occurrence that causes damage,
destruction, ecological disruption, loss of human life, human suffering, deterioration of health
and health services on a scale sufficient to warrant an extraordinary response from outside the
affected community or area [3]. Owing to the increasing severity of recent of disasters,
academicians have paid a great deal of attention to “Disaster Management” for the purposes of
helping at-risk persons to avoid or recover from the effects of a disaster. The activity of disaster
management consists of four stages: mitigation, preparation, response, and recovery [4,5].
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Figure 4.1 Trends in occurrence and victims [1]

Flood disaster is the largest share of natural disaster occurrence in 2014 to estimate to be
47.2% (Figure 4.2). The number of floods and mass movement of hydrological origin were 153
disasters in 2014. The massive flood disaster occurred in China and Thailand in 2011. Flood
shelter site selection and flood evacuation planning are a major activity that should prepare and
plan before the floods occur in order to help people in an affected zone to avoid from the effect
of the flood disaster. In flood shelter site selection and flood evacuation planning, there are
many major criteria that should be considered such as evacuation distance, uncertainty of
occurrence, evacuee’s behavior, utilization of shelter and hazard of flood disaster. Our previous
model proposed solutions for evacuation planning and shelter site selection which considers
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the assignment of communities and evacuee’s behavior condition [5]. However, that model is
lacking some major criteria that should be considered such as utilization of shelter. Therefore,
this chapter aim to develop that model for designing flood shelter site selection and flood
evacuation planning under probabilistic scenarios that reflect the uncertainties of flood events
and their consequences in which this study aims to consider the distribution of shelter sites and
communities, evacuee’s behavior, utilization of shelter and capacity restrictions of shelter
simultaneously.
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Figure 4.2 Natural disaster impacts by disaster sub-group: 2014 versus 2003-2013 annual
average [1]

The remainder of this chpter is organized as follows: Section 4.2 presents a review of
related literature. Section 4.3 shows conceptual model and mathematical model. To illustrate
how the proposed mathematical model works on the real case, we propose the case study in
section 4.4. Section 4.5 shows the computational results and sensitivity analysis. Finally, the
conclusion and discussions are presented in Section 4.6.

4.2 Literature reviews

This section presents an overview of relevant literature. Recent research has also included
surveys on effective DM such as Caunhye et al. [6], and Ozdamar and Ertem [7], Boonmee et
al. [8] and Zheng et al. [9]. There are many papers dealing with sheltering operation and
evacuation planning. Table 4.1 displays important characteristics of existing studies in this area
comprising of objective function, time period horizon, category of single or multistage
approach, category of deterministic or stochastic programming, mathematical model, solutions
algorithms and case study.
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Chanta and Sungsawang [10] proposed bi-objective optimization model to select
temporary shelter sites for flood disaster in Bangkruai, Thailand. The objective functions aim
to maximize the number of victims that can be covered within a fixed distance and to minimize
the total distance of all victims to their closest shelters. Boonmee et al. [11] proposed multi-
model optimization for shelter site selection and evacuation planning. The mathematical
models were formulated under different constraints and model types. The objective function is
to minimize the total travel distance. Finally, all models were proposed to policymakers for
choosing the best evacuation plan. Chowdhury et al. [12] proposed multi-objective mathematical
programming model and simulation model to quantify objectives and provided decision
support for cyclone shelter location in Bangladesh. Santos et al. [13] proposed a maximal
covering location problems (MCLP) with Lagrange optimization model for flood shelter site
selection. The proposed mathematical model aims to maximize the population covered by the
limited number of facility locations. Moreover, this study also considers flood level constraint.
Similarly, Wang et al. [14] proposed an MCLP-based optimization model to identify the best
precipitation stations. The proposed model considers some special constraints and the
associated rainfall monitoring demand. This study was applied in Jinsha River Basin.
Kulshrestha et al. [15] presented a robust shelter location model to determine optimal shelter
locations and their capacities under demand uncertainty. This proposed model not only
determines the number of shelters and capacities but also considers the route to access to
shelters. Kongsomsaksakul et al. [16] studied shelter location-allocation model for flood
evacuation planning. The mathematical model was formulated as a bi-level programming
model. The upper bound is a location problem while the lower bound is a combined distribution
and assignment (CDA) model. The proposed model was solved by using a genetic algorithm.
Addition, bi-level programming model was proposed by Li et al. [17] for developing dynamic
traffic assignment problem for the selection of shelter locations with explicit consideration of a
range of possible hurricane events and the evacuation needs under each of those events. Others bi-
level programming model was proposed by Liu et al. [18] and Feng and Wen [19].

Stochastic programming is one of the most widely used approaches for planning in
evacuation planning and shelter site selection due to its ability to account for uncertain criteria.
Salmam and Yiicel [20] proposed a stochastic integer programming model for determining the
location of emergency response facilities among a set of potential ones. The objective aims to
maximize the expected total demand covered within a predetermined distance parameter, over
all possible network realizations. Furthermore, the stochastic programming in this field is
proposed by Mirzapour et al. [21]. This study presents a mixed integer nonlinear programming
model of a capacitated facility location-allocation problem which simultaneously considers the
probabilistic distribution of demand locations and a fixed line barrier in a region. For integrated
decision shelter site selection and evacuation planning under hierarchical evacuation concept,
Chen et al. [22] proposed a hierarchical location model for earthquake-shelter planning. This
proposed mathematical model considers financial constraints imposed upon the construction
of shelters and changing needs of refugees. The real case in Beijing, China is applied to
validate this proposed model. Another multi-step evacuation is proposed by Hu et al. [23].
The proposed mixed-integer linear program model is formulated for multi-step evacuation and
temporary resettlement under minimization of panic-induced psychological penalty cost,
psychological intervention cost, and costs associated with transportation and building shelters.

According to the related existing literature review in flood evacuation planning is lacking
a determined perspective on the uncertainty of occurrence, evacuee’s behavior, utilization of

72



Chapter 4

shelter, capacity restriction of shelter, and hierarchical evacuation concept simultaneously.
Therefore, this chapter aims to propose stochastic linear mixed-integer programming model for
optimizing integrated decision related to shelter site selection under a hierarchical evacuation
concept during flood disaster. This proposed model not only provides a flood shelter site but
also considers hierarchical evacuation concept for flood disaster that balances the preparedness
and risk despite the uncertainties of flood events. Besides, we consider the distribution of
shelter sites and communities, evacuee’s behavior, utilization of shelter, and capacity
restrictions of shelter as well.

Table 4.1 The review study of optimization model on shelter site selection and evacuation

planning
No  Author Objective Period  Level D/S  Model Solution Case study
1 Chanta and Min distance, Single  Single D Linear Epsilon Bangkruai,
Sungsawang [10] Max covering constraint Thailand
demand
2 Boonmee et al.[11]  Min distance Single,  Single D/S Linear/  Exactalgorithm  Banta,
Multi Non- Thailand
Linear
3 Chowdhury et al. Min risk, Single  Single D Non- Greedy heuristic ~ Bangladesh
[12] Min cost, Max Linear
protection of
units
4 Santos et al. [13] Max covering Single  Single D Linear Exact algorithm  Marikina,
demand Philippine
5 Wang et al. [14] Max covering Single  Single D Linear Exact algorithm  Jinsha River
demand Basin
6  Kulshrestha et al. Min cost Single Single D  Linear A cutting-plane the Sioux
[15] algorithm Falls network
7 Kongsomsaksakul Min evacuation Single  Bi D Non- Genetic Utah
etal. [16] time Linear Algorithm
8 Lietal. [17] Min travel time ~ Multi Bi S Non- Lagrangian North
Linear relaxation Carolina
algorithm
9 Liu et al. [18] Max Multi Bi D Linear Exact algorithm  Ocean City
throughput,
Min total
trip time
10  Fengand Wen [19] Max number of Single  Bi D Linear Genetic Numerical
vehicles Algorithm example
11 Salmam and Yiicel ~ Max satisfied Single  Single S Linear ~ Tabu search Istanbul’s
[20] demand earthquake
preparedness
12 Mirzapour et al. Min maximum  Single  Single S Non- Exact algorithm Mazqndaran
[21] weighted Linear province,
distance northern
part of Iran
13 Chenetal. [22] Min weighted Multi Single D Linear Exact algorithm  Beijing,
distance China
14  Huetal. [23] Min cost Multi Single D Linear Exact algorithm  Sichuan,
China

Note: D = Deterministic problems, S = Stochastic problems
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4.3 The proposed model

4.3.1 Conceptual model

In this section, we describe the conceptual model for the flood shelter site selection and
flood evacuation planning. This conceptual model is designed with respect to the hierarchical
evacuation concept. In this study, we assume that each evacuation step is called “Evacuation
period”. The evacuation periods are provided by the local government or policy makers that
can be separated with respect to the step of flooding or the step of impact level from hazard
map. For example, in Figure 4.3 and 4.4, we represent three-level hierarchical evacuation
model that consists of three evacuation periods and three impact levels. In the 1st evacuation
period, when the flood warning system alarms for the 1st evacuation, the refugees who stay in
impact level 1 will be assigned to one of the nearby shelters. In the 2nd evacuation period,
when the flood warning system alarms for the 2nd evacuation, the refugees who stay in impact
level 2 will be assigned to the nearby shelters. While the refugees of selected shelters in the 1st
evacuation period where locate in impact level 2, they will be relocated to new shelters. In the
3rd evacuation period, when the flood warning system alarms for the 3rd evacuation, the
refugees who stay in impact level 3 will be evacuated to one of the nearby shelters. While the
refugees of selected shelters in the 1st evacuation period and the 2nd evacuation period where
locate in impact level 3, they will be relocated to the new shelters as well. Before the
mathematical model is formulated, we make the following assumptions on the problem:

1. According to evacuee’s behavior during flood events, some refugees always evacuate
neither before the disaster or after the disaster. Consequently, we assume that the refugees
can evacuate to shelter any evacuation periods under varying needs of the refugees.
The affected community can be served by one shelter in each period.

Some shelter can be located in flooding risk area.

Shelters have a limited capacity for accommodating the demand assigned to them.

The flood warning system will alarm following the step of impact level with respect to
decision making’s local government or policymakers.

The road network is not considered in this model

kv

o

. Tmpact level 1

O Impact level 2

O Impact level 3

[ Affected community
A Candidate shelter
@== River

O Safety Zone

Figure 4.3 The hazard map of conceptual model for hierarchical evacuation planning and
shelter site selection during floods
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Impact Jevel 3 Safety zone

Flood warning
for 1% evacuation

Flood warning
for 2™ evacuation

evacuation period A

Flood warning
for 3" evacuation
A = Affected zone i . = Candidate shelter /

Figure 4.4 The conceptual model of for hierarchical evacuation planning and shelter site
selection during floods

4.3.2 Mathematical model

In this section, we proposed the stochastic linear mixed-integer programming model for
optimizing integrated decision related to shelter site selection under a hierarchical evacuation
concept. The indices, parameters, decision variables, objective function, and constraints are
presented as follows:

Indices and index sets

1 Set of affected communities; ie/

J Set of candidate shelters; j, keJ

¢ Set of evacuation periods and impact level; s &

Parameters

MS Maximum limit of selected shelters

M A Large positive number

u Threshold value for minimum utilization of shelter
P; Probability of flooding in impact level se ¢

D; Population in affected community i/

PDy;  Proportion of population in affected community i</ need to evacuate in
evacuation period se¢
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n; Capacity of shelter jeJ
s Equal to 1 if candidate shelter je.J locate in impact level se &, 0 otherwise
Dl-”} Distance from affected community i</ to candidate shelter je.J (km)

]-Tk Distance from candidate shelter je.J to candidate shelter k<.J (km)

Decision variables

X

§ 1 if shelter jeJ is selected, 0 otherwise

TP; Total population of shelter je.J in evacuation period se &

Ysll?j 1 if affected community ie/ is assigned to candidate shelter je.J during
evacuation period se ¢, 0 otherwise

ST]-k 1 if shelter jeJ is assigned to candidate shelter ke.J during evacuation period
se&,0 otherwise

Z fl- i Number of people evacuates from affected community ie/ to shelter jeJ

during evacuation period se¢&

STjk Number of people evacuates from affected shelter je.J to candidate shelter ke
J during evacuation period se ¢

Objective function

Most evacuation models measure the efficiency of evacuation by total travel cost in terms
of response distance or time [24]. Since the floods typically are known about several hours
before communities will be affected, evacuees will have sufficient time for evacuation. Thus,
this study aims to focus on travel distance criterion with respect to the population of each
community. This objective function is multiple values between population-weighted travel
distance and the probability of flooding in each impact level with respect to a disaster scenario.
The objective function can be formulated as equation (4.1). The expected population-weighted
travel distance is expressed in equation (4.2), where, this consists of the distance between
affected community to shelter and the distance between shelter to shelter as shown in equation
(4.3).

Minimize Elolx,.5) (4.1)
Efolx ,.s)=3 p ol ,.s) (42)

seé

Q(X,,s)=ﬂ2 D} *Z;?,HZZD;*Z; ]} Vse& (43)

iel jeJ jeJ keJ

Constraints

Maximum number of selected shelters: Equation (4.4) states that the total number of selected
shelters cannot exceed the maximum limit of selected shelter. Equation (4.5) guarantees that
the population can be served to shelter when it is selected.
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Z X, <MS 4.4)
JjeJ
D TP, =X, Vied (4.5)

seé

Shelter capacity: Equation (4.6) states that the total number of evacuees is covered by shelter
j should not exceed its capacity.

Zﬁ”ﬂf 2X %0, Vied (4.6)
Total population in each evacuation periods: Equation (4.7) states that the total number of
population in each evacuation period.

4 T

Y.z, *(l_as:f)"rzzskf *(l—asj)= TP, Vied,seé (4.7)

iel keJ
Evacuation requirements: Equation (4.8) ensures that the number of evacuees needs to
evacuate to a shelter in each evacuation period should be equal to the expected evacuation
requirements with respect to the evacuee’s behavior.

3

2 23y (1=2,)= P20, Vielses (4.8)

JE
Flow balance: Equation (4.9) and (4.10) states the balance constraint in which the number of
population departure should be equal to the number of the population come. Note that
d,; present assignment protection for shelters, when the shelter is located in safety zone, the
population does not need to evacuate to a new shelter.

TR,;*0,,= Zzzr,jk *(1—82’,() VjieJ (4.9)

keJ

(1o 03 )+ (TP (03 02, )= D 25 *(1-05,) VjeJ (4.10)
keJ
Controls the utilization of selected shelter areas: Equation (4.11) states that if a shelter site is
open, then the utilization of that shelter area needs to exceed the pre-determined threshold
value. Note that the utilization is a ratio between the number of evacuees is covered and
shelter capacity.

TP, .
Z_Zﬂ*xj VjiedJ “4.11)
see M;
Assignment limit: Equation (4.12) - (4.13) state that the binary variable of the assignment is set
to 1 when the people in each community or each shelter is assigned to each shelter. Equation
(4.14) - (4.15) ensure that the affected community can be served by one shelter in each period.

Zy<M*Yy Viel,jeJ,seé (4.12)
Zy SM*Yg Vied,ked,sel (4.13)
PR Viel,seé (4.14)

jeJ

71



Chapter 4

>y <1 Vied,seé (4.15)

keJ

Non-negativity and binary conditions: Equation (16) and (17) describe non-negativity and
binary conditions of the decision variable.

X Y5 v5 elol) Viel,jelkeJse& (4.16)
Z5.25, 20 Viel,jeJkel,seé (4.17)
4.4 Case study

To show how the proposed mathematical model can work on the real case problem, this
section presents a case study in Chiang Mai province in northern Thailand to validate our
proposed model. Chiang Mai Province usually occurs flood disaster in May-October rainy
season which is dominated by masses of moist air moving from the Indian Ocean, and tropical
depressions moving westward from the South China Sea.

Chiang Mai province develops a flood warning system for Ping river which can predict
the real-time situation. This system uses two gauging stations, P.67 located at Ban Mae-tae in
Sansai district and P.1 in downtown Chiang Mai, in which the water takes about seven hours
for traveling to P.1 station (Figure 4.5). The Natural Disaster Research Unit of Civil
Engineering Department of Chiang Mai University (CENDRU) has surveyed and collected
floods data in Chiang Mai for a long time ago [25]. The Chiang Mai flood hazard map is
produced based on historical data from Station P.1 and P.67 since 2006 as shown in Figure 4.6,
the risk area is divided into seven levels.

62 | T~ m——— 7 hours

gl Ping river 2
==

32 km »

A

Figure 4.5 The position of station P.1 and P.67 on the Ping river
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According to the classification of the impact level by CENDRU. To apply to our
conceptual model, if we determine with respect to seven impact levels, it is too many for
evacuation in each level and burdensome for evacuees, especially the evacuees in the first level
might have to evacuate several times. So, we assume that the seven impact levels are classified
into three impact levels, it implies that we have three evacuation periods. Based on historical
data, we can assume that the probability of three impact levels is 0.73, 0.25, and 0.02,
respectively?® as shown in Table 4.2. In this study, we consider 123 communities and 43
candidate shelters, as shown in Figure 4.7. Unlike other evacuation, the evacuee’s behavior
during flood disaster is uncertain, someone needs to evacuate after they hear alarm
immediately, but someone needs to evacuate when the disaster strike. Hence, evacuee’s
behavior should be determined. The proportion of the population that needs to evacuate in each
evacuation period is referred from Lauthep et al., 44.81% evacuate immediately after warning
signal given by the local government, 8.00% evacuate when the flood level is lower than 0.5
meter, and 4.44% evacuate when the flood level is over than 0.5 meters?”). Not that the
remaining percentage is the people who do not need to evacuate. Finally, the maximum limit
of selected shelter is assumed as 25 shelters and the utilization of shelter must greater than or
equal to 80%.

Table 4.2 Classification of level for hierarchical evacuation model

Impact level and evacuation period 1 2 3
Probability 0.73 0.25 0.02
Ping river at P.1 (m) 3.7-4.1 4.1-4.6 Over 4.6
No. affected communities 18 47 123

Impact Level 1

\ ) [ i

Impact Level 4 Impact Level 5 Impact Level 6 Impact Level 8

Figure 4.6 Seven impact levels of the Chiang Mai flood hazard map [25]
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% Candidate shelter | Impact level 1
*® Affected zone [ Impact level 2
Ping river [ Impact level 3

Figure 4.7 Geographical location of three impact level areas, candidate shelters, and
affected communities in Chiang Mai, Thailand

4.5 Computational results

We solved the proposed mathematical model using the Gurobi Optimizer Ver. 6.0.0
mathematical programming solution software. All experiments were run on a personal computer
with an Intel (R) Core (TM) i7-6700 CPU (3.40GHz) and 16 GB of RAM.
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4.5.1 Results

After we code and solve the mathematical model into optimization solver software.
Figure 4.8 shows the scheme of evacuation planning and flood shelter site location. According
to the formulated system, the total expected population-weighted travel distance is 5,729,246.
Among the 43 candidate shelters, 24 were identified as shelters that operate at their capacity to
serve the communities during flood disaster occurrence. In the first evacuation period needs at
least 4 shelters for supporting evacuees in which shelter 1, 2, 7 and 11 are selected, while the
total expected population-weighted travel distance in this evacuation period is 1,695,470. The
selected shelter of the second evacuation period consists of shelter 7-9, 11-14, and 17. The total
expected population-weighted travel distance of the second evacuation period is 2,810,010. For
selected shelter of the third evacuation period, there are shelter 10, 13-16, 27-29, 31-32, 35-38,
40 and 42, while the total expected population-weighted travel distance is 1,223,770.

4 km
T
Legend "
% Candidate shelter Impact level 1 [l Selected shelter in 1st period (
® Affected zone [ Impact level 2 A Selected shelter in 2nd period Q\
Ping river [ Impactlevel 3 @ Selected shelter in 3rd period

Figure 4.8 The scheme of flood-shelter location and evacuation planning under hierarchical
evacuation concept
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Following the conceptual model, the solution of this formulated system is able to describe
that if the flood warning system alarms for the 1st evacuation, the square symbol is opened for
supporting evacuees in the 1st impact level zone (Orange zone), in which there are shelter 1,
2,7 and 11. In the case of expansion of flood zones to the second zone, the 2nd evacuation
period will be started. The triangle symbol is opened for supposing evacuees in both the 1st
impact level (Orange zone) and the 2nd impact level (Violet zone) that consists of the shelter
8-9, 12-14, and 17. While the selected shelters in the 1st evacuation period where locate out of
impact zone are still used for supporting evacuees, there are shelter 7 and 11. Finally, in the
case of huge flooding, the shelter 10, 15-16, 27-29, 31-32, 35-38, 40 and 42 are opened
(Pentagon symbol) and the shelter 13 and 14 (Triangle symbol) are still opened for supporting
evacuees of three hazard areas. The decision makers can plan to follow hierarchical evacuation
model. However, some evacuation periods can be skipped over, in which it depends on the
decision of decision makers and situation. Note that the selected shelters in previous evacuation
period where to locate in next impact level zone are closed. The evacuees in those shelters are
evacuated to new shelters. For example, in 2nd evacuation period, the selected shelters
(Triangle symbol) in 1st evacuation period that locate in impact level 2 will be closed (Shelter
No. 1 and 2).

4.5.2 Sensitivity analysis

In this section, we present a sensitivity analysis to show how the parameters affect the
results with respect to changing input parameters. The total number of selected shelter constraint
is a major constraint that impinging on both shelter site selection and evacuation planning. The
total number of shelter constraint was varied from 24 shelters to 3 shelters, in decrements of 1,
to represent the different total number of the shelter with aspect to an objective function as
shown in Figure 4.9. Moreover, we also represent the derived total number of selected shelter
in each evacuation period under the different total number of selected shelter as shown in
Figure 4.10. Both of the figures show the result when the model is run multiple time with
varying the total number of selected shelter. The graph presents not only the total expect
population-weighted travel distance but also and the total expect population-weighted travel
distance in each evacuation period. The result found that when the total number of selected
shelter is decreased, the total expected population-weighted travel distance is continually
increased. At first glance, the gradual increase in the maximum number of selected shelter
appears to reduce the total expected population-weighted travel distance. However, when we
provide less number of selected shelter, it will threat to the total expected population-weighted
travel distance, it may make likely that evacuee will be forced to endure a longer transfer
distance. Especially, when we set the number of selected shelter less than 10, the total expected
population-weighted travel distance is rapidly increased. According to this sample data set, the
formulated system is unable to aid all affected communities if the number of selected shelter is
less than 3. The objective function, on the other hand, is unchanged when the maximum total
number of selected shelter has more than 24 shelters according to the same performance of
each response result. According to the bound of the number of selected shelter is decreased with
its decrements, some shelters are removed from the previous list in which shelter selection
depends on its significance.

According to the first evacuation period is significant to objective function because the
probability of flooding this period is the highest, so the system attempts to make the shortest
distance in this period that affects to shelter site selection. In the first evacuation period, the
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expected population-weighted travel distance is constant over time during the total number of
selected shelter as 22-24. After that, it is slightly increased. The trend of this evacuation period
exhibits similar trends as the objective function. The total number of selected shelter in this
evacuation period is selected between 2-5 shelters. In the second evacuation period, the expected
population-weighted travel distance is higher than the first evacuation period although the
probability of this evacuation period is less than the first evacuation period because the shelters
are located farther from affect zone and the number of community is also increased. However,
when the total number of selected shelter is set at 6-9 shelters, the expected population-
weighted travel distance is less than the first evacuation period. The maximum of the number

30.00
25.00
Objective function
20.00

15.00

10.00

Total expected population-weighted
travel distance (Minllion)

0.00
No. of selected shelter 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
The objective function 25.96 19.4215.07 12.94 11.50 10.26 939 8.74 8.29 7.80 726 7.06 6.79 6.61 6.54 6.51 648 6.12 590 5.80 5.74 573

@i The st evacuation period 11.83 6.95 4.18 3.75 3.54 349 339 329 246 251 167 1.67 1.67 1.75 1.67 167 170 1.67 1.67 1.70 1.70 1.70
e The 2nd evacuation period 11.36 9.50 7.59 5.76 4.53 3.18 2.47 1.89 2.29 292 3.23 323 2.87 2.80 2.87 2.87 2.81 3.13 2.87 291 2.82 281
empt=== The 3rd evacuation period 278 297 329 344 343 359 354 356 3.54 236 236 216 225 206 200 196 1.98 131 136 1.19 123 122

Figure 4.9 The derived total expected population-weighted travel distance under the different

Total of selected shelter

20

total number of selected shelter

w
=
w
=N
-

Number of selected shelters

The 1st evacuation period ™ The 2nd evacuation period ~ M The 3rd evacuation period

Figure 4.10 The derived total number of selected shelter in each evacuation period under the

different total number of selected shelter
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of shelters in this period requires 9 shelters for minimum the expected population-weighted
travel distance, while this evacuation period needs at least 3 shelters for covering all demands.
For the third evacuation period, the trend is gradually changed because this evacuation period
has the least probability of flood occurrence. The expected population-weighted travel distance
in this period is slightly increased when the number of selected shelter is decreased. The
number of selected shelter in this evacuation period need at least 16 shelters when the selected
shelter limit is provided at 24 shelters. On the other hand, the number of selected shelter in this
evacuation period need at least 2 shelters when the selected shelter limit is provided at the
minimum total number of selected shelter.

Controls the utilization of selected shelter areas is one constraint that can impact the
formulated system. We presented the derived total expected population-weighted travel
distance and the derived total number of selected shelter under the different value for utilization
of selected shelter areas, as shown in Figure 4.11 and 4.12. Moreover, Figure 4.11 and 4.12
also present the result of the unlimited number of shelter site selection. The value for utilization
of selected shelter areas was varied from 0 to 1, in increments of 0.1. From Figure 4.11 and
4.12, we see that the best objective value of both solutions is reached at the minimum value for
utilization of selected shelter areas. If we increase this value with its increments, the objective
function (Z1) is exponentially increased. The objective value of the limited number of shelter
site selection is higher than the objective value of the unlimited number of shelter site selection
during the value for utilization of selected shelter is set at 0-0.5. However, during 0.6-0.9, the
objective value has the same result, including the number of selected shelter. In the limited
number of shelter site selection, the total expected population-weighted travel distance is
stable as approximately 5.544 million during the value for utilization of selected shelter areas
is set at 0-0.4. Then, the trend of the objective function is increased step by step. On the other
hand, the total number of selected shelter is decreased when the value for utilization of selected
shelter areas is increased. During the value for utilization of selected shelter is set at 0-0.5, the
total number of selected shelter is stable about 25 shelters. Then, it drops to 24 and 23,
respectively. For the unlimited number of shelter site selection, the total expected population-
weighted travel distance is started with 5.527 million, while this formulated system needs to
open 29 shelters. The objective value is then continually increased while the total number of
selected shelter is simultaneously decreased. The both formulated system end at 0.9 for the
relief response to be feasible. From the result of Figure 4.11 and 4.12, it implies that the value
for utilization of selected shelter is impinging on the travel distance of evacuee. If the
government or policy makers provide too much the value for utilization of selected shelter, it
may make likely that evacuee will be forced to endure a longer transfer distance. On the other
hand, if the government or policy makers provide too few the value for utilization of selected
shelter, it may make likely that the government has to open more shelter in which the
government has to support more finance for establishing shelters.

Furthermore, we present the fluctuation of the expected population-weighted travel
distance under the different situation of the probability of flooding. This is one of the criteria
that can threaten to the objective function. We conducted computational experiments to
illustrate how the case study varies when the situation of the probability of flooding is changed.
We proposed three scenarios for testing case study in which the probability in each experiment is
shown in Table 4.2. In the scenario 1, the probability of the impact level 1 is the highest chance
of flooding while the impact level 2 and 3 are low chance of flooding. In the scenario 2, the
probability of the impact level 1 and 2 is the biggest proportion to occur flooding except for
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the impact level 3. Finally, in the scenario 3, all impact levels are the same proportion of
flooding chance. Moreover, the probability value of each impact level of a case study that
proposed in section 4.5.1 is also represented in the last row of Table 4.3.
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Figure 4.11 The derived total expected population-weighted travel distance under the
different utilization of selected shelter areas
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Figure 4.12 The derived total number of selected shelter under the different utilization of
selected shelter areas

Table 4.3 The computational experiments of the probability of flood occurrence

Scenario Impact level 1 Impact level 2 Impact level 3
1 0.90 0.09 0.01
2 0.49 0.49 0.02
3 0.33 0.33 0.33
Case study 0.73 0.25 0.02
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Three computational experiments are run and showed the result in Figure 4.13. The
three schemes of flood evacuation planning and shelter site selection under the different
scenarios are shown in Figure 4.14. We can see that the scenario 1 is quite same the case
study in which the shelters located in impact level 2, 3 and non-impact area and the evacuation
planning is generated under hierarchical evacuation concept. The objective function is 3.669
million while the total number of selected shelter is 23 shelters. The three shelters (Square
symbol) are opened for the first evacuation period. Then, the eight shelters (Triangle symbol)
are opened for the second evacuation period in case of extension of flood zone to the second
zone (Violet zone). While the shelters that locate out of impact level 2 is still used for
supporting evacuees. Finally, if the expensive flood will occur, twelve shelters (Pentagon
symbol) is opened for supporting evacuees of three hazard zones including to two shelters
(Triangle symbol) that locate out of impact level 3 zone (Green zone). In the scenario 2, the
selected shelters are only located in impact level 3 and the non-impact area. The objective is
7.125 million while the total number of selected shelter is 22 shelters. In this case, the six
shelters (Square symbol) are proposed to open for the first evacuation period. Then, the two
shelters (Triangle symbol) are selected to open for the second evacuation period, while the
selected shelters in the first evacuation period are still used for supporting the second
evacuation period as well. Finally, in the case of biggest flooding, the fourteen shelters (Pentagon
symbol) are selected including to the selected shelters in previous evacuation periods that locate
out of the affected zone. For the scenario 3, all selected shelters are established in the non-
impact area. In this case, it seems that this plan is no hierarchical evacuation planning.
However, the evacuation planning will evacuate three times that starts with impact level zone
1, 2, 3, respectively. The square symbol is firstly opened, then following with triangle symbol
and pentagon symbol, respectively. The objective value in this plan is the highest to estimate to be
22.601 million, while the total number of selected shelter is 16 shelters.
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Figure 4.13 The derived objective function and total number of selected shelter under the different
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According to the result of the derived expected population-weighted travel distance under
the different situation of probability of flooding, we found that if the impact level 1 is a large
proportion for probability of flooding, the first evacuation period is the most important in which
the nearby shelters are selected because the objective function aims to make the minimum expected
population-weighted travel distance in this evacuation period. On the other hand, when all impact
level has same proportion for the probability of flooding, the objective function aims to make
the short distance in all evacuation period.

To recommend for decision making’s government in the future, if they use the expected
probability based on historical data by CENDRU, they should select the proposed evacuation
planning for this case study that shows in Figure 4.8. If government expect that the severity of
flood disasters will be reduced in the future by improving or controlling the Ping river, they
can use the scenario 1. On the other hand, if government expect that the severity of flood
disasters will increase in the future, they should select the scenario 2 or 3 for flood evacuation
planning and shelter site selection. However, the government or policy-makers should be
interested in the number of open shelters and the utilization of shelter because it represents the
efficient flood evacuation planning including financial and evacuation distance??. Finally, the
final point depends on policy maker’s preference.

Scenario 1 Scenario 2 Scenario 3
Legend N
% Candidate shelter Impact level 1 [l Selected shelter in 1st period ( \
* Affected zone Impact level 2 A Selected shelter in 2nd period
Ping river Impact level 3 @ Selected shelter in 3rd period

Figure 4.14 The three schemes of flood evacuation planning and shelter site selection under
the different scenarios

4.5.3 Advantage of proposed conceptual model

Our conceptual model can serve emergency management purposes. The first is to help in
preparation stage including spatial distribution of shelter under uncertainty of flood
occurrences. The second is to aid in response stage in order to provide evacuation flow and directions
at each evacuation period. The third is to help in recovery stage for reentry process in term of
distance [26]. Our conceptual model also considers utilization of shelter, capacity restriction of
shelter and evacuee’s behavior that reflect the real problem constraints. Furthermore, when
the flood disaster occurs with low-impact events, the evacuees do not need to evacuate to the
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shelter with a longer transfer distance and the local government can reduce the budget as well.
Although this evacuation planning is designed based on hierarchical evacuation planning, it is
not necessary to evacuate following the step of the plan. If the local government can predict
that the severity of flooding will occur with the expensive flood, the local government can skip
over the first or the second evacuation period to the next evacuation period in which this
depends on the decision making’s local government.

4.5.4 Current problem — to — solution findings

As stated earlier, this case study is faced with flood disaster almost every year. However,
in the reality of this problem, many times there are errors and inefficient performance issues
including unsuitable opened shelter site, inadequate capacity of shelter, long distance
evacuation in perspective of evacuee and amiss assignment.

In this study, we determined that our proposed conceptual model could overcome those
happenable problems. Moreover, this could consider the behavior of evacuees during the
evacuation, utilization of selected shelter area, and the uncertain situation of flooding,
simultaneously. To compare the performance with previous evacuation plan of the case study,
in which the local government always select shelter No. 30 and No. 34 for supporting evacuees
whenever flooding, our model can reduce the expected population-weighted travel distance to
estimate be 80% with respect to the formulated system and can cover all of the demand points in
each affected zone. Note that the binary of the other shelters is set as 0 except shelter No. 30 and
34 in the system. Although this can reduce the travel distance of evacuation, this is faced with risk
problem of open shelter at potential flooding area, the assignment of this rather complicates due to
the behavior of evacuees and some communities might have to evacuate several times. However,
this proposed system can apply with the real-world case and respond to evacuee’s behavior and
uncertain situation of flooding as well.

To improve preparedness, the government should provide more efficient forecast. This
proposed model should consider in road closures or traffic congestion, a difference of travel
speed depending on the mode selection, accessibility of shelter site, financial cost [28] and risk
of open shelter at potential flooding area. Besides, this should consider how to classify
evacuation period in which it could affect to the effectiveness of evacuation as well.

4.6 Conclusions

This study presented a stochastic linear mixed-integer programming mathematical model
for flood evacuation planning to optimize decision related to shelter site selection under
hierarchical evacuation planning. The proposed mathematical model considers minimum
expected population-weighted travel distance as the objective function. This study not only
provides a flood shelter but also determines hierarchical evacuation concept, distribution of
shelter, utilization of shelter, capacity restrictions of shelter and evacuee’s behavior for flood
disaster that balances the preparedness and risk despite the uncertainties of flood events. Our
proposed model was validated by generating a base case scenario using real data for Chiang
Mai province, Thailand. Besides, we also proposed sensitivity analysis for more guideline
under uncertainty decision. This study will be great significance in helping policymakers
consider both spatial and performant aspect of the strategic placement of flood shelters and
evacuation planning under uncertainties of flood scenario.
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The implementation of the proposed mathematical model also has limitations. According
to unlike another natural disaster, it cannot be generated to others disaster due to some condition
of each natural disaster are different such as shelter type, time condition, etc. However, our
mathematical model can apply to any other city in flood situation as well. Although this
proposed conceptual model is quite complicated, it can respond to many criteria completely.
Consequently, the policymaker should decide carefully to apply with a real case. To reduce a
complexity, the affected communities should not be separated too many because it will be
difficult for evacuation management. In future research, the proposed model should consider
in road closures or traffic congestion, road network, a difference of travel speed depending on
the mode selection and accessibility of shelter site that may affect to an efficient evacuation.
Furthermore, this model should consider financial cost and risk of open shelter at potential
flooding area as well.
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5.1 Introduction

Since the 1950s, the number and magnitude of disasters have been continuously
increasing. According to annual disaster statistical review 2014 [1], 324 persons were stricken
by natural disaster and economic system was damaged as approximately US$ 99.2 billion.
According to the International Disaster Database, Asia and the Americas have been the
continents most affected by disasters. Because of the increasing severity of recent disasters,
many academicians have paid a great deal of attention to “Disaster management (DM)” for the
purposes of helping at-risk persons to avoid or recover from the effect of the disaster. Disaster
situations can be divided into two stages: a pre-disaster (mitigation and preparation) stage and
a post-disaster (response and recovery) stage [2].

Flood disaster is largest share in natural disaster occurrence in 2014 as approximately
47.2%. The number of floods and mass movement of hydrological origin were 153 disasters in
2014 that caused 42.3 million victims or 30% of total disaster victims with economic damaged
around US$ 37.4 billion. The biggest flood disaster had been occurred in China in 2007 and
2011, more than 100 million people were hit. Furthermore, the most expensive flood had been
occurred in Thailand in 2011, with economic damages estimated to be US$ 42.1 billion. During
flood situation, people in an affected zone have to decide where to evacuate to safety. The
shelter is a public safe place provided and organized by the government in order to support
people in an affected area. Thus, preparedness design is a major stage to design planning of
activities to follow in case the flood disaster situation. In flood shelter site selection and flood
evacuation planning, there are many major criteria that should be considered such as
uncertainty of occurrence, evacuee’s behavior, planning budget and hazard of flood disaster
[3]. Besides, an effective planning strategy in response to flood disaster must take into account
a short travel distance [4]. As pointed out by several studies, existing optimization model in
this field lack a determined perspective for uncertainties of flood events, evacuation’ behavior
and hierarchical evacuation model. Therefore, we aim to develop new evacuation planning for
overcoming this challenge, in which we consider such a problem in our study.

This chapter aims to propose a stochastic linear mixed-integer programming model for
flood evacuation planning to optimize decision related to shelter site selection under a
hierarchical evacuation concept. This study is applied to probabilistic scenarios that reflect the
uncertainty of flood events and their consequences. To develop an effective flood evacuation
model, the objective function in this study considers not only in terms of response distance but
also in terms of risk index of shelter, simultaneously. Furthermore, our model scrutinizes
evacuee’s behavior and financial constraint as well.

The remainder of this chapter is organized as follows: Section 5.2 presents a review of
related literature. Section 5.3 shows conceptual model, proposed mathematical model and
solution approach. To show the usefulness of the proposed model, a case study of Thailand is
shown in section 5.4. Section 5.5 shows the computational results and discussion of the case
study. Finally, the conclusion and future research are presented in section 5.6.

5.2 Literature reviews

This section presents an overview of relevant literature. There are many papers dealing
with sheltering operation and evacuation planning. Santos et al. [5] proposed flood facility
location-allocation in Marikana city by using maximal covering location problems (MCLP)
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with Lagrange optimization model. This study aimed to optimize the number of shelters by
relaxing constraints in order to obtain the optimal demand coverage for every facility location
and also considered flood level constraint. Similarly, Wang et al. [6] proposed an MCLP-based
optimization model, precipitation station MCLP, to site precipitation stations. The proposed
model considered the terrain condition, the characteristic if a rainfall network, and the
associated rainfall monitoring demand. In a related study, Chanta and Sungsawang [7]
proposed bi-objective optimization model to select appropriate temporary shelter sites for flood
disaster in Bangkruai, Thailand. The proposed model aims to maximize the number of victims
that can be covered within a fixed distance and to minimize the total distance of all victims to
their closest shelters by using epsilon constraint approach. Boonmee et al. [8] proposed multi-
model optimization for selecting shelter site and evacuation planning, four mathematical
models were formulated under a dynamic of both constraint and model type. In each model,
the objective function is to minimize the total travel distance. Furthermore, Kongsomsaksakul
et al. [9] presented optimal shelter location for flood evacuation planning, bi-level programming
model was formulated. Others bi-level programming model was proposed by Feng and Wen [10]
for managing the emergency vehicle and controlling the private vehicle flows in earthquake
disaster. They considered a multi-community, two-model network flow problem base on the
concept of bi-level programming and network optimization theory.

Several researchers have considered on shelter site selection and evacuation planning
based on a stochastic approach for dealing with uncertainty. Mirzapour et al. [11] presented
mixed integer nonlinear programming model of a capacitated facility location-allocation
problem which simultaneously considers the probabilistic distribution of demand locations and
a fixed line barrier in a region. Moreover, Salmam and Yiicel [ 12] proposed a stochastic integer
programming model for determining the location of emergency response facilities in the pre-
disaster stage. This research aims to maximize the expected total demand covered within a
predetermined distance parameter, over all possible network realizations. For the integrated
decision on shelter site selection and evacuation planning under hierarchical location concept,
Chen et al. [13] proposed a three-level hierarchical location model to optimize the location of
earthquake-shelter by taking into account this temporal variance. This proposed model not only
considers changing needs of refugees but also determines financial constraints imposed upon
the construction of shelters. Another multi-step evacuation was proposed by Hu et al. [14].
This chapter aims to present a post-disaster evacuation and temporary resettlement considering
panic and panic spread. The proposed mixed-integer linear programming model was
constructed for multi-step evacuation and temporary resettlement by minimizing the panic-
induced psychological penalty cost, psychological intervention cost, transportation cost, and
building shelter cost. According to previous studies have considered all flood shelters and flood
evacuation planning to be the same; however, this assumption disregards uncertainty of flood
events and evacuee’s behavior. Moreover, the related existing literature in flood disaster
management, there is no research considering flood shelter site selection and flood evacuation
planning under hierarchical evacuation concept as far as we know. As above-mention problems
are scarce, we proposed such a problem in our study.

5.3 Stochastic linear mixed-integer programming model

This section discusses a bi-criteria programming model for shelter site selection and
evacuation planning during floods under a hierarchical evacuation model. The conceptual
model, mathematical model, and solution technique are described as follows:
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5.3.1 Conceptual model and assumptions

In this study, the flood shelter site selection and flood evacuation planning are designed
under hierarchical evacuation concept in which each evacuation step is called “Evacuation
period”. The evacuation periods are provided by the decision makers or local government that
can be separated with respect to the step of impact level or step of flooding from hazard map.
For instance, in Figure 5.1., we represent three-level hierarchical evacuation model that
consists of three evacuation periods and three impact levels. In the 1% evacuation period, when
the flood warning system alarms for the 1% evacuation, the refugees who stay in impact level 1
will be assigned to one of the nearby shelters. In the 2™ evacuation period, when the flood
warning system alarms for the 2" evacuation, the refugees who stay in impact level 2 will be
assigned to the nearby shelters. While the refugees of selected shelters in the 1% evacuation
period where locate in impact level 2, they will be relocated to new shelters. In the 3™
evacuation period, when the flood warning system alarms for the 3" evacuation, the refugees
who stay in impact level 3 will be evacuated to one of the nearby shelters. While the refugees
of selected shelters in the 15t evacuation period and the 2" evacuation period where locate in
impact level 3, they will be relocated to the new shelters as well. Before the mathematical
model is considered, we make the following assumptions on the problem:

1. According to evacuee’s behavior during flood events, some refugees always evacuate
neither before the disaster or after the disaster [15]. So, we assume that the refugees can
evacuate to shelter any evacuation periods under varying needs of the refugees.

2. The affected community can be served by one shelter in each period.

3. Some shelter can be located in flooding risk area.

4. The weight associated with each demand point is not considered in the objective function.

5. Shelters have a limited capacity for accommodating the demand assigned to them.

6. An occurrence of a disaster and an occurrence of an evacuation order are mixed up in
this study, in which the evacuation period is defined as following the occurrence of a
disaster or impact level with respect to the perspective of decision makers.

@ Impact level 1

© Impact level 2

QO tmpact level 3

[ Affected community
/\ Candidate shelter
w—River

O Safety Zone

The third
cvacutionperiod  , evacuation period o

(@) (b)

Figure. 5.1 The conceptual model of flood shelter site selection and flood evacuation
planning under hierarchical evacuation model; hazard map of framework (a) and conceptual
model (b).
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5.3.2 The Mathematical Formulation

Most evacuation models measure the efficiency of evacuation by total travel cost in
terms of response distance or time [4]. According to the floods typically are known about
several hours before communities will be affected, evacuees will have sufficient time for
evacuation. Thus, the first objective function aims to focus on travel distance criterion. Base
on assumption of the conceptual model, some shelters can be located in the flooding risk area.
Therefore, the second objective function is to concentrate on risk index of shelter criterion.
Note that the risk index of shelter indicates possibility of flooding at the shelter that relates to
probability of flooding (discusses in section 4). This proposed model considers that related to
probabilistic scenarios due to the uncertainty that surrounds disasters and their consequences.
A flood hazard map is used to generate disaster scenarios with different probabilities of
occurrence that closely match a real flood problem. Hence, all of data in each probabilistic
scenario will able to estimate by using historical data and research data. The objective functions
and constraints are formulated in a stochastic linear mixed-integer programming model that
represent as follows:

Indices and index sets

1 Set of affected communities; ie/
J Set of candidate shelters; j, k£, €J
¢ Set of possible periods; se¢
Parameters

MS Maximum limit of selected shelters
MB Maximum planning budget of local government (THB)
A Large positive number

Probability of occurrence of a disaster in period se ¢

D, Population in affected community ie/

PD, Proportion of population in affected community i e/ need to evacuate in period
se &

n, Capacity of shelter jeJ

C; Construction cost of candidate shelter je.J (THB)

R Risk index of candidate shelter jeJ

0y Equal to 1 if candidate shelter jeJ locate in impact level se¢, 0 otherwise

Df Distance from affected community i€/ to candidate shelter je.J (Km)

Dy, Distance from candidate shelter j<J to candidate shelter keJ (Km)

Decision variables

X, 1 if shelter jeJ is selected, 0 otherwise

J
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TP, Total population of shelter j€.J in evacuation period se¢

Y 1 if affected community i</ is assigned to candidate shelter jeJ during

Sij

evacuation period se€¢, 0 otherwise

Y, 1 if shelter jJ is assigned to candidate shelter k€J during evacuation period
sel, 0 otherwise
Z fj Number of people evacuates from affected community i/ to shelter jeJ
during evacuation period se
Zy Number of people evacuates from affected shelter jeJ to candidate shelter
keJ during evacuation period se¢
Minimize Z1  E,|0(x ,s)| (5.1
Minimize Z2 Y X *R, (.2
eI
Subjectto  E.[O(X,.5)]= D P*O(X,.s) (5.3)

seé

Q(X,,s)={[ZZD9*Y;3} [ZZD’ *Y;fk}} Vseé (5.4)

iel jeJ jeJ ke
Y x, < s -2
jeJ
2 X, *C, < MB 69
Je
DIP > X, vjeJ (5.7)
se&
ZT <X, 7 ViedJ (5.9)
se&
zzﬁ,*(l 6) ZZW ( ) TP, Vied,seé (5.9)
iel keJ
Zzij*(l 6) PD,*D, Viel,sef (5.10)
jeJ
TR,./ *62,] = ZZZTY./* *(1—52,,() WEJ (51 1)
keJ
(TP %0, )+ (TR * (004 —00,)) =X 2" (1-05) WS/ (>-12)
Zﬁl M*Yj Viel,jeJ,seé (5.13)
7" <M*Y? VjEJ,kEJ,SE§ (514)

sk — sjk
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>y <l Viel,seé (5.15)
jeJ
PR Vjedsel (5.16)
keJ
X,.Y,.Y; €{0,1} Viel,jeJ,seé (5.17)
ZY,, ZJK ;20 Vied,ked.sel (5.18)

The objective function of the model is to minimize the expected total travel distance and
the expected total risk index of shelter as shown in Equation (5.1) and Equation (5.2). The
expected total travel distance is expressed in Equation (5.3), where, this consists of the distance
between affected community to shelter and the distance between shelter to shelter as shown in
Equation (5.4). Equation (5.5) states that the total number of selected shelters cannot exceed
the maximum limit of selected shelters. Equation (5.6) ensures the total planning budget cannot
exceed the budget limit. Equation (5.7) guarantees that the population can be served to shelter
when it is selected. Equation (5.8) states that the population served should not exceed the
maximum capacity of shelters. Equation (5.9) states that the total number of population in each
evacuation period. Equation (5.10) ensures that the affected people evacuate to shelter in each
evacuation period should be equal to the number of expected evacuation requirements with
respect to the evacuee’s behavior. Note that the number of expected evacuation requirements
in each scenario or period is estimated from historical data and research data. Equation (5.11)
- (5.12) states the balance constraint that the number of population departure should be equal
to the number of the population come. Note that J,; present assignment protection for shelters,

when the shelter is located in safety zone, the population does not need to evacuate to a new
shelter. Equation (5.13) - (5.14) state that the binary variable of the assignment is set to 1 when
the people in each community or each shelter is assigned to each shelter. Equation (5.15) -
(5.16) ensure that affected community can be served by one shelter in each period. Equation
(5.17) and (5.18) describe non-negativity and binary conditions of the decision variable.

The solution of proposed mathematical model, including the number of shelters in
different evacuation periods, assignment of affected communities, total planning budget, the
expected total travel distance and the expected total risk index of shelter can be calculated for
the planning area, in which all of the solutions are analyzed related to the probability of
occurrence. Our results can serve emergency management purposes. The first is to help in
preparation stage including spatial distribution of shelter, assignment of affected communities,
and expectation of planning budget under probability of occurrences. The second is to aid in
response stage in order to provide evacuation flow and directions at each evacuation period.
The third is to help in recovery stage for reentry process in term of distance. Note that reentry
process defines as the events when the evacuees move back to their homes after disaster events
[16].

5.3.3 Solution Technique

We now consider a multi-objective problem, which is more complex than single-
objective optimization problem. In this chapter, we selected epsilon-constraint method for
solving our problem which was produced by Haimes ef al. [17] and an extensive discussion
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can be found in Chankong and Haimes [18]. The concept of this method is to maximize or
minimize one objective function while the other objectives are bounded at acceptable fixed
value. When we have a multi-objective function, the number of solution models is an n-1
model. Ehrgott [19] proposed the formulation of the epsilon constraint as follows:

The multi-objective formulation

Minimize or Maximize [fl (x),fz (x),...,f” (x):l a7

Subject to: xeX (18)

The epsilon-constraint formulation

Minimize or Maximize 7(x) (19)

Subject to: fi(x)<eg, k=lL..pk#j (20)
xeX (21)
Where &€ R”

According to the formulation of epsilon constraint approach, we have to reformulate our
proposed model in epsilon constraint form. This technique, we have to decide to set one
criterion to be objective while the other objectives are bounded at acceptable fixed value. Our
problem, there are two criteria, we decided to choose the first criteria to be an objective function
that is to minimize the expected total travel distance (Z1) because the distance is a major
criterion for evacuation planning that affects the decision of evacuee both evacuation process
and reentry process [14]. While the second criteria (Z2) is set to be bound at the acceptable
value in the constraint. The new formulation requires fewer constraints that shown as follows:

Addition parameters
g,  =the acceptable bound of objective Z2

Objective function

Min Z1 E[O0(X,.5)] (22)

Constraints

DX ¥R <=¢, (23)

jeJ

Equation (3) — (18)

5.4 Numerical Experiment

This section presents a case study; in which we apply our approach to a real case study
in Chiang Mai province in Thailand. Chiang Mai is vulnerable to flooding every year due to its
bowl-like shape [20]. Floods usually occur late in May — October rainy season due to masses
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of moist air moving from the Indian Ocean, and tropical depressions moving westward from
the South China Sea [21]. Chiang Mai city was faced with large flood disasters in 2011, more
than 73 communities were hit by flood disasters. Hence the government mainly emphasizes to
this problem.

5.4.1 Flood hazard map of case study

Chiang Mai province implemented a flood warning system for the Ping river. This system has
two gauging stations for making real-time predictions of the water level, P.67 located at Ban
Mae-tae in Sansai district and P.1 in downtown Chiang Mai, in which there is distance around
32 kilometers. The water takes about seven hours for traveling to Station P.1. Therefore, the
government can predict the impact on the downtown area by measuring the level of the Ping
river at Station P.67. The Natural Disaster Research Unit of Civil Engineering Department of
Chiang Mai University [22] has surveyed and collected floods data in Chiang Mai for a long
time ago. The Chiang Mai flood hazard map is produced based on historical data from Station
P.1 and P.67 since 2006 as shown in Figure 5.2, in which the risk is divided into seven levels.
The number of affected communities increases with respect to the impact level, from level 1 —
level 7. This disaster is unlike other natural disasters such as landslide, earthquake or tsunami.
The floods typically are known about several hours before communities will be affected. For
this case, the government is able to determine if people should evacuate or not in around seven
hours. At present, there are two large temporary shelters for evacuation during floods situation
that far from the community about 10 kilometers (No. 30 and 34). When the floods strike, the
evacuee will be served by both shelters.
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Chiangmai Flood Hazard Map

iangmai Flood Hazard Map

Impact level 3 Impact level 4

A A fu TR S, AR it A
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Impact level 5 Impact level 6 Impact level 7

Figure. 5.2 Seven impact levels of the Chiang Mai flood hazard map [22]
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5.4.2 Example Data Set and Assumptions

Table 5.1 shows the probability of occurrence, the water level of Ping river and the
number of affected communities in the different impact levels based on the classification of
impact level by CENDRU. The data was referred from Manopiniwes and Irohara (2016).
Following our conceptual model, if we determine with respect to seven impact levels, it is too
much for evacuation in each level and burdensome for evacuees, especially the evacuees in the
first level might have to evacuate several times. So, we assume that the seven impact levels are
classified into three impact levels in which it is respected to the behavior of flooding that
extends around the river, it implies that we have three evacuation periods. According to the
Table 5.1, the impact level can be set as follows: the impact level 1, 2 and 3 are set in impact
level 1, the impact level 4, 5 and 6 are set to impact level 2, and the impact level 7 is set to
impact level 3. The geographical location of three impact levels, the probability of occurrence
and affected communities are shown in Figure. 5.3 and Table 5.2. In accordance with Table
5.2, the probability of impact level 1 is the highest as 0.73 since this impact level usually faces
with flood every year when compares with the other levels. In this impact level, 18
communities are hit by floods. While the probability of impact level 2 and 3 is provided as 0.25
and 0.02, respectively. The number of affected communities in impact 2 and 3 is continuously
increased following the severity of flooding, in which there are 47 and 123 communities,
respectively. Note that the evacuation period is defined as following the impact level.

y o : N

" Legend

: X Candidate shelter
Urban zone

® Rural zone
Impact level 1
Impact level 2
Impact level 3
Ping river

W

Figure. 5.3 Geographical location of three impact levels, candidate shelter, and affected
communities in Chiang Mai, Thailand
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Table 5.1 Classification of impact level by CENDRU

Impact level 1 2 3 4 5 6 7
Probability 0.35 0.2 0.18 0.12 0.08 0.05 0.02
Ping river at station P.1 (m) 3.7-3.9 3.9-40 4.0-4.1 4.1-42 42-43 43-4.6 Over4.6
Number of affected communities 6 12 18 24 39 47 123

Table 5.2 Classification of impact level for hierarchical evacuation model

Impact level 1 2 3
Probability 0.73 0.25 0.02
Ping river at station P.1 (m) 3.7-41 4.1-4.6  Over 4.6
Number of affected communities 18 47 123

According to some shelters can be located in the flooding risk area, so we assume that
the risk index of shelter is provided with respect to the probability of flooding or probability of
impact level. For example, the shelters are located in impact level 2, the risk index of those
shelters will equal to 0.25. In this study, we considered 123 affected communities in Chiang
Mai city. Furthermore, we have considered the refugee population between the urban area and
rural area, especially urban area (commercial land or tourism land) is a critical concern so as
estimate the evacuation demand. For fulfilling demand, the estimated should determine at
maximum efficiency. In an urban area, we used the number of people of the census and the
expected number of tourists during May to October as shown by Equation (24). In a rural area,
we used the number of people of census only for providing the demand that shown in Equation
(25). The proportion of population that need to evacuate in each period is referred from Lauthep
et al. [15], 44.81% evacuate immediately after warning signal given by local government,
8.00% evacuate when the flood level is lower than 0.5 meter, and 4.44% evacuate when the
flood level is over than 0.5 meter.

Demandul‘ban = POPCESUS + POPIOIU‘I‘SIS (24)
D emandmral = P 0p cesus (25 )

Unlike other natural disasters, the temporary shelter should have large area enough for
vehicle parking and refugee. Moreover, the temporary shelter should access easily and also
have availability for supporting the refugee. In this respect, candidate shelter sites in this study
area include schools, universities, temples and city squares. Another guideline to follow in the
selection of temporary shelters should be located far from river or swamp and far from an
affected area more than around 100 meters. After filtering out this area, a total 43 candidate
shelters were chosen from schools, universities, and city squares that shown in Figure 5.3. More
importantly, the availability of relief resources and the cost must be considered for flood shelter
selection as well. The following fixed costs and variable costs are taken from the floods design
directive as well as the expected planning budget of the local government. In this study, we
assume that the cost of each selected shelter is calculated with respect to the capacity of its
shelter, in which the cost is 200 Baht per capita. Finally, we assume that the maximum limit of
budget and the maximum limit of selected shelter are 7,500,000 Baht and 25, respectively.
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5.5 Computational results

We solved the model using the Gurobi Optimizer Ver. 6.0.0 mathematical programming
solution software. All experiments were run on a personal computer with an Intel (R) Core
(TM) i7-6700 CPU (3.40GHz) and 16 GB of RAM.

We first solve the single objective model of each objective function; consist of the
expected total travel distance and the expected total risk index of shelter. We solve the problem
(3) — (16) with objectives Z1 and Z2 one at a time. Table 5.3 presents the objective values of
the single objective model. For the minimum expected total travel distance model, the expected
total travel distance is 32.41 kilometers, while the expected total risk index of shelter is 0.64.
For the minimum expected total risk index of shelter model, the expected total risk index of
shelter is 0, while the expected total travel distance is 79.87 kilometers. Table 5.4 present the
list of selected shelters for each single objective model. For the minimum expected total travel
distance model, total selected shelter is 25 shelters. The first evacuation period, the second
evacuation period, and the third evacuation period request at least 3, 9, and 15 shelters,
respectively. For the minimum expected total risk index of shelter model, 5 shelters are located
for the first evacuation period, while the second evacuation period and the third evacuation
period request 8, and 20 shelters, respectively.

Table 5.3 Ideal values from the single objective model
Single objective model

Minimize Minimize Lower Uvver
Objective function value expected total expected total L
. S bound bound
travel distance risk index of
shelter
Expected total travel distance (Kilometers) 32.41 79.87 32.41 79.87
Expected total risk index of shelter 0.64 0 0 0.64

Table 5.4 Selected shelters from single objective model
Single objective model
Minimize expected total travel distance Minimize expected total risk index

Selected shelters

st Evacuation period {1, 2, 7} {10, 13-16}

2" Evacuation period  {7-9, 11-13, 15, 17, 26} {10, 13, 15, 16, 27, 28, 32, 38}
3™ Evacuation period {10, 13, 14, 16, 27- 29, 32, 35-38, 40-42} {10, 13-16, 27-29, 31-33, 35-43}
Total selected shelter 25 shelters 20 shelters

The results above confirm that two criteria are conflicting objectives, in which no
solution simultaneously achieves all two criteria. Thus, epsilon constraint approach is applied
to overcome this challenge for decision making’s decision makers within relation to bi-criteria.
According to the result of Table 5.3, we can construct the payoff table by simply calculating
the individual optima of the objective functions. For the expected total travel distance, the
upper bound and lower bound are 79.87 and 32.41 kilometers. While the upper bound and
lower bound of the expected total risk index of shelter are 0.64 and 0. To design the hierarchical
evacuation planning and shelter site selection under probability of occurrence for the flood
disaster, we would like to present decision makers with more alternatives. Hence, we construct
a bi-criteria model which considers the expected total travel distance with respect to the other
criteria. According to the discussion in Section 5.3, we solve this problem using an epsilon-
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constraint method by formulating the problem in epsilon constraint form, the first objective
function (Z1) is set to be an objective function that consists of constraint (3) — (16) and obtain
an upper bound on objective Z2. The second objective is varied from upper bound to lower
bound by decreasing the value in decrements of its value.

We generated the solution by minimizing the first objective (Z1) while decreasing the
value of Z2 from 0.64 to 0, in decrements of 0.01, the solution was solved in 65 sub-problems
as shown in Figure 5.4. From the solution, we found that the minimum expected total travel
distance is ranged between 77.87 and 32.41 kilometers. Note that black circles representing
non-dominated solutions and white circles represent weakly non-dominated solutions. From
all solutions, we see that the best first objective value Z1 is reached at the maximum second
objective value. If we decrease the second objective value with its decrements, the objective
function (Z1) increase exponentially. Especially, when the value of Z2 is set between 0.32 to
0, the objective function is rapidly increased. This model contains the single objective solution
of the minimum expected total travel distance model as part of the dominated set with 32.41
kilometers.

The values of the objective functions and the corresponding non-dominated solution sets
of the model are presented in Table 5.5, Table 5.6 and Figure 5.5, in which there are 17
solutions. From Figure 5.4 and 5.5, we see that when the second objective is decreased, not
only the minimum expected risk index of shelter but also the total number of selected shelters
and planning budget are decreased. On the other hand, the first objective increases continually.
The trend of this solution shown that the minimum expected total travel distance starts at upper
bound with an expected total risk index of shelter estimated to be 0.64 while the planning
budget is 7.1 million Baht. The objective is slightly increased when bound of the expected total
risk index of shelter is set between at 0.64 and 0.56. After that, the non-dominated point jumps
to 0.39 when the bound is set to be 0.55 because the shelter where locate in impact level 2 is
removed from a subset of selected shelters. The non-dominated point has a big change as two-
time before the trend is rapidly increased when the bound is located at 0.33 to 0. According to
the bound of expected total risk index of shelter is decreased with its decrements, the shelter
where locates in flooding risk area will be removed and instated with the new shelter where
has less flooding risk, in which shelter selection depends on its significance.
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Figure 5.4 The solution point of a case study with black circles representing non-dominated
solutions and white circles represent weakly non-dominated
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Figure 5.5 The objective solutions and non-dominated solutions

Table 5.5 The values of the objective functions and the corresponding non-dominated solution sets

71 The total No. Planning Total expected travel distance (Km.)
No (Km.) 72 of selected blfdfget The 1st The 2nd The 3rd
shelter (million) period period period

1 32.41 0.64 25 7.1 9.98 16.14 6.30

2 32.42 0.62 25 7.1 9.98 16.11 6.33

3 32.53 0.60 24 6.9 9.98 16.29 6.27

4 33.76 0.58 23 6.6 9.98 17.23 6.55

5 36.14 0.56 22 6.3 9.98 19.43 6.74

6 36.72 0.39 25 7.0 14.87 15.60 6.25

7 36.72 0.37 24 6.8 14.69 15.75 6.28

8 37.51 0.35 23 6.7 15.30 15.90 6.32

9 39.72 0.33 22 6.4 15.30 17.79 6.63
10 42.18 0.14 24 6.9 20.20 15.64 6.34
11 42.22 0.12 23 6.6 20.20 15.64 6.39
12 44.30 0.10 22 6.4 21.12 16.63 6.55
13 47.51 0.08 21 6.1 21.48 19.19 6.84
14 51.24 0.06 20 5.8 22.43 21.34 7.47
15 57.19 0.04 19 5.5 23.65 25.79 7.74
16 64.58 0.02 18 5.2 27.60 28.86 8.12
17 77.87 0.00 17 5.0 35.69 33.82 8.36
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Table 5.6 The selected shelter in each evacuation period of non-dominated solutions

No TheE 1st evacuation  The 2n(! ) The 3rd. )

period evacuation period evacuation period
1 {1,2,7} {7-9, 11-13, 15, 17, 26} {10, 13, 14, 16, 27- 29, 32, 35-38, 40-42}
2 {1,2,7} {7-9, 11-13, 15, 17} {10, 13, 14, 16, 27- 29, 31, 32, 35-38, 40-42}
3 {1,2,7} {7-9, 12-15, 17} {10, 13, 14, 16, 27- 29, 31, 32, 35-38, 40-42}
4 {1,2,7} {7, 8,10, 12-15, 17} {10, 13, 14, 16, 27- 29, 31, 32, 35-38, 40-42}
5 {1,2,7} {7,8,10,13-17, 32} {10, 13-16, 27- 29, 31, 35-38, 40-42}
6 {1,7,8, 11-13} {7-9, 11-13, 17, 26} {10, 13-16, 27- 29, 31, 32, 35-38, 40-42}
7 {1,7,11-13} {7-9, 11-14, 17} {10, 13-16, 27- 29, 31, 32, 35-38, 40-42}
8 {2,7,8,12, 13} {7-10, 12, 13, 15, 17} {10, 13, 14, 16, 27- 29, 31, 32, 35-38, 40-42}
9 {2,7. 8,12, 13} {7, 8,10, 12-15, 17} {10, 13, 14, 16, 27- 29, 31, 32, 35-38, 40-42}
10 {7,8,11-13} {7-13,17, 18} {10, 13-16, 27- 29, 31, 32, 35-38, 40-42}
11 {7,8 11-13} {7-13, 17} {10, 13-16, 27- 29, 31, 32, 35-38, 40-42}
12 {7,8,12,13, 17} {7-10, 12-14, 17} {10, 13-16, 27- 29, 31, 32, 35-38, 40-42}
13 {7,8,12,13, 16} {7-10, 12-14, 16, 28} {10, 13, 15, 16, 27- 29, 31, 32, 35-38, 40-42}
14 {7,8, 12-14, 16} {7,8.10, 12-14, 16, 28} {10, 13, 15, 16, 27- 29, 31, 32, 35-38, 40-42}
15 {7,8,13,16} {7, 8,10, 13-16, 28} {10, 13, 15, 16, 27- 29, 31, 32, 35-38. 40-42}
16 {7,13,14, 16} {7, 10, 13-15,27, 28, 38} {10, 13-15, 27- 29, 31, 32, 35-38, 40-42}
17 {13-16} {10, 13-16, 27, 28, 32, 38} {13, 27- 29, 31, 32, 35-38, 40-42}

According to the probability value of the first evacuation period is the highest that showed
in Table 5.2, so the first evacuation period is quite important for objective function (Z1). To
find the minimum value of the objective function, the first evacuation period is firstly focused
on trying to make the shortest distance and then the second and the third evacuation period are
respectively considered. According to the first stage of evacuation is firstly determined, it could
affect to shelter site selection and evacuation planning in the next step as well. The first
evacuation period needs at least three shelters for serving the affected community that consist
of shelter 1, 2 and 7. The shelters are changed when the bound of risk index of shelter is
decreased, while the total distance of this period deteriorates step by step. For the second
evacuation period, the main shelters start with shelter 7, 8,9, 11, 12, 13, 15, 17, and 26. From
the Table 5.6, the selected shelters from the first solution will be changed when the bound is
decreased, except for the shelter 13. The shelter 13 is selected in every solution because it
locates nearly by the affected zones and locates in safety area. The expected total distance in
second evacuation period has fluctuation because it got an effect from removing the main
shelters in the first period. However, the final range solution, the expected total travel distance
is increased. For third evacuation period, all shelters are located in safety area. The expected
total travel distance in this period change slightly that estimated to be 6 kilometers when the
bound at 0.64-0.08. Then, the expected total travel distance is slowly increased by 9.21%
(Solution No. 14) to 22.22% (Solution No. 17), based on 6.84 (Solution No. 13).

In order to provide a guideline for decision makers on selecting an efficient solution, we
represent the solution point in term of the trade-off between the value of expected total travel
distance and value of expected risk index of shelter in Figure 5.6. According to the single
objective of the expected total travel distance, the minimum value is 32.41 kilometers, is
considered to be a baseline. For decision making, the decision makers are able to see the
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percentage of changing in objective in each solution. Furthermore, we represent three schemes
of hierarchical evacuation planning and flood shelter site location that shown in Figure 5.7.
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Figure 5.6 The trade-off of the expected total travel distance and the expected total risk index
of shelter based on lower bound of Z1 and upper bound of Z2

To recommend for decision making’s decision makers, if they focus more on the term of
travel distance, they should choose the non-dominated solution no. 1, in which the expected
total travel distance is 32.41 kilometers while the expected total risk index of shelter is 0.64.
On the other hand, if the decision makers focus more on the term of risk index of shelter, they
should choose the non-dominated solution no. 17, in which the expected total risk index of
shelter is 0 while the expected total travel distance is 77.87 kilometers. From the Figure 5.6,
we see that a 100% reduction in the expected total risk index of shelter is offset by a 140.27%
increase in the expected total travel distance.

To enhance flood evacuation planning and flood shelter site selection, decision makers
should be interested in the Pareto set because it represents the solution of a problem that there
are several choices. The decision makers should carefully determine for selecting an
appropriate solution. For the second objective, to fulfill the requirement of evacuees at all
situations, risk index of shelter criterion must be carefully considered because this criterion is
a major threat to evacuation efficiency, it may make likely that evacuee will be forced to endure
a longer transfer distance [13]. Finally, the final point depends on decision maker’s preference.

As stated earlier, this case study is faced with flood disaster almost every year. However,
in the reality of this problem, many times there are errors and inefficient performance issues
including unsuitable opened shelter site, inadequate capacity of shelter, long distance
evacuation in perspective of evacuee and amiss assignment. In this study, we determined that
our proposed conceptual model could overcome those happenable problems. Moreover, this
could consider hierarchical evacuation concept, the evacuee’s behavior, financial constraint,
and the uncertain of flood events simultaneously. To compare the performance with previous
evacuation plan of the case study, in which the local government always select shelter No. 30
and No. 34 for supporting evacuees whenever flooding, our model can reduce the expected
travel distance to estimate be 71.41% (Scheme 17) with respect to the formulated system and
can cover all of the demand points in each affected zone. Note that the binary of the other
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shelters is set as 0 except shelter No. 30 and 34 in the system. Although this can reduce the
travel distance of evacuation, this is faced with risk problem of open shelter at potential
flooding area, the assignment of this rather complicates due to the behavior of evacuees and
some communities might have to evacuate several times. However, this proposed system can
apply with the real-world case and respond to evacuee’s behavior and uncertain situation of
flooding as well. Furthermore, although this evacuation planning is designed based on
hierarchical evacuation concept, it is not necessary to evacuate following the step of plan. If
the local government can predict that the severity of flooding will occur with the expensive
flood, the local government can skip over the first or the second evacuation period to the next
evacuation period in which this depends on the decision making’s local government.

Legend
¢ Urban zone Impact level 1
® Rural zone [ Impact level 2
Ping river [ Tmpact level 3
B Selected shelter in 1st evacuation period
A Sclected shelter in 2nd evacuation period
@ Selected shelter in 3rd evacuation period

4 km)

(b) (©

Figure. 5.7 Three schemes of evacuation planning and flood shelter site location (a) Scheme 1
with the minimum expected total travel distance; (b) Scheme 9 with the median expected
total travel distance and expected total risk index of shelter; (¢) Scheme 17 with the minimum
expected total risk index of shelter
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To improve preparedness, the government should provide more efficient forecast.
Moreover, this proposed model should consider in road closures or traffic congestion,
difference of travel speed depending on the mode selection, accessibility of shelter site, and
utilization of selected shelter. Besides, this should consider how to classify evacuation period
in which it could affect to effectiveness of evacuation as well. The advantage of this study, when
the flood disaster occurs with low-impact events, the evacuees do not need to evacuate to the
shelter with a longer transfer distance. Also, the local government can reduce the budget as well.

5.6 Conclusions

This chapter proposes a stochastic linear mixed-integer programming mathematical
model for developing flood evacuation planning and shelter site selection under hierarchical
evacuation planning and probabilistic scenario. The proposed mathematical model considers
two criteria as objective function: minimum expected total travel distance and minimum
expected total risk index of shelter. The proposed model not only provides a flood shelter and
population assignment but also scrutinizes hierarchical evacuation concept, evacuee’s behavior
and uncertainty of events. Our proposed model was validated with probabilistic scenarios due
to the uncertainty that surrounds disasters and their consequence. A flood hazard map of Chiang
Mai province in Thailand was used to generate disaster scenarios with different probabilities
of events that closely match a real flood problem. To provide a guideline for decision makers,
we proposed epsilon constraint approach to solve the proposed mathematical model in which
it can handle multiple and conflicting criteria problem. This chapter presented several solutions
for decision makers on selecting an efficient solution that showed expected total travel distance,
expected total risk index of shelter, selected shelters, and planning budget. Furthermore, this
chapter presented the solution point in term of the trade-off between the value of expected total
travel distance and value of expected total risk index of shelter. This proposed model will be
great significance in helping decision makers consider spatial, financial, and risk aspects of the
strategic placement of flood shelters and flood evacuation planning under uncertainty of flood
scenarios that balance two criteria; travel distance and risk index of shelter. In future research,
the model should consider in road closures or traffic congestion, utilization of shelter and the
weight associated with each demand point that may affect to an efficient evacuation. Moreover,
this model should concentrate on construction cost as objective function simultaneously
because it will be an advantage for the local government. However, our mathematical model can
apply to any other city in flood situation as well.
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6.1 Introduction

Disaster is any occurrence that causes damage, destruction, ecological disruption, loss of
human life, human suffering, or the deterioration of health and health services on a scale
sufficient to warrant an extraordinary response from outside the affected community or area
[1]. Since the 1950s, the magnitude and number of disasters have exponentially increased, with
the number of affected people having increased in proportion (about 235 million people per
annum on average since the 1990s) [2]. In 2015, 376 naturally triggered disasters were
recorded, with the economic damages estimated to be US$ 70.3 billion, resulting in the deaths
of 22,765 people and seriously impacting 110.3 million victims [3]. Due to an increasing
number of disasters, many researchers have paid a great deal of attention to the concept of
“Disaster Management (DM)” with the objective of helping at-risk persons to avoid and
recover from the effects of a disaster [4]. The activity of DM consists of four major stages:
mitigation, preparation, response, and recovery. One of the most important stages is the
recovery stage. This stage was defined as the act of restoring the affected community or area
back to a normal situation after a disaster [5]. Two of the initial and most significant
perspectives of disaster recovery management involve the removal and disposal of debris from
the affected communities or areas [6]. This activity is a significant one, but often an overlooked
aspect that is associated with post-disaster debris management [7].

Post-disaster debris management is a discipline associated with the control of the
concepts of the generation of debris, storage collection, transport and transfer, processing,
recycling, reuse, and disposal. The post-disaster debris management is considered a lengthy,
economic, public health engineering, conservation of nature, aesthetics, and environmental
challenge with a need to consider the attitude of the public. Currently, the U.S. Federal
Emergency Management Agency (FEMA) has focused exclusively on reimbursing the costs of
post-disaster debris operations along with the transportation costs, disposal costs, and
collection costs. Therefore, FEMA has changed its policies and announced a program offering
financial incentives for municipalities in order to encourage the reuse and recycling of disaster
debris [6, 8]. This is considered an opportunity to reduce the costs associated with post-disaster
supply chain management. According to the policies and timeline employed by FEMA, before
the disaster occurs, each community is required to provide potential debris management
facilities such as debris collection sites, processing sites, recycling plants, disposal sites and
market sites [9]. Generally, the recovery stage involves debris collection, where the debris is
transferred from the road and curb sides to temporary processing facilities, where it may go
through containment processes such as separation, sorting, grinding incineration, concrete
crushing and wood chipping. After that, all or parts of the debris may be transferred to the
landfill for disposal, whereas parts of it may be processed further to be recycled and either
reused or sold. However, many countries have also established different strategies that are more
appropriate for their own circumstances. Post-disaster debris management is a consideration of
humanitarian logistics; for which comprehensive reviews have been proposed by Altay and
Green [10], Galindo and Batt [11], Caunhye et al. [12], Habib et al. [13] and Boonmee et al.
[2]. The literature review on post-disaster debris management primarily focuses on the
qualitative analysis and the documentation of past experiences [7]. Moe [14] proposed an
analysis on policies, political process priorities, problems and aspects of the waste removal
process after Katrina, while Bradon et al. [15] proposed an analysis of a case history of the
waste recycling efforts of the US Army Corps of Engineers in Mississippi. Additionally,
Karunasena et al. [16] proposed an analysis of post-disaster debris management in developing
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countries based on a case study in Sri Lanka, and Brown and Milke [17] studied recycling
disaster waste management based on the past experiences of five international disaster events
in developed countries. Moreover, this study also proposed an analysis of the benefits in a
comparison of on-site and off-site separation. Ultimately, Brown and Milke [17] recommended
that it is possible to have an integrated model where selected materials are separated on-site
while the rest would go to an off-site separation facility. Not only have these academic papers
described potential management techniques, but some organizations have also proposed
guidelines for the post-disaster debris operations such as FEMA [18], USPEA [19], UNEP [20]
and EPA [21]. Notably, an intensive summary article has been published and presented by
Brown et al. [2], Reinhart and McCreanor [23], McEntire [24], and Ekici et al. [25].

According to the facility location problems (FLP) that exist and the fact that the flow
debris decision-making process has been based on post-disaster debris supply chain
management, an optimization technique has been proposed that can potentially overcome this
challenge. The optimization technique has been applied to address the relevant humanitarian
logistics problems and to attempt to achieve positive results. Table 6.1 presents the important
characteristics of the existing studies in this area comprising the objective function,
mathematical model, exact approach, algorithm solution, structure of network, and type of
separation. Fetter and Rakes [6] proposed a mixed-integer linear programming model for
decision-making with regard to the location of the processing sites, aspects of processing
availability, and the flow of disaster waste from each affected community to the relevant site
and processing networks. This study aims to minimize the total costs of the debris management
operations with consideration of the fixed and variable costs of debris collection, RSR costs
(Reduction, Separation and Recycling Operations) and disposal costs while including the
potential revenue of saleable debris. The method of separation being employed uses the oft-
site separation model. A case study in Chesapeake has been proposed for validating this model.
Hu and Sheu [26] proposed the linear programming model in which this study focuses on the
transportation, recycling, storage of disaster waste throughout the disaster recovery stage. The
objective function aims to minimize the reverse logistical costs, psychological cost and risk
penalty. Hu and Sheu [26] have recommended that the storage and separation techniques
should be employed at the on-site stage of management. The system employed in Wenchuan
City in China has been proposed in this study. Lorca et al. [7] proposed a decision-support tool
for a post-disaster waste management system. The mathematical model being proposed
optimizes the selection of the processing site, processing capacities, and debris flow decision-
making that are related to the collection, transport and disposal systems. Moreover, this study
has also considered balancing the costs and duration of the relevant disaster waste operation
systems. Pramudita et al. [27] presented a location-capacitated arc routing problem that
emphasizes the debris collection sites. The goal of this model is to minimize the travel costs
and the costs of establishing intermediate depots in which tabu search meta-heuristics have
been proposed to find an acceptable solution. Kim et al [28] proposed selecting a temporary
debris management site for the effective debris operation system by using both geographical
analysis and optimization analysis. The objective of this was to minimize the total hauling
distance for the transportation services in which the shortest path algorithm was applied in
response to this problem. Onan et al. [29] proposed the employment of a framework to
determine the location of a temporary disaster management facility with the objective of cost
minimization and risk minimization from hazardous waste exposure. They determined the
criteria for the planning of the collection and transportation of disaster debris. Moreover, Habib
and Sarkar [30] presented a two-phase framework for sustainable waste management in the
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response phase of disasters in which the Analytical Network Process (ANP), fuzzy TOPSIS
and Optimization technique have been proposed to identify the suitable temporary disaster
debris management site.

Table 6.1 Review study of the optimization model for post-disaster debris management

L Math Exact . FLP On/Off site
Author Objective model approach Algorithm separation
PP S R L M
Fetter and Total cost (The fixed and MILP Excel - * Off-site
Rakes [6] variable costs of debris separation
collection, RSR, and disposal
and revenue)
Habib and Total transport cost LP LINGO - None On-site
Sarkar [30] separation
Hu and Sheu Total reverse logistical costs, LP CPLEX - None On-site
[26] psychological cost, risk separation
penalty
Kim et al [28] Total hauling distance MILP - Shortest path * On-site
algorithm/ GIS separation
Lorca et al [7] Total cost (Financial cost, MILP Excel - * Mixed model
Environmental cost, revenue separation
and total time (Collection time
and disposal time)
Onan etal [29]  Total cost and risk MILP - NSGA-II * Off-site
separation
Pramudita et al ~ Total cost (The travel cost and MILP - Tabu search * None
[27] the cost of establishing
intermediate depots)
This work Total cost (The fixed and MILP LINGO PSO and DE (Large * * * Mixed model
variable costs of debris problem) separation

collection, RSR, disposal,
environmental penalty cost,
and revenue)

Note: S= storage and separation site, R = processing and recycling site, L = landfill, M = market, LP = linear
programming, MILP = mixed integer linear programming.

Following on from the previous research studies, an effective post-disaster debris
management strategy still needs to be further developed for optimum efficiency. Several
studies have considered addressing a number of problems associated with developing the
effective post-disaster debris operations such as those by Brown and Milke [17] and Hu and
Sheu [26]. The integrated decision-making process for the on-site and off-site separation of
recyclable materials is an issue that has been recommended by many research papers in order
to develop an effective post-disaster waste supply chain management system. According to the
previous research studies, the merits of the on-site and off-site separation systems for
recyclable materials in an overall post-disaster waste supply chain management system are not
well known [17]. The post-disaster debris supply chain management system now being
employed that uses the optimization technique is lacking in consideration of an integrated
decision-making process for the on-site and off-site separation of recyclable materials and the
consideration of all networks simultaneously (debris collection sites, processing sites, disposal
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sites and market sites). Furthermore, an algorithm employed to solve the larger problem is
lacking due to certain competence limitations of the exact solution method. Therefore, we aim
to propose a developed post-disaster waste supply chain management strategy by using the
location and allocation optimization tools under the integrated decision-making system for the
on-site and off-site separation of recyclable materials. There are two goals of this chapter. Our
first goal is to develop the post-disaster debris supply chain management strategy under an
integrated decision-making system for on-site and off-site separation in handling recyclable
materials using the optimization technique. The network structure considers waste collection
and separation sites, processing sites, disposal sites and market sites. Our proposed
mathematical model aims to select the suitable sites for post-disaster waste management
system, including the collection and separation sites, processing sites and landfills, in order to
provide a debris flow decision-making system as a supply chain while minimizing the total
costs incurred in that the supply chain. The total costs consist of fixed and variable costs
associated with the debris collection process, RSR, the disposal process, environmental penalty
costs and takes into account revenue incurred from any sellable waste. Our second goal is to
propose solution algorithms for the larger problem and this chapter aims to propose solutions
that are representative of two metaheuristics (Particle Swarm Optimization: PSO and Differential
Evolution: DE) to address the problem.

The remainder of this chapter is organized as follows: Section 6.2 presents the
background study of the structure of the post-disaster waste management process, particle
swarm optimization and differential evolution for the purposes of finding a solution to this
problem. Section 6.3 presents the conceptual model of the post-disaster waste supply chain
management (PWSCM) strategy and formulates a mathematical model for the proposed
system. Section 6.4 presents the solution algorithms of PSO and DE intended to address the
problem. Section 6.5 proposed computational experiments for the PWSCM model. Finally, a
conclusion is given in Section 6.6.

6.2 Background study

6.2.1 Structure of post-disaster waste management system

Waste management or waste disposal requires the management of waste from the
upstream stage to the downstream phase of the system. The process of the waste supply chain
management consists of storage, collection, transport and transfer, processing, reuse and
recovery, and the disposal of solid waste according to the best principles of economics, public
health, engineering, the conservation of nature, aesthetics and the environment [16]. All of the
activities are very important to the efficiency of the overall operation. Typically, the debris
removal operation normally occurs in two phases: initial debris clearance activities and debris
removal activities [18]. The waste collection activity begins after the emergency access routes
are cleared and police, firefighters and other first responders have gained necessary access. The
transport and transfer activity is initiated for the transfer of waste to relevant sites such as
collection sites, separation sites, processing sites, recycling sites and disposal sites. The
processing activity is begun after the waste is collected. The waste can be processed in two
ways by either composting or recycling it. Both of these activities should be conducted
according to the market specifications of each material; therefore, a certain amount of
technology and specific plant equipment are required in the operation for the purposes of
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grading, sorting, etc. After composting and recycling debris, the remaining material should be
properly disposed of in a landfill [16]. According to the process of waste management, there
are some common criteria that affect the degree to which waste management is effectively
carried out such as the consideration of costs, environmental impacts, the volume of waste, the
degree of mixing of that waste, human and environmental health hazards, the areal extent of
the waste, community priorities and funding mechanisms [17]. Moreover, the major structural
issue that decision-makers must face when planning a post-disaster waste management
recycling strategy is whether or not to separate the recyclable materials and where this should
be done; otherwise referred to as on-site and off-site recycling, as is shown in Figure 6.1.

The separation of recyclable materials is a key part of the main structure that can affect
the feasibility of the act of recycling. The separation of recyclable materials can be segregated
into two approaches; on-site and off-site separation. Normally, separation can be achieved
primarily on-site, with all waste being sorted either manually (by hand) or mechanically into a
separate pile for removal and to identify the materials intended for off-site recycling sites,
landfills and markets. This is commonly known as “on-site separation”. Another alternative is
normally known as “off-site separation”. This is where all waste is transported off-site to
separate processing depots for separation and recycling where the waste is then removed to
landfills and markets. In this activity, the managers must consider four main criteria: (1) time
constraints, (2) resource availability, (3) the necessary degree of mixing of the waste and (4)
the presence of any potential human and environmental hazards. In this situation, decision-
makers need to determine the potential location for the debris management site planning
process and the need to select the appropriate strategy for each case. The advantages and
disadvantages of each approach are well known and are shown in Table 6.2.

End-market 1

End-market 2

Waste
source site

End-market 3

(2)

End-market 1
End-market 2

End-market 3

(b)

Figure 6.1 Conceptual model of on-site and off-site recycling systems [17];
(a) on-site separation; (b) oft-site separation.

Waste

\

Staging area

source site
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Table 6.2 Advantages and disadvantages of on-site and off-site separation processes (adapted
from New Zealand Department of Labor [31])

On-site separation Off-site separation
Advantages e Higher recycling rates e  Only one or two containers on-site
e Lower recycling costs, revenues e No need for workers to separate
paid for some materials materials for recycling
e Often a cleaner, safer worksite e FEasier logistics
One market; less information to
manage
Disadvantages e Multiple containers on site e Lower recycling rates

Workers must separate materials
for recycling

e More complex logistics
Multiple markets; more
information to manage

Higher recycling costs

6.2.2 Metaheuristics

As mentioned in the introduction, this chapter was motivated by the limitations of
applying PSO and DE to solve post-disaster waste management problems. Hence, this chapter
focused on applying two effective metaheuristics — Particle Swarm Optimization (PSO) and
Differential Evolution (DE) — to plan the post-disaster waste management process in order to
minimize the total cost of the supply chain. The search procedures of each algorithm are
described in the following sections.

1. Particle swarm optimization

Particle swarm optimization (PSO) is a population dynamics-based optimization method
that imitates the physical movements of individuals in the swarm as a searching mechanism
(the concept originated from research on the group behavior of birds). The PSO has
increasingly gained attention from researchers for the purposes of solving many optimization
problems. The PSO algorithm was proposed by Kennedy and Eberhart in 1995 and described
a proposed solution being represented by a particle, and the accumulation of the potential
solutions is called “a swarm of particles” [32]. Each particle consists of elements of position
and velocity. The concept of a basic PSO algorithm is to learn from the cognitive knowledge
of each particle and the social knowledge of the swarm to guide particles to a better position.
The swarm is randomly initialized as particles with d dimensions. Each particle flies to a new
position with its own assigned velocity. When a new position is reached, the best position of
each particle and the best position of the swarm are updated. Then, the new position is sought
again with the adjusted velocity is based on its experience. The cycle is repeated until a
stopping criterion is met. The process of the basic PSO algorithm, including the velocity, and
position in each iteration step, is updated by equation (6.1) and equation (6.2). The evolution
procedures of PSO are illustrated in Figure 6.2.

0 (t+1) =), () +,u (W) =4, () +cu (s - 4,(0) (6.1)

qtd(t"'l) qu'd(t)"'a)id(t) (62)
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w,(t) : Velocity of i particle at the 4" dimension in the " iteration

w(t) : Inertia weight in the ¢* iteration

g, (t) : Position of i” particle at the 4" dimension in the ¢” iteration

w”(¢) - Personal best position of i particle at the 4" dimension in the " iteration

e (¢) - Global best position of i particle at the 4" dimension in the " iteration

e, Weight of personal best position term
c, : Weight of global best position term
u : Uniform random number in the interval [0,1]

’ Randomly initialize particles ‘

{

’ Evaluate particle objective value ‘

’ Determine g,., and P, ‘
|
v
’ Update velocity and position ‘

!

’ Evaluate particle objective value ‘

!

’ Determine g,,,, and Py, ‘

Meet stopping
criteria

End
Figure 6.2 The evolution procedures of PSO [33]

2. Differential Evolution

Differential Evolution (DE) was first proposed by Storn and Price in 1995 for the
purposes of global optimization over continuous search spaces [34]. DE has continually
received increased levels of attention from academicians for solving many combinatorial NP-
hard problems, due to its advantage of having relatively few control variables, but performing
well in its search ability and convergence with less effort of computational times. DE is a
population-based random search approach that is like other Evolutionary Algorithms (EAs).
DE starts with a randomly generated initial population of size N. The population is represented
by d dimensional vector, in which each variable value in the d dimensional space is represented
by a real number. The idea of DE is its mechanism for generating a new solution using two key
ideas; particular mutation and crossover operations. At the initialization stage (g = 0), the j*
value of the i vector is generated according to the following equation (6.3). The upper bound
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(b)) and lower bound (br) for the value in each dimension j” (j =1, 2, 3, ..., d) must be
specified, where u is uniformly random in the range [0,1]. The concept of the mutation
operation of DE is achieved by combining randomly selected vectors in order to produce a
mutant vector. For each target vector (X ig ) at generation g, the mutant vector (Vl.g ) is generated
as is shown in equation (6.4). Where X,;, X,2, X;3 are vectors randomly selected from the current
population. They are mutually exclusive and different from the target vector (X ig ). F'is a scale
factor that controls the scale of the differences of the vectors between X,» and X;3. The DE
applies a crossover operator on X lfg and Vl-g to produce the trial vector (Z l-g ). In this research,
binomial crossover is applied in which the trial vector is formulated by the following equation
(6.5). C;is the crossover probability in the interval [0,1]. and j, is a randomly chosen index (ju
€{1,2, ..., D}). The C, value controls the probability of selecting the value in each dimension
from a mutant vector over its corresponding target vector. Next, the replacement or selection
of an individual occurs only if the trial vector outperforms its corresponding vector. As a result,
all individuals in the next generation are as good as or better than their counterparts in the
current generation. The evolution procedure of the DE population continues through repeat
cycles of the three key operations; mutation, crossover and selection until certain stopping
criteria are met. See more details in [35] and [36]. The evolution procedures of DE are
illustrated in Figure 6.3.

X, =ux(b,—b,)+b, (6.3)

V., =X5+F(X5-X5) (6.4)

6 = viif u, <C,or j=j, (6.5)
RNE I otherwish

’ Initialize individual randomly ‘

'

’ Evaluate each target vector objective value ‘

’ Determine the global best vector ‘

For each target vector ¥

Perform mutation and crossover to obtain trial vector ‘

'

’ Evaluate objective value of trial vector ‘

'

’ Selection between target vector and its trial vector ‘

’ Update the global best vector ‘
I

Meet stopping
criteria

End
Figure 6.3 The evolution procedures of DE [36]
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6.3 Post-disaster waste supply chain management (PWSCM) model

6.3.1 Conceptual model

The framework of the PWSCM model is designed with respect to a hierarchical model
as is shown in Figure 6.4. This conceptual model is developed and modified from Fetter and
Rakes [6] and Lorca et al. [7]. The structure of this study considers all networks in the supply
chain consisting of the affected zones, temporary disaster waste collection and separating
centers (TDWCSC), temporary disaster waste processing and recycling centers (TDWPRC),
landfills, and markets. According to Brown and Milke [17], it has been proposed that the on-
site and off-site separation should be simultaneously applied since both approaches have
different advantages. When both approaches are merged, the post-disaster waste management
process will be able to balance the advantages and disadvantages of both approaches. This
integrated strategy was employed in the 2011 Great East Japan Earthquake and the Canterbury
earthquakes (see more details of assessment in [17]). Thus, this criterion is taken to apply in
the PWSCM model. In our conceptual model, the process is separated into three stages that
consist of: (1) collection and on-site or oftf-site separation, (2) oft-site processing and recycling,
(3) waste disposal and waste selling. Figure 6.4 reveals that in Stage 1, debris removal is
initiated after the emergency access routes are cleared. The waste is assigned from the affected
zones to TDWCSCs or TDWPRCs for collection and separation by manual or preliminary
technologies. In this stage, the mixed model of on-site and off-site separation is applied. The
waste in some affected communities is separated on-site by a TDWCSC, while the rest is
transferred to an off-site separation facility identified as TDWPRC. In Stage 2, the separated
waste at the TDWCSCs is divided into three parts. The first part is transferred to TDWPRCs
for processing and recycling; the second part is transferred to landfills for waste disposal; the
third part is transferred to markets for selling (reuse). After the waste is processed and recycled
using a variety of technologies at the TDWPRC:s, the final operation will be started. In stage 3,
the waste at the TDWPRCs is classified into two separate stages for the disposal of the
remaining waste and the selling of the sellable or reusable waste. The remaining waste at the
TDWPRC:s is allocated to the landfill for disposal, while the rest is transferred to the market
for selling, respectively.

Landfill (1)

7 \S\

<

&gs\y

Affected zone (i) TDWCSC (j) TDWPRC (k) Market (m)

Figure 6.4 The conceptual model of post-disaster waste supply chain management strategy
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6.3.2 Proposed mathematical model

According to the conceptual model, we have modified the general facility location model
and distribution model to formulate a model for the PWSCM strategy. The proposed
mathematical model is formulated as a mixed-integer linear programming problem (MIP), and
its basic assumptions are listed as follows:

e The structure of PWSCM strategic consists of affected zones, TDWCSCs, TDWPRC:s,
landfills, and markets.

e To protect bafflement of assignment, this study provides the assumptions for debris
flow decisions as follows; each affected zone can be served by one node from
TDWCSC or TDWPRC, each TDWCSC can be served by one landfill and one market,
the waste from each TDWCSC that need to be treated with each RSR technology can
be served by one TDWPRC and each TDWPRC can be served by one market.

e The capacity of the market is assumed to be infinite.

e All saleable waste types can be sold at all markets.

e All waste needs to be separated before it is assigned for recycling, disposal, and sale.

Based on the above assumptions and definitions, the PWSCM model has been formulated
to obtain optimal solutions that minimize the total cost in the supply chain. The output of this
model aims to select TDWCSCs, TDWPRCs, and landfills, minimize financial costs, minimize
the effects on humans and the environment, maximize revenue and provide debris flow
decisions throughout the supply chain.

The following notions and parameters are used:

I Number of affected zones (i =1, 2, ..., ])

J: Number of possible TDWCSC facility locations (j =1, 2, ..., J)

K: Number of possible TDWPRC facility locations (k= 1, 2, ..., K)

L: Number of landfill facility locations (/=1, 2, ..., L)

M: Number of markets (m=1, 2, ..., M)

N: Number of RSR technologies (n =1, 2, ..., N)

H;: Volume of debris in affected zone i

Vn' Proportion of debris from affected zone that is eligible to be treated
with RSR technology n

Nn: Proportion of reduced debris from RSR technology » saleable as

recycled material
Pn: Proportion of reduced debris from RSR technology » for disposal
yTbwesc . Maximum of selected TDWCSC
UTPWSRC.  Maximum of selected TDWPRC

ylandfit. Maximum of selected landfill
Pr: Fraction of penalty cost from transporting debris
Py: Fraction of penalty cost from operating debris

FJ.TDWCSC: Fixed cost of opening and closing TDWCSC at location j
FTPWSRC.  Fixed cost of opening and closing TDWPRC at location k

]:zLa”df @t Fixed cost of opening and closing landfill at location /
V;TPWESC:  Fixed cost of making separated technology at TDWCSC location j
(On-site)

VIPWSRC.  Fixed cost of making RSR technology n at TDWPRC location k
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OjTDWCSC:
o
01 andfi :
Cj’I‘DVl;CS"lCl':
ClLan fi :

RSR.
Cole

Om:
Ca;j:
Cby:
Cej:
Cdj;:
Cejm:
Cla:
Cgkm:

(Offt-site)

Operated cost at TDWCSC location j

Operated cost RSR technology n at TDWPRC location &
Operated cost at landfill /

Capacity of TDWCSC at location j

Capacity of landfill at location /

Capacity of RSR technology n at TDWPRC location &

Revenue from saleable portion of debris at market m
Cost of transporting debris from affected zone i to TDWCSC j

Cost of transporting debris from affected zone i to TDWPRC &
Cost of transporting debris from TDWCSC j to TDWPRC &
Cost of transporting debris from TDWCSC ;j to landfill /

Cost of transporting debris from TDWCSC j to market m

Cost of transporting debris from TDWPRC £ to landfill /

Cost of transporting debris from TDWPRC £k to market m

The following decision variables are used:

X = {(1)
Yk = {(1):

$hy = {(1):
1,
fcjkn = {O,

$dj = {(1):

$ejm = {é:

If TDWCSC is opened at location j

Otherwise

If TDWPRC is opened at location &

Otherwise

If landfill is opened at location z

Otherwise

If RSR technology 7 is available at TDWPRC &

Otherwise

Volume of debris from affected zone i to TDWCSC j

Volume of debris from affected zone i to TDWPRC &

Volume of debris from TDWCSC j to TDWPRC £ for recycling by
RSR technology n

Volume of debris from TDWCSC  to landfill /

Volume of debris from TDWCSC j to market m

Volume of debris from TDWPRC £ to landfill /

Volume of debris from TDWPRC £ to market m

If the volume of debris from affected zone i is assigned to TDWCSC j
for recycling by RSR technology n

Otherwise

If the volume of debris from affected zone i is assigned to TDWPRC &
Otherwise

If the volume of debris from TDWCSC j is assigned to TDWPRC &
Otherwise

If the volume of debris from TDWCSC  is assigned to landfill /
Otherwise

If the volume of debris from TDWCSC j is assigned to market m
Otherwise
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$Grm = 0, Otherwise

The following auxiliary variables are used:

{1. If the volume of debris from TDWPRC £ is assigned to market m

FC: Total fixed cost

TC: Total transport cost

OC: Total operation cost

PC: Total penalty cost for activities with environmental impact
R: Total revenue

The mathematical model of the problem is formulated as follows:

Minimization of Total Cost:

Min Z=FC+TC+0OC+PC-R

Subjected to constraints;

FC = Z FTDWCSCx + Z FTDWSRCy + Z FLandflllZ + z VTDWCSCx + ZZ VTDWSRC
TC = ZZ Ca”a” + ZZ Cb kblk + ZZ CC]kC]k + ZZ C il ]l + ZZ Cejmejm

+ Z Z Claifiu + Z Z CIrmrm
oc = Z Z OTDWCSCa” + Z Z Z Z OTDWSRC (blk]’n + C]kn)
n Z Z Z OLandflll ( n fkl)

PC = P,TC + P,0C

R = Z Z Z 5m(ejm + gkm)
j k m
ij < UTDWCSC
j
Z Vi < UTDWSRC
k
Zzl < ULandfill

1
TDWCSC
z ai}- < C} x]'

L
RSR
z bixyn + Z Cikn < Cin Wi
i J
Win < Vi

zd +Zf Landflll
jl kl =

Zau + Z blk = H
zau Yn = chkn

vj
Vk,n

Vk,n

vl

Vi

vj,n(n
=2,..,N)

(6.6)

(6.7)

(6.8)

(6.9)
(6.10)
(6.11)
(6.12)
(6.13)
(6.14)
(6.15)

(6.16)
(6.17)
(6.18)

(6.19)

(6.20)
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Zaiﬂh 1—5:%1 :Zdjl vj (6.21)

) - Z Ejm vj (6.22)

i Vn> 2. Z bu Yalla + Z Z Gjen T = Z fia v (6.23)

Z bix p1 ( i n) Z Z bik Ynpn + Z Z Cikn Pn = Z Ikm vk (6.24)
1

Z sa;; + Z $hy < Vi (6.25)
j k
>t vjn (6.26)
k
Y edy <1 vj (6.27)
l
Y o<1 v (6.28)
> Eim <1 vk (6.29)
a;; < LNEa” Vi, j (630)
by < LNé&by, Vi, k (6.31)
Cjkn < LN{CJR Vj, k,n (632)
d, < LNEd, vj,1 (6.33)
em < LN&ej, vj,m (6.34)
Gkm =< LNfgkm Vk'm (635)
xjﬂyk'zl'Wkn'Ealj"Sblk"fcjk"fe]m'ffkl' $9xkm € {0,13 Vj,k,l,mn (636)
aij' bik' jkny jl‘ €im» fk[' gkm Vi, j, k,l,m,n (637)

The objective of the proposed model is to minimize the total costs associated with the
management of the debris removal supply chain in post-disaster scenarios as is shown in
equation (6.6). The objective function consists of fixed costs, transport costs, operational costs,
penalty costs and potential revenue as is shown in equation (6.7) — equation (6.11),
respectively. Equation (6.7) represents the fixed costs of the location opening of TDWCSC:s,
TDWPRC:s, and landfills and the investing RSR technology at each TDWPRC. Equation (6.8)
represents the transport cost through the supply chain network. Equation (6.9) represents the
operational cost of TDWCSCs, TDWPRCs, and the landfills. Equation (6.10) represents the
penalty costs for activities with environmental impacts that are related to the transport process
and the operational process. Equation (6.11) represents the potential revenue incurred from
saleable waste obtained from the TDWCSCs and TDWPRCs. Equation (6.12)— equation (6.14)
state that the total number of selected locations cannot exceed the maximum limit of each
location type, equation (6.12) enforces the limit of selected TDWCSCs, equation (6.13)
enforces the limit of selected TDWPRCs and equation (6.14) enforces the limit of selected
landfills. Equation (6.15)—equation (6.18) limits the volume of debris assigned to each location
type. Equation (6.15) ensures that the volume of debris assigned to TDWCSC cannot exceed
the maximum capacity of each TDWCSC. Equation (6.16) limits the volume of debris assigned
to TDWPRC according to the RSR technology capacity available at the TDWPRC. Equation
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(6.17) requires that a TDWPRC must be opened in order to make RSR technologies available.
Equation (6.18) ensures that the volume of debris assigned to the landfill cannot exceed the
maximum capacity of each landfill. Equation (6.19) guarantees that the volume of debris in
each affected zone is collected and processed. Equation (6.20) — equation (6.22) state that all
collected debris in each selected TDWCSC is transported to processing sites (TDWPRC),
landfills and markets. Equation (6.23) and equation (6.24) state that the debris in each selected
TDWPRC is transported to landfills and markets. To protect against bafflement of the
assignment, this study provides conditions according to the above assumptions, the conditions
are represented as equation (6.25)— equation (6.29). Equation (6.25) provides that each affected
zone can be served by one node from TDWCSC or TDWPRC. Equation (6.26) provides that
the waste from each TDWCSC that needs to be treated with each RSR technology can be served
by one TDWPRC. Equation (6.27) — equation (6.28) provide that each TDWCSC can be served
by one landfill and one market. Equation (6.29) provides that each TDWPRC can be served by
one market. Equation (6.30) — equation (6.35) state that the binary variable of the assignment
is set to 1 when the volume of debris in each node is assigned to each node. Lastly, equation
(6.36) — equation (6.37) describe non-negativity and the binary conditions of the decision
variables.

The solution of the proposed mathematical model is reached with consideration of the
number of TDWCSCs, TDWPRCs, and landfills, the allocation of each node, the total planning
budget, the penalty of environmental and human effects and the revenue from any sellable
waste that can be calculated. Owing to an integrated model of on-site and off-site separation
for recyclable materials, this can balance the benefits of both approaches such as those
associated with recycling rates, recycling costs, revenues, logistics, management of
information resource availability and any environmental and human effects [17]. This result
can serve emergency management purposes. The first is to help in the preparation stage and
includes the spatial distribution of waste collection and separation sites, processing and
recycling sites, and disposal sites, assignment of waste in each affected community, and the
expectations of the planning budget. The second is to aid in the recovery stage in order to
provide debris flow and directions at each step of the post-disaster waste supply chain
management process and to reduce the effects on humans and the environment in the post-
disaster supply chain network as well.

6.4 Solution algorithm

This chapter aims to find the post-disaster waste supply chain management plan under a
minimum standard of total costs incurred in the supply chain. According to the problems
associated with the NP-hard system, the solution cannot be found by mathematical
programming solution software when a larger problem is presented. In the actual practice, the
decision made on the operation for facility location and allocation in the PWSCM problem
involves an evaluation of a variety of scenarios including a range of possible data employed to
reach an acceptable solution. In the model, the computation time involves a lengthy amount ot
time to reach a solution and this is not desirable in practice. Therefore, we aim to propose a
solution algorithm by using a metaheuristic approach. The detail of the encoding and decoding
scheme, allocation solution and local search for PWSCM problem are shown as follow:
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6.4.1 Encoding and decoding scheme
A. Encoding

The encoding procedures used in this study starts from providing the number of
dimensions that are made up of the dimensions of the maximal number of selected locations in
each location type, the sequence of location selection in each location type, and the sequence
of assignment for allocation. The total dimensions can be calculated as 3+I+3J+2K+L where I
is the number of affected zones, J is the number of TDWCSCs, K is the number of TDWPRCs
and L is the number of landfill sites. To more easily understand, this considers an example with
two locations in each location type and two RSR technologies. For this example, the number
of dimensions is equal to 17. The Figure 6.5 illustrates an encoding scheme of a random key
representation in which each value in a dimension is randomly generated with a uniform
random number (RN) between 0 and 1. The dimensions are separated into seven sets as are
shown in Figure 6.5 The set 1 — 4 are used to generate the open/close decision of each location
type, while the set 5 — 7 are used in allocation method.

B. Decoding

To decode the random numbers in a dimension of this problem, a sorting list rule is
applied in this study. The example of decoding methods is represented in Figure 6.6. The Figure
6.6 (a) presents the decoding example for the maximal number of selected location in Set 1,
while The Figure 6.6 (b) illustrates the decoding example for the sequence of location selection
and the sequence of the assignment for allocation in Set 2 — 7.

As shown in the Figure 6.6 (a), the example of the decision for the maximal number of
selected TDWPRC:s is represented. The maximal number of selected location is identified using
a sorting rule with a choice of the maximal number of selected location. The choice for the
maximal number of selected location can be calculated as U+1, where U is the total numbers
of location that can be selected from the candidate location. In this example, we assume that
the U value is two in each location type. Since there are three choices to make the decision for
TDWPRC in this example problem, three choices have equally ranged under the space between
0 and 1. So, each choice can be selected with the probability of 1/3. According to the random
value of the maximal number of selected TDWPRCs in Figure 6.5 is 0.41, the random value is
taken between 0.33 — 0.67. Therefore, the decoding solution for the maximal number of
selected TDWPRCs is provided as 1. For the decision on the maximal number of selected
TDWCSCs and landfill sites in Set 1 can be decoded in the same way.

To generate the sequencing in Set 2-7, the decoding example for the sequence of
TDWPRC selection (Set 3) is proposed in Figure 6.6 (b). The sequence is determined according
to the order of ascending values in a dimension, in which this means that the sequence is
ordered from the minimum random number to the maximum random number. The solution of
example for the sequence of TDWPRC selection in Figure 6.6 (b) showed that the TDWPRC
1 is determined as a sequence number 2 while the TDWPRC 2 is provided as a sequence
number 1. The same procedure is applied to decode the sequencing in Set 2-7. After both
decoding approaches are applied to this problem, the summary of all solution representations
can be illustrated in Figure 6.7.
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Dimension No. d

Dim. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
RN 0.73 041 0.48 0.34 0.54 0.71 0.27 0.56 0.20 0.35 0.64 0.98 0.77 0.24 0.85 031 0.52
Set Set 1 Set2 Set3 Set4 Set 5 Set 6 Set 7

The maximal number Sequence of Sequence of Sequence of Sequence of Sequence of Sequence of TDWCSCs and TDWPRC
of selected TDWCSC TDWPRC landfill site affected zone TDWCSC assignment for transferring to landfill
selection selection selection assignment assignment and market
= <z " for transferring
=3 s | 8 to TDWPRC
Name @ @ &~
2 | g | €8
4] & 2
2ARRE
£ | &
\ J J
Y Y
Open/close decision Allocation decision
Figure 6.5 An encoding scheme for PWSCM system
Random value of TDWPRC: 0.41
041
Solution representation:
The maximal number of
l selected location TDWPRC
Maximal number 0 1 2 » 1
Decision value 0 0.33 0.67 1
(a)
The sequence of selected TDWPRC
Solution representation:
The sequence of selected TDWPRC
TDWPRC No. 1 2 I TDWPRC No. 1 2
Random number | 0.71 | 0.27 Sequence No. 2 1
Figure 6.6 An example of decoding scheme
(a) A decoding for the maximal number of selected TDWPRC;
(b) A decoding for the sequence of TDWPRC selection.
Dim. L[ 2 ] s N 6 | 7 s | o [ 10 ] 2 | 13 u | s 16 17
Location | The maximal number of TDWCSC TDWPRC Landfill site Affected zone TDWCSC TDWCSC TDWPRC
type selected
1D No. M) MK ML 1 2 1 2 1 2 1 2 1 2 1 2 1 2
Decode 2 1 1 1 2 2 1 2 1 1 2 2 1 1 4 2 3
I J 1 J J J 1 J J T T
T |l T T T T
The maximal number of Sequence of Sequence of Sequence of Sequence of Sequence of Sequence of TDWCSCs and

selected location TDWCSC TDWPRC landfill site affected zone TDWCSC TDWPRC assignment for transferring
(Set 1) selection Selection selection assignment assignment to landfill and market
(Set 2) (Set 3) (Set 4) (Set 5) for transferring (Set 7)
to TDWPRC
(Set 6)
Figure 6.7 The summary of decoding scheme for PWSCM system
Location type | TDWCSC1 | TDWCSC2 | TDWPRC1 | TDWPRC 2 Landfill 1 Landfill 2
Open/Close 1 1 0 1 0 1

Figure 6.8 An open/close decision of each location type.
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To identify the open/close decision of each location type, the decoding in set 1 — 4 is
employed for making a decision. The selected method in each location type is generated
following the sequence of the location selection along with the maximal number of selected
locations. If the sequence number of facility location is less than or equal to the maximal
number of selected location, that facility location is selected to open. Otherwise, that facility
location is determined to close. The solution of open/close decision in this example is
represented as shown in Figure 6.8. As is illustrated in Figure 6.8, the TDWCSC 1, TDWCSC
2, TDWPRC 2, and Landfill site 2 are opened, while the remaining locations are closed. Note that
the value 1 is “open” and the value 0 is “closed”.

6.4.2 Allocation solution

After the decisions on location selection (Open/Close) and the sequence of assignment
at each stage is made, the method of allocation of PWSCM is proposed. The structure of method
is divided into three main stages: (1) allocating waste for collection and separation; (2)
allocating waste for processing and recycling; (3) allocating waste for disposal and sale. At
each step in each stage, only one arc is added to the system by selecting an origin location with
the highest priority and connecting it to a destination location considering the minimum total
cost of transport and operation (LC). The decoding in set 5 — 7 is employed to determine the
priority of allocation in which the priority is sequenced from the minimal sequence number to
the maximal sequence number. The available locations in each location type are considered
following the decoding scheme of open/close decision. The pseudo code of allocation method
is described as follows.

Stage 1: Allocating waste for collection and separation

The allocation algorithm is initiated from this stage. All affected zones are assigned to the
location of collection and separation. To consider the separation method of recyclable
materials, the on-site and off-site separation are determined at this stage. Some affected zones
are provided to separate on-site while the rest goes to an off-site separation facility. The
decoding in set 5 is employed to determine the priority of allocation in this stage. The pseudo
code of this stage is listed in Table 6.3.

Stage 2: Allocating waste for recycling

After the allocation of waste for collection and separation is completed, the process of
allocating waste for recycling is then proposed for the next step. This stage operates for
processing and recycling by considering RSR technologies. The waste at TDWCSC is allocated
to TDWPRC by separating the debris for each RSR technology, while the waste that is
separated at the off-site (TDWPRCs) do not need to make the allocation. To make the sequence
of allocation for TDWCSCs, the decoding in set 6 is applied. The pseudo code of this stage is
listed in Table 6.4.

Stage 3: Allocating waste for disposal and sale

Finally, allocation of waste for disposal and sale is proposed. The decoding in set 7 is applied
for determining the priority of TDWCSCs and TDWPRCs allocation in this stage. In this stage,
the waste at the TDWCSCs and TDWPRC:s is divided into two portions; disposal and sale. The
waste is then assigned to landfill sites and markets, respectively. The pseudo code of this stage
is listed in Table 6.5.
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Table 6.3 Pseudo code of phase 1
Input: H;, CJ-TDWCSC, CER, Caj, Chy, OJ-TDWESE, OFPWSRC " 3(1)
Olltpllt: aij, bik
Begin
Set a;; <~ 0, by < 0,Viel,VjeJ, Vke K
Repeat
Select affected zone i with the sequence of affected zone assignment by priority-based decoding; i «— arg min { v(i)}
Set LC < MaxValue, nj
Do
Repeat
Check the status (Open/Close) and capacity of the TDWCSC j
Determine the cost of transportation and operation between affected zone i and TDWCSCj, Ca;; + OJ-TDWCSC;
LC « min {Ca;; + 0/P"¢5¢
nj < arg min {Ca;;
Until the last TDWCSC
Repeat
Check the status (Open/Close) and capacity of the TDWPRC £ for recycling by RSR technology n
Determine the cost of transportation and operation between affected zone i and TDWPRC k, Cby, + OFPWSRC,
LC < min {Chy, + OFPWSRC j e |,k € K,n = 1}; update the total cost of allocation
nk < arg min {Chy, + OFPWSRC, j ¢ ]k € K,n = 1}; update the node of allocation
Until the last TDWPRC
Selected lowest cost node, then allocate the waste of affected zone i to destination and update capacity of TDWCSCs
and TDWPRCs
End do
Output a;; and by,
Until the last affected zone

,i €1,j €],}; update the total cost of allocation
+ OITDWCSC,i e 1,j € ],}; update the node of allocation

End

Table 6.4 Pseudo code of phase 2

Input: aij. CRSR, Cejp, ORE™ SRy, v(i)
Output: Cikn
Begin
Set ¢jyn <0, Vj e J,Vk e K
Repeat
Select TDWCSC j with the sequence of TDWCSC assignment by priority-based decoding; j «— arg min { v (i)}
Repeat

Set LC < MaxValue, nk
Consider the RSR technology n
Calculate the proportion of debris from TDWCSC j that is eligible to be treated with RSR technology n; base on
Equation (6.15)
Do
Repeat
Check the status (Open/Close) and capacity of the TDWPRC £ that needs to be treated with RSR technology
n
Determine the cost of transportation and operation between TDWCSC jand TDWPRC k, Ccj, + Ofe"/SRC;
LC < min {Ccj + Ofr"R¢,j e ],k € K,n = 2 ...N}; update the total cost of allocation
nk « arg min {Ccj, + OfR"R¢,j e ],k € K,n = 2 ...N}; update the node of allocation
Until the last TDWPRC
Selected lowest cost node, then allocate the waste of TDWCSC j for recycling by technology » to TDWPRC
k and update capacity of TDWPRCs
End do
Output cj
Until the last RSR technology
Until the last TDWCSC
End
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Table 6.5 Pseudo code of phase 3

Input:
Output:
Begin

Landfill Landfill .
Bik . Cjiens Vius s Py O ", €L 5 Cdljy, Cepm, C ity CGioms V(D)
djts €ms fri> Jkm

Set djj< 0, €<= 0, fru<= 0, gm0, Vj € J, Vk e KVl € L, Vm € M,

Repeat

Select TDWCSC j or TDWPRC £ with the sequence of TDWCSCs and TDWPRCs assignment for transferring to landfill
and market by priority-based decoding; ¢ <— arg min { v(j + k)}

If t € J, then

Calculate the proportion of debris from TDWCSC j that needs to be assigned to landfills and markets.

else

Do
Set LC < MaxValue, nl
Repeat
Check the status (Open/Close) and capacity of the landfill /
Landfill,

Determine the cost of transportation and operation between TDWCSC j and landfill /, Cdj; + 0, ;

LC <= min {Cdj; + OlLundﬁ”,j € J,1 € L}; update the total cost of allocation

nl < arg min {Cd;; + OlLundﬁ”
Until the last landfill
Selected lowest cost node, then allocate the waste of TDWCSC j for disposal to landfill / and update capacity of landfill
/
Set LC < MaxValue, nm
Repeat
Determine the cost of transportation and operation between TDWCSC j and market m, Cej, + 8y
LC <~ min {Cejp, + Om,J € J,m € M}; update the total cost of allocation
nm < arg min {Ce;, + 8y,j € J,m € M}; update the node of allocation
Until the last market
Selected lowest cost node, then allocate the waste of TDWCSC j for sale to market m and update capacity of market
m
End do

,j €J,1 € L}; update the node of allocation

Calculate the proportion of debris from TDWPRC £ that needs to be assigned to landfills and markets.

Do

While (not terminating condition) do

Set LC < MaxValue, nl

Repeat

Check the status (Open/Close) and capacity of the landfill /; ClL andfil o

Determine the cost of transportation and operation between TDWPRC £ and landfill /, Cf,; + 0," andf i”;
LC <« min {Cf,; + OlLundﬁ”, k € K,l € L}; update the total cost of allocation
nl < arg min {Cfj; + Olmd’r MrekK,le L}; update the node of allocation

Until the last landfill

Selected lowest cost node, then allocate the waste of TDWPRC £ for disposal to landfill / and update capacity of

landfill /; £ < min {f, OF "™}

End

Set LC < MaxValue, nm

Repeat

Determine the cost of transportation and operation between TDWPRC k and market m, Cgy,, + Op;
LC < min {Cgyy, + 8,k € K,m € M}; update the total cost of allocation
nm < arg min {Cgy, + 6, k € K,m € M}; update the node of allocation

Until the last market

Selected lowest cost node, then allocate the waste of TDWPRC £ for sale to market m and update capacity of market

m

End do

Output dj;, €, fri> Jiem
Until the last assignment

End

6.4.3 Local search

In general, a local search may be applied to a certain group of vectors or particles in order to
enhance the exploitation of the search space. The local search typically attempts to improve
the quality of the solution by searching for better solutions around its neighbors. According to
the above solution, some facility locations do not need to be opened with full capacity.
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Therefore, the local search is proposed to improve the quality of the solution by providing the
maximum capacity of each location. The encode and decode are presented as Figure 6.9. In
this study, the TDWCSC and TDWPRC are provided to find the maximum capacity of each
location in order to improve the quality of the solution since those factors are able to threaten
the next generated stage in finding better or worse solutions.

Dimension No. A

Dim. 1 2 3 4 5 6
RN 0.73 041 0.98 0.34 0.54 0.61
(@)

Dim. 1 2 3 4 5 6
» TDWPRC | TDWPRC | TDWPRC | TDWPRC
F ?C‘hty TD“{CSC TD“{CSC 1 with 1 with 2 with 2 with
ype RSR 1 RSR 2 RSR 1 RSR 1
Capacity | 8000 6000 10000 4000 6000 8000

(b)

Figure 6.9 Example of solution representation of local searches:
(a) An encoding scheme, (b) A decoding scheme,

Random value of TDWCSC 1:0.73

0.73
Solution representation:
The maximum capacity of
i TDWCSC 1
Maximum Capacity 2,000 | 4,000 6,000 8,000 | 10,000 » 8,000
Decision value 0 0.2 04 0.6 0.8 1

Figure 6.10 A decoding example of TDWCSC 1 under the portion of capacity associated with
the decision value.

According to this example considers two locations in each location type and two RSR
technologies. The dimensions of local search are set at 6 (J+(KxN)), where J is the number of
TDWCSCs, K is the number of TDWPRCs and N is the number of RSR technologies. The
encoding value in the dimensions is generated with a uniform random number between [0,1].
To decode the dimension of this problem, a sorting list rule is applied to an individual value to
generate the maximum capacity. Assume that the portion of capacity in this example is
separated with a probability of 1/5 and the capacity of each location type and RSR technology
type is provided as 10,000. According to those mentions, the portion of capacity associated
with the decision value and the example of TDWCSC 1 can be represented as Figure 6.10. In
this example, the random number of TDWCSC 1 is 0.73 fall between 0.6-0.8. Hence, the
capacity of TDWCSC 1 is adjusted to be 8,000. The same procedure is employed to decode the
capacity in each location. According to the random number in Figure 6.9(a), the solution
representation of the decoding process is illustrated in Figure 6.9(b). After the maximum
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capacity is provided, the solution is improved using the proposed algorithm. If the fitness value
is improved and made better than the previous solution, then the new solution and the new
fitness value are updated.

6.5 Computational experiments

6.5.1 Parameter setting and test problems

The performance of the metaheuristic algorithms does not only depend on the searching
mechanisms and solution representation procedures, but the parameter setting also affects how
good the solutions are and how they can be found and converged [30]. In this study, two
metaheuristic approaches are proposed to solve the PWSCM problem; the Differential
Evolution (DE) and Particle Swarm Optimization (PSO). In both algorithms, the function
evaluations are set as a fixed value of 300,000, so that sufficient function evaluations are
allowed in order to find the best solution. To determine the appropriate parameters of PSO and
DE; firstly, the preliminary experiments are conducted with four different values of each
parameter. Then, for each parameter, while the values of the other parameters are fixed, the
two best parameter values out of all the other parameter values are identified according to the
total cost obtained from the algorithm. The following combinations of the parameter’s two
suitable values are further tested for each size of the specified instance.

A full factorial design is conducted to determine the best parameter setting as is shown
in Table 6.6. The average results obtained from the algorithm are then computed for each
parameter setting. The decision-making process and the statistical approach are considered
according to the results and they are employed to identify the suitable parameters. The results
indicate that the best solution quality is obtained from the parameter setting as is shown in
Table 6.7. Hence, this method will be used in the following computational study.

Table 6.6 Parameter experiments

PSO DE

Swarm size: 150, 200 Population size: 150, 200
w: [0.1, 0.5], [ 0.4, 0.9] (lineally increase) F:[0.1,0.5],[ 0.5, 1]

cp: 1, 1.6 (linearly increase)

cg: 1, 1.6 C: [0.1,0.5],[ 0.5, 1]

(linearly increase)

Table 6.7 Parameter setting

PSO DE

Number of iterations 1500 Number of iterations 2000
Number of particles 200 Number of population 150
Inertia weight, w [0.4,0.9] Amplification factor, F [0.1, 0.5]
Personal best position, ¢, 1 Crossover rate, C, [0.5, 1]
Global best position, ¢, 1
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6.5.2 Experimental results

The experiments of PWSCM are implemented using C# language of Microsoft Visual
Studio 2015. A personal computer with an Intel(R) Xeon(R) X5690 CPU @ 3.47GHz with
24GB RAM is used to execute and verify the algorithms. To determine the performance of
PSO and DE, LINGO 16 is proposed to evaluate the algorithm solution. The numerical results
obtained from the PSO and DE are compared with an optimal solution and the PSO and DE
are compared under the same conditions which are the encoding and decoding schemes. The
Gap of the solution (Gap) obtained from the PSO or DE versus LINGO software solver and
the Relative Improvement (R/) of the solution obtained from the PSO versus DE is evaluated
according to Equation 6.38 and Equation 6.39, respectively.

Gap = (S0l 0,08 — S0l ne0) ! SOl neo) %100 (6.38)
RI =((Sol,, — Sol,,)/ Sol,;)x100 (6.39)
where Gap = the gap of solution (%) between proposed algorithm solution
by using PSO or DE and optimal solution”,
RI = the relative improvement between Sol,y, and Sol,, "

Sol,,, = thesolution of proposed algorithm obtained from PSO,

Sol,, = the solution of proposed algorithm obtained from DE,
Sol = the optimal solution obtained from LINGO software solver.
Lingo

Note
*The more positive R/ is the superior performance of PSO to the DE,
**The more negative Gap is the superior performance of PSO or DE to the LINGO software solver.

In this study, twenty PWSCM problems were generated for evaluation with respect to
the number of the affected zones (I), TDWCSC (J), TDWPRC (K), landfills (L), markets (M)
and RSR technology (N) and are shown in Table 6.8. The number of variables (integers) and
constraints of the smallest size problem was at 153 (70) and 121, while the number of variables
(integers) and constraints of the largest size problem was at 373,375 (184,445) and 188,104, as
is shown in Table 6.8. Although the optimal solutions were not available within 12 hrs (43200s)
of computational time, the best feasible solution found in the limited time given was set to be
compared with the one obtained through the proposed algorithm from PSO and DE. In some
cases, the feasible solution from LINGO could not be found within 12 hrs (43200s). Therefore,
the comparison of the gap in some cases will not be found. Various instances were designed to
investigate how the performance of the proposed algorithm works for real cases. The PWSCM
problem was tested with two case groups; without a limit of locations and with a limit of
locations. Some data have been referenced from the work of Fetter and Rakes (2012) such as
the volume of debris, reduction proportion, proportion of reduced debris from RSR technology
saleable as recycled material, cost of RSR technology, disposal cost, and revenue. Tables 6.9
and 7.10 show the results of the PWSCM problem without a limit of locations and with a limit
of'locations such as the optimal (feasible) solution within the computational time limit, the best,
average and standard deviations of the total cost of PWSCM from ten runs of each algorithm
for each case, the gap of the solution and the RI of the best and average solutions obtained from
the PSO and DE. Moreover, a comparison of the total cost in the supply chain between LINGO
software solver, PSO, DE and RI between PSO and DE is illustrated in Figure 6.11 and Figure
6.12, respectively.
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Table 6.8 Experimental design for various cases

Test problem Variables
Case St.
1 J K L M N Total Integers
1 10 2 2 2 2 2 153 70 121
2 15 3 3 2 2 3 320 152 233
3 20 3 4 3 2 2 437 205 291
4 32 4 4 4 3 3 772 368 497
5 40 7 5 5 4 3 1,454 700 877
6 50 10 5 5 5 3 2,175 1,060 1,284
7 64 10 8 5 5 3 3,240 1,579 1,846
8 70 15 10 8 6 4 5,547 2,696 3,067
9 80 18 12 9 9 4 7,784 3,783 4,222
10 96 20 15 10 8 3 9,958 4,830 5,286
11 100 20 10 5 10 3 8,235 4,065 4,504
12 123 25 15 10 8 3 13,718 6,710 7,265
13 208 32 10 10 10 4 21,901 10,848 11,685
14 325 40 18 13 12 3 45,169 22,351 23,460
15 427 47 20 18 15 4 69,490 34,385 35,885
16 500 50 30 20 20 3 95,775 47,290 48,899
17 632 60 30 30 30 4 139,445 68,820 70,933
18 785 65 25 30 27 4 165,010 81,750 84,484
19 890 78 32 36 30 5 235,895 116,794 119,821
20 1000 100 50 45 30 5 373,375 184,445 188,104
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According to the results from Table 6.9 and Table 6.10, the differences between the
global optimum figures of the LINGO software and the proposed algorithm using PSO and DE
are sufficiently small. When the results of the PWSCM problem without a limit of locations
are reviewed as is shown in Table 6.9 and Figure 6.11 (a), the maximum gap of 2.36%, as the
difference from the global optimum, is admissible in persuading the acceptability of the
proposed algorithms’ performance. While LINGO software could not find the solution within
a reasonable computing time (12 h), as the problem size increases, PSO and DE showed their
potential in solving the larger problems (case 19-20) without difficulties.

The performance of the LINGO software overcame the PSO and DE, while in many cases
it took more time than the proposed algorithm that used PSO and DE. In the very large- size
problem (case 16-20), the proposed algorithm using PSO and DE found a preferred solution to
what the LINGO software was able to find. The performance values of the proposed algorithm
using PSO were 0.8% away in average according to the optimal solution for the small (case 1-
5), medium (case 6-10) and large (case 11-15) sized problems, while the performance values
from DE were 0.87% away in average. The average of the very large-sized problem from PSO
was -4.80, while the DE was -4.69. To compare the degree of performance of PSO and DE, the
results of the RI are shown in Figure 6.12 (a). In some cases, the DE was able to find the best
solution and better average solution than the PSO. However, the PSO also displays the
outstanding performance of the DE when compared with all of the cases. In the results of the
PWSCM problem with the limit of locations, as is shown in Table 6.10 and Figure 6.11 (b),
the maximum error of both algorithms obtained from the global optimum was 2.22% and
2.77%, respectively. In this case, the LINGO software was able to find the optimal solution in
small- and medium-sized problems (except in case 7). The average gap between the optimal
solution and the proposed algorithm using the PSO of the small- and medium-sized problems
was 0.46% and 1.03%, respectively. While the average gap between the optimal solution and
the proposed algorithm using the DE of the small- and medium-sized problems was 1.38% and
1.44%, respectively. In the large-sized problem, the LINGO software was still able to find the
solution, but it was not an optimal solution. However, the LINGO software also yielded a better
solution than the proposed algorithms using PSO and DE in which the gap of the PSO was
0.64%, while the gap ofthe DE was 1.25%. When the very large-sized problems are tested, the
results of the very large-sized problem using the LINGO software generated worse solutions
than the proposed algorithm, in which case 16 could outperform the others at 0.43% by PSO
and 0.28% by DE. From case 17 to case 20, the LINGO software could not find a solution to
the problem, while the proposed algorithm using PSO and DE was able to generate a solution
easily in a relatively short period of time. With regard to the R/ in a comparison of PSO and
DE, Table 6.10 and Figure 6.12 (b) showed that the proposed algorithm using PSO produced
outstanding results when compared to the DE. There were just two cases of the RI for which
the average displayed a lower level of performance than DE (Cases 6 and 11). A summation of
each problem group produces a positive value, which means that in all of the problem groups,
the PSO performed far better when compared to the DE.

The proposed algorithm also has produced an error in the optimal solution, but that error
is admissible and can still confirm the acceptability of the proposed algorithm’s performance.
When the small-sized problems were tested, the LINGO software outperformed the proposed
algorithm in terms of both solution and runtime. In the medium-sized problems, the LINGO
software was also able to generate an optimal solution and obtain a better solution than the
proposed algorithm, but the time of the LINGO software was higher than that of the proposed
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algorithm using the PSO and DE. When the large-sized problems were experimented upon, the
LINGO software was able to find a better solution than the proposed algorithm, even if it could
not find the optimal solution. The runtime of'the LINGO software required a significant amount
of time. Although the trials in this study used 12 hrs to reach a solution, an optimal solution
was not reached. When the very large-sized problems are analyzed, the LINGO software
generated a less desirable solution than the proposed algorithm that employed metaheuristics.
Furthermore, the runtime of the metaheuristics trials was faster than the runtime of the LINGO
software. With regard to the employment of metaheuristics, though the DE utilized a shorter
runtime than the PSO and outperformed the PSO in some cases in the medium- and large-sized
problems, the PSO generally yielded outstanding results when compared to the DE because the
overall results of the PSO could generate the final solution better than the DE, especially in the
instances of “with limit location™ that are shown in Figure 6.12.

200 200
ELINGO ®PSO =DE ELINGO ®PSO =DE
180 180
160 160
Z 140 Z 140
8 120 8 120
E 100 E 100
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= =
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Figure 6.11 The total cost comparison of each solution between LINGO, PSO, and DE;
(a) without the limit of location, (b) with the limit of location
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Figure 6.12 The RI of each solution between PSO and DE;
(a) without the limit of location, (b) with the limit of location
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6.5.3 Numerical tests for PWSCM improvement

In this section, we aim to represent the benefits of PWSCM improvement under
integrated decisions for the on-site and off-site separation of recyclable materials. Although
the superior performance of the mixed model has been confirmed in many studies and has been
achieved in many real cases [17], we also desire to present the advantages of this model from
a cost and economic perspective with respect to our proposed model. In this numerical test,
Case 9 is used to show the performance of the proposed model, in which the post-disaster
supply chain network consists of eighty affected zones, eighteen candidate TDWCSCs, twelve
candidate TDWPRCs, nine candidate landfills, nine candidate markets and four RSR
technologies. The proposed model is compared with the on-site separation model and off-site
separation model in the handling of recyclable materials with respect to our system. The
proposed model is reformulated for on-site separation and off-site separation. To formulate the
on-site separation model, the proposed model in Section 3 is reformulated by adding equation
6.40. While the off-site separation model is formulated by adding equation 6.41. The numerical
tests are solved without the limit of location. The solution results of the three models are
tabulated in Table 6.11 and are shown in Figure 6.13.

Z by =0 Vi (6.40)
k
Z §a;; =0 Vi (6.41)

From the solution results, we can see that the mixed separation model employed for
handling recyclable materials could overcome the results of the on-site separation model and
the off-site separation model. The highest total case in the off-site separation model was
18,589,503, while the total cost of the on-site and mixed separation models were 17,853,049
and 17,838,077, respectively. The mixed separation model could reduce the total costs at 4.04%
from the total cost of the off-site separation model and 0.08% from the total cost of the on-site
separation model. Based on the worst values of the fixed costs, transport costs, operational
costs, revenue and penalty costs, the mixed separation model with respect to our proposed
model was able to increase the level of performance with regard to costs in which all the worst
values were obtained from off-site separation model. The superior performance based on the
worst values is tabulated in the final column of Table 6.11. Based on a comparison between
the on-site separation model and the mixed separation model, the mixed separation model was
able to overcome the on-site separation model in terms of total costs, transport costs, and
penalty costs at 0.08%, 0.16%, and 0.11%, respectively. Whereas, the on-site separation model
could overcome the mixed separation model in terms of fixed costs, operational costs, and
revenue yields at 1.50%, 0.04%, and 0.03%, respectively. Although some costs in the on-site
separation model were preferred over the mixed separation model, the mixed separation model
was still considered to be superior to the on-site separation model in terms of the overall costs.

Figure 6.13 reveals that the mixed separation model could not overcome all costs in both
the on-site and off-site separation models simultaneously, but the mixed separation model
could balance the costs of both models. Some costs were higher, but some costs were lower.
Finally, the mixed separation model was able to minimize the total costs, as it was able to
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overcome both the on-site and off-site separation models. The mixed separation model could
yield balanced results not only in terms of cost but also in terms of recycling rates, logistics,
information management, resource availability and environmental and human effects [17]. As
is stated in the above analysis, we have determined that our proposed model is capable of down
system performance deficiencies in a post-disaster waste supply chain management context.
This provided the empirical insight into how change is improved with regard to post-disaster
waste supply chain management systems. With PWSCM improvement, this can be a benefit for
the government in designing or planning the PWSCM strategy.

Table 6.11 The results of on-site, off-site, and mixed model separation for recyclable material in terms

of cost (cost unit: $)

On-site Off-site Mixed Model % of changing
Total cost (Z) 17,853,049 18,589,503 17,838,077 4.04% ()
Fixed cost (FC) 333,500 368,500 338,500 814% ()
Transport cost (7C) 11,599,307 12,113,922 11,580,392 4.40% (-
Operation cost (OC) 4,466,163 4,514,490 4,468,004 1.03% (-
Revenue (R) 1,759,015 1,733,091 1,758,498 1.47% (P
Penalty cost (PC) 3,213,094 3,325,682 3,209,679 3.49% ()

Note: The percentage of change is based on the worst value of the three models; the more negative value of Z,
FC, TC, OC and PC is the superior performance of the worst value; the more positive value of R is the superior

performance of worst value
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Figure 6.13 The graphical model for cost comparison of on-site, off-site and mixed separation

model
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6.6. Conclusion

This research studied the problem of post-disaster waste supply chain management with
respect to a minimization of total costs in the supply chain. The facility location and allocation
problems were applied in this study. The objective function was to minimize the financial totals
of the fixed costs and the variable costs, the penalty costs associated with the negative
environmental and human effects, and the maximize potential revenue incurred from the
sellable waste. The network structure of the proposed mixed-integer linear programming model
was composed of the debris collection and separation sites, the processing and recycling sites,
the disposal sites and the market sites with decision-making for locating the suitable temporary
debris collection sites, processing sites and landfills and was used to facilitate the debris flow
decision-making process. Furthermore, this model determined the separation of recyclable
materials where debris is separated on-site or off-site and also determined the RSR
technologies in this study as well. Since the problem is NP-hard, this chapter proposes
employing two metaheuristic approaches with the encoding and decoding schemes to solve this
problem. The performance values of the proposed algorithm by PSO and DE were evaluated
using the set of generated cases and were compared with the results obtained from the exact
solution method using LINGO software solver.

The experimental results showed that the proposed algorithm produced an error in the
optimal solution or the best solution that was found within the computational time limit by
LINGO software solver, but that error is considered admissible in terms of the acceptability of
the proposed algorithm’s performance. In the small-sized problem, the LINGO software solver
could overcome the proposed algorithm both in terms of runtime and solution. In the medium-
and large-sized problems, the LINGO software solver could also find a better solution than the
PSO and DE, but the runtime was longer than with the PSO and DE. While the very large-sized
problem was tested, the proposed algorithm using the PSO and DE generally yielded
outstanding results when compared to the LINGO software solver. This was true not only with
regard to the final solution but also in terms of runtime when searching for a solution. To
compare and analyze the performance of the two metaheuristic approaches, the results
demonstrate that the PSO could be used as an efficient alternative approach for solving the
post-disaster debris supply chain management problem since it was able to find an effective
quality solution even if the runtime was longer than the DE. Finally, we have also proposed
the numerical tests in order to determine the performance of the proposed model.

A key advantage of this research was to analyze the entire supply chain with regard to
the post-disaster debris problem and to balance the advantages of the on-site and off-site
separation processes of recyclable materials such as in terms of recycling rates, recycling costs,
revenues, logistics, information management, resource availability and environmental and
human effects. Moreover, the proposed model could be employed to serve emergency
management purposes. Firstly, it could aid in the preparation stage including the spatial
distribution of waste collection and the separation sites, the processing and recycling sites and
the disposal sites, the assignment of waste in each affected community, and the relevant
expectations in terms of budget-planning. The second is to aid in the recovery stage in order to
provide debris flow and directions at each step of the post-disaster waste supply chain
management process. Also, our proposed algorithms can be applied in the actual practice in
decision-making in the operation for the purposes of facility location and distribution in the
PWSCM problem. This can evaluate in a variety of scenarios with a variety of possible data in
order to reach an acceptable solution by using the short computation time to reach a desired
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solution for the model. Due to the fact that substantial disasters will likely occur in the future
as either natural disasters or man-made disasters, it is believed that the proposed algorithm can
be employed to address this challenge. Our proposed algorithm can easily address the extensive
issues associated with these disasters within a short computational amount of time.
Furthermore, the proposed algorithm can be applied in the general waste management process
as well. Further studies are recommended that should include other constraints in order to make
addressing the problem more practical such as with regard to road closures or traffic
congestion, different modes of transportation, different operation times or time schedules, the
uncertainty of disasters, and in other such examples. The researchers have continued to
investigate ways to improve the algorithm performance with a wider range of post-disaster
debris management problems.
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7.1 Conclusions

This thesis aims to augment the efficiency disaster management and humanitarian
logistics in facility location problem though optimization approach. A comprehensive analysis
of disaster management and humanitarian logistics in facility location problem involves a
review in chapter 2. In chapter 2, the optimization models for emergency humanitarian
logistics’ facility location problems were reviewed and analyzed for finding the problems and
research gaps in this study. Four main models were investigated: deterministic, stochastic,
dynamic, and robust. The deterministic facility location problem addressed facility location
problems for minisum problems, covering problems, minimax problems, and obnoxious
problems. This review attempted to survey the objectives, conditions, case studies,
applications, disaster types, facility location types, solution methods, and emergency
humanitarian logistics’ facility location problem categories. The literature’s main objective
was found to be focused on responsiveness, risk, and cost-efficiency. In emergency
humanitarian logistics problems, responsiveness and risk are the major criteria, with most
models aiming to minimize response time, evacuation time and/or distance, transportation costs
(distance and time), the number of open facilities, facility fixed costs or operating costs,
uncovered demand, unsatisfied demand, and risk, along with maximizing the demand points
covered. Depending on the problem type, the literature showed that the problem types could
be merged with other problems and that the facility location problem could be applied along
with other techniques such as decision theory, queuing theory, and fuzzy methods. Owing to
the prevalence of earthquakes, hurricanes, floods, and epidemics in the world, these were the
main focus of emergency humanitarian logistics research. An exact solution was found to be
one efficiency technique, but advanced algorithms were found to be most effective for large-
scale problems.

Since the problems and research gaps were found, this thesis was segregated into four
sections that represented in chapter 3 — chapter 6. Those chapters were presented the different
problem in each facility location problem of disaster management and humanitarian logistics
issues. The minor approach in this thesis is optimization approach in which it was used to apply
in this thesis for addressing each problem. Moreover, some tools were integrated with
optimization approach in this thesis. The summary of all contributions was explained as
follows;

Chapter 3 proposed a conceptual model for shelter sites selection and evacuation
planning by considering both qualitative measurement and quantitative measurement. The
optimization technique and multiple criteria decision making are applied in this study. This
conceptual model was tested with a real case study in Banta Municipality, Thailand. Firstly, an
optimization technique was proposed to create plans for shelter site selection and evacuation
planning. The mathematical models were formulated under different conditions and model
types for considering the assignment of a community to a nearby shelter, the capacity of shelter,
the distance limit, the number of shelter sites, and the number of demand. In this study, four
mathematical models were formulated. After proposed mathematical models were coded and
run in optimizer tool, the result of four models was evaluated by local government (Decision
makers) in which Analytic Hierarchy Process (AHP) technique with the fuzzy approach was
applied to analyze all models. The alternative models were inspected with respect to five main
criteria namely; accessibility, availability, sustainability, and risk. Moreover, it also is
inspected with respect to eight sub-criteria that compose of evacuation, medical care services,
material reverse warehouse, shelter, long-term planning and flexibility, a total distance of
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evacuation, distance from the source of danger, geological hazard, and topographic risk. As the
result, we found that the Model 111 outperforms the other models. This chapter will be great
significance in helping decision makers consider placement of emergency shelter and
evacuation planning with respect to qualitative measurement, quantitative measurement and
the uncertainty and vagueness of expert’s opinion. In addition, by standing our methodology
clearly and numerically, our conceptual model can be a guide of the methodology to be
implemented to other problems as well. To recommend for others application, the mathematical
model does not need to formulate same as this study. The researchers can design following
research’s opinion and used several objective functions or several constraints since it might
show more efficient solution than this research. Moreover, although the Fuzzy AHP is useful
for this study, it still consists some limitations and some problem such as subjective nature of
decision makers, the complexity of analysis (too many criteria), and difficulty of quantifying
importance for some criteria.

Chapter 4 presented a stochastic linear mixed-integer programming mathematical model
for flood evacuation planning to optimize decision related to shelter site selection under
hierarchical evacuation planning. The proposed mathematical model considers minimum
expected population-weighted travel distance as the objective function. This study not only
provides a flood shelter but also determines hierarchical evacuation concept, distribution of
shelter, utilization of shelter, capacity restrictions of shelter and evacuee’s behavior for flood
disaster that balances the preparedness and risk despite the uncertainties of flood events. The
proposed model was validated by generating a base case scenario using real data for Chiang
Mai province, Thailand. Besides, we also proposed sensitivity analysis for more guideline
under uncertainty decision. This study will be great significance in helping policymakers
consider both spatial and performant aspect of the strategic placement of flood shelters and
evacuation planning under uncertainties of flood scenario. The implementation of the proposed
mathematical model also has limitations. According to unlike another natural disaster, it cannot
be generated to others disaster due to some condition of each natural disaster are different such
as shelter type, time condition, etc. However, our mathematical model can apply to any other
city in flood situation as well.

Chapter 5 proposed a stochastic linear mixed-integer programming mathematical model
for developing flood evacuation planning and shelter site selection under hierarchical
evacuation planning and probabilistic scenario. The proposed mathematical model considers
two criteria as an objective function: minimum expected total travel distance and minimum
expected total risk index of shelter. The proposed model not only provides a flood shelter and
population assignment but also scrutinizes hierarchical evacuation concept, evacuee’s behavior
and uncertainty of events. Our proposed model was validated with probabilistic scenarios due
to the uncertainty that surrounds disasters and their consequence. A flood hazard map of Chiang
Mai province in Thailand was used to generate disaster scenarios with different probabilities
of events that closely match a real flood problem. To provide a guideline for decision makers,
we proposed epsilon constraint approach to solve the proposed mathematical model in which
it can handle multiple and conflicting criteria problem. This chapter presented several solutions
for decision makers on selecting an efficient solution that showed expected total travel distance,
expected total risk index of shelter, selected shelters and planning budget. Furthermore, this
chapter presented the solution point in term of the trade-off between the value of expected total
travel distance and value of expected total risk index of shelter. This proposed model will be
great significance in helping decision makers consider spatial, financial, and risk aspects of the
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strategic placement of flood shelters and flood evacuation planning under uncertainty of flood
scenarios that balance two criteria; travel distance and risk index of shelter.

Chapter 6 studied the problem of post-disaster waste supply chain management with
respect to a minimization of total costs in the supply chain. The facility location and allocation
problems were applied in this study. The objective function was to minimize the financial totals
of the fixed costs and the variable costs, the penalty costs associated with the negative
environmental and human effects, and the maximum potential revenue incurred from the
sellable waste. The network structure of the proposed mixed-integer linear programming model
was composed of the debris collection and separation sites, the processing and recycling sites,
the disposal sites and the market sites with decision-making for locating the suitable temporary
debris collection sites, processing sites and landfills and was used to facilitate the debris flow
decision-making process. Furthermore, this model determined the separation of recyclable
materials where debris is separated on-site or off-site and also determined the RSR technologies
in this study as well. Since the problem is NP-hard, this chapter proposes employing two
metaheuristic approaches with the encoding and decoding schemes to solve this problem. The
performance values of the proposed algorithm by PSO and DE were evaluated using the set of
generated cases and were compared with the results obtained from the exact solution method
using LINGO software solver. The experimental results showed that the proposed algorithm
produced an error in the optimal solution or the best solution that was found within the
computational time limit by LINGO software solver, but that error is considered admissible in
terms of the acceptability of the proposed algorithm’s performance. In the small-sized problem,
the LINGO software solver could overcome the proposed algorithm both in terms of runtime
and solution. In the medium- and large-sized problems, the LINGO software solver could also
find a better solution than the PSO and DE, but the runtime was longer than with the PSO and
DE. While the very large-sized problem was tested, the proposed algorithm using the PSO and
DE generally yielded outstanding results when compared to the LINGO software solver. This
was true not only with regard to the final solution but also in terms of runtime when searching
for a solution. To compare and analyze the performance of the two metaheuristic approaches,
the results demonstrate that the PSO could be used as an efficient alternative approach for
solving the post-disaster debris supply chain management problem since it was able to find an
effective quality solution even if the runtime was longer than the DE. Finally, we have also
proposed the numerical tests in order to determine the performance of the proposed model. A
key advantage of this research was to analyze the entire supply chain with regard to the post-
disaster debris problem and to balance the advantages of the on-site and off-site separation
processes of recyclable materials such as in terms of recycling rates, recycling costs, revenues,
logistics, information management, resource availability and environmental and human effects.
Also, our proposed algorithms can be applied in the actual practice in decision-making in the
operation for the purposes of facility location and distribution in the PWSCM problem. Our
proposed algorithm can easily address the extensive issues associated with these disasters
within a short computational amount of time.

All contributions represented how to improve or develop the disaster management and
humanitarian relief logistics in facility location problem in which all contributions have
presented benefits for supporting the efficient operations in this issue with regard to mitigation
phase, preparedness phase, response phase, and recovery phase. The main advantage of this
thesis will be a great significance not only in helping policymakers or governors consider the
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spatial aspect of the strategic placement of each facility location problem but also in helping
victims during the emergency circumstances as well.

7.2 Recommendations

This thesis expects that the recommendations to be presented in this section will be
beneficial for future research especially in the fields relating to disaster management and
humanitarian logistics. Due to the research is segregated into four sections, hence the
recommendation will be proposed following each chapter. The recommendations of this thesis
are as follows.

Chapter 3: To recommend for others application, the mathematical model does not need to
formulate same as this study. The researchers can design following research’s opinion and used
several objective functions or several constraints since it might show more efficient solution
than this research. Moreover, although the Fuzzy AHP is useful for this study, it still consists
some limitations and some problem such as subjective nature of decision makers, the
complexity of analysis (too many criteria), and difficulty of quantifying importance for some
criteria.

Chapter 4: Although this proposed conceptual model is quite complicated, it can respond to
many criteria completely. Consequently, the policymaker should decide carefully to apply in a
real case. To reduce a complexity, the affected communities should not be separated too many
because it will be difficult for evacuation management. In future research, the proposed model
should consider in road closures or traffic congestion, road network, a difference of travel speed
depending on the mode selection and accessibility of shelter site that may affect to an efficient
evacuation. Furthermore, this model should consider financial cost and risk of open shelter at
potential flooding area as well.

Chapter 5: In future research, the model should consider in road closures or traffic congestion,
utilization of shelter and the weight associated with each demand point that may affect an
efficient evacuation. Moreover, this model should concentrate on construction cost as objective
function simultaneously because it will be an advantage for the local government.

Chapter 6: Further studies are recommended that should include other constraints in order to
make addressing the problem more practical such as with regard to road closures or traffic
congestion, different modes of transportation, different operation times or time schedules, the
uncertainty of disasters, and in other such examples. The researchers have continued to
investigate ways to improve the algorithm performance with a wider range of post-disaster
debris management problems.
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