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thisworkmustmainain W analyze the effect of intersite interactions on the stability of the coexisting superconducting-

Z:g{’)jg‘)’m the o Nematic phase (SC+N) within the extended Hubbard and t~J-U models on the square lattice. In order

ta}:d vg(r)l?joumal citation  t0 take into account the correlation effects to a proper precision, we use the approach based on the
diagrammatic expansion of the Gutzwiller wave function (DE-GWF), which goes beyond the

renormalized mean-field theory (RMFT) in a systematic manner. As a starting point of our analysis we
discuss the SC+N phase stability as a function of the intrasite Coulomb repulsion and hole doping for
the case of the Hubbard model. Next, we show that the exchange interaction term enhances
superconductivity while suppresses the nematicity, whereas the intersite Coulomb repulsion acts in
the opposite manner. The competing character of the SC and N phases interplay is clearly visible
throughout the analysis. A universal conclusion is that the nematic phase does not survive within the
t—J-U model for the value of ] integral typical for the high- T cuprates (J ~ 0.1 eV). This result is
helpful in providing the understanding of the fundamental role of the nodal direction. For the sake of
completeness, the effect of the correlated hopping term is also analyzed. Thus the present discussion
contains all relevant two-site interactions which appear in the parametrized single-band model of
correlated fermions. At the end, the influence of the higher-order terms of the DE on the rotational

symmetry breaking is also shown by comparing the DE-GWEF results with those of the RMFT.

1. Introduction

The nematic ordering is believed to appear in a number of strongly correlated compounds such as URu,Si, [1],
iron-pnictides [2, 3], cuprates [4—6], Sr3Ru,O; [7], as well as quantum Hall systems [8]. Nematicity is
characterized by a spontaneous rotational symmetry breaking of the electronic structure, with the preservation
of the translational symmetry imposed by the crystal lattice. This condition excludes positional or magnetic
orderings such as those appearing in the cases of spin-density-wave (SDW) or charge-density-wave (CDW)
phases. However, it has been argued that in the cuprates the CDW phase may be formed through a precursor
state which has a nematic character [6]. In some of the copper-based compounds a small distortion of the square
lattice makes it difficult to validate the nematic behavior of the electronic wave function, as the C, symmetry of
the Cu-O planes is already broken by the rhombohedral crystal structure. Nevertheless, in spite of such a small
structural distortion, a large anisotropy of various physical properties has been observed [5, 9—12]. This fact,
together with the recent research on the La-based cuprate compounds [6, 13] indicate, that the anisotropic
character of electronic properties of Cu—O planes is not a trivial consequence of the lattice distortion. Instead, it
may be caused by an intrinsic susceptibility towards the nematic order and may be due to the inter-electronic
interactions.
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For the copper-based materials the appearance of superconducting phase can also be ascribed to the inter-
electronic correlation effects. Therefore, the question of the SC and N phases coexistence /competition within
typical models referring to strongly correlated systems is worth exploring. According to the mean-field analysis
of SC+N appearance for the case of phenomenological model, the two phases compete with each other [14].
Other investigations, which go beyond the mean-field approach, included methods limited to either weak or
intermediate interactions [15—18]. The SC+N phase induced solely by strong correlations has been analyzed
recently [19] for the case of Hubbard model (with the intrasite repulsion only), by using the diagrammatic
expansion of the Gutzwiller wave function (DE-GWF) [20-22]. The same method has been applied by us
previously to the analysis of the —]-U model, what haslead to a very good quantitative agreement between
theory and experiment for the selected principal properties of the pure superconducting phase of the cuprates
[23, 24]. Namely, it has been found that the presence of both the exchange J-term and the possibility of having a
small but non-zero number of double occupancies at the same time, was indispensable to achieve a proper
quantitative agreement. One should also note that additional interactions terms, which are frequently omitted,
may affect the stability of various correlation-induced phases [25, 26].

Here we use the DE-GWF method in order to carry out a detailed analysis of nematic and superconducting
phases coexistence/competition in the presence of all relevant two-site interaction terms, i.e., the
antiferromagnetic exchange, the intersite Coulomb repulsion, and the correlated hopping. One of the basic
questions here is under which conditions the nematicity can be ignored and hence, the nodal (gapless) direction
remains well defined, a feature regarded by us as a fundamental property of the cuprates. The positive answer is
shown to result from the competitive in this respect character of the nearest-neighbor exchange and the
Hubbard term. To show that the C, symmetry breaking presented here is due to inter-electronic effects, we focus
mainly on the square lattice structure. Nevertheless, the influence of the preexistent lattice distortion is also
discussed. To show that the higher-order terms of our DE are essential to induce the tendency towards the
spontaneous C, symmetry breaking, we compare the obtained results with those calculated within the
renormalized mean-field theory (RMFT) [27], a method equivalent to the zeroth order of the DE-GWF
expansion [22].

It should be noted that also other phases, which are not studied here, are interesting in the context of the
Hubbard-type models. In particular, the magnetically and charge-ordered phases of different kinds have been
analyzed over the years [28—34]. Such a study would be additionally motivated by the experimental observation
of those states in the copper-based compounds [11, 35-37]. However, the SDW and CDW phases reported in the
cuprates are complex and many variants of those phases are discussed, such as bond- and/or site-centered
CDW, as well as the d-wave, or extended s-wave symmetries of the charge modulation, non-zero flux states,
stripe or checkerboard CDW, coexistent CDW and SDW phases etc. In our view, a complete set of experimental
results, which would describe in detail the SDW and CDW states in the cuprates has not been gathered as yet.
Also, very recently, the pair-density-wave phase, for which a modulation of superconducting gap appears, has
been observed in BSCCO [38]. Such a state can coexist with the charge-ordered pattern and may have
connection with the so-called pseudogap state. One should note that a complete theoretical description of all the
above mentioned phases has not been formulated so far and it is not our aim here to provide such a description.
Instead, we limit ourselves to the nematic and superconducting phases, without a detailed study of their relative
stability with respect to the complex CDW and SDW states. Nonetheless, at the end of the paper we discuss the
relation of the N and SC phases to the simplest forms of the magnetic and charge orderings, which we have
analyzed previously [26, 39]. Namely, the antiferromagnetic phase, which also appears in the cuprates close to
the half-filled situation and the charge ordering with Q = (7, m) modulation vector, are briefly touched upon.

The structure of the paper is as follows. In the next section we introduce the t—J-U-V model and the DE-
GWF method of its solution. In section 3 we discuss the resulting phase diagram and related physical properties
comprising the regimes of pure- and coexisting-phases stability. Conclusions are contained in section 4.

2.Model and method
The most general form of the Hamiltonian considered here is given below

H=> [t + Kz + Aip)é &o + 11> &5 60
(i) {ij))o
+]Z S,’ . Sj + UZ ﬁiTﬁil + VZ ﬁ,’ﬁj. (D)
(if) i (if)

The first two terms contain the single-particle and the correlated hopping (~K') contributions, respectively, the
third term represents the antiferromagnetic exchange interaction, and the last two terms refer to the intra- and
intersite Coulomb repulsion. By (...) and ({...)) we denote the summations over the nearest neighbors and next-
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nearest neighbors, respectively. For ] = K = V = 0 we obtain the Hubbard model which constitutes the
reference point of our analysis of the particular interaction terms and their influence on the SC+N phase. With
the increasing U — oo the model reduces to a form of extended ] model [40].

Strictly speaking, in equation (1) we have ignored the so-called pair-hopping term ~J¢. ¢ i LCJ 1Gj1- This term
provides a negligible contribution ~Jd*, where d” is the probability of double occupancy. In actual calculations
(seebelow) d? ~ 1072, U 2 10|¢| so that, this contribution is of the order of ~107°|t] < <|Eg| ~ 0.5]¢]. Itis
also much smaller than the amplitude of the superconducting gap.

In order to take into account the inter-electronic correlations we use the description based on the
Gutzwiller-type wave function defined by

[W6) = PolWy), (2

where |I) is the non-correlated wave function (to be defined later) and the correlation operator E; is provided
below

Po =] Pi=]T > Al (T, )
i i I

where Air € {Aig, Aip, Aij, Aig} are the variational parameters which correspond to four states of the local
basis |2);, |1)i, [1)i> | T 1);atsitei, respectively. An important step of the DE-GWF method is the application of
the condition [20]

=1+ xﬁiHF, (4)

where x is yet another variational parameter and di ﬁl{m lIfF, AR = A, — ng, with ng = (Y|, ). One

should note that A parameters are all functions of x which results in only one variational parameter of the wave
function. As it has been shown in [20, 41], condition (4) leads to rapid convergence of the resulting DE with the
increasing order in the resultant variational parameter x.

Within this approach, the expectation value in the correlated state from any two local operators, 6; and 6]( ,
can be expressed in the following manner

(W|6;0]|¥) = Z Z (Wo|;0; dh 1k|‘1/o> ©)
~ HF AHE ~HF . ~HF . . L
where 6; = P.§; P, 0 =P 6J’P], dll...lk =d, ..d, ,withd, = 1.Theprimedsummationhasthe restrictions

Iy = Ly, 1, = 4, ]forallpandp

The averages in the non-correlated state on the right-hand side of equation (5) can be decomposed by the use
of the Wick’s theorem applied directly in real space and expressed in terms of the correlation functions
P; = (el Cjoyoand S = (AIT A}l} Such a procedure allows us to express the ground state energy

(H)g = (U6 H|Ws) / (U6| W) as a function of Pjj, Sij, g, and x. It has been shown that the desirable convergence
can be achieved by taking the first 46 terms of the expansion in x appearing in equation (5) [26, 22]. Here the
first 5 terms of the DE (5) have been taken into account when carrying out the calculations. The exemplary
expressions for selected terms appearing in the Hamiltonian in the zeroth order expansion are provided in the
appendix.

The effective Schrodinger equation can be derived from the minimization condition of the ground state
energy functional F = (H)g — pi.; (N)g, where ju; and (N g are the chemical potential and the total number of
particles determined in the state |¥s) [42]. The explicit form the equation is given below

Her| o) = E|T0), ©)
where the effective single-particle Hamiltonian has the form
Tl = > 157 ¢ ¢ + Z(Aef &hel + he), @)
ijo

with the effective parameters
peff — oF Acff = 9F

>

= 8
)2 T 0S; ®

Itis necessary to introduce the real space cutoff for the parameters Pj;and S;;, which are going to be taken into
account while executing explicitly the Wick’s decomposition of expansion (5) Here, in order to carry out
calculations in a reasonable time, the maximum distance has been taken as R2_, = 5a?, where a is the lattice
constant. The comparison between the situation corresponding to R, = 5a* and Réax = 16a? is provided at
the end of the paper and shows that no significant changes are made by increasing R, above the former value.

The self-consistent equations for all the parameters S;;and P;; are derived after transforming the effective

Hamiltonian (7) to the reciprocal space. The solution of self-consistent equations is carried out concomitantly
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with the minimization over variational parameter x. After calculating Py, Sy, x, 116, and Py; = n, for a selected set
of microscopic parameters (¢/, K, J, U, V'), we can determine the value of the so-called correlated SC gaps
Ngii = (6)} 61-1}@, as well as the correlated hopping averages Ps,ij = (&) &»)c.

The d-wave gap symmetry is most widely used for the description of high-Tc superconductivity in the
cuprates. Here, small higher-order contribution to the bare d-wave symmetry (but preserving the zero-gap
nodal feature) appear due to the fact that not only nearest pairing averages are included, i.e., those corresponding
to atomicsites up to |[R;i|> = |R; — Rj> = 5a? are taken into account. In spite of that, the dominant
contribution to the pairing amplitude arises from the nearest-neighbor SC averages: A7y, A% o, A§, A§ ),
where A;G(,Y = <6iTT 6]-1>G for R;; = (X, Y)a. For the bare d-wave symmetry, the following conditions are fulfilled
Afo = A?LO, Agl = Ag_l, and AEO = —Agl. However, in general, when the C, symmetry is broken, an s-
wave admixture to the d-wave component appears. In such a general situation it is convenient to introduce the d-
wave and s-wave correlated gap parameters, respectively

1
Ag = E(AIG,O - Ag,l))
1
AY = E(Al(fo + AG). ©)

Also, since for the nematic phase the (1, 0) and (0, 1) directions are not equivalent, the corresponding hopping
averages will also differ and the following parameter characterizing the nematicity can be introduced in the
form: 6P; = Pfo — Pocfl, where Pg)Y = (¢ Cio)g» for Rjj = (X, Y)a.

In the pure SC phase: Ag = 0, A? = 0,and 6P; = 0, whereas in the coexistent SC+N phase:

A§ = 0, A® = 0,and 6P; = 0. For the case of pure nematic phase (without SC order) one obtains

A = AY = 0and 6PC = 0, whereas for the pure paramagnetic (normal) phase with neither SC nor N we have
that AS = A% = 0and §P; = 0. In what follows we study systematically the phase diagram involving all the
listed phases.

In the DE-GWF method the real space cutoff, R,,,,,, defines the number of intersite hopping and
superconducting averages (P;;and Sj;) that are taken into account in the calculations. Obviously, by using the
symmetry relations this number can be additionally reduced. For example, when the C, symmetry is conserved,
instead of having four different hoppings we have only one (P, g = P_; o = Po; = Py,_1). Each average
corresponds to one integral equation in the final set of equations that need to be solved numerically. Therefore,
when analyzing states with broken symmetry such as the nematic phase we increase the number of integral
equations in the problem. For the case of pure d-wave state, for which the C, symmetry is conserved, the number
of equations is equal to 8, whereas for the case of the coexistent superconducting-nematic phase it is equal to 14.
Additionally, in the former case one needs to integrate over one quarter of the Brillouin zone and in the latter the
integration over twice larger region is required. Also, when allowing for the C, symmetry breaking the number
of inequivalent diagrams, generated by the Wick’s decomposition of the averages in equation (5), significantly
increases.

3. Results and discussion

In our analysis we have selected the hopping parametersast = —0.35 eV and t' = 0.25[¢| (unless stated
otherwise) which are typical for the copper-based compounds. All the energies in the presented results are in
units of the nearest-neighbor hopping integral |¢|. The calculations correspond to the case of square lattice.
However, at the end we also discuss the influence of the lattice distortion towards the orthorhombic structure.
First, we analyze the SC and N phase coexistence in the Hubbard model, defined by Hamiltonian (1) with
] = K = V = 0, for the case of square lattice. These results constitute the reference point for the subsequent
analysis focused on the influence of particular two-site terms on the onset of nematicity in the extended models.
In figure 1 we plot the phase diagrams on the (U, 6) plane, in which we mark the stability region of the nematic
phase coexisting with superconductivity (region labeled by SC+N, with AY = 0, 6P; = 0,and A§ = 0). As
one can see, the appearance of the (1, 0) and (0, 1) directions inequivalence, which manifests itself by the non-
zero values of 6P (shown in figure 1(c)), is accompanied by a concomitant appearance of the s-wave component
of the SC correlated gap (shown in figure 1(a)). However, the s-wave gap amplitude is about two orders of
magnitude smaller than that corresponding to the d-wave symmetry. For large values of Coulomb repulsion
(U Z, 10), superconductivity wins over the nematic phase in the underdoped regime and appears in the pure d-
wave form (region close to § = 0labeled by SCin figures 1(a)—(c)). Similar effect has been reproduced in [19],
where a small section of the phase diagram is provided. For comparison, in figure 1(d) we show the correlated
gap for the case when the nematic phase is not taken into account. In such a situation only d-wave component of
the SC gap appears and its values are significantly larger as compared to those in the SC+N phase (see
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Figure 1. s-wave (a) and d-wave (b) components of the correlated gap, as well as the nematicity parameter 6P; = PEU — P(fl (c),all as
functions of hole doping 6 and the intrasite Coulomb repulsion U. The region with non-zero A% and §P¢ corresponds to the
coexistent SC+N phase, whereas the pure SC phase is characterized by AY = 0, 6P; = 0,and A§ = 0. For the paramagnetic phase
(PM): Af = 6P; = AdG = 0. For comparison, in (d) we show the d-wave wave correlated gap for the case when the nematic phase is
notincluded in the calculations. The results are for the Hubbard model (with] = K = V = 0).

figures 1(b) and (d)). This means that the adjustment of the SC phase to the C, symmetry breaking in the
coexistent phase leads to the weakening of the d-wave superconductivity, which in turn points to the competing
character of the SC and N phases interplay.

As shown explicitly in figure 2, the nematic order parameter (6P¢) and the s-wave SC gap (AY) approach
continuously to zero at the doping values, at which the transition to the pure SC phase appear. The first
derivative of the energy at the transition points is continuous, which signals the second order transition (see
figure 2(d)). Also, in the region labeled by SC+N the coexistent superconducting-nematic phase gives lower
energy values than the pure SC phase (AE = Escyn — Esc < 0showin figure 2(d)). Again, as one can see in
figure 2(b), the d-wave SC correlated gap in the SC+N phase is reduced in comparison to the pure SC solution.

In figure 3 we analyze the effect of the J-term presence on the C, symmetry breaking for two significantly
different values of Hubbard U(U = 11.5and U = 21.5). With the increasing J the d-wave superconductivity is
enhanced while the nematicity gets reduced substantially. Above the value of ] & 0.15 the latter is completely
destroyed leaving only the pure SC phase without any s-wave component of the gap. For larger U values (figures
(b), (d), (1)) the effect of N phase suppression is even stronger. As a result, the nematicity is already destroyed for
the set of parameters, for which a semi-quantitative agreement between theory and experiment has been
obtained in [23] with respect to high- T superconductivity in the copper-based compounds (t = —0.35 eV,

t' = 0.25|t], U = 22, ] = 0.25|¢t|). Hence, the latter results are not affected by the s-wave SC gap component
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Figure 2. s-wave (a) and d-wave (b) components of the correlated gap, the nematicity parameter 6P; = Pl(,;O — PO(,;I (c), as well as the
energy difference between the pure superconducting solution and the coexistent superconducting-nematic solution (A

E = Esc + n — Esc), all as functions of hole doping ¢ and for the value U = 21.5. In (b) we show the d-wave SC gap for the case of the
SC-+N (red solid line) and pure SC (blue dashed line) phases.
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Figure 3. d-wave (a), (b) and s-wave (c), (d) components of the correlated gap, as well as the nematicity parameter 6P = PEO - P(f ]
(e), (), all versus hole doping for selected values of the Jand U parameters. Note that for large U and with the increasing ] the
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Figure 4. d-wave (a), (b) and s-wave (c), (d) components of the correlated gap, as well as the nematicity parameter 6P; = PEO - P(f ]
(e), (f), all as functions of hole doping for selected values of Vand ¢’ and for ] = K = 0, U = 11.5. Note that with the increasing V the
nematicity is enhanced (see (e)), whereas the SC phase is suppressed (see (a)). Figures (a), (c), (¢) correspond to t' = 0.25, while figures
(b), (d), (f) correspond to the V' = 0 case.

appearance which would be destructive for the nodal (I' — M) direction presence observed universally in the
cuprates.

The intersite Coulomb repulsion term acts in the opposite manner than the J-term. Namely, it suppresses
the pairing (see figures 4(a) and (c)) and enhances the nematicity (see figure 4(e)). Therefore, in the model with
both J- and V-terms included, the competition between N and SC phases is determined by the interrelation of
both these factors. As a consequence, the SC+N phase can be sustained for values of J typical for the cuprates
(J = 0.3) when sufficiently strong intersite Coulomb integral is considered. In figure 5 we present such a
situation which represents the +—/J-U-V model case. However, here the nematicity appears in the overdoped
regime which would be against the experimental findings for the cuprates.

For the sake of completeness we also analyze the influence of electronic structure details on the SC+N phase
stability. Namely, in figures 4(b), (d), and (f) we exhibit the doping dependence of the correlated gap
components and the nematicity factor for selected values of the next-nearest-neighbor hopping integral ¢'. As
one can see, with the decreasing ¢’ value the stability region of the SC+N phase narrows down. However, the
lower critical concentration for the nematicity onset is not affected and is close to 6 = 0.05 (see figure 4(f)),
which is similar to the upper critical concentration for the AF phase disappearance observed in experiments on
the cuprates. This result differs from the one obtained recently in [16], where it was shown that the lower critical
concentration for the N phase appearance is moving together with the filling value (tuned by #') which
corresponds to the van Hove singularity. This discrepancy can be caused by the differences in details of the two
approaches. Namely, in the above mentioned work the fluctuation exchange approximation combined with the
dynamical mean-field theory (FLEX+DMFT) method has been used in the intermediate correlations regime
(U = 4) and at higher temperature 3|t| = 20.

The off-diagonal elements of the Coulomb interaction between the nearest neighboring lattice sites (i, 7),
with the corresponding two-site integral Kj; = (ii|V (r — 1")|ij) introduce the so-called correlated hopping
term, which also has been studied by us [25]. In figure 6 we show the parameters which characterize the SC+N
phase as functions of both hole doping § and the correlated hopping integral K. As one can see, the influence is
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Figure 5. d-wave (a) and s-wave (b) components of the correlated gap, as well as the nematicity parameter 6P; = P — Py, (c),allasa
function of hole doping for selected values of intersite Coulomb repulsion integral Vand for U = 20,] = 0.3.

(a) G (b) 102XA G (C) 8P

002 . -0.04 -0.08 -0.12 0 0.02 0.04 0.06
_j
1
0.75
X 0.5
0.25
0

doplng, 3 doplng, S doplng, o

Figure 6. d-wave (a), and s-wave (b) components of the correlated gap, as well as the nematicity parameter (¢), all as functions of hole
doping and correlated hoppingintegral K, for U = 11.5andJ = V = 0.

not significant up to the values of K = 1, close to which the nematicity is destroyed and the SC order is being
reduced.

Within the present approach the appearance of the nematic phase is not induced by any straightforward
mechanism such as the lattice distortion. Instead, the C, symmetry of the electronic wave function is broken
spontaneously for high enough values of Hubbard U. It should be noted that in order to obtain the effect of a
spontaneous C, symmetry breaking one should apply approach, which captures the small Fermi-surface
deformations. This is probably the reason why, the methods such as the cluster DMFT or cluster Monte-Carlo
[43, 44], which suffer from the finite-size scaling effects, lead to the nematic solutions only for a distored
structure. On the other hand, by adjoining the FLEX approach with DMFT one avoids the finite-size scaling and
the spontaneously appearing nematicity for the square lattice case is reproduced in a similar manner as our DE-
GWEF analysis [16]. The susceptibility towards the nematic Fermi-surface deformations can be explained in the
weak-coupling regime by the use of perturbation theory [45], where also the competing character of the nematic
and SC phases is reported. As shown there, a negative contribution to the self-energy appears, which
corresponds to the opening of the Fermi-surface close the Lifshitz transition. Since the corresponding term in
the perturbation expansion, which drives the symmetry breaking is proportional to U it is understandable that
the nematicity appears when U is not too small, which in turn is consistent with our results (see figure 1).

Since often small orthorombic distortion of the Cu—O lattice appears in the cuprates, in figure 7 we provide
the results also for the distorted case. The lattice structure is changed by tuning the f, ; /#; o ratio and the next-

nearest-neighbor hoppingissetto t' = 0.25 /t%) + t;, / V2 |t], so thatin the case ty, = t, o = twe obtain the
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Figure 7. d-wave (a), and s-wave (b), components of the correlated gap, as well as P(fl / Pfo (c)all as a function of hole doping for
different values of the lattice distortion rate, #o ; /to,;. For t 1 /t;,0 < 1 thelattice distortion is introduced which enhances nematicity
and suppresses d-wave superconductivity. In (d) we show Pgl / Pl(:’(, for the case of pure nematic phase for 6 = 0.1 as a function of the
lattice distortion rate for the case of DE-GWF and RMFT calculations. The inset shows the doping dependence of P(f | / Pffo for the case
of pure nematic phase for the selected value of t ; /o = 0.975. The results are for the Hubbard model (J = V = K = 0) with
U=115.

condition used for the square lattice with #' = 0.25 |¢|. One can see from figure 7 that when g1 /o = 1,the d-
wave gap is decreased mainly in the region of SC+N phase stability and the s-wave gap component changes sign
(see figures 7(a) and (b)). In figures 7(c) and (d) we show how the anisotropy in the hopping integrals affects that
of the hopping averages, PO% / Pfo. As one can see, in the doping range § 2 0.1, < 0.3, for a very small lattice
anisotropy (fo,1/t10 = 0.95,%.1/t10 = 0.975) we obtain a substantial anisotropy of the hopping

averages (P()(‘;1 / PEO ~ 0.6).

In figure 7(d), we provide the comparison between the DE-GWF and RMFT methods [27]. Since within the
RMEFT approach no stability of the SC phase is obtained in the Hubbard model, we compare the two methods
limiting to the pure nematic phase only. As one can see, for the case of square lattice (#y1/t; o = 1), no nematic
behavior (P, /P, = 1)is obtained according to the RMFT method, whereas within the DE-GWF approach the
anisotropic behavior of the electronic system is sustained. Also, as shown in the inset to figure 7(d), in RMFT we
obtain Py, /Py & ty,1/t,0 in the whole doping range, while the DE-GWF approach leads to a large
enhancement of the electronic anisotropy for § < 0.3. Such result shows the significance of the higher-order
terms of the DE (5) on the C, symmetry breaking. As shown before [22] the RMFT method is equivalent to the
zeroth order DE-GWF approach. It should be noted that a large nematic anisotropy, induced by a small
orthorombic distortion, has been also reported in [43, 44], where the DMFT and dynamical cluster Monte-Carlo
methods have been used, respectively. For the case of no SC ordering those studies have shown an increasing
nematic anisotropy with decreasing doping, which is consistent with our DE-GWEF result presented in the inset
of figure 7(d) (red solid line). When the correlation-induced pairing is taken into account the dome-like
behavior of the nematic order parameter appears for both the distorted system and the square lattice case (see
figures 7(c) and 2(c), respectively). It is caused by the SC phase, which suppresses the nematic state for the low
doping values. Similar dome-like behavior of the nematicity has been presented recently both experimentally [6]
and theoretically [16, 19].

Additionally, in figure 8 we provide the results for the case of the £~J—U model with the preexisting lattice
distortion. As we could see earlier (see figure 3) the inclusion of the exchange term ~J has a destructive influence
on the nematicity and for the model parameters corresponding to the cuprates (J ~ 0.3) the spontaneous
nematicity is already suppressed (see figure 3). However, the nematic anisotropy is brought back for the
distorted system. For the relatively large value of the ] parameter, the effect of the lattice distortion on the d-wave
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Figure 8. d-wave (a), and s-wave (b), components of the correlated gap, as well as POE; 1 / Pfo (c); all as a function of hole doping for the
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Figure 9. (a) The d-wave gap and the ground state energy as functions of doping for two different real space cut-offs R2,, = 5and
R2__ = 16 for the case of the Hubbard model with U = 21.5. The results have been obtained within the third order of the

max
diagrammatic expansion (5).

SC gap is very small (figure 8(a)). Nevertheless, the value of P(f 1 / Pfo is significantly smaller than the t, , /1, o ratio
which means that the tendency towards C, symmetry breaking is still substantial (figure 8(a)).

To check the accuracy of our results, we have plotted in figure 9 the superconducting gap components
AS, AS, as well as the ground state energy Eg, for the two preselected values of the real space cutoff R2_, = 5a>
and R2,, = 16a% We see that they are practically the same, what justifies the choice of the smaller value, in turn
shortening appreciatively the computing time.

4. Summary and conclusions

This paper is a continuation of our detailed studies of high- T« SC within the extended -] (or alternative
extended Hubbard) model treated within the DE-GWF, implemented in two dimensions, that goes beyond the
renormalized mean-field theory in a systematic manner [23-26]. Explicitly, we have analyzed the effect of all the
relevant intersite interaction terms on the coexistence of the superconducting (SC) and nematic (N) phases
within that method. As a starting point of our analysis we have determined the stability range of the coexistent
phase on the (6, U) plane for the case of Hubbard model. The coexistent SC+N phase appears for high enough
values of the Coulomb repulsion (U 2 6) and in a wide doping range (see figure 1). Due to the C, symmetry
breaking, the d-wave pairing amplitude is suppressed and a small s-wave component of the SC gap appears in the
SC+N phase (see[12, 19]). This signals a competing character of the SC and N phases interplay. The SC/N
competition has been also reported by other authors. Moreover, the appearance of the s-wave SC component
with the onset of nematicity, in addition to the dominant d-wave SC, hampers the fundamental gapless character
of the nodal direction. Fortunately, the s-wave amplitude is about two orders of magnitude smaller than that of
the d-wave.

For the case of the extended (+—J-U-V') model the competition between SC and N is determined by both the
exchange interaction and the intersite Coulomb repulsion terms Namely, the J-term enhances SC and

10



10P Publishing

NewJ. Phys. 20 (2018) 063015 M Zegrodnik and ] Spalek

suppresses nematicity, whereas for the V-term the opposite is true (see figures 3 and 4(a), (c), (d)). According to
our analysis of the #—]-U model, the nematicity survives up to J &~ 0.15, what means that the SC+N phase is
already destroyed for the parameter set, for which a good agreement between theory and experiment has been
achieved for the copper-based superconductors [23]. Hence, in such a situation the s-wave gap component is
absent (i.e., only the pure d-wave SC survives) and the nodal SC character is reinstated. Nevertheless, by adding
the V-term to the t~J—U model, one could still sustain the stability of the SC+N phase for the values of ] ~ 0.3,
typical for the cuprates. This means that a detailed analysis of the situation requires going beyond either
Hubbard or t~J models, as shown on this example.

Our analysis of the effect of electronic structure details on the SC+N coexistent phase have shown that there
is no influence of the van Hove singularity position on the lower critical doping for the coexistent phase onset.
For all the considered ¢’ values the lower critical doping remains almost constant and equal to 6, = 0.05, the
value close to that, below which the antiferromagnetic phase appears in the cuprates. This result differs with that
presented in [16], where the FLEX4+DMFT method has been used. However, as mentioned earlier, the results
obtained within the latter method are limited to relatively small Hubbard model U values.

The influence of the correlated hopping term on the SC+N phase is not significant up to the value K ~ 1,
where the nematicity is destroyed and the d-wave gap is suppressed (see figure 6).

As could be expected, the assumed from the start distortion of the lattice induces anisotropy of the electronic
properties in the whole doping range. However, a substantial increase of the electronic anisotropy is obtained
within the region 6 &~ 0.05 — 0.3 for the case of the coexistent SC+N phase (see figure 7(c)). Similar result
occurs for the pure N phase, however here, the nematic order permeter rises with decreasing hole doping down
to the half-filled situation and no dome-like shape is observed (see inset to figure 7(d)). Such results brings into
mind the experimental data for the cuprates, where a very small structural distortion also leads to a large effect
for selected physical properties [5, 9-11]. The latter result is not reproduced within the RMFT method, where we
obtain Py, /PCy & ty,1 /ti in the whole doping range. Moreover, within the RMFT, no spontaneous C,
symmetry breaking appears for the case of square lattice (see figure 7(d)). This, in turn, demonstrates that the
correlation effects taken, into account in the higher-order of the DE-GWF approach, are responsible for the
nematic phase appearance for the square lattice case.

It would be interesting to investigate within the present approach whether the susceptibility towards the
C,-symmetry breaking of the electronic system can also induce the orthorhombic crystal distortion. In order to
take into account the subtle interplay between the electronic system and the lattice structure, one would have to
calculate the hopping integrals in an ab initio fashion, instead of treating them as model parameters as here. Such
an analysis could be carried out by combining the DE-GWF method(or other method dedicated for the
correlated systems [46]) with e.g. the EDABI [47-49] approach. Moreover, such a method could also be used to
analyze theoretically the interplay between the unconventional superconductivity and lattice distortion, which is
observed in the copper-based compounds [50].

As already stated in the Introduction, here we have not carried out a detailed analysis of the relative stability
of the nematic and superconducting phases against the CDW and SDW states. Such a study would be interesting
due to the fact that the latter two are observed in the underdoped samples of the cuprates. Nevertheless, in our
earlier papers we have analyzed the appearance of the two simplest forms of magnetic and charge orderings
within the t~/-U model. Namely, in [26, 39] the antiferromagnetic and the (7, 7)-charge-ordered phases have
been considered. According to the results presented in [39], the value of upper critical doping for the
disappearance of the antiferromagnetic phaseis ¢ ~ 0.01 which is close to the experimental one. Within other
theoretical considerations, a similar value has been obtained for the case of the Hubbard model [51, 52]. As we
have shown here, in the strongly correlated regime (U 2 10) a coexistent superconducting-nematic phase
appears above that value in the considered types of models (except for the situation corresponding to relatively
large values of the intersite Coulomb repulsion, V). The (7, m)-charge-ordered phase has been studied in [26]
and according to those results charge ordering becomes stable for relatively large values of hole doping (6 ~ 0.5).
As one can see, from the present paper the SC+N phase appears below that doping range. With that being said,
we can conclude that the nematicity and the two mentioned forms of magnetic and charge ordering appear in
different regions of the phase diagram and hence the competition between them does not occur. Nevertheless,
the situation can be significantly different for the case of more sophisticated forms of magnetic and charge
ordering. As shown in [26] changing the modulation vector from Q = (m, ™) to Q = (27/ 3, m), results in
significant change in the stability region. The inclusion of various forms of the CDW state within the DE-GWF
approach requires a separate analysis. We should see progress along these lines in the near future.
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Appendix. Zeroth order expansion

Below we show examples of the zeroth order expansion (5) for selected expressions which are useful in
calculating the expectation value of Hamiltonian (1) in the correlated state (2)

(U6le) 8olW6) = q* (&5 &io)o + qa (&5 715 Eio)o + aq (A &5 8ia)o + 2 (i & Al Eio)o, (A.1)
(WelSiS;1We) = AH(S:S))o, (A.2)
(Wl A [WG) = AG{Aifip)os (A.3)

where
q = As(Aato + Ag(1 — 1)), a = A(Ag — Ag), (A.4)

and \; = \;| = A, (for the spin-isotropic case). As already said in section Il all the A parameters can be expressed
with the use of x

MNo=1+x(1—np)%, N =1-xn+01—ng), \j =1+ xnd. (A.5)

If we additionally neglect the terms with the a coefficient in (A.1), we would obtain the expressions known from
the RMFT where the correlated averages are equal to their non-correlated correspondents premultiplied by the
renormalization factors (for the case of hopping that factor would be equal to ¢°).
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