
Proteo: A Self-adaptive Software
Architecture to Support Quality

Attributes in Ubiquitous Systems

Gabriel Guerrero-Contreras

Supervisors: Dr José Luis Garrido

Dr María José Rodríguez-Fórtiz

Department of Software Engineering

University of Granada

PhD Program in Information and Communication Technologies

June 2018



Editor: Universidad de Granada. Tesis Doctorales 

Autor: Gabriel José Guerrero Contreras  

ISBN: 978-84-1306-009-5 
URI: http://hdl.handle.net/10481/53829 





Gabriel Guerrero-Contreras. Proteo: A Self-adaptive Software

Architecture to Support Quality Attributes in Ubiquitous Systems.

Supervisors

Dr José Luis Garrido

Dr María José Rodríguez-Fórtiz

Software Engineering Department

University of Granada

June 2018

gjguerrero@ugr.es

www.ugr.es/~gjguerrero

http://www.ugr.es/~gjguerrero/






Resumen

Desde que los Sistemas Distribuidos evolucionaron a Sistemas Móviles, la adaptación, especí-
ficamente, la auto-adaptación ha sido un requisito fundamental para abordar satisfactoria y
eficientemente el desarrollo de sistemas software. Hoy en día, la auto-adaptación es un requisito
recurrente en la mayoría de los entornos de computación existentes, primero en Computación
Ubicua, posteriormente en el Internet de las Cosas (IoT) y la Computación en la Nube Móvil
(MCC). Sin embargo, a pesar de la importancia de este requisito, todavía existe la necesidad de
proponer un diseño arquitectónico software para abordarlo de forma apropiada.

Mientras que la Arquitectura Orientada a Servicios (SOA) enfatiza la importancia de la
autonomía de servicio, la existencia de arquitecturas dinámicas reconfigurables en tiempo de eje-
cución es todavía un desafío. Con este fin, SOA tiene que ser combinada con métodos y técnicas
del campo de la Computación Autonómica, así como de otros estilos y variantes arquitectónicos,
como la Arquitectura Dirigida por Eventos (EDA) y Arquitecturas de Microservicios.

En este contexto, este trabajo presenta una arquitectura software auto-adaptativa, denomi-
nada Proteo. El principal objetivo de Proteo es proporcionar una solución sensible al contexto
para soportar atributos de calidad relevantes (específicamente, disponibilidad y fiabilidad) en
sistemas dinámicos, aplicando técnicas de replicación y auto-configuración.

La arquitectura Proteo está compuesta de tres componentes principales, los cuales están
replicados en los nodos que componen la red del sistema distribuido: (1) Subsistema de

Monitorización, (2) Servicio de Gestión del Contexto, y (3) Servicio de Gestión de Réplicas.
Las responsabilidades de estos componentes están estrechamente relacionadas con las fases del
bucle autonómico MAPE-K, de la Computación Autonómica: el Subsistema de Monitorización

monitoriza y percibe la información del contexto relacionada con el nodo en el cual se encuentra
desplegado; (2) el Servicio de Gestión del Contexto, además de procesar la información
recibida por el Subsistema de Monitorización, es responsable de analizarla y decidir cuándo
es necesaria una nueva adaptación en el sistema; y el Servicio de Gestión de Réplicas, el cual
es el responsable de llegar a un acuerdo con el resto de los Servicios de Gestión de Réplicas

desplegados en el sistema para establecer cuáles de las réplicas existentes será activada. Esta
coordinación se lleva a cabo utilizando un algoritmo distribuido de elección, dicha elección



viii

se basa en una puntuación dinámica obtenida a través de una función de utilidad en tiempo
de ejecución. Dicha función de utilidad indica cómo de adecuado es un nodo para alojar una
réplica activa de un servicio.

En este trabajo, se presenta una revisión de los enfoques actualmente existentes para la
provisión de servicios o datos (recursos) en entornos dinámicos. Adicionalmente, Proteo se ha
modelado utilizando SysML. Dicho modelo está dividido en: (1) Modelo del Dominio Opera-

cional, (2) Modelo de Información, (3) Modelo Estructural, y (4) Modelo de Comportamiento.
Estos cuatro modelos abarcan la definición detallada de los componentes de la arquitectura
Proteo, sus relaciones y su comportamiento durante la operación del sistema.

Algunas características de Proteo que se pueden destacar son: (1) es reactivo a los cambios
del contexto, como por ejemplo las desconexiones de los nodos; (2) usa información local
al nodo a través de un enfoque cross-layer para monitorizar la red; (3) utiliza un método
heurístico, propuesto en este trabajo, para determinar el nodo más céntrico en la topología de la
red basándose en la información de la tabla de ruta del nodo; (4) utiliza una función de utilidad
para evaluar cómo de adecuado es un nodo para alojar una réplica del servicio activa, lo que
facilita adaptar el criterio de elección y tener en consideración los recursos de los nodos, como
la energía, proporcionando así una solución consciente del consumo de recursos.

Con respecto a los algoritmos de elección, se han propuesto en este trabajo dos nuevos
algoritmos: Consenso y Votación. Estos algoritmos de elección están diseñados para operar en
entornos móviles con topologías de red altamente dinámicas y bajo canales de comunicación
no fiables. Adicionalmente, entre los enfoques existentes, los algoritmos de elección de
Bully, Kordafshair y Vasudevan se han seleccionado e incorporado a Proteo, con el objetivo de
comparar y valorar el rendimiento de los dos nuevos algoritmos propuestos con estos algoritmos
ya existentes.

Para validar y evaluar la propuesta, se ha utilizado el simulador de redes ns-3. A este
respecto, Proteo ha sido diseñado e implementado como un nuevo módulo en ns-3, lo cual ha
permitido analizar la arquitectura auto-adaptativa en términos de disponibilidad de servicios,
fiabilidad del algoritmo de elección, utilización de mensajes de coordinación y vida útil de
la red (consumo de energía). El uso de herramientas avanzadas de simulación nos permite
entender mejor el comportamiento de la arquitectura propuesta mediante el manejo y evaluación
de modelos dinámicos.

Finalmente, se introduce brevemente el trabajo que ya está en progreso para continuar desar-
rollando y extendiendo la arquitectura Proteo. Actualmente existen dos líneas de investigación
principales. Por una parte, para abordar la sincronización de las réplicas y la interoperabilidad
del sistema se ha diseñado y propuesto una plataforma de servicios. Ésta está diseñada para



ix

proporcionar, desde la fase de diseño, una base común para la gestión consistente de recursos
en sistemas ubicuos colaborativos. Por otra parte, para abordar la escalabilidad de la propuesta,
se ha llevado a cabo un estudio para conocer el número de nodos que Proteo puede gestionar,
utilizando el algoritmo de Consenso, sin degradar su rendimiento. Esto es esencial para poder
aplicar Proteo en entornos de IoT, los cuales están pensados para soportar un alto número
de dispositivos heterogéneos conectados. Además, dicho estudio pretende determinar si la
fiabilidad de TCP podría resultar en un mejor funcionamiento del sistema, a pesar de su menor
tiempo de respuesta y mayor consumo de ancho de banda en comparación con UDP.





Abstract

Since Distributed Systems evolved to Mobile Systems, adaptation, and more specifically self-
adaptation, has been a fundamental requirement to successfully and efficiently address the
development of software systems. Nowadays, selft-adaptation is a recurrent requirement in
most of the existing computation environments, first in Ubiquitous Computing, and later in
the Internet of Things (IoT) and Mobile Cloud Computing (MCC). However, despite the
importance of this requirement, still, there is a need to propose a suitable architectural approach
to address it.

Whereas the Service Oriented Architecture (SOA) emphasizes the importance of service
autonomy, the provision of dynamically reconfigurable runtime architectures is still a challenge.
To this end, SOA has to be combined with methods and techniques from Autonomic Computing
field, as well as other complementary architectural styles and variants, such as Event-Driven
Architecture (EDA) and Microservices.

In this context, this work presents a self-adaptive software architecture, named Proteo. The
primary objective of Proteo is to provide a context and resource-aware solution to support rele-
vant quality attributes (especially availability and reliability) in dynamic systems by applying
replication and self-configuration techniques.

Proteo architecture is composed of three main components, which are replicated on the
nodes that compose the distributed system network: (1) Monitoring Subsystem, (2) Context

Manager Service, and (3) Replica Manager Service. Their responsibilities are closely related to
the phases of MAPE-K autonomic loop of Autonomic Computing: the Monitoring Subsystem

senses the context information in relation to the node in which is deployed; the Context

Manager Service, in addition to process this information, is also responsible for analysing it to
decide when a new system adaptation is necessary; and the Replica Manager Service will be
responsible for coming to an agreement with the rest of the Replica Manager Services deployed
in the system to establish what replica will be activated. This coordination is performed by using
a distributed host election algorithm, and the election is based on a dynamic score obtained
through a utility function at run-time. This utility function indicates how suitable is a node to
host a service replica.



xii

Throughout this work, a review of the existing proposals on dynamic service or data
provisioning in dynamic environments will be presented. Additionally, Proteo is modelled
using SysML. This model is divided into: (1) Operational Domain Model, (2) Information

Model, (3) Structural Model, and (4) Behavioural Model. These four models encompass the
detailed definition of the components of Proteo architecture, their relationships, and their
behaviour during the system operation.

Some notable features of Proteo are: (1) reactivity to context changes, such as node
disconnections; (2) use of local knowledge to the node through a cross-layer approach to
monitoring the network; (3) a heuristic method has been proposed to determine the most centric
node in the network topology, on the basis of the information of its routing table; (4) to use a
utility function to evaluate the feasibility of the nodes to host an active service replica, which
facilitates to adapt the election criteria and to take into consideration the resources of the nodes,
as energy, providing a resource-aware solution.

Regarding the election algorithms, two new algorithms are proposed: Consensus and Voting.
These election algorithms are devised to operate in mobile environments with highly dynamic
network topologies and under unreliable communication channels. In addition, between the
existing approaches, the election algorithms of Bully, Kordafshari, and Vasudevan have been
selected and incorporated to Proteo to compare the performance of the new two proposed
election algorithms with them.

To validate and evaluate the proposal, the ns-3 network simulator has been used. To this
regard, Proteo has been designed and developed as a new module in ns-3, which has allowed
to analyse the self-adaptive architecture in terms of service availability, election algorithm
reliability, coordination messages usage and network lifetime. The use of advanced simulation
tools allows us to better understand the behaviour of the approach by managing and evaluating
the dynamic models that it embraces.

Finally, some of the work already in progress to continue developing Proteo architecture
is introduced. Nowadays, two main lines of research are being followed. Firstly, to address
synchronization and system interoperability, for which a service platform has been proposed. It
intends to provide a common basis for the consistent management of shared resources, from the
software design stage, in ubiquitous collaborative systems. And secondly, to address scalability,
for which a study has been performed to know the number of nodes that Proteo can manage
using the Consensus election algorithm without degrading its performance. This is essential
for applying Proteo in IoT environments, which are devised to support a large number of
heterogeneous devices. Additionally, this study aims to state if the reliability of TCP could



xiii

result in an enhanced system operation, despite its high latency and higher consumption of
bandwidth in comparison to UDP.





Table of contents

List of figures xxi

List of tables xxix

I Introduction, Foundations and Related Work 1

1 Introduction 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Description of the Problem and Motivation . . . . . . . . . . . . . . . . . . . 5
1.3 Hypothesis and Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Structure of the Doctoral Thesis . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Foundations 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Ubiquitous Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Context-Aware Computing . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Advanced Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Software Development Approaches . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Autonomic Computing and Self-adaptive Software Systems . . . . . 20
2.3.2 Service Oriented Architecture . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 Microservices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.4 Event-Driven Architecture . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.5 SOA 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.6 Multi-Agent Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Leader Election Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.1 Bully Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



xvi Table of contents

2.4.2 Kordafshari Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5 System Quality Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5.1 Agility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.2 Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.3 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5.4 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5.5 Service Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.6.1 Network Simulator 3 (ns-3) . . . . . . . . . . . . . . . . . . . . . . 41
2.6.2 SysML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Related Work 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Approaches to enhance data/service QoS through dynamic replication . . . . 49

3.2.1 Hamdy et al.: Service Distribution Protocol . . . . . . . . . . . . . . 49
3.2.2 Sun et al.: Minimum Access Cost replication strategy . . . . . . . . . 50
3.2.3 Ahmed et al.: Distributed Adaptive Service Replication . . . . . . . . 51
3.2.4 Bellavista et al.: REDMAN middleware . . . . . . . . . . . . . . . . 52
3.2.5 Dustdar et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.6 Kim et al.: Scalable Replica Allocation scheme . . . . . . . . . . . . 54
3.2.7 Choi et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.8 Kumar et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.9 Zhang et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.10 Barolli et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.11 Xia et al.: ComPAS data replication method . . . . . . . . . . . . . . 58
3.2.12 Shi et al.: RHPMAN data replication scheme . . . . . . . . . . . . . 58
3.2.13 Hirsch et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.14 Hara et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Leader election algorithms in dynamic environments . . . . . . . . . . . . . 61
3.3.1 Malpani et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.2 Vasudevan et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.3 Park . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3.4 Brandner et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3.5 Raychoudhury et al. . . . . . . . . . . . . . . . . . . . . . . . . . . 64



Table of contents xvii

3.3.6 Sabat et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.7 Mohammed et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4 Cluster Head election approaches . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4.1 Wu et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4.2 Torkestani et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4.3 Venkanna et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.4 Benkaouha et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

II Proteo Architecture: Design, Modelling, Simulation, and Evalua-
tion 75

4 Proteo: A Self-adaptive Software Architecture 77
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Motivating Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4 Architectural Design Proposal . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.1 Monitoring Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4.2 Context Manager Service . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4.3 Replica Manager Service . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Host Feasibility Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.6 Election Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.6.1 Proposed Election Algorithms . . . . . . . . . . . . . . . . . . . . . 88
4.6.2 Proposed Adaptations on Existing Election Algorithms . . . . . . . . 92
4.6.3 Theoretical Analysis of Message Complexity . . . . . . . . . . . . . 93

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5 Proteo Model 107
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.2 Operational Domain Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3 Information Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3.1 Value Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.3.2 Signals (Context Events) . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3.3 Standard Item Definitions . . . . . . . . . . . . . . . . . . . . . . . 114



xviii Table of contents

5.4 Structural Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.4.1 Monitoring Service . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.4.2 Context Manager Service . . . . . . . . . . . . . . . . . . . . . . . . 123
5.4.3 Replica Manager Service . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5 Behavioural Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.5.1 Signals and Operations . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.5.2 Election Algorithm State Machines . . . . . . . . . . . . . . . . . . 129
5.5.3 updateScore Activity . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6 Simulation: Development and Settings 147
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.2 Design and Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.2.1 ns-3 Node High-Level Architecture . . . . . . . . . . . . . . . . . . 149
6.2.2 Extending ns-3: Proteo Module . . . . . . . . . . . . . . . . . . . . 150
6.2.3 Configuring a ns3 Node to host Proteo Module . . . . . . . . . . . . 152
6.2.4 Variations on ns-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.3 Simulation Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.3.1 General and Node Settings . . . . . . . . . . . . . . . . . . . . . . . 156
6.3.2 Mobility Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7 Simulation Results in ns-3 165
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
7.2 Service Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
7.3 Algorithm Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.3.1 Redundant Server Elections . . . . . . . . . . . . . . . . . . . . . . 172
7.3.2 Mean Time Between Failures (MTBF) . . . . . . . . . . . . . . . . . 175

7.4 Coordination Messages Usage . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.4.1 Static and Reliable Networks . . . . . . . . . . . . . . . . . . . . . . 177
7.4.2 Mobile and Unreliable Networks . . . . . . . . . . . . . . . . . . . . 181

7.5 Network lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.6 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7.6.1 Service Availability vs Coordination Message Usage . . . . . . . . . 189
7.6.2 Service Availability vs Network lifetime . . . . . . . . . . . . . . . . 192
7.6.3 Algorithm Reliability vs Coordination Message Usage . . . . . . . . 195



Table of contents xix

7.6.4 Algorithm Reliability vs Network lifetime . . . . . . . . . . . . . . . 198
7.7 Discussion on Global Performance . . . . . . . . . . . . . . . . . . . . . . . 201
7.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

III Work in Progress and Conclusions 207

8 Work in Progress 209
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
8.2 Towards a Synchronization Solution . . . . . . . . . . . . . . . . . . . . . . 211

8.2.1 Application Scenario: From FLERSA Tool to FLERSA Service . . . 213
8.2.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

8.3 Scalability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
8.3.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
8.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
8.3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

9 Conclusions and Future Work 229
9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

10 Conclusiones y Trabajo Futuro 237
10.1 Conclusiones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
10.2 Trabajo Futuro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

References 245

Appendix A Simulation Result Data 261





List of figures

2.1 Taxonomy of computer systems research problems in ubiquitous computing.
Extracted from [143]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Context feature space. Extracted from [144]. . . . . . . . . . . . . . . . . . . 16
2.3 IoT layers. Extracted from [22]. . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 A taxonomy of issues in mobile cloud computing. Extracted from [52]. . . . 20
2.5 MAPE-K IBM’s adaptation control loop. Extracted from [73]. . . . . . . . . 21
2.6 Software adaptation classification on the basis of (x) overall goal of the adapta-

tion; (y) moment in which the adaptation need is detected; and (z) adaptation
methodology. This figure is based and integrates the classifications proposed
on [82][85][26][15]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Relation of Service Autonomy design principle with other service-orientation
design principles. Extracted from [50]. . . . . . . . . . . . . . . . . . . . . . 29

2.8 The paradigmatic EDA. Extracted from [157]. . . . . . . . . . . . . . . . . . 31
2.9 The paradigmatic EDA within Autonomic Computing MAPE-K loop. . . . . 32
2.10 Kordafshari election algorithm example. . . . . . . . . . . . . . . . . . . . 38
2.11 Kordafshari election algorithm example with multiple concurrent elections. . 39
2.12 Documents that mention ns-3 or ns-2 in their title, abstract or keywords on the

Scopus database of peer-reviewed literature. Source: Own elaboration. . . . . 42
2.13 Comparative showing the number of scientific documents that mention Netsim,

OPNET, OMNET++, JSIM, ns-3 or ns-2 in their title, abstract or keywords on
the Scopus database of peer-reviewed literature. Source: Own elaboration. . . 42

2.14 Relationship between SysML and UML. Extracted from [154]. . . . . . . . . 44

3.1 Distribution of the articles revised according to publication year and source type. 48

4.1 A hypothetical scenario of a collaborative work team in a remote area. . . . . 80
4.2 High-level Proteo layered architecture. . . . . . . . . . . . . . . . . . . . . . 82



xxii List of figures

4.3 Responsibility mapping between Proteo elements and MAPE-K autonomic
loop phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Example 1 of the heuristic used to approximate the position of a node within
the network using the information provided by the routing table. . . . . . . . 86

4.5 Example 2 of the heuristic used to approximate the position of a node within
the network using the information provided by the routing table. . . . . . . . 86

4.6 Example 3 of the heuristic used to approximate the position of a node within
the network using the information provided by the routing table. . . . . . . . 86

4.7 Consensus election example. Known IDs and highest ID as election criteria. . 89
4.8 Consensus election example with message loss. Highest ID as election criteria. 90
4.9 Voting election example. Known IDs and highest ID as election criteria. . . . 91
4.10 Bully election worst case scenario example. Known IDs and highest ID as

election criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.11 Vasudevan election example. This example depicts the best case scenario.

Known IDs and highest ID as election criteria. . . . . . . . . . . . . . . . . . 99
4.12 Vasudevan algorithm election example. This example depicts the worst case

scenario. Known IDs and highest ID as election criteria. . . . . . . . . . . . 100

5.1 Package diagram showing how the model is organized into packages. . . . . . 108
5.2 Block definition diagram showing the operational domain model, where Node

is the system of interest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3 Package diagram showing how the Information Model is organized into packages.111
5.4 Block definition diagram showing the value types defined within Proteo system.112
5.5 Block definition diagram showing the hierarchy of signals handled within

Proteo system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.6 Package diagram showing how the Item Definitions are grouped into different

packages according to the algorithm. . . . . . . . . . . . . . . . . . . . . . . 115
5.7 Block definition diagram showing the Item Definitions for the Bully Election

algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.8 Block definition diagram showing the Item Definitions for the Kordafshari

Election algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.9 Block definition diagram showing the Item Definitions for the Vasudevan

Election algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.10 Block definition diagram showing the Item Definitions for the Consensus

Election algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



List of figures xxiii

5.11 Block definition diagram showing the Item Definitions for the Voting Election
algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.12 Package diagram showing how the distribution into packages of the Structural
Model of Proteo platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.13 Block definition diagram showing the relation between the structural elements
of Proteo model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.14 Block definition diagram showing in detail the structural properties of the
entities that compose Proteo. . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.15 Internal block diagram showing the interaction flow of Coordination Message
items between the parts of Middleware Service Platform. . . . . . . . . . . . 123

5.16 Block definition diagram showing the specialization of the Replica Manager
Service block according to the election algorithm used, which redefines the
controller part. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.17 Block definition diagram showing the specialization of the ElectionAlgorithm
block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.18 Block definition diagram showing an example of the specialization of the
Evaluation Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.19 Parametric diagram showing the mathematical processing to obtain the score
of a node in the evaluation function specialization example. . . . . . . . . . . 128

5.20 State machine diagram that shows the states of Bully election algorithm and
the transitions between them. . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.21 State machine diagram that shows the behaviour of Bully election algorithm
during the Connecting state. . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.22 State machine diagram that shows the states of Kordafhari election algorithm
and the transitions between them. . . . . . . . . . . . . . . . . . . . . . . . . 133

5.23 State machine diagram that shows the behaviour of Kordafhari election algo-
rithm during the Connecting state. . . . . . . . . . . . . . . . . . . . . . . . 134

5.24 State machine diagram that shows the states of Vasudevan election algorithm
and the transitions between them. . . . . . . . . . . . . . . . . . . . . . . . . 136

5.25 State machine diagram that shows the behaviour of Vasudevan election algo-
rithm during the Connecting state. . . . . . . . . . . . . . . . . . . . . . . . 138

5.26 State machine diagram that shows the states of Consensus election algorithm
and the transitions between them. . . . . . . . . . . . . . . . . . . . . . . . . 140

5.27 State machine diagram that shows the behaviour of Consensus election algo-
rithm during the Connecting state. . . . . . . . . . . . . . . . . . . . . . . . 141



xxiv List of figures

5.28 State machine diagram that shows the states of Voting election algorithm and
the transitions between them. . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.29 State machine diagram that shows the behaviour of Voting election algorithm
during the Connecting state. . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.30 Activity diagram showing the collaboration between the Context Manager
Service and Evaluation Function components when the operation updateScore
is invoked. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.1 High-level ns-3 node architecture. Extracted from [112]. . . . . . . . . . . . 149
6.2 Proteo Module structure directory on ns-3 implementation. Folders are shown

in capital letters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.3 High-level Proteo node architecture in ns-3. . . . . . . . . . . . . . . . . . . 152
6.4 A plot of the trace of an example Manhattan Grid scenario with 5 nodes and

a duration of 1600 seconds, using the configuration parameters described on
Table 6.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.5 A plot of the trace of an example the Random Walk scenario with 10 nodes and
a duration of 1600 seconds, using the configuration parameters described on
Table 6.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.6 Number of nodes per group under the RPGM model according to the total
number of nodes in the network and the configuration parameter provided in
Table 6.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.7 A plot of the trace of an example RPGM scenario with 10 nodes and a duration
of 1600 seconds, using the configuration parameters described on Table 6.4. . 163

7.1 Service availability provided by the different election algorithms under the
Manhattan Grid mobility model. Data on Table A.1. . . . . . . . . . . . . . . 168

7.2 Service availability provided by the different election algorithms under the
Random Walk mobility model. Data on Table A.2. . . . . . . . . . . . . . . 169

7.3 Service availability provided by the different election algorithms under the
RPGM mobility model. Data on Table A.3. . . . . . . . . . . . . . . . . . . 169

7.4 A directed graph which represents the nodes of a network and the links between
them. In the graph three network partition can be seen: (1) composed by the
nodes 1, 2 and 3; (2) composed by nodes 5 and 6; and (3) composed only by
the node 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.5 Percentage of redundant server elections by the election algorithms studied
under the Manhattan Grid mobility model. Data on Table A.4. . . . . . . . . 173



List of figures xxv

7.6 Percentage of redundant server elections by the election algorithms studied
under the Random Walk mobility model. Data on Table A.5. . . . . . . . . . 174

7.7 Percentage of redundant server elections by the election algorithms studied
under the RPGM mobility model. Data on Table A.6. . . . . . . . . . . . . . 174

7.8 MTBF of the election algorithms studied under the Manhattan Grid mobility
model. Data on Table A.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.9 MTBF of the election algorithms studied under the Random Walk mobility
model. Data on Table A.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.10 MTBF of the election algorithms studied under the RPGM mobility model.
Data on Table A.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.11 Comparison between theoretical and empirical message complexity of the
Bully election algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.12 Comparison between theoretical and empirical message complexity of the
Kordafshari election algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.13 Comparison between theoretical and empirical message complexity of the
Vasudevan election algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.14 Comparison between theoretical and empirical message complexity of the
Consensus election algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.15 Comparison between theoretical and empirical message complexity of the
Voting election algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.16 Coordination messages used during simulation (21600 seconds) by the different
election algorithms under the Manhattan Grid mobility model. Data on Table
A.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.17 Coordination messages used during simulation (21600 seconds) by the different
election algorithms under the Random Walk mobility model. Data on Table A.11.182

7.18 Coordination messages used during simulation (21600 seconds) by the different
election algorithms under the RPGM mobility model. Data on Table A.12. . . 182

7.19 TFND under the Manhattan Grid mobility model. Data on Table A.13. . . . . 183
7.20 THND under the Manhattan Grid mobility model. Data on Table A.14. . . . . 184
7.21 TLND under the Manhattan Grid mobility model. Data on Table A.15. . . . . 184
7.22 TFND under the Random Walk mobility model. Data on Table A.16. . . . . . 185
7.23 THND under the Random Walk mobility model. Data on Table A.17. . . . . 186
7.24 TLND under the Random Walk mobility model. Data on Table A.18. . . . . . 186
7.25 TFND under the RPGM mobility model. Data on Table A.19. . . . . . . . . 187
7.26 THND under the RPGM mobility model. Data on Table A.20. . . . . . . . . 188



xxvi List of figures

7.27 TLND under the RPGM mobility model. Data on Table A.21. . . . . . . . . 188
7.28 Election algorithms efficiency (availability vs messages) under the Manhattan

Grid mobility model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
7.29 Election algorithms efficiency (availability vs messages) under the Random

Walk mobility model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.30 Election algorithms efficiency (availability vs messages) under the RPGM

mobility model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
7.31 Election algorithms efficiency (availability vs TLND) under the Manhattan

Grid mobility model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.32 Election algorithms efficiency (availability vs TLND) under the Random Walk

mobility model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.33 Election algorithms efficiency (availability vs TLND) under the RPGM mobility

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
7.34 Election algorithms efficiency (Redundant Server Elections vs Coordination

Messages) under the Manhattan Grid mobility model. . . . . . . . . . . . . . 196
7.35 Election algorithms efficiency (Redundant Server Elections vs Coordination

Messages) under the Random Walk mobility model. . . . . . . . . . . . . . . 197
7.36 Election algorithms efficiency (Redundant Server Elections vs Coordination

Messages) under the RPGM mobility model. . . . . . . . . . . . . . . . . . . 198
7.37 Election algorithms efficiency (Redundant Server Elections vs TLND) under

the Manhattan Grid mobility model. . . . . . . . . . . . . . . . . . . . . . . 199
7.38 Election algorithms efficiency (Redundant Server Elections vs TLND) under

the Random Walk mobility model. . . . . . . . . . . . . . . . . . . . . . . . 200
7.39 Election algorithms efficiency (Redundant Server Elections vs TLND) under

the RPGM mobility model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
7.40 Global performance of the Bully algorithm (average results over the three

mobility models). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
7.41 Global performance of the Kordafshari algorithm (average results over the

three mobility models). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.42 Global performance of the Consensus algorithm (average results over the three

mobility models). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
7.43 Global performance of the Vasudevan algorithm (average results over the three

mobility models). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
7.44 Global performance of the Voting algorithm (average results over the three

mobility models). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205



List of figures xxvii

8.1 Architecture of the generic service platform to support sharing and collaboration.212
8.2 The SOA architecture for the FLERSA tool. . . . . . . . . . . . . . . . . . . 214
8.3 Graph showing an instance of the class ‘Annotation’ implemented by FLERSA.

Extracted from [107]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
8.4 System architecture for a FLERSA service deployment scenario. . . . . . . . 218
8.5 Process flow diagram. Extracted from [107]. . . . . . . . . . . . . . . . . . . 219
8.6 IoT layers and protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
8.7 KB sent and received by the nodes of the network, owing to the execution of

the host election algorithm, under the TCP protocol (left) and the UDP protocol
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

8.8 Efficiency in the message delivery of TCP and UDP protocols. . . . . . . . . 224
8.9 Percentage of KB loss in the node communications of TCP and UDP protocols. 225
8.10 Service availability provided by the self-adaptive software architecture, under

the TCP and UDP communication protocols. Networks from 4 to 25 nodes
(left); from 9 to 19 nodes (right). . . . . . . . . . . . . . . . . . . . . . . . . 226





List of tables

2.1 Comparison of adaptation reasoning approaches based on their applicability
for ubiquitous computing and mobile environments. Extracted from [82]. . . 25

2.2 Multi-Agent System and Service Oriented Computing, similarities and differ-
ences. Source: Own elaboration. . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Overview of the approaches to improve data/service QoS through dynamic
replication and their features. Source: Own elaboration. . . . . . . . . . . . . 68

3.2 Overview of the leader election algorithms in dynamic environments and their
features. Source: Own elaboration. . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Overview of the cluster head election approaches revised and their features.
Source: Own elaboration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 Overview of the analysis performed on the election algorithms. In it, the
theoretical message complexity and turnaround time in the worst case are shown.102

4.2 Overview of the analysis performed on the election algorithms. In it, the
theoretical message complexity and turnaround time in the best case are shown. 103

5.1 Context Manager Service attributes, descriptions and modifier actions. . . . . 124
5.2 Context Manager Service operations and descriptions. . . . . . . . . . . . . . 127

6.1 Node setting parameters used in ns-3 to perform the simulations. . . . . . . . 156
6.2 Setting parameters used for the Manhattan Grid model in Bonnmotion (Section

2.6.1) to perform the simulations. . . . . . . . . . . . . . . . . . . . . . . . . 158
6.3 Setting parameters used for the Random Walk model in ns3 to perform the

simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.4 Setting parameters used for the RPGM model in Bonnmotion to perform the

simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161



xxx List of tables

7.1 Adjacency matrix representing the network depicted in Fig. 7.4. Where
A(i, j) = 0 means that there is no link from the node i to j, and A(i, j) = 1 means
that there is a communication link established from i to j. . . . . . . . . . . . 172

7.2 Increase of the percentage of redundant elections for the Bully and Kordafshari
algorithms for each mobility model, from a network of four nodes to a network
of twenty nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.3 Average of the service availability (av), Coordination Messages (msgs), TLND
and Redundant Server Elections (rse) results obtained by the Bully, Kordaf-
shari and Vasudevan election algorithms under the Manhattan Grid (MG), the
Random Walk (RW) and the RPGM mobility models for network sizes ranged
from 4 to 20 nodes. Additionally, Global average is shown. . . . . . . . . . . 201

7.4 Average of the service availability (av), Coordination Messages (msgs), TLND
and Redundant Server Elections (rse) results obtained by the Consensus and
Voting election algorithms under the Manhattan Grid (MG), the Random Walk
(RW) and the RPGM mobility models for network sizes ranged from 4 to 20
nodes. Additionally, Global average is shown. . . . . . . . . . . . . . . . . . 201

8.1 KB sent and loss in the node communication for the execution of the host
election algorithm, under the TCP and UDP protocols. . . . . . . . . . . . . 223

8.2 Service availability provided by the self-adaptive software architecture, under
the TCP and UDP communication protocols. . . . . . . . . . . . . . . . . . . 225

A.1 Service Availability (%) provided by the different election algoritms evaluated
under Manhattan Grid mobility model. . . . . . . . . . . . . . . . . . . . . . 262

A.2 Service Availability (%) provided by the different election algoritms evaluated
under Random Walk mobility model. . . . . . . . . . . . . . . . . . . . . . . 263

A.3 Service Availability (%) provided by the different election algoritms evaluated
under RPGM mobility model. . . . . . . . . . . . . . . . . . . . . . . . . . 264

A.4 Redundant Server Elections (%) caused by the different election algoritms
evaluated under Manhattan Grid mobility model. . . . . . . . . . . . . . . . 265

A.5 Redundant Server Elections (%) caused by the different election algoritms
evaluated under Random Walk mobility model. . . . . . . . . . . . . . . . . 266

A.6 Redundant Server Elections (%) caused by the different election algoritms
evaluated under RPGM mobility model. . . . . . . . . . . . . . . . . . . . . 267

A.7 MTBF (seconds) of the different election algoritms evaluated under Manhattan
Grid mobility model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268



List of tables xxxi

A.8 MTBF (seconds) of the different election algoritms evaluated under Random
Walk mobility model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

A.9 MTBF (seconds) of the different election algoritms evaluated under RPGM
mobility model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

A.10 Number of Coordination Messages used by the different election algoritms
evaluated under Manhattan Grid mobility model. . . . . . . . . . . . . . . . 271

A.11 Number of Coordination Messages used by the different election algoritms
evaluated under Random Walk mobility model. . . . . . . . . . . . . . . . . 272

A.12 Number of Coordination Messages used by the different election algoritms
evaluated under RPGM mobility model. . . . . . . . . . . . . . . . . . . . . 273

A.13 TFND (minutes) under the different election algoritms evaluated under Man-
hattan Grid mobility model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

A.14 THND (minutes) under the different election algoritms evaluated under Man-
hattan Grid mobility model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

A.15 TLND (minutes) under the different election algoritms evaluated under Man-
hattan Grid mobility model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

A.16 TFND (minutes) under the different election algoritms evaluated under Random
Walk mobility model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

A.17 THND (minutes) under the different election algoritms evaluated under Ran-
dom Walk mobility model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

A.18 TLND (minutes) under the different election algoritms evaluated under Random
Walk mobility model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

A.19 TFND (minutes) under the different election algoritms evaluated under RPGM
mobility model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

A.20 THND (minutes) under the different election algoritms evaluated under RPGM
mobility model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

A.21 TLND (minutes) under the different election algoritms evaluated under RPGM
mobility model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282





Part I

Introduction, Foundations and Related
Work





Chapter 1

Introduction

Chapter Abstract

Nowadays, Mobile and Ubiquitous Computing are gaining more and more importance. Current compu-

tation systems provide an infrastructure where data storage and processing could happen outside of the

mobile node. Specifically, there is a significant interest in the use of the services that are transparently

provided by nearby mobile nodes in the form of a distributed resource pooling. This kind of systems is

useful in application domains such as emergencies, education, and tourism. However, these systems

are commonly based on dynamic network topologies, in which disconnections and network partitions

can occur frequently, and thus the availability and other quality attributes of the system are usually

compromised. In this context, techniques and methods from Autonomic Computing can be applied to

build quality service models taking into account changes in the context. The main objective of this thesis

is to design and implement a proposal based on a self-adaptive approach to improve the quality and the

applicability of Software Oriented Architectures in Mobile and Ubiquitous Computing, addressing the

new challenges posed by these dynamic systems. Finally, the list of publications derived from this work

is included.

Chapter Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Description of the Problem and Motivation . . . . . . . . . . . . . . . . . . 5

1.3 Hypothesis and Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Structure of the Doctoral Thesis . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9



4 Introduction

1.1 Introduction

In 1988 Weiser introduced the Ubiquitous Computing term, subsequently developed in [167],
referring to:

a scenario in which computers become more numerous and fade into the background, pro-
viding information to human users and embedding intelligence and computing capabilities
in seemingly everyday objects. [122]

The introduction of the Ubiquitous Computing, not as a technology but as a new computation
paradigm, brings The Age of Calm Technology [168], in which, technology vanishes into the
background of our daily lives, providing an unconscious human-computer interaction.

This pioneering view that was ahead of its times has not been possible until now, when,
thanks to advances in Information and Communication Technology (ICT), there are devices
powerful enough to create these new computing systems.

Ubiquitous Computing, considered as an evolution of Mobile Computing [143], represents
the basis for multiple ICT areas, such as Ambient Intelligence (AmI) [40], Mobile Cloud
Computing (MCC) [52] or Internet of Things (IoT) [11]. Moreover, it is closely related to
other areas, such as Artificial Intelligence (IA) [137] or Context-Aware Computing [46].

These new approaches and computational paradigms are expected to be useful in a di-
versity of application domains, where the common factors are mobility and many-to-many
communication under collaborative groups [29]:

• Advanced Intelligent Transportation Systems (ITS) intend to provide a set of techno-
logical solutions to improve the security and management of transport network [32]. The
Vehicular Ad-hoc NETworks (VANETs) [70] arise from a multi-hop ad-hoc network
paradigm to support a wide range of applications in this area, from collision avoidance to
traffic services. In this kind of network both vehicle-to-vehicle (V2V) and vehicle-to-
roadside (V2R) communications can be found. The union of V2V and V2R provides a
better network coverage and performance. However, the high mobility of vehicles and
the different traffic patterns are challenging for designers and developers. In [152] a
prototype system is presented. It is based on a V2V network which allows the vehicles to
communicate through an IEEE 802.11b connection and sharing information about traffic
and critical situations.

• Smart cities are outlined as an ICT solution to the management of complex dynamics
(food and water supplies, local waste, public transport, tourism or security, among others)
that can be found in major cities, as a result of the current population growth [27]. In this



1.2 Description of the Problem and Motivation 5

context, Wireless Mesh Networks (WMNs) [5] can be used as an extension of the Internet,
which intends to provide a set of specific services to their participants in an economic
and efficient manner. For instance, collaborative translation in a museum through a
local Mobile Cloud, which is made up of a group of tourists [71]; a self-replicated and
self-deployed tour guide service to provide continuous service to all users despite of
network partitions [45]; a network of information about environmental variables of the
city (temperature, humidity, human density, noise or illumination) gathered and shared by
pedestrians [2][3]; a context-aware service to provide information about points of interest
(restaurant, gas stations, etc.) in the vicinity of the tourists [136]; a system to provide a set
of services within a shopping mall (navigation, offers, shop lists, reservations, restaurants,
etc.) to its customers [64]; a system to support students in a university campus, providing
services to document (e.g., minutes of lectures or homework) or information sharing
(e.g., such as exam timetable or campus maps) [151] [23]; or a private social network
made up for the participant of a conference, through such network they can meet up at
the airport to share a taxi, meet other participants that speak the same language, or share
information about the conference [131].

• Emergency Scenarios & Situations. In some scenarios, such as accidents in remote
areas (e.g., high mountains or high seas), natural disasters (e.g., earthquake) or terrorist
attacks, the common network infrastructures may not be available. In those cases, it
is necessary to provide a support system to allow managing effectively and efficiently
the action plan (situation, intervention, and risks), resources (human, material and
technological) and the cost of all involved parts [69]. In this context, in [110] a system to
support firefighters in the rescue tasks after an earthquake in a large city is proposed; or a
collaborative system to support archaeological and scientific expeditions in the desert is
proposed in [71] .

However, to achieve all the potential that these new computing environments offer and
to provide dependable and efficient solutions to the scenarios in the above described, several
research challenges have to be addressed.

1.2 Description of the Problem and Motivation

Since the introduction of the Mobile Computing, as an extension of Distributed Computing,
it has been clear that the main constraints faced in these environments are intrinsic to
mobility, not to the technology [142]. These constrains were identified as:



6 Introduction

• Mobile elements are resource-poor relative to static elements.

• Mobility is inherently hazardous.

• Mobile connectivity is highly variable in performance and reliability.

• Mobile elements rely on a finite energy source.

These constrains have been inherited in the following computation paradigms, based on
mobile systems, such as Ubiquitous Computing, MCC, and IoT.

In ubiquitous scenarios in general and within Mobile Computing, Mobile Ad-hoc NET-
works (MANETs), play a fundamental role, owing to the autonomy and flexibility that they
provide in the communication system [33]. However, the dynamic network topology that
characterizes MANETs must be conveniently addressed to guarantee the dependability of the
system [12]. The dynamicity in the network topology is produced by the mobility of the nodes
that make up the network. Further, the nodes may be switched off or may be disconnected
(temporarily or permanently). Since these networks are typically multi-hop, this usually implies
link failures, route changes or even network partitions, which could have a profound impact on
the availability of the services deployed in the network.

This supposes a challenge for software architects, who currently do not have a practical and
complete architectural approach to address the dynamicity of these mobile systems. Among
the currently existing software architectural approaches, the Service Oriented Architecture
(SOA) [50], due to its flexibility, interoperability and scalability, stands between the most
promising approach to address software system design for Ubiquitous Computing. It has been
also claimed as the approach to accomplish IoT [102].

However, SOA itself is not enough to satisfactorily address software design in dynamic
systems [22]. And currently, dynamically reconfigurable runtime architectures are one of
the main research challenges of SOA:

The services runtime infrastructure should automatically leverage distributed service
components and resources to create an optimal architectural configuration according to
both a particular user’s requirements and the application characteristics. [126]

As a result, self-adaptive architectures combined with traditional approaches, such as
SOA, have been gaining importance in the research community [169]. This confirms what
Satyanarayanan already noted in 1996: “adaptation is key to mobility” [142].

A self-adaptive or autonomic architecture has been complemented with self-* features
from Autonomic Computing field (i.e., self-healing, self-configuration, self-optimization, and



1.2 Description of the Problem and Motivation 7

self-protection [84]). In this way, the system has the capability of reducing the consequences of
context changes in the quality attributes.

Self-adaptive software is also the solution to address the new research challenges intro-
duced by Ubiquitous Computing, and to effectively and satisfactorily provide services and
applications in these environments [143]:

• Effective Use of Smart Spaces. In a well-defined space, software and hardware elements
have to be able to interact automatically between them, being conscious about the context
by which are surrounded and adapting their behaviour accordingly.

• Invisibility. The increasing number of devices, services, applications, and data could
become unmanageable for users. Thus, to the extent possible, services and applications
in ubiquitous environments should adapt and operate without the explicit intervention of
the users.

• Localized scalability. As computer environments grow in complexity (user, devices,
applications or services) the demand of computational resources increases, especially
bandwidth. This comes into direct conflict with the resource-aware approach of mobile
systems, and it may cause serious scalability problems in full developed Ubiquitous
environments (e.g., IoT). Therefore, ubiquitous systems have to break with the traditional
inexistence of distance on the Internet (i.e., a server has to serve a client independently
of the distance). Software designers have to achieve Localized Scalability, this is, an
information item has to reach only the area in which it has meaning and relevance.

• Masking Uneven Conditioning. Smart spaces are usually made up of heterogeneous
technologies, which can vary as the users move between different of these spaces.
Additionally, all the spaces in which the users are moving may not offer the same
technologies. This is why software designers have to foresee the execution conditions
in which their system can be found, and take the necessary measures to make it able to
adapt to these situations.

Additionally, these new computing environments are characterized by being resource-
constrained. Therefore, not only to provide a self-adaptive solution is necessary, but also a
resource-aware solution that balances the performance of the system with efficient resource
consumption.

Nowadays, in the literature some proposals that aim to address this problem can be found.
However, these are frequently ad-hoc solutions that have been developed for specific scenarios,



8 Introduction

and they are based on an implicit and often restricted, context model. Moreover, they often
assume reliable communication channels. This can be considered as a strong assumption, since
data or message loss is an inherent property of mobile and ad-hoc wireless networks, especially
in highly dynamic and large-scale systems. These proposals will be thoroughly analysed in
Chapter 3.

1.3 Hypothesis and Objective

The hypothesis for this research work is the following one:

Advanced Service Oriented Architectures applied to highly dynamic systems
(e.g., ubiquitous or IoT systems) could contribute to the improvement of the quality
attributes of the system as a whole.

The main objective of this thesis is

To design and implement a proposal based on a self-adaptive software architec-
ture that improves the system quality (in particular availability and reliability) and
the applicability of services, by addressing the new challenges posed by the new
dynamic computation systems.

In order to achieve the main objective we plan to address the following specific ones:

• To study and identify the main limitations of the current software architectural design
approaches for mobile and ubiquitous systems.

• To study and identify the principal techniques and methods of Autonomic Computing
to address the challenges posed by mobile and ubiquitous systems concerning software
design.

• To review and analyse the existing proposals on dynamic service or data provisioning
in dynamic environments, and to identify from the analysis the desirable features of a
candidate solution.

• To propose, design and implement specific services and components that dynamically
allow the software architecture adaptation according to context changes, thus providing
better support for applications and users in dynamic mobile and ubiquitous systems.

• To evaluate and validate the feasibility of the proposal using tools able to model and
simulate the dynamic nature of computer networks, and therefore to handle and evaluate
dynamic models.



1.4 Structure of the Doctoral Thesis 9

1.4 Structure of the Doctoral Thesis

This thesis is divided into three parts:

i. The first part of this thesis is composed of three chapters. In this first chapter, the context
in which this research work is developed, the motivation, hypothesis, and objectives are
presented. Chapter 2 introduces an overview of the concepts and technologies related
to the design and development of self-adaptive architectures in dynamic environments.
Chapter 3 presents a thorough review of existing approaches to address the problem
domain. In this chapter, the desirable features of a candidate solution addressing the
main objective are analysed.

ii. In the second part, the main contribution of this thesis, the Proteo architecture, is
described. Chapter 4 introduces the design of Proteo architecture, providing an overview
of its main components. In Chapter 5 the Proteo model is provided. This offers a detailed
vision of Proteo architecture, its components and behaviour. Chapter 6 outlines the
development and configuration of the proposal in a network simulator, this allows us to
validate and evaluate it. Lastly, in Chapter 7, the results obtained during the evaluation of
Proteo architecture are shown, analysed and discussed.

iii. The third part of this work provides an overview of work already in progress to continue
expanding and improving Proteo architecture in Chapter 8. Finally, Chapter 9 summarises
conclusions and the possible research lines for future work are outlined.

1.5 Publications

The articles published to date as a result of the research performed on this thesis are listed
below.

Journals

• A Context-Aware Architecture Supporting Service Availability in Mobile Cloud
Computing. G. Guerrero-Contreras, J. L. Garrido, S. Balderas-Díaz, C. Rodríguez-
Domínguez. IEEE Transactions on Services Computing 2017 vol: 10 (6) pp: 956 - 968.
[JCR 2016 Q1; IF 3.520] 10.1109/TSC.2016.2540629

• A Collaborative Semantic Annotation System in Health: Towards a SOA Design
for Knowledge Sharing in Ambient Intelligence. G. Guerrero-Contreras, J. L. Navarro-

https://doi.org/10.1109/TSC.2016.2540629


10 Introduction

Galindo, J. Samos, J. L. Garrido. Mobile Information Systems 2017 vol: 2017 pp: 1-10.
[JCR 2016 Q4; IF 0.849] 10.1155/2017/4759572

• Using Actigraphy and mHealth Systems for an Objective Analysis of Sleep Quality
on Systemic Lupus Erythematosus Patients. S. Balderas-Díaz, M. P. Martínez, G.
Guerrero-Contreras, E. Miró, K. Benghazi, A. I. Sánchez, J. L. Garrido, G. Prados.
Methods of Information in Medicine 2017 vol: 56 (2) pp: 171-179. [JCR 2016 Q3; IF
1.772] 10.3414/ME16-02-0011

• Self-adaptive deployment of services in mobile environments: a study of the com-
munication reliability on the host election algorithm. G. Guerrero-Contreras, S.
Balderas-Díaz, C. Rodríguez-Domínguez, J. L. Garrido, A. Valenzuela. Journal of

Reliable Intelligent Environments 2016 vol: 2 (4) pp: 197-207. 10.1007/s40860-016-
0029-3

Book Chapters

• Designing New Low-Cost Home-Oriented Systems for Monitoring and Diagnosis
of Patients with Sleep Apnea-Hypopnea. S. Balderas-Díaz, K. Benghazi, J. L. Garrido,
G. Guerrero-Contreras, E. Miró. ICTs for Improving Patients Rehabilitation Research

Techniques 2015. pp 210-221. 10.1007/978-3-662-48645-0_18

International Conferences

• Integrating a Dual Method on a General Architecture to Self-Adaptive Monitoring
Systems. S. Balderas-Díaz, K. Benghazi, J. L. Garrido, G. P. M. O’Hare, G. Guerrero-
Contreras. Advances in Intelligent Systems and Computing 2017 vol: 1 pp: 528-538.
10.1007/978-3-319-56535-4_54

• Impact of Transmission Communication Protocol on a Self-adaptive Architecture
for Dynamic Network Environments. G. Guerrero-Contreras, J. L. Garrido, M. J.
Rodríguez-Fórtiz, G. P. M. O’Hare, S. Balderas-Díaz. Advances in Intelligent Systems

and Computing 2017 vol: 206 pp: 115-124. 10.1007/978-3-319-56538-5_12

• BaaS-4US: A Framework to Develop Standard Backends as a Service for Ubiqui-
tous Applications. F. Carranza-Garcia, C. Rodriguez-Dominguez, J. L. Garrido, G.
Guerrero-Contreras. 15th International Conference on Ubiquitous Computing and Com-

munications and International Symposium on Cyberspace and Security (IUCC-CSS)

2016 pp: 23-30. 10.1109/IUCC-CSS.2016.012

https://doi.org/10.1155/2017/4759572
https://doi.org/10.3414/ME16-02-0011
https://doi.org/10.1007/s40860-016-0029-3
https://doi.org/10.1007/s40860-016-0029-3
https://doi.org/10.1007/978-3-662-48645-0_18
https://doi.org/10.1007/978-3-319-56535-4_54
https://doi.org/10.1007/978-3-319-56538-5_12
https://doi.org/10.1109/IUCC-CSS.2016.012


1.5 Publications 11

• Trending Technologies and Standards Supporting the Development of Quality Col-
laborative Web Applications: The Case Study of VIRTRAEL. C. Rodríguez-Domínguez,
F. Carranza-García, G. Guerrero-Contreras, J. L. Garrido. Ambient Intelligence and Smart

Environments 2016 vol: 21 pp: 94 – 103. 10.3233/978-1-61499-690-3-94

• An Approach Addressing Service Availability in Mobile Environments. G. Guerrero-
Contreras, S. Balderas-Díaz, C. Rodríguez-Domínguez, A. Valenzuela, J. L. Garrido.
Workshop Proceedings of the 11th International Conference on Intelligent Environments,
Prague, Czech Republic, July 15-17, 2015. vol: 19 pp: 46-57. 10.3233/978-1-61499-
530-2-46

• An Introduction to Continuous Interaction. C. Rodríguez-Domínguez, J. L. Garrido,
G. Guerrero-Contreras, F. Carranza, A. Valenzuela. Workshop Proceedings of the 11th

International Conference on Intelligent Environments, Prague, Czech Republic, July
15-17, 2015. vol: 19 pp: 82-92. 10.3233/978-1-61499-530-2-82

• Dynamic Replication and Deployment of Services in Mobile Environments. G.
Guerrero-Contreras, C. Rodríguez-Domínguez, S. Balderas-Díaz, J. L. Garrido. New

Contributions in Information Systems and Technologies 2015 vol: 353 pp: 855-864.
10.1007/978-3-319-16486-1_85

• Self-adaptive Service Deployment in Context-Aware Systems. G. Guerrero-Contreras,
J. L. Garrido, C. Rodríguez-Domínguez, S. Balderas-Díaz. Ubiquitous Computing and

Ambient Intelligence. Personalisation and User Adapted Services. UCAmI 2014. vol
8867, pp. 259–262. 10.1007/978-3-319-13102-3_42

• Consistent Management of Context Information in Ubiquitous Systems. G. Guerrero-
Contreras, J.L., Garrido, S. Balderas-Díaz, C. Rodríguez-Domínguez. Internet and

Distributed Computing Systems - 7th International Conference, (IDCS) 2014, Calabria,
Italy, September 22-24, 2014. 10.1007/978-3-319-11692-1_16

• Towards a Self-Adaptive Deployable Service Architecture for the Consistent Re-
source Management in Ubiquitous Environments. G. Guerrero-Contreras, J. L. Gar-
rido, K. Benghazi, S. Balderas-Díaz, C. Rodríguez-Domínguez. Workshop Proceedings

of the 10th International Conference on Intelligent Environments, Shanghai, China, June
30 - July 1, 2014. vol: 18 pp: 206-217. 10.3233/978-1-61499-411-4-206

• A service-based platform for monitoring and diagnosis of patients with SAHS symp-
toms. S. Balderas-Díaz, K. Benghazi, J.L. Garrido, G. Guerrero-Contreras, E. Miró.

https://doi.org/10.3233/978-1-61499-690-3-94
https://doi.org/10.3233/978-1-61499-530-2-46
https://doi.org/10.3233/978-1-61499-530-2-46
https://doi.org/10.3233/978-1-61499-530-2-82
https://doi.org/10.1007/978-3-319-16486-1_85
https://doi.org/10.1007/978-3-319-13102-3_42
https://doi.org/10.1007/978-3-319-11692-1_16
https://doi.org/10.3233/978-1-61499-411-4-206


12 Introduction

Proceedings of the 8th International Conference on Pervasive Computing Technologies

for Healthcare, PervasiveHealth 2014, Oldenburg, Germany, May 20-23, 2014. pp:
290-293. 10.4108/icst.pervasivehealth.2014.255365

• Designing a Service Platform for Sharing Internet Resources in MANETs. G.
Guerrero-Contreras, J.L., Garrido, C. Rodríguez-Domínguez, M. Noguera, K. Benghazi.
Advances in Service-Oriented and Cloud Computing - Workshops of ESOCC 2013,
Málaga, Spain, September 11-13, 2013. vol: 393 pp: 331-345. 10.1007/978-3-642-
45364-9_27

https://doi.org/10.4108/icst.pervasivehealth.2014.255365
https://doi.org/10.1007/978-3-642-45364-9_27
https://doi.org/10.1007/978-3-642-45364-9_27


Chapter 2

Foundations

Chapter Abstract

As introduced in the previous chapter, since Distributed Systems evolved to Mobile Systems, adaptation,

specifically self-adaptation, has been a fundamental requirement to successfully and efficiently address

the development of software systems. However, despite the importance of this requirement, still, there

is no an architectural approach to address it. To this end, SOA has to be combined with methods and

techniques from Autonomic Computing field, as well as complementary approaches, such as Event-

Driven Architecture (EDA) and Microservices. Throughout this chapter, these concepts are examined

and exposed from the perspective of self-adaptation and system autonomy.

Additionally, in this chapter the Leader Election Problem and some of the existing traditional election

algorithms to solve it to address coordination in distributed systems are exposed. Moreover, the quality

attributes treated throughout this work are defined (Agility, Interoperability, Reliability, Scalability and

Service Availability). Finally, the tools used to support the development of this thesis are introduced:

the ns-3 network simulator tool, which will be used to evaluate and validate our proposal, and SysML, a

general-purpose modelling language for “System of Systems” (SoS).

Chapter Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Ubiquitous Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Software Development Approaches . . . . . . . . . . . . . . . . . . . . . 19

2.4 Leader Election Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 System Quality Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



14 Foundations

2.1 Introduction

The purpose of this chapter is to briefly lay the foundations on which the work of this thesis
is developed. The concepts covered in this chapter are studied from the perspective of the
adaptation and system autonomy.

The chapter is organized as follows. In Section 2.2 the problematic and requirements for
adaptation, or more specifically self-adaptation, of mobile and ubiquitous systems, are exposed,
and how these still need to be addressed in IoT and MCC. Section 2.3 presents the software
approaches aimed to successfully and effectively address the software system development in
dynamic computation environments. Section 2.4 introduces the Leader Election Problem, and
the traditional algorithms proposed to solve it. Additionally, Section 2.5 defines the system
quality attributes that are treated, in one form or other, throughout this thesis. Finally, Section
2.6 introduces the tools that will support the development of this work.

2.2 Ubiquitous Systems

The introduction of the ubiquitous computing, not as a technology but as a new computation
paradigm, brings which Weiser defined as The Age of Calm Technology [168]. In which,
technology fades into the background of our daily lives, providing an unconscious human-
computer interaction.

Ubiquitous computing can be considered an extension of mobile computing, which in turn
can be considered an extension of distributed systems. Each extension brings new potential
advantages, providing increasing liberty and flexibility to the user. However, they also pose
new research challenges, in addition to inheriting existing ones from previous environments
(Fig. 2.1).

Since the introduction of the mobile computing, as an extension of distributed computing,
it has been clear that mobile clients have to be adaptive. As Satyanarayanan noted:

Any viable approach to mobile computing must strike a balance between these
competing concerns [resource poverty, low trust, and robustness]. This balance
cannot be a static one; as the circumstances of a mobile client change, it must react
and dynamically reassign the responsibilities of client and server. In other words,
the mobile client must be adaptive. [142]



2.2 Ubiquitous Systems 15

Fig. 2.1 Taxonomy of computer systems research problems in ubiquitous computing. Extracted
from [143].

To this end, mobile and ubiquitous systems have to be context-aware, i.e., they need to
know what it is happening and how in their execution contexts to reason what adaptations are
necessary to perform.

2.2.1 Context-Aware Computing

There have been different definitions of what context is. However, one of the most accepted is
that provided by Dey in 2001: “Context is any information that can be used to characterise

the situation of an entity. An entity is a person, place, or object that is considered relevant

to the interaction between a user and an application, including the user and applications

themselves” [46]. On this basis, Dey defined what a context-aware system is: “A system is

context-aware if it uses context to provide relevant information and services to the user, where

relevancy depends on the user’s task” [46]. A latter and simplified definition of context was
given by Hirschfeld et al.: “any computationally accessible information can be considered as

context” [67]. Therefore, in the design of a context-aware system, a fundamental step is to
clearly identify what is the relevant context information that has to be taken into consideration.

The context information can be structured in two main categories, according to its source
(Fig. 2.2) [144]: (1) human factors and (2) physical environment. Each of this categories can
be divided into three subcategories:

• Human factors:

– Information of the user: habits, emotions, bio-physiological conditions, etc.



16 Foundations

– Social environment: group dynamics, social interactions, co-location of other actors,
etc.

– User’s task: activity, engaged tasks, goals, etc.

• Physical environment:

– Location: absolute and relative positions, co-locations, etc.

– Infrastructure: surrounding resources for computation, communication, task perfor-
mance, etc.

– Physical conditions: noise, light, temperature, etc.

Fig. 2.2 Context feature space. Extracted from [144].

2.2.2 Advanced Systems

From Mobile and Ubiquitous Computing, new computation systems have arisen. IoT and
MCC are of particular interest, due to their increasing popularity. These more specialized
environments bring new advantages and challenges. However, they inherit the need of self-
adaptation from Mobile and Ubiquitous Computing.

Internet of Things

Internet of Things (IoT) can be defined as “the pervasive presence around us of a variety of

things or objects [. . . ] which, through unique addressing schemes, are able to interact with

each other and cooperate with their neighbours to reach common goals” [11].



2.2 Ubiquitous Systems 17

IoT paradigm brings a promising vision. However, its realization is also challenging,
owing to IoT encompasses a wide number of ICT fields (Fig. 2.3), taking their advantages
as well as their research challenges. Among these ICT fields, as Wireless Sensor Networks
(WSN) or RFID technologies, SOA have been claimed as the software architectural approach
to realize IoT [102]. However, as stated by Borgia: “as SOA standards were originally

designed for connecting programs running on static computers, their direct application to IoT

devices is not feasible but requires an adaptation to this context” [22]. Specifically, services
are expected to adapt autonomously to different context situations. According to [102] it
is required: “methods for discovering, deploying and composing services at run-time in a

distributed fashion, supporting autonomicity within all phases of the service life-cycle.”

Fig. 2.3 IoT layers. Extracted from [22].

The main challenges that have to be addressed to realize IoT have been identified as [102]:

• Device heterogeneity. IoT will be composed of a wide set of different devices and
technologies, with different capabilities. This issue is closely related to Uneven Condi-
tioning of Ubiquitous Computing.

• Scalability. In IoT, scalability has to be considered at four levels: (1) naming, (2), data
communication and networking, (3) information and knowledge management, and (4)
service provisioning and management. Note that the second level, data communication,
and networking, is closely related to the need of achieving Localized Scalability in
Ubiquitous Computing.

• Ubiquitous data exchange through proximity wireless technologies. The need of ad-hoc
networks requires for smart object the adoption of wireless medium communication
technologies, which, together the high increase in devices inherit to the IoT, may lead to
technical issues in the spectrum availability.

• Energy-optimized solutions. It is necessary to devise solutions able to optimize energy
usage, prioritizing its use even against the system performance.



18 Foundations

• Localization and tracking capabilities. Abilities to track the location of a smart object in
its environment. Especially necessary for product management applications.

• Self-organization capabilities. Owing to the dynamicity and complexity of IoT scenarios,
it is necessary to provide autonomic capacities to the things, to minimize the human
intervention. The need of the IoT nodes to organize themselves in ad-hoc networks arises
the need of providing them with capabilities to manage the data sharing and organization,
adapting to the dynamic changes in context.

• Semantic interoperability and data management. Owing to the amount of data produced
will be necessary to provide standardize formats, models, and semantics to allow its
analysis and interoperability.

• Embedded security and privacy-preserving mechanisms. Security and privacy are consid-
ered key requirements to IoT, due to the deep impact that they can have on the daily lives
of their users.

Mobile Ad-hoc Cloud Computing

Cloud computing [8] can help to address one of the main weaknesses of mobile systems: the
lack of computational resources. The Cloud allows the delegation of some processing and
storage tasks that must otherwise be carried out in nodes with limited resources. This opens up
new possibilities for mobile systems, and as a result, the concept of Mobile Cloud Computing
(MCC) has emerged, that is, “an infrastructure where data storage and processing could

happen outside of the mobile device”, which can operate under three main schemes [52]:

• A traditional scheme, where the mobile node delegates part or all of its operation to the
Cloud, through an Internet connection. This is performed under a client-server paradigm,
where the mobile node acts as a regular client of the Cloud through an Internet connection.
In turn, this scheme can be divided into different subcategories according to the degree
of computational offloading on the Cloud.

• A Local Mobile Cloud or Spontaneous Mobile Cloud, where a set of mobile nodes
make up a local Cloud between them through short-range connections. The storage or
processing is carried out through a distributed process between the nodes that make up
the local network. This schema is of particular interest in domains where a stable Internet
connection cannot be established, and thus it is not possible to connect with an external
Cloud.



2.3 Software Development Approaches 19

• A hybrid scheme, where the mobile system is composed of an Ad Hoc Mobile Cloud,
which is made up of the nodes of the mobile system, and, at the same time, it is supported
by an external Cloud under a traditional scheme.

Currently, the first scheme is widely spread, as nowadays the majority of the current
applications are offered through a SaaS (“Software as a Service”) service model [8] (e.g.,
Google Apps: Calendar, Gmail or Drive). While SOA is a model for the design and development
of software systems, Cloud and SaaS are models for their software implementation and delivery,
respectively [31]. Thus, it is especially interesting to complement SOA and SaaS models to
develop different services at different levels of abstraction [93], which can be accessed from
mobile devices connected through the Internet.

The second scheme, Ad-Hoc Mobile Cloud, is required in domains where mobile applica-
tions also need to be supported by data storage and processing services provided by the mobile
platform itself in a transparent and flexible way. This is of particular interest in the IoT, where
the advantages of MCC can alleviate some of its limitations [132], such as those related with
the architecture technology: MCC provides an efficient and flexible architectural model; and
ubiquitous communications: MCC allows heterogeneous interoperability through services.

Nevertheless, this cloud approach is usually supported by a MANET, which poses new
challenges [34] that must be conveniently addressed to guarantee the dependability (availability,
reliability, safety, integrity, and maintainability) of the Mobile Cloud (Fig. 2.4). Shila et al.
state that:

An underpinning concept in cloud computing is resource virtualization. A
network node can provision its physical resources to multiple applications through
certain service level agreements. The significant challenge is to design proper
adaptive resource allocation techniques for balancing the tradeoff between resource
utilization efficiency and QoS guarantee. [150]

According to these authors, Autonomic Computing postulates as a promising solution to
manage Ad-Hoc Cloud Computing systems [150].

2.3 Software Development Approaches

In this section, the techniques, methods and approaches for the design and development of
software systems in dynamic computing environments are presented. As it will be described,
these approaches are often related, and its combination will be crucial to successfully address
the problematic presented in Ubiquitous environments.



20 Foundations

Fig. 2.4 A taxonomy of issues in mobile cloud computing. Extracted from [52].

2.3.1 Autonomic Computing and Self-adaptive Software Systems

Autonomic Computing arises in 2001 by the hand of IBM as a solution to address the increasing
computing systems’ complexity and an enabling technology for pervasive environments. The
objective of autonomic computing is to provide computer systems with self-management and
allow them to run at peak performance 24/7 without explicit human intervention. The system
will be able to adjust its operation to changing conditions (demand patterns, workload or
failures). Autonomic Computing (self-management) is achieved by means of four main self-*
aspects [84]:

• Self-configuration: “Automated configuration of components and systems follows high-

level policies. System adjusts automatically and seamlessly.”

• Self-optimization: “Components and systems continually seek opportunities to improve

their own performance and efficiency.”



2.3 Software Development Approaches 21

• Self-healing: “System automatically detects, diagnoses, and repairs localized software

and hardware problems.”

• Self-protection: “System automatically defends against malicious attacks or cascading

failures. It uses early warning to anticipate and prevent system wide failures.”

Self-adaptive software and autonomic computing terms are related and in many cases, they
can be used interchangeably. However, a distinction can be made: while self-adaptive software
mainly covers the middleware and upper software layers, autonomic computing can also cover
layers below the middleware [141].

In ubiquitous computing, adaptation is defined as “the reactive process triggered by a

specific event or a set of events in the context, with an ultimate goal to improve the QoS

perceived by the end-user” [82].

Adaptation Control Loop

An autonomic system is composed of a collection of autonomic elements. These elements will
manage their own behaviour and relations with others (machine or human). This is managed
by the commonly accepted MAPE-K IBM’s adaptation control loop (Monitor, Analyse, Plan,
Execute and Knowledge) (Fig. 2.5).

Fig. 2.5 MAPE-K IBM’s adaptation control loop. Extracted from [73].

In general, the autonomic manager is responsible for the management and control the
adaptation process on the managed element. A managed element can be a hardware resource
(storage, CPU or device) or a software entity (database, document or a legacy system).



22 Foundations

Monitoring becomes an essential feature to react to context changes, with self-optimization
and reconfiguration purposes, and to know if the requested performance is currently meeting.

Kakousis et al. adapt MAPE-K loop (see Fig. 2.5) proposed by IBM to an adaptation loop
for ubiquitous computing consisting in three consecutive phases:

• Context sensing and processing: the data of user context and system context are recol-
lected and processed to produce high-level events that might trigger a system adaptation.

• Adaptation reasoning and planning: the system reasons about what is needed to be done
and how to accomplish with the overall adaptation goal.

• Adaptation acting: the necessary adaptation mechanisms are used to implement the
decision made in the system adaptation planning.

Fig. 2.6 Software adaptation classification on the basis of (x) overall goal of the adaptation;
(y) moment in which the adaptation need is detected; and (z) adaptation methodology. This
figure is based and integrates the classifications proposed on [82][85][26][15].



2.3 Software Development Approaches 23

Software Adaptation Classification

Software adaptation can be classified in different categories (see Fig. 2.6), from the perspective
of (1) the overall goal of the adaptation, (2) the moment in which the adaptation need is detected
or applied, and (3) the adaptation methodology.

According to the overall goal of the adaptation, Kakousis et al. propose a coarse-grained
classification: functional and extra-functional [82]. Whereas functional adaptation refers to
system’s functionality, extra-functional is related to QoS attributes of the system. Ketfi et al.
propose a finer grained classification[85]:

• Corrective adaptation: a faulty part of the system is replaced to continue with the normal
operating of the system.

• Adaptive adaptation: system reacts to events of the context that can affect to its behaviour.

• Extending adaptation: the system is extended with new functionality that has not been
considered at design-time.

• Perfective adaptation: modifications are made to the system to improve it QoS attributes.

Regarding the moment in which the adaptation need is detected or applied, Kakousis et
al. propose a coarse-grained classification again: dynamic and static adaptation. Whereas
dynamic adaptation refers to modifications performed at run-time, static adaptation refers to
modification performed at design or deployment time. Canal et al. and Becker et al. propose a
finer classification [26][15]:

• Requirements adaptation: within the software development life cycle, this adaptation
generally occurs in the analysis phase, where the requirements have to be modified owing
to a system specification modification or extension.

• Design-time adaptation: refers to the necessaries modification to solve mismatch types
that usually occur on component-based systems.

• Dynamic adaptation: refers to the modifications occurred at run-time. These can be
divided into reactive and proactive:

– Reactive adaptation: when the system reacts in response to any change in the
execution context.

– Proactive adaptation: system takes the initiative to suggest or adapt itself usually
to accomplish in a better way user’s needs.



24 Foundations

Finally, software adaptation can be classified from the point of view of the adaptation
methodologies. According to Kakousis et al. there are two main adaptation methodologies [82]:
parameter-based and compositional. Whereas parameter-based adaptation refers to adaptation
using variable modification or parameter configurations, compositional adaptation refers to
adapt system’s behaviour employing structural, geographical, interface or implementation
modifications.

Reasoning and Acting Phases: Techniques and Methodologies

Kakousis et al. include a study of the most popular techniques and methodologies for the phases
of Adaptation reasoning and Adaptation acting. Regarding Adaptation reasoning techniques
they evaluate them on the basis of resource efficiency, coverage of the context value domain,
ease of building, adaptation openness, adaptation coordination, evolvability, and traceability.

The techniques applied in this phase are [82]:

• Action-based (rule-based) adaptation: Based on states and actions and IF-THEN rules.
This technique is widely applied in reasoning processes. This is because of the approaches
based on this technique are not resource demanding and have high traceability. However,
they may present low coverage of the context value domain, as they only consider
binary decisions. Moreover, in complex systems, they need high development effort, as
the designers have to define every possible situation to which the system will address.
Additionally, dynamic modification and evolution of the rules are often complex.

• Goal-based adaptation: Instead of defining each event-reaction situation explicitly, the
designers only define the overall goal of the system, and it is the system itself who
decides the actions that have to be taken to reach that goal. This technique is closely
related to Multi-Agent System. These approaches require a low knowledge of the system
functionality from the designers. However, in resource-constrained situations, it can
cause problems when the system is not able to fulfil all the goals simultaneously, or there
are conflicting objectives.

• Utility functions: Adopted from the field of economics and AI, the utility functions
are applied to map a situation or state to a real numeric value, according to a set of
preferences usually represented as weights. In this way, an entity can compare different
situations easily and select that what better fits the system preferences and the current
context. According to Kakousis “utility functions have been applied in several works,

especially QoS-based, for measuring the suitability of adaptation alternatives in fluctuat-

ing environments” [82]. Utility function based approaches present a good coverage of



2.3 Software Development Approaches 25

Table 2.1 Comparison of adaptation reasoning approaches based on their applicability for
ubiquitous computing and mobile environments. Extracted from [82].

Evaluation Criteria
Action-based Goal-based Utility functions Case-based Reinforcement learning

R
ea

so
ni

ng
A

pp
ro

ac
h

Resource Efficiency High High Medium Low Low
Context coverage Medium Low High Low Medium
Ease of building Low Medium Low Low Low
Adaptation openness Low Low High Medium Medium
Adaptation coordination High Low High Medium Medium
Evolvability Low Low High High High
Traceability High High Low High Low

the context value domain, as they can produce numeric values on the basis of any context
value; they can address easily different adaptation objectives, using the specialization
and combination of different utility functions; and are easily adaptable, even at run-time.
However, they may present a challenge for designers in complex systems and can offer
poor traceability.

• Case-based reasoning: Based on the experience using a set of already resolved previous
problems or situations, CBS tries to learn how to resolve similar problems. However, it
is necessary a significant amount of previous knowledge. However, adaptation problems
in ubiquitous computing present a wide set of variables, and sometimes, that, if not
are well-represented in the case may lead to CBS-based approaches to low coverage of
the context value domain. Although, CBS-based approaches are highly evolvable, as
facilitates self-learning from the new resolved cases, improving their performance.

• Reinforcement learning. It is an unsupervised learning mechanism that performs a
trial-and-error search. The main disadvantage of this technique is the high resource
demand.

Table 2.1 shows the overview of the evaluation of the different adaptation reasoning
techniques. Although the utility functions are one of the better valued, it must be emphasized
that these approaches can be combined in multiple ways and that the election of one approach
is determined by the execution context of the system and its overall objective.

Regarding Adaptation acting, Kakousis et al. include the following mechanism to imple-
ment dynamic software adaptation:

• Code mobility, defined as “the process of migrating or moving running program instances,

codes or objects from one host to another” [82]. This is supported by Mobile Code
Languages, divided into two categories: (1) strong if it allows the mobility of the



26 Foundations

execution state and code; and (2) weak if it only allows the mobility of the code and
initialisation data. Code mobility can be executed in two ways: (1) code pushing, where
an entity sends the code/process to a host, or (2) code pulling, where a host downloads the
code/process from a remote entity. This can be implemented employing a Client/Server
scheme, Code On Demand, Remote evaluation or Mobile agents.

• Parameter adaptation modifies the behaviour of the system through the customization of
predefined configuration variables. It is a cheap and fast adaptation technique. However,
it has to be in design time where the configuration variables have to been settled, thus if
new adaptation requirements arise at run-time, these cannot be addressed through this
technique. Moreover, in complex systems an excessive number of configuration variables
can become difficult to manage.

• Compositional adaptation is based on the traditional component-based paradigm [155].
Szyperski defines a component as “a unit of composition with contractually specified

interfaces and explicit context dependencies only. A software component can be deployed

independently and is subject to composition by third parties” [155]. In this way, it is
possible to exchange dynamically (i.e., at run-time) parts of the system to improve its
behaviour or performance and to address new adaptation requirements that can arise at
run-time and be not expected, without interrupting the execution of the system. Within
dynamic compositional adaptation, it can be found two types [82]: tunable software,
which only allows extra-functional adaptations; and mutable software, which allows
altering the business logic of a program.

Distributed Adaptation and Related Areas

According to [82], distributed adaptation is one of the main challenges of dynamic adaptation
in pervasive systems. The adaptation can be performed by a centralized entity (centralized
adaptation), or the different entities implied in the adaptation have to collaborate and agree
to achieve a global adaptation (distributed adaptation). Although decentralized approaches
introduce complexity, owing to the requirement of negotiation among the distributed entities,
the robustness and fault-tolerance of the system are highly increased, as any node is essential.
This is of great interest in dynamic contexts, where the nodes or communication links can fail
or disappear.

Finally, it worthwhile mentioning that service-oriented computing (Section 2.3.2) and
grid systems are approaches that could support the design and development of autonomic
systems. However, autonomic elements can be both service consumers and providers [84]. This



2.3 Software Development Approaches 27

is highly related with SOA 2.0 (Section 2.3.5). Moreover, Autonomic Computing is highly
related with Multi-Agent Systems (Section 2.3.6), specifically when the autonomic elements
are goal-oriented designed.

2.3.2 Service Oriented Architecture

Service-Oriented Computing (SOC) is understood as a representation of a new generation
distributed computing platform. It comprehends its own design paradigm and principles,
design patterns catalogues, pattern languages, architectural model, concepts, technologies, and
frameworks. According to T. Earl, service-oriented computing:

represents a new generation computing platform that encompasses the service-
orientation paradigm and service-oriented architecture with the ultimate goal of
creating and assembling one or more service inventories. [50]

Otherwise, Service-Oriented Architecture (SOA) is defined as:

an architectural model that aims to enhance the efficiency, agility, and pro-
ductivity of an enterprise by positioning services as the primary means through
witch solution logic is represented in support of the realization of strategic goals
associated with service-oriented computing. [50]

It must be highlighted that although SOA and service-oriented computing are often used as
synonyms, SOA is seen as a form of technology architecture and its implementation is specific
for each enterprise. Therefore, according to T. Earl:

building a technology architecture around the service-oriented architectural
model establishes an environment suitable for solution logic that has been designed
in compliance with service-orientation design principles. [50]

Service

In both cases, and in general, in a service-oriented solution, the service is the most fundamental
unit of logic. Services are defined as:

physically independent software programs with distinct design characteristics
that support the attainment of the strategic goals associated with serviced oriented
computing. Each service is assigned its own distinct functional context and is
comprised of a set of capabilities related to this context. Those capabilities suitable



28 Foundations

for invocation by external consumer programs are commonly expressed via a
published service contract (much like a traditional API). [50]

According to the definitions provided, services are considered as an independent unity
of software. This allows coordinating a set of aggregate services to answer different needs
using software composition. In this way, a service can be classified as Utility, Entity or Task

service. Utility services are basic units, usually independent of the application and the domain
that fulfil basic functionality. These services are composed to provide functionality to Entity
services. Entity services are mean to represent basic entities, especially in the business area.
Although these services can be considered independent of the application, they are designed
for a specific domain. Finally, Task services are high-level services with a functionality directly
associated with a specific task or process. These services are generally positioned as the
controller (orchestra conductor) of a composition or orchestration of other Entity or Unity
services. Because of this dependency, they are often placed within close geographic proximity
to the services of which it is composed.

Ideally, a service fulfils a set of design principles, within the service-orientation paradigm:
standardized service contract, loose service coupling, service abstraction, service reusability,
service autonomy, service statelessness, service discoverability and service composability.

Service Autonomy Design Principle

Specifically, service autonomy is understood as the ability of a service to self-govern at runtime
as one key design [50]. This is the degree to which the service can act independently. The
fulfilling of this design principle involves enhanced reliability and predictability, owing to the
independence of the service of external components.

To fulfil this principle, it is necessary an execution and deployment environment where the
service can have a significant amount of control (including sometimes even the data models).
Therefore, it should be designed and deployed an infrastructure able to support the service to
be isolated, composed or moved as required.

It can be mainly found two forms of autonomy: (1) runtime autonomy and (2) design-
time autonomy. Runtime autonomy refers to “the level of control a service has over its

processing logic at the time the service is invoked and executing” [50]. However, due to service
composition, a service can exist as part of an aggregate of services that may also be part of
another service composition. Thus, the autonomy of a service is determined by the collective
autonomy of the services that participate in the composition. In fact, if in this composition
some agnostic service is participating, the autonomy can be considered lost.



2.3 Software Development Approaches 29

Fig. 2.7 Relation of Service Autonomy design principle with other service-orientation design
principles. Extracted from [50].

Design-time autonomy can be defined as “the level of freedom [service owners] [. . . ]

have to make changes to a service over its lifetime” [50]. However, a problem arises when
a consumer binds itself to a service’s contract, and thus the service can no escape to this
obligation. This could generate some problems related with: (1) to scale a service to satisfy
a higher usage demand, (2) modify or enhance the hosting environment, and (3) upgrade or
replace the technology to give response to new requirements.

The autonomy of a service can be categorized into four levels:

• Service contract autonomy: the contracts of the services in the same inventory do not
present overlapped functionality.

• Shared autonomy: logic and resources are shared between different entities.

• Service logic autonomy: service logic is independent, but data resources are shared. This
involves unpredictable levels of concurrent data access, inconsistency, prolonged query
execution times and low scalability.

• Pure autonomy: logic and data resources are independent. Within this category, we
can find functional isolation, where the services share the physical host device and
absolute isolation, where the service, service components and data are on a dedicated
host. Although especially referring to data and other resources, pure autonomy can be
hard to achieve, the use of replication can be an effective approach to address it [50].

Service Autonomy design principle is closely related to other design principles (Fig. 2.7).
The service autonomy involves some challenges as [50]: (1) misjudging the service scope;

(2) wrapper service and legacy encapsulation; and (3) overestimating service demand. This last



30 Foundations

on is related to what the resources are that should be assigned to a service. Physically isolate
services in dedicated host devices can lead to a high cost, whereas the usage demand or the
relevance of the service can vary along the life cycle of the system.

Enterprise Service Bus

The Enterprise Service Bus (ESB) it one of the most common compound patterns in service-
oriented computing [51]. The primary objective of this pattern is to provide a middle layer to
facilitate the scalability and the communication of heterogeneous services, including legacy
entities, in a system. This pattern is usually made up of a service broker, an asynchronous
message queuing system, and an intermediate routing system. However, it only provides a set
of message functions to establish a connection between services and resources. Because of
this, upon the ESB the Canonical Schema Bus pattern can be built [51], which aims to enforce
contract-level standardization, in addition to the functionality provided by the ESB.

Although the ESB has had a great impact and it has been adopted as one of the main
patterns in SOA, it also has been defined as a “spaghetti box” [158]. In the way that, although
ESB tries to centralize and homogenise the communication between the services, there is still
a set of services that are directly connected, but instead by an independent connection, this
communication goes through the ESB together other similar cases. This often makes to ESB to
present integrity issues, in addition to a single point of failure. On the other hand, centralized
controls improve the system security.

2.3.3 Microservices

Although standardization can help to improve the interoperability of a system, it reduces the
flexibility. Additionally, in an SOA approach, services often possess several capabilities, which
makes hard to replace or modify them at run-time. To address this issue, in the last years a
different approach has arisen, the Microservice Architecture. This can be defined as “a style

of engineering highly automated, evolvable software systems made up of capability-aligned

microservices” [106]. As an SOA implementation relies on services as the basic entity, a
microservice architecture relies on microservices. They are defined as “an independently

deployable component of bounded scope that supports interoperability through message-based

communication” [106]. As with traditional services, microservices are characterized by a set
of well-defined features: small in size, messaging enabled, bounded by contexts, autonomously
developed, independently deployable, decentralized, and built and released with automated
processes. However, two are the most important characteristics: decentralization and autonomy.



2.3 Software Development Approaches 31

It is worth to highlight that although in this approach, the (micro)services tend to be simpler, the
architecture goes more complex. Some of the technical benefits of this architectural style are
[106]: supporting multiple technologies/languages/frameworks enables graceful degradation
of service and facilitates to replace or envolve part of the system at run-time, greater agility,
higher composability, independent service deployability, replaceability. When referring to
small in size, the general assumption is that a microservice only has one responsibility, only
performs one well-defined function. While in SOA, a service usually implies a considerable
quantity of standardization (e.g., contracts), a microservice is supposed to be a more agile piece
of software, easily deployable and replaceable. Usually, it offers its functionality over an HTTP
resource API.

2.3.4 Event-Driven Architecture

Event-Driven Architecture (EDA) can be defined as an architecture in which “a notable

thing happens inside or outside your business [or system], which disseminates immediately

to all interested parties (human or automated). The interested parties evaluate the event, and

optionally take action” [101]. EDA represents a complete set of elements, which together are
capable of disseminating and evaluating events and take actions according to the nature of these
events. Another definition can be “EDA is an approach to enterprise architecture that enables

systems to hear events and react to them intelligently” [157].

Event

An event usually represents a change in state. This is a change in a data value [157]. In EDA, an
event has to be machine-understandable and poses three levels of detail: (1) event notification,
this is, the event has occurred or not; (2) event definition, what about the event is; and (3)
event detail, what has happened within the event context. It must be highlighted, that in EDA
anything can be or trigger an event.

Fig. 2.8 The paradigmatic EDA. Extracted from [157].

A basic EDA is composed of the following entities: (1) Event Producers, also known by
publishers, which creates and disseminated the events; (2) Event Consumers, also known by
listeners, which can differentiate an event by its definition from others and it can interpret



32 Foundations

Fig. 2.9 The paradigmatic EDA within Autonomic Computing MAPE-K loop.

the meaning of the event. Usually, in a basic implementation of EDA, the consumer only
can receive the events that it is meant to hear; (3) Event processors, which can determine the
event impact and the next action to perform according to the information provided by the event
(occurrence, definition, and detail); (4) Event Reactions, these can range from automated actions
to human interventions; and (5) Messaging Backbone, which has to provide a communication
infrastructure between the entities of the architecture, in a high level of decoupling. The basic
event processing flow can be depicted as in Fig. 2.8.

It is worth emphasising how EDA event processing flow and entities have a straightforward
relationship with the MAPE-K loop of Autonomic Computing (Fig. 2.9).

It is true that Planning stage has a blurred boundary between Event Processor and Event
Reaction. Especially when in Event Reaction it is necessary the human intervention. However,
in a more automated EDA, the Planning stage is more identified with the Event Processor.
Regarding event processing, it can be found three basic patterns: (1) simple processing,
where an Event Producer produces an event with a non-periodically pattern, and this event is
always processed; (2) stream processing, where the event production is periodic, and the event
consumer only reacts when specific criteria in the event information is met; and (3) complex
event processing (CEP), where not only an event but a set of them are analysed under multiple
logical conditions to obtain high-level information. CEP is becoming the main event processing
technique, and future trends are including AI techniques to recognize and react to patterns of
events.

Finally, EDA can be classified into two types [157]: explicit and implicit. Whereas in
the explicit EDA, the relation between the Event Producers and Consumers is ad-hoc, in the
implicit EDA, there is no dedicated connection between these entities. This makes, implicit
EDA a more agile, scalable and maintainable approach, especially when is combined with CEP.

2.3.5 SOA 2.0

However, while SOA had still a great presence in software system design, it started to talk
about SOA 2.0. Also known as advanced SOA o event-driven SOA, Steve Harris, vice president



2.3 Software Development Approaches 33

of Oracle Fusion middleware in 2006, defined it as “the term that we’re using to talk about the

combination of service-oriented architecture and event-driven architecture” [90]. In SOA 2.0,
services are not just passive entities, but also they can receive and generate events proactively,
thus getting the benefits of both approaches: interoperability, platform independence, flexibility
and a modular design from SOA, and low coupling between components of the system, thanks
to event distribution system from EDA.

Some authors refer to the combination of SOA and EDA, or an EDA implementation of
SOA as “the ablest paradigm to deliver the optimal architecture” [157], regarding flexibility
and cost-effectiveness.

SOA 2.0 represents a step more in the direction of service autonomy. Allowing to services,
through the event spreading, react to changes in the context of the system, and therefore adapt
the software system and the behaviour of the services as necessary to maintain or even increase
the performance of the system.

2.3.6 Multi-Agent Systems

Multi-Agent Systems (MAS) is a set of agents that interact between them, in a distributed and
concurrent way, to achieve some goal. An agent can be defined as “a computer system that is

situated in some environment, and that is capable of autonomous action in this environment in

order to meet its design objectives” [170]. By definition, MAS are a subclass of concurrent
systems [170]. However, there are two fundamental differentiating aspects:

• Synchronization and coordination take place at run-time.

• The interaction between agents is economic-driven. This is, in contrast with distribut-
ed/concurrent systems, where it is implicit that all entities share a common goal, in
multiagent systems, agents act, first of all, in their own welfare (i.e., on behalf of the
user).

Usually, an intelligent agent possesses three main features [170]:

• Reactivity. Agents are capable of sensing their environment, and react according to the
changes that occur within it.

• Proactiveness. Besides, to react to changes in its context, intelligent agents can take the
initiative to accomplish their objectives.

• Social ability. Intelligent agents can interact with other entities (other agents or humans)
to achieve their objectives.



34 Foundations

Table 2.2 Multi-Agent System and Service Oriented Computing, similarities and differences.
Source: Own elaboration.

Multi-Agent Systems Service Oriented Computing Self-adaptive
Services

Approaches to build complex software systems
Autonomy

Agents act individually fulfilling their
individual goals There are no dependences between services

Adaptive
in response to changing requirements, services and exceptions

Sociability
Intelligent society

Interoperability
Interface level

Communicating agreed-upon protocols
Distributed

There is no a central control entity
Distributed/Centralized
Choreography/Orchestration

Rationality
Reactivity
Proactivity

Encapsulation + Reactivity
+ Adaptability

Highly formal specification Availability/Discovery
Public registries

At this point, agents and services can be considered interchangeable entities. In fact, there
is two main point of view about the difference between an agent and a service:

• An agent is the same that a service. This is based on the idea that anything that is an
agent could be deployed as a service and any service can be conceived as an agent.

• Services are simpler things that agents. From this point of view, services can be used
by agents (as clients), and agents can support services: “While, in principle, autonomic

functionalities can thus be implemented by using agents to create high-level behaviours

coordinating the system’s functional layer, it is important to provide the latter with proper

interface and reflective functionalities” [116].

From the point of view of this work, although an agent and a service are similar to software
entities, some differences must be taken into consideration in the design of software architecture.
The main difference between an agent and a service is that in the agent-oriented world there is
no ‘invoked a method’ concept [170]. If an agent A request to agent B to perform an action β ,
it cannot be assured that the agent B will perform such action, as perform action β may not be
in the best interest of agent B.

Therefore, although MAS and SOC are close approaches that share several design features
(Table 2.2), even with the inclusion of Self-adaptive services to SOC, which completes SOC



2.4 Leader Election Problem 35

with reactivity and adaptability capabilities, an agent will present selfish behaviour, in order to
accomplish its own objectives (on the behalf of its user).

2.4 Leader Election Problem

Distributed Computing arises several challenges in comparison with Centralized Computing
[156], especially those related with synchronization, coordination or duplication of responsibil-
ities. In this context, the Leader Election Problem responds to the necessity of electing in a
distributed system a unique process or node to perform some task. In this way, a distributed
system can rely on a “centralized” entity to simplify some of the tasks mentioned above.

Although different variants of the Leader (or Coordinator) Election Problem can be found,
the most general is defined as: “[in a group of distributed processes] each process eventually

decide that either it is the leader or it is not the leader, subject to the constraint that exactly

one process decides that it is the leader” [10].
This problem is usually addressed by a leader election algorithm, and formally, the algorithm

has to meet three requirements to correctly solve it [57]:

• Termination: The algorithm has to converge to a solution in a finite time or number of
steps.

• Uniqueness: Once the election is resolved, there has to be exactly one leader, even if
there are several concurrent elections in the same group [42].

• Agreement: The rest of the processes or nodes of the group have to know who the leader
is.

Two election algorithms are the traditional referents in this context [42]:

• The algorithm of Chang and Roberts [30]: an asynchronous algorithm where pro-
cesses arranged in a logical ring transmit a token message to perform the election.

• The Bully algorithm [53]: asynchronous algorithm devised to allow processes to crash
during an election.

Although both algorithms were designed to operate in reliable communication environments,
the algorithm of Chang and Roberts is particularly vulnerable in this context, owing to the loss
of the token message will result in a fatal failure of the algorithm. Despite the detection and
recovering of failure (i.e., detection of the token lost and regeneration) are possible, these can
be costly, especially in large-scale systems [7]. For this reason, this work will focus on the
Bully algorithm and their later improvements, which are detailed in the following sections.



36 Foundations

2.4.1 Bully Algorithm

Bully algorithm is based on three kinds of messages:

• Election message: to start and announce an election.

• Answer message: to respond to an election message.

• Coordinator message: it is sent by the elected node to announce its election.

Election in Bully is performed on the basis of the ID of the node. It is assumed that each
node has a unique ID and the IDs of the nodes of the network are known.

On this basis, it performs in the following way:

(A) Given a node N that starts the election:

– If N is the highest node: N becomes the elected node and sends the Coordinator

message to announce its election to the rest of the nodes of the network.

– If N is not the highest node:

(1) N broadcasts an Election message only to these other nodes with higher IDs
than itself.

(2) N waits for an Answer message:

· If N does not receive any Answer message: N becomes the elected node
and sends the Coordinator message to announce its election to the rest of
the nodes of the network.

· If N receive an Answer message: N gives up the election and waits for a
Coordinator message.

(B) Given a node P that does not start the election:

– If P receives an Election message from N: In such case, since Election messages
are sent to nodes with higher ID, P will have a higher ID than N. Therefore, P will
reply with an Answer message to N and will take over the election process from
step (A).

– If P receives a Coordinator message from N: P knows now that N has won the
election and it is the new coordinator.



2.4 Leader Election Problem 37

2.4.2 Kordafshari Algorithm

Since the proposal of the Bully election algorithm, different improvements have been suggested,
of which that proposed by Kordafshari et al. can be highlighted [89]. The advantage of
Kordafshari proposal over other variants of the Bully algorithm is that Kordafshari el al.
proposed an effective method to reduce the number of coordination messages and concurrent
elections without make additional assumptions.

In addition to the messages used in the Bully algorithm (see Section 2.4.1), Kordafshari
variant introduces a new kind of message: Grant message. This message is used by the node
that starts the election to inform the elected node that it has won the election.

On this basis, the algorithm operates as follows:

(A) Given a node N that starts the election:

– If N is the highest node: N becomes the elected node and sends the Coordinator

message to announce its election to the rest of the nodes of the network.

– If N is not the highest node:

(1) N broadcasts an Election message only to that other nodes with higher IDs
than itself.

(2) N waits for an Answer message:

· If N does not receive any Answer message: N becomes the elected node
and sends the Coordinator message to announce its election to the rest of
the nodes of the network.

· If N receive an Answer message or more: N selects the node with highest
ID that have replied and sends it a Grant message. After this, N waits for
Coordinator message.

(B) Given a node P that does not start the election:

– P receives an Election message from N:

(1) Since Election messages are sent to nodes with higher ID, P will have a higher
ID than N. Therefore, P will reply with an Answer message to N.

(2) P waits for a Grant or Coordinator message:

· If P receives a Grant message from N: P has been elected as leader and
it will send a Coordinator message to announce its election to the rest of
the nodes of the network.



38 Foundations

(a) (b)

(c) (d)

Fig. 2.10 Kordafshari election algorithm example.

· If P receives a Coordinator message from Q: P knows now that Q has
won the election and it is the new coordinator.

– P receives a Coordinator message from Q: P knows now that Q has won the
election and it is the new coordinator.

Fig. 2.10 depicts the general operating of Kordafshari algorithm. In the election depicted,
the Node 1 starts the election (Fig. 2.10a) and the Node 4 (Fig. 2.10c), as the node with highest
ID, is elected as leader by means of a Grant message.

Moreover, in order to reduce the number of concurrent elections, Kordafshari proposes a
mechanism in which, if there are multiple nodes that sends Elections messages, i.e., multiple
nodes that are carrying on simultaneously an election, only the Election messages of the nodes
with the lowest ID will be replied with Answer messages. In other words, if there are multiple
concurrent elections, the election initiated by the lowest ID node will continue over the other
elections.

An example where Nodes 1, 2 and 3 (Fig. 2.11a) initiate a concurrent election is depicted
in Fig. 2.11. In this case, Nodes 2 and 3 give up their elections and Answer messages are
only send to Node 1 (Fig. 2.11b), the lowest ID node, who declares Node 4 as the leader (Fig.
2.11c).



2.5 System Quality Attributes 39

(a) (b)

(c) (d)

Fig. 2.11 Kordafshari election algorithm example with multiple concurrent elections.

2.5 System Quality Attributes

System Quality Attributes are used to evaluate the performance of a system. They are considered
as accomplished non-functional requirements [115]. This section does not intend to provide
an exhaustive list of the existing quality attributes, but only to define those related in some way
with this thesis.

2.5.1 Agility

Satyanarayanan defines the ability of an application or system to promptly adapt to changes in
the context as agility [142]. However, he highlights that a highly agile system may suffer from
instability, as the system could consume its resources reacting to minor and irrelevant changes
in the context.

2.5.2 Interoperability

Interoperability can be defined as “a situation where two o more software components must

work together to perform a function. Usually, interoperation involves two o more software

applications exchanging data, processing those inputs, and sharing outputs with one or more

applications” [157].



40 Foundations

2.5.3 Reliability

The reliability of a system can be defined as “the ability of a system to perform as designed,

with-out failure, in an operational environment, for a stated period of time” [159]. Thus, in
order to measure the reliability of a system, or usually, of a system component, it is firstly
required to define when it fails.

MTBF

Mean Time Between Failures (MTBF) is calculated as the average time between failures of a
system [159]. It is generally used to predict the elapsed time between failures and the reliability
of the system.

2.5.4 Scalability

Scalability can be defined as the ability of a system to “function well (without degradation of
other quality attributes) when the system is changed in size or in volume” [115]. Scalability
presents diverse dimensions, among which are [65]:

• Functional: the capacity of adding new features to the system easily.

• Geographical: the capacity of the system to move for a local to a global environment,
increasing distance and number of users.

• Workload: the capacity of the system to afford, generally, an increase of operational
demand, adding, removing or modifying its components to accommodate the changes in
demand.

2.5.5 Service Availability

In simple words Service Availability can be defined as “the ability of services to be accessible

as needed, whenever and wherever they are required” [74]. In IT systems where there is a
service agreement, Service Availability is often calculated as in Equation 2.1.

Availability =
Agreed Service Time−Down Time

Agreed Service Time
×100% (2.1)

This measure is often related to reliability measures such as MTBF or maintainability
measures such as Mean Time to Recover Service (MTRR).



2.6 Tools 41

2.6 Tools

In this section, the tools used during the development of this thesis are introduced. These are
two: the ns-3 network simulator tool, which will be used to evaluate and validate our proposal,
and SysML, as a general-purpose modelling language for “System of Systems” (SoS).

2.6.1 Network Simulator 3 (ns-3)

The series of ns simulators, which stands for Network Simulator, was initiated in mid-nineties
at Lawrence Berkeley National Laboratory. These arise as discrete-event network simulators,
specially devised for educational and research purposes. The second version of the simulator,
ns-2, was released in 1996 and it was maintained until 2011, when the last version, ns-2.35,
was released. Its third version, ns-3 [114], was first released in July 2008.

ns-2 has had, and it still has, a profound impact in scientific research. Using the Scopus1

database of peer-reviewed literature it can be found 2863 documents that have the words
“ns-2” and “simulator” in their title, abstract or keywords, 148 documents the last year (2017).
Although, as it can be seen in Fig. 2.12, the number of documents that mention ns-2 still
surpasses the number that mentions ns-3, since ns-3 first release, the scientific papers that use
ns-2 is being reduced. Moreover, the total number of papers that reference ns-2 or ns-3 remains
stable.

In Fig. 2.13 it is shown the use in scientific papers of ns simulators (ns-2 and ns-3)
in comparison with other popular network simulators [108] (NetSim [109], OPNET [118],
OMNET++ [117], QualNet [133] and JSim [81]), according to the same procedure. As it can be
seen, ns simulators are the most used simulation tools, not only together but also individually.

The simulator ns-3 has been built as a C++ library. It has been built from scratch (although
some models have been ported from ns-2) and does not provide backward compatibility with
ns-2. This library supplies a set of network simulation models, using object orientation provided
by C++ and wrapping them over python. Nodes in ns-3 are designed after Linux networking
architecture. In this way, key elements, such as sockets and net devices, are adjusted with those
in a Linux system. This is an essential feature since it improves the realism of the models and
makes them comparable with real systems. Moreover, ns-3 core supports both IP and non-IP
networks, and provide models for WiMAX, Wi-Fi, or LTE and a variety of static or dynamic
routing protocols. Finally, it should be noted that it is licensed under the GNU GPLv2 license,
which allows users to study and change the source code of the own simulator.

1https://www.scopus.com

https://www.scopus.com


42 Foundations

Fig. 2.12 Documents that mention ns-3 or ns-2 in their title, abstract or keywords on the Scopus
database of peer-reviewed literature. Source: Own elaboration.

Fig. 2.13 Comparative showing the number of scientific documents that mention Netsim,
OPNET, OMNET++, JSIM, ns-3 or ns-2 in their title, abstract or keywords on the Scopus
database of peer-reviewed literature. Source: Own elaboration.



2.6 Tools 43

BonnMotion

The support provided by ns-3 to generate mobility scenarios under different mobility models is
limited. In its current version (ns-3.28), it supports the following models: ConstantPosition,
ConstantVelocity, ConstantAcceleration, GaussMarkov, Hierarchical, RandomDirection2D,
RandomWalk2D, RandomWaypoint, SteadyStateRandomWaypoint and Waypoint. These
models, although interesting, do not allow us to simulate group mobility or obstacle restrained
scenarios. To overcome this limitation, it is possible to use external tools to generate mobility
trace files that ns-3 can read and apply.

Currently, one of the most complete and utilized tools is BonnMotion [9][21]. BonnMotion
is a Java-based software which allows to create and analyze a wide variety of mobile ad hoc
network mobility scenarios. It also allows exporting the generate trace files to a variety of
formats, readable by ns-2 or ns-3, GloMoSim/QualNet, COOJA, MiXiM, or ONE. It supports
mobility models, such as Manhattan Grid, Random Waypoint or Reference Point Group
Mobility (RPGM). BonnMotion is jointly developed by the University of Bonn (Germany), the
Colorado School of Mines (USA) and the University of Osnabrück (Germany).

2.6.2 SysML

Architecture description languages (ADLs) emerged in the 1990s as a formal tool to model
and represent the system architectures [36]. According to ISO/IEC/IEEE 42010 (Systems and
software engineering—Architecture description) [77], an ADL “is any form of expression for

use in architecture descriptions” and it has to meet the following requirements (clause 5 in
ISO/IEC/IEEE 42010):

• Architecture description identification and overview information.

• Identification of the system stakeholders and their concerns.

• A definition for each architecture viewpoint used in the architecture description.

• An architecture view and architecture models for each architecture viewpoint used.

• Applicable architecture description correspondence rules, architecture description corre-
spondences and a record of known inconsistencies among the architecture description’s
required contents.

• Rationales for architecture decisions made.



44 Foundations

Fig. 2.14 Relationship between SysML and UML. Extracted from [154].

Between the varieties of ADLs proposed in the decade of 2000, π-ADL highlights as it was
specifically designed for specifying static, dynamic and mobile architectures. Flavio Oquendo
proposed π-ADL on 2004 [120].

However, despite the efforts and the variety of ADLs proposed in the decade of 2000,
there is a lack of industrial adoption of ADLs [97]. The reasons exposed for this fact are: (1)
ADLs are not practical, it is necessary to reduce their learning curve; and (2) most ADLs do
not provide multiple views and cross-views consistency, which is essential when there are
different stakeholders involved. As a result, formal ADLs lack mature tools to help the software
architecture designers and generally are not included in the life-cycle software development
[125].

For this reason, Flavio Oquendo, author of π-ADL, has begun to develop SysADL, a Sys-
tems Modeling Language (SysML) profile for software architecture description [94][119][121].

SysML is defined as “a general-purpose architecture modeling language for Systems

Engineering applications” [154], and it was adopted by the Object Management Group (OMG)
in July 2006. The last version, OMG SysML 1.4, was released in August 2015.

SysML supports the specification, analysis, design, verification, and validation of systems
and systems-of-systems. These include hardware, software, information, processes, personnel
and facilities systems. SysML is defined as a lightweight UML 2 Profile (Fig. 2.14). It
reuses the majority of the UML diagrams, some of them without modifications, e.g., Use Case,
Sequence and State Machine diagrams; and others with minor customizations, e.g., renaming
Classes as Blocks and adding syntax and semantics for item flows. It also adds two new



2.7 Summary 45

diagrams: Parametric diagrams, extending Composite Structure and UML Class diagrams; and
Requirements diagrams, extending UML Class diagrams. It also worth noting that SysML is
an enabling technology for Model-Based Systems Engineering.

Moreover, although SysML provides a semi-formal modelling, according to the ISO/IEC/IEEE
42010, SysML is considered, per se, an ADL:

The Systems Modeling Language (SysML) is built upon UML. SysML defines
several types of diagrams: Activity, Sequence, State Machine, Use Case, Block
Definition, Internal Block, Package, Parametric, and Requirement diagrams. In
terms of this International Standard [ISO/IEC/IEEE 42010:2011], each SysML
diagram type is a model kind. SysML provides first-class constructs for Stakehold-
ers, Concerns, Views, and Viewpoints so that users can create new viewpoints in
accordance with this International Standard [ISO/IEC/IEEE 42010:2011]. [77]

After review the different options available about modelling languages: π-ADL, SysADL,
and SysML, in this work we have opted for SysML. As exposed, the lack of adoption, doc-
umentation and support tools of π-ADL discarded it as a maintainable and flexible solution.
Otherwise, the lack of maturity and proposal completeness of SysADL leaves SysML as the
best option. SysML is a standard architecture modelling language, supported by the OMG,
well documented and with mature tools to support the system modelling and design.

2.7 Summary

This chapter has introduced the software design challenges that mobile and ubiquitous system
present, and how these have to be addressed in IoT and MCC environments as well. As a result,
and to successfully address these challenges, self-adaptation has become a requirement for
the software systems devised to operate in these environments. To this regard, the techniques,
methods, and approaches for the design and development of software systems in dynamic
computing environments have been revised.

SOA stands a promising architectural approach for software system design in this context.
It proposes a modular distribution of the functionalities of a system through services and
provides the foundations to build an interoperable and scalable system thanks to the use of
standard protocols and service composition. However, to provide a complete solution, it has
to be combined with methods and techniques from Autonomic Computing field, as well as
complementary approaches, such as Event-Driven EDA (i.e., SOA 2.0) and Microservices.



46 Foundations

Autonomic or self-adaptive systems are managed by the commonly accepted MAPE-K
IBM’s adaptation control loop. From this loop, it has been seen that reasoning and acting
phases are of particular relevance. To this respect, the most widely used techniques in these
phases have been revised. Utility Functions and Compositional adaptation techniques highlight
in reasoning and acting phases, respectively, owing to its simplicity and potential.

Moreover, in distributed systems synchronization, coordination or to avoid duplication of
responsibilities can be challenging. To this end, election algorithms arise as a response for
a distributed system to rely on a “centralized” entity to simplify some of these tasks. This
distributed election process can be considered as a self-adaptive approach and can be of special
interest in the dynamic replication and deployment of service replicas. To this regard, two
algorithms have been presented: the Bully algorithm and the improvement on it, introduced by
Kordafshary et al.

Generally, the ultimate goal of self-adaptation is to improve the quality attributes of the
system, according to the changes in its operational context. In this chapter, the definitions for
Agility, Interoperability, Reliability, Scalability and Service Availability quality attributes have
been provided.

Finally, the tools used to support the development of this thesis have been introduced:
the ns-3 network simulator tool, which will be used to evaluate and validate our proposal,
and SysML, as a general-purpose modelling language for “System of Systems” (SoS), which
is also considered an ADL according to the requirements established by the ISO/IEC/IEEE
42010:2011 standard.



Chapter 3

Related Work

Chapter Abstract

This chapter reviews the existing proposals related to the dynamic service or data provisioning in

dynamic topology environments. The research articles revised are divided into three categories: (1)

approaches to enhance data/service QoS through dynamic replication, (2) leader election algorithms

in dynamic environments, and (3) cluster head election algorithms. From the proposals studied, it

can be highlighted that the majority explicitly assume reliable connections or say nothing about this

assumption. The majority use a network simulator to evaluate their proposal. The cost measure taken as

reference to evaluate the proposals is varied, but energy consumption, bandwidth usage and response time

predominate. Finally, from the approaches to enhance data/service QoS through dynamic replication,

only three ones partially address the synchronization of the replicas.

Chapter Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Approaches to enhance data/service QoS through dynamic replication . . . 49

3.3 Leader election algorithms in dynamic environments . . . . . . . . . . . . 61

3.4 Cluster Head election approaches . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



48 Related Work

3.1 Introduction

In this chapter, the current proposals related to the dynamic service provisioning in dynamic
topology environments are reviewed. These proposals are based on autonomic schemes, whose
cornerstone is an autonomic control loop. As Section 2.3.1 introduced, it is accepted that a
control loop must include, at least, the following phases: observation, analysis, planning, and
execution.

In this context, the planning phase has received particular attention in the literature because
it is the most important phase in the behaviour of the autonomic system. In this phase, two
main questions have to be addressed: when to replicate and where to deploy the replica [153].
The answers will determine the capability of the system to react to context changes, the service
quality attributes (e.g., both availability and reliability are deeply influenced by the allocation
of the service), and the cost of the solution provided.

Whereas the decision about when to replicate is usually implemented by rules that are
triggered by context events, the decision about where to deploy a replica is implemented by an
election algorithm. In general terms, an election algorithm is defined as a distributed algorithm
"for choosing a unique process to play a particular role" [42] (Section 2.4).

Therefore, two types of approaches are analysed in this chapter: (1) service replication
algorithms, and (2) general purpose election algorithms. In the former, an election algorithm
is used in combination with other techniques such as code mobility or service hibernation,
to elect the most suitable node to host a service replica according to some defined strategy
to enhance its quality attributes. The latter, as previously noted (Section 2.4), performs an
election in order to elect a leader on the basis of some defined evaluation criteria. However, the
objective of the election could be undefined or be related to different purposes.

0

1

2

3

4

5

6

20
00

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

Pa
pe

rs

Year

(a)

Conference 
Paper
44%Article

56%

(b)

Fig. 3.1 Distribution of the articles revised according to publication year and source type.



3.2 Approaches to enhance data/service QoS through dynamic replication 49

The first search of articles was done according to the research objective defined (Section
1.3). From the articles obtained were excluded those not focused in the distributed election in
dynamic environments, early proposals, or those where an adequate description of the research
process was not carried out. It should be noted that the approaches that can be found for the
dynamic provisioning of data in dynamic environments are also applicable in the dynamic
provisioning of services. Hence, in this review both terms service and data have been taken
into consideration. The total final selected articles down to 34. In Fig. ??, the distribution of
the articles revised according to publication year and source type is shown.

These proposals are presented and divided into three main groups: approaches to enhance
data/service QoS through dynamic replication (Section 3.2), leader election algorithms in
dynamic environments (Section 3.2) and cluster head election algorithms (Section 3.4). Finally,
Section 3.5 presents a discussion over the literature review performed. This section also shows
three comparative tables that summarised the main features of proposals revised.

3.2 Approaches to enhance data/service QoS through dynamic
replication

The primary objective of the proposals presented in this section is to enhance the QoS (especially
availability) of replicated data/service deployed on dynamic network topologies. This objective
is directly related to the objective of this thesis. Some of the main features that will be analysed
in these proposals are: Are the systems proposed reactive to context changes? If so, what events
are taken into consideration?; What features are taken into account to select the host node?
Are these features easily configurable?; Is the knowledge used to take the replication decisions
global to the network or local to a node or group?; Are the communication channels assumed
reliable?; What is the cost of the solutions provided?

3.2.1 Hamdy et al.: Service Distribution Protocol

In [59] [58] [60], the Service Distribution Protocol is presented as an approach to increase
the service availability in MANETs. This protocol takes into consideration the interest that
exists in the network on a specific service to replicate it. The interest of a service is measured
as the number of request regarding service during a predefined time interval. The replication
mechanism works as follows: the client node counts the request over a specific service, if
it reaches a specific threshold, it will ask the server for a replica of the service. Moreover,
Hamdy et al. also proposed a hibernation mechanism, in order to hibernate a replica when the



50 Related Work

interest in its use decreases. In the evaluation of the proposed protocol, it is used the Random
Waypoint (RWP) mobility model. The synchronization management of the service/replicas
is not considered. In [60] a comparative study of the proposed protocol with and without
hibernation mechanism is performed. The results obtained in the study show that the success
ratio, defined as the number of the successful service requests, is slightly higher without the
hibernation mechanism, although this difference disappears for large networks, where the
network partitions are reduced owing to the increment of nodes and links. However, the
election of the host node is only performed on the basis of the interest, so it is not taken into
consideration any of capabilities of the nodes or if the service is available on some neighbour
node. Moreover, to provide service or replicate a service any cost has not been considered (e.g.,
energy, bandwidth or storage), therefore the availability of the service is incremented, but in
the study has not been taken into consideration any measure of the cost and thus the efficiency
of the solution cannot be measured.

3.2.2 Sun et al.: Minimum Access Cost replication strategy

The dynamic Minimum Access Cost (MAC) replication strategy is presented in [153]. This
strategy is designed to operate on hierarchical unstructured overlay P2P networks, consisting
of two types of nodes, peers, and super peers. Super peers are responsible for administrating
the peers of its domain. The replication is made on the basis of the access cost: if the average
response time for any Logical Resource exceeds the threshold set, the super peer will create
more replicas of the Logical Resource in an appropriate location. In this work, a utility
function is used, called Replication Factor, to know the suitability of the peer to host a replica
of the Logical Resource. It is defined in Equation 3.1.

RF = RV · (Memory
f ilesize

) ·AvgBW ·SR (3.1)

Where RV is the reliability of the peer, which is calculated as shown in Equation 3.2.

RV =
online time
total time

(3.2)

where:

Memory = represents the available memory of the node
filesize = represents the size of the Logical Resource to be replied
AvgBW = represents the average bandwidth of the peer
SR = represents the service ratio of the peer, defined as the requested processed

all the requests received



3.2 Approaches to enhance data/service QoS through dynamic replication 51

This information is mainly local to the peer (node) and could be easily obtained in a
MANET to know how adequate a node to host a Logical Resource is. In the simulation, the
Grid Simulator OptorSim [16] is used with a wired and fixed network of static nodes. The
super peer performs the replication process, and it follows a bi-directional-linked list based
replica location scheme (BLL-RLS) to get a global replica view and to obtain the replication
cost globally to design the optimal replication strategy. The proposed replication strategy is
focused on wired, static P2P networks, and on the basis of global knowledge about the network
topology and behaviour. Moreover, the network is considered stable and reliable.

3.2.3 Ahmed et al.: Distributed Adaptive Service Replication

In [2], a distributed service replication scheme for MANETs is proposed, named Distributed

Adaptive Service Replication (DAR), which is later improved in [3] and renamed as Highly

Distributed Adaptive Service Replication (HDAR). The scheme proposed is based on clustering.
The clusters are formed by one-hop neighbours, where the node with the minimum moving
speed is elected as the cluster head, while the rest of them are designated as cluster members.
The nodes that are neighbours to other clusters are designated as gateways. Each server can
serve multiple clusters. Once that clusters are created, the cluster head (i.e., the node with the
minimum movement speed) receives all the service requests from the member of its cluster.
Servers exchange some information among them in order to know the current service demand in
the network. In dynamic network topology environments, to exchange this information among
all the servers of the networks is not suitable. Therefore, HDAR introduces, with regards to
DAR, an r-level coverage confirmation mechanism (where r refers to the number of hops),
in order to limit the communication between distant servers. Both DAR and HDAR base its
replication on the service interest. This is, the replication of a service in a determinate cluster
will depend on the number of request from the cluster and in the number of active nodes in
the cluster. This information is maintained for each server. Additionally, HDAR introduces
a new factor: the trade-off between communication cost and replication cost. Therefore, a
service will be replicated in a cluster if (1) the service is highly demanded in that cluster; or (2)
the replication cost is less than communication cost to access to the resource remotely. The
architecture proposed is simulated using the QUALNET simulator and under two mobility
models: RWP and Realistic mobility model generated by MobiREAL1. The replication trigger
is not dynamic, it is statically determined. This means that the replication scheme is not
dynamic or reactive to run-time events (e.g., changes in the network topology). If a service

1http://www.mobireal.net/

http://www.mobireal.net/


52 Related Work

is replicated to a cluster, it is allocated in the cluster head. Additionally, the cluster head is
also a node router for the requests from cluster members to services that are allocated out of
the cluster. Thus, a cluster head can become a bottleneck easily and its resources (energy and
bandwidth) can be easily depleted. The cost of the replication scheme is measured in terms of
energy. The synchronization of the replicas is not addressed in the proposal.

3.2.4 Bellavista et al.: REDMAN middleware

The REDMAN (Replication in Dense MANETs) middleware is proposed in [17], in order to
manage replicas of data/service components in a dense MANET. In this work, a dense MANET
is defined as a MANET that “includes a large number of mobile wireless devices located in a

relatively small area at the same time [. . . ] (and) has a node density, defined as the average

number of wireless nodes at single-hop distance from any dense MANET participant, that is

almost invariant during a long time” [17]. To determine if a node belongs to a dense MANET,
it is proposed a decentralized protocol, in which each node determines autonomously if
it is in a dense MANET by mean of the number of one-hop connections. In this way, if
this number is greater than a predefined threshold it will consider itself to be within a dense
MANET. According to the authors, a threshold between 10 and 20 single-hop connections is
enough to assure enough number of alternative connectivity links. Once the dense MANET
is established, a Replica Manager node is elected, as a central entity to manage the replica
distribution and management. The objective is to select a node that minimizes the number of
hops required to reach the farthest node from its position. To this end, it is proposed a protocol
that explores as candidates only a subset of the nodes of the MANET. The basic idea is, once
evaluated one node, to select as the next node to be evaluated that which is in the direction of
its farthest node. According to this heuristic, the exploration protocol will evaluate the nodes
in direction to the centre of the MANET, where the optimal node is located, according to the
selection criteria. This election process is triggered each time that the current manager node
realizes it is going to exit or abruptly fail. The protocol is designed for dense MANET, where,
according to the authors, the frequency of node entering/exiting dense regions and their speed is
low. Therefore, it is assumed that all nodes placed along the path from the node that it is being
currently evaluated to its farthest nodes remain within the communication range during the
protocol round. Once the Replica Manager node has been elected it start to distribute the replica
along the MANET. The replication distribution is performed on the basis of pre-established
target replication degree and replication hops. In this way, the replicas are distributed according
to a gossip-based strategy. This consists in randomly send a replication token message, and if
the nodes that receive it can host a replica of the service, the node will host it, the remaining



3.2 Approaches to enhance data/service QoS through dynamic replication 53

replica count will decrease, and the message will be forwarded until the replication degree is
committed. To evaluate the proposal the ns-2 simulator has been used, and the nodes have been
statically deployed randomly in a square area. The author assumes that the replicate resources
are read-only, thus to address the synchronization of the replicas is not necessary.

3.2.5 Dustdar et al.

In [49], a system for replication and synchronization of stateful Web services2 in MANETs is
presented. The system is based on a copy-primary replication system of stateful Web services,
synchronizing the replica set by means of the Simple Replicator Protocol (SRP). The replication
mechanism is based on a global view of the network, where the nodes know all about the other
nodes in the network (their properties and their hosted services). Moreover, a hibernation
mechanism is proposed, where the replicas that are no longer needed are disabled instead of
deleting them completely. In the system proposed, the Monitor plays a fundamental role. The
most powerful nodes are elected as monitors, although the specific features considered for a
node to be powerful are no defined. These are responsible for partitioning the network, by node
IDs, and check them periodically. The periodic checks are performed to know if they are still
available, their state has changed and what properties they have. In the work, this technique
is named by the authors as active monitoring. The communication necessary for monitoring
is done by SRP. After each monitoring event, a replication event is performed, where it is
checked if it is necessary to deploy or remove service replicas. This process is divided into two
phases: (1) leader election and (2) placement logic. The leader election is done on the basis
of the information stored by the monitors and gathered during the monitoring process. If it is
necessary to deploy only a replica service, this will be deployed in the own monitor node. If
it is necessary to deploy more replicas, these are deployed in popular leaders. The proposed
system has been evaluated in networks consisting of up to 140 nodes. The simulator used is
not determined in the paper. The nodes were statically deployed and disabled randomly, but in
a balanced way, in order to simulate failures. The synchronization is not contemplated in the
evaluation. In this work, monitor nodes can become easily a bottleneck, as they are in charge
of monitoring the network periodically and host the service replicas when there is only one
replica to deploy.

2Stateful services are those which store or maintain persistent data along time [51].



54 Related Work

3.2.6 Kim et al.: Scalable Replica Allocation scheme

In [86], a Scalable Replica Allocation scheme (SRA) is proposed to address the communication
cost in MANETs. The replica allocation scheme consists in two phases: (1) first, the nodes
are grouped according to their speed and in groups of one-hop distance; (2) the node with
less speed is elected as the cluster head. This node will allocate the data items according to
its frequency access, based on a greedy approach. The replicas will be allocated, first, in the
cluster heads and then in the rest of the nodes of the group following a round-robin approach
according to the IDs of the nodes (the lowest ID node first). Data items are not updated and the
replicas are reallocated periodically. It is assumed that each node is aware of its own speed
and that to calculate this has not any additional cost. Additionally, a mobility-based allocation
method is proposed, in which the nodes with speed greater than a certain threshold are excluded
as host candidates. The communication and replication cost are measured in number of hops.
The system has been tested on ns-3 (v3.10), and the nodes follow the RWP mobility model. In
this work, the link problems, as fading, multipath effects, congestion or interference are
taken into consideration. The data availability is measured, as the ratio of successful queries
and the communication cost as the number of hops. However, the proposal is not reactive to
changes in the context, the replicas are reallocated periodically, but no when a node crashes,
leaves or joins the network or the topology changes.

3.2.7 Choi et al.

In [80][138], a set of data replica allocation techniques for MANETs with selfish nodes are
presented. It should be noted that selfishness is only considered in data storage, not in data
forwarding. They consider three types of nodes in the network: nonselfish, fully selfish and
partially selfish nodes (i.e., they only provide a part of its available memory to allocate data for
other nodes). The strategy proposed is made up of three phases: (1) detecting selfish nodes;
(2) building a self-centred friendship tree (SCF) and (3) place data replicas. The degree of
selfishness of a node is calculated as an approximation of the total storage space of a node
against the space provided to store data replicas for other nodes. Once that each node calculates
the degree of selfishness, each node builds a self-centred friendship three of deep d, where
d represent the hop distance of the tree. This tree is built on the basis of selfishness degree,
removing paths containing nodes with high selfishness degree. Regarding replica allocation,
four schemes are proposed:

• SCF-tree-based replica allocation: a greedy-based replica method.



3.2 Approaches to enhance data/service QoS through dynamic replication 55

• SCF-tree-based replica allocation with degree of selfishness: the more frequently ac-
cessed data items are allocated on less selfish nodes.

• SCF-tree-based replica allocation with closer node: data replicas are allocated in the
closer nodes in the tree.

• Extended SCF-tree based replica allocation: selfish nodes are included in the tree,
although, the replica allocation grants preference to non-selfish nodes. This last technique
shows the best performance of query delay.

The different proposed techniques are simulated, but none simulator is specified. The movement
model used is the RWP mobility model. There are measured four performance metrics:
overall selfishness, communication cost (hop count), average query delay, and data availability

(authors refers to this term as data accessibility). However, although selfishness is taken into
consideration in this work, it is calculated with data that the own nodes have to provide, so a
selfish node can lie about its available memory.

Lately, in [139], an improvement on the previous proposal [80][138] is described, where
the update of the replicas is taken into consideration. It is assumed a known and fixed updated
period for each data item. The update only can be performed by the owner of the data item,
and when the data item is updated, all of its replicas become invalid. The update value is
taken into consideration to allocate the replica and to build the tree (the SCF tree is renamed as
USCF), adding this value to the formula together the selfishness degree and hop distance. In
this way, for each node to allocate near it the data items more frequently accessed and with a
low data update period is proposed. To consider the data update frequency to allocate replicas
is an interesting approach. However, only static and known data update frequencies have been
considered, which could be challenging to translate into a real-world scenario. Moreover, with
dynamic data update frequencies, the USCF tree will have to be rebuilt continuously, according
to the data update frequencies change.

3.2.8 Kumar et al.

In [91], an improvement is presented on the replica allocation algorithm proposed on [80].
The original replica allocation algorithm is based on an SCF Tree. However, according to the
authors of [91], the construction of this tree is expensive, especially on high dynamic MANETs.
Therefore, it is proposed to use the information gathered by the routing protocol (i.e., the
information on the routing tables) to obtain information about the network topology and
allocate the replicas avoiding to build the SCF tree. In this work, the Fisheye State Routing



56 Related Work

protocol (FSR) [129] is used. The data items are allocated taking into consideration the hop
distance, provided by FSR, and the selfishness of the nodes in a similar way that in [80]. The
data items are not updated, and the replicas are relocated in specific periods. In this work, to
evaluate the proposal, a mathematical analysis has been performed using MATLAB. However,
the mobility model used is not specified.

3.2.9 Zhang et al.

In [178], a study about data replication in mobile tactical networks is presented. The work
highlights how the motility models in this context are strongly defined and how this affects
the data replication strategies. There are presented three common tactical manoeuvres in
battlefields:

• Repeated Traversal (RT): in which nodes are organized as squads, which advance in a
staggered way.

• Bounding Overwatch (BO): which presents a more restricted mobility, where several
nodes compose one or two squads.

• Pincer (PI): which presents a high dispersion degree between squads.

Assuming the authors that data are not updated, (i.e., the synchronization of the replicas is not
taken into consideration), four data replication schemes has been studied over the proposed
mobility models:

• Best-Location Intra-Group Data Replication: the best location to place the replica is that
in which the data redundancy and data access cost are minimized. This is calculated as
the node with the higher access frequency to the data in the group, against the replication
cost for that node (how the replication cost is obtained is not specified).

• Greedy Data Replication (Inter-Group Data Replication): each node replicates the most
accessed data.

• Pairing Cooperation Data Replication (Inter-Group Data Replication): each node collab-
orates with its neighbour to agree in which data should be replicated.

• Reliable Neighbouring Data Replication (Inter-Group Data Replication): as in the
Pairing Cooperation Data Replication, but increasing the number of collaborators. The
replication decision is made on the basis of data access frequency.



3.2 Approaches to enhance data/service QoS through dynamic replication 57

As metrics that can be remarked, we can find the Average Availability of the data and the
Average Access Delay. The authors have developed a simulator based on CSIM 19 to evaluate
the different proposals. The communications are considered reliable while the nodes are within
a communication range. After the performing of the simulations, it is concluded:

• Pairing scheme (3) performs better in the scenario of RT, because of the stability of the
small squads.

• Neighbouring scheme (4) performs better for BO scenario, because of its major stability
(bigger squads, i.e., one or two).

• Greedy scheme (2) for PI, because of its major dispersion.

This work underlines the broad impact that the mobility model can have in the perfor-
mance of the replication strategy. However, the only parameter to take into consideration to
elect a host is the interest of the node in use the replica.

Later, in [177], Greedy Data Replication, Pairing Cooperation Data Replication and
Reliable Neighbouring Data Replication schemes are evaluated under Random Walk, RWP,
Manhattan Grid and Reference Point Group Mobility (RPGM) mobility models. The work is
also extended, considering a dynamic assignment of memory from the nodes to store replicas
according to link stability with the neighbouring. The more stable is the link, the more memory
is dedicated.

3.2.10 Barolli et al.

In [13], a data replication system based on a fuzzy logic approach is proposed. The objective is
to guaranty the QoS requirements of the data replicated. The metrics that are determined in
this work, to be measured in order to establish the efficiency of the system are: Local Node
Density (LND), Maximum Data Accessibility Hop Number (MDAHN) (this is not addressed
in [13], [43] nor [75], and the authors leave it for future work), Bounded Retrieval Time (BRT)
and Minimal Number of Replicas (MNR). The main component of the data replication system
is the Fuzzy Logic Controller (FLC). It is composed of the fuzzifier, inference engine, Fuzzy
Rule Base (FRB) and the defuzzier. The evaluation of the proposed system has been done with
MATLAB. This work has been subsequently continued in [43] and [75]. The replication system
is applied to opportunistic networks on IoT environments, and in the node election node
speed and node density are take into consideration. The probability of a node to be selected
increases with the node speed and is reduced with high node density, as there are more nodes
in the vicinity to act as leaders.



58 Related Work

3.2.11 Xia et al.: ComPAS data replication method

An extended version of ComPAS, a data replication method to improve data accessibility in
ad-hoc social networks, is presented in [173]. The replication method is based on a greedy
approach. For the placement of the replicas, the storage space and the cost of reading/writing
operations have been considered. This cost is set to 0 if the data replica is in the same community
(group) and to 1 if this data is in a different community (group). The proposed replication
method has been evaluated with the Gephi3 tool, which is used for visualization and analysis
of wide graphs. The replica is allocated in the node with most storage within a community
(group).

3.2.12 Shi et al.: RHPMAN data replication scheme

In [149], a data replication scheme, denominated RHPMAN (Replication in Highly Partitioned

Mobile Ad-hoc Network), is presented. It is assumed that there is not communication fading,
therefore, if two nodes are within their communication radio, they can communicate. In the
RHPMAN scheme is devised for networks where there is a set of stable large network groups
and nodes with high mobility that travels across these groups. While the data replicas should
be located in the nodes of the large partitions (i.e., nodes with a stable neighbouring topology),
the nodes with high mobility can be used as a transporter to carry information/replicas
from one network partition to another. Authors state that, the “movement based on human

decisions and socialization behaviours improve connecting opportunities between a pair of

nodes in the intermittently connected network”. They do not consider in this work selfish or
malicious nodes. The nodes, periodically, calculates and exchanges its delivery probabilities
based on local profile information. In this work, the change degree of connectivity is consid-
ered in order to know if a node has high mobility and can be used as a carrier to get the replicas
to the other network partitions. Moreover, this degree is also used for the election of a replica
host node, in order to know if it belongs to a stable network group. A node can become a host if
it is the most powerful (energy and storage space) and stable of its neighbourhood. Each node
compares its attributes with his neighbours, limited by h hops. The routing protocol DSDV
[130] is used to get the information about the network topology, by means of the routing
tables. The owner of the data to be replicated is who initiates the replica distributing process.
The status of the replicas is not maintained, owing to trace and maintain this information
can cause network overhead, according to the authors. Regarding the synchronization and
consistency of the data, they only consider a weak consistency model, where only the owner of

3https://gephi.org

https://gephi.org


3.2 Approaches to enhance data/service QoS through dynamic replication 59

the original copy of the data can update the data items. They have used the OPNET simulator to
evaluate the replication scheme. Regarding the mobility model, they have divided the mobility
area into four sub-areas. In each of them, there is a group of nodes that follow a Random
Walk Model. Moreover, there is a group of nodes, which are able to move in all the area (they
travel between groups) that also follow a Random Walk Model. In this work, it is assumed that
the network topology does not change while a data item is being transferred from a node to
another. This is a strong assumption that can be difficult to achieve in real-world scenarios.
The replication is performed periodically. This is, the proposal is not reactive to events in the
context. Finally, the data availability is measured, but not data replication or replica host costs
are taken into consideration.

3.2.13 Hirsch et al.

In [66], it is presented an adaptive cooperative caching approach to reduce the energy consump-
tion and traffic congestion. This approach denominated Tidal Replication is based on a flooding
scheme, in which the replication is performed in the network zones where the data becomes
popular, and it is gradually de-allocated when its popularity decreases. The host candidates are
selected according to the bandwidth utilization. Additionally, a distribution approach, named
Magnetic Distribution, is proposed, which pretends to dynamically redistribute cached items
in a more centralized host within the network according to its demand. In the work, both
the replication and distribution of the cached items are taken into consideration, but cache
consistency is not. The replication decision is made using global network information about
the data access, and according to the authors, this is the main advantage of the work. The
decision about the replication of the item is controlled by the Data Item Control Node (DICN).
However, is not specified how the DICN is elected. The replication of the item is made towards
the dominant requesting path. When a node decides to replicate an item, this sends a replication
request to the first node in the Dominant Request Path (DRP). This node will evaluate if it
can allocate the item (i.e., to check its storage availability), or according to the request matrix
redistribute that replica to the next node in the DRP. The algorithm will stabilize when in a node
all request paths have a balanced request count. If the demand for this data item is persistent in
time, the DICN will delegate its responsibility in a new node, more centralized within the zone
of the network from which the demand comes. The proposals have been simulated employing
their own simulator. However, communications have been assumed reliable. Regarding the
mobility model, a modified version of the RWP mobility model has been used. The efficiency
measures taken are: Mean Query Response Time, Mean Query Hop Count, Energy Savings
and Mean Storage Utilization Ratio.



60 Related Work

3.2.14 Hara et al.

In relation to data consistency in MANETs, in [63] a study of different consistency levels and
protocols to achieve them is presented. The protocols are applied to a structured network divided
into peers and proxies. The proxies are used as region headers, responsible for managing the
peers of its region. It is assumed that the proxies have limited movement and never leave
their own region. Moreover, the role of each node (peer or proxy) is assumed, i.e., these roles
are assigned statically, and every proxy knows replicas held by peers in its region. Under
Global Consistency Protocol, proxies are responsible for coordinating the write operations
performed by the peers over the network. Regarding the replication strategy, to use square-root

allocation (SRA) and inversed SRA are proposed. These are strategies used in unstructured P2P
networks, where the data are replicated on the basis of query frequencies [37]. However, there
are significant differences between P2P systems and MANETs. Specifically, P2P systems are
generally designed for the Internet, where there is an efficient IP routing mechanism, and the
peers are frequently static, with sufficient resources and highly reliably links [99]. Therefore,
such replication strategies are based on global knowledge of the status of the network and its
topology, which can be easily obtained in stable P2P networks but it is hard and expensive
to obtain in dynamic topology and resource-constrained environments as MANETs. The
consistency protocols have been tested under the RWP mobility model and Random Walk
mobility model. In this work, the creation of the structured network is preconfigured, and
dynamic configurations, i.e., dynamic election of proxies and region configurations are avoided.

Related to previous work, the same authors of [63] present some data replica allocation
methods in ad-hoc networks [62]. These methods are based on access frequencies to data items
from each host and known update periods for each data. Three different methods are proposed:

• E-SAF, where a node hosts a data replica according to the average number of access
requests. This value is denominated PT.

• E-DAFN, where the data replication between neighbours is removed, i.e., if two neigh-
bours have the same data replica, the one with lower PT will remove it.

• E-DCG, where data replication is removed in stable node groups.

The node groups are calculated as biconnected components of the network (i.e., a group of
nodes that is not divided if an arbitrary node of the group is removed). Regarding the result
obtained in the work, E-SAF provides the lowest traffic, although a higher replication of the
data exits, while E-DCG provides the highest data availability. The data relocation periods are
fixed and determined by a system administrator. Finally, it should be noted that in this work it



3.3 Leader election algorithms in dynamic environments 61

is assumed that there are no changes in the network topology in the executions of the E-DAFN
and E-DCG methods.

3.3 Leader election algorithms in dynamic environments

In this section, election algorithms of general purpose are revised. These election algorithms
can be adapted or, in some cases, directly applied to elect a host node in a service replication
process. The traditional election algorithms presented in Section 2.4 were devised to operate in
distributed systems where no communication failures were assumed to happen. The proposals
selected in this section are devised to operate in dynamic environments.

3.3.1 Malpani et al.

In [98], two leader algorithms for MANETs are presented. The algorithms are based on TORA
routing protocol [128]. In the first of the algorithms, that only can occur a single topology
change at a time is assumed. This is, the network is completely recovered when a link changes
before another link does it. For the second of the algorithms, this assumption is not taken.
The changes in the network topology are detected through TORA routing protocol. In
the proposed election algorithm, the node that detects a partition elects itself as the leader of
the new network partition. It transmits this information to its neighbours (one-hop distance
nodes), who propagate it. If two or more network partitions merge, the leader with the smallest
ID will become the leader of the merged network. The correctness of the first of the algorithms
is formally demonstrated, understanding as correctness: (1) eventually there is a leader in the
network; and (2) there should never be more than one leader. However, it is assumed for both
cases that the links are bidirectional, FIFO and reliable.

3.3.2 Vasudevan et al.

Secure Extrema Finding Algorithm (SEFA) and Secure Preference-based Leader Election

Algorithm (SPLEA) are proposed as secure leader election in MANETs [163]. Whereas SEFA
is based on a Common Election Algorithm (CEA), in which all the nodes use the same utility
function, i.e., all of them will obtain the same value for a candidate node, SPLEA uses a
specific utility function for each node, which represents the preference of the individual node.
In this way, SPLEA can evaluate features as the distance from the leader that cannot be taken
into consideration in SEFA. Both algorithms are based on a voting approach. However, for
these algorithms is assumed, that the communications are secure and reliable and that the nodes



62 Related Work

are reliable. Moreover, that the network topology remains static for the duration of the election
is assumed. There are a third algorithm, Asynchronous Extrema Finding Algorithm (AEFA),
that unlike SEFA and SPLEA, is a non-secure election algorithm that allows changes in the
topology during the election. However, bidirectional and FIFO links and reliable node-to-node
communications are assumed. The election is triggered when a node is disconnected from its
leader. Such election is based on the termination-detection algorithm for diffusing computations
of by Dijkstra and Scholten [47].

In [164], the work presented in [163] is improved, proposing a diffusing computation-
based leader election algorithm for MANETs able to operate in dynamic network topology
environments. The objective of the work is to elect a leader in a network partition according
to some system-related capabilities (such as battery life or computation power). In the work,
bidirectional and FIFO links and a weak reliability in the node communications are assumed.
This is, “the message delivery is guaranteed only when the sender and the receiver remain

connected for the entire duration of the message transfer”[164]. Thus there have not been
considered other features that can affect the message delivery, such as the bandwidth saturation
or channel fading. The algorithm is based on the construction of a spanning three, to create a
hierarchical communication structure. Its construction is started by the first node that detects
the departure of its current leader. This node will remain as the root of the spanning tree, and
the growing process will be propagated to its neighbours. Once the structure is constructed, the
root node will select the most valuable node and will spread this election to the rest of the nodes
through the spanning tree. The algorithm has been simulated with GloMoSim, under the RWM
model. In [96], a formal analysis of the election algorithm proposed in [164] is carried out,
where it is concluded that owing to the mobility of the nodes during the discovering process
and the temporary disconnections that this causes, some nodes can be left out of the election
protocol.

Vasudevan algorithm

The algorithm proposed by Vasudevan et al. is based on three main kinds of messages:

• Election message: to start the election and grow the spanning tree. The node that initiates
the election is defined as the root.

• ACK message: is used to reply to Election messages once that the tree has completely
grown. They are used to shrink the tree and gather information about the best node in the
tree or subtree.



3.3 Leader election algorithms in dynamic environments 63

• Leader message: is used by the root node to announce the leader, once that the tree has
completely shrunk, and retransmitted by its child until the leaves nodes.

On the basis of this messages, the algorithm performs an election as follows:

(A) Supposing a node N that initiates an election:

1. N send, as root node, an Election message to all of his direct neighbours (one hop
distance), now designated as children.

2. N waits for the ACK replies of its children nodes.

3. Once that N receives all the ACK messages it compares the information received in
each of them to discover who it is the best node in the tree.

4. N announces the winner of the election by means of a Leader message, which is
sent to its children nodes.

(B) Supposing a node P that does not initiate the election:

– P receives an Election message from Q:

1. P knows now that an election process has started. Thus, it designates Q as its
parent node in the tree.

2. P retransmits the Election message to its direct neighbours.

3. P waits until it has received all the ACK replies.

4. Once that P has receives all the ACK replies, it checks who is the best node in
its subtree and replies to Q with an ACK message adding this information.

5. P waits for a Leader message.

– P receives an Election message from Q and P has not child nodes: P is a leaf
node, it replies directly to Q with an ACK message adding its own information as
best node of this subtree.

– P receives an Election message from a node that is not its parent: This message
is usually sent by a sibling node. Therefore, P replies immediately with an ACK
message with no additional information.

– P receives a Leader message: Leader message contains the information about the
node that has won the election (this node could be P itself). Thus:

1. P sets the winner node as the current coordinator.

2. P retransmits the Leader message to its children nodes, if there are any.



64 Related Work

Additionally, to this basic messages, Vasudevan defines periodic messages to know the state
of the network, such as Heartbeats messages from the leader, in order to know when the leader
fails; and Probe and Reply messages between the nodes in order for a parent to know when a
child is no longer available and do not wait for its ACK message.

Moreover, Election messages have a unique ID, identifying the election. In this way, to
avoid spread concurrent elections, Vasudevan proposes that if a node receive Election messages
from different elections, the node will spread only that with higher ID, i.e., the newest one.

3.3.3 Park

A variation of the Invitation algorithm of Garcia-Molina [53] is presented in [127]. It is aimed
to resolve the election problem in asynchronous distributed systems. The main difference of
this proposal with the original algorithm is that in the original algorithm any node can trigger
the election if it detects that the current leader has crashed. However, in the new proposal,
the algorithm can be only triggered when all the nodes agree that the leader has crashed. The
communications between nodes are assumed to be reliable. The algorithm is not simulated, but
its properties (safety and liveness) are formally demonstrated correct.

3.3.4 Brandner et al.

An election algorithm based on a probabilistic approach is presented in [24]. The idea is that
when a node needs to another node of the network to perform some task, it will send a request
message to all the nodes of its neighbourhood. Then, the nodes will respond with a probability
pi j, where i is the requesting node and j the time slot. If only one node replies the request, it
will be the elected node, if not, the slot will continue advancing until a non-colliding message
happens.

3.3.5 Raychoudhury et al.

A k-leader election algorithm for MANETs is proposed in [134]. In its work, the author
claims that there are no k-leader election algorithms for MANETs or algorithms based
on weights (i.e., all proposed election algorithms takes IDs as election criteria). The connec-
tions are assumed to be reliable, always that two nodes are within the connection range and it
is assumed that the nodes behave correctly. The k-leaders are elected on the base of a weight,
that represents the node capabilities, and each node can have different weights, according to
the desired capability in the election. The weight ties are broken using the IDs of the nodes.



3.3 Leader election algorithms in dynamic environments 65

To perform the election, the nodes with highest weights among their two-hop neighbours are
elected as RED nodes. The rest of the nodes of the group are denominated WHITE nodes.
The RED nodes start a diffusing computation building a diffusion tree, which collects the
weights of all the nodes in the network. Each diffusion tree only contains one RED node. Once
all weights are collected, the RED nodes choose the K highest weight nodes as leaders. The
election algorithm is simulated under the RWP mobility model. The simulator is not specified,
and the weights are randomly assigned at the beginning of each simulation. In the simulation
are evaluated the fraction of time without k-leaders, the election rate (the average number of
election in which a node participates in per unit of time), the election time and the message
overhead (average number of messages sent by a node per election). The architecture also is
evaluated in a testbed, but with a static network.

3.3.6 Sabat et al.

In [140], a leader election algorithm for MANETs in the presence of selfish nodes is presented.
The objective of the election is to run an Intrusion Detection Service (IDS)4. The authors have
proposed an adaptive energy aware reputation system model. In this way, when a node acts as
server, it is monitored periodically by some nodes of the network. If this node runs correctly
the IDS, the node will gain reputation. If the reputation of a node falls from certain threshold,
the node will not be served. Therefore, all the nodes will need to act as servers, in order to
be able to be served when they become clients. In this way, it is guaranteed that nodes will
avoid the selfish behaviours or lie about their energy levels. Moreover, the nodes adapt its
connection range to the size of the cluster, in order to save battery. The proposed election
algorithm is cluster dependent, but the clusters are assumed to be already formed. The utility
function takes into consideration the energy level of the node and its reputation, to allow the
nodes with low energy levels to be elected and obtain reputation. The system is tested on ns-2,
with the RWP model. However, the simulation time is only of 30 seconds.

3.3.7 Mohammed et al.

In [103], two possible election algorithms are proposed: Cluster-Independent Leader Election

and Cluster-Dependent Leader Election. In the first one, the leader is elected by the votes of its
neighbour nodes (two-hop). In the second one, the leader is elected after the creation of the
cluster in the network. In this work, synchronized clocks between the nodes are assumed. The

4IDS are used in network-based systems (e.g., Cloud) to detect anomalies or known attacks in the system and
notify network administrators [61].



66 Related Work

system is tested under the ns-2 network simulator, for a static network and a dynamic network
under the RWM. The election models follow a voting approach, and the energy level of the
node is taken as election criteria.

3.4 Cluster Head election approaches

In large-scale systems [34] scalability is one of the primary objectives for architects. Node
cluster methods [175] are applied to turn a distributed network into a set of interconnected
local clusters that can be handled individually, like a centralised network. In this way, the
management of the network is simplified, achieving scalability under a “divide and rule"

approach. The use of a cluster helps to reduce the redundant message transmissions. However,
the major challenge in the implantation is how to select the cluster heads (CH) dynamically.

3.4.1 Wu et al.

In [172] an approach to constructing a cluster-based two-layer hierarchy is proposed, to perform
a consensus protocol. In this work is assumed that number of hosts is static and also known by
all the hosts of the group. Moreover, the communications are assumed to be performed under a
reliable channel, where there is no message loss. The election of the CHs is performed through
the flush algorithm [35], in which the host selection is performed on the basis of trust, to elect
the most reliable host. To evaluate the approach, its authors have used their own simulator.
The simulations have been performed under the Random Walk mobility model and the RWP
mobility model.

3.4.2 Torkestani et al.

A cluster formation method based on the mobility of the nodes in a MANET is presented in [4].
The main contribution of this method is that an indeterministic behaviour about the mobility of
the nodes is assumed. It proposes a learning automata-based weighted clustering algorithm,
in which each node bases its decisions from the local information received from the one-hop
neighbours. The node elected as CH is the one with the minim expected relative mobility,
concerning its neighbours. The clustering algorithm is simulated under ns-2, and it is assumed
that each node is aware of its mobility information using a reliable positioning system. The
cluster lifetime and the control message overhead are used as measures of efficiency. The RWP
mobility model is used to evaluate the proposal.



3.5 Discussion 67

3.4.3 Venkanna et al.

A CH election algorithm, denominated TEA-CBRP, is presented in [165]. Its objective is to
improve a Cluster Based Routing Protocol (CBRP) routing algorithm for MANETs [161]. To
elect a node as CH the following parameters are taken into consideration: trust value, remaining
energy level and time of availability (calculated as a prediction of disconnection, taking into
consideration, connection range, speed, and direction). Once the clusters are formed, the node
with lowest ID is elected as temporal CH. This node will evaluate the nodes of its cluster
and will elect the best-ranked node. This node will be elected as main CH, and the second
best-ranked node will be elected as second CH. The objective of the second CH is to support
the maintainability of the cluster. The primary objective of the TEA-CBRP routing protocol is
to avoid elect malicious nodes as CH, and therefore jeopardizing the routing. The proposed
routing algorithm has been tested on the ns-2 simulator, under the RWP mobility model. The
metrics that have been measured are packet delivery ratio, average end-to-end latency, routing
packet overhead and the number of CH changes.

3.4.4 Benkaouha et al.

In [18], an implementation of a Stable Storage (SS) system is introduced, in the context of a
check-pointing protocol for MANETs. Specifically, the protocol ARISS (Area Repartition for

Implementing a Stable Storage), based on a geographical clustering of the nodes, is proposed.
The work assumes that each node has a GPS system, the channels of communication are
reliable and that the network cannot be partitioned. ARISS uses a mobile agent based zone
repartition, where a node gathers information about the position of the rest of the nodes (global
knowledge of the network) and calculates the gravity areas using the Euclidian distance for
each zone. ARISS works with only four zones. This gravity point is recalculated periodically
by the servers of the zones. As the server for each zone, the closest node to the gravity point is
elected. This server will help the other nodes, by hosting a mobile agent to build their SS. If
the server node moves away, the mobile agent will move to the new server of the zone. The
protocol has been tested on the ns-2 network simulator, under the RWP mobility model.

3.5 Discussion

From the the proposals above studied, three tables (Tables 3.1, 3.2 and 3.3) have been created
as an overview of their main features. Table 3.1 summarizes the approaches to improve
data/service QoS through dynamic replication (Section 3.2), Table 3.2 presents the leader



68 Related Work

Table 3.1 Overview of the approaches to improve data/service QoS through dynamic replication
and their features. Source: Own elaboration.

O
bj

ec
tiv

e
(1

)

R
el

ia
bl

e
C

om
m

un
ic

at
io

ns
(2

)

Si
m

ul
at

ed
(3

)

Si
m

ul
at

or

M
ob

ili
ty

M
od

el
(4

)

C
lu

st
er

in
g

(5
)

E
le

ct
io

n
C

ri
te

ri
a

(6
)

R
ea

ct
iv

e
(7

)

K
no

w
le

dg
e

Sc
op

e
(8

)

C
os

tM
ea

su
re

(9
)

Sy
nc

hr
on

iz
at

io
n

(1
0)

[59][58][60] +a ? Ë ? RWP é Int. Ë � é é
[2] +a ? Ë QualNet RW/Map-based Pos. Int. é � � é
[3] +a ? Ë QualNet RW/Map-based Pos. Int./RC./CC. é � � é

[17] +a Ë Ë ns-2 St. é G. Ë � é é
[13][75] −rt ? é MATLAB ? é Dens./RT. ? � A� é

[43] −rt ? é MATLAB ? é Dens./RT./Spd. ? � A� é
[86] −cc é Ë ns-3 RWP Spd. Spd. é � � é

[80][138] +a −rt ? Ë ? RWP é Self./G./Dist. é � � é
[139] +a −rt ? Ë ? RWP é Self./G./Dist./Upd. Freq. é � � é
[91] +a −rt ? é MATLAB ? é Self./Dist. é � � é

[178] +a Ë Ë CSIM RT BO PI Phy. Int. ? � A é

[177] +a Ë Ë CSIM
RW RWP

Phy. Int. ? � A é
MG RPGM

[49] −rt ? Ë ? St. ID Perf. Ë � � Ë*
[173] +a ? é Gephi RPGM ? Sto. ? � é é
[149] +a Ë Ë OPNET RW é Perf./Spd. é � é é
[66] −e −nt Ë Ë ? RWP é BW/Int. é � �Aö é

[62][63] +a Ë Ë ? RWP RW St. Int./Pos. é � é Ë**
1 (+a) To increment the availability; (−rt) To reduce the response time; (−cc) To reduce communication cost; (−e) To reduce energy

consumption; (−nt) To reduce network traffic.
2 (Ë) communication is explicitly assumed reliable; (é) communication is explicitly assumed not reliable; (?) nothing is said about

communication reliability.
3 (Ë) the proposal is simulated; (é) the proposal is not simulated (note that MATLAB and Gephi are not considered simulation tools)
4 (RWP) Random Waypoint mobility model; (St.) nodes are static; (RW) Random Walk mobility model; (RT) tactical Repeated Traversal

mobility model; (BO) tactical Bounding Overwatch mobility model; (PI) tactical Pincer mobility model; (MG) Manhattan Grid
mobility model; (RPGM) Reference Point Group Mobility model

5 (é) clustering is not used; (Pos.) position-based clustering; (Spd.) speed-based clustering; (Phy.) cluster are physically delimited; (ID)
ID-based clustering; (St.) statically predefined clusters.

6 (Int.) interest in use the resource; (RC) replication cost; (CC) communication cost; (G.) greedy-based approach; (Dens.) replica
density; (RT) response time; (Spd.) node speed; (Self.) node selfishness; (Dist.) hop-distance to the resource; (Upd. Freq.) update
frequency of the resource; (Sto.) storage capacity of the node; (Perf.) node performance; (BW) node bandwidth; (Pos.) position of the
node in the network topology.

7 (Ë) the replica deployment scheme is revised when changes in the context happens; (é) the replica deployment scheme is not revised
when changes in the context happens; (?) nothing is said about the reactivity of the solution.

8 (�) local to the node or its vicinity; (�) global to the network.
9 (é) none cost measure is taken into consideration; (�) energy consumption; (A) access delay to the resource; (�) to use the

minimum number of replicas; (�) bandwidth usage; (�) message usage; (ö) storage usage.
10 (Ë) the synchronization between the replicas of the resource is addressed; (é) the synchronization between the replicas of the

resource is not addressed or only are considered read-only resources.
* In [49] a copy primary replication scheme synchronized under SRP is considered. However, the synchronization is not contemplated in

the simulation/evaluation.
** In [62][63] data updates of the original copies in known and fixes periods are contemplated, but no modifications on data replicas.



3.5 Discussion 69

Table 3.2 Overview of the leader election algorithms in dynamic environments and their
features. Source: Own elaboration.

R
el

ia
bl

e
C

om
m

un
ic

at
io

ns
(1

)

Si
m

ul
at

ed
(2

)

Si
m

ul
at

or

M
ob

ili
ty

M
od

el
(3

)
Election Criteria

[98] Ë é - - The node that detects the partition
[163] Ë é - - Undetermined utility function
[164] é* Ë GloMoSim RWP Undetermined utility function
[127] Ë é - - Lowest ID
[24] ? é - - Probability, influenced by the capabilities of the node
[134] Ë Ë ? RWP Undetermined utility function
[140] ? Ë ns-2 RWP The node with highest energy level and lowest reputation level
[103] ? Ë ns-2 St. RWP Node with highest energy
1 (Ë) communication is explicitly assumed reliable; (é) communication is explicitly assumed not reliable; (?)

nothing is said about communication reliability.
2 (Ë) the proposal is simulated; (é) the proposal is not simulated.
3 (RWP) Random Waypoint mobility model; (St.) nodes are static.
* [164] considers a weak reliability, i.e., "the message delivery is guaranteed only when the sender and the

receiver remains connected for the entire duration of the message transfer", thus there have not been considered
other features that can affect the message delivery, such as the bandwidth saturation or channel fading.

Table 3.3 Overview of the cluster head election approaches revised and their features. Source:
Own elaboration.

R
el

ia
bl

e
C

om
m

un
ic

at
io

ns
(1

)

Si
m

ul
at

ed
(2

)

Si
m

ul
at

or

M
ob

ili
ty

M
od

el
(3

)

Election Criteria
[172] Ë Ë ? RW RWP Reliability of the node
[4] ? Ë ns-2 RWP The node with minimum expected relative mobility

[165] ? Ë ns-2 RWP Utility function
[18] Ë Ë ns-2 RWP The closest node to the gravity point of the geographical zone
1 (Ë) communication is explicitly assumed reliable; (é) communication is explicitly assumed not reliable;

(?) nothing is said about communication reliability.
2 (Ë) the proposal is simulated; (é) the proposal is not simulated.
3 (RWP) Random Waypoint mobility model; (RW) Random Walk mobility model.



70 Related Work

election algorithms for dynamic environments (Section 3.3) and Table 3.3 shows the cluster
head election approaches (Section 3.4).

In general, it can be seen that the majority of the total of the proposals (29) explicitly assume
reliable connections (12 of 29) or say nothing about this assumption (15 of 29). Only two
proposals, [86] and [164] consider no reliable connections in their proposals. Although [164]
only assumes a weak reliability, i.e., "the message delivery is guaranteed only when the sender

and the receiver remain connected for the entire duration of the message transfer". Therefore
there have not been considered other features that can affect the message delivery, such as
the bandwidth saturation or channel fading. This can be considered as a strong assumption,
since data or message loss is an inherent property of mobile and wireless ad-hoc networks,
especially in highly dynamic and large-scale environments. This highlights the fact that the
solutions proposed in this topic generally are focused on objectives such as load balancing,
energy consumption, and scalability, while system reliability is a secondary consideration [174],
although fundamental for the applicability of the proposal in real-world scenarios.

Regarding the evaluation of the proposals, the majority (21 of 29) use a network simulator
to perform the evaluation. Of these 21 proposals, 7 of them use ns-2 or ns-3, 6 of them use other
simulators, and 8 of them do not specify which simulator have used to evaluate their proposals.
This makes it difficult to reproduce the validation performed and the possible verification of the
results that the authors have obtained. In respect to the mobility model used in the evaluation,
the majority of the proposals use the RWM model, whereas only [178] and [177] use additional
mobility models as Manhattan Grid or RPGM. In fact, in their work, [178] and [177] underline
how deep can affect the mobility model in the replication strategy, and thus the importance of
evaluating the proposal under different mobility models.

Focusing on the approaches to improve data/service QoS through dynamic replication
(Table 3.1), the objective of the majority of the proposals studied is to enhance the availability
of the data/service, whereas a few also consider the response time in accessing the resource. 13
of a total of 17 are resource-aware. The cost measure taken as reference is varied, but energy
consumption, bandwidth usage and response time predominate. Although energy consumption
could be considered a good cost measure, the lack of standardization in the evaluation tools
makes it dependent on the tool used and difficult the comparison of proposals. Instead, measures
such as network traffic and the number of messages sent are more independent of particular
tools or technologies, and therefore they are more appropriate measures to compare and evaluate
different proposals.

Regarding the scope of the knowledge used to perform the host election, it can be seen
(Table 3.1) how only 6 of 17 proposals use local information to the node or the node group,



3.5 Discussion 71

whereas the majority, the other 11, use global knowledge to the network to support their
decisions. To obtain and maintain a global knowledge of the network is expensive in dynamic
multi-hop ad-hoc networks [34]. In this respect, approaches that use local information are more
efficient and scalable in resource-constraint environments. Moreover, cross-layer interaction
approaches [39], such as [98], [149] and [91] are of particular interest. These proposals suggest
to use the routing protocol to obtain information about the network topology, and they arise as
more flexible designs for managing the dynamics of mobile environments and reducing the
resource consumption.

Another important aspect to take into consideration is the synchronization of the replicas.
Although the increment in replicas supposes a direct increment in the availability of the resource,
it also leads to an increment in the messages need to synchronize a higher number of replicas.
Additionally, in a collaborative system, the replica of a resource could easily become outdated
or invalid if synchronization is not taken into consideration. From the 17 proposals, only [49]
and [62][63] address the synchronization of the replicas. However, they only do it partially. In
[49] a copy primary replication scheme synchronized under SRP is considered. However, the
synchronization is not contemplated in the simulation/evaluation. In [62][63], data updates of
the original copies in known and fixes periods are contemplated, but no modifications on data
replicas.

Only 7 of the 17 works apply clustering techniques, getting scalability. Of these, only 3 ap-
ply dynamic clustering techniques, based on node positions [2][3] and node speeds [86]. [166]
demonstrates that considering node speeds and direction as the criterion for node clustering
results in more stable node clusters.

Finally, Tables 3.1, 3.2 and 3.3 show that there is a wide variety of host/leader/CH election
criteria. It should be noted that the election criteria are dependent on the objective of the
system. Thus, for example, [18], [4], [86] or [149] aim to elect stable nodes, in order to reduce
the number of elections. Hence, their election criteria are based on the speed of the node. Other
proposals determine as election criteria the access frequency, the battery life or the degree
of selfishness of the node. However, the requirements of a system could vary according to
different application scenarios, or even in the same scenario over time. Therefore it is important
to provide flexible mechanisms that make easy to customize the election criteria, not only at
design-time but also at run-time. To this respect, proposals such as [153], [163][164], [140],
[134] and [165], perform the election on the basis of a utility function. Usually, this utility
function evaluates different features of the candidate node, returning a score that represents
how suitable is that node. The main advantage of this solution is that it is easily adaptable.
This is, by introducing a simple change in the utility function, the criteria on which the host



72 Related Work

is elected is modified. However, generally, all the nodes have to use the same function for a
correct operating, which could make difficult a distributed modification at run-time.

3.6 Summary

This chapter has provided a review of the existing proposals related to the dynamic service
provisioning in dynamic environments. These have been divided into three categories: (1)
approaches to enhance data/service QoS through dynamic replication, (2) leader election
algorithms in dynamic environments, and (3) cluster head election algorithms.

From the proposals studied, two main drawbacks can be concluded: (1) these are frequently
ad-hoc solutions have been developed for specific scenarios. Therefore, they are difficult to
apply in other scenarios or with other requirements than those for which they were devised;
and (2) they often assume reliable communication channels. This can be considered as a strong
assumption, since data or message loss is an inherent property of mobile and ad-hoc wireless
networks, especially in highly dynamic and large-scale environments.

As desirable features that a system should posses to efficiently address the dynamic service
provisioning in dynamic environments the following can be highlighted:

• To be reactive to context changes, in order to modify the deployment scheme when, for
example, a node leaves the network, or a network partition occurs.

• To base its decisions on local information, owing to in dynamic environments to obtain
global information of the system is usually costly. To this end, cross-layer approaches
can be useful to gather information about the network status and avoid to duplicate tasks
in the system.

• To provide a resource-aware solution, supporting a balance between the quality attributes
of the system and the resource consumption.

• To base the election in a Utility Function. This would facilitate to modify the election
criteria according to the requirements of the application scenario.

Regarding the evaluation of the proposal, currently, the majority use network simulators.
However, in this evaluation, a major diversity of mobility models should be taken into consider-
ation. Additionally, as cost measures to asses the efficiency of the proposal, criteria such as
network traffic and the number of messages sent should be used. These are more independent
of particular tools or technologies than energy consumption, and therefore they are more
appropriate measures to compare and evaluate different proposals.



3.6 Summary 73

Finally, the synchronization of the replicated resource (service or data) is currently relegated
to a secondary plane. However, the increment in the number of resource replicas implies an
increase on synchronization messages and, thus, reducing the efficiency of the approach. This
may invalidate some of the proposals that perform an extensive replication of the resource to
increment its availability.





Part II

Proteo Architecture: Design, Modelling,
Simulation, and Evaluation





Chapter 4

Proteo: A Self-adaptive Software
Architecture

Chapter Abstract

This chapter introduces the Proteo architecture. The primary objective of Proteo is to provide a self-

adaptive and resource-efficient solution to support the availability of services in dynamic topology

environments, through replication and self-configuration techniques.

The chapter starts presenting a motivating scenario and providing the system model under which the

proposal will be developed. Then, the structural design of Proteo architecture is shown, together with

the responsibilities of each of its main components. These responsibilities are closely related to the

phases of MAPE-K autonomic loop of Autonomic Computing. Furthermore, how to evaluate in Proteo

the feasibility of a node to host an active service replica is presented. This evaluation is based on a

cross-layer approach to efficiently approximate the position of a node in the network topology.

In Proteo an election algorithm is used. To this end, two new election algorithms are proposed:

Consensus and Voting algorithms in order to dynamically establish what node will be elected to host

the active replica. These are devised to operate in mobile environments with highly dynamic network

topologies and under unreliable communication channels. In addition to this, three existing proposals of

election algorithm (Bully, Kordafshari, and Vasudevan algorithms) have been selected to be adapted and

integrated into Proteo. Finally, the performance of these algorithm proposals is theoretically analysed,

revealing the existing trade-off between message complexity and turnaround time.

Chapter Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Motivating Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



78 Proteo: A Self-adaptive Software Architecture

4.4 Architectural Design Proposal . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Host Feasibility Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6 Election Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



4.1 Introduction 79

4.1 Introduction

This chapter introduces the main components of the self-adaptive software architecture Proteo,
which will be later detailed in Chapter 5. The main objective of Proteo is to provide a self-
adaptive and resource-efficient solution to support the availability of services in dynamic
environments. The proposal is based on service replication techniques together with a self-
configuration approach for the activation/hibernation of the replicas of the service depending
on relevant context information from the system.

This chapter is organized as follows: first, a motivating scenario is exposed in Section 4.2,
which, simply, introduces the problematic intended to be addressed by Proteo. Then, Section
4.3 presents the system model in which the proposal is framed and the list of assumptions under
which the proposal will be developed and studied. Section 4.4 will introduce the structural
design of the self-adaptive software architecture. Additionally, the approach proposed and
followed by Proteo architecture to evaluate the feasibility of a node to host an active service
replica is shown in Section 4.5. Finally, Section 4.6 will present the proposed Consensus and
Voting election algorithms. Moreover, for the sake of a performance comparison between the
proposed algorithms and other existing ones, we introduce the adaptations that have been made
to the Bully, Kordafshari, and Vasudevan algorithms, to make them applicable to the context of
the proposal. Additionally, a theoretical performance study and analysis on message complexity
and turnaround time of the algorithms are presented.

4.2 Motivating Scenario

In this section, an example scenario that reflects real needs for dynamic data and service
replication is described (Fig. 4.1). In the scenario, three members of a team are working
together in a remote area. Two kinds of devices can be found: (1) a laptop located in a car;
and (2) three mobile devices (one per team member). Different functionalities provided by
the corresponding services could be required. For example, lets suppose an Image Repository
service. Each team member can take several pictures of an element with his/her mobile device;
other team members can take additional photos for the element, or the same member can take
other photos for related elements. Moreover, annotations to these pictures can be added, which
can be related to other pictures. Therefore, the Image Repository service must keep an ordered
and consistent set of this information, and at the same time, it must provide high availability,
to allow team members to access and share pictures.



80 Proteo: A Self-adaptive Software Architecture

Area of 

Concern 2

Device 2

Device 3

Device 4

Device 1
Area of 

Concern 1

Fig. 4.1 A hypothetical scenario of a collaborative work team in a remote area.

In this scenario, the proposed self-adaptive architecture is intended to improve the availabil-
ity of the Image Repository service as well as to provide a resource-aware solution. This is
highlighted in the following situation:

1. Initially, all team members are near the Area of Concern 1. All the mobile devices are
connected to the laptop located in the car. Therefore, the active service replica is the
one deployed in the laptop (Device 1 in the Fig. 4.1), as it presents better computational
features.

2. The team member using the Device 4 will move to the Area of Concern 2. This area is
out of the laptop coverage. The self-adaptive architecture detects this situation, and the
adaptation process starts to carry out the deployment and activation of a new replica of
the Image Repository service. Since the only device available is itself, it will host an
active replica of the service. At this point, the network is partitioned into two groups: (1)
the Devices 1, 2 and 3, where the Device 1 hosts the active replica; and (2) the Device 4,
in which the new service replica was deployed.

3. Later, the team members of the Devices 2 and 3 move to the Area of Concern 2. At a
given time the battery of the Device 4 is under the 25%. The adaptation process will
be started again to decide where to host a new service replica, with Device 2 and 3 as
candidates. At this moment, there are no any clients using the service replica deployed in



4.3 System Model 81

the laptop (Device 1) because of the network partition. Therefore, that service replica
will be disabled in order to save resources.

To successfully address this scenario to provide a context-aware solution able to detect
the events (e.g., network partitions, server disconnections or low level of battery charge) that
could affect to the quality attributes (e.g., availability) of the service deployed is necessary ; a
self-adaptive solution, able to self-configure the system to maintain or even improve its quality
attributes in a transparent and unaware way for the users; a resource-aware solution, with
low resource requirements (e.g., battery) and able to provide an efficient configuration of the
system; and a distributed solution, where no device is indispensable for the correct operating
of the own self-adaptive solution.

Additionally, it should be noted that the architecture proposed, Proteo, is not limited
to this example scenario. The solution has been designed as an adaptable solution, with the
intention of being applied in different application scenarios with different requirements or
requirements that could vary over time.

4.3 System Model

The network in which Proteo is contextualized consists of a set of nodes, represented by V ,
which are assumed to have a unique identifier. Each pair of nodes can be connected by a
link, depicting as E the complete set of links of the network. In this way, the network can be
represented as a graph G = (V,E), where the nodes represent the vertices, and the links the
edges.

While the connection between two nodes is being established, the link could be not
bidirectional. However, it is assumed that this link become bidirectional in a finite time after
the connection is established.

Communication channel is unreliable and there is channel fading caused by the distance.
Buffer size is limited and network congestion is possible.

Multi-hop communication is allowed, and the routing protocol manages it at the network
layer. It is assumed a proactive routing protocol to be implemented. If not, a discovery service
would be necessary.

The nodes of the set V can be or not mobile. If they are mobile, their movement cannot be
controlled or influenced.

A node can fail or leave the network at any moment without notice.



82 Proteo: A Self-adaptive Software Architecture

Communication Middleware

App AppService Service

Replica
Manager

Context 
Manager

Monitoring
Subsystem

Operating System

M
id

dl
ew

ar
e 

L
ay

er

Fig. 4.2 High-level Proteo layered architecture.

4.4 Architectural Design Proposal

Proteo architecture is based on microservices, and it is composed of three main elements (Fig.
4.2): (1) Monitoring Subsystem, (2) Context Manager Service, and (3) Replica Manager Service.
These elements will be replicated in each node of the network with enough capabilities to act
as server, and their union and coordination will provide a resource-efficient solution to satisfy
the availability of the services deployed in a dynamic network topology.

Proteo bases its communication on a Communication Middleware (Fig. 4.2), which allows
communication between the different entities (nodes and services) of the system under two
different communication paradigms: (1) a Publish-Subscribe; and (2) a Request-Response. The
combination of both paradigms is usually known as SOA 2.0 [90] (a.k.a. advanced SOA), in
which services are not just passive entities, but are also able to receive and generate events
proactively. Additionally, in order to perform the coordination of the distributed nodes that
compose the network, a message passing paradigm will be used in Proteo.

Monitoring Analysis Planning Execution

Monitoring
Subsystem

Context Manager 
Service Replica Manager Service

Fig. 4.3 Responsibility mapping between Proteo elements and MAPE-K autonomic loop phases.



4.4 Architectural Design Proposal 83

The responsibility of Proteo services are closely related with the phases of MAPE-K
autonomic loop of Autonomic Computing (Fig. 4.3): the Monitoring Subsystem sense the
context information in relation to the node in which are deployed; the Context Manager Service,
in addition to process this information, will also be responsible for analysing it to decide when
a new system adaptation is necessary; and the Replica Manager Service will be responsible for
coming to an agreement with the rest of the Replica Manager Services deployed in the system
to establish what replica will be activated. This coordination will be performed on the basis of
a distributed host election algorithm (Section 4.6), which will carry out the election according
to of a dynamic score obtained by means of a utility function (Section 4.5).

4.4.1 Monitoring Subsystem

The Monitoring Subsystem encompasses a set of supervising services, which sense the context
information concerning the node in which are deployed, to detect potential events that could
affect the availability of a service deployed in the node. The features to monitor will depend on
a particular scenario. Nevertheless, battery and network topology are transversal features that
will be present in the majority of application scenarios for which Proteo is devised. Therefore,
without prejudice to add new monitoring services, in this work both the node battery and the
network topology are monitored. Note that, in this work, a service has been designed for each
context feature to monitor. This has been done to comply with established good practices
in service-orientation design [50][106]. In this way, service reusability and autonomy are
increased.

To monitor the context is a costly operation in terms of energy and bandwidth. Nevertheless,
the response time of a self-adaptive system depends on the precision of the monitoring action.
The information about the node capabilities (e.g., battery) is local knowledge that usually can
be obtained easily, while a dynamic network topology requires continuous monitoring because
of constant changes that it suffers. Further, the cost increases exponentially with each hop
in the network [34], since the dynamicity of the network and effects of topology changes are
improved.

However, the information managed and gathered by the routing protocol can be reused with
the objective of monitoring and detect changes in the network topology. Although according to
the OSI model (Open Systems Interconnection) the routing protocols are designated as network
layer responsibility, it has been proved that a more flexible design is required for managing
the dynamics of mobile environments, where the network status is obtained from a cross-layer
interaction [39].



84 Proteo: A Self-adaptive Software Architecture

Therefore, in this work we propose to use the information gathered by the routing protocol
with two objectives: (1) to monitor and detect changes in the network topology; and (2) to use
this information as a substitute of a discovery service. In this way, it is possible to provide a
more resource efficient solution, avoiding to duplicate network monitoring tasks in the system.

4.4.2 Context Manager Service

The Context Manager Service will receive information from the monitoring services of its
node. The information received by this service is basic information, but unrelated a priori.
Its responsibility consists of processing, contextualizing and storing it. This information
will be used by the Replica Manager Service in order to adjust the configuration of the
activation/hibernation of the replicas according to the changes produced in the context.

Additionally, the Context Manager Service is responsible for detecting changes in the
context that could affect the quality attributes of the service, and thus decide when the adaptation
process has to be initiated. An example that illustrates this can be the following one: the network
monitoring service detects that a node is no longer reachable. Then, it triggers an event to spread
this information. The monitoring service unknowns the role or importance of the disconnected
node. However, the Context Manager Service, when receives this information, detects that the
disconnected node is indeed the current server and hence to elect a new server is necessary. The
Replica Manager Service will be the responsible for performing the adaptation (Section 4.4.3).

Moreover, the Context Manager Service will be responsible for evaluating the feasibility
of the node in which it is deployed to host an active service replica. This evaluation will be
performed through a utility function, which will evaluate the node features according to a set
of defined weights. In this way, the node only shares the score obtained through the utility
function (which will be detailed in Section 4.5), whereas node specific features, such as node
battery level, will remain as local information to the node.

4.4.3 Replica Manager Service

The Replica Manager Service runs the election algorithm (see Section 4.6) to achieve an
efficient configuration for the activation/hibernation of the replicas of the service of which
Proteo is supporting its quality attributes. When a change in the context is detected that could
affect the quality attributes of the service; it will be responsible for agreeing with the rest of
the Replica Manager Services deployed in the system. The objective of this coordination is to
know if there is a better activation/hibernation scheme of the replicas and if so, to establish
what replica will be activated. It should be emphasized that any node can initiate the election



4.5 Host Feasibility Evaluation 85

process. This is because each node has local information about its own features that is not
accessible to the rest (e.g., battery level).

4.5 Host Feasibility Evaluation

The feasibility of the node to host an active replica of the service is evaluated through a utility
function. This function will return a score in the 0-1 interval, where 1 represents the best
feasibility. Usually, the function will be represented by a weighted average.

The node features and resources evaluated in the function will depend on the particular
application scenario and the application requirements. For example, in some cases, within the
same application scenario, it could be desirable to prioritize the battery of the devices. In such
case, the weight assigned to battery level in the function would be higher.

As exposed in Section 4.4.1, in this work, without prejudice to add other features, both the
node battery and the network topology are taken into consideration to evaluate the nodes.

The position of the node in the network topology is a fundamental feature to take into
consideration in the service deployment process, due to the availability, reliability, and perfor-
mance of distributed applications are critically conditioned by the placement of the services in
the distributed system [95].

As introduced in Section 4.4.1, to efficiently monitoring and evaluate the position of a node
in the network, in this work, a cross-layer approach to use the information gathered by the
routing protocol is proposed. Routing protocols for dynamic network topologies usually try to
make an easy topology representation by considering only the best path between two nodes [1].

The routing protocol builds and maintains in each node a routing table with information
about the reachable nodes and for each of them the gateway and the number of hops. Through
the direct connections of a node, i.e., one hop connections, the system can approximate its
position within the network topology. Although it does not supply the exact position of a node,
it can provide enough information to approximate the network topology successfully.

It should be noted that this approach requires proactive routing protocols [1], which period-
ically update routing tables according to the network topology changes.

Fig. 4.4, Fig. 4.5 and Fig. 4.6 show three examples of ad-hoc networks and how, employing
the information provided by the routing protocol in the form of routing table, then to identify
the most centric nodes in the network topology is possible. It is worth highlighting the example
of Fig. 4.4, in which, according to heuristic proposed, both nodes 2 and 4 are in a good
position within the network topology, which is true. In this case, the tie will be broken by other
capabilities taken into consideration.



86 Proteo: A Self-adaptive Software Architecture

Node 1 2 3 4 5 6
Number of
direct connections

2 3 2 3 2 2

Fig. 4.4 Example 1 of the heuristic used to approximate the position of a node within the
network using the information provided by the routing table.

Node 1 2 3 4 5 6
Number of
direct connections

2 3 4 5 2 1

Fig. 4.5 Example 2 of the heuristic used to approximate the position of a node within the
network using the information provided by the routing table.

Node 1 2 3
Number of
direct connections

1 2 1

Fig. 4.6 Example 3 of the heuristic used to approximate the position of a node within the
network using the information provided by the routing table.



4.6 Election Algorithms 87

The general utility function to evaluate the feasibility of a node to host an active service
replica can be implemented by the equation 4.1.

score =
W0 · f0 +W1 · f1 + · · ·+Wn · fn

n
, for Wi, fi ∈ [0,1],

n

∑
i=0

Wi = 1 (4.1)

where:

fi = normalized value of feature i

Wi = weight assigned to feature i

n = number of features considered

In the case of taking into consideration the battery and direct connections of a node (i.e.,
position in the network topology), the utility function can be implemented by the equation 4.2.

score =
W0 ·bl +W1 ·dcm

2
, for Wi ∈ [0,1],

n

∑
i=0

Wi = 1 (4.2)

where:

bl = battery level in a [0−1] range
dcm = normalized direct connections of the node, which is given by direct connections

nodes in the routing table

Wi = weight assigned to feature i

4.6 Election Algorithms

In Proteo the election algorithm is executed in a distributed manner by the set of Replica

Manager Services (Section 4.4.3) to establish what node will be elected to host the active
replica. This election is based on the scores of the nodes (Section 4.5), and it will be the
best-ranked node available which should be elected.

This section attempts to introduce an overview of the basic operating of the two new election
algorithms proposed (Section 4.6.1) as part of the Proteo architecture proposal. Moreover, the
adaptations proposed on existing election algorithms, to integrate them in Proteo architecture,
are presented in Section 4.6.2. Finally, a theoretical performance study and analysis on message
complexity and turnaround time of the algorithms are presented in Section 4.6.3. It should be
noted that a detailed description of the election algorithms introduced in this section will be
provided in Chapter 5.



88 Proteo: A Self-adaptive Software Architecture

4.6.1 Proposed Election Algorithms

In this section, two new election algorithms are proposed: Consensus and Voting. These
election algorithms are devised to operate in mobile environments with highly dynamic network
topologies and under unreliable communication channels.

It should be highlighted that although these election algorithms were initially designed
to operate as host election algorithms, they can also be used to elect a coordinator node in a
distributed manner for other purposes.

Consensus Election Algorithm

The Consensus election algorithm is based on three basic types of messages:

• Score message: Through this message, a node communicates its score, obtained through
the utility function.

• Server Request message: This message is used when the requesting node wants to
establish a client-server connection with the receiver node, where the requesting node
will act as the client and the receiver node as the server.

• Server Acceptance message: Used to respond to a Server Request message. Through this
message, the receiver node of a Server Request accepts the request to act as the server
for the requesting node. Therefore, when the sender node of a Server Request message
receives the Server Acceptance, it will establish the client-server connection, and it will
start to use the service provided.

On the basis of these messages the basic operation algorithm is as follows:

(A) Given a node N that starts the election process:

(1) N calculates its own score, using a defined utility function.

(2) N broadcasts its score by means of a Score message.

(3) N waits for the Score messages of its neighbours.

(4) After N receives all the Score messages, it calculates the best ranked node:

– If N is the best ranked node: N becomes the elected node and waits for
Server Request messages. Whenever N receives a Server Request message it
replies with a Server Acceptance.

– If the best ranked node is another node P:



4.6 Election Algorithms 89

(1) N sends to P a Server Request message and waits for the Server Acceptance

reply.

(2) When N receives the Server Acceptance message from P, N sets P as
server.

(B) Given a node Q that does not start the election process: When Q receives the first
Score message, it will become aware of that an election process has started. Thus, it will
proceed in the same way that the node that has started the election (step A.1).

As can be seen, there is no difference in the procedure between a node that starts the
election and a node that participates in that election. In this way, instead of avoiding concurrent
elections, we use them to spread the Score messages.

Score messages are also used to know what nodes are available to be elected. That is, if
a node does not send its score, it cannot be elected. A node could not send its score by two
main reasons: (1) the node has failed and thus is not available; or (2) the node is not suitable
for election. In this way, the Consensus algorithm can be used in heterogeneous networks,
where some nodes could not have enough computational resources to serve to other nodes (e.g.,
sensor nodes).

In Fig. 4.7 an example of the operating of the Consensus election algorithm is shown. As
it has been exposed, it is irrelevant what node starts the election, since all of them broadcast
its score. After that, the nodes request service to the best-ranked node, in this case, as it is
assumed that ID = score, is the Node 4. This node will reply with an Acceptance message.

Fig. 4.7 Consensus election example. Known IDs and highest ID as election criteria.

Additionally to the three basic messages presented, the Consensus algorithm uses two
additional messages devised to avoid concurrent servers elections in a group of nodes:

• Server Rejection message: If the request is made to the wrong node, i.e., a node that is
not serving, this message will be used to respond. Through this message, the receiver



90 Proteo: A Self-adaptive Software Architecture

node of a Server Request rejects the request to act as the server for the sender node. This
message will include information about who the current server is.

• Server Bare Rejection message: This message has the same function that a Server

Rejection message. However, it has no additional information about the server, because
the requested node has not a known server established.

Fig. 4.8 Consensus election example with message loss. Highest ID as election criteria.

With these messages, specifically the Rejection message, the algorithm can recover from
message loss. For example, in the scenario shown in Fig. 4.8 the Score message from the Node
4 to the Node 1 is loss. Thus, Node 1 will request service to Node 3, highest ID node known
alive from its point of view. However, Node 3 knows the availability of Node 4; therefore
it will answer to Node 1 with a Rejection message, indicating Node 4 as the elected node.
Consequently, after Node 1 has received this information, it will request service to Node 4,
which will reply affirmatively, recovering from the message loss.

Voting Election Algorithm

The Voting election algorithm is devised to provide a more robust algorithm against Score

messages loss. This algorithm is based in three types of messages:

• Score message: This message is identical, in function and structure, to the Score Message

used in the Consensus election algorithm (see Section 4.6.1).



4.6 Election Algorithms 91

• Vote message: It is used by a node to emit a vote to the best-ranked node participating in
the election.

• Elected Coordinator message: It is used by a node to announce its victory in the elections
when it receives at least the half plus one of the votes.

Fig. 4.9 Voting election example. Known IDs and highest ID as election criteria.

The election process operates as follow (Fig. 4.9):

(A) Given a node N that starts the election:

(1) N calculates its own score, on the basis of a defined utility function.

(2) N broadcasts its score by means of a Score message.

(3) N Waits for the Score messages of its neighbours.

(4) After N receives all the Score messages, it calculates the best ranked node:

* If N is the best ranked node:

· N increments the number of votes received in one (i.e., the node casts a
vote to itself)

· N waits for more vote messages.

* If the best ranked node is another node P:

· N sends to P a Vote message.

· N waits for the Coordinator message, which will be sent by the elected
leader.

(B) Given a node Q that does not start the election process: When Q receives the first
Score message, it will become aware of that an election process has started. Thus, it will
proceed in the same way that the node that has started the election (step A.1).



92 Proteo: A Self-adaptive Software Architecture

(C) Given a node T , regardless of whether it started the election or not:

– If T receives the n
2 +1 Vote messages: T declares itself as the elected leader and

announces this by means of broadcasting a Elected Coordinator message.

– If T receives a Elected Coordinator message from P: T sets P as server. If T did
not send its Vote message before to receive the Elected Coordinator message, it
cancels the sending of the message, since this Vote message is already unnecessary.

As in the Consensus algorithm (Section 4.6.1), Score messages are used both to know
what nodes are available and to perform the leader election on the basis of a dynamic utility
function. The advantage of this algorithm concerning the previous is that Score messages are
not essential. In the Voting algorithm, it is only necessary for n

2 +1 nodes in the group to have
the correct scores to perform the correct election, and therefore the Score message loss is not as
critical as in the Consensus algorithm.

4.6.2 Proposed Adaptations on Existing Election Algorithms

In order to compare the performance of the new two proposed election algorithms with existing
approaches, the election algorithms of Bully (Section 2.4.1), Kordafshari (Section 2.4.2), and
Vasudevan (Section 3.3.2) have been selected.

The Bully algorithm has been selected because it is one of the more popular algorithms
for dynamically electing a leader from a group of distributed computer processes since it
was proposed in 1982. Since then, different improvements have been proposed on the Bully
algorithm, of which that proposed by Kordafshari et al. can be highlighted [89]. The advantages
of the Kordafshari proposal over other variants of the Bully algorithm is that Kordafshari el al.
proposed an effective method to reduce the number of coordination messages and concurrent
elections without make additional assumptions. Finally, the Vasudevan proposal highlights
because it is one of the few proposals that does not assume reliable communication channels
(see Chapter 3). However, it does assume a weak reliability, this is, “the message delivery is

guaranteed only when the sender and the receiver remain connected for the entire duration of

the message transfer”[164].
To make applicable these proposals in the context of this work, it is necessary to perform

some adaptations on them.
In the Bully algorithm the coordinator election is performed on the basis of the node ID, i.e.,

the available node with highest ID will be elected as coordinator. These IDs are assumed to be
static and known. Therefore, the Bully algorithm, per se, is not applicable to scenarios where



4.6 Election Algorithms 93

the election is performed by some calculated score that changes over time, as it is common in
dynamic systems.

Hence, to make possible to apply the Bully algorithm in these cases, the following modifi-
cations are introduced:

• Election and Answer messages will now include the score of the sender node.

• A node N will use the last known score of its neighbours to send the Election messages,
which will be sent to those with higher scores.

• If a node is disconnected from the group, its last known score will be set to 0, to avoid to
take as reference excessive outdated scores.

• Now, a node N could receive an Election message from a node P with higher score than
N, owing to P ignores the actual score of N. In such case, N waits for the Coordinator

message, because it now knows that exists a node P with higher score available.

These modifications are introduced to allow the applicability of the Bully algorithm in
dynamic scenarios, reducing the excessive use of Election and Answer messages that would be
necessary if the last known score would not be used as a filter.

Since the Kordafshari algorithm is based on the Bully algorithm, these modifications are
applied to the Kordafshari proposal as well.

Regarding the Vasudevan algorithm, it can operate with an election based on dynamic
scores without any modifications. However, because of its integration on Proteo, alive messages
(Heartbeats, Reply and Response messages) are no longer necessary. This is because, in Proteo,
the reachability of the neighbours or discovery is managed by the network monitoring service.
This service is based on the information provided by the routing protocol on the routing table,
following a cross-layer approach and thus reducing the necessity of additional messages from
OSI application layer.

4.6.3 Theoretical Analysis of Message Complexity

In this section, a theoretical analysis of the selected (Bully, Kordafshari, and Vasudevan) and the
proposed (Consensus and Voting) election algorithms is performed. This theoretical analysis
will help to reach a better understanding of the behaviour of the algorithms in a simplified
environment, owing to that neither the mobility of the nodes nor message loss will be taken into
consideration. In should be noted that for the cases of the Bully and Kordafshari algorithms,
both the original proposals (presented in Section 2.4.1 and Section 2.4.2, respectively) will



94 Proteo: A Self-adaptive Software Architecture

be analysed, as well as the adapted versions to operate with dynamic scores presented in
Section 4.6.2, in order to shown how the complexity of the algorithms changes because of the
adaptations.

The algorithms will be analysed according to the indicated by Coulouris et al. [42], who
establish that the performance of an election algorithm is measured by its total use of network
bandwidth (the total number of messages sent during the election, i.e., message complexity),
and the turnaround time (given by the serialized messages transmission time). For each
algorithm its best and worst case scenarios will be analysed. Finally, the results obtained will
be compared and discussed.

Standard Bully Algorithm

For the standard Bully election algorithm, this is, the presented in Section 2.4.1, the message
complexity of the algorithm to elect a new coordinator is defined as:

Best Case

The node that starts the election is the node with highest ID. In this case, only n− 1
Coordinator messages are sent, where n is the number of nodes involved in the election.
Thus, the Bully algorithm complexity in the best case is n−1 ∈ Ω(1) messages, and the
turnaround time is of one message (tmsg), where tmsg is the time required to send and
process a message.

Worst Case

The node that starts the election is the node with lowest ID, and every node tries become
the leader starting an election.

This scenario is depicted in the Fig. 4.10. Note that after Node 1 in Fig. 4.10a starts
the election, the elections started by the Nodes 2 (Fig. 4.10c), 3 (Fig. 4.10e) and 4 (Fig.
4.10g) can happen concurrently but always with a slight anticipation of the Node 2 over
the Nodes 3 and 4, and of the Node 3 over the Node 4. Otherwise, if any of the Nodes
with higher IDs anticipates, nodes with lower ID will not try to dispute the election.

In this case, the first node will send n−1 Election messages, the second one n−2
and so on. Thus, in the worst case:

• ∑
n
i=1(n−1) Election messages will be sent.

• Each of these Election messages will be replied with an Answer messages, therefore

∑
n
i=1(n−1) Answer messages will be sent as well.



4.6 Election Algorithms 95

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 4.10 Bully election worst case scenario example. Known IDs and highest ID as election
criteria.



96 Proteo: A Self-adaptive Software Architecture

• Finally, when the turn arrives to the highest ID node, it will send n−1 Coordinator

messages.

Consequently, the message complexity in the worst case scenario is defined by
2 · [∑n

i=1(n−1)]+(n−1), which simplified becomes 2n2 −1 ∈ O(n2) messages.
If we pay no attention to the slight time difference between the concurrent elec-

tions, the turnaround is of three messages (3tmsg), due to Election, Acknowledge and
Coordinator messages have to be sequential.

Adapted Bully Algorithm

However, as introduced in Section 4.6.2, the standard version of the Bully algorithm is not
applicable to scenarios where the election is performed by some dynamic score, instead of
known IDs. Therefore, to introduce some adaptations in the algorithm has been necessary.
Consequently, the message complexity is increased, both for the best and the worst case, when
introducing the adaptations presented in Section 4.6.2.

Best Case

Although the election is initiated by the best ranked node, this will send n−1 Election

messages, due to it ignores the score of its neighbours. Since this is the best node,
there will not be Answer messages, and the node will proclaim itself as new coordinator,
sending n−1 Coordination messages. Consequently, the message complexity in the best
case will now be given by 2 · (n−1) ∈ Ω(1).

In this case, the node will wait for the Acknowledge messages a time twait before
proclaims itself as coordinator, where twait > tmsg. Thus, the turnaround time will be of
2tmsg + twait , because there are two serialized messages: Election and Coordination.

Worst Case

In the worst case, none of the nodes know the score of their neighbours and all of them
start the election concurrently. In this case:

• n · (n−1) Election messages will be sent.

• Since Answer messages are sent as a reply when the source of the Election message
has a lower score, ∑

n
i=1(n− i) Answer messages will be sent.

• Finally, the winner of the election process will sent n−1 Coordinator messages.



4.6 Election Algorithms 97

Therefore, in this case the message complexity will be delimited by n · (n− 1)+
[∑n

i=1(n− i)]+(n−1) messages, simplified 3n2−n−2
2 ∈ O(n2).

The turnaround time will be the same that in the best case: 3tmsg +(twait − tmsg) =

2tmsg + twait . This is because, although there will be 3 messages serialized, the node with
highest score will be waiting in parallel (twait) whereas Acknowledge messages are sent
(tmsg).

Standard Kordafshari Algorithm

For the standard Kordafshari election algorithm, presented in Section 2.4.2, the message
complexity of the algorithm to elect a new coordinator is defined as:

Best Case

As in the Bully algorithm, the best case is when the node that starts the election is the
node with highest ID. In this case, only n−1 Coordinator messages are sent. Thus, the
Kordafshari algorithm complexity in the best case is n−1 ∈ Ω(1), and the turnaround
time is the time taken to send and process one message (tmsg).

Worst Case

Each node, except that with the higher ID, starts a concurrent election, as in the case
depicted in Fig. 2.11 in Section 2.4.2. In this case:

• ∑
n
i=1(n− i) Election messages will be sent.

• Thanks to the approach to reduce concurrent elections introduced by Kordafshari,
only the lowest ID node will have replies to its Election messages, hence only n−1
Answer messages will be sent.

• The lowest ID node will send a Grant message to the highest ID node available.

• Finally, the highest ID node will send n−1 Coordinator messages.

Consequently, the message complexity in the worst case scenario is defined by 2 · (n−
1)+∑

n
i=1(n− i)+1 messages, simplified n2+5n−2

2 ∈ O(n2).
The turnaround time will be of 4tmsg, because now the Grant message is added as

a new serialized message. It should be noted, that although the Kordafshari algorithm
reduces the number of messages in the worst case with regard to the Bully algorithm, it
worsens the response time.



98 Proteo: A Self-adaptive Software Architecture

Adapted Kordafshari Algorithm

As in the case of the Bully algorithm, the Kordafshari algorithm is devised to operate with
known IDs. Introducing the modifications presented in Section 4.6.2, to make possible to base
the election of Kordafshari on unknown dynamic scores, the message complexity is increased,
both for the best and the worst case.

Best Case

The same as in the Bully algorithm (see Section 4.6.3), which presents a message
complexity of 2 · (n−1) ∈ Ω(1), and a turnaround time of 2tmsg + twait

Worst Case

In the worst case, none of the nodes know the score of their neighbours and all of them
start the election concurrently. In this case:

• n · (n−1) Election messages will be sent.

• n−1 Answer messages are replied only to the lowest ID node.

• The lowest ID node will sent a Grant message to the elected node.

• The elected node will sent n−1 Coordinator messages.

Therefore, the message complexity will be delimited by n · (n − 1) + 2 · (n − 1) + 1
messages, simplified n2 +n−1 ∈ O(n2). The turnaround time will be of 4tmsg.

Vasudevan Election Algorithm

The Vasudevan algorithm, presented in Section 3.3.2, unlike the Bully and Kordafshari al-
gorithms, can operate with an election based on a dynamic score without any modifications,
as introduced in Section 4.6.2. It should be noted that, because of its integration on Proteo,
Vasudevan alive messages (Heartbeats, Reply and Response messages) are not longer neces-
sary, because it will be the Network Monitoring Service, the responsible for monitoring the
network and thus the alive and reachable nodes. In Proteo, the reachability of the neighbours or
discovery is managed by the network monitoring service (Section 4.4.1).

Unlike in the case of the Bully and Kordafshari algorithm, the best and worst case scenarios
are not dependent on who initiates the election but on the topology of the network, due to
election is not performed on the basis of the ID of the nodes but on some unspecified score.



4.6 Election Algorithms 99

(a)

(b)

(c)

Fig. 4.11 Vasudevan election example. This example depicts the best case scenario. Known
IDs and highest ID as election criteria.

Best Case

As messages between sibling nodes are unnecessary for the election but inevitable in the
grown of the tree, the best case for this algorithm to reduce the message complexity is
that in which the network topology is narrow and deep, as the example depicted in Fig.
4.11. In such example, the election is initiated by the Node 1, who grows the tree towards
Node 4 (Fig. 4.11a). Once that the tree shrinks by means of ACK messages (Fig. 4.11b),
Node 4 is elected leader by Node 1 (Fig. 4.11c).

In this case, n−1 Election, ACK and Leader messages are sent. Thus, for Vasudevan
election algorithm the message complexity for the best case is given by 3 · (n−1) ∈ Ω(1).

The Vasudevan algorithm presents a higher serialization of messages than the other
algorithms. In the best case, where all nodes are in a line, all the messages sent will be
serialized. Therefore the turnaround will be of 3 · (n−1) · tmsg, and it will be dependent
on the number of nodes involved in the election.

Worst Case

The worst case scenario happens when the network topology is short and wide, i.e., a
mesh topology, as depicted in Fig. 4.12. In this example, the election is initiated by the
Node 1 (Fig. 4.12a). All the nodes of the network are siblings, and how it can be seen,
the message exchanges in the steps 2 (Fig. 4.12b) and 3 (Fig. 4.12c) are unnecessary for
the leader election, since the Nodes 2, 3 and 4 do not exchange any useful information.

Therefore, for a mesh topology, the following messages are sent:



100 Proteo: A Self-adaptive Software Architecture

(a) (b) (c)

(d) (e)

Fig. 4.12 Vasudevan algorithm election example. This example depicts the worst case scenario.
Known IDs and highest ID as election criteria.

• (n− 1)+ (n− 1) · (n− 2) = (n− 1)2 Election messages: root node sends to all
nodes except itself; children nodes send to all nodes, except themselves and their
parent.

• (n−1)2 ACK messages: children nodes send to all nodes, including the parent node,
except themselves.

• (n−1) Leader messages.

Consequently, for the Vasudevan election algorithm the message complexity for the worst
case is given by 2n2 −3n+1 ∈ O(n2).

In this case, the turnaround time is reduced to 5tmsg, and now it is independent of the
number of nodes. However, the Vasudevan algorithm has still a higher response time
than the Bully and Kordafshari algorithms.

Consensus Election Algorithm

The proposed Consensus Election Algorithm, introduced in Section 4.6.1, is not influenced by
the node that starts the election, neither by the topology of the network. However, the use of
score messages has a great impact in the message complexity of the algorithm.



4.6 Election Algorithms 101

Best and Worst Cases

The complexity of the algorithm, both in the worst and best case scenarios, is given by:

• n · (n−1) Score messages, since each node broadcast its score to all nodes except
itself.

• (n− 1) Request messages, each node, except the best ranked, sends a Request

message to the best ranked.

• (n−1) Acceptation messages, as reply from the best ranked node to the Request

messages received.

Therefore, the complexity of the Consensus algorithm is given by n · (n−1)+2 · (n−
1), which simplified is n2 +n−2 ∈ O(n2). The turnaround time, is of 3tmsg.

Voting Election Algorithm

The Voting election algorithm, introduced in Section 4.6.1, is devised to provide a more robust
algorithm against Score messages loss than the Consensus algorithm.

Best Case

This case happens when only the minimum required Vote messages (n
2 +1) are send, in

addition to n · (n−1) Score messages and (n−1) Coordinator messages. Therefore, the
complexity in the best case of the Voting algorithm is given by n

2 +1+n · (n−1)+(n−
1) = n2+ n

2 ∈ Ω(n2). It worth noting, that when the best ranked node casts a vote to itself,
this does not imply an actual Vote message, as it increments its votes counter internally,
without the need of an actual message. Therefore, in some cases the election can be made
with n

2 Vote messages. The turnaround time is of 3tmsg.

Worst Case

This case happens when all (n− 1) Vote messages are sent, in addition to n · (n− 1)
Score messages and (n−1) Coordinator messages. Thus, in the worst case, the message
complexity is given by n2 +n−2 ∈ O(n2). The turnaround time will be the same that in
the best case, 3tmsg.



102 Proteo: A Self-adaptive Software Architecture

Table 4.1 Overview of the analysis performed on the election algorithms. In it, the theoretical
message complexity and turnaround time in the worst case are shown.

Theoretical O message
complexity Turnaround time

Adapted Bully 3n2−n−2
2 ∈ O(n2) 2tmsg + twait

Adapted Kordafshari n2 +n−1 ∈ O(n2) 4tmsg
Vasudevan 2n2 −3n+1 ∈ O(n2) 5tmsg
Consensus n2 +n−2 ∈ O(n2) 3tmsg
Voting n2 +n−2 ∈ O(n2) 3tmsg
n represents the number of nodes involved in the election.
tmsg represents the necessary time to transmit and process a message.
twait represents the time that in the Bully algorithm a node waits to

receive Acknowledge messages before to declare itself the winner
of the election. Note that twait > tmsg.

Analysis and Discussion

According to Ahmed et al. [3], the problem of leader election algorithm is closely related to
the Uncapacitated Facility Location Problem (UFLP) [41], which is known to be NP-hard (see
Section 2.4). As it is known, optimal solutions for NP-hard problems require some exponential
component in the algorithm [105]. Consequently, in the worst case scenario, for every algorithm
the message complexity is in O(n2) (Table 4.1). For the best case, the results obtained are
shown in Table 4.2 .

The Bully and Kordafshari algorithms stand out for providing good performance in the
best case scenario, both for message complexity and turnaround time. In the worst case,
which is caused by the number of concurrent elections, both present a considerable increase in
message complexity. However, this is smaller in the case of the Kordafshari algorithm, thanks
to the improvement introduced over the Bully algorithm to reduce the number of messages.
Nevertheless, because of these improvements, the turnaround time of the Kordafshari algorithm
is considerably incremented from 2tmsg + twait in the Bully algorithm to 4tmsg.

In the case of the Vasudevan algorithm, the message complexity and turnaround time is
highly dependent on the kind of network topology. The worst case for the message complexity
is given in a mesh topology network, whereas the best case is given in a line topology network.
On the contrary, the best turnaround time is given in a mesh topology network, whereas the
worst turnaround time is given in a line topology. This fact highlights the existing trade-off
between message complexity and turnaround time, which can also be seen in the Bully and
Kordafshari algorithms.



4.7 Summary 103

Table 4.2 Overview of the analysis performed on the election algorithms. In it, the theoretical
message complexity and turnaround time in the best case are shown.

Theoretical O message
complexity Turnaround time

Adapted Bully 2 · (n−1) ∈ Ω(1) 2tmsg + twait
Adapted Kordafshari 2 · (n−1) ∈ Ω(1) 2tmsg + twait
Vasudevan 3 · (n−1) ∈ Ω(1) 3 · (n−1) · tmsg
Consensus n2 +n−2 ∈ Ω(n2) 3tmsg
Voting n2 + n

2 ∈ Ω(n2) 3tmsg
n represents the number of nodes involved in the election.
tmsg represents the necessary time to transmit and process a message.
twait represents the time that in the Bully algorithm a node waits to

receive Acknowledge messages before to declare itself the winner
of the election. Note that twait > tmsg.

Finally, the new proposed algorithms, Consensus and Voting, present a consistent per-
formance, which will not be affected by the network topology or concurrent elections. In
comparison with the Bully and Kordafshari algorithms, this will be an advantage in highly
dynamic networks, where the worst case scenario for the Bully and Kordafshari will be more
frequent. However, in static and reliable networks, this represents a drawback, owing to the
Bully and Kordafshari will tend to their best case scenarios. Regarding turnaround time,
Consensus and Voting algorithms provide the best time of the five elections algorithms.

It should be noted that the theoretical analysis and empirical validation performed in
this chapter have been done under ideal conditions: static and reliable networks have been
assumed, where there are no dynamicity or message failure. Nevertheless, it helps to understand
the behaviour of the algorithms presented and how different cases can influence in their
performance. This will be useful to analyse and to understand the results that will be obtained
in the evaluation of the architecture in non-reliable and mobile networks, presented in Chapter
7.

4.7 Summary

This chapter has introduced the Proteo architecture and its main components. The objective of
Proteo is to provide a self-adaptive and resource-efficient solution to support the availability
of services in dynamic topology environments. The proposal is based on service replication
techniques together with a self-configuration approach for the activation/hibernation of the
replicas of the service depending on relevant context information from the system.



104 Proteo: A Self-adaptive Software Architecture

Proteo is composed of three main elements: (1) Monitoring Subsystem, (2) Context Manager

Service, and (3) Replica Manager Service. The responsibilities of these elements are closely
related to the phases of MAPE-K autonomic loop of Autonomic Computing: the Monitoring

Subsystem senses the context information in relation to the node in which is deployed; the
Context Manager Service, in addition to process this information, will also be responsible for
analysing it to decide when a new system adaptation is necessary; and the Replica Manager

Service will be responsible for coming to an agreement with the rest of the Replica Manager

Services deployed in the system to establish what replica will be activated.
This coordination is performed on the basis of a distributed host election algorithm, and the

election is based on the basis of a dynamic score obtained through a utility function. To this
regard, two new election algorithms are proposed: Consensus and Voting. These election algo-
rithms are devised to operate in mobile environments with highly dynamic network topologies
and under unreliable communication channels. Additionally, to compare the performance of
the new two proposed election algorithms with existing approaches, the election algorithms of
the Bully, Kordafshari, and Vasudevan have been selected. To this end, adaptations on the Bully
and Kordafshari algorithms have been made. These have been necessary to base the elections,
instead of on known IDs, on dynamic scores.

Finally, the performance of the five algorithms have been theoretically analysed, according
to the indicated by Coulouris et al. [42], who establish that the performance of an election
algorithm is measured by its total use of network bandwidth (the total number of messages
sent during the election, i.e., message complexity), and the turnaround time (the number of
serialized messages transmission). As a result, Consensus and Voting algorithms provide the
better turnaround time, whereas the Kordafshary and Bully algorithms provide the best results
regarding message complexity in their best case scenario.

As features that can be noted of Proteo are:

• It is reactive to context changes, owing to the Context Manager Service is responsible
for analysing when a new system adaptation is necessary.

• It bases its decisions on local knowledge. To achieve this, a cross-layer approach to
monitoring the network is used. Additionally, a heuristic method has been proposed in
Section 4.5 to determine the more centric node in the network topology, on the basis of
the information of its routing table. However, this requires a proactive routing protocol.

• The election of the best node to act as server is based on a Utility Function, which
facilitates to adapt the election criteria and to take into consideration the resources of the
nodes, as energy, providing a resource-aware solution.



4.7 Summary 105

Proteo architecture and its components will be completely detailed and modelled in the
next chapter.





Chapter 5

Proteo Model

Chapter Abstract

In this chapter Proteo architecture, introduced in Chapter 4, is modelled using SysML. Proteo model is

divided into four main parts: (1) Operational Domain Model, which contains the elements that can be

found in the system’s operating environment; (2) Information Model, which groups the definition of

data items and value types used in the system; (3) Structural Model, which contains the elements that

compose the system; and (4) Behavioural Model, which includes the elements that describe the control

structure of the system. These parts together define in detail the components of Proteo architecture, their

relations and their behaviour during system operation.

Chapter Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2 Operational Domain Model . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3 Information Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4 Structural Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5 Behavioural Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146



108 Proteo Model

5.1 Introduction

The package diagram in Fig. 5.1 presents the organization for this model. All the models are
contained in the top-level model package Proteo Model. The model is divided into four main
packages, which primarily organize the model elements on the basis of their nature.

Fig. 5.1 Package diagram showing how the model is organized into packages.

These packages are:

• Operational Domain Model (Section 5.2): It contains the elements that can be found in
the system’s operating environment and their main relations. The objective is to describe
the operating conditions in which the system will operate.

• Information Model (Section 5.3): It groups the definition of data items and value types
used in the system.

• Structural Model (Section 5.4): It contains the elements that compose the system. This
model intends to provide a view of the system independent of time, emphasizing the
structure of the elements, relationships, and attributes.

• Behavioural Model (Section 5.5): Also known as Dynamic Model, this package contains
the elements that describe the control structure of the system. The objective is to describe
how the system behaves when it is changing.



5.2 Operational Domain Model 109

These packages are examined in detail in the following sections, to completely describe the
model of the system designed.

5.2 Operational Domain Model

The block definition diagram of Fig. 5.2 shows the main elements that compose the system’s
operating environment. These elements may either directly or indirectly interact with the
system. This diagram expects only to show the hierarchy of those elements and their whole-
part relationships. For example, a user may be related to a mobile node, yet it is not part of
the mobile node. This kind of relationships, i.e., reference properties, will be defined in the
Structural Model in Section 5.4.

As can be seen in the diagram of Fig. 5.2, the operational domain of this model is made up
of three main elements: User, Software Entity and Network.

Although the interaction of a user with a software system is, generally, a relevant activity to
take into consideration in the software design process, in the context of this work, the User

only interacts indirectly with the proposed system. Specifically, the User is responsible, for the
most part, of the network topology changes owing to its movements when he or she is carrying
a mobile node. In this work, it is considered that user’s movement cannot be influenced or
modified, and network topology changes produced by this reason are assumed as unavoidable.

Software Entity represents a generalisation of any kind of software that could be found in
the system. In this work, the Service and Client software entities are mainly considered. This
abstraction is made because this work aims to enhance the quality attributes of the services, and
thus the quality of client-server relations. Moreover, other software elements, such as intelligent
agents, applications or components, can be seen as service providers (Services) or service
requesters (Clients) at some point in their life-cycle. For these reasons, the generalization is
tagged as incomplete and overlapping. This is a flexible representation that allows to a software
entity, besides of being considered an agent or micro-service, to act at the same time as a
service provider to other software entity, and as a service requester to a different or the same
software entity.

Finally, the Network, which is made up of Nodes and Links. It can be divided in different
Network Partitions, or in only one Network Partition when all the nodes of the Network are
connected. A Network Partition can only belong to one Network, and it is composed of a least
one Node. In such case, there is no any Link in the Network Partition. If there are more nodes
in the partition, these are connected between them, by means of one-hop links or multi-hop
links. Every Node belongs to only one Network partition.



110 Proteo Model

Fig. 5.2 Block definition diagram showing the operational domain model, where Node is the
system of interest.



5.3 Information Model 111

A Node is made up of Computational Features (battery, storage or memory, among others).
These Computational Features can be in turn composed of other Computational Features. For
example, the estimated duration of the battery could be calculated from screen brightness, CPU
usage, phone signal strength, and other features. Noted that the Node entity is stereotyped
as system of interest. ISO/IEC/IEEE 15288:2015 (Systems and software engineering – Sys-
tem life cycle processes) defines system of interest as "the system whose life cycle is under

consideration" [76].

5.3 Information Model

Fig. 5.3 Package diagram showing how the Information Model is organized into packages.

Information Model is divided into three main packages (Fig. 5.3):



112 Proteo Model

• Value Types (Section 5.3.1): It contains tue main value type definitions used in Proteo.
This package imports the standard library ISO 80000. This library defines, inter alia, the
units of measurement of the International system of Quantities.

• Events (Section 5.3.3): In this package are defined the context events, i.e., signals in
SysML, that are triggered and managed in the system by the Monitoring Subsystem and
Context Manager Service.

• Standard Item Definitions (Section 5.3.2): In this package the items that flow between
the parts of the system are defined. These are mainly related with the election algorithms
and the Replica Manager Service.

5.3.1 Value Types

Fig. 5.4 Block definition diagram showing the value types defined within Proteo system.

Within the Value Types package (see Fig. 5.4), three elements can be highlighted:

• IP value type: It represents, through the specialization of the String value type, the IP of
a node.

• NodeState: It represents the four states in which a node can be during the operation of
Proteo:

– Client: A node is in Client state when it has established a successful client server
connection with a node in Server state in its network partition.

– Server: A node is in Server state when it is hosting an active service replica and it
is providing service to the rest of the nodes of its network partition.



5.3 Information Model 113

– Local: A node is in Local state when it has no connection with other nodes in
the network. This is, the node is isolated and thus is the only node in its Network

Partition.

– Connecting: A node is in Connecting state when the self-configuration of the
network and the client-server scheme is being carried out.

• Neighbour: It represents the local information that a node N has about a reachable node
P in its Network Partition. It is defined by the information about the node P that the
node N has in its routing table (address, gateway and hopDistance). Additionally, a
neighbour (P) is defined by its unique ID and a score. This score represents how suitable
the neighbour P is to host an active service replica.

5.3.2 Signals (Context Events)

Fig. 5.5 Block definition diagram showing the hierarchy of signals handled within Proteo
system.

The events in Proteo system can be classified into three categories (see Fig. 5.5) according
to their source:

• System Events: Between the different signals that can arise in the node operating system
or the lower layers of the middleware, Proteo platform takes into consideration those that



114 Proteo Model

announce changes on the routing table (routingTableChanged signal) and in the battery
of the node (batteryState signal), if this is a battery supplied node.

• Monitoring Events: These are originated in the monitoring services of Proteo. This
spreads basic information in the system, such as a node becomes disconnected (dis-

connectedNode signal) or the battery of the node has reached some specified threshold
(batteryLow signal). Note that neighbour-related signals (connectedNode, disconnect-

edNode, distanceChanged and gatewayChanged) provide the information of the node to
which the signal refers by means of a Neighbour value type, defined in the Value Types

package (see Fig. 5.4).

• Advanced Context Signals: These signals are originated in the Context Manager Service
and they provide elaborated context information directly related to the adaptation needs of
the system. These signals are adapt, which indicates to the system when it is necessary to
perform a revision of the replication scheme; and neighbourhoodEmpty, which indicates
to the system that the node has no any remain reachable neighbour. The abstraction
provided by the adapt signal allows to redefine the trigger policies of the signal for each
specific scenario, and thus the reactivity or reactivity degree of Proteo.

As noted in Chapter 4, in this work, it has been proposed to monitor the battery of the
node and the network topology, since they are considered transversal features. However, the
proposed system could be extended according to the requirements of the application scenario,
adding new signal definitions to those presented in Fig. 5.5.

5.3.3 Standard Item Definitions

In SysML, items are seen as the elements that flow across connectors between blocks or parts.
In this package, the items that flow on Proteo communication are defined. The main item is the
Coordination Message. This is a generic message used to perform the host election algorithm.
The specific coordination messages will depend on the specific election algorithm used. Hence
Standard Item Definitions package is divided into five sub-packages (Fig. 5.6): Bully Election

Algorithm, Kordafshari Election Algorithm, Vasudevan Election Algorithm, Consensus Election

Algorithm and Voting Election Algorithm. This is, one for each election algorithm, where their
related coordination messages are defined. These messages are defined as a specialization of
the Coordination Message item, in which the IP of the sender node is defined.



5.3 Information Model 115

Fig. 5.6 Package diagram showing how the Item Definitions are grouped into different packages
according to the algorithm.

Fig. 5.7 Block definition diagram showing the Item Definitions for the Bully Election algorithm.



116 Proteo Model

Bully Election Algorithm Items

As described in Section 2.4.1, Bully algorithm is based on three kind of messages, modelled as
items in Fig. 5.7:

• Election Message: It is used to announce an election. As part of the adaptation proposed
in Section 4.6.2, this message contains now the current score of the sender node.

• Answer Message: It is used to respond to the Election message.

• Coordinator Message: It is used to announce victory by the winner of the election.

Kordafshari Election Algorithm Items

Fig. 5.8 Block definition diagram showing the Item Definitions for the Kordafshari Election
algorithm.

Since Kordafshari (see Section 2.4.2) proposes an extension of Bully, it imports the messages
defined in Bully Election Algorithm package (Fig. 5.7) and one new message item is defined,
the Grant Message (Fig. 5.8).

• Grant Message: It is used by the node that initiates the election process to communicate
to the node that has sent the Answer Message with the higher score that it has won the
election.

Vasudevan Election Algorithm Items

As described in Section 3.3.2, Vasudevan algoritm implements three basic types of messages
(Fig. 5.9):



5.3 Information Model 117

Fig. 5.9 Block definition diagram showing the Item Definitions for the Vasudevan Election
algorithm.

• Election Message: It is used to grow the spanning tree and start the election. This
message includes a timestamp, determining the moment in which the election started, to
avoid concurrent elections.

• ACK Message: It is used to answer to an Election Message and shrink the spanning tree.
This message contains information about the best node of the subtree.

• Leader Message: It is used by the root node of the spanning tree to announce the winner
node. It contains the information about the elected node.

Additionally, Vasudevan uses specific periodic messages to known if a node is still alive.
However, as exposed in Section 4.6.2, these are now unnecessary owing to the integration of
the algorithm in Proteo, which will manage the discovery and reachability of the nodes (see
Section 5.4.1).

Consensus Election Algorithm Items

Fig. 5.10 defines the messages in which Consensus is based to perform the election (see Section
4.6.1):

• Score Message: Through this message, a node communicates its score. The score is
expressed through a float number, in the range 0 and 1, where 1 represents the best score
attainable.

• Server Request Message: It is used when the requesting node wants to establish a
client-server connection with the receiver node.



118 Proteo Model

Fig. 5.10 Block definition diagram showing the Item Definitions for the Consensus Election
algorithm.

• Server Rejection Message: It is used to reject a Server Request message. In the message,
information about the current server (its IP and its score) is attached.

• Server Bare Rejection Message: This message has the same function that a Server

Rejection message but without additional information.

• Server Acceptance Message: It is used to accept a Server Request message.

Voting Election Algorithm Items

Fig. 5.11 Block definition diagram showing the Item Definitions for the Voting Election algo-
rithm.

As exposed in Section 4.6.1, Voting election algorithm is based on three kinds of messages
(Fig. 5.11):



5.4 Structural Model 119

• Score Message: Identical, in function and structure, to the Score message used in
Consensus election algorithm.

• Vote Message: It is used by a node to emit a vote to the best-ranked node.

• Elected Coordinator Message: It is used by a node to announce its victory in the elections.

5.4 Structural Model

Fig. 5.12 Package diagram showing how the distribution into packages of the Structural Model
of Proteo platform.

Structural Model is used to represent the structure, relationships and attributes from the
elements of the system and it is divided into three packages (Fig. 5.12). This division
corresponds to a traditional client-server architecture, where three layers can be found:

• Service Layer: It contains the different task services of the system, i.e., the back-end
entities. In SOA approach, these are defined as services within a specific functional
context and with a specific purpose, less oriented to reuse. The objective of Proteo system
is to guarantee and support the quality attributes of the services allocated to this layer.

• Application Layer: It contains the front-end entities of the system, which are based both
on the Service and Middleware Layer.



120 Proteo Model

• Middleware Layer: The middleware layer provides support to Service and Application

Layer. A middleware facilitates the development of high-level software and homogenizes
the subjacent technologies. There are many functionalities provided by the Middleware

Layer. However, this work is focused on those elements that make possible to guarantee
and support the quality attributes of the task services, without waiving to the possibility
of extending this layer with other elements related with other objectives or middleware
functionalities.

Fig. 5.13 Block definition diagram showing the relation between the structural elements of
Proteo model.

In Fig. 5.2, within Section 5.2, the main elements that compose the system’s operating
environment and their hierarchy and whole-part relationships were presented. Fig. 5.13 shows
a block definition diagram where the structural relations of the main elements related to the
Node block, system of interest in Fig. 5.2 are shown.

A Node can be connected to other nodes of the same partition through a Link. In this way,
when a Link connects two nodes, they are directly connected (one-hop link). If the nodes are



5.4 Structural Model 121

not directly connected, they still can be connected by a set of links shared with other in common
nodes (multi-hop link).

A Node contains one instance of the services of Proteo and at least one Software Entity.
This Software Entity can be a Service and/or a Client, as described in Section 5.2, and it
could be composed on the basis of other Software Entities. In this way, service composition
(orchestration or choreography) is allowed. Middleware Service Platform is made up of three
main kinds of blocks: (1) Monitoring Service, (2) Context Manager Service, and (3) Replica

Manager Service. The latter manages the replication scheme of a Service.
The services that made up Middleware Service Platform will be described in more detail

below. At this point, it worth noting the relations between them. A Replica Manager Service

manages the replicas of only one Service. This is, if there are different services in the system,
Middleware Service Platform will have one Replica Manager Service for each of them. On the
contrary, the Context Manager Service could support more than one Replica Manager Service.
Finally, Middleware Service Platform could be composed of different Monitoring Services,
according to the monitoring requirements for a particular scenario.

Proteo services will interact by three main ways: (1) a publish-subscribe paradigm, ac-
cording to the events, or signals, defined in Section 5.3.2; (2) a message passing paradigm,
according to the items defined in Section 5.3.3; and (3) a request-response paradigm, where the
operations defined by the services are invoked. These operations are represented in the block
definition diagram of Fig. 5.14 and will be described together with the Middleware Service

Platform services.
Regarding signal interaction, in SysML, this is shown using the «signal» stereotype in the

block. If a block requires a signal, the keyword reqd is placed before the name of the signal.
On the contrary, if the block provides a signal, the keyword prov is placed before the name of
the signal. The keyword provreqd is used when a signal is both provided and required.

5.4.1 Monitoring Service

The Monitoring Service block represents a service that senses the context information in
relation to the node in order to detect potential events that could affect the availability of a
service. Although the implementation of each monitoring service will depend on the kind of
resource or element that it is being monitored, they have in common that they are based on
event communication.

Fig. 5.14 shows the specialization of the Monitoring Service block into two monitoring
services: Battery Monitoring Service and Network Monitoring Service.



122 Proteo Model

Fig. 5.14 Block definition diagram showing in detail the structural properties of the entities
that compose Proteo.



5.4 Structural Model 123

5.4.2 Context Manager Service

Fig. 5.15 Internal block diagram showing the interaction flow of Coordination Message items
between the parts of Middleware Service Platform.

In Fig. 5.14 the detailed description of the Context Manager Service is provided in the
Context Manager Service block, which specializes the General Context Manager Service

block. The implementation of this service is dependent on the application area. In the design
provided, the Context Manager Service manages the information received by both the Battery

Monitoring Service and the Network Monitoring Service. Although these features (battery and
network) are transversal to the application scenarios for which the proposal has been devised,
the Context Manager Service specification is not limited to them and it can be extended through
specialization.

Context Manager Service feeds from two sources of information: that provided by the
monitoring services, obtained through the events interface, and the provided by other nodes
in the Network Partition, obtained by the Message Interface (Fig. 5.14). This relationship is
shown in the internal block diagram of Fig. 5.15. The Context Manager Service block shows
two kinds of relations in Fig. 5.15: an incoming flow connector through the message interface
p1 in Fig. 5.14, by which it will obtain information about other nodes in the network; and a
connector with each Monitoring Service and the Replica Manager Service. Note that in SysML
a connector represents an opportunity for two parts to interact. Nevertheless, the connector
says nothing about the nature of the interaction. It may include flows, invocation of operations,
sending and receiving signals or constraints on properties. In this specific case, the relationship
of the Context Manager Service with the monitoring services is exclusively through sending



124 Proteo Model

Table 5.1 Context Manager Service attributes, descriptions and modifier actions.

Attribute Value Type Description Modifiable Modified by
address IP IP address of the node No -

battery Real
Current charge of the battery
of the node

Yes the system signal batteryState(Real)

ID Real Unique identifier of the node No -

neighbours Neighbour[]
Array of the current neighbours
of the node

Yes
the Network Monitoring Service signals
connectedNode(Neighbour), disconnectedNode(Neighbour),
distanceChanged(Neighbour) and gatewayChanged(Neighbour))
the reception of a Coordination Message containing the score of
a neighbour through the proxy port p1

score Real Last calculated score of the node Yes the invocation of the updateScore(Real[]):Real operation

server IP IP address of the current server Yes
the reception of a Coordination Message announcing a new server
through the proxy port p1

and receiving signals. In the case of the relationship with the Replica Manager Service, this
relation will include both sending and receiving signals, and also invocation of operations.

The context information stored and maintained by Context Manager Service is described in
Table 5.1 and specified in the block definition diagram of Fig. 5.14. As descriptions on Table
5.1 show, this information can be modified by the reception of monitoring and system events,
the reception of Coordination Messages through the message interface p1 and the invocation of
Context Manager Service operations.

5.4.3 Replica Manager Service

As introduced in Section 4.4.3, the Replica Manager Service (Fig. 5.14) performs the election
algorithm to achieve an efficient configuration for the activation/hibernation of the replicas of
the service and manages the state of the node (state:NodeState in Fig. 5.14), which is modified
by the classifier behaviour1 of the block, defined by the adapt() state machine. The adapt()

behaviour is a black box view, this is, the behaviour is an abstraction of the behaviour of its
parts. In this case, the adapt() state machine is implemented by the controller part in Fig. 5.14.

It should be noted that controller part is modelled as a bound reference. This allow
to define variants of the Replica Manager Service according to the specific controller part
implemented (Fig. 5.16 and Fig. 5.17).

5.5 Behavioural Model

This package of the Proteo Model contains the elements that describe the control structure
of the system. In this section, there will be described: (1) the behaviour of the services that

1In SysML, the classifier behaviour represents the main behaviour of the block, which starts running at the
beginning of the lifetime of the block and usually finishes at the end of its lifetime.



5.5 Behavioural Model 125

Fig. 5.16 Block definition diagram showing the specialization of the Replica Manager Service
block according to the election algorithm used, which redefines the controller part.

Fig. 5.17 Block definition diagram showing the specialization of the ElectionAlgorithm block.



126 Proteo Model

support Proteo architecture, when providing or receiving a signal or when an operation is
invoked (Section 5.5.1); (2) the state machine for each of the five variations modelled of the
Replica Manager Service. These implement the behaviour of the controller part of the Replica

Manager Service block (Section 5.5.2); and (3) the updateScore(Real[]):Real activity of the
Context Manager Service block (Section 5.5.3).

5.5.1 Signals and Operations

In this section, the behaviour of the Monitoring, Context Manager and Replica Manager

services (when receiving or providing a signal, or when one of their operations is invoked) is
described. The declarations of these signals and operations are defined in the block diagram of
Fig. 5.14 for each of the services.

Monitoring Services

• Battery Monitoring Service: this service requires the signal batteryState(Real), which is
provided periodically by the system on which Middleware Service Platform is deployed.
The service has an established battery level threshold (batteryThreshold), which once
reached will make to the Battery Monitoring Service to trigger the batteryLow() signal.

• Network Monitoring service: following the cross-layer approach presented in Section
4.4.1 the Network Monitoring Service requires one signal, routingTableChanged(), which
is triggered by the system when the routing protocol modifies the routing table of the
node. The Network Monitoring Service then processes the current routing table to find
changes. These changes can be diverse and each of them triggers a different signal: (1)
connectedNode(Neighbour) is triggered when a new node is added to the routing table; (2)
disconnectedNode(Neighbour) is triggered when a node is deleted from the routing table;
(3) distanceChanged(Neighbour) is triggered when the hop distance of an existing node
in the routing table changes; and (4) gatewayChanged(Neighbour) is triggered when the
gateway, i.e., the next node to reach a neighbour, changes. Each of this signals provides a
Neighbour value type (Section 5.3.1) with the new information of the corresponding node.
Finally, it should be noted that changes on the routing table can happen successively over
short periods of time, depending on the routing protocol. For this reason, the Network

Monitoring Service has a stabilization threshold (stabilizationThreshold:long) and the
changes are only processed when the routing table has remained stable for that period. In
this way, unnecessary adaptations are avoided.



5.5 Behavioural Model 127

Table 5.2 Context Manager Service operations and descriptions.

Operation Parameters Return Value Related Attribute Description

getBestNeighbour (GCM) - Neighbour neighbours:Neighbour[]
Returns the neighbour node with higher
score in the neighbour array

getDirectNeighboursNum (CM) - int neighbours:Neighbour[]
Returns the number of nodes in the neighbour
array with distance one hop, i.e., the number of
direct connections of the node

getNeighbours (GCM) - Neighbour[] neighbours:Neighbour[] Returns the neighbours array

getNumNeighbours (GCM) - int neighbours:Neighbour[]
Returns the number of total neighbour of the node,
regardless the hop distance

getServer (GCM) - IP server:IP Return the IP address of the current server

updateScore (GCM) Real[] Real
battery:Real,

neighbours:Neighbour[]
score:Real

Calculates by means of a utility function how suitable
is the node to host an active service replica. It takes
as parameter an array of weights according to the
computational features to evaluate (battery and network)
and returns the resulting score, which is stored in the
score attribute

GCM General Context Manager Service.
CM Context Manager Service

Context Manager Service

Context Manager Service also defines a set of operations to access to the stored context
information through a request-response approach. These operations are specified in the block
Context Manager Service defined in Fig. 5.14, under the “operations” stereotype, and described
in Table 5.2.

The operation updateScore(Real[]):Real relies on the Evaluation Function block, which is
a part of the Context Manager Service block. The Evaluation Function block takes the same
parameters as updateScore operation, an array of weights. On this block, there is defined a
constraint block (Evaluation Constraint in Fig. 5.14), which establishes that the sum of the
array of weights has to be exactly one.

The Evaluation Function block defines the general structure of the utility function and its
specialization defines the specific utility function. This allows the Context Manager Service to
define different evaluation functions according to the priorities and objectives of the system.
An example of this specialization can be found in the block definition diagram of Fig. 5.18. In
this example, the utility function presented in Section 4.5 is implemented. Its mathematical
processing is also shown in the parametric diagram of Fig. 5.19.

Finally, the General Context Manager Service provides two signals, which are inherited by
the Context Manager Service:

• neighbourhoodEmpty(): it is triggered when the last reachable node of the neighbourhood
becomes disconnected.

• adapt(): this signal is triggered when the Context Manager Service detects a change in
the context that requires revising the current replication scheme in the network (e.g.,



128 Proteo Model

Fig. 5.18 Block definition diagram showing an example of the specialization of the Evaluation
Function.

Fig. 5.19 Parametric diagram showing the mathematical processing to obtain the score of a
node in the evaluation function specialization example.



5.5 Behavioural Model 129

the node is running low of battery, or the current server becomes disconnected). This is
defined by a set of rules that describes the trigger activation policies. The trigger policies
implemented take as input the context events provided by the monitoring services or
the coordination messages received from other nodes. The activation of any of these
rules triggers the adapt() signal, which will derive in an election process executed by the
Replica Manager Service. This event-driven approach allows the system to adapt to the
particular requirements of a specific application domain, without modifying the Replica

Manager Service.

Replica Manager Service

When a change in the context is detected that could affect the quality attributes of the service
(i.e., the adapt() signal is received from Context Manager Service), the controller part will be
responsible for coming to an agreement with the rest of the Replica Manager Services deployed
in the system. This coordination is performed by means of the interchange of Coordination

Messages through proxy ports p1 and p2 of Replica Manager Service block in Fig. 5.14.

5.5.2 Election Algorithm State Machines

In this section, state machine diagrams are used to model each of the election algorithms
implemented in Proteo. These diagrams describe in detail the behaviour of the system when a
host election is in process.

Bully Election Algorithm State Machine

Fig. 5.20 shows the state diagram that implements the adapt() behaviour in the Bully Replica

Manager Service. This state machine describes the transitions between the four possible states
of the node (Local, Server, Client and Connecting) according this election algorithm.

A node starts (PowerOn event) in the Local state. From this state the node goes into the
Connecting state when the adapt() signal from the Context Manager Service is received. In the
Connecting state, an interchange of Coordination Messages between the nodes of the Network

Partition will take place to decide what node goes into the Server state and what to the Client

state. From the Connecting, Server or Client state, the node returns to the Local state if the
neighbourhoodEmpty() signal from Context Manager Service is received. Finally, a node goes
into the Connecting state from Server or the Client state if it receives an Election message.
This will mean that other node has started an election. Additionally, a node in the Connecting

state can also receive an Election message, when multiple concurrent elections occurs.



130 Proteo Model

Fig. 5.20 State machine diagram that shows the states of Bully election algorithm and the
transitions between them.



5.5 Behavioural Model 131

Fig. 5.21 State machine diagram that shows the behaviour of Bully election algorithm during
the Connecting state.



132 Proteo Model

The node behaviour in the Connecting state is represented by the state machine of Fig. 5.21.
The state machine has two entry points: (1) adapt, activated when an adapt message has been
received, and (2) election, activated when an Election message has been received. It has two
exit points: (1) Server, which will lead to the Server state in Fig. 5.20; and (2) Client, which
leads to the Client state in Fig. 5.20. Additionally, according to the state machine Fig. 5.20,
the Connecting state can be interrupted in any moment by neighbourhoodEmpty() signal from
Context Manager Service or the reception of an Election message.

The first state in the Connecting state machine is Stabilization threshold. This state is used
to wait for the stabilization of the network and avoid adaptation processes in short periods of
time. After a timer T, the node will update its score, invoking the updateScore() operation from
Context Manager Service, and will send an Election message to the nodes with last known score
higher than its own current score. As noted in Section 4.6.2, this adaptation of the traditional
Bully algorithm has been made to empower it to base the election on dynamic scores instead of
static IDs.

After this, following the Bully algorithm, the node will wait for Answer messages. If after a
timer T1 no Answer messages are received, the node will declare itself as the winner of the
election, sending the Coordinator message to the other nodes of the network and going into the
Server state. Else, if an Answer message is received, the node will give up the election and will
wait for the reception of the Coordinator message. When this message is received, a winner,
i.e., a server, has been declared and thus the node will go into the Client state, establishing the
winner as server (server:IP in Context Manager Service on Fig. 5.14).

A node can also arrive to the Connecting state receiving an Election message (Fig. 5.20).
In this case, the entry point will be election on Fig. 5.21. The Bully algorithm does not adopt
any measure to avoid concurrent elections. Therefore, the reception of an Election message
will be treated in the same manner independently of the previous state of the node (Server,
Client or Connecting). In the traditional version of the algorithm, the reception of an Election

message was always replied, since IDs were assumed to be known and static. However, in the
case of dynamic scores, the last known score stored by the sender node could vary from the
actual score of the receiver node. For this reason, when a node receives an Election message, it
has to update its score and check if its score is effectively higher than the score of the Election

message sender.
In case of a tied score, the ID of the nodes will be used as tie-breaking, prevailing the node

with higher ID. Hence, if the receiver node has higher ID than the sender node, in case of a tied
score, the node will reply to the Election message with an Answer message to inform to the
current candidate that there is a better candidate alive. Then the node will postulate itself as



5.5 Behavioural Model 133

candidate sending an Election message to the nodes with last known score higher than its own
current score and will wait for Answer messages, following the course of a normal adaptation.
Else, if the Election message sender is a better node, the current node will give up the election
and will wait for the reception of the Coordinator message, following the course of a normal
adaptation.

Kordafshari Election Algorithm State Machine

Fig. 5.22 shows the state diagram that implements the adapt() behaviour in the Kordafshari

Replica Manager Service. As mentioned in Section 2.4.2, Kordafshari algorithm is a modi-
fication of Bully algorithm devised to avoid concurrent elections and reduce the number of
messages used to perform an election.

Fig. 5.22 State machine diagram that shows the states of Kordafhari election algorithm and
the transitions between them.

As with Bully election algorithm state machine, a node starts (PowerOn event) in the Local

state. From this state the node goes into the Connecting state when the adapt() signal from the



134 Proteo Model

Context Manager Service is received. In the Connecting state, an interchange of Coordination

Messages between the nodes of the Network Partition will take place to decide what the most
suitable node to act as Server is. From the Connecting, Server or Client state the node returns to
the Local state if the neighbourhoodEmpty() signal from Context Manager Service is received.

A node goes into the Connecting state from Server or Client state if it receives an Election

message. This will mean that another node has started an election. However, on the contrary to
Bully, if the node receives an Election message when it is on the Connecting state (i.e., there
are concurrent elections), the node will interrupt its own election in favour of the other one if
this is a better candidate, or resume its own election process and ignore the new one if itself is
a better candidate than the other one.

Fig. 5.23 State machine diagram that shows the behaviour of Kordafhari election algorithm
during the Connecting state.

The state machine of Fig. 5.23 represents the node behaviour in Connecting. The state
machine has three entry points: (1) adapt, activated when an adapt message has been received;
(2) election, activated when an Election message has been received; and (3) resume, when
an Election message has been received in the Connecting state and the sender is not a better



5.5 Behavioural Model 135

candidate than the current node. In this case, the state machine resumes its connecting process
employing a deep history pseudostate2.

It has two exit points: (1) Server, which will lead to the Server state in Fig. 5.22; and (2)
Client, which leads to the Client state in Fig. 5.22. Additionally, according to the state machine
in Fig. 5.22, the Connecting state can be interrupted in any moment by neighbourhoodEmpty()

signal from Context Manager Service or the reception of an Election message.
The first state in the Connecting state machine is Stabilization threshold. As on the other

algorithms, this state is used to wait for the stabilization of the network and avoid adaptation
processes in short periods of time. After a timer T, the node will update its score, invoking the
updateScore() operation from Context Manager Service, and will send an Election message to
the nodes with the last known score higher than its own current score. As in the case of the
Bully algorithm, this adaptation has been made to allow the Kordafshari election algorithm to
base the election on dynamic scores instead of static IDs.

After this, the node will wait for Answer messages. If after a timer T1 no Answer messages
are received, the node will declare itself as the winner of the election, sending the Coordinator

message to the other nodes of the network and going into the Server state.
Until this point, the Kordafshari algorithm is similar to Bully algorithm. However, when

the Answer messages are received, instead of wait for the Coordinator message, after a timer
T1, the current node will send a Grant message to the best-ranked node from those that have
replied an Answer message. Then the node will wait for a Coordinator message. When it is
received the node will go into the Client state, establishing the winner as server (server:IP in
Context Manager Service in Fig. 5.14).

A node can arrive to the Connecting state receiving an Election message as well (Fig.
5.22). In this case, the entry point will be election in Fig. 5.23. The node will reach this point
from the Server or Client state, or from the Connecting state if the node that has initiated the
concurrent election is a node with a lower score. This is, in the Kordafhari algorithm, if there
are concurrent elections, the election initiated by the node with the lowest score will prevail.
As in the case of the adaptation performed on the Bully algorithm, the last known score stored
by the sender node could vary from the actual score of the receiver node. For this reason, when
a node receives an Election message, it has to update its score and check if its score is certainly
higher than the score of the Election message sender. If the current node is the best node, it
will reply the election message with an Answer message, and then, on the contrary that in Bully
algorithm, it will wait for a Grant message or a Coordinator message. If the current node is not

2Deep history pseudostate refers to the last active state configuration when the composite state was exited.
Therefore, this pseudostate, when active, restarts the composite state that contains it to its last configuration.



136 Proteo Model

a better node than the Election message sender, it will only wait for a Coordinator message
without replying any message.

In this point, if the node receives a Grant message, it means that it has won the election.
Thus it will broadcast a Coordinator message and will go into the Server state. Else, if the
node receives a Coordinator message, it means that another node has won the election. Hence,
the node will go into the Client state, stablishing the winner as server (server:IP in Context

Manager Service in Fig. 5.14).

Vasudevan Election Algorithm State Machine

Fig. 5.24 shows the state diagram that implements the adapt() behaviour in the Vasudevan

Replica Manager Service.

Fig. 5.24 State machine diagram that shows the states of Vasudevan election algorithm and the
transitions between them.

A node starts (PowerOn event) in the Local state. From this state the node goes into the
Connecting state when the adapt() signal from the Context Manager Service is received. In
the Connecting state, an interchange of Coordination Messages between the nodes of the
Network Partition will take place to decide what the most suitable node to act as Server



5.5 Behavioural Model 137

is. From the Connecting, Server or Client states, the node returns to the Local state if the
neighbourhoodEmpty() signal from Context Manager Service is received.

A node goes into the Connecting state from the Server or Client states if it receives an
Election message. This message is used to grown the spanning tree. It will mean that another
node has started an election. When there are concurrent elections, this is, when a node in
the Connecting state receives an Election message, the node will support the newest election,
interrupting the current one. This is managed within the Connecting state.

The node behaviour in the Connecting state is represented by the state machine of Fig.
5.25. The state machine has two entry points: (1) adapt, activated when an adapt() signal has
been received; and (2) election, activated when an Election message has been received. As in
the other algorithms, it has two exit points: (1) Server, which will lead to the Server state in
Fig. 5.24; and (2) Client, which leads to the Client state in Fig. 5.24. Additionally, according
to the state machine of Fig. 5.24, the Connecting state can be interrupted in any moment by
neighbourhoodEmpty() signal from Context Manager Service or the reception of an Election

message.
As on the other algorithms, the first state in the Connecting state machine is Stabilization

threshold. After a timer T the node will send an Election message to its direct neighbours
(i.e., nodes at one hop distance), to start growing the spanning tree. Unlike in the previous
algorithms (Bully and Kordafhari) this message does not contain the score of the sender node,
thus, to invoke the updateScore() operation is not still necessary. The node that has started the
election marks itself as the root of the spanning tree. After this, the node will wait for the ACK

messages of their children.
A node that is not a root node, i.e., that has not started the election, will entry to the

Connecting state by the election entry point in Fig. 5.25, after receiving an Election message
from its parent node. This node will check if the Election message received corresponds to the
current election, if the node is already in an election process. If so, the node will check if it is
the first Election message received in this election, in other words, if a new election is starting.
If it is the case, the node will mark the Election message sender node as its parent. Then, it will
send (i.e., propagate) an Election message to its direct neighbours, except its parent node. After
this, the node will wait for the ACK messages of its child.

When all ACK expected are received (i.e, a leaf node does not send any Election message,
thus it does not expect to receive any ACK) the node checks if it is the root node of the tree. If
not, the node updates its score, invoking the updateScore() operation from Context Manager

Service, checks the scores received in the ACK messages received, and sent an ACK to its
parent with the score and ID of the best node of its subtree, including itself. If the node is the



138 Proteo Model

Fig. 5.25 State machine diagram that shows the behaviour of Vasudevan election algorithm
during the Connecting state.



5.5 Behavioural Model 139

root node, it sends a Leader message, announcing the winner of the election, to its child nodes.
If the winner of the election is itself, the node goes into the Server state, if not, into the Client

state.
In the case of the other nodes (i.e., non-root nodes), after sending the ACK message to its

parent, they wait for the Leader message. After receiving this message, announcing the winner,
the behaviour of the node continues into two parallel flows. On the one hand, if the winner of
the election is itself, the node goes into the Server state, if not, into the Client state, setting the
winner as the server. On the other hand, if the node is not a leaf node, it will propagate the
Leader message to its child, to get the message across all nodes of the tree.

Consensus Election Algorithm State Machine

Fig.5.26 shows the state diagram that implements the adapt() behaviour in the Consensus

Replica Manager Service. The node starts (PowerOn event) in the Local state. From this state
the node goes into the Connecting state when the adapt() signal from the Context Manager

Service is received. In the Connecting state, the coordination with other nodes of the network
partition takes place, and the node will go into the Server or Client state according to the
agreement reached. From the Connecting, Server or Client state the node returns to the Local

state if the neighbourhoodEmpty() signal from Context Manager Service is received.
On the contrary to previous algorithms, the Connecting state only has an entry point, adapt.

Thus, each node on the Network Partition receives the adapt() signal, regardless of what node
starts the election. Note that, in Consensus algorithm, the adapt() signal could be also triggered
by the reception of a Score message in the Context Manager Service.

Consensus algorithm, as informally introduced in Section 4.6.1 provides a mechanism to
reduce the number of concurrent servers in network partitions in case of message loss. Thus, if
a node receives a Server Request message when it is in the Server state, it will answer with a
Server Acceptance message. However, if the node that receives this message is in the Client

state, it will mean that the requester node has not the correct information about the best-ranked
node in the network partition, but the receiver node has this information since it is in the Client

state. Therefore, the receiver node will reply with a Server Rejection message, which contains
the information about the current server of the network partition, and thereby completing the
information of the requester node.

A node can also receive the Server Request message when it is in the Connecting state. This
is due to the mismatch between the processing speed of the different nodes in the distributed
system. In this way, the requester node has processed the coordination messages and has
resolved who is the winner of the election, whereas the requested node has not yet done so. In



140 Proteo Model

Fig. 5.26 State machine diagram that shows the states of Consensus election algorithm and the
transitions between them.



5.5 Behavioural Model 141

this case, the requested node will reply with a Server Bare Rejection message, which simply
rejects the request.

Fig. 5.27 State machine diagram that shows the behaviour of Consensus election algorithm
during the Connecting state.

The node behaviour in the Connecting state is represented by the state machine of Fig.
5.27. The state machine has only one entry point: adapt, activated when an adapt message
has been received. It has two exit points: (1) Server, which will lead to the Server state in
Fig.5.26; and (2) Client, which leads to the Client state in Fig.5.26. Additionally, according
to the state machine Fig.5.26, the Connecting state can be interrupted in any moment by
neighbourhoodEmpty() signal from the Context Manager Service. Note that the reception of a
Server Request message in the Connecting state does not interrupt the state machine.

The first state in the Connecting state machine is Stabilization threshold, to avoid adaptation
processes in short periods of time. After a timer T the node will update its score, invoking the
updateScore() operation from Context Manager Service, and will send a Score message to the
nodes of its Network Partition. After this, the node will wait for the Score messages of the
other nodes of the partition. After that a timer T1 expires or all Score messages are received,
the node will invoke the getBestNode() operation from Context Manager Service, in order to



142 Proteo Model

know who is the best ranked node available in its Network Partition. Note that, if a node does
not send its Score message it cannot be eligible, thus, Score messages are used to know what
nodes are alive and can be elected as servers.

If the best node is itself, it goes directly into the Server state and waits for Server Request

messages, which will be replied affirmatively with Server Acceptance messages (Fig.5.26).
Else, if the best ranked node is other node of the partition, the node will send to this node
(candidate server) a Server Request message and will wait for its reply in the (Waiting Server

state in Fig. 5.27).
At this point one of next five situations may occur:

• The node receives a Server Acceptance message. Thus it establishes the requested node
as the server and goes into Client status.

• The node receives a Server Rejection message. This happens when the request was
made to a wrong node, which is in Client status. In this case, the received message has
additional information about the current server of the Network Partition. Therefore, the
node invokes the getBestNode() operation again and sends the request message, this time,
to the correct node.

• The node receives a Server Bare Rejection message. The request was made to a node that
is in the Connecting state. In this case, the node waits for the other nodes to process the
election information since it has no new information about the network. If after a timer
T3 the candidate node is still reachable, the node will send the Server Request message
again. If not, the node waits for new scores messages and, if there are, it recalculates the
best node (i.e., it returns to the Waiting Scores state in Fig. 5.27).

• After a timer T2 the node has not received any reply. In this case, if the candidate node
is still reachable, the node resends the request message. If not, the node returns to the
Waiting Scores state to elect another candidate server.

• A new Score message is received. In this case, if the sender of the message is a better
node than the current candidate server, the node returns to the Waiting Scores state to
elect this new candidate or another that could arise. If not, the node simply ignores the
message and waits for a reply to its Server Request message.



5.5 Behavioural Model 143

Voting Election Algorithm State Machine

Fig. 5.28 shows the state diagram that implements the adapt() behaviour in the Voting Replica

Manager Service. As introduced in Section 4.6.1, the Voting algorithm arises as a more reliable
and simpler alternative to Consensus algorithm.

Fig. 5.28 State machine diagram that shows the states of Voting election algorithm and the
transitions between them.

The node starts (PowerOn event) in the Local state. From this state the node goes into the
Connecting state when the adapt() signal from the Context Manager Service is received. From
the Connecting, Server or Client state the node returns to the Local state if the neighbourhood-

Empty() signal from Context Manager Service is received. As in Consensus algorithm, the
Connecting state only has an entry point, adapt. Thus, each node on the Network Partition

receives the adapt() signal, regardless of what node starts the election.
The node behaviour in the Connecting state is represented by the state machine of Fig.

5.29. The state machine has only one entry point: adapt, activated when an adapt() signal
has been received. It has two exit points: (1) Server, which will lead to the Server state in
Fig. 5.28; and (2) Client, which leads to the Client state in Fig. 5.28. Additionally, according



144 Proteo Model

Fig. 5.29 State machine diagram that shows the behaviour of Voting election algorithm during
the Connecting state.

to the state machine Fig. 5.28, the Connecting state can be interrupted in any moment by
neighbourhoodEmpty() signal from Context Manager Service.

As in previous algorithms, to avoid adaptation processes in short periods of time, the first
state in the Connecting state machine is Stabilization threshold. After a timer T the node will
update its score, invoking the updateScore() operation from Context Manager Service, and will
send a Score message to the nodes of its Network Partition.

After this, the node enters in the Election process state (Fig. 5.29). The first step is to wait
for the Score messages of the other nodes of the partition and set the vote counter to 0. After a
timer T1 expires or all Score messages are received, the node will invoke the getBestNode()

operation from Context Manager Service, to obtain the best ranked node as candidate to win
the election. If this node is itself, it will increment its vote counter (this action does not require
a Vote message). Else, it will send a Vote message to the candidate node. Then it will wait for
Vote messages or for the winner to announce its election using an Elected Coordinator message
in the Waiting for Vote messages state.

The election process is interrupted when:

• An Elected Coordinator message is received. In this case, another node of the partition
has won the election. Thus the node set the winner as the server and goes into the Client

state.



5.5 Behavioural Model 145

• A Voting message is received. The node increments its vote counter and checks if it has
the half plus one of the votes. If so, it has won the election. Thus, it will announce this
through an Elected Coordinator message to its neighbours and it will go into the Server

state. Else, if it has not still the half plus one of the votes, it will continue waiting for
more Voting messages or for another node to win the election.

• The timer T2 expires and the network size is equal to two nodes. In case of reduced
groups, the loss of a Vote message can conduct the election to a dead point. In this case,
after the timer expires, the node proclaims itself as the winner. Although this could not
conduct to the optimal solution, it leads to a local optimum instead to a dead point in the
election.

5.5.3 updateScore Activity

The last element of the Behavioural Package is the activity that describes the behaviour of
the updateScore(Real[]):Real operation. This activity diagram (Fig. 5.30) describes the
collaboration of the Context Manager Service block with its part, Evaluation Function, to
obtain the score of a node (Fig. 5.19).

Fig. 5.30 Activity diagram showing the collaboration between the Context Manager Service
and Evaluation Function components when the operation updateScore is invoked.

The updateScore(Real[]):Real operation takes as parameter an array of reals, which repre-
sents the weights assigned to each of the computational features of the node to be evaluated
(weights:Real[1..*] in Fig. 5.30). The Context Manager Service first obtains the current level



146 Proteo Model

of battery of the node (batteryLevel:Real) and then the direct connections factors. This is
calculated as the number of direct connections of the node divided by the total number of nodes
in the network partition. These parameters are provided to the Evaluation Equation objective
function (Fig. 5.30), which returns the score of the node (score:Real in Fig. 5.19) as a result of
the updateScore(Real[]):Real operation.

5.6 Summary

Throughout this chapter, the Operational Domain Model, Information Model, Structural Model,
and Behavioural Model of Proteo Model have been detailed using SysML. These parts together
define in detail the components of Proteo architecture, their relations and their behaviour during
system operation.



Chapter 6

Simulation: Development and Settings

Chapter Abstract

In order to validate the proposed architecture, and specifically the behaviour of the election algorithms,

the ns-3 network simulator has been used. In the first part of this chapter, an overview of the design

and development of Proteo is introduced. Proteo has been designed and developed as a new module in

ns-3. This module provides a new ns-3 application that can be installed in the nodes of the simulator. In

ns3, applications represent the software entities located at the Application layer in the TCP/IP model.

Additionally, the specific configuration and features of the nodes in the simulation are presented. These

will be mobile nodes, based on a lithium-ion battery and with an IEEE 802.11b wireless connection.

In the second part, the configuration of the simulations under which the architecture is going to be

evaluated is exposed. This information is important for the correct evaluation and validation of our

proposal since it allows us to explicitly known the circumstances under which the evaluation results will

be obtained. These results will be shown in the next chapter.

Chapter Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.2 Design and Development . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.3 Simulation Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163



148 Simulation: Development and Settings

6.1 Introduction

Within the pragmatic evaluation of software architectures, the Solution Adequacy Check (SAC)
is defined as “to check whether the architecture solutions at hand are adequate for the ar-

chitecture drivers identified and whether there is enough confidence in the adequacy” [88].
This analysis of system adequacy is traditionally addressed from two approaches in predicted
evaluation1: analytical approach and simulation approach. Whereas analytical approach de-
scribes a system mathematically, often making simplifying assumptions, simulation approach

requires less abstraction in the model. Usually, this last approach is preferable in large and
complex systems. Additionally, simulation approach allows us to represent the dynamic nature
of computer networks, and therefore to handle and evaluate dynamic models [78]. Hence,
simulation is considered the highest step in predicted evaluation, and the last before to the
architecture prototyping. Although simulation is useful to evaluate complex systems and
complex situations, the experience requirement is high to associate the simulation model with
the real behaviour of the system.

In the process of simulation evaluation, three main tasks have to be performed [146]: (1)
to define the problem, the model and the set of experiments that should be carried out. This
usually represents the 40% of the effort; (2) to implement the model, which represents the
20% of the effort; and (3) to verify and validate the simulation model, the inputs and outputs
correspondence, and to analyse the results obtained, which represents the remaining 40%. This
chapter attempts to provide an overview of the two first tasks. The third one, analysis of the
results obtained, will be addressed in Chapter 7.

The rest of this chapter is organized as follows. Fist, Section 6.2 provides an overview
of the architecture of ns-3 and how it has been extended in this thesis to make possible the
evaluation of the proposed architecture. Second, in Section 6.3, the setting of the simulations
under which the architecture is going to be evaluated is exposed.

6.2 Design and Development

The objective of this section is to provide an overview of how the proposed architecture has
been implemented on ns-3. First, a brief overview of the high-level architecture of the basic ns-3
Node is provided in Section 6.2.1. Then, Section 6.2.2 describes how ns-3 have been extended
with a new module, called Proteo Module, which implements the proposed architecture. Section

1“Prediction means using existing knowledge, current information, and historical data to reason about the
future. Confidence is achieved by using the available resources to predict properties of the software system.”[87]



6.2 Design and Development 149

6.2.3 shows how the basic Node of ns-3 is extended and configured to host the Proteo Module.
Finally, Section 6.2.4 describes the modifications that have been necessary to perform on
ns-3, to allow the evaluation of the architecture and overcoming some of the limitations of the
simulator.

6.2.1 ns-3 Node High-Level Architecture

Fig. 6.1 High-level ns-3 node architecture. Extracted from [112].

In the ns-3 software architecture, the class node is the main base class [112]. In Fig. 6.1
the high-level ns-3 node architecture is shown. As it can be seen a node can have different
Applications installed, as well as different NetDevices that can operate in different commu-
nication Channels. The class NetDevice represents a physical interface on a node (e.g., an
Ethernet interface). The first level of the interface of NetDevice is close to the point in Linux
kernel where dev_queue_xmit() is called, and the data members are similar to the found in
Linux struct net_device. Detailed information about the implementation of NetDevice can be
found on [112].

The class Channel represents the logical path over the information flows, and the class
Application represents user-defined processes, which generate network traffic to send across
the simulated networks.



150 Simulation: Development and Settings

Finally, the class Socket, which connects application layer with the transport layer, in ns-3
tries to imitate the standard Berkeley Software Distribution (BSD) sockets API [38]. The main
difference is that BSD socket calls are synchronous, but in ns-3 these are asynchronous.

6.2.2 Extending ns-3: Proteo Module

Proteo Module, which implements the proposed service architecture, is designed and imple-
mented as a module of ns-3. This module provides a ns-3 Application that can be installed in a
ns3 Node. In ns3, applications represent the software entities located at the Application layer in
the TCP/IP model and can make use of the lower layers (i.e., Transport, Internet and Network
Interface). Proteo Module is implemented in C++ and is made up of a total of 13615 code
lines. This module, as it will be seen in Section 6.2.3, will interact with other already existing
modules in ns-3, which implement the Internet stack, the NetDevice, and the Communication
Channel. The directory and the file hierarchy of the implemented module are shown in Fig. 6.2.

The elements of the architecture are implemented in:

• Replica Manager Service (Section 5.4.3) is in REPLICAMANAGER folder, Fig. 6.2. It is
implemented as an abstract class that is specialized according to the election algorithm:
Bully, Kordafshari, Vasudevan, Consensus or Voting (Section 5.5.2). A non-adaptive
replica manager is implemented, as well.

• Network Monitor and Battery Monitor services (Section 5.4.1) are in MONITORS folder
in Fig. 6.2. Network Monitor supervises the routing table, which is maintained at the
Internet stack. Battery Monitor interacts with the energy module, which will be installed
in the nodes and will manage the energy levels of the node.

• Context Manager Service (Section 5.4.2) is in the CONTEXTMANAGER folder Fig. 6.2.

Finally, in APPS folder in Fig. 6.2, in order to make possible the module to be installed as an
application in a node, a specialization of the ns3 Application is implemented. This is the bridge
between the ns3 Node and the Proteo Module. Its main responsibility is initializing all Proteo

Module components.
Additionally to the software architecture, in the module there are implemented a set of

necessary components for performing the evaluation with ns-3:

• Communication management (implemented in the COMMUNICATOR folder, Fig.
6.2). Since the highest level provided by ns-3 is socket level, it is necessary to provide
a layer to manage sockets (UDP or TCP) and Coordination Messages. This can be



6.2 Design and Development 151

Fig. 6.2 Proteo Module structure directory on ns-3 implementation. Folders are shown in
capital letters.



152 Simulation: Development and Settings

considered as a simple communication middleware, which abstracts the communication
details to other components of Proteo Module.

• Measures management (implemented in the stats_manager class under UTILS folder,
Fig. 6.2). To implement a module that monitors and stores the behaviour of the node
during the simulation is necessary to evaluate the performance of the architecture. The
measures that are taken are: time that node spends on each specific state (Client, Server,
Local or Connecting), Coordination Messages sent and received, KB sent and received
by the Proteo Module, KB sent and received by the routing protocol, and the battery
levels of the node.

• Configuration manager (implemented in the configuration class under MODEL folder,
Fig. 6.2). A configuration manager is provided to modify the configuration of the node
and the simulation, without recompile the module. This manager reads a configuration
file where different features of the Proteo Module can be modified, such as the election
algorithm used by the Replica Manager, transport layer protocol (UDP or TCP), battery
capacity and initial battery levels, mobility model, number of nodes in the network, utility
function weights, simulation duration, seed, and output verbosity level.

6.2.3 Configuring a ns3 Node to host Proteo Module

In our implementation, the high-level architecture of a node is shown in Fig. 6.3.

Fig. 6.3 High-level Proteo node architecture in ns-3.



6.2 Design and Development 153

The communication channel used is ns3::YansWifiChannel, in order to interconnect ns3::YansWifiPhy

NetDevices. The propagation model implemented by this Wi-Fi channel is described in [92],
which follows the 802.11 specification. In the ns-3 script configuration, it has been configured
as shown in Code 6.1.

Code 6.1 Communication channel configuration in ns-3 for Proteo simulation.
YansWif iChanne lHe lpe r w i f i C h a n n e l ;
w i f i C h a n n e l . S e t P r o p a g a t i o n D e l a y ( " ns3 : : C o n s t a n t S p e e d P r o p a g a t i o n D e l a y M o d e l " ) ;
w i f i C h a n n e l . AddPropaga t i onLoss ( " ns3 : : TwoRayGroundPropagat ionLossModel " ,
" SystemLoss " , DoubleValue ( 1 ) , " HeightAboveZ " , DoubleValue ( 1 . 5 ) ) ;

Where "ns3::ConstantSpeedPropagationDelayModel", sets a constant speed propagation
on the channel; and "ns3::TwoRayGroundPropagationLossModel", a Two-Ray Ground propa-
gation loss model, which considers both the direct path (single line-of-sight) of communication
between two nodes and a ground reflection path [113].

The NetDevice used has been ns3::YansWifiPhy, and it has been configured as shown in
Code 6.2.

Code 6.2 NetDevice installation and configuration in ns-3 for Proteo simulation.
s t d : : s t r i n g phyMode ( " DsssRate1Mbps " ) ;

/ / S e t up WiFi
W i f i H e l p e r w i f i ;
YansWif iPhyHelper w i f i P h y = YansWif iPhyHelper : : D e f a u l t ( ) ;
w i f i P h y . Se tPcapDataLinkType ( YansWif iPhyHelper : : DLT_IEEE802_11 ) ;

/ / For r a n g e n e a r 250m
w i f i P h y . S e t ( " T x P o w e r S t a r t " , DoubleValue ( 3 3 ) ) ;
w i f i P h y . S e t ( " TxPowerEnd " , DoubleValue ( 3 3 ) ) ;
w i f i P h y . S e t ( " TxPowerLevels " , U i n t e g e r V a l u e ( 1 ) ) ;
w i f i P h y . S e t ( " TxGain " , DoubleValue ( 0 ) ) ;
w i f i P h y . S e t ( " RxGain " , DoubleValue ( 0 ) ) ;
w i f i P h y . S e t ( " E n e r g y D e t e c t i o n T h r e s h o l d " , DoubleValue ( −6 1 . 8 ) ) ;
w i f i P h y . S e t ( " CcaMode1Threshold " , DoubleValue ( −6 4 . 8 ) ) ;

/ / Bind NetDevice wi th communica t ion Channel
w i f i P h y . S e t C h a n n e l ( w i f i C h a n n e l . C r e a t e ( ) ) ;

/ / Add a non−QoS upper mac
NqosWifiMacHelper wif iMac = NqosWifiMacHelper : : D e f a u l t ( ) ;
wif iMac . SetType ( " ns3 : : AdhocWifiMac " ) ;



154 Simulation: Development and Settings

/ / S e t 802 .11 b s t a n d a r d
w i f i . S e t S t a n d a r d ( WIFI_PHY_STANDARD_80211b ) ;
w i f i . S e t R e m o t e S t a t i o n M a n ag e r ( " ns3 : : C o n s t a n t R a t e W i f i M a n a g e r " , " DataMode " ,
S t r i n g V a l u e ( phyMode ) , " ControlMode " , S t r i n g V a l u e ( phyMode ) ) ;

N e t D e v i c e C o n t a i n e r d e v i c e s = w i f i . I n s t a l l ( wi f iPhy , wifiMac , mobi leNodes ) ;

In this way, power transmission parameters of the NetDevice has been set to approximate a
wireless communication range of 250 meters. The enumerator of the pcap data link types has
been set to YansWifiPhyHelper::DLT_IEEE802_11, this is, the IEEE 802.11 Wireless LAN
headers on packets, and the standard used is 802.11b (WIFI_PHY_STANDARD_80211b). The
MAC high model in the NetDevice is set to "ns3::AdhocWifiMac", this is a non-QoS MAC,
which does not perform any kind of beacon generation, testing, or association.

Regarding Internet stack, it has been used the IPv4 protocol (the IP directions assigned to
the nodes range from 10.1.1.1 to 10.1.1.254) and OLSR routing protocol [79], as a proactive
routing protocol. This is configured in ns-3 as shown in Code 6.3.

Code 6.3 Internet stack configuration in ns-3 for Proteo simulation.
/ / Enab le OLSR
O l s r H e l p e r o l s r ;
/ / S e t up i n t e r n e t s t a c k
I n t e r n e t S t a c k H e l p e r i n t e r n e t ;
i n t e r n e t . S e t R o u t i n g H e l p e r ( o l s r ) ;
i n t e r n e t . I n s t a l l ( mobi leNodes ) ;

/ / S e t up A d d r e s s e s
I p v 4 A d d r e s s H e l p e r ipv4 ;
ipv4 . Se tBase ( " 1 0 . 1 . 1 . 0 " , " 2 5 5 . 2 5 5 . 2 5 5 . 0 " ) ;
I p v 4 I n t e r f a c e C o n t a i n e r i f c o n t = ipv4 . Ass ign ( d e v i c e s ) ;

For the energy model of the devices, the ns3::LiIonEnergySource has been used. This
model represents the non-linear discharge of a generic lithium-ion battery, based on the studies
of [148] and [160]. This model takes into consideration both the natural discharge of a battery
and the energy consumption of the NetDevice. It has been configured in ns-3 as it is shown in
Code 6.4.

Code 6.4 Battery configuration in ns-3 for Proteo simulation.
/ * e ne rg y s o u r c e * /
L i I o n E n e r g y S o u r c e H e l p e r l i i o n S o u r c e H e l p e r ;



6.2 Design and Development 155

/ / c o n f i g u r e e ne rg y s o u r c e
l i i o n S o u r c e H e l p e r . S e t ( " R a t e d C a p a c i t y " ,
DoubleValue ( b a t t _ c o n f −>g e t R e a l ( " b a t t e r y " , " c a p a c i t y " ) ) ) ;
/ / i n s t a l l s o u r c e
E n e r g y S o u r c e C o n t a i n e r s o u r c e s = l i i o n S o u r c e H e l p e r . I n s t a l l ( mobi leNodes ) ;
/ * d e v i c e e ne r gy model * /
Wif iRad ioEnergyMode lHe lpe r r a d i o E n e r g y H e l p e r ;
/ / c o n f i g u r e r a d i o e ne rg y model
r a d i o E n e r g y H e l p e r . S e t ( " TxCurrentA " , DoubleValue ( 0 . 0 1 7 4 ) ) ;
r a d i o E n e r g y H e l p e r . S e t ( " RxCurrentA " , DoubleValue ( 0 . 0 1 9 7 ) ) ;
/ / i n s t a l l d e v i c e model
Dev iceEne rgyMode lCon ta ine r dev i ceMode l s =
r a d i o E n e r g y H e l p e r . I n s t a l l ( d e v i c e s , s o u r c e s ) ;

Where batt_conf->getReal("battery","capacity") obtains from the Proteo configuration file
the battery capacity specified for the simulation.

Finally, Proteo Module (Section 6.2.2) is installed in the node as a ns3 Application.

6.2.4 Variations on ns-3

To make possible the evaluation and validation of the proposed architecture in ns-3, two main
variations on the network simulator have been necessary.

The first of them is related to the cross-layer approach that Proteo architecture follows
to detect changes in the network topology (see Section 4.4.1). Proteo uses the information
gathered by the routing protocol (i.e., the routing tables) with two objectives: (1) to monitor
and detect changes in the network topology; and (2) to use this information as a substitute
of a discovery service. That information is not accessible from the ns3::Application layer.
Therefore, a new ns3::callback2 has been added to ns3::Ipv4RoutingProtocol that is triggered
when the routing table changes, providing the new information of the current routing table. In
this way, now, any entity from ns3::Application layer can bind to this new callback and receive
the information of the routing table.

The second variation is related to battery-based nodes in ns-3. Whereas ns-3 provides
advances models regarding energy consumption, it does not allow to add or remove nodes at
run-time, neither to deactivate or delete a node when its energy is depleted. In this way, when the
ns3::EnergySource is depleted, the node continues to operate normally. Therefore, to accurately
evaluate the operating conditions of battery-based environments and a resource-aware solution,
a new callback has been added to ns3::EnergySource. This callback is triggered when the

2Callbacks in ns-3, https://www.nsnam.org/docs/manual/html/callbacks.html

https://www.nsnam.org/docs/manual/html/callbacks.html


156 Simulation: Development and Settings

Table 6.1 Node setting parameters used in ns-3 to perform the simulations.

Wi-Fi Standard 802.11b
Transportation Protocol TPC
Data Rate 250 Kbps
Routing Protocol OLSR
Connection Range 250 m.
Battery Capacity 2.45 Ah
Initial Charge [1.0-2.45] Ah

energy source is depleted and ns3::Application, ns3::NetDevice and ns3::MobilityModel are
binding to them. Hence, now with this change, when the ns3::EnergySource of the node is
depleted, the ns3::Application stops its operation. The ns3::NetDevice is deactivated to avoid
that a node with a depleted battery can act as a router in a multi-hop communication; and the
ns3::MobilityModel is also deactivated so that the node stops moving.

6.3 Simulation Settings

This section describes the settings that have been established in the simulations to evaluate the
proposal. This information is essential to know under what circumstances the architecture has
been evaluated and thus to correctly assess the results obtained.

6.3.1 General and Node Settings

For the evaluation of the proposal, the 3.21 version of ns-3, released in September 2014, has
been used. As shown in Section 6.2.3, the communication channel has been configured with
a constant speed propagation delay model and a two-ray ground propagation loss model. A
lithium-ion energy model manages the battery of the nodes. The battery is configured with
a maximum capacity of 2.45 Ah, and the initial charge of the battery is randomly set in the
range [1.0-2.45] Ah (Table 6.1). Moreover, the nodes communicate under an 802.11b wireless
connection, under the TCP transportation protocol.

The number of nodes in the network will be incrementally ranged from 4 to 20. Each node
will have the Proteo Module installed (Section 6.2.2). The Proteo Module will be evaluated
with each one of the five election algorithms implemented, under each one of the three mobility
models (Section 6.3.2). The duration of the simulations has been of 21600 seconds (i.e., six
hours) each one, enough time for the nodes to deplete their batteries.



6.3 Simulation Settings 157

To simulate the execution of a service, an energy penalty has been introduced. The node
hosting the active replica, i.e., the node acting as the server, will consume battery twice more
quickly than other nodes, in addition to the battery consumed by the network card.

Finally, to eliminate the influence of any possible random factor, each configuration has
been simulated 100 times with 100 different random seeds. The seed influences on all random
factors during the simulation, which are the initial positions of the nodes, the initial battery
charges and the movement of the nodes. For the same seed, these factors will be identical.
Therefore, the different election algorithms are compared under identical circumstances.

6.3.2 Mobility Settings

As exposed by [177] and [178] (see Chapter 3), the mobility model can have a deep impact
in the performance of the proposal. Thus, Proteo architecture will be evaluated under three
different mobility models: Manhattan Grid, Random Walk and Reference Point Group. The
features of these models and the specific setting parameters used in each of them are detailed
below.

Manhattan Grid

The Manhattan Grid mobility model [162] intends to represent an urban area (e.g., a grid of
roads or pedestrian pavements) or an indoor scenario (e.g., a grid of corridors). This mobility
model could be considered related to scenarios of Advanced Intelligent Transportation Systems

[32] or, for example, tourism in Smart Cities [71].
The Manhattan Grid restricts the movement of the nodes to a set of horizontal and vertical

paths, which cross each other. When a node is situated at an intersection of a vertical and a
horizontal path, it can turn right, left or go straight according to a defined probability.

Under this model, the probability of two nodes to meet could be considered low, since to
get in contact, these nodes have to concur in the same path or near of a cross. Of course, this
probability will depend on the number of nodes and the number of paths of which the grid is
composed. Thus, under this mobility model, the nodes will spend more time on the Local state,
and the network partitions will have a more reduced number of nodes than under other mobility
models.

Table 6.2 shows the configuration parameters used to generate the mobility trace files under
the Manhattan Grid model using Bonnmotion tool (Section 2.6.1). It has been generated a
scenario of 1000 m2 with 14 blocks along the x-axis and another 14 along the y-axis. This
means a total of 15 horizontal paths and another 15 vertical paths. The mean speed of the nodes



158 Simulation: Development and Settings

Table 6.2 Setting parameters used for the Manhattan Grid model in Bonnmotion (Section 2.6.1)
to perform the simulations.

Speed change probability 0.4
Min. speed 0.5 m/s
Mean speed 1.5 m/s
Speed SD 0.5
Max. pause 350 s
Pause probability 0.2
Update distance 50 m
Turn probability 0.5
Blocks along x-axis 14
Blocks along y-axis 14
Scenario max. x 1000 m
Scenario max. y 1000 m

has been set to 1.5 m/s, which is intended to represent the preferred walking speed of humans
(1.4 m/s [104]). The nodes have a probability of 0.2 to make a pause of maximum duration
350 seconds, this is, about 6 minutes. During this pause, it can be assumed that the users are
performing some task on their mobile devices. The speed of a node is revised every 50 meters,
and it can change with a probability of 0.4.

Fig. 6.4 A plot of the trace of an example Manhattan Grid scenario with 5 nodes and a duration
of 1600 seconds, using the configuration parameters described on Table 6.2.



6.3 Simulation Settings 159

Table 6.3 Setting parameters used for the Random Walk model in ns3 to perform the simulations.

Min. speed 0.5 m/s
Max. speed 2.0 m/s
Min. pause 60 S
Max. pause 350 s
Scenario max. x 1000 m
Scenario max. y 1000 m

Fig. 6.4 shows a plot of the trace that five nodes have followed under a the Manhattan Grid
model scenario with a duration of 1600 seconds, using the configuration parameters described
in Table 6.2. As it can be seen, some lanes only have been covered for certain nodes and there
are lanes that have not been covered by any of them.

It should be noted, that the scenarios depicted in Fig. 6.4 and the following (Fig. 6.5
and Fig. 6.7) are examples generated to provide a better understanding of the behaviour of
the nodes under the different mobility models and under the configuration provided. In the
evaluation performed, these scenarios will vary according to the seed provided.

Random Walk

The Random Walk mobility model [25] is one of the most widespread models, due to its
simplicity. It usually consists of a rectangular area, which is entirely walkable. Nodes have an
individualist behaviour and move between points with random directions and speeds. Although
this cannot be considered a real-world scenario, since in realistic scenarios the movement of
the nodes (people or vehicles) is not random, it is considered an excellent test scenario. This is
due to it represents the worst-case scenario regarding dynamicity on network topology, which
is traduced in an unstable ad-hoc communication network. Under this scenario, the probability
of two nodes to meet is higher than under the Manhattan Grid model.

It should be noted that ns-3 provides native support to generate the Random Walk mobility
scenarios. Therefore, in this case, the support of Bonnmotion has not been necessary. In Table
6.3 the configuration parameters used to generate mobility scenarios under the Random Walk
model are shown. It is intended to generate a scenario where the nodes have similar features
regarding speed and pauses than on the other mobility models. Hence, it has been generated
scenarios of 1000 m2, where the nodes move with a speed between 0.5 and 2.0 m/s, with
random pauses between 60 and 350 seconds.

Fig. 6.5 shows a plot of the trace that ten nodes have followed under a the Random Walk
model scenario with a duration of 1600 seconds, using the configuration parameters described
in Table 6.3. As it can be seen, the movement of the nodes is entirely random, and whereas



160 Simulation: Development and Settings

Fig. 6.5 A plot of the trace of an example the Random Walk scenario with 10 nodes and a
duration of 1600 seconds, using the configuration parameters described on Table 6.3.

near the upper-left corner (point (0, 0) in Fig. 6.5) a group of 6 nodes has remained relatively
close, the other four nodes have moved more individually throughout the rest of the area.

Reference Point Group Mobility

The Reference Point Group Mobility model (RPGM) [68] is devised to simulate group be-
haviour in open areas. This mobility model could be considered related to scenarios of
Emergency Scenarios & Situations or Smart Cities, for example, a system to support students
in a university campus, providing services to document sharing or information [151] [23].

In the RPGM, the nodes of the network are divided randomly into groups. Each group has
a fictional group leader node that determines the direction and speed of the group. The group
members derive their direction and their speed from the group leader. Thus, the group members
have an independent behaviour within their group, slightly varying their movements from those
decided by the group leader. This mobility model intends to represent a more realistic mobility
model, where groups of people move along an open area. This could represent tourist or rescue
crews from different groups that work cooperatively.



6.3 Simulation Settings 161

Table 6.4 Setting parameters used for the RPGM model in Bonnmotion to perform the simula-
tions.

Min. speed 0.5 m/s
Max. speed 2.0 m/s
Max. pause 350 s

Average no. of nodes per group
[

total no. o f nodes
3

]
Group change probability 0.1

Max. distance to group centre (Scenario max.
10 ) = 100 m

Group size SD 2
Scenario max. x 1000 m
Scenario max. y 1000 m

The implementation of this model also is provided by the Bonnmotion tool. It is based on
the design given by [68] and [25]. Whereas the work in [68] does not provide pausing behaviour,
the implementation provided by Bonnmotion takes into consideration the design of the Random
Walk mobility model [25] and determines that the group leader could pause for a determined
amount of time according to a defined probability. When the group leader pauses, the group
members pause for the same amount of time. Moreover, the Bonnmotion implementation
provides the possibility of “dynamic groups”, where, when two groups overlap on the same
area, a group member node could switch groups according to a determined probability.

In Table 6.4 the configuration parameters used to generate mobility scenarios under the
RPGM model with Bonnmotion are shown. As stated previously, it is intended to generate
scenarios where the nodes have similar features regarding speed and pauses than on the other
mobility models. Scenario size is of 1000 m2, where the nodes move with a speed between 0.5
and 2.0 m/s, with random pauses of maximum 350 seconds. As in the Random Walk mobility
model, the whole scenario area is walkable under the RPGM.

Regarding specific parameters of the RPGM model, it has been determined the average
number of nodes per group as a third of the total number of nodes in the network with a
standard deviation of 2. This means, for a network of 10 nodes, that the average number of
nodes per group will be of 3±2 nodes. The evolution of the size of the group according to
the total number of nodes in the network and the configuration parameters provided can be
shown in the chart of Fig. 6.6. Finally, the maximum distance of the group members to the
centre of their group is of a tenth of the maximum size of the scenario, this is 100 m. According
to the configuration of the wireless network adapters of the nodes, the range of the wireless



162 Simulation: Development and Settings

Fig. 6.6 Number of nodes per group under the RPGM model according to the total number of
nodes in the network and the configuration parameter provided in Table 6.4.

connection is approximately of 250 m. Hence, the maximum distance set to the group centre
guarantees a stable communication between the nodes of the same group.

In comparison with the other mobility models, the RPGM provides, on the one hand, a
more stable network topology, but on the other hand, the number of nodes involved in the
election process is more significant, especially when two or more groups of nodes meet. Using
the setting parameters provided in Table 3, Fig. 6.7 shows a plot of the trace that ten nodes
have followed under an RPGM model scenario with a duration of 1600 seconds. It can be seen
how there are three groups of nodes: (1) that composed by Node8, Node9, and Node10; (2)
that composed by Node4, Node5, Node6 and Node7; and (3) that composed by Node1, Node2,
and Node3. It can also be seen how Node10 switches groups, from group 2 to group 1. Finally,
it can be seen, that although there are three different groups, sometimes these meet forming
a group that encompasses every node on the network. Although this is also possible under
the Manhattan Grid and Random Walk mobility models, under the RPGM model this is more
frequent since the nodes have a groupal behaviour.



6.4 Summary 163

Fig. 6.7 A plot of the trace of an example RPGM scenario with 10 nodes and a duration of
1600 seconds, using the configuration parameters described on Table 6.4.

6.4 Summary

This chapter has provided an overview of the design and development of Proteo in the ns-3.
Proteo architecture has been developed as a new module in ns-3, denominated Proteo Module.
This module provides a ns-3 Application that can be installed in a ns3 Node. Proteo Module

is implemented in C++ and is made up of a total of 13615 code lines. This module interacts
with other already existing modules in ns-3. Some of these are ns3::YansWifiChannel which
implements the model of the WiFi channel, ns3::YansWifiPhy NetDevice which implements the
model of the wireless network layer to device interface, and ns3::LiIonEnergySource which
implements the model for the energy source of the node.

Additionally, to make possible the evaluation and validation of the proposed architec-
ture in ns-3, two main variations on the network simulator have been performed: (1) a new
ns3::callback has been added to ns3::Ipv4RoutingProtocol that is triggered when the routing
table changes, to allow Proteo Module to access the information of the routing table, allowing
a cross-layer interaction; and (2) a new callback has been added to ns3::EnergySource to
deactivate the nodes when the energy source is depleted, feature that is not implemented by
default in ns3.



164 Simulation: Development and Settings

Moreover, in this chapter, the settings established in the simulations to evaluate the proposal
have been presented. The battery of the nodes is configured with a maximum capacity of 2.45
Ah, and the initial charge of the battery is randomly set in the range [1.0-2.45] Ah. The number
of nodes in the network will be ranged from 4 to 20. The duration of the simulations has
been of 21600 seconds (i.e., six hours) each one. To eliminate the influence of any possible
random factor, each configuration has been simulated 100 times with 100 different random
seeds. Finally, the architecture is evaluated under three mobility models: Manhattan Grid,
Random Walk and Reference Point Group.



Chapter 7

Simulation Results in ns-3

Chapter Abstract

This chapter shows and analyses the results obtained during the simulations. The analysis has been

carried out in terms of service availability, election algorithm reliability, use of coordination messages

and network lifetime with different mobility models and elections algorithms. The results obtained

have shown that Bully, Kordafshari, and Voting provide the better results regarding service availability.

Nevertheless, the reliability of Bully and Kordafshari regarding concurrent elections is low. To this

regard, algorithm reliability, Voting, and Vasudevan provide the best results. However, Vasudevan,

especially when there are several nodes involved in an election, make more intensive use of coordination

messages than the other algorithms. Low reliability (i.e., a high number of concurrent elections) and high

use of coordination messages have a negative impact in the network lifetime. For this reason, Voting

provides the better results to this respect, in comparison with Kordafshari or Vasudevan. In conclusion,

globally, the Voting election algorithm proves to show the best behaviour, although Kordafshari provides

a slight improvement in service availability at the expense of reliability and Vasudevan provides a slight

improvement in algorithm reliability at the expense of coordination message usage. Regarding the

Consensus algorithm, although it provides a slight improvement on the reliability in comparison to the

Bully and Kordafshari algorithms, globally speaking it does not provide any relevant characteristic that

differentiates it over the other algorithms.

Chapter Contents
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.2 Service Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.3 Algorithm Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.4 Coordination Messages Usage . . . . . . . . . . . . . . . . . . . . . . . . 175

7.5 Network lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183



166 Simulation Results in ns-3

7.6 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7.7 Discussion on Global Performance . . . . . . . . . . . . . . . . . . . . . . 201

7.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205



7.1 Introduction 167

7.1 Introduction

This chapter presents the results obtained during the evaluation of our proposal. The evaluation
of Proteo architecture has been carried out in the ns-3 network simulator, under the simulation
conditions presented in Section 6.3.

The chapter is organized as follows: first, each quality attribute is studied individually for
each of the five election algorithms implemented (Bully, Kordafshari, Consensus, Vasudevan,
and Voting) under the three mobility models (Manhattan Grid, Random Walk, and RPGM).
These features are service availability (Section 7.2); election algorithm reliability (Section 7.3),
in terms of redundant server elections; coordination messages used by the election algorithms
(Section 7.4); and network lifetime (Section 7.5), in terms of Time until First Node Dies
(TFND), Time until Half of the Nodes Dies (THND) and Time until the Last Node Dies
(TLND).

Additionally, as a reference, a non-adaptive solution has been implemented where the
half of the mobile nodes of the network operate as servers by default. This version of the
architecture is not entirely measurable, for example, it does not use any coordination messages,
and thus it only will be taken into consideration in some of the features evaluated.

Then, these features are faced in terms of efficiency (Section 7.6), confronting target
qualities (service availability and algorithm reliability) against cost measures (messages used
and network survivability (TLND)). Finally, a global performance analysis of each algorithm is
presented, concerning service availability, algorithm reliability, message used (i.e., bandwidth
usage) and network lifetime (i.e., energy consumption). It should be noted that in this chapter
the results obtained are displayed using charts, to facilitate comparisons of the results obtained
with the different configurations. The complete data tables can be found in Appendix A.

7.2 Service Availability

From the general definition of service availability provided in Section 2.5.5, in the context
of this thesis, service availability is defined as the time in which a node has a successful
client-server relation established when there is at least one node reachable. Therefore, service
availability will be directly related to the time that takes the node to reach the Server or Client
state from the Connecting state. Fig. 7.1, Fig. 7.2 and Fig. 7.3 show the results obtained
regarding service availability provided by the architecture using the different election algorithms
under the Manhattan Grid mobility model, the Random Walk mobility model, and the RPGM
mobility model, respectively.



168 Simulation Results in ns-3

Fig. 7.1 Service availability provided by the different election algorithms under the Manhattan
Grid mobility model. Data on Table A.1.

In the case of the Manhattan Grid (Fig. 7.1) the availability provided is high, generally
over the 90%. This is because in the Manhattan Grid the available area is highly restricted.
Therefore the nodes will meet in reduced groups with short connection distances. In this way,
the problems caused by connection fading is reduced, and the reduced groups imply short
elections. With this mobility model, the best Service availability is provided by the Bully and
Kordafshari algorithms, with an availability of 96.50% and 96.49% respectively on a network
of 20 nodes, in contrast to the Consensus algorithm which provides an availability of 88.27%.

In the case of the Random Walk (Fig. 7.2) three groups can be differentiated on a network
of 20 nodes: (1) the Bully and Kordafshari algorithms, which again provide the best availability,
95.19%, and 95.69% respectively. (2) the Voting algorithm, which provides a slightly fewer
availability of 92.08%. (3) the Consensus and Vasudevan algorithms, which provides the lowers
results, 83.04% and 84.82% respectively.

Finally, in the case of the RPGM (Fig. 7.3), where the number of nodes involved in the
election tends to be higher than in the other mobility models, two groups can be differentiated
on a network of 20 nodes: (1) the Bully, Kodafshari and Voting algorithms, which provide an
availability of 97.40%, 97.98% and 96.48% respectively; and (2) the Consensus and Vasudevan
algorithms, which provide an availability of 88.01% and 82.55% respectively. It worth noting



7.2 Service Availability 169

Fig. 7.2 Service availability provided by the different election algorithms under the Random
Walk mobility model. Data on Table A.2.

Fig. 7.3 Service availability provided by the different election algorithms under the RPGM
mobility model. Data on Table A.3.



170 Simulation Results in ns-3

that the availability provided by the first group of nodes has been little affected by the increasing
number of nodes in the network, whereas this fact has had a profound impact in the performance
of the Vasudevam algorithm.

In conclusion, the Bully and Kordafshari algorithms have shown the best performance in
terms of service availability, independently of the mobility model. The Voting algorithm has
shown better performance on the RPGM mobility model than on the others mobility models. In
the RPGM model, in comparison with the other mobility model applied, there is a high number
of nodes involved in the election, although the groups of nodes are more stable. This has had
a deep impact on the performance of the Vasudevan algorithm, which sees its performance
profoundly reduced when the number of nodes increases, both on the RPGM and the Random
Walk mobility models. Finally, the Consensus algorithm, generally, provides the worst results
regarding service availability.

7.3 Algorithm Reliability

From the definition of reliability (Section 2.5.3) to measure the reliability of a system, or
usually, of a system component, it is firstly required to define when it fails. According to the
host election problem definition provided (Section 2.4), in this thesis, we assume as a failure
when more than one node is designed to act as the server in the same network partition, i.e.,
when a redundant server election happens. This failure happens when some of the coordination
messages are lost, usually when the links within the nodes are not stable, which leads to an
unstable network partition.

According to the previous definitions, two main measures are considered to evaluate the
reliability of the host election algorithm: (1) the percentage of failures (i.e., redundant server
elections) according the total executions of the election algorithm during the simulation (Section
7.3.1), (2) and the Mean Time Between Failures (MTBF) (Section 7.3.2).

Contrary to service availability, which is directly and unequivocally measurable, the way in
which reliability is measured can vary the results obtained, especially in a distributed system
that relies on a non-reliable communication system. For this reason, it is necessary to identify
clearly for each moment: the network partitions, the nodes that compose them and if these are
well-established network partitions where the election algorithm could operate correctly. This
has to be done under the following circumstances (see System Model on Section 4.3):

• Although bidirectional links are assumed; it is also considered that while the connection
between two nodes is being established links could be not bidirectional.



7.3 Algorithm Reliability 171

• A network partition is considered stable when each link in the network partition is
bidirectional.

• The system is fully distributed and there is no any central supervisor entity that can
unequivocally determine, at each moment, to which network partition each node belongs.
However, for all the nodes of the network, to have synchronized clocks is assumed.

Therefore, according to the definition of failure considered, the following approach has
been implemented to measure the reliability provided by the elections algorithms:

• Each node stores a log of its reachable neighbour nodes and its state at that moment
(Local, Client, Server or Connecting). This log is updated when a change on the reachable
neighbours or node state happens.

• Once the operating time has finished, these logs are processed together, providing
an adjacency matrix that represents the links between the nodes for each moment,
additionally to the state of each node.

• With this matrix, the stable network partitions are determined. A stable network partition
is determined if its adjacency matrix is symmetric, that means that links are bidirectional
and thus the reliability of the algorithm can be measured. If not, the network partition is
unstable, and the reliability of the election algorithm should not be evaluated.

Fig. 7.4 A directed graph which represents the nodes of a network and the links between them.
In the graph three network partition can be seen: (1) composed by the nodes 1, 2 and 3; (2)
composed by nodes 5 and 6; and (3) composed only by the node 4.

Lets consider the example depicted in Fig. 7.4, which shows a directed graph that represents
the nodes of a network and the links between them. In the graph, three network partition can be



172 Simulation Results in ns-3

Table 7.1 Adjacency matrix representing the network depicted in Fig. 7.4. Where A(i, j) =
0 means that there is no link from the node i to j, and A(i, j) = 1 means that there is a
communication link established from i to j.

1 2 3 4 5 6
1 - 1 0 0 0 0
2 1 - 1 0 0 0
3 1 1 - 0 0 0
4 0 0 0 - 0 0
5 0 0 0 0 - 1
6 0 0 0 0 1 -

seen: (1) composed by the nodes 1, 2 and 3; (2) composed by nodes 5 and 6; and (3) composed
only by the node 4.

The network of Fig. 7.4 can be represented by the adjacency matrix of Table 7.1. In this
matrix to determine the three network partitions is possible. Also, it can be seen that the
network partition composed of the nodes 1, 2 and 3 is still unstable since the link between
nodes 1 and 3 is not bidirectional. On the contrary, the network partition composed of nodes 5
and 6 is stable, and the reliability of the network partition can be measured. Thus if during the
lifespan of this stable group there is more of one node acting as a server, a redundant election
has happened.

7.3.1 Redundant Server Elections

Fig. 7.5, Fig. 7.6, and Fig. 7.7 show the results obtained regarding the reliability provided by
the election algorithms in terms of redundant server elections for the Manhattan Grid mobility
model, the Random Walk mobility model, and the RPGM mobility model, respectively.

As can be seen in the data obtained, the Vasudevan and Voting algorithms provide excellent
reliability regardless the mobility model and the number of nodes. The percentage of redundant
server elections is always lower than 0.4%.

On the contrary, the Bully and Kordafshari algorithms provide poor reliability, which is
mainly affected by the increasing number of nodes in the network. In Table 7.2, it can be
seen that redundant server elections increment, from a network of four nodes to a network of
twenty nodes, a 10.27% for the Bully algorithm and a 10.20% for the Kordafshari algorithm.
In the case of the RPGM mobility model (Fig. 7.7), owing to network partitions are generally
more extensive (i.e., more nodes are participating in the election process), the increase in
the redundant server elections worsens. This results in an increase of 14.86% for the Bully
algorithm, with a total of 17.41% of redundant elections for a network of twenty nodes, and



7.3 Algorithm Reliability 173

Fig. 7.5 Percentage of redundant server elections by the election algorithms studied under the
Manhattan Grid mobility model. Data on Table A.4.

of 15.80% for the Kordafshari algorithm, with a total of 18.73% of redundant elections for a
network of twenty nodes.

Table 7.2 Increase of the percentage of redundant elections for the Bully and Kordafshari
algorithms for each mobility model, from a network of four nodes to a network of twenty nodes.

Manhattan Grid Random Walk RPGM
Bully Kordafshari Bully Kordafshari Bully Kordafshari

4 nodes 1.39% 1.49% 1.89% 2.22% 2.55% 2.93%
20 nodes 11.66% 11.69% 16.05% 16.44% 17.41% 18.73%

δn 10.27% 10.20% 14.16% 14.22% 14.86% 15.80%

As the number of nodes in the network increases, the Consensus algorithm increases its
reliability. This is, the Consensus algorithm tends to generate less redundant server elections in
a large group of nodes. For networks of 20 nodes, Consensus generates 1.96% redundant server
elections with the Manhattan Grid model (Fig. 7.5), 1.84% with the Random Walk model (Fig.
7.6) and 1.68% with the RPGM model (Fig. 7.7). However, these results are still higher than
those provided by the Vasudevan and Voting algorithms, which, in conclusion, present the best
results concerning to avoid redundant server elections.



174 Simulation Results in ns-3

Fig. 7.6 Percentage of redundant server elections by the election algorithms studied under the
Random Walk mobility model. Data on Table A.5.

Fig. 7.7 Percentage of redundant server elections by the election algorithms studied under the
RPGM mobility model. Data on Table A.6.



7.4 Coordination Messages Usage 175

7.3.2 Mean Time Between Failures (MTBF)

Fig. 7.8, Fig. 7.9 and Fig. 7.10 show the results obtained regarding the reliability provided
by the election algorithms concerning MTBF (Section 2.5.3) for the Manhattan Grid mobility
model, the Random Walk mobility model, and the RPGM mobility model, respectively. It
should be noted that at least is necessary two failures happen to be able to obtain the MTBF. In
the charts provided, if there is no data about one algorithm for a particular network size, it does
not mean that MTBF is zero, but that the algorithm has no presented more than one failure
during simulation.

From the results obtained, it can be highlighted that, although both Vasudevan and Voting
provide excellent reliability, failures in Voting happen with more frequency.

Fig. 7.8 MTBF of the election algorithms studied under the Manhattan Grid mobility model.
Data on Table A.7.

7.4 Coordination Messages Usage

The coordination messages usage is one of the primary cost measures that has to be considered
to measure the performance of the election algorithms. It is directly related to the use of energy



176 Simulation Results in ns-3

Fig. 7.9 MTBF of the election algorithms studied under the Random Walk mobility model. Data
on Table A.8.

Fig. 7.10 MTBF of the election algorithms studied under the RPGM mobility model. Data on
Table A.9.



7.4 Coordination Messages Usage 177

(wireless communications and system processing) and of bandwidth. Moreover, it can be
objectively measured, i.e., without underlying technology influencing the result.

This section is divided into two parts: first, the message complexity of the algorithms
that was theoretically analysed in Section 4.6.3, is empirically checked for static and reliable
networks in Section 7.4.1; and second, Section 7.4.2 presents the results obtained regarding to
message complexity under mobile and unreliable networks, i.e., under the simulation conditions
presented in Section 6.3.

7.4.1 Static and Reliable Networks

In this section, the algorithms have been applied in a static network on the ns-3 simulator. The
objective is to empirically validate the theoretical message complexity obtained in Section
4.6.3. In this simulation, the algorithms only perform one election on a reliable network.

Adapted Bully Algorithm

In the case of the adapted version of the Bully algorithm (Fig. 7.11), the empirical message
complexity is given by 0.9249n2 −9.6589n+35.932, following a quadratic complexity. The
results obtained correspond with the theoretical limits defined.

Adapted Kordafshari Algorithm

In the case of the adapted version of the Kordafshari algorithm (Fig. 7.12), the empirical
message complexity is given by 0.7713n2−6.9986n+24.466, following a quadratic complexity
within the theoretical limits defined, as well as in the case of the Bully algorithm. It should
be noted that the Kordafshari algorithm only reduces slightly the number of coordination
messages used in comparison with the Bully algorithm. This is because the Kordafshari
algorithm provides that improvement in the worst case scenario. For the best case scenario,
both algorithms present the same message complexity.

Vasudevan Algorithm

The message complexity of the Vasudevan algorithm (Fig. 7.13) in a static network is given
by 1.1921n2 + 22.476n− 84.98, following a quadratic complexity. As noted, the simulated
data is above of the theoretical worst case message complexity. This is because of the scenario
simulated matches with the worst case of the Vasudevan algorithm, where all the nodes of
the network are siblings. Additionally, messages produced by concurrent elections, that have



178 Simulation Results in ns-3

Fig. 7.11 Comparison between theoretical and empirical message complexity of the Bully
election algorithm.

Fig. 7.12 Comparison between theoretical and empirical message complexity of the Kordafshari
election algorithm.



7.4 Coordination Messages Usage 179

not been taken into consideration in the theoretical study are the cause of the overcome of the
theoretical limit.

Fig. 7.13 Comparison between theoretical and empirical message complexity of the Vasudevan
election algorithm.

Consensus Algorithm

The empirical message complexity of the Consensus algorithm is given by 1.0031n2+2.0531n−
3.3932 7.14), following a quadratic complexity and slightly above the theoretical complexity
calculated. This is because of, in the network simulated, the links between nodes are not
reliable, and message loss can happen. Therefore the use of additional messages, as depicted
in Fig. 4.8, in Section 4.6.1, is necessary to recover message loss in the election, avoiding
concurrent servers or nodes without leader.

Voting Algorithm

The message complexity for the Voting algorithm in a static network is given by 0.9933n2 +

1.4306n−5.6285 (Fig. 7.15), following a quadratic complexity. In this case, the empirical and
theoretical message complexity correlate.



180 Simulation Results in ns-3

Fig. 7.14 Comparison between theoretical and empirical message complexity of the Consensus
election algorithm.

Fig. 7.15 Comparison between theoretical and empirical message complexity of the Voting
election algorithm.



7.4 Coordination Messages Usage 181

7.4.2 Mobile and Unreliable Networks

This section presents the results and analysis of coordination message usage in mobile and
unreliable networks, under the simulation conditions presented in Section 6.3, Fig. 7.16, Fig.
7.17, and 7.18 show the results for the different election algorithms under the Manhattan Grid
mobility model, the Random Walk mobility model, and the RPGM mobility model, respectively.

Fig. 7.16 Coordination messages used during simulation (21600 seconds) by the different
election algorithms under the Manhattan Grid mobility model. Data on Table A.10.

The Kordafshari and Voting algorithms provide the best results regarding coordination
messages usage in the three mobility models. For networks of 13/14 nodes or less, the Bully
algorithm provides the same good results that the Kordafshari and Voting algorithms as well.
However, for larger networks (13/14 nodes or more) the use of coordination messages by
the Bully algorithm is significantly increased, even overtaken the Consensus algorithm in the
Random Walk and the RPGM mobility models. This proves that the modifications introduced
by Kordafshari in the traditional Bully algorithm to reduce the number of messages and avoid
redundant elections are effective.

The Vasudevan algorithm provides the worst results regarding message usage. The use of
coordination messages of this algorithm is profoundly affected by the nodes participating in
the election and by the kind of network topology on which the algorithm is operating. This



182 Simulation Results in ns-3

Fig. 7.17 Coordination messages used during simulation (21600 seconds) by the different
election algorithms under the Random Walk mobility model. Data on Table A.11.

Fig. 7.18 Coordination messages used during simulation (21600 seconds) by the different
election algorithms under the RPGM mobility model. Data on Table A.12.



7.5 Network lifetime 183

can be seen in Fig. 7.18, where under the RPGM mobility model, the Vasudevan algorithm
uses eighteen times more messages that the Voting algorithm in a network of twenty nodes.
As exposed in Section 4.6.3, the worst case scenario regarding message complexity for the
Vasudevan algorithm is caused by the shape of the network, being this a highly interconnected
network (i.e., a group of nearby nodes). This is the case of the RPGM mobility model.

The high difference of use of coordination messages of Vasudevan is given by the way
in which the concurrent elections are managed, although theoretically, the construction of
the spanning tree is more expensive than the other algorithms approach. In this algorithm,
the newest election has priority. Thus, the already in process elections are left behind. This
approach would lead to inefficient use of messages, mainly if the interrupted elections were in
a final stage of construction of the spanning tree.

7.5 Network lifetime

The network lifetime is defined by three measures related with the energy consumption of the
nodes: Time until First Node Dies (TFND), Time until Half of the Nodes Die (THND) and
Time until Last Node Dies (TLND). In this way, not only the energy consumption or lifetime
of a node can be seen, but how the election algorithm affects the network lifetime.

Fig. 7.19 TFND under the Manhattan Grid mobility model. Data on Table A.13.



184 Simulation Results in ns-3

Fig. 7.20 THND under the Manhattan Grid mobility model. Data on Table A.14.

Fig. 7.21 TLND under the Manhattan Grid mobility model. Data on Table A.15.



7.5 Network lifetime 185

For the Manhattan Grid mobility model, Fig. 7.19 shows the TFND provided by the
different election algorithms, Fig. 7.20 shows the THND and Fig. 7.21 shows the TLND. As
can be seen, there is no significant difference between the TFND provided by the different
algorithms. However, in the THND and TLND, two groups of algorithms can be distinguished:
(1) the Voting, Consensus and Vasudevan, which provide the longer network lifetime; and (2)
the Bully and Kordafshari algorithms, which provide less network lifetime.

Specifically, between the best TLND in a network of twenty nodes, provided by the Voting
algorithm (273.399 minutes), and the worst TLND, provided by the Bully algorithm (237.280
minutes), there is a difference of 36.120 minutes. This is owing to the less percentage of
redundant elections that the Voting, Consensus and Vasudevan algorithms cause in comparison
with the Bully and Kordafshari algorithms, which leads to a more efficient management of the
energy. Also worthy of mention how the network lifetime is increased as the number of nodes
is increased. This is because there are more nodes on which spreading the workload of hosting
the active service replica, which emphasises how the architecture designed effectively manages
the available resources of the network.

Fig. 7.22 TFND under the Random Walk mobility model. Data on Table A.16.

For the Random Walk mobility model, Fig. 7.22 shows the TFND provided by the different
election algorithms, Fig. 7.23 shows the THND and Fig. 7.24 shows the TLND. As in the case



186 Simulation Results in ns-3

Fig. 7.23 THND under the Random Walk mobility model. Data on Table A.17.

Fig. 7.24 TLND under the Random Walk mobility model. Data on Table A.18.



7.5 Network lifetime 187

of the Manhattan Grid model, the TNFD does not show significant differences between the
different election algorithms.

Similarly than in the Manhattan Grid, regarding THND and TLND, in the Random Walk
mobility model, two groups of algorithms can be distinguished: (1) the Voting, Consensus
and Vasudevan, which provide the longer network lifetime; and (2) the Bully and Kordafshari
algorithms, which provide less network lifetime. However, this difference is more significant
in the Random Walk mobility model than in the Manhattan Grid. Between the best TLND
in a network of twenty nodes, provided by the Voting algorithm (303.245 minutes), and the
worst TLND, provided by the Kordafshari algorithm (245.082 minutes), there is a difference of
63.592 minutes.

Additionally, it can be seen how under the Random Walk mobility model, in general, the
lifetime of the network is larger than under the Manhattan Grid. Specifically, for a network of
twenty nodes, in average for the five election algorithms, the TLND is 258.702 minutes under
the Manhattan Grid, whereas under the RPGM is 277.7586 in average. This is owing to in the
RPGM the network partitions are larger. Therefore fewer nodes acting as servers are necessary
to maintain the availability of the services.

Fig. 7.25 TFND under the RPGM mobility model. Data on Table A.19.

Finally, of the RPGM mobility model, Fig. 7.25 shows the TFND provided by the different
election algorithms, Fig. 7.26 shows the THND and Fig. 7.27 shows the TLND. As in the



188 Simulation Results in ns-3

Fig. 7.26 THND under the RPGM mobility model. Data on Table A.20.

Fig. 7.27 TLND under the RPGM mobility model. Data on Table A.21.



7.6 Efficiency 189

previous cases, the TNFD does not show significant differences between the different election
algorithms. However, it should be noted how the TFND in the RPGM is short than in the
Manhattan Grid and the Random Walk for small network size (from 4 to 12 nodes). This is
because, in the RPGM the time that a node spends in local status (i.e., without any reachable
neighbour) is shorter than under the other mobility models. Hence, the time in which the
service is running is greater, which implies a greater energy consumption.

Similarly than in previous mobility models, regarding THND and TLND, in the Random
Walk mobility model, two groups of algorithms can be distinguished: (1) the Voting, Consensus
and Vasudevan, which provide the longer network lifetime; and (2) the Bully and Kordafshari
algorithms, which provide less network lifetime. The difference between the best TLND in a
network of twenty nodes, provided by the Voting algorithm (308.629 minutes), and the worst
TLND, provided by the Kordafshari algorithm (248.185 minutes), there is a difference of 60.444
minutes. It should be noted how the Vasudevan algorithm, which under other mobility models
provided similar results that the Voting algorithm, under this mobility model, it provides lower
TLND than the Voting algorithm. This it is related to the more significant use of coordination
messages under the RPGM of this algorithm.

7.6 Efficiency

Oxford dictionary defines the term efficiency as “the state or quality of being efficient” [124],
and efficient as “achieving maximum productivity with minimum wasted effort or expense”

[123]. According to this general definition, in this section, the quality attributes (availability
and reliability) and the cost measures taken (messages and TLND) are contrasted. It should be
noted that messages and TLND measured are directly related to bandwidth and energy usage,
respectively.

7.6.1 Service Availability vs Coordination Message Usage

To effectively compare the service availability against the Coordination Messages used, the
Equation 7.1 has been used to calculate the efficiency.

e f f (av,msgs) =
av

avmax
· (1− msgs

msgsmax
) (7.1)

where:



190 Simulation Results in ns-3

av = represents the percentage of service availability provided by the algorithm
avmax = represents the maximum service availability provided
msgs = represents the Coordination Messages used by the algorithm
msgsmax = represents the maximum Coordination Messages used

Therefore, avmax = 99.76399158, provided by the Vasudevan algorithm under the RPGM
mobility model for a network of four nodes (Table A.3), and msgsmax = 1099211, used by the
Vasudevan algorithm under the RPGM mobility model for a network of twenty nodes (Table
A.12).

This normalization of the measures allows us to compare the efficiency of the algorithms
not only on one mobility model but also between different mobility models in a range 0 to 1.
The maximum efficiency (i.e., e f f (av,msgs) = 1) is obtained when av reaches avmax and msgs

reaches 0. Note that therefore, the maximum efficiency is unreachable, as no election algorithm
can operate using 0 Coordination Messages. However, the algorithm will be more efficient as
msgs tends to 0.

Fig. 7.28 shows the election algorithms efficiency (availability vs messages) under the
Manhattan Grid mobility model, Fig. 7.29 under the Random Walk mobility model, and Fig.
7.30 under the RPGM mobility model.

Fig. 7.28 Election algorithms efficiency (availability vs messages) under the Manhattan Grid
mobility model.



7.6 Efficiency 191

Under the Manhattan Grid (Fig. 7.28) two groups of algorithms can be differentiated: (1)
the Bully, Kordafshary and Voting, which provide the best efficiency, and (2) the Consensus
and Vasudevan algorithms. Although Vasudevan provides better Service availability, it uses
more Coordination Messages than the Consensus algorithm, which results in a worse efficiency
in networks of 17 nodes or more.

Fig. 7.29 Election algorithms efficiency (availability vs messages) under the Random Walk
mobility model.

Under the Random Walk mobility model (Fig. 7.29), the results obtained are more uneven.
It can be highlighted how the larger network partitions that can be found on the Random Walk
have an impact on the efficiency provided by the Bully, Vasudevan and Consensus algorithms.
It is especially relevant in the case of the Bully algorithm, which leads the results together
Kodafshari algorithm until a network of fifteen nodes. For more extensive networks, the results
of the Bully fall below the results of the Voting algorithm.

Under the RPGM mobility model (Fig. 7.30), the Kordafshari and Voting algorithms
provide a similar efficiency, which is better than the one provided under the Manhattan Grid and
the Random Walk mobility models. The bully algorithm provides similar results to networks of
15 nodes. For larger networks, the efficiency of this algorithm falls to the efficiency levels of
the Consensus algorithm. The Vasudevan algorithm provides the worst results, both for service
availability and Coordination Messages usage, under this mobility model.



192 Simulation Results in ns-3

Fig. 7.30 Election algorithms efficiency (availability vs messages) under the RPGM mobility
model.

7.6.2 Service Availability vs Network lifetime

To effectively compare the service availability against the Network Lifetime (specifically,
TLND), Equation 7.2 has been used to calculate the efficiency.

e f f (av,T LND) =
av

avmax
· T LND

T LNDmax
(7.2)

where:

av = represents the percentage of service availability provided by the algorithm
avmax = represents the maximum service availability provided
TLND = represents the TLND provided by the algorithm
T LNDmax = represents the maximum TLND provided

Therefore, avmax = 99.76399158, provided by the Vasudevan algorithm under the RPGM
mobility model for a network of four nodes (Table A.3), and T LNDmax = 309.0971667, pro-
vided by the Voting algorithm under the RPGM mobility model for a network of nineteen
nodes (Table A.21). The maximum efficiency (i.e., e f f (av,T LND) = 1) is obtained when
av reaches avmax and T LND reaches T LNDmax. Contrary to previous case, availability vs
messages efficiency, the maximum efficiency is reachable.



7.6 Efficiency 193

Fig. 7.31 shows the election algorithm efficiency (availability vs TLND) under the Man-
hattan Grid mobility model, Fig. 7.32 under the Random Walk mobility model, and Fig. 7.33
under the RPGM mobility model.

Fig. 7.31 Election algorithms efficiency (availability vs TLND) under the Manhattan Grid
mobility model.

In the case of the Manhattan Grid (Fig. 7.31) the best efficiency regarding service availability
and Network lifetime are provided by the Voting algorithm, followed by the Vasudevan and
Consensus algorithm. The Kordafhari and Bully algorithms provide the lowest efficiency under
the Manhattan Grid. This is because, although they provide better results regarding service
availability, they provided the poorest results regarding Network Lifetime. It should be noted
how the efficiency provided by the Consensus algorithm improves as the network size increases.
Whereas for networks of thirteen nodes or less, the Consensus algorithm provides a similar
efficiency than the Bully and Kordafshari algorithms, this efficiency is increased for networks of
thirteen nodes or more. However, although the efficiency provided by the Consensus algorithm
increased, it does not reach the efficiency provided by the Vasudevan or the Voting algorithms.

Under the Random Walk mobility model (Fig. 7.32), the Voting algorithm provides, with
difference, the best efficiency. The Vasudevan and Consensus algorithms provide a similar
efficiency, especially for networks from eighteen to twenty nodes. It should be noted, how
Vasudevan efficiency is, for networks of twelve nodes or less, similar to that provided by the



194 Simulation Results in ns-3

Fig. 7.32 Election algorithms efficiency (availability vs TLND) under the Random Walk mobility
model.

Voting algorithm. After that, i.e., for networks of twelve nodes or more, the efficiency provided
by Vasudevan reduces its growth rate in comparison with the Voting algorithm. The reverse
occurs for the Consensus algorithm, which, for networks of nine nodes or less, provides an
efficiency similar to that provided by the Bully and Kordafshari algorithms. After that, i.e., for
networks of nine nodes or more, the growth rate of Consensus increases, nearly reaching the
efficiency provided for the Vasudevan algorithm for a network of twenty nodes.

Finally, under the RPGM mobility model (Fig. 7.33), the Voting algorithm provides the best
availability/TLND efficiency again. Under this mobility model, the efficiency of the Vasudevan
algorithm falls to the levels of efficiency provided by the Kordafshari and Bully algorithms,
providing results lower than those provided by the Consensus algorithm. It should be noted,
how under this mobility model, the efficiency growth rate is ever-increasing, to the contrary that
in the Manhattan Grid or the Random Walk. This is caused by the direct relationship between
the network size and the size of its network partitions under the RPGM mobility model. This
is, when a node is added to a network under the RPGM, it directly becomes part of a network
partition in a continuous way. This fact does not have to be like that under the Manhattan Grid
or the Random Walk mobility models, where the nodes have an individualist behaviour.



7.6 Efficiency 195

Fig. 7.33 Election algorithms efficiency (availability vs TLND) under the RPGM mobility
model.

7.6.3 Algorithm Reliability vs Coordination Message Usage

The Equation 7.3 is used to calculate the Redundant Server Elections/Coordination Messages
efficiency.

e f f (rse,msgs) = (1− rse
rsemax

) · (1− msgs
msgsmax

) (7.3)

where:

rse = represents the percentage of Redundant Server Elections produced by the algorithm
rsemax = represents the maximum Redundant Server Elections produced
msgs = represents the Coordination Messages used by the algorithm
msgsmax = represents the maximum Coordination Messages used

Therefore, rsemax = 18.7511428, provided by the Kordafshari algorithm under the RPGM
mobility model for a network of twenty nodes (Table A.6), andmsgsmax = 1099211, used by
the Vasudevan algorithm under the RPGM mobility model for a network of twenty nodes (Table
A.12).

The maximum efficiency (i.e., e f f (rse,msgs) = 1) is obtained when rse reaches 0 and msgs

reaches 0. Note that therefore, as in the case of service availability/Message efficiency, the



196 Simulation Results in ns-3

maximum efficiency is unreachable, as no election algorithm can operate using 0 Coordination
Messages. However, the algorithm will be more efficient as msgs tends to 0.

Fig. 7.34 shows the election algorithm efficiency (Redundant Server Elections vs Coordina-
tion Messages) under the Manhattan Grid mobility model, Fig. 7.35 under the Random Walk
mobility model, and Fig. 7.36 under the RPGM mobility model.

Fig. 7.34 Election algorithms efficiency (Redundant Server Elections vs Coordination Mes-
sages) under the Manhattan Grid mobility model.

In the case of the Manhattan Grid mobility model (Fig. 7.34), it can be seen how, although
the Bully and Kordafshary algorithms provide the worst results. This is particularly relevant
in the case of the Kordafhary algorithm, as it uses similar Coordination Messages than the
Voting algorithm. However, the Voting algorithm provides, with the same use of Coordination
Messages, higher reliability, which results in higher efficiency. In the case of the Vasudevan
algorithm, its efficiency is affected by the high use of Coordination Message, despite its high
reliability. Finally, the Consensus algorithm, once again, confirms to be more efficient in large
networks. Nevertheless, in this case, it reaches its maximum efficiency (0.83) in networks of
fourteen nodes.

Under the Random Walk mobility model (Fig. 7.35) the algorithms, in general, show a
lower efficiency. In particular, the Consensus algorithm reaches its best efficiency (0.83) in
networks of twelve nodes. The remaining algorithms show a decreasing efficiency as network



7.6 Efficiency 197

Fig. 7.35 Election algorithms efficiency (Redundant Server Elections vs Coordination Mes-
sages) under the Random Walk mobility model.

size increases. Whereas the Voting algorithm shows the best efficiency, Kordafshari and
Bully show the worst results. Finally, although the Vasudevan algorithm provides an excellent
efficiency in small size networks (nine nodes or less), its decreasing rate grows exponentially
as size networks increases, falling below the results of the Consensus algorithm for networks
of seventeen nodes or more.

It is particularly interesting the case of the RPGM mobility model (Fig. 7.36). In this case,
two groups of algorithms can be distinguished: (1) that made up of the Voting and Consensus
algorithms; and (2) that composed by the Vasudevan, Bully, and Kordafshari algorithms.
Additionally, to provide the best results, the first group of algorithms is also the less affected by
the particularities of this mobility model. The Voting and Consensus algorithms show better
efficiency under this mobility model for networks of twenty nodes, (0.93 and 0.81, respectively)
than under the Random Walk mobility model (0.87 and 0.73, respectively). However, on the
contrary, the second group of algorithms, show their worst results, falling the three of them
below an efficiency of 0.1 for a network of twenty nodes.

This fact underscores the better efficiency in general of the Voting algorithm in terms of
reliability, against Coordination Messages used, and in particular of the Consensus and Voting
algorithm when there are large groups of nodes involved in an election process.



198 Simulation Results in ns-3

Fig. 7.36 Election algorithms efficiency (Redundant Server Elections vs Coordination Mes-
sages) under the RPGM mobility model.

7.6.4 Algorithm Reliability vs Network lifetime

The following Equation 7.4 has been used to compare the Redundant Server Elections (i.e.,
reliability) against the Network Lifetime (TLND).

e f f (rse,T LND) = (1− rse
rsemax

) · T LND
T LNDmax

(7.4)

rse = represents the percentage of Redundant Server Elections produced by the algorithm
rsemax = represents the maximum Redundant Server Elections produced
TLND = represents the TLND provided by the algorithm
T LNDmax = represents the maximum TLND provided

Therefore, rsemax = 18.7511428, provided by the Kordafshari algorithm under the RPGM
mobility model for a network of twenty nodes (Table A.6), and T LNDmax = 309.0971667,
provided by the Voting algorithm under the RPGM mobility model for a network of nineteen
nodes (Table A.21). The maximum efficiency, which is reachable, (i.e., e f f (rse,T LND) = 1)
is obtained when rse reaches 0 and T LND reaches T LNDmax.



7.6 Efficiency 199

Fig. 7.37 shows the election algorithm efficiency (Redundant Server Elections vs TLND)
under the Manhattan Grid mobility model, Fig. 7.38 under the Random Walk mobility model,
and Fig. 7.39 under the RPGM mobility model.

Fig. 7.37 Election algorithms efficiency (Redundant Server Elections vs TLND) under the
Manhattan Grid mobility model.

In this case, the results obtained are similar for all mobility models. The Kordafshari
and Bully present decreasing efficiency, whereas Consensus, Vasudevan, and Voting provide
an increasing growth efficiency. In the case of the Consensus algorithm, this is because the
algorithm increments its reliability (i.e., it reduces the number of redundant elections) as
network size increases. In the case of the Voting and Vasudevan algorithms, the number of
redundant server elections can be considered constant regarding network size, whereas the
TLND is increased as network size increases since the workload can be distributed among more
nodes. The Bully and Kordafshari algorithms provide the worst efficiency. This is because
of the direct relationship between the number of servers and energy consumption. Thus, the
redundant election of servers results in major energy consumption and a short TLND.



200 Simulation Results in ns-3

Fig. 7.38 Election algorithms efficiency (Redundant Server Elections vs TLND) under the
Random Walk mobility model.

Fig. 7.39 Election algorithms efficiency (Redundant Server Elections vs TLND) under the
RPGM mobility model.



7.7 Discussion on Global Performance 201

Table 7.3 Average of the service availability (av), Coordination Messages (msgs), TLND and
Redundant Server Elections (rse) results obtained by the Bully, Kordafshari and Vasudevan
election algorithms under the Manhattan Grid (MG), the Random Walk (RW) and the RPGM
mobility models for network sizes ranged from 4 to 20 nodes. Additionally, Global average is
shown.

Bully Kordafshari Vasudevan
av (%) msgs TLND rse (%) av (%) msgs TLND rse (%) av (%) msgs TLND rse (%)

Average MG 98.35 21873.24 236.23 6.39 98.15 19241.12 237.35 6.53 96.41 45895.88 250.38 0.10
Average RW 97.52 53984.24 230.47 10.08 97.28 35931.24 230.07 10.32 93.76 104591.35 255.47 0.13
Average RPGM 98.70 39282.71 238.41 12.88 98.55 18852.00 237.08 13.41 94.02 255929.00 262.40 0.22
Global average 98.19 38380.06 235.04 9.78 97.99 24674.78 234.83 10.09 94.73 135472.08 256.08 0.15

Table 7.4 Average of the service availability (av), Coordination Messages (msgs), TLND
and Redundant Server Elections (rse) results obtained by the Consensus and Voting election
algorithms under the Manhattan Grid (MG), the Random Walk (RW) and the RPGM mobility
models for network sizes ranged from 4 to 20 nodes. Additionally, Global average is shown.

Consensus Voting
av (%) msgs TLND rse (%) av (%) msgs TLND rse (%)

Average MG 94.60 32522.82 248.30 3.62 95.87 19602.41 252.53 0.15
Average RW 91.43 62099.53 254.19 3.31 94.67 36821.29 257.68 0.18
Average RPGM 91.53 46735.24 264.84 3.07 97.47 18329.29 268.10 0.31
Global average 92.52 47119.20 255.78 3.33 96.00 24917.67 259.43 0.21

7.7 Discussion on Global Performance

In this section the average performance of the election algorithms studied is shown. In
Table 7.3 and Table 7.4 it is shown the average of the service availability (av), Coordination
Messages (msgs), TLND, and Redundant Server Elections (rse) results, obtained by the Bully,
Kordafshari and Vasudevan election algorithms (Table 7.3), and the Consensus and Voting
election algorithms (Table 7.4), under the Manhattan Grid (MG), the Random Walk (RW) and
the RPGM mobility models for network sizes ranged from 4 to 20 nodes. Additionally, the
Global average is shown.

To effectively compare the global results obtained by the algorithms, the data has been
normalized in the following way:

• service availability: norm(av) = av
avmax

∈ [0,1], where avmax = 98.19, provided by the
Bully algorithm (Table 7.3).

• Coordination Messages: norm(msgs) = msgsmin
msgs ∈ [0,1], where msgsmin = 24674.78, used

by the Kordafshari algorithm (Table 7.3).



202 Simulation Results in ns-3

• TLND: norm(T LND) = T LND
T LNDmax

∈ [0,1], where T LNDmax = 259.43, provided by the
Voting algorithm (Table 7.4).

• Redundant Server Elections: norm(rse) = rsemin
rse ∈ [0,1], where rsemin = 0.15, provided

by the Vasudevan algorithm (Table 7.3).

It should be noted that, whereas service availability and TLND are measures to maximize,
Coordination Messages and Redundant Server Elections are measured are intended to minimize.

The global results obtained after the normalization can be seen in the radar charts of
Fig. 7.40 for the Bully algorithm, Fig. 7.41 for the Kordafshari algorithm, Fig. 7.42 for the
Consensus algorithm, Fig. 7.43 for the Vasudevan algorithm, and Fig. 7.44 for the Voting
algorithm.

As it can be seen, both the Bully, Kordafshari and Consensus algorithms provide poor
global reliability in comparison with the Vasudevan and Voting algorithms. This lack reliability
influences the Network lifetime, as it has been pointed out both redundant server elections and
coordination messages produce an impact in the energy with reduces the Network lifetime,
specifically the TLND. Hence, the Voting and Vasudevan algorithms provide a larger TLND
than the Bully, Kordafshari, and Consensus.

Fig. 7.40 Global performance of the Bully algorithm (average results over the three mobility
models).



7.7 Discussion on Global Performance 203

Otherwise, the Bully and Kordafshari algorithms provide better service availability that the
others algorithms. The Kordafshari algorithm arises as a modification of the Bully algorithm
that intents to reduce the number of Coordination Messages. Therefore, they show similar
characteristics, and as it can be seen that Kordafshari effectively reduces the number of
Coordination Messages used, without affecting the service availability provided. According
to the global results obtained, Kordafshari algorithm reduces the number of Coordination
Messages from 38380.06, used by the Bully (Table 7.3), to 24674.78. This represents a
reduction of 35.71%.

Fig. 7.41 Global performance of the Kordafshari algorithm (average results over the three
mobility models).

Regarding the Consensus algorithm, although it provides a slight improvement on the
reliability in comparison to the Bully and Kordafshari algorithms, globally speaking it does not
provide any relevant characteristic that differentiates it over the other algorithms.

The Vasudevan algorithm can be distinguished by the reduced number of Redundant Server
Election caused, i.e., by its high reliability. However, to achieve this, it makes extensive use of
Coordination Messages, in comparison to the other algorithms evaluated. This has a negative
impact on the bandwidth, energy consumption and workload on the system, which could make
the algorithm infeasible in specific contexts.



204 Simulation Results in ns-3

Fig. 7.42 Global performance of the Consensus algorithm (average results over the three
mobility models).

Fig. 7.43 Global performance of the Vasudevan algorithm (average results over the three
mobility models).



7.8 Summary 205

Finally, the Voting algorithm shows results near to optimum regarding service availability
and Coordination Messages usage. In global terms, it only provides a 2.19% less of service
availability than the Bully algorithm, 98.19% against 96%, and it only uses a 0.98% of
Coordination Messages more than the Kordafshari algorithm, 24674.78 against 24917,67.
However, it provides better reliability than these algorithms, and in comparison with the
Vasudevan algorithm, which only causes 0.15% Redundant Service Elections, the Voting
algorithm causes 0.21%. This is, in global terms, a 0.06% more, a slight increase. However,
the reliability provided together with the reduced number of Coordination Messages used in
comparison to the Vasudevan algorithm (an 81.61% less) make to the Voting algorithm to
provide the most extended Network lifetime (TLND), and in global terms, the more balanced
performance in comparison to the other election algorithms studied.

Fig. 7.44 Global performance of the Voting algorithm (average results over the three mobility
models).

7.8 Summary

This chapter has presented the results obtained during the evaluation of the Proteo architecture
in ns-3. The analysis has been carried out regarding service availability, election algorithm



206 Simulation Results in ns-3

reliability, coordination messages usage and network lifetime, considering different mobility
models.

In respect to service availability, the Bully and Kordafshari algorithms have shown the
best performance, independently of the mobility model. The Voting algorithm has shown better
performance on the RPGM mobility model than on the others mobility models. The Vasudevan
algorithm sees its performance profoundly reduced when the number of nodes increases, both
on the RPGM and the Random Walk mobility models. Finally, the Consensus algorithm,
generally, provides the worst results.

About algorithm reliability (i.e., number of redundant server elections) the Bully and
Kordafshari algorithms provide poor reliability and are profoundly affected by the increasing
number of nodes in the network. On the contrary, while the number of nodes in the network
increases, the Consensus algorithm increases its reliability. Finally, the Voting and Vasudevan
algorithms provide excellent results independently of the mobility model or network size.

The Kordafshari and Voting algorithms provide the best results regarding coordination
messages usage in the three mobility models, whereas the Vasudevan algorithm provides the
worst results. The use of coordination messages of this algorithm is profoundly affected by the
number of nodes participating in the election and by the kind of network topology on which
the algorithm is operating, being the worst case a mesh network topology.

Because of its high reliability and reduced usage of coordination messages, the Voting
algorithm provides the best results concerning network lifetime.

In service availability/coordination messages efficiency, the Bully and Kordafshari algo-
rithms provide the best results, except for the RPGM model, in which these are given by the
Voting and Kordafshari algorithms. In service availability/network lifetime efficiency, the
Voting algorithm shows the best performance, regardless of the mobility model.

The Voting algorithm provides the best algorithm reliability/coordination messages effi-
ciency, in contrast to the Bully and Kordafshari algorithms. Regarding algorithm reliabili-

ty/network lifetime, the Vasudevan and Voting algorithms show the best performance, providing
similar results, followed by the Consensus algorithm.

Finally, from a global point of view, the Voting election algorithm proves to show the best
behaviour, although Kordafshari provides a slight improvement in service availability at the
expense of reliability and Vasudevan provides a slight improvement in algorithm reliability at
the expense of coordination message usage.



Part III

Work in Progress and Conclusions





Chapter 8

Work in Progress

Chapter Abstract

In this chapter, the work already in progress to continue developing Proteo architecture is introduced.

Nowadays, there are two main lines of research: (1) addressing synchronization and system interop-
erability, for which a service platform has been proposed. It intends to provide a common basis for the

consistent management of shared information in ubiquitous collaborative systems, from the software

design stage. The services that compose this platform are expected to be included in Proteo architec-

ture. The proposed solution has been applied to the FLERSA tool, devised to transform a “Content

Management System” (CMS) into its semantic equivalent. As a result, FLERSA tool is provided with

quality attributes such as scalability, interoperability, and business agility; (2) addressing scalability,

for which a study has been performed to know the number of nodes that Proteo can manage using the

Consensus election algorithm without degrading its performance. This is essential for applying Proteo in

IoT environments, which are devised to support a large number of heterogeneous devices. Additionally,

this study aims to stablish if the reliability of TCP could result in an enhanced system operation, despite

its high latency and higher consumption of bandwidth in comparison to UDP. As result of the study, it is

concluded that TCP presents a better message delivery efficiency, whereas the Proteo architecture does

not notably increase the use of bandwidth. Under UDP, the Consensus election algorithm presents a

slight improvement in the response time, increasing the service availability provided by the architecture.

Under Consensus election algorithm, Proteo architecture proves to operate correctly in networks of

16-18 nodes.

Chapter Contents
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

8.2 Towards a Synchronization Solution . . . . . . . . . . . . . . . . . . . . . 211

8.3 Scalability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227



210 Work in Progress



8.1 Introduction 211

8.1 Introduction

This chapter introduces an overview of work already in progress to continue expanding and
improving Proteo architecture. The chapter is divided into two sections. First, in Section
8.2, a service platform to support, from the software design stage, the synchronization and
consistent management of shared resources in dynamic environments is introduced. This is
expected to be included in Proteo architecture to address replica synchronization. The platform
proposed is also intended to address system interoperability (Section 2.5.2).

Secondly, in Section 8.3 the scalability of Proteo architecture (Chapter 4) is analysed.
To this end, Proteo is evaluated under both the reliable TCP transmission protocol and the
non-reliable UDP transmission protocol using the Consensus election algorithm (Section 4.6.1).
The analysis has two objectives: (1) to know the number of nodes that Proteo can manage using
the Consensus election algorithm without degrading its performance; and (2) to establish if the
reliability of TCP could result in an enhanced system operation, despite its high latency and
higher consumption of bandwidth in comparison to UDP.

8.2 Towards a Synchronization Solution

Collaborative systems are complex, this is challenging in analysis, modelling, and development
[111]. One of the main tasks to be solved in collaborative systems is to maintain data consistency
when several users [44] simultaneously shares them. Nowadays, in the absence of standardized
methods for the synchronization of the shared data replicas, most of the proposed solutions are
planned in an ad-hoc manner. By taking into account the possibility of an increasing number
of users and resources to be managed in very dynamic environments, this entails a higher
complexity in the correct synchronization of these resources. Thus, it has been proposed a SOA
2.0-based platform, which intends to provide a common basis for the consistent management
of shared information in collaborative systems. It consists of two main services (Fig. 8.1):

• Monitoring Service. This service gathers all events related with modifications on shared
data. This information can fulfil several purposes, e.g., version control or security logs.
For the synchronization purposes, this information is required by the specific synchro-
nization algorithm to be applied to know the occurrence and order of the modifications
on the resource. The Monitoring Service is able to communicate under two different
paradigms (SOA 2.0 [90]): (1) the Publish-Subscribe paradigm, to know the modifica-
tions produced by the users on the shared data, and (2) the Request-Response paradigm,



212 Work in Progress

Application Layer

Se
rv
ice

La
ye
r

Event
Repository

Synchronization
Service

Resource
Replica

Monitoring
Service

Fig. 8.1 Architecture of the generic service platform to support sharing and collaboration.

for example, when the Synchronization Service requests to the Monitoring Service about
the modifications produced on a specific resource in a specific time interval. Thus, the
use of an EDA approach [100], specifically the concept of event, allows the developers to
provide a reusable service. The Monitoring Service has been designed taking advantage
of the low coupling in the communications between the sender and receiver provided by
EDA. Hence, it can monitor any event. In this way, regarding resource monitoring, in the
specialization of the platform it is only necessary to design the structure of the events
that will be sent when the shared resources are modified.

• Synchronization Service. The service platform proposed aims to be a generic platform
that can be applied in any application domain within the collaborative systems. However,
as the synchronization algorithms are dependent on the resource type and its specific
nature and usage. Namely, the conflicts that could be generated in the concurrent
modification of images are not the same that in the modification of, for example, plain
text, as well as nor the processes or policies to resolve them. For this reason to provide a
general service for the synchronization is not possible. Therefore, in order to provide a
reusable service, the Synchronization Service is designed as abstract service, which must
be specialized according to each particular resource to be synchronized. This abstract
service uses the Monitoring Service to obtain information about changes on the different
replicas of the shared resource.

In this way, and to provide a more generic service platform, it is designed considering two
different levels: (1) the common part related to manage the resource synchronization, which
is identified and located into the abstract service and its composition with the Monitoring



8.2 Towards a Synchronization Solution 213

Service. In this way, the Synchronization Service, according to the information received from
the Monitoring service, can detect the actions that have been applied to other replicas of the
resource, but not applied to its associated replica; (2) the specialization of this service, where,
once the inconsistencies are detected, they should be resolved. This level will depend on the
requirements associated with the resource kind and the use of the resource in a specific domain
(i.e., on the same resource it could be applied different synchronization policies).

8.2.1 Application Scenario: From FLERSA Tool to FLERSA Service

FLERSA [107] has been developed to transform a “Content Management System” (CMS) [14]
into its semantic equivalent, to partially mitigate the lack of semantic content of the current Web
and take advantage of the multiple benefits offered by Semantic Web technologies. The main
originality of the tool is to use the manual and multiple-users annotations that can be added
at any moment, to learn to annotate documents automatically. Furthermore, these annotations
may be related to any pieces of an HTML document (the whole document, a node, a set of
nodes, or a text segment). The main functions that the tool enables are the following ones:
creation of annotations associated with a range of text, editing/deleting existing annotations,
clearing all annotations in the document, permanent storing of annotations, creation of global
annotations to a web page (where the scope of the annotations are whole pages) visualization
of RDF generated for the page (W3C’s RDFa Distiller [171]), ontology-based queries about
properties that have been annotated. The inference is made in the taxonomies of concepts when
the search is conducted by the annotation properties and automatic generation of semantic
annotations.

FLERSA tool has been developed as a module of Joomla!1, for this reason there is a high
coupling between the tool and the CMS. As a solution to this limitation, we propose to adapt
FLERSA to the new architectural design followed by the SOA 2.0 architecture. This will lead
to providing FLERSA with a clear differentiation and independence of the client-side, the CMS
(Fig. 8.2).

To adapt an existing tool or service to the proposed architecture, the developer must first
clearly identify what the functionality of the tool that must be implemented in the server-
side is. In the FLERSA case, this functionality is about the information retrieval, storing
and reasoning on the knowledge base, which now will be implemented in the specialization
of the Synchronization Service, to take advantage of the architecture proposed. Currently,
the services that support this architectural design have been implemented both in C++ and

1Joomla Content Management System (CMS), https://www.joomla.org/

https://www.joomla.org/


214 Work in Progress

Se
rv

ic
e 

La
ye

r

Web TechnologiesWeb Content Metadata

C
lie

nt
La

ye
r

Web API

Web Services Interface 

C
M

S 
La

ye
r

Content
Repository

Content-base
Wrapper

Ontology API

Query ReasonerStore

Synchronization

Knowledge-base

FLERSA Service Interface Monitoring Service

Event
Repository

Fig. 8.2 The SOA architecture for the FLERSA tool.

in C#. Nevertheless, the programming language is only a technical issue that no affects to
the interoperability of the architecture since standard protocols for exchanging information
(e.g., SOAP) have been adopted, as well as communication approaches for loosely coupled
components (e.g., EDA).

Once the server-side functionality of the tool is implemented, as the specialization of the
Synchronization Service, it is necessary to identify which is/are the shared resource(s), the
actions that users can perform on it, and the possible inconsistencies that can arise because of
that actions. This is one of the most important steps in the adaptation process, owing to the
correctness of the resource depends on the correct identification of the possible inconsistencies
and the resolution policies applied. In the FLERSA case, the shared resource is a knowledge-



8.2 Towards a Synchronization Solution 215

base, whereas the actions that can be carried out on the resource are: add, modify and delete
semantic annotations. Moreover, these annotations can be performed on the whole document,
a node, a subset of nodes, or a text segment, and each of these elements can present several
annotations. Therefore, the conflicts during the use of the FLERSA service can be caused by
deletions or modifications coming from different users on the same annotation. To solve this
kind of conflicts, a version control has been implemented, where a deletion or modification is
not permanent and it is possible to revert to the previous version of the annotation.

These all actions are represented as events in the new architectural design. This will
facilitate the management and broadcasting of the actions performed on the shared resources
along the concerned entities. In the proposed platform, it is used the BlueRose communication
middleware [135], which provides a Publish/Subscribe service and an interface for event
managing. An event is represented using a pair of topic-attributes, where each attribute is a
pair of key-value. In this way, the topic denotes the event type, which is unique in the system,
whereas with the set of attributes it is possible to represent information of a wide range of
complexity.

Annotation IDClass 1

Class N

rdf:type

xs: anyURI

xs: string

xs: string

xs: anyURI

xs: datetime

xs: datetime

granularityType

sectionType

annotationType

annotates

author

body

context

created

modified

granularity

section

type

Ontology Property

Ontology Class

Class Instance

Property Value

Fig. 8.3 Graph showing an instance of the class ‘Annotation’ implemented by FLERSA. Ex-
tracted from [107].

The flexibility and low coupling provided by the EDA approach have made possible to
design and implement a Monitoring Service, which is designed and implemented to monitor any
event. In the FLERSA case, three types of events taking into account the possible actions that a



216 Work in Progress

user can perform have been considered: add, modify or delete an annotation. The generated
events contain information related with the user who performs the action, the content related
with the annotation (the whole document, a node, a subset of nodes, or a text segment), the
timestamp, and information related with the semantic content of the annotation (see Fig. 8.3).
These events are stored in a NoSQL database (i.e., a non-relational database) [28], specifically
MongoDB2. The NoSQL systems arise to address the scalability problems of the traditional
databases (i.e., relational) through a more flexible storage structure. Particularly, the absence
of data schema allows storing any information as a register with a key-value structure. This
makes a NoSQL database ideal for storing any kind of event generated in the system, whereas
in a traditional database it would be necessary to create a new table to store each new kind of
event. To this regard, the Monitoring Service translates the events from BlueRose format to
MongoDB (JSON format) and vice versa.

In the server-side is implemented, as a specialization of the Synchronization Service, and
together with the identified events, the functionality of the client-side must be additionally
implemented. This can be done by creating a new application or adapting an existing one.
In the latter, to make use of third-party applications, the common solution is to implement
an intermediate entity (known as wrapper) that is capable of translating the petitions of the
client to the server and vice versa, and thus it is also capable of adapting existing interfaces to
the new service as well. In the FLERSA case, the client-side is located in the CMS module,
where a wrapper function is implemented. In this way, if the CMS changes then only a new
corresponding implementation of the wrapper function will be required to use the new FLERSA
service. Web documents and metadata, like RDFa, are also in the Client layer. These resources
are downloaded to the device temporally when the client accesses the CMS.

In addition to the benefits initially mentioned obtained through the adaptation of FLERSA
to the new architectural design proposed, this SOA architecture also manages a number of
additional events at system and infrastructure levels [55], as the battery level of the device or
network topology. This, together with replication and caching techniques, allows to provide a
context-aware solution, and therefore guarantee the quality attributes of the FLERSA service in
AmI environments where the context conditions (e.g., disconnections) are continuous, and they
can affect to the proper functioning of the service.

The integration of FLERSA in the proposed SOA architecture has strengthened three of
the initial design requirements of the tool [107]: (1) Requirement 2 - collaborative design/user-
centred, as result of the integration FLERSA service allows now the concurrent and distributed
edition of HTML documents; (2) Requirement 5 - evolution of documents (document and

2MongoDB, https://www.mongodb.com/

https://www.mongodb.com/


8.2 Towards a Synchronization Solution 217

annotation consistency), the Synchronization Service and the synchronization policies imple-
mented guarantee the consistency of documents, as well as allow users to know the existence
of conflictive modifications and to recover previous versions of documents; (3) Requirement 8 -
Integration, now FLERSA functionality has been encapsulated in a service, which facilitates
the reusability and interoperability of the tool.

Case Study

The FLERSA service can be useful in several scenarios in the eHealth domain, where the
Semantic Web can help to retrieve information [19], share the patient’s medical histories created
in different health centres and the semantic interoperability of distributed information systems
in eHealth [83] for the collaborative decision support in disease diagnosis [48].

Specifically, the collaboration between various specialists for the diagnosis of patients
with strange symptoms [6] is of particular interest to illustrate the usefulness of FLERSA
Service. On the one hand, Health is an extensive knowledge area with a complex taxonomy,
where any department or research group can define some particular protocol or vocabulary.
Thus, to establish semantic relations between concepts or procedures is a mandatory step to
achieve collaboration between different specialists or health institutions. On the other hand, it
is unusual the existence of medical centres containing every health speciality, being generally
more common the existence of specialised centres. Therefore, a tool that allows the distributed
collaboration could provide clear benefits.

Fig. 8.4 shows a general scenario about how users can work with FLERSA service and
how they can collaborate. In the Figure 5 are depicted two web servers and five users. Several
users access the FLERSA service by using different types of devices. The Web users use web
browsers to access the service through web servers as front-end, while the rest of users use
the service through an application deployed in a mobile device (e.g., smartphone or tablet) as
front-end.

For existing applications, like web systems and other applications, a specific wrapper
function for each one is needed, which translates the requests that the web client makes to the
website to the FLERSA service. In the case of new applications, the wrapper function is not
required, given that the interface of FLERSA service can be used directly by these applications.

Specific scenarios can be considered in Fig. 8.4. For instance, if a doctor (e.g., Web User 1

in Fig. 8.4) creates a new semantic annotation in a HTML document (e.g., a patient report).
This action will be propagated as an event through the system, and the Monitoring Service will

register it and applied by the FLERSA Service to the knowledge base. In this way, this change
will be reflected on the Drupal CMS as well as to the Joomla! CMS and the rest platforms and



218 Work in Progress

Web User 1 Web User 2 Web User 3User with a
new application

User with an
existing application

Ap
pl

ic
at

io
n

La
ye

r
Se

rv
ic

eL
ay

er
C

M
S 

La
ye

r

Monitoring
Service

wrapper wrapper

wrapper

FLERSA Service

Drupal CMS Joomla! CMS

Fig. 8.4 System architecture for a FLERSA service deployment scenario.

technologies in the network. That is, FLERSA is now platform independent, which increments
its scalability and interoperability. In this situation, the Web User 1 could be collaborating with
specialists that belong to another clinical centre and work on Joomla! (e.g., Web User 2 and
Web User 3), or even with mobile users.

The process that a user follows to create an annotation on an HTML document is depicted in
the Fig. 8.5. Note that an annotation can be fully or partially overlapped with others. FLERSA
resolves this by creating different SPAN sections with unique IDs.

However, under this new configuration, as it has been mentioned, conflicts can occur due to
concurrent editing. For instance, if Web User 1 modifies an annotation on a patient report, while
Web User 2 deletes it, FLERSA Service is in charge of maintaining a consistent version of the
shared resource. In this case, the users could have created the conflict because of a distraction,
a temporal disconnection of one of them, or because of the changes were not reflected each
other in time (i.e., they ignore the action performed by the other user), or intentionally. For this
reason, the policy implemented in FLERSA service is to apply the last change but maintaining
the previous version of the annotations to avoid information loss, notifying to the users of the
existence of a potential conflict. In this way, the users can mediate to decide the correct state of
the resource but guarantee that both are consistent versions.

The architecture can react to context changes to guarantee the proper functioning of the
service. This feature is of particular interest for mobile users, where, for example, specialists
would want work together while they move across the hospital or they are travelling (e.g.,



8.2 Towards a Synchronization Solution 219

User Text 
Range Selection

HTML 
multi-element

selection?

Surround text range 
selected with a SPAN

HTML element

Assign unique ID to SPANAssign unique ID for each SPAN
ID_annotation-ID_fragment

Generate in RDFa a container
RDF:SEQ element to group 

fragments that belong 
to the ID_annotation.

Write in RDFa metadata
associated to the 
ID_annotation

Flexible Range Annotation 
in RDFa done!

Fig. 8.5 Process flow diagram. Extracted from [107].

by train), where the connection can be lost easily at certain points during that travel. In this
case, the FLERSA service receives events regarding the connection loss, and together caching
techniques, it can allow users to the user continuing working transparently to the connection
lost. The modifications made on the local copy of the resource are stored locally at the device
during the disconnection, as a set of events. Later, when the connection is recovered, the
FLERSA service will be able to synchronize the modifications that the user has made offline
with the modifications of the rest of the users that were online. When FLERSA service (as
specialization of the Synchronization Service) receives the request of reconnection from the
client that was offline, together with the actions that he/she has performed in that period on



220 Work in Progress

the cache copy of the resource (as a set of events), it will request to the Monitoring Service

about what changes have been made in the primary copy of the resource during that period of
time by the rest of the users. Once that FLERSA service has the two set of ordered events, it
can detect the conflictive events (i.e., the conflictive modifications) and apply the versioning
policy described above. Similarly, the application could decide to start working locally when
the battery of the device is low and synchronize the changes later, when the energy level is not
critical.

8.2.2 Conclusions

This section has presented the evolution of the FLERSA tool towards an SOA proposal for
consistent knowledge sharing and collaboration in AmI environments and IoT, and published
in [56]. The proposal provides FLERSA tool capabilities such as scalability [176], since the
services are loosely coupled; interoperability [145], it is possible to expose any existing data
source like as service and to implement workflows that allow exchange of information between
different services and platforms through a communication protocol; and business agility [20],
thanks to service reusability and the use of access and publication standards. The design of
tools (like FLERSA) based on the proposed architecture aims to provide a general solution that
opens up new possibilities for the development and deployment of other AmI applications by
making use of different technologies and heterogeneous platforms in IoT. For example, the
FLERSA service can be now deployed simultaneously in several the Cloud providers and IoT
nodes (smartphones or on-board car systems), obtaining benefits such as higher availability, the
resources or services will also be available wherever an Internet connection exists; transparency,
the user no longer has control of the geographical location of service; and the resources can be
increased or decreased as needed.

The SOA 2.0-based architecture for the FLERSA deployment is designed to provide support
to the distributed collaboration in environments that exhibit intermittent operations. To this
regard, it combines caching and replication techniques together with a context-aware approach
to provide a solution to address complex interactions between users in AmI environments in
a transparent way. Therefore, it provides a common basis to handle the changing execution
context in which AmI and IoT applications can be deployed.



8.3 Scalability Analysis 221

8.3 Scalability Analysis

IoT is devised to support a large number of heterogeneous devices, from simple sensors to
smartphones or even computer-based subsystems in cars, sharing information with each other
(Section 2.2.2). Additionally, according to [22], applications and systems on IoT are supported
by a common base of technologies and protocols. These technologies can be divided into
different layers, as can be seen in Figure 8.6: Application, Service platform & Enabler, Network,

Gateway access, Short-range communication and sensing. In Service platform & Enabler,
among other approaches, SOA can be found. It is usually based on SOAP or REST protocols,
which in turn are based on other protocols, such as CoAP, SMTP or HTTP. Specifically, CoAP
and MQTT are protocols specifically designed for IoT. CoAP, “a specialized web transfer

protocol for use with constrained nodes and constrained (e.g., low-power, lossy) networks”

[147]; MQTT [72] a publish/subscribe protocol for WSN. Nevertheless, ultimately, these
protocols and technologies usually operate over TCP/IP or UDP/IP. Note that Figure 8.6 is not
intended to show a complete list of technologies and protocols.

SOAP

Application

Service platform & Enabler

Network

Gateway access

Short-range communication

Sensing

SOA

TCP

IP

UDP

SMTP HTTPCOAP

REST

MQTT

Fig. 8.6 IoT layers and protocols.

IoT environments are usually characterized by being resource-constrained, especially
regarding energy and bandwidth. Additionally, unreliability in the communication channels may
affect the correct system operation, owing to the loss of messages. Under these circumstances,
the selection of a particular transmission protocol is crucial as it may have a deep impact
on the performance and scalability of the whole system. The TCP transmission protocol,
which is connect-oriented and reliable, could help to address the unreliability of this execution
environment, thus ensuring the correct operation. However, reduced communication latency,
reduced overload in the system, and high data transfer speed of the non-reliable UDP protocol



222 Work in Progress

could help to address the problems of a resource-constrained environment and to increment the
system scalability.

This section presents a study of the system performance and scalability in terms of service
availability and use of bandwidth of the Proteo architecture (Section 4). The analysis is carried
out under both the reliable TCP transmission protocol and the non-reliable UDP transmission
protocol, using the Consensus election algorithm (Section 4.6.1). The objective is to establish
if the reliability of TCP could result in an enhanced system operation, despite its high latency
and higher consumption of bandwidth in comparison to UDP.

8.3.1 Evaluation

The simulated scenario consists of:

• A set of mobile nodes ranging from 4 to 25.

• A Random walk mobility model:

– The speed varies between 0.5-2 m/s.

– Pauses with a duration that ranges from 60-300 seconds.

• The nodes are equipped with an IEEE 802.11 wireless connection:

– An approximated range of 250 m.

– Bandwidth of 1 Mbps.

• The Communication channel is unreliable, the buffer size is limited and the network
congestion is possible.

• Mobility area is 1000 m2.

• Nodes are introduced in a random initial position.

• The time of the simulated execution is one hour.

Under these conditions, two different versions of the Consensus election algorithm (Section
4.6.1) were used: (1) based on a TCP communication, which is reliable, and (2) based on a
UDP communication, which is non-reliable (no acknowledgement provided of the message
delivery) but requires fewer resources than TCP (e.g., bandwidth). To eliminate the influence
of any possible random factor, each configuration was simulated 100 times with 100 different
random seeds.



8.3 Scalability Analysis 223

Table 8.1 KB sent and loss in the node communication for the execution of the host election
algorithm, under the TCP and UDP protocols.

Nodes 4 5 6 7 8 9 10 11 12 13 14

TCP
KB sent 0.4973 0.7698 1.4283 1.8298 2.4987 3.5122 4.3226 5.4847 6.5302 8.1340 9.4053

KB loss 0.0016 0.0035 0.0079 0.0119 0.0209 0.0303 0.0415 0.0643 0.0805 0.1065 0.1395

UDP
KB sent 0.4392 0.6874 1.3532 1.7521 2.4527 3.2260 4.3982 5.4242 6.7014 7.9555 9.2631

KB loss 0.0089 0.0182 0.0333 0.0566 0.0954 0.1472 0.2156 0.3264 0.4265 0.5908 0.7728

Nodes 15 16 17 18 19 20 21 22 23 24 25

TCP
KB sent 11.0173 12.7699 15.1770 19.2242 34.1736 63.8355 108.4401 154.6433 191.4331 223.0439 259.4148

KB loss 0.1661 0.3507 1.0883 3.6481 16.8574 44.7002 88.8357 133.5791 168.8155 199.5664 234.4949

UDP
KB sent 10.7583 12.5292 14.7158 17.9600 26.9999 40.6346 57.3161 69.5707 75.0354 78.7156 81.2065

KB loss 0.9608 1.3157 2.1352 4.1512 11.7903 23.9259 40.3462 51.4914 55.7248 58.8248 60.2697

Fig. 8.7 KB sent and received by the nodes of the network, owing to the execution of the host
election algorithm, under the TCP protocol (left) and the UDP protocol (right).

From the results obtained, two main aspects were evaluated to know if the reliability of TCP
results in a better operation of the host election algorithm against UDP: (1) use of bandwidth,
and (2) service availability provided by the architecture.

Use of bandwidth

Regarding bandwidth consumption, two distinct intervals were observed: a network composed
of up to 16 nodes, where the host election algorithm operates with normality, and a network of
more than 16 nodes, where the host election algorithm begins to saturate the bandwidth, with
both transportation protocols. This issue is depicted in the chart of Figure 8.7, which shows the



224 Work in Progress

Fig. 8.8 Efficiency in the message delivery of TCP and UDP protocols.

amount of KB sent generated by the execution of the host election algorithm, and received by
the nodes of the network, under the TCP and UDP protocols.

In the first interval, from 4 to 16 nodes, TCP shows a slight increase, but not relevant, in
the KB generated against UDP, as shown in Table 8.1. However, UDP shows a problem with
message loss, losing more than 1KB of information in a network of 16 nodes (Table 8.1). In
this regard, TCP shows better efficiency in the message delivery near to 1 in the 4-16 interval
(Figure 8.8), whereas UDP shows a constant efficiency decrease, losing nearly 10% of the
information sent in a network of 15 nodes (Figure 8.9).

However, in the second interval (17-25 nodes), TCP shows a complete saturation of the
network. In this case, TCP shows an exponential increment in the KB sent (Figure 8.7),
generating 250 KB of traffic approximately in a network of 25 nodes, of which only 24.9198
KB are received. The TCP efficiency in message delivery decreased exponentially (Figure 8.8),
and from a network 19 nodes and upwards, the percentage of KB loss of TCP exceeded the
UDP loss (Figure 8.9).

Service availability

The availability of the service is affected by the time the host election algorithm takes to choose
a host to act as the server. Thus, this decision, which involves all nodes of a network partition,
is influenced by the latency in the communication. In this case, owing to the saturation of the
network, two distinct intervals are found as well.



8.3 Scalability Analysis 225

Fig. 8.9 Percentage of KB loss in the node communications of TCP and UDP protocols.

Table 8.2 Service availability provided by the self-adaptive software architecture, under the
TCP and UDP communication protocols.

Nodes 4 5 6 7 8 9 10 11 12 13 14

TCP 99.81% 99.73% 99.46% 99.37% 99.21% 98.88% 98.77% 98.53% 98.42% 98.00% 97.89%

UDP 99.84% 99.77% 99.45% 99.39% 99.20% 98.99% 98.66% 98.43% 98.22% 98.03% 97.91%

Nodes 15 16 17 18 19 20 21 22 23 24 25

TCP 97.55% 97.33% 96.72% 95.55% 90.67% 82.51% 70.88% 61.88% 56.60% 53.16% 49.74%

UDP 97.69% 97.51% 97.26% 97.23% 97.10% 96.93% 97.01% 96.91% 96.84% 96.78% 96.67%

In the first interval, networks composed of less than 16 nodes, the host election algorithm
provides a similar service availability with both communication protocols, as shown in Table
8.2. Specifically, except for the case of a network of 10, 11 and 12 nodes, a slightly lower
service availability is provided under TCP (Figure 8.10).

In the second interval, networks with more than 16 nodes, TCP begins to saturate the
network, and the service availability is drastically reduced as a result of this. However, although
UDP also saturates the network, to a lesser degree, the service availability provided is not
significantly reduced (Figure 8.10).

8.3.2 Discussion

The evaluation performed has highlighted that the current proposal presents a scalability
problem. Under UDP the self-adaptive architecture begins to exhibit a problem with message



226 Work in Progress

Fig. 8.10 Service availability provided by the self-adaptive software architecture, under the
TCP and UDP communication protocols. Networks from 4 to 25 nodes (left); from 9 to 19
nodes (right).

loss in networks of 10 nodes or more, whereas, under TCP, the proposed approach operates
correctly for networks of 16 nodes or less. In networks of more than 16 nodes, the Consensus
election algorithm saturates the network under both protocols, especially under TCP. Moreover,
the architecture follows a copy-primary scheme [54] in physical partitions, which in large-scale
networks is inefficient, since in large groups the active replica could easily result in a bottleneck.
This emphasises the importance of applying device clustering techniques to the architecture
to improve its scalability in large ad-hoc systems, such as those that can be found in IoT
environments. In this respect, it is worth stressing that the incorporation of device clustering
techniques will be transparent and independent for the proposal, as the election algorithm is
applicable both to managing physical network partitions and logical partitions.

Furthermore, although TCP presents higher bandwidth requirements than UDP owing to
the acknowledge packets, in the interval of networks composed of 4 to 16 nodes, it only has
shown a slight increase in traffic generated (of 0.0969KB in average). The average efficiency
in message delivery of TCP is 0.9898 in the 4-16 interval, against the 0.9458 presented by
UDP. However, the service availability provided by the architecture is lower under TCP than
UDP. On average, under UDP the architecture provides a service availability 0.1572% higher,
in this interval. This is caused by the lower latency of UDP against TCP, which allows the host
election algorithm to provide a better response time. Therefore, in this case, as demonstrated,
the bandwidth requirements of TCP are not much higher than the requirements of UDP, whereas
the reliability of TCP and lower latency of UDP are relevant features to take into consideration
in the design of the self-adaptive architecture.



8.4 Summary 227

8.3.3 Conclusions

This section has presented and analysed the results obtained from the study of the behaviour of
the Proteo architecture, with the Consensus algorithm, under different transmission protocols:
TCP, a reliable protocol, and UDP, a non-reliable transmission protocol. From this study,
the following can be concluded: TCP presents, as was expected, a better message delivery
efficiency. In a network of 16 nodes, TCP provides a message delivery efficiency of 0.9811,
whereas UDP presents 0.9029. Contrary to what was initially expected, the Proteo architecture
does not notably increase the use of bandwidth under TCP. In the interval of networks composed
of 4 to 16 nodes, it has only shown a slight increase in traffic generated (0.0969KB in average).
Under UDP, the host election algorithm presents a slight improvement in the response time,
improving the service availability provided by the architecture, as a consequence of the low
latency of this transportation protocol.

8.4 Summary

In this chapter, the work already in progress to continue developing Proteo architecture has
been presented. Currently, the research work is flowing two principal lines of research:

• Addressing resource synchronization and system interoperability: through a service
platform which provides to the software engineers the basis for a correct and consistent
management of replicated/distributed resources in ubiquitous collaborative systems. This
is achieved through the Synchronization and Monitoring services. The services that
compose this platform are expected to be included in Proteo architecture to provide a
complete solution that also considers the synchronization of the service replicas.

• Addressing scalability: for which a study has been performed to know the number of
nodes that Proteo can manage using the Consensus election algorithm without degrading
its performance. Additionally, this study aims to establish if the reliability of TCP could
result in an enhanced system operation, despite its high latency and higher consumption
of bandwidth in comparison to UDP. In the study it is concluded that, under Consensus
election algorithm, Proteo architecture proves to operate correctly in networks of 16-18
nodes. Thus, to improve its scalability in large ad-hoc systems is necessary to apply
clustering techniques. In this respect, the incorporation of device clustering techniques
will be transparent and independent for the proposal. The election algorithm is applicable
both to managing physical network partitions and logical partitions, and the clustering
will be managed in an underlining layer.





Chapter 9

Conclusions and Future Work



230 Conclusions and Future Work

9.1 Conclusions

This research work has aimed to address the existing lack of suitable approaches to support the
quality attributes of mobile and ubiquitous systems by specifically facing challenges related
with dynamic topologies. To this end, a self-adaptive software architecture, named Proteo, has
been proposed.

Proteo architecture is composed of three main components, which are replicated on the
nodes that compose the distributed system network: (1) Monitoring Subsystem, (2) Context

Manager Service, and (3) Replica Manager Service. Their responsibilities are closely related to
the phases of MAPE-K autonomic loop of Autonomic Computing: the Monitoring Subsystem

senses the context information in relation to the node in which is deployed; the Context

Manager Service, in addition to process this information, is also responsible for analysing it to
decide when a new system adaptation is necessary; and the Replica Manager Service will be
responsible for coming to an agreement with the rest of the Replica Manager Services deployed
in the system to establish what replica will be activated. This coordination is performed by using
a distributed host election algorithm, and the election is based on a dynamic score obtained
through a utility function at run-time. This utility function indicates how suitable is a node to
host a service replica.

Proteo follows a modular design and its detailed model has been described using SysML.
This allows integrating into the architecture different election algorithms and utility functions.
Additionally, thanks to the SOA 2.0 approach followed in the design, the elements of the
architecture are loosely coupled. In this way, Proteo can be easily extended with new monitoring
services, to take into consideration new contextual features to evaluate the feasibility of a node
to host a service replica. Similarly, the context events with which Proteo reacts can be extended.

Regarding the election algorithms, two new are proposed within this work: Consensus and
Voting. These election algorithms have been devised to operate in mobile systems with highly
dynamic network topologies and under unreliable communication channels.

From the review of the existing proposals related to the dynamic service provisioning in
dynamic topology systems presented, the most relevant features for them have been identified
and highlighted. From these, Proteo: (1) is reactive to context changes, such as node discon-
nections; (2) uses local knowledge to the node to take decisions; (3) uses a utility function to
evaluate the nodes, which takes into consideration the resources of the nodes (e.g. energy)
providing a resource-aware solution.

Additionally, Proteo architecture uses a cross-layer approach to monitoring the network. In
this respect, a heuristic method has been proposed to determine the most centric node in the



9.1 Conclusions 231

network topology, on the basis of only the information of the routing table of the node. With
this more flexible design for managing the dynamics of the mobile environment, Proteo reduces
the resource consumption.

Proteo follows a hibernation-based deployment approach. In collaborative systems provid-
ing support for tasks in work groups, such as firefighters or rescue and emergency teams, the set
of the services is well-known. This makes possible to deploy the replicas of the service in the
devices of the group members before system execution. On the one hand, this approach reduces
the flexibility of the system, as to deploy a new service or introduce new devices at run-time is
not possible. On the other hand, it reduces the requirements for bandwidth and can improve the
response time of the configuration process. This is particularly interesting, since the mobile
networks currently have important technology restrictions, as a reduced bandwidth. However,
these are technical issues that could be resolved in the future, and thus, a hybrid approach
would be a better solution concerning pulling together the flexibility of a dynamic replication
approach and the response time of a hibernation approach. In this way, the well-known set of
services could be deployed before run-time and to add and deploy new services at run-time
would be possible as well. This is a technical question, since the current approach of Proteo is
transferable between both methods, and the code mobility techniques required to provide the
replication and deployment of services at run-time can be implemented in a transparent way for
the election process.

To validate and evaluate the proposal, the ns-3 network simulator has been used. To this end,
in this work, the ns-3 simulator has been extended with a new module that implements Proteo
architecture. Proteo has been evaluated in terms of service availability, election algorithm
reliability, coordination messages usage and network lifetime, under three different mobility
models: Manhattan Grid, Random Walk, and Reference Point Group (RPGM).

In addition, between the existing approaches, the election algorithms of Bully, Kordafshari,
and Vasudevan have been selected and incorporated to Proteo to compare the performance of
the new two proposed election algorithms with them. For this purpose, adaptations on the Bully
and Kordafshari algorithms have been made. These have been necessary to base the elections,
instead of on known IDs, on dynamic scores.

The use of advanced simulation tools has permitted to represent the dynamic nature of
distributed and dynamic computer networks, and therefore to handle and evaluate dynamic
models. Furthermore, the architecture has been validated and tested under unreliable com-
munication channels, with channel fading caused by the distance, limited buffer sizes, and
network congestion. This is a fundamental difference in comparison to the existing studied
approaches, which generally assumes reliable communications. From our point of view, this



232 Conclusions and Future Work

can be considered a strong assumption, since data or message loss is an inherent property of
mobile and ad-hoc wireless networks, especially in highly dynamic or large-scale environments.

From the results obtained in the evaluation, it has been observed that:

• In respect to service availability, the Bully and Kordafshari algorithms have shown the
best performance, independently of the mobility model. The Voting algorithm has shown
better performance on the RPGM mobility model than on the others mobility models.
The Vasudevan algorithm sees its performance profoundly reduced when the number of
nodes increases, both on the RPGM and Random Walk mobility models. Finally, the
Consensus algorithm, generally, provides the worst results.

• About algorithm reliability (i.e., number of redundant server elections) the Bully and
Kordafshari algorithms provide poor reliability and are profoundly affected by the
increasing number of nodes in the network. On the contrary, as the number of nodes
in the network increases, the Consensus algorithm increases its reliability. Finally, the
Voting and Vasudevan algorithms provide excellent results independently of the mobility
model or network size.

• The Kordafshari and Voting algorithms provide the best results regarding coordination
messages usage in the three mobility models, whereas the Vasudevan algorithm provides
the worst results. The use of coordination messages of this algorithm is profoundly
affected by the number of nodes participating in the election and by the kind of network
topology on which the algorithm is operating, being the worst case a mesh network
topology.

• Because of its high reliability and reduced usage of coordination messages, the Voting
algorithm provides the best results concerning network lifetime.

• In service availability/coordination messages efficiency, the Bully and Kordafshari
algorithms provide the best results, except for the RPGM model, in which these are
given by the Voting and Kordafshari algorithms. In service availability/network lifetime

efficiency, the Voting algorithm shows the best performance, regardless of the mobility
model.

• The Voting algorithm provides the best algorithm reliability/coordination messages

efficiency, in contrast to the Bully and Kordafshari algorithms. Regarding algorithm reli-

ability/network lifetime, the Vasudevan and Voting algorithms show the best performance,
providing similar results, followed by the Consensus algorithm.



9.1 Conclusions 233

• Finally, from a general point of view, the Voting election algorithm proves to show the
best behaviour, although Kordafshari provides a slight improvement in service availability
at the expense of reliability and Vasudevan provides a slight improvement in algorithm
reliability at the expense of coordination message usage.

From these results it can be concluded that Proteo architecture, regardless the particular
election algorithm proves to improve the quality attributes of the service, specifically avail-
ability. Therefore, the initial hypothesis of this work is verified by the results obtained.
Additionally, although the proposed Voting algorithm shows the better performance in general,
this is not the case for all specific scenarios. In this respect, it can be observed that determined
algorithms could be more convenient in particular contexts.

However, for Proteo architecture there are still two issues that remain outstanding: (1) the
synchronization of the replicas; and (2) the system scalability.

Regarding synchronization, these is an interesting issue that the majority of the existing
approaches neither address. However, the increment in the number of resource replicas implies
an increase on synchronization messages. This may invalidate some of the proposals that
perform an extensive replication of the resource to increment its availability. To this regard, there
is already work in progress, and a service platform has been proposed, which provides to the
software engineers the basis for a correct and consistent management of replicated/distributed
resources in ubiquitous collaborative systems. This is achieved through the Synchronization

and Monitoring services. The services that compose this platform are expected to be included
in Proteo architecture to provide a complete solution that also considers the synchronization of
the service replicas. That platform has been applied to the FLERSA tool, devised to transform a

“Content Management System” (CMS) into its semantic equivalent, allowing the collaborative
semantic annotation of web resources. As a result, FLERSA tool is improved with attributes
such as scalability, interoperability, and business agility.

In respect to system scalability, a study to know the number of nodes that Proteo can manage
using the Consensus election algorithm without degrading its performance has been performed.
Additionally, this study aimed to establish if the reliability of TCP could result in an enhanced
system operation, despite its high latency and higher consumption of bandwidth in comparison
to UDP. In the study is concluded that, under Consensus election algorithm, Proteo architecture
proves to operate correctly in networks of 16-18 nodes. Thus, to improve its scalability in large
ad-hoc systems is necessary to apply clustering techniques. In this respect, the incorporation
of different device clustering techniques will be transparent and independent for the proposal.
The election algorithm is applicable both to managing physical network partitions and logical
partitions, and the clustering will be managed in an underlining layer.



234 Conclusions and Future Work

9.2 Future Work

In addition to completely address the synchronization of the replicas and scalability of Proteo
architecture, there are additional research lines that should be considered in the future:

• In relation to predictive behaviour, the network partition prediction is of considerable
interest in the context of this work. Usually, these approaches monitor the movement of
the nodes or the status of the links, to predict the disconnection of a group of nodes. This
allows to synchronize or replicate a resource before the change in the topology happens.
In this way, the system moves from being a reactive system to a proactive. This is helpful
in systems where the replicas are deployed at run-time. However, it can be costly and
can result in unnecessary system adaptations.

• Ubiquitous systems, specially IoT, are characterized by possessing a broad range of
heterogeneous devices. In this context, the computational requirements of the services,
which can be also heterogeneous, could match with the capabilities of certain devices
better than with the capabilities of others. Therefore, it would be particularly interesting
to provide a semantic mechanism that allows the definition and representation of that
grade of matching, in order to consider it in the evaluation of the feasibility of the node
to host the service replica. This would result in a more efficient deployment solution in
heterogeneous environments.

• In order to extend the applicability of the solution, it would be necessary to incorporate
mechanisms to avoid selfish behaviour in the nodes.

• In the same line, the reliability of a software component is directly dependent on the
reliability of the components in which it is based. In this context, the reliability of a
replica will be influenced by the reliability of the node in which it is deployed. With
the purpose of increasing the reliability of the deployment scheme provided by the
architecture, methods to measure the reliability of the nodes could be included in the
evaluation of the node. For example, if a node frequently disconnects, it will not be a
good candidate to be elected as replica host, despite its computational features.

• Finally, as concluded previously in the evaluation of the Proteo architecture, although
the proposed Voting algorithm shows the better performance in general, this is not the
case for all specific scenarios. This can be understood as that there is no a universal
solution that provides the better performance in every possible situation. To this regard,
to provide a new level of self-adaptation would be of great interest. This is, for instance,



9.2 Future Work 235

to make possible for the architecture to autonomously use one election algorithm or
another according to the particular state of the environment at that specific moment. This
could be extended to other elements, as the utility function. In this way, Proteo would be
able to self-adapt to the changing requirements of a scenario over time. However, the
solution to this problem introduces new challenges. Proteo operates over a distributed
system, with no central entity of control and under unreliable communications. If a node
decides to change the election algorithm, the other nodes have to do it as well, owing
to the coordination between them is not possible when they are using different election
algorithms.





Chapter 10

Conclusiones y Trabajo Futuro



238 Conclusiones y Trabajo Futuro

10.1 Conclusiones

Este trabajo de investigación ha pretendido abordar la actual carencia de enfoques adecuados
para soportar los atributos de calidad de sistemas móviles y ubicuos, enfrentándose a los
desafíos relacionados con las topologías de red dinámicas. Con este objetivo, se ha propuesto
una arquitectura software auto-adaptativa, denominada Proteo.

La arquitectura Proteo está compuesta de tres componentes principales, los cuales están
replicados en los nodos que componen la red del sistema distribuido: (1) Subsistema de

Monitorización, (2) Servicio de Gestión del Contexto, y (3) Servicio de Gestión de Réplicas.
Las responsabilidades de estos componentes están estrechamente relacionadas con las fases
del bucle autonómico MAPE-K, del campo de la Computación Autonómica: el Subsistema de

Monitorización monitoriza y percibe la información del contexto relacionada con el nodo en
el cual se encuentra desplegado; (2) el Servicio de Gestión del Contexto, además de procesar
la información recibida por el Subsistema de Monitorización, es responsable de analizarla y
decidir cuándo es necesaria una nueva adaptación en el sistema; y el Servicio de Gestión de

Réplicas, el cual es el responsable por llegar a un acuerdo con el resto de los Servicios de

Gestión de Réplicas desplegados en el sistema para establecer cuáles de las réplicas existentes
será activada. Esta coordinación se lleva a cabo utilizando un algoritmo distribuido de elección,
basándonse en una puntuación dinámica obtenida a través de una función de utilidad, en tiempo
de ejecución. Dicha función de utilidad indica cómo de adecuado es un nodo para alojar una
réplica activa del servicio.

Proteo sigue un diseño modular. Esto permite integrar en la arquitectura distintos algoritmos
de elección y funciones de utilidad. Además, gracias al enfoque SOA 2.0 seguido en el diseño,
los elementos de la arquitectura están débilmente acoplados. De esta forma, Proteo puede
ser fácilmente extendido con nuevos servicios de monitorización, para tener en cuenta nuevas
características contextuales en la evaluación de los nodos. De forma similar, los eventos a los
que Proteo reacciona para cambiar el esquema de replicación (por ejemplo, la desconexión del
actual servidor) pueden ser modificados o extendidos.

Con respecto a los algoritmos de elección, en este trabajo se han realizado dos nuevas
propuestas de algoritmos: Consenso y Voting. Estos algoritmos de elección se han diseñado
con el objetivo de operar en sistemas móviles con topologías de red altamente dinámicas y bajo
canales de comunicación no fiables.

A partir de la revisión realizada sobre las propuestas actualmente existentes para el de-
spliegue dinámico de servicios, se han identificado las características más relevantes que estos
sistemas deben poseer. De estas características, Proteo: (1) es reactivo a cambios de contexto,



10.1 Conclusiones 239

como por ejemplo desconexiones de nodos; (2) utiliza información local a nodo para tomar
decisiones en cuanto a la auto-adaptación del sistema; (3) utiliza una función de utilidad para
evaluar los nodos, con la cual se tiene en cuenta los recursos del nodo, proporcionando una
solución consciente del consumo de recursos.

Adicionalmente, la arquitectura Proteo utiliza un enfoque cross-layer para monitorizar la
red. A este respecto, se ha propuesto un método heurístico para determinar el nodo más céntrico
en la topología de red, en base solo a la información proporcionada por la tabla de ruta del
nodo. Con este diseño más flexible para gestionar la dinamicidad del entorno móvil, Proteo
reduce el consumo de recursos.

Proteo sigue un enfoque basado en hibernación. En sistemas colaborativos que proporcionan
soporte a las tareas de equipos de trabajo, como el caso de bomberos o equipos de emergencia
y rescate, el conjunto de servicios es bien conocido y sus réplicas pueden ser desplegadas en
los dispositivos de los componentes del equipo antes de la puesta en marcha del sistema. Por
una parte, este enfoque reduce la flexibilidad del sistema, debido a que no es posible desplegar
nuevos servicios o introducir nuevos dispositivos en tiempo de ejecución. Por otra parte,
reduce los requisitos de ancho de banda y puede mejorar el tiempo de respuesta del proceso de
adaptación. Esto resulta particularmente interesante, dado que las redes móviles actualmente
presentan restricciones tecnológicas importantes, como un ancho de banda reducido. Sin
embargo, esto son aspectos tecnológicos que podrán ser resueltos en el futuro, y, por tanto, un
enfoque híbrido representaría una mejor solución, combinando la flexibilidad de una replicación
dinámica y el tiempo de respuesta de un enfoque de hibernación. De esta forma, el conjunto
conocido de servicios puede ser replicado y despegado en los dispositivos antes de ejecutar el
sistema y, además, en tiempo de ejecución se pueden desplegar nuevos servicios, previamente
no considerados. El diseño seguido en Proteo hace que las técnicas de movilidad de código
requeridas para proporcionar el despliegue y replicación de servicios en tiempo de ejecución
se pueden implementar de forma transparente al proceso de elección. Por lo que la actual
propuesta sería valida en ambos casos.

Para evaluar y validar la propuesta, se ha utilizado el simulador de redes ns-3. Con este
fin, en este trabajo, se ha extendido el simulador ns-3 con un nuevo módulo que implementa la
arquitectura Proteo. Ésta ha sido evaluada en términos de disponibilidad de servicio, fiabilidad
del algoritmo de elección, utilización de mensajes de coordinación y tiempo de vida de la red,
bajo tres modelos de movilidad diferentes: Manhattan Grid, Random Walk, y Reference Point
Group (RPGM).

Asimismo, entre los enfoques actualmente existentes, se han seleccionado los algoritmos
de elección de Bully, Kordafshari y Vasudevan. Estos han sido incorporados en Proteo para



240 Conclusiones y Trabajo Futuro

comparar el rendimiento de los dos nuevos algoritmos propuestos en este trabajo con ellos.
Para hacer esto posible, ha sido necesario realizar modificaciones sobre los algoritmos de
Bully y Kordafshari, ya que estos basan la elección en IDs conocidos de los nodos en vez de
puntuaciones dinámicas.

El uso de herramientas avanzadas de simulación nos ha permitido representar la naturaleza
de redes de computación dinámicas y distribuidas, y por tanto manejar y evaluar modelos
dinámicos. Además, la arquitectura ha sido validada y evaluada bajo canales de comunicación
no fiables, con desvanecimiento de la señal causada por la distancia, tamaños limitados de
buffer y congestión de red. Esto representa una diferencia fundamental en comparación con
las propuestas estudiadas, las cuales, generalmente asumen comunicaciones fiables. Desde
nuestro punto de vista, esto se puede considerar una suposición importante, dado que la pérdida
de información o datos en la transmisión es una propiedad inherente a las redes móviles
inalámbricas ad-hoc, especialmente en entornos altamente dinámicos o de gran escala.

De los resultados obtenidos en la evaluación, se ha observado que:

• Con respecto a la disponibilidad del servicio, los algoritmos de Bully y Kordafshari
han mostrado el mejor rendimiento, independientemente del modelo de movilidad. El
algoritmo de Votación ha mostrado mejores resultados en el modelo de movilidad RPGM
que en los otros modelos de movilidad. El rendimiento del algoritmo de Vasudevan se
ve profundamente reducido cuando el número de nodos involucrados en la elección se
incrementa, tanto en los modelos de RPGM como de Random Walk. Finalmente, el algo-
ritmo de Consenso, generalmente, proporciona los peores resultados en disponibilidad
del servicio.

• En lo referente a la fiabilidad del algoritmo (es decir, el número de elecciones redundantes
de servidor) los algoritmos de Bully y Kordafshari muestran resultados generalmente
pobres, a los cuales les afecta en gran medida el número de nodos de la red. Por
el contrario, conforme el número de nodos de la red se incrementa, el algoritmo de
Consenso incrementa su fiabilidad. Finalmente, los algoritmos de Votación y Vasudevan
proporcionan excelentes resultados, independientemente del modelo de movilidad o el
tamaño de la red.

• Los algoritmos de Kordafshari y Votación proporcionan los mejores resultados respecto
al uso de mensajes de coordinación en los tres modelos de movilidad estudiados. Por el
contrario, el algoritmo de Vasudevan muestra los peores resultados a este respecto. El
uso de mensajes de coordinación de este algoritmo se ve profundamente afectado por el



10.1 Conclusiones 241

número de nodos participando en la elección y por el tipo de topología de la red, siendo
el peor caso para el algoritmo de Vasudevan una red de malla (“mesh”).

• Debido a su alta fiabilidad y reducido uso de mensajes de coordinación, el algoritmo
de Votación proporciona los mejores resultados respecto al tiempo de vida de la red,
maximizando el aprovechamiento de energía por parte del sistema, con respecto al resto
de algoritmos.

• Los algoritmos de Bully y Kordafshari proporcionan los mejores resultados en relación
a la eficiencia de disponibilidad de servicio/mensajes de coordinación, excepto para
el modelo RPGM, en el cual los mejores resultados los proporcionan los algoritmos
de Votación y Kordafshari. Con respecto a la eficiencia de disponibilidad de servi-

cio/tiempo de vida de la red, el algoritmo de Votación muestra el mejor rendimiento,
independientemente del modelo de movilidad.

• El algoritmo de Votación, también proporciona los mejores resultados con respecto a
la eficiencia fiabilidad del algoritmo/mensajes de coordinación, al contrario que los
algoritmos de Bully y Kordafshari que muestran los peores resultados a este respecto.
Respecto a la eficiencia fiabilidad del algoritmo/tiempo de vida de la red, los algoritmos
Vasudevan y Votación proporcionan, con resultados similares, el mejor rendimiento,
seguidos del algoritmo de Consenso.

• Finalmente, desde un punto de vista general, el algoritmo de Votación prueba ser el algo-
ritmo que muestra el mejor comportamiento. Sin embargo, el algoritmo de Kordafshari,
con respecto al algoritmo de Votación, proporciona una ligera mejora en la disponibilidad
del servicio, a costa de la fiabilidad del algoritmo, y el algoritmo de Vasudevan una
ligera mejora en la fiabilidad del algoritmo, a costa de un mayor uso de mensajes de
coordinación.

A partir de estos resultados, se puede concluir que: (1) La arquitectura Proteo, independien-
temente del algoritmo de elección particular, ha demostrado mejorar los atributos de calidad
del servicio, específicamente disponibilidad. Por tanto, la hipótesis inicial de este trabajo
se ha verificado por los resultados obtenidos; y (2) aunque el algoritmo de Voting propuesto
muestra en general el mejor rendimiento, esto no es cierto para todos los escenarios específicos.
A este respecto, se puede observar que otros algoritmos podrían ser más convenientes en
contextos particulares.

Sin embargo, para la arquitectura Proteo quedan dos aspectos que deben ser abordados: (1)
la sincronización de las réplicas del servicio; y (2) la escalabilidad del sistema.



242 Conclusiones y Trabajo Futuro

La sincronización del recurso replicado (servicio o dato), es una cuestión interesante que la
mayoría de los enfoques actualmente existentes tampoco abordan. Sin embargo, el incremento
en el número de réplicas del recurso implica un incremento en mensajes de sincronización. Esto
podría invalidar algunas de las propuestas existentes, las cuales se basan en una replicación in-
tensiva del recurso para incrementar su disponibilidad. A este respecto, contamos ya con trabajo
en desarrollo, en el cual se ha propuesto una plataforma de servicios. Dicha plataforma tiene
como objetivo proporcionar a los ingenieros de software una base para la gestión consistente y
correcta de los recursos replicados/distribuidos en sistemas ubicuos colaborativos. Esto se ha
conseguido a través de un servicio de Sincronización y otro de Monitorización. Estos servicios
se pretenden incluir en la arquitectura Proteo para proporcionar una solución completa que
considere también la sincronización de las réplicas. La plataforma propuesta se ha aplicado a la
herramienta FLERSA, ideada para transformar un “Sistema de Gestor de Contenidos” (CMS)
en su equivalente semántico, permitiendo la anotación semántica colaborativa de recursos web.
Como resultado, la herramienta FLERSA se completa con capacidades como escalabilidad,
interoperabilidad y agilidad comercial.

Con respecto a la escalabilidad del sistema, se ha llevado a cabo un estudio para conocer el
número de nodos que puede manejar Proteo, utilizando el algoritmo de Consenso, sin sufrir
degradación en su rendimiento. Además, este estudio pretende comprobar si la fiabilidad de
TCP puede resultar en un mejor funcionamiento del sistema, a pesar de su mayor latencia
y mayor consumo de ancho de banda, en comparación con UDP. En el estudio, se concluye
que, bajo el algoritmo de Consenso, la arquitectura Proteo demuestra operar correctamente
en redes compuestas por 16-18 nodos. Por tanto, para mejorar su escalabilidad en sistemas
ad-hoc mayores es necesario aplicar técnicas de agrupamiento (“clustering”). A este respecto,
la incorporación de diferentes técnicas de agrupamiento se puede llevar a cabo de forma
transparente a la propuesta actual. El algoritmo de elección es aplicable tanto en particiones
físicas como en particiones lógicas, y el agrupamiento y partición de la red se llevaría a cabo
en capas inferiores al proceso de elección y despliegue.

10.2 Trabajo Futuro

Además de abordar completamente la sincronización de las réplicas y la escalabilidad de la
arquitectura Proteo, existen líneas adicionales de investigación que deberían ser consideradas
en el futuro:

• En relación a los comportamientos predictivos, los algoritmos de predicción de parti-
ciones son de considerable interés en el contexto de este trabajo. Generalmente, estos



10.2 Trabajo Futuro 243

enfoques monitorizan el movimiento de los nodos o el estado de los enlaces para predecir
la desconexión de un grupo de nodos. Esto permite sincronizar o replicar un recurso antes
de que ocurra un cambio en la topología. De esta forma, el sistema pasa de ser reactivo a
un sistema proactivo. Esto es útil en sistemas donde las réplicas se despliegan en tiempo
de ejecución. Sin embargo, puede ser costoso y resultar en adaptaciones innecesarias si
las predicciones no se realizan con determinado grado de certeza.

• Los sistemas Ubicuos, especialmente IoT, están caracterizados por estar compuestos
por un largo número de dispositivos heterogéneos. En este contexto, los requisitos
computacionales de los servicios desplegados pueden ser también heterogéneos y encajar
mejor con las capacidades computacionales de unos dispositivos que con las capacidades
de otros. Por tanto, sería de particular interés proporcionar un mecanismo semántico
que permitiera definir y representar el grado de adecuación entre los requisitos de un
servicio y las capacidades de un dispositivo, con el objetivo de considerar dicho grado
en la evaluación de un nodo para alojar una réplica del servicio. Esto resultaría en una
solución de despliegue más eficiente en entornos heterogéneos.

• A fin de extender la aplicabilidad y seguridad de la solución a otros escenarios, sería
necesario incorporar mecanismos de confianza que eviten comportamientos egoístas en
los nodos.

• En esta línea, la fiabilidad de un componente software es directamente dependiente
de la fiabilidad de los componentes en los que se basa. En este contexto, la fiabilidad
de una réplica se verá afectada por la fiabilidad del nodo en la que está desplegada.
Con el propósito de incrementar la fiabilidad del esquema de despliegue proporcionada
por la arquitectura, se podrían incluir métodos para medir la fiabilidad de los nodos
en su evaluación. Por ejemplo, si un nodo se desconecta de forma frecuente, éste,
independientemente de sus capacidades computacionales, no es un buen nodo para alojar
la réplica activa del servicio.

• Finalmente, como se concluyó a raíz de la evaluación de la arquitectura Proteo, aunque el
algoritmo de Votación muestra el mejor rendimiento en general, esto no es así para todos
los casos específicos. Esto se puede entender como que no existe una solución universal
que muestre el mejor rendimiento para todas las situaciones posibles. A este respecto,
proporcionar un nuevo nivel de auto-adaptación resultaría de gran interés. Esto es, por
ejemplo, permitir a la arquitectura autonómicamente utilizar un algoritmo de elección u
otro de acuerdo al estado particular del entorno en ese momento. Esto podría extenderse



244 Conclusiones y Trabajo Futuro

a otros elementos, como la función de utilidad. De esta forma, Proteo podría ser capaz de
auto-adaptarse a los posibles requisitos cambiantes de un escenario a lo largo del tiempo.
Sin embargo, esto introduce nuevos desafíos. Proteo opera sobre un sistema distribuido,
sin una entidad de control central y bajo un entorno no fiable de comunicación. Si un
nodo decide cambiar el algoritmo de elección, los otros nodos deben hacerlo también.
Esto se debe a que la coordinación entre ellos no es posible cuando usan algoritmos de
elección diferentes.



References

[1] Abolhasan, M., Wysocki, T., and Dutkiewicz, E. A review of routing protocols for
mobile ad hoc networks. Ad Hoc Networks, 2(1):1 – 22, 2004. ISSN 1570-8705.
doi:https://doi.org/10.1016/S1570-8705(03)00043-X.

[2] Ahmed, A., Yasumoto, K., Shibata, N., Kitani, T., and Ito, M. DAR: Distributed Adaptive
Service Replication for MANETs. In 2009 IEEE International Conference on Wireless
and Mobile Computing, Networking and Communications, pages 91–97, Marrakech, oct
2009. IEEE. ISBN 978-0-7695-3841-9. doi:10.1109/WiMob.2009.25.

[3] Ahmed, A., Yasumoto, K., Ito, M., Shibata, N., and Kitani, T. HDAR: Highly Distributed
Adaptive Service Replication for MANETs. IEICE Transactions on Information and
Systems, E94-D(1):91–103, 2011. ISSN 0916-8532. doi:10.1587/transinf.E94.D.91.

[4] Akbari Torkestani, J. and Meybodi, M. R. A mobility-based cluster formation algorithm
for wireless mobile ad-hoc networks. Cluster Computing, 14(4):311–324, dec 2011.
doi:10.1007/s10586-011-0161-z.

[5] Akyildiz, I. F., Wang, X., and Wang, W. Wireless mesh networks: a
survey. Computer Networks, 47(4):445 – 487, 2005. ISSN 1389-1286.
doi:https://doi.org/10.1016/j.comnet.2004.12.001.

[6] Amato, F., Fasolino, A. R., Mazzeo, A., Moscato, V., Picariello, A., Romano, S., and
Tramontana, P. Ensuring semantic interoperability for e-health applications. In 2011
International Conference on Complex, Intelligent, and Software Intensive Systems, pages
315–320, June 2011. doi:10.1109/CISIS.2011.52.

[7] Arantes, L. and Sopena, J. Easily Rendering Token-Ring Algorithms of Distributed and
Parallel Applications Fault Tolerant, year=2013. In 2013 25th International Symposium
on Computer Architecture and High Performance Computing, pages 206–213, Oct .
doi:10.1109/SBAC-PAD.2013.11.

[8] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., and Zaharia, M. A View of Cloud Computing.
Commun. ACM, 53(4):50–58, 2010. ISSN 0001-0782. doi:10.1145/1721654.1721672.

[9] Aschenbruck, N., Ernst, R., Gerhards-Padilla, E., and Schwamborn, M. BonnMotion: A
Mobility Scenario Generation and Analysis Tool. In Proceedings of the 3rd International
ICST Conference on Simulation Tools and Techniques, SIMUTools ’10, pages 51:1–
51:10, ICST, Brussels, Belgium, Belgium, 2010. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering). ISBN 978-963-9799-87-5.
doi:10.4108/ICST.SIMUTOOLS2010.8684.

http://dx.doi.org/https://doi.org/10.1016/S1570-8705(03)00043-X
http://dx.doi.org/10.1109/WiMob.2009.25
http://dx.doi.org/10.1587/transinf.E94.D.91
http://dx.doi.org/10.1007/s10586-011-0161-z
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2004.12.001
http://dx.doi.org/10.1109/CISIS.2011.52
http://dx.doi.org/10.1109/SBAC-PAD.2013.11
http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8684


246 References

[10] Attiya, H. and Welch, J. Distributed computing: fundamentals, simulations, and ad-
vanced topics. John Wiley & Sons, 2nd edition, 2004. ISBN 0471453242.

[11] Atzori, L., Iera, A., and Morabito, G. The Internet of Things: A sur-
vey. Computer Networks, 54(15):2787 – 2805, 2010. ISSN 1389-1286.
doi:https://doi.org/10.1016/j.comnet.2010.05.010.

[12] Avizienis, A., Laprie, J. C., Randell, B., and Landwehr, C. Basic concepts and taxonomy
of dependable and secure computing. IEEE Transactions on Dependable and Secure
Computing, 1(1):11–33, Jan 2004. ISSN 1545-5971. doi:10.1109/TDSC.2004.2.

[13] Barolli, L., Spaho, E., Ikeda, M., Kulla, E., Xhafa, F., and Younas, M. A fuzzy-based
data replication system for QoS improvement in MANETs. In Proceedings of the 10th
International Conference on Advances in Mobile Computing & Multimedia - MoMM
’12, page 224, New York, New York, USA, 2012. ACM Press. ISBN 9781450313070.
doi:10.1145/2428955.2428997.

[14] Baxter, S. and Vogt, L. C. Content Management System, March 12 2002. US Patent
6,356,903.

[15] Becker, S., Brogi, A., Gorton, I., Overhage, S., Romanovsky, A., and Tivoli, M. Towards
an Engineering Approach to Component Adaptation. In Reussner, R. H., Stafford, J. A.,
and Szyperski, C. A., editors, Architecting Systems with Trustworthy Components, pages
193–215, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-35833-
6. doi:10.1007/11786160_11.

[16] Bell, W. H., Cameron, D. G., Millar, A. P., Capozza, L., Stockinger, K., and Zini, F.
OptorSim: A Grid Simulator for Studying Dynamic Data Replication Strategies. The
International Journal of High Performance Computing Applications, 17(4):403–416,
2003. doi:10.1177/10943420030174005.

[17] Bellavista, P., Corradi, A., and Magistretti, E. REDMAN: An optimistic replication mid-
dleware for read-only resources in dense MANETs. Pervasive and Mobile Computing, 1
(3):279–310, sep 2005. ISSN 15741192. doi:10.1016/j.pmcj.2005.06.002.

[18] Benkaouha, H., Abdelli, A., Ben-Othman, J., Zaffoune, Y., and Mokdad, L.
Distributed implementation of a stable storage for MANET checkpointing proto-
cols. In 2016 International Wireless Communications and Mobile Computing Con-
ference (IWCMC), pages 672–677. IEEE, sep 2016. ISBN 978-1-5090-0304-4.
doi:10.1109/IWCMC.2016.7577137.

[19] Bhatt, M., Rahayu, W., Soni, S. P., and Wouters, C. Ontology Driven Semantic Profiling
and Retrieval in Medical Information Systems. Web Semant., 7(4):317–331, December
2009. ISSN 1570-8268. doi:10.1016/j.websem.2009.05.004.

[20] Bieberstein, N., Bose, S., Walker, L., and Lynch, A. Impact of service-oriented archi-
tecture on enterprise systems, organizational structures, and individuals. IBM Systems
Journal, 44(4):691–708, 2005. ISSN 0018-8670. doi:10.1147/sj.444.0691.

[21] BonnMotion. Website. http://sys.cs.uos.de/bonnmotion/. Accessed: 21/04/2018.

http://dx.doi.org/https://doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1145/2428955.2428997
http://dx.doi.org/10.1007/11786160_11
http://dx.doi.org/10.1177/10943420030174005
http://dx.doi.org/10.1016/j.pmcj.2005.06.002
http://dx.doi.org/10.1109/IWCMC.2016.7577137
http://dx.doi.org/10.1016/j.websem.2009.05.004
http://dx.doi.org/10.1147/sj.444.0691
http://sys.cs.uos.de/bonnmotion/


References 247

[22] Borgia, E. The Internet of Things vision: Key features, applications and
open issues. Computer Communications, 54:1 – 31, 2014. ISSN 0140-3664.
doi:10.1016/j.comcom.2014.09.008.

[23] Bose, J., Hahn, K., Scholz, M., Schweppe, H., and Voisard, A. Using Moving Object
Databases to Provide Context Information in Mobile Ad-hoc Networks. In 7th Interna-
tional Conference on Mobile Data Management (MDM’06), pages 75–75, May 2006.
doi:10.1109/MDM.2006.164.

[24] Brandner, G., Bettstetter, C., and Schilcher, U. Contention-based node selection
with applications to relay communications and load balancing. EURASIP Journal
on Wireless Communications and Networking, 2013(1):211, dec 2013. ISSN 1687-1499.
doi:10.1186/1687-1499-2013-211.

[25] Camp, T., Boleng, J., and Davies, V. A survey of mobility models for ad hoc network
research. Special Issue: Mobile Ad Hoc Networking – Research, Trends and Applications,
2:483–502, 2002.

[26] Canal, C., Murillo, J. M., and Poizat, P. Coordination and Adaptation Techniques
for Software Entities. In Malenfant, J. and Østvold, B. M., editors, Object-Oriented
Technology. ECOOP 2004 Workshop Reader, pages 133–147, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg. ISBN 978-3-540-30554-5.

[27] Caragliu, A., Bo, C. D., and Nijkamp, P. Smart Cities in Europe. Journal of Urban
Technology, 18(2):65–82, 2011. doi:10.1080/10630732.2011.601117.

[28] Cattell, R. Scalable SQL and NoSQL Data Stores. SIGMOD Rec., 39(4):12–27, May
2011. ISSN 0163-5808. doi:10.1145/1978915.1978919.

[29] Chandrakala., C. B., Prema., K. V., and Hareesha., K. S. Improved data availability and
fault tolerance in manet by replication. In 2013 3rd IEEE International Advance Comput-
ing Conference (IACC), pages 324–329, Feb 2013. doi:10.1109/IAdCC.2013.6514244.

[30] Chang, E. and Roberts, R. An improved algorithm for decentralized extrema-finding
in circular configurations of processes. Commun. ACM, 22(5):281–283, 1979. ISSN
0001-0782. doi:10.1145/359104.359108.

[31] Chang, W. Y., Abu-Amara, H., and Sanford, J. F. Transforming Enterprise Cloud
Services. Springer Publishing Company, Incorporated, 2014. ISBN 9400790066,
9789400790063.

[32] Chen, B. and Cheng, H. H. A Review of the Applications of Agent Technology in Traffic
and Transportation Systems. IEEE Transactions on Intelligent Transportation Systems,
11(2):485–497, June 2010. ISSN 1524-9050. doi:10.1109/TITS.2010.2048313.

[33] Chlamtac, I., Conti, M., and Liu, J. J.-N. Mobile ad hoc networking: impera-
tives and challenges. Ad Hoc Networks, 1(1):13 – 64, 2003. ISSN 1570-8705.
doi:https://doi.org/10.1016/S1570-8705(03)00013-1.

[34] Choudhury, P., Sarkar, A., and Debnath, N. C. Deployment of Service Oriented architec-
ture in MANET: A research roadmap. In 2011 9th IEEE International Conference on
Industrial Informatics, pages 666–670, 2011. doi:10.1109/INDIN.2011.6034957.

http://dx.doi.org/10.1016/j.comcom.2014.09.008
http://dx.doi.org/10.1109/MDM.2006.164
http://dx.doi.org/10.1186/1687-1499-2013-211
http://dx.doi.org/10.1080/10630732.2011.601117
http://dx.doi.org/10.1145/1978915.1978919
http://dx.doi.org/10.1109/IAdCC.2013.6514244
http://dx.doi.org/10.1145/359104.359108
http://dx.doi.org/10.1109/TITS.2010.2048313
http://dx.doi.org/https://doi.org/10.1016/S1570-8705(03)00013-1
http://dx.doi.org/10.1109/INDIN.2011.6034957


248 References

[35] Chu, F. Reducing Ω to ♦W. Information Processing Letters, 67(6):289–293, sep 1998.
ISSN 00200190. doi:10.1016/S0020-0190(98)00122-7.

[36] Clements, P. C. A Survey of Architecture Description Languages. In Proceedings
of the 8th International Workshop on Software Specification and Design, IWSSD ’96,
pages 16–. IEEE Computer Society, 1996. ISBN 0-8186-7361-3. URL http://dl.acm.
org/citation.cfm?id=857204.858261.

[37] Cohen, E. and Shenker, S. Replication strategies in unstructured peer-to-peer networks.
ACM SIGCOMM Computer Communication Review, 32(4):177, 2002. ISSN 01464833.
doi:10.1145/964725.633043.

[38] Computer Systems Research Group. UNIX user’s manual: supplementary documents:
4.2 Berkeley software distribution: virtual VAX-11 version, 1984. Computer Science
Division, Dept. of Electrical Engineering and Computer Science, University of California,
Berkeley, Calif.

[39] Conti, M., Maselli, G., Turi, G., and Giordano, S. Cross-layering in mo-
bile ad hoc network design. Computer, 37(2):48–51, 2004. ISSN 0018-9162.
doi:10.1109/MC.2004.1266295.

[40] Cook, D. J., Augusto, J. C., and Jakkula, V. R. Ambient intelligence: Technologies,
applications, and opportunities. Pervasive and Mobile Computing, 5(4):277 – 298, 2009.
ISSN 1574-1192. doi:https://doi.org/10.1016/j.pmcj.2009.04.001.

[41] Cornuéjols, G., Nemhauser, G. L., and Wolsey, L. A. The uncapacitated facility location
problem. Technical report, Carnegie Mellon University, Management Science Research
Group, 1983.

[42] Coulouris, G. F., Dollimore, J., and Kindberg, T. Distributed systems: concepts and
design. Addison-Wesley, 5th edition, 2011. ISBN 7133427729.

[43] Cuka, M., Elmazi, D., Ozera, K., Oda, T., and Barolli, L. Selection of Actor Nodes in
Opportunistic Networks: A Fuzzy-Based Approach. In 2017 IEEE 31st International
Conference on Advanced Information Networking and Applications (AINA), pages 278–
284. IEEE, mar 2017. ISBN 978-1-5090-6029-0. doi:10.1109/AINA.2017.118.

[44] Davidson, S. B., Garcia-Molina, H., and Skeen, D. Consistency in a Partitioned Network:
A Survey. ACM Comput. Surv., 17(3):341–370, September 1985. ISSN 0360-0300.
doi:10.1145/5505.5508.

[45] Derhab, A. and Badache, N. A pull-based service replication protocol in mobile ad hoc
networks. Transactions on Emerging Telecommunications Technologies, 18(1):1–11,
2007. doi:10.1002/ett.1080.

[46] Dey, A. K. Understanding and Using Context. Personal Ubiquitous Comput., 5(1):4–7,
January 2001. ISSN 1617-4909. doi:10.1007/s007790170019.

[47] Dijkstra, E. W., Feijen, W. H. J., and van Gasteren, A. J. M. Derivation of a termination
detection algorithm for distributed computations. In Broy, M., editor, Control Flow and
Data Flow: Concepts of Distributed Programming, pages 507–512. Springer Berlin
Heidelberg, 1986. ISBN 978-3-642-82921-5.

http://dx.doi.org/10.1016/S0020-0190(98)00122-7
http://dl.acm.org/citation.cfm?id=857204.858261
http://dl.acm.org/citation.cfm?id=857204.858261
http://dx.doi.org/10.1145/964725.633043
http://dx.doi.org/10.1109/MC.2004.1266295
http://dx.doi.org/https://doi.org/10.1016/j.pmcj.2009.04.001
http://dx.doi.org/10.1109/AINA.2017.118
http://dx.doi.org/10.1145/5505.5508
http://dx.doi.org/10.1002/ett.1080
http://dx.doi.org/10.1007/s007790170019


References 249

[48] Dogdu, E. Semantic web in ehealth. In Proceedings of the 47th Annual Southeast
Regional Conference, ACM-SE 47, pages 73:1–73:4, New York, NY, USA, 2009. ACM.
ISBN 978-1-60558-421-8. doi:10.1145/1566445.1566542.

[49] Dustdar, S. and Juszczyk, L. Dynamic replication and synchronization of web services
for high availability in mobile ad-hoc networks. Service Oriented Computing and
Applications, 1(1):19–33, apr 2007. ISSN 1863-2386. doi:10.1007/s11761-007-0006-z.

[50] Erl, T. SOA: Principles of Service Design. Prentice Hall, 1st edition, 2007. ISBN
978-0132344821.

[51] Erl, T. SOA design patterns. Prentice Hall PTR, 1st edition, 2008. ISBN 978-
0136135166.

[52] Fernando, N., Loke, S. W., and Rahayu, W. Mobile cloud computing: A survey.
Future Generation Computer Systems, 29(1):84 – 106, 2013. ISSN 0167-739X.
doi:10.1016/j.future.2012.05.023.

[53] Garcia-Molina, H. Elections in a distributed computing system. IEEE Transactions on
Computers, C-31(1):48–59, 1982. ISSN 0018-9340. doi:10.1109/TC.1982.1675885.

[54] Guerraoui, R. and Schiper, A. Software-based replication for fault tolerance. Computer,
30(4):68–74, Apr 1997. ISSN 0018-9162. doi:10.1109/2.585156.

[55] Guerrero-Contreras, G., Garrido, J. L., Balderas-Díaz, S., and Rodríguez-Domínguez, C.
A context-aware architecture supporting service availability in mobile cloud computing.
IEEE Transactions on Services Computing, 10(6):956–968, Nov 2017. ISSN 1939-1374.
doi:10.1109/TSC.2016.2540629.

[56] Guerrero-Contreras, G., Navarro-Galindo, J. L., Samos, J., and Garrido, J. L. A col-
laborative semantic annotation system in health: towards a SOA design for knowl-
edge sharing in ambient intelligence. Mobile Information Systems, 2017, 2017.
doi:10.1155/2017/4759572.

[57] Gupta, I., Renesse, R. v., and Birman, K. P. A Probabilistically Correct Leader Election
Protocol for Large Groups. In Proceedings of the 14th International Conference on
Distributed Computing, DISC ’00, pages 89–103, London, UK, UK, 2000. Springer-
Verlag. ISBN 3-540-41143-7.

[58] Hamdy, M. and König-Ries, B. A service distribution protocol for mobile ad hoc net-
works. In Proceedings of the 5th international conference on Pervasive services - ICPS
’08, page 141, New York, New York, USA, 2008. ACM Press. ISBN 9781605581354.
doi:10.1145/1387269.1387293.

[59] Hamdy, M. and König-Ries, B. The Service Distribution Protocol for MANETs - Criteria
and Performance Analysis. In Kim T., F. W. C., editor, Communications in Computer
and Information Science, volume 48, pages 467–479. Springer Berlin Heidelberg, 2009.
ISBN 9783642051968. doi:10.1007/978-3-642-05197-5_34.

http://dx.doi.org/10.1145/1566445.1566542
http://dx.doi.org/10.1007/s11761-007-0006-z
http://dx.doi.org/10.1016/j.future.2012.05.023
http://dx.doi.org/10.1109/TC.1982.1675885
http://dx.doi.org/10.1109/2.585156
http://dx.doi.org/10.1109/TSC.2016.2540629
http://dx.doi.org/10.1155/2017/4759572
http://dx.doi.org/10.1145/1387269.1387293
http://dx.doi.org/10.1007/978-3-642-05197-5_34


250 References

[60] Hamdy, M., Derhab, A., and König-Ries, B. A Comparison on MANETs’ Service
Replication Schemes: Interest versus Topology Prediction. In Özcan, A., Chaki, N.,
and Nagamalai, D., editors, Communications in Computer and Information Science,
volume 84 of Communications in Computer and Information Science, pages 202–216.
Springer Berlin Heidelberg, Ankara, 2010. ISBN 9783642141706. doi:10.1007/978-3-
642-14171-3_17.

[61] Hamed, T., Ernst, J. B., and Kremer, S. C. A Survey and Taxonomy of Classifiers of
Intrusion Detection Systems, pages 21–39. Springer International Publishing, Cham,
2018. doi:10.1007/978-3-319-58424-9_2.

[62] Hara, T. Replica Allocation Methods in Ad Hoc Networks with Data Up-
date. Mobile Networks and Applications, 8(4):343–354, 2003. ISSN 1383469X.
doi:10.1023/A:1024523411884.

[63] Hara, T. and Madria, S. K. Consistency Management Strategies for Data Replication in
Mobile Ad Hoc Networks. IEEE Transactions on Mobile Computing, 8(7):950–967, jul
2009. ISSN 1536-1233. doi:10.1109/TMC.2008.150.

[64] Herrmann, K. Self-organized Service Placement in Ambient Intelligence Environ-
ments. ACM Trans. Auton. Adapt. Syst., 5(2):6:1–6:39, May 2010. ISSN 1556-4665.
doi:10.1145/1740600.1740602.

[65] Hill, M. D. What is Scalability? SIGARCH Comput. Archit. News, 18(4):18–21,
December 1990. ISSN 0163-5964. doi:10.1145/121973.121975.

[66] Hirsch, D. and Madria, S. A Resource-Efficient Adaptive Caching Scheme for Mobile Ad
Hoc Networks. In 2010 29th IEEE Symposium on Reliable Distributed Systems, pages 64–
71, New Delhi, oct 2010. IEEE. ISBN 978-0-7695-4250-8. doi:10.1109/SRDS.2010.16.

[67] Hirschfeld, R., Costanza, P., and Nierstrasz, O. M. Context-oriented programming.
Journal of Object technology, 7(3):125–151, 2008. doi:10.5381/jot.2008.7.3.a4.

[68] Hong, X., Gerla, M., Pei, G., and Chiang, C.-C. A group mobility model for ad hoc
wireless networks. In Proceedings of the 2Nd ACM International Workshop on Modeling,
Analysis and Simulation of Wireless and Mobile Systems, MSWiM ’99, pages 53–60.
ACM, 1999. ISBN 1-58113-173-9. doi:10.1145/313237.313248.

[69] Horizon 2020. Work Programme 2018-2020 - Secure societies - Protecting freedom and
security of Europe and its citizens. http://ec.europa.eu/research/participants/data/ref/
h2020/wp/2018-2020/main/h2020-wp1820-security_en.pdf. Accessed: 16/05/2018.

[70] Hossain, E., Chow, G., Leung, V. C., McLeod, R. D., Mišić, J., Wong, V. W.,
and Yang, O. Vehicular telematics over heterogeneous wireless networks: A
survey. Computer Communications, 33(7):775 – 793, 2010. ISSN 0140-3664.
doi:https://doi.org/10.1016/j.comcom.2009.12.010.

[71] Huerta-Canepa, G. and Lee, D. A Virtual Cloud Computing Provider for Mobile Devices.
In Proceedings of the 1st ACM Workshop on Mobile Cloud Computing &#38; Services:
Social Networks and Beyond, MCS ’10, pages 6:1–6:5, New York, NY, USA, 2010.
ACM. ISBN 978-1-4503-0155-8. doi:10.1145/1810931.1810937.

http://dx.doi.org/10.1007/978-3-642-14171-3_17
http://dx.doi.org/10.1007/978-3-642-14171-3_17
http://dx.doi.org/10.1007/978-3-319-58424-9_2
http://dx.doi.org/10.1023/A:1024523411884
http://dx.doi.org/10.1109/TMC.2008.150
http://dx.doi.org/10.1145/1740600.1740602
http://dx.doi.org/10.1145/121973.121975
http://dx.doi.org/10.1109/SRDS.2010.16
http://dx.doi.org/10.5381/jot.2008.7.3.a4
http://dx.doi.org/10.1145/313237.313248
http://ec.europa.eu/research/participants/data/ref/h2020/wp/2018-2020/main/h2020-wp1820-security_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/wp/2018-2020/main/h2020-wp1820-security_en.pdf
http://dx.doi.org/https://doi.org/10.1016/j.comcom.2009.12.010
http://dx.doi.org/10.1145/1810931.1810937


References 251

[72] Hunkeler, U., Truong, H. L., and Stanford-Clark, A. MQTT-S - A publish/subscribe
protocol for Wireless Sensor Networks. In Communication Systems Software and
Middleware and Workshops, 2008. COMSWARE 2008. 3rd International Conference on,
pages 791–798, Jan 2008. doi:10.1109/COMSWA.2008.4554519.

[73] IBM. An architectural blueprint for Autonomic Computing. IBM White Paper, 31:1–6,
2006.

[74] IGI Global. Availability definition. https://www.igi-global.com/dictionary/
service-availability/44258. Accessed: 22/04/2018.

[75] Inaba, T., Elmazi, D., Liu, Y., Sakamoto, S., Barolli, L., and Uchida, K. Integrating
Wireless Cellular and Ad-Hoc Networks Using Fuzzy Logic Considering Node Mobility
and Security. In 2015 IEEE 29th International Conference on Advanced Information
Networking and Applications Workshops, pages 54–60. IEEE, mar 2015. ISBN 978-1-
4799-1775-4. doi:10.1109/WAINA.2015.116.

[76] ISO/IEC 15288:2002. Systems and software engineering – System life cycle processes.
https://www.iso.org/standard/27166.html. Accessed: 25/04/2018.

[77] ISO/IEC/IEEE42010:2011. Systems and software engineering — Architecture descrip-
tion. https://www.iso.org/standard/50508.html. Accessed: 21/04/2018.

[78] Issariyakul, T. and Hossain, E. Introduction to Network Simulator NS2. Springer Pub-
lishing Company, Incorporated, 2nd edition, 2011. ISBN 1461414059, 9781461414056.

[79] Jacquet, P., Muhlethaler, P., Clausen, T., Laouiti, A., Qayyum, A., and Viennot, L.
Optimized link state routing protocol for ad hoc networks. In Proceedings. IEEE
International Multi Topic Conference, 2001. IEEE INMIC 2001. Technology for the 21st
Century., pages 62–68, 2001. doi:10.1109/INMIC.2001.995315.

[80] Jae-Ho Choi, Kyu-Sun Shim, SangKeun Lee, and Kun-Lung Wu. Handling Selfishness
in Replica Allocation over a Mobile Ad Hoc Network. IEEE Transactions on Mobile
Computing, 11(2):278–291, feb 2012. ISSN 1536-1233. doi:10.1109/TMC.2011.57.

[81] JSim. Website. http://www.physiome.org/jsim/. Accessed: 21/04/2018.

[82] Kakousis, K., Paspallis, N., and Papadopoulos, G. A. A Survey of Software Adaptation
in Mobile and Ubiquitous Computing. Enterp. Inf. Syst., 4(4):355–389, November 2010.
ISSN 1751-7575. doi:10.1080/17517575.2010.509814.

[83] Kataria, P. and Juric, R. Sharing e-Health Information through Ontological Layering. In
2010 43rd Hawaii International Conference on System Sciences, pages 1–10, Jan 2010.
doi:10.1109/HICSS.2010.338.

[84] Kephart, J. O. and Chess, D. M. The vision of Autonomic Computing. Computer, 36(1):
41–50, Jan 2003. ISSN 0018-9162. doi:10.1109/MC.2003.1160055.

[85] Ketfi, A., Belkhatir, N., and Cunin, P.-Y. Automatic Adaptation of Component-based
Software: Issues and Experiences. In Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications - Volume 3, PDPTA
’02, pages 1365–1371. CSREA Press, 2002. ISBN 1-892512-89-0.

http://dx.doi.org/10.1109/COMSWA.2008.4554519
https://www.igi-global.com/dictionary/service-availability/44258
https://www.igi-global.com/dictionary/service-availability/44258
http://dx.doi.org/10.1109/WAINA.2015.116
https://www.iso.org/standard/27166.html
https://www.iso.org/standard/50508.html
http://dx.doi.org/10.1109/INMIC.2001.995315
http://dx.doi.org/10.1109/TMC.2011.57
http://www.physiome.org/jsim/
http://dx.doi.org/10.1080/17517575.2010.509814
http://dx.doi.org/10.1109/HICSS.2010.338
http://dx.doi.org/10.1109/MC.2003.1160055


252 References

[86] Kim, S.-K., Yoon, J.-H., Lee, K.-J., Choi, J.-H., and Yang, S.-B. A scalable mobility-
based replica allocation scheme in a mobile ad-hoc network. Telecommunication Systems,
60(2):239–250, oct 2015. ISSN 1018-4864. doi:10.1007/s11235-015-0026-5.

[87] Knodel, J. and Naab, M. What Is Architecture Evaluation?, pages 21–34. Springer
International Publishing, Cham, 2016. ISBN 978-3-319-34177-4. doi:10.1007/978-3-
319-34177-4_3.

[88] Knodel, J. and Naab, M. How to Perform the Solution Adequacy Check (SAC)?, pages
59–72. Springer International Publishing, Cham, 2016. doi:10.1007/978-3-319-34177-
4_6.

[89] Kordafshari, M. S., Gholipour, M., Mosakhani, M., Haghighat, A. T., and Dehghan,
M. Modified bully election algorithm in distributed systems. In Proceedings of the 9th
WSEAS International Conference on Computers, ICCOMP’05, pages 10:1–10:6. World
Scientific and Engineering Academy and Society (WSEAS), 2005. ISBN 960-8457-29-7.

[90] Krill, P. Make way for SOA 2.0. www.infoworld.com/t/architecture/
make-way-soa-20-420, 2006. Accessed: 24/04/2018.

[91] Kumar, P. J. and Ilango, P. An Optimized Replica Allocation Algorithm Amidst of
Selfish Nodes in MANET. Wireless Personal Communications, 94(4):2719–2738, jun
2017. ISSN 0929-6212. doi:10.1007/s11277-016-3928-y.

[92] Lacage, M. and Henderson, T. R. Yet another network simulator. In Proceeding from
the 2006 Workshop on ns-2: The IP Network Simulator, WNS2 ’06. ACM, 2006. ISBN
1-59593-508-8. doi:10.1145/1190455.1190467.

[93] Laplante, P. A., Zhang, J., and Voas, J. What’s in a Name? Distinguishing be-
tween SaaS and SOA. IT Professional, 10(3):46–50, 2008. ISSN 1520-9202.
doi:10.1109/MITP.2008.60.

[94] Leite, J., Oquendo, F., and Batista, T. SysADL: A SysML Profile for Software Architec-
ture Description. In Software Architecture, pages 106–113. Springer Berlin Heidelberg,
2013. ISBN 978-3-642-39031-9. doi:10.1007/978-3-642-39031-9_9.

[95] Little, M. C. and McCue, D. L. The replica management system: a scheme for flexible
and dynamic replication. In Proceedings of 2nd International Workshop on Configurable
Distributed Systems, pages 46–57, 1994. doi:10.1109/IWCDS.1994.289936.

[96] Liu, S., Ölveczky, P. C., and Meseguer, J. Formal Analysis of Leader Election in
MANETs Using Real-Time Maude. In Software, Services, and Systems, pages 231–252.
Springer International Publishing, 2015. doi:10.1007/978-3-319-15545-6_16.

[97] Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., and Tang, A. What Industry Needs
from Architectural Languages: A Survey. IEEE Transactions on Software Engineering,
39(6):869–891, June 2013. ISSN 0098-5589. doi:10.1109/TSE.2012.74.

[98] Malpani, N., Welch, J. L., and Vaidya, N. Leader election algorithms for mobile
ad hoc networks. In Proceedings of the 4th international workshop on Discrete
algorithms and methods for mobile computing and communications - DIALM ’00,

http://dx.doi.org/10.1007/s11235-015-0026-5
http://dx.doi.org/10.1007/978-3-319-34177-4_3
http://dx.doi.org/10.1007/978-3-319-34177-4_3
http://dx.doi.org/10.1007/978-3-319-34177-4_6
http://dx.doi.org/10.1007/978-3-319-34177-4_6
www.infoworld.com/t/architecture/make-way-soa-20-420
www.infoworld.com/t/architecture/make-way-soa-20-420
http://dx.doi.org/10.1007/s11277-016-3928-y
http://dx.doi.org/10.1145/1190455.1190467
http://dx.doi.org/10.1109/MITP.2008.60
http://dx.doi.org/10.1007/978-3-642-39031-9_9
http://dx.doi.org/10.1109/IWCDS.1994.289936
http://dx.doi.org/10.1007/978-3-319-15545-6_16
http://dx.doi.org/10.1109/TSE.2012.74


References 253

pages 96–103, New York, New York, USA, 2000. ACM Press. ISBN 1581133014.
doi:10.1145/345848.345871.

[99] Marques, A., Mira da Silva, F., and Rocha, R. P2P over Mobile Ad-hoc Networks. In
2009 6th IEEE Annual Communications Society Conference on Sensor, Mesh and Ad
Hoc Communications and Networks Workshops, pages 1–3. IEEE, jun 2009. ISBN
978-1-4244-3938-6. doi:10.1109/SAHCNW.2009.5172952.

[100] Meier, R. Communication Paradigms for Mobile Computing. SIGMOBILE
Mob. Comput. Commun. Rev., 6(4):56–58, October 2002. ISSN 1559-1662.
doi:10.1145/643550.643555.

[101] Michelson, B. M. Event-driven architecture overview. Patricia Seybold Group, 2, 2006.

[102] Miorandi, D., Sicari, S., Pellegrini, F. D., and Chlamtac, I. Internet of things: Vision,
applications and research challenges. Ad Hoc Networks, 10(7):1497 – 1516, 2012. ISSN
1570-8705. doi:10.1016/j.adhoc.2012.02.016.

[103] Mohammed, N., Otrok, H., Wang, L., Debbabi, M., and Bhattacharya, P. Mechanism
Design-Based Secure Leader Election Model for Intrusion Detection in MANET. IEEE
Transactions on Dependable and Secure Computing, 8(1):89–103, jan 2011. ISSN
1545-5971. doi:10.1109/TDSC.2009.22.

[104] Mohler, B. J., Thompson, W. B., Creem-Regehr, S. H., Pick, H. L., and Warren, W. H.
Visual flow influences gait transition speed and preferred walking speed. Experimental
Brain Research, 181(2):221–228, 2007. ISSN 1432-1106. doi:10.1007/s00221-007-
0917-0. URL https://doi.org/10.1007/s00221-007-0917-0.

[105] Muldoon, C., O’Hare, G. M., O’Grady, M. J., Tynan, R., and Trigoni, N.
Distributed constraint optimisation for resource limited sensor networks. Sci-
ence of Computer Programming, 78(5):583 – 593, 2013. ISSN 0167-6423.
doi:https://doi.org/10.1016/j.scico.2012.10.005.

[106] Nadareishvili, I., Mitra, R., McLarty, M., and Amundsen, M. Microservice Architecture:
Aligning Principles, Practices, and Culture. " O’Reilly Media, Inc.", 2016. ISBN
978-1491956250.

[107] Navarro-Galindo, J. L. and Samos, J. The FLERSA tool: adding semantics to a web
content management system. International Journal of Web Information Systems, 8(1):
73–126, 2012. doi:10.1108/17440081211222609.

[108] Nayyar, A. and Singh, R. A Comprehensive Review of Simulation Tools for Wireless
Sensor Networks (WSNs). Journal of Wireless Networking and Communications, 5(1):
19–47, 2015. ISSN 2167-7336. doi:10.5923/j.jwnc.20150501.03.

[109] NetSim. Website. http://www.boson.com/netsim-cisco-network-simulator. Accessed:
21/04/2018.

[110] Neyem, A., Ochoa, S. F., Pino, J. A., and Franco, R. D. A reusable structural design for
mobile collaborative applications. Journal of Systems and Software, 85(3):511 – 524,
2012. ISSN 0164-1212. doi:https://doi.org/10.1016/j.jss.2011.05.046.

http://dx.doi.org/10.1145/345848.345871
http://dx.doi.org/10.1109/SAHCNW.2009.5172952
http://dx.doi.org/10.1145/643550.643555
http://dx.doi.org/10.1016/j.adhoc.2012.02.016
http://dx.doi.org/10.1109/TDSC.2009.22
http://dx.doi.org/10.1007/s00221-007-0917-0
http://dx.doi.org/10.1007/s00221-007-0917-0
https://doi.org/10.1007/s00221-007-0917-0
http://dx.doi.org/https://doi.org/10.1016/j.scico.2012.10.005
http://dx.doi.org/10.1108/17440081211222609
http://dx.doi.org/10.5923/j.jwnc.20150501.03
http://www.boson.com/netsim-cisco-network-simulator
http://dx.doi.org/https://doi.org/10.1016/j.jss.2011.05.046


254 References

[111] Noguera, M., Hurtado, M. V., Rodríguez, M. L., Chung, L., and Garrido, J. L.
Ontology-driven analysis of UML-based collaborative processes using OWL-DL and
CPN. Science of Computer Programming, 75(8):726 – 760, 2010. ISSN 0167-6423.
doi:https://doi.org/10.1016/j.scico.2009.05.002.

[112] ns-3. Software Architecture. https://www.nsnam.org/docs/design.pdf, . Accessed:
26/04/2018.

[113] ns-3. Detailed description of Two-Ray Ground propagation loss model.
https://www.nsnam.org/doxygen/classns3_1_1_two_ray_ground_propagation_
loss_model.html#details, . Accessed: 26/04/2018.

[114] ns-3. Website. https://www.nsnam.org/, . Accessed: 21/04/2018.

[115] O’Brien, L., Merson, P., and Bass, L. Quality Attributes for Service-Oriented Archi-
tectures. In Proceedings of the International Workshop on Systems Development in
SOA Environments, SDSOA ’07, page 3, Washington, DC, USA, 2007. IEEE Computer
Society. ISBN 0-7695-2960-7. doi:10.1109/SDSOA.2007.10.

[116] O’Grady, M. J., Muldoon, C., Dragone, M., Tynan, R., and O’Hare, G. M. P. Towards
evolutionary ambient assisted living systems. Journal of Ambient Intelligence and
Humanized Computing, 1(1):15–29, Mar 2010. ISSN 1868-5145. doi:10.1007/s12652-
009-0003-5.

[117] OMNeT++. Website. https://www.omnetpp.org/. Accessed: 21/04/2018.

[118] OPNET. Website. https://www.riverbed.com/gb/products/steelcentral/opnet.html. Ac-
cessed: 21/04/2018.

[119] Oquendo, F., Leite, J., and Batista, T. Specifying Architecture Behavior with SysADL.
In 2016 13th Working IEEE/IFIP Conference on Software Architecture (WICSA), pages
140–145, 2016. doi:10.1109/WICSA.2016.40.

[120] Oquendo, F. pi-ADL: An Architecture Description Language Based on the Higher-
order Typed pi-calculus for Specifying Dynamic and Mobile Software Architec-
tures. SIGSOFT Softw. Eng. Notes, 29(3):1–14, May 2004. ISSN 0163-5948.
doi:10.1145/986710.986728.

[121] Oquendo, F., Leite, J., and Batista, T. Executing Software Architecture Descriptions with
SysADL. In Software Architecture, pages 129–137. Springer International Publishing,
2016. ISBN 978-3-319-48992-6. doi:10.1007/978-3-319-48992-6_9.

[122] Organisation for Economic Co-operation and Development. OECD Glossary of Statisti-
cal Terms - Ubiquitous Computing Definition. https://stats.oecd.org/glossary/detail.asp?
ID=6093, 2003. Accessed: 15/06/2018.

[123] Oxford Dictionary. Efficient definition. https://en.oxforddictionaries.com/definition/
efficient, . Accessed: 01/05/2018.

[124] Oxford Dictionary. Efficiency definition. https://en.oxforddictionaries.com/definition/
efficiency, . Accessed: 01/05/2018.

http://dx.doi.org/https://doi.org/10.1016/j.scico.2009.05.002
https://www.nsnam.org/docs/design.pdf
https://www.nsnam.org/doxygen/classns3_1_1_two_ray_ground_propagation_loss_model.html#details
https://www.nsnam.org/doxygen/classns3_1_1_two_ray_ground_propagation_loss_model.html#details
https://www.nsnam.org/
http://dx.doi.org/10.1109/SDSOA.2007.10
http://dx.doi.org/10.1007/s12652-009-0003-5
http://dx.doi.org/10.1007/s12652-009-0003-5
https://www.omnetpp.org/
https://www.riverbed.com/gb/products/steelcentral/opnet.html
http://dx.doi.org/10.1109/WICSA.2016.40
http://dx.doi.org/10.1145/986710.986728
http://dx.doi.org/10.1007/978-3-319-48992-6_9
https://stats.oecd.org/glossary/detail.asp?ID=6093
https://stats.oecd.org/glossary/detail.asp?ID=6093
https://en.oxforddictionaries.com/definition/efficient
https://en.oxforddictionaries.com/definition/efficient
https://en.oxforddictionaries.com/definition/efficiency
https://en.oxforddictionaries.com/definition/efficiency


References 255

[125] Pandey, R. K. Architectural Description Languages (ADLs) vs UML: A Re-
view. SIGSOFT Softw. Eng. Notes, 35(3):1–5, 2010. ISSN 0163-5948.
doi:10.1145/1764810.1764828.

[126] Papazoglou, M. P., Traverso, P., Dustdar, S., and Leymann, F. Service-Oriented Com-
puting: State of the Art and Research Challenges. Computer, 40(11):38–45, Nov 2007.
ISSN 0018-9162. doi:10.1109/MC.2007.400.

[127] Park, S. A Safe Election Protocol based on an Unreliable Failure Detector in Distributed
Systems. Indian Journal of Science and Technology, 8(34), 2015. ISSN 0974-5645.
doi:10.17485/ijst/2015/v8i34/86665.

[128] Park, V. D. and Corson, M. S. A highly adaptive distributed routing algorithm for mobile
wireless networks. In INFOCOM ’97. Sixteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Driving the Information Revolution., Proceed-
ings IEEE, volume 3, pages 1405–1413, 1997. doi:10.1109/INFCOM.1997.631180.

[129] Pei, G., Gerla, M., and Chen, T.-W. Fisheye state routing: a routing scheme for ad hoc
wireless networks. In 2000 IEEE International Conference on Communications. ICC
2000. Global Convergence Through Communications. Conference Record, volume 1,
pages 70–74, 2000. doi:10.1109/ICC.2000.853066.

[130] Perkins, C. E. and Bhagwat, P. Highly Dynamic Destination-Sequenced Distance-
Vector Routing (DSDV) for Mobile Computers. SIGCOMM Comput. Commun. Rev.,
24(4):234–244, 1994. ISSN 0146-4833. doi:10.1145/190809.190336. URL http:
//doi.acm.org/10.1145/190809.190336.

[131] Preuveneers, D., Yasar, A.-U.-H., and Berbers, Y. Architectural styles for opportunistic
mobile communication: requirements and design patterns. In Mobility Conference, 2008.
doi:10.1145/1506270.1506326.

[132] Psannis, K., Xinogalos, S., and Sifaleras, A. Convergence of Internet of things and
mobile cloud computing. Systems Science & Control Engineering, 2(1):476–483, 2014.
doi:10.1080/21642583.2014.913213.

[133] QualNet. Website. https://web.scalable-networks.com/
qualnet-network-simulator-software. Accessed: 21/04/2018.

[134] Raychoudhury, V., Cao, J., Niyogi, R., Wu, W., and Lai, Y. Top k-leader election in
mobile ad hoc networks. Pervasive and Mobile Computing, 13:181–202, aug 2014.
ISSN 15741192. doi:10.1016/j.pmcj.2013.10.003.

[135] Rodríguez-Domínguez, C., Benghazi, K., Noguera, M., Garrido, J. L., Rodríguez, M. L.,
and Ruiz-López, T. A Communication Model to Integrate the Request-Response and
the Publish-Subscribe Paradigms into Ubiquitous Systems. Sensors, 12(6):7648–7668,
2012. ISSN 1424-8220. doi:10.3390/s120607648.

[136] Roman, G. C., Julien, C., and Huang, Q. Network abstractions for context-aware
mobile computing. In Proceedings of the 24th International Conference on Software
Engineering. ICSE 2002, pages 363–373, May 2002. doi:10.1145/581384.581385.

http://dx.doi.org/10.1145/1764810.1764828
http://dx.doi.org/10.1109/MC.2007.400
http://dx.doi.org/10.17485/ijst/2015/v8i34/86665
http://dx.doi.org/10.1109/INFCOM.1997.631180
http://dx.doi.org/10.1109/ICC.2000.853066
http://dx.doi.org/10.1145/190809.190336
http://doi.acm.org/10.1145/190809.190336
http://doi.acm.org/10.1145/190809.190336
http://dx.doi.org/10.1145/1506270.1506326
http://dx.doi.org/10.1080/21642583.2014.913213
https://web.scalable-networks.com/qualnet-network-simulator-software
https://web.scalable-networks.com/qualnet-network-simulator-software
http://dx.doi.org/10.1016/j.pmcj.2013.10.003
http://dx.doi.org/10.3390/s120607648
http://dx.doi.org/10.1145/581384.581385


256 References

[137] Russell, S. J. and Norvig, P. Artificial Intelligence: A Modern Approach. Pearson, 3rd
edition, 2009. ISBN 978-0136042594.

[138] Ryu, B.-G., Choi, J.-H., and Lee, S. Impact of node distance on selfish replica allo-
cation in a mobile ad-hoc network. Ad Hoc Networks, 11(8):2187–2202, nov 2013.
doi:10.1016/j.adhoc.2013.05.001.

[139] Ryu, B.-G., Ryu, W.-J., Lee, Y.-K., and Lee, S. Selfish replica allocation in a mobile ad
hoc network with data update. In 2015 International Conference on Big Data and Smart
Computing (BIGCOMP), pages 142–149. IEEE, feb 2015. ISBN 978-1-4799-7303-3.
doi:10.1109/35021BIGCOMP.2015.7072824.

[140] Sabat, S. and Kadam, S. Adaptive Energy aware reputation based leader elec-
tion for IDS in MANET. In 2014 International Conference on Communication
and Signal Processing, pages 891–894. IEEE, apr 2014. ISBN 978-1-4799-3358-7.
doi:10.1109/ICCSP.2014.6949972.

[141] Salehie, M. and Tahvildari, L. Self-adaptive Software: Landscape and Research Chal-
lenges. ACM Trans. Auton. Adapt. Syst., 4(2):14:1–14:42, 2009. ISSN 1556-4665.
doi:10.1145/1516533.1516538.

[142] Satyanarayanan, M. Fundamental Challenges in Mobile Computing. In Proceedings
of the Fifteenth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’96, pages 1–7, New York, NY, USA, 1996. ACM. ISBN 0-89791-800-2.
doi:10.1145/248052.248053.

[143] Satyanarayanan, M. Pervasive computing: vision and challenges. IEEE Personal
Communications, 8(4):10–17, Aug 2001. ISSN 1070-9916. doi:10.1109/98.943998.

[144] Schmidt, A., Beigl, M., and Gellersen, H.-W. There is more to context than location.
Computers & Graphics, 23(6):893 – 901, 1999. ISSN 0097-8493. doi:10.1016/S0097-
8493(99)00120-X.

[145] Seo, C. and Zeigler, B. P. Devs namespace for interoperable devs/soa. In Proceed-
ings of the 2009 Winter Simulation Conference (WSC), pages 1311–1322, Dec 2009.
doi:10.1109/WSC.2009.5429701.

[146] Shannon, R. E. Introduction to the Art and Science of Simulation. In Proceedings of the
30th Conference on Winter Simulation, WSC ’98, pages 7–14, Los Alamitos, CA, USA,
1998. IEEE Computer Society Press. ISBN 0-7803-5134-7.

[147] Shelby, Z., Hartke, K., and Bormann, C. The constrained application protocol (CoAP).
2014.

[148] Shepherd, C. Theoretical design of primary and secondary cells. Part 3 - battery discharge
equation. Technical report, NAVAL RESEARCH LAB WASHINGTON DC, 1963.

[149] Shi, K. and Chen, H. RHPMAN: Replication in Highly Partitioned Mobile Ad Hoc
Networks. International Journal of Distributed Sensor Networks, 10(6):819372, jun
2014. ISSN 1550-1477. doi:10.1155/2014/819372.

http://dx.doi.org/10.1016/j.adhoc.2013.05.001
http://dx.doi.org/10.1109/35021BIGCOMP.2015.7072824
http://dx.doi.org/10.1109/ICCSP.2014.6949972
http://dx.doi.org/10.1145/1516533.1516538
http://dx.doi.org/10.1145/248052.248053
http://dx.doi.org/10.1109/98.943998
http://dx.doi.org/10.1016/S0097-8493(99)00120-X
http://dx.doi.org/10.1016/S0097-8493(99)00120-X
http://dx.doi.org/10.1109/WSC.2009.5429701
http://dx.doi.org/10.1155/2014/819372


References 257

[150] Shila, D. M., Shen, W., Cheng, Y., Tian, X., and a. X. S. Shen. AMCloud: Toward a Se-
cure Autonomic Mobile Ad Hoc Cloud Computing System. IEEE Wireless Communica-
tions, 24(2):74–81, April 2017. ISSN 1536-1284. doi:10.1109/MWC.2016.1500119RP.

[151] Sommer, N. L. Service Provision in Disconnected Mobile Ad Hoc Networks. In Mobile
Ubiquitous Computing, Systems, Services and Technologies, 2007. UBICOMM ’07. Inter-
national Conference on, pages 125–130, Nov 2007. doi:10.1109/UBICOMM.2007.24.

[152] Sørensen, C.-F., Wu, M., Sivaharan, T., Blair, G. S., Okanda, P., Friday, A., and Duran-
Limon, H. A Context-aware Middleware for Applications in Mobile Ad Hoc Environ-
ments. In Proceedings of the 2Nd Workshop on Middleware for Pervasive and Ad-hoc
Computing, MPAC ’04, pages 107–110, New York, NY, USA, 2004. ACM. ISBN
1-58113-951-9. doi:10.1145/1028509.1028510.

[153] Sun, X., Zheng, J., Liu, Q., and Liu, Y. Dynamic Data Replication Based on Ac-
cess Cost in Distributed Systems. 2009 Fourth International Conference on Com-
puter Sciences and Convergence Information Technology, pages 829–834, 2009.
doi:10.1109/ICCIT.2009.198.

[154] SysML. Forum FAQ website. http://sysmlforum.com/sysml-faq/. Accessed: 21/04/2018.

[155] Szyperski, C. Component Software: Beyond Object-oriented Programming. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 1998. ISBN 0-201-17888-
5.

[156] Tanenbaum, A. S. and Van Steen, M. Distributed systems: principles and paradigms.
Prentice-Hall, 2nd edition, 2007. ISBN 153028175X.

[157] Taylor, H., Yochem, A., Phillips, L., and Martinez, F. Event-driven architecture: how
SOA enables the real-time enterprise. Pearson Education, 2009. ISBN 978-0321322111.

[158] Thönes, J. Microservices. IEEE Software, 32(1):116–116, 2015. ISSN 0740-7459.
doi:10.1109/MS.2015.11.

[159] Tortorella, M. Reliability, maintainability, and supportability: best practices
for systems engineers. John Wiley & Sons, 2015. ISBN 9781118858882.
doi:10.1002/9781119058823.

[160] Tremblay, O., Dessaint, L. A., and Dekkiche, A. I. A generic battery model for the
dynamic simulation of hybrid electric vehicles. In 2007 IEEE Vehicle Power and
Propulsion Conference, pages 284–289, 2007. doi:10.1109/VPPC.2007.4544139.

[161] Tsuchiya, P. F. The landmark hierarchy: A new hierarchy for routing in very large
networks. SIGCOMM Comput. Commun. Rev., 18(4):35–42, 1988. ISSN 0146-4833.
doi:10.1145/52325.52329.

[162] Universal Mobile Telecommunicatios System (UMTS). Selection procedures for the
choice of radio transmission technologies of the UMTS. Technical report, European
Telecommunications Standards Institute (ETSI), 1998.

http://dx.doi.org/10.1109/MWC.2016.1500119RP
http://dx.doi.org/10.1109/UBICOMM.2007.24
http://dx.doi.org/10.1145/1028509.1028510
http://dx.doi.org/10.1109/ICCIT.2009.198
http://sysmlforum.com/sysml-faq/
http://dx.doi.org/10.1109/MS.2015.11
http://dx.doi.org/10.1002/9781119058823
http://dx.doi.org/10.1109/VPPC.2007.4544139
http://dx.doi.org/10.1145/52325.52329


258 References

[163] Vasudevan, S., DeCleene, B., Immerman, N., Kurose, J., and Towsley, D. Leader
election algorithms for wireless ad hoc networks. In Proceedings DARPA Information
Survivability Conference and Exposition, pages 261–272. IEEE Comput. Soc, 2003.
ISBN 0-7695-1897-4. doi:10.1109/DISCEX.2003.1194890.

[164] Vasudevan, S., Kurose, J., and Towsley, D. Design and analysis of a leader election
algorithm for mobile ad hoc networks. In Proceedings of the 12th IEEE International
Conference on Network Protocols, 2004. ICNP 2004., pages 350–360. IEEE, 2004.
ISBN 0-7695-2161-4. doi:10.1109/ICNP.2004.1348124.

[165] Venkanna, U. and Leela Velusamy, R. TEA-CBRP: Distributed cluster head election in
MANET by using AHP. Peer-to-Peer Networking and Applications, 9(1):159–170, jan
2016. ISSN 1936-6442. doi:10.1007/s12083-014-0320-0.

[166] Wang, K. H. and Li, B. Efficient and guaranteed service coverage in partitionable
mobile ad-hoc networks. In Proceedings.Twenty-First Annual Joint Conference of the
IEEE Computer and Communications Societies, volume 2, pages 1089–1098, 2002.
doi:10.1109/INFCOM.2002.1019357.

[167] Weiser, M. The Computer for the 21 st Century. Scientific American, 265(3):94–105,
1991. ISSN 00368733, 19467087. URL http://www.jstor.org/stable/24938718.

[168] Weiser, M. and Brown, J. S. The Coming Age of Calm Technology, pages 75–85. Springer
New York, New York, NY, 1997. ISBN 978-1-4612-0685-9. doi:10.1007/978-1-4612-
0685-9_6.

[169] Weyns, D. and Ahmad, T. Claims and Evidence for Architecture-Based Self-adaptation:
A Systematic Literature Review. In Drira, K., editor, Software Architecture, pages 249–
265, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-39031-9.
doi:10.1007/978-3-642-39031-9_22.

[170] Wooldridge, M. An introduction to multiagent systems. John Wiley & Sons, 2nd edition,
2009. ISBN 978-0-470-51946-2.

[171] World Wide Web Consortium (W3C). RDFa Distiller. http://www.w3.org/2007/08/
pyRdfa/, 2016. Accessed: 14/05/2018.

[172] Wu, W., Cao, J. J., Raynal, M., Weigang Wu, Cao, J. J., Raynal, M., Wu, W., Cao,
J. J., Raynal, M., Weigang Wu, Cao, J. J., and Raynal, M. Eventual clusterer: A
modular approach to designing hierarchical consensus protocols in MANETs. IEEE
Transactions on Parallel and Distributed Systems, 20(6):753–765, jun 2009. ISSN
10459219. doi:10.1109/TPDS.2008.266.

[173] Xia, F., Ahmed, A. M., Yang, L. T., Ma, J., and Rodrigues, J. J. Exploiting Social
Relationship to Enable Efficient Replica Allocation in Ad-hoc Social Networks. IEEE
Transactions on Parallel and Distributed Systems, 25(12):3167–3176, dec 2014. ISSN
1045-9219. doi:10.1109/TPDS.2013.2295805.

[174] Xu, L., O’Grady, M. J., O’Hare, G. M. P., and Collier, R. Reliable multihop intra-
cluster communication for wireless sensor networks. In 2014 International Confer-
ence on Computing, Networking and Communications (ICNC), pages 858–863, 2014.
doi:10.1109/ICCNC.2014.6785450.

http://dx.doi.org/10.1109/DISCEX.2003.1194890
http://dx.doi.org/10.1109/ICNP.2004.1348124
http://dx.doi.org/10.1007/s12083-014-0320-0
http://dx.doi.org/10.1109/INFCOM.2002.1019357
http://www.jstor.org/stable/24938718
http://dx.doi.org/10.1007/978-1-4612-0685-9_6
http://dx.doi.org/10.1007/978-1-4612-0685-9_6
http://dx.doi.org/10.1007/978-3-642-39031-9_22
http://www.w3.org/2007/08/pyRdfa/
http://www.w3.org/2007/08/pyRdfa/
http://dx.doi.org/10.1109/TPDS.2008.266
http://dx.doi.org/10.1109/TPDS.2013.2295805
http://dx.doi.org/10.1109/ICCNC.2014.6785450


References 259

[175] Xu, L., Collier, R., and O’Hare, G. M. P. A survey of clustering techniques in wsns and
consideration of the challenges of applying such to 5g iot scenarios. IEEE Internet of
Things Journal, 4(5):1229–1249, 2017. doi:10.1109/JIOT.2017.2726014.

[176] Yang, T.-H., Sun, Y. S., and Lai, F. A Scalable Healthcare Information System Based on
a Service-oriented Architecture. Journal of Medical Systems, 35(3):391–407, Jun 2011.
ISSN 1573-689X. doi:10.1007/s10916-009-9375-5.

[177] Yang Zhang, Liangzhong Yin, Jing Zhao, and Guohong Cao. Balancing the Trade-
Offs between Query Delay and Data Availability in MANETs. IEEE Transactions
on Parallel and Distributed Systems, 23(4):643–650, apr 2012. ISSN 1045-9219.
doi:10.1109/TPDS.2011.222.

[178] Zhang, Y., Ray, S., Cao, G., Porta, T. L., and Basu, P. Data replication in mo-
bile tactical networks. In 2011 - MILCOM 2011 Military Communications Confer-
ence, pages 797–803, Baltimore, MD, nov 2011. IEEE. ISBN 978-1-4673-0081-0.
doi:10.1109/MILCOM.2011.6127774.

http://dx.doi.org/10.1109/JIOT.2017.2726014
http://dx.doi.org/10.1007/s10916-009-9375-5
http://dx.doi.org/10.1109/TPDS.2011.222
http://dx.doi.org/10.1109/MILCOM.2011.6127774




Appendix A

Simulation Result Data



262 Simulation Result Data

Table A.1 Service Availability (%) provided by the different election algoritms evaluated under
Manhattan Grid mobility model.

Service Availability (%) - Manhattan Grid

Nodes Bully Kordafshari No Adaptive Consensus Vasudevan Voting

4 99.65213753 99.65676006 94.75450404 99.44895305 99.73836604 99.00407454

5 99.60214675 99.51946884 86.66188395 99.01283545 99.65832394 98.56814677

6 99.49991525 99.36806203 78.54540518 98.84112148 99.45072151 97.95594173

7 99.33709802 99.14474043 71.05993974 98.09917162 99.20026825 97.61198593

8 99.21727499 99.05685552 64.76969407 97.76750652 98.97250412 97.24647141

9 99.05138865 98.86023921 60.34934938 97.24987393 98.61588503 96.81585844

10 98.93246388 98.63324098 55.90482946 96.59757772 98.20982068 96.55990355

11 98.71994906 98.47081862 51.60159657 95.85820154 97.75107238 96.13147071

12 98.50339138 98.19291263 48.10439408 94.90538248 97.19039014 95.81075588

13 98.29225606 97.90785165 45.60627226 94.22422036 96.54790334 95.4705995

14 98.02203365 97.7849438 43.82438657 93.36129212 95.84870155 95.16206476

15 97.82362763 97.51722743 41.69223933 92.45213795 95.24076151 94.71459697

16 97.61639705 97.28877863 40.13350667 91.58185252 94.44047049 94.38703425

17 97.3740077 97.08964431 38.96589806 91.01205304 93.45071172 94.02704171

18 97.06821475 96.85469129 38.1781266 90.23007153 92.55745561 93.68756253

19 96.76205141 96.6584913 37.31587735 89.32628073 91.58650869 93.49998223

20 96.50252558 96.4906255 36.86376665 88.26880763 90.44869837 93.12159554



263

Table A.2 Service Availability (%) provided by the different election algoritms evaluated under
Random Walk mobility model.

Service Availability (%) - Random Walk

Nodes Bully Kordafshari No Adaptive Consensus Vasudevan Voting

4 99.55921321 99.39779356 90.98992854 99.07861426 99.65806306 98.14583406

5 99.34875669 99.19835115 82.28395507 98.46342772 99.40369724 97.74834842

6 99.17437927 98.93165618 73.71376892 97.74313085 98.98800488 96.94305481

7 99.00506066 98.56263178 66.29885416 96.84112217 98.46884091 96.51968752

8 98.72531759 98.29538504 60.25550193 95.98275621 97.9654705 96.37078031

9 98.40737434 98.01994779 56.17304739 94.69697122 97.30184089 95.70002714

10 98.15983605 97.68946314 53.09431376 93.63791669 96.48934628 95.39484285

11 97.89010264 97.32885606 49.51572068 93.0716211 95.61975098 94.80224345

12 97.52910643 97.13467516 47.87295849 91.3316869 94.78293493 94.42447741

13 97.26252704 96.81168981 45.76114289 90.40191872 93.56021799 94.05389573

14 96.99198812 96.708356 44.48904329 89.15191964 92.49116382 93.70963317

15 96.76072296 96.35411422 43.80683374 88.36387398 91.57242418 93.35471059

16 96.41118985 96.16513844 42.67066614 86.7522682 90.08842975 92.91769691

17 96.15336837 95.91694885 42.41295835 86.03751461 88.97839445 92.69555365

18 95.79623421 95.78673242 41.42136056 85.50146177 87.44258365 92.3385549

19 95.54147421 95.80141218 40.86763913 84.16871188 86.24459248 92.23869424

20 95.19314684 95.6878467 41.14387852 83.04247493 84.82433697 92.08773482



264 Simulation Result Data

Table A.3 Service Availability (%) provided by the different election algoritms evaluated under
RPGM mobility model.

Service Availability (%) - RPGM

Nodes Bully Kordafshari No Adaptive Consensus Vasudevan Voting

4 99.61073894 99.56982093 70.23662344 96.31570721 99.76399158 99.25959107

5 99.43684688 99.07828552 59.30329701 93.91785499 99.40968226 98.2078339

6 99.40544892 99.31425107 49.36963004 94.09562697 98.99656326 98.77017773

7 99.24955641 98.94886708 44.79322611 93.1349446 98.67666749 97.96803527

8 99.13692031 98.92490089 42.5217614 92.48252105 98.12085897 97.93138655

9 99.09935312 98.53807161 38.41411575 92.90206775 97.67154649 97.76869045

10 98.97664252 98.47110551 37.18016133 91.85365614 97.10070577 97.54491088

11 98.79502728 98.37703945 36.00381072 91.43926876 96.20644217 96.97975308

12 98.81800838 98.49983595 34.07594869 91.68704864 95.63949204 97.64543669

13 98.65637362 98.40323793 32.90218992 90.84650461 94.46874694 97.25650788

14 98.45851331 98.30300272 32.85410389 90.69945109 93.31704305 97.14855399

15 98.54872405 98.20954299 31.83666164 91.20152713 92.71795178 97.21008219

16 98.31441358 98.28522407 31.37131645 90.26210447 91.00663922 97.01045028

17 98.02342301 98.06485156 31.41274763 88.88582042 89.14172197 96.51280189

18 98.19718785 98.32257076 31.11460286 89.62241617 88.15072937 96.74818713

19 97.8054458 98.1228391 31.03945317 88.71250542 85.37938314 96.56397074

20 97.40125044 97.98585491 31.1663234 88.01221594 82.55875567 96.48466498



265

Table A.4 Redundant Server Elections (%) caused by the different election algoritms evaluated
under Manhattan Grid mobility model.

Redundant Server Elections (%) - Manhattan Grid

Nodes Bully Kordafshari Consensus Vasudevan Voting

4 1.387406617 1.489361702 5.895078421 0 0.053191489

5 1.52650569 2.363080345 5.936712405 0 0.137400385

6 2.215845688 2.200605964 5.851839844 0.031660598 0.0630219

7 2.912621359 3.376541919 5.294800127 0.124468416 0.103423312

8 3.665700052 3.945709412 4.74266906 0.132460078 0.139041347

9 3.877426849 4.299055092 4.272028517 0.142200831 0.152788388

10 4.547997074 4.65126267 3.778207608 0.110394022 0.109252878

11 5.442269196 5.664974619 3.450834879 0.096172979 0.151785125

12 6.221243133 6.120459104 3.396899438 0.118598383 0.15079707

13 7.09657943 6.934568616 2.922415743 0.105234875 0.138488686

14 7.652160108 8.088922471 2.663922602 0.114287891 0.192318678

15 8.578209572 8.644021461 2.471061489 0.12835302 0.194631417

16 9.467365932 9.309477639 2.326182847 0.143342459 0.160748834

17 10.22206604 10.25425794 2.279936055 0.129286539 0.174244419

18 10.8928373 10.59445862 2.179990107 0.12196234 0.198727686

19 11.30138151 11.35528628 2.078240891 0.11812737 0.179775748

20 11.66366897 11.6909853 1.963706751 0.136991551 0.179956502



266 Simulation Result Data

Table A.5 Redundant Server Elections (%) caused by the different election algoritms evaluated
under Random Walk mobility model.

Redundant Server Elections (%) - Random Walk

Nodes Bully Kordafshari Consensus Vasudevan Voting

4 1.889866406 2.221496243 7.302631579 0.097911227 0.064412238

5 2.332214765 3.52901823 5.984359062 0.0331785 0.066028392

6 3.689399329 4.142072054 5.42359058 0.139972006 0.089223753

7 4.796880078 5.569686298 4.49293138 0.184701611 0.088083554

8 6.019766397 6.587136929 4.088506339 0.106000553 0.155699043

9 7.277381605 7.052612416 3.237384506 0.10585371 0.147296065

10 8.556899877 8.835588356 2.960878131 0.139774125 0.190273658

11 9.386849825 9.812592628 3.032457851 0.1411529 0.201599203

12 11.03434178 11.19444274 2.575323368 0.140660526 0.192648532

13 11.66403043 11.73289694 2.547356847 0.119278366 0.209709379

14 13.04179254 13.15047967 2.288533555 0.122511033 0.252893398

15 13.85433594 13.924672 2.331956089 0.12454134 0.192758182

16 14.74402918 14.49323529 2.141435487 0.137486312 0.238920813

17 15.16731577 14.96250586 2.014534817 0.16034146 0.24757276

18 15.7042811 15.68392547 2.006874613 0.161353258 0.240361401

19 16.13278146 16.16961617 1.919733411 0.158972791 0.286506182

20 16.05814625 16.44607491 1.839055604 0.177162657 0.275495843



267

Table A.6 Redundant Server Elections (%) caused by the different election algoritms evaluated
under RPGM mobility model.

Redundant Server Elections (%) - RPGM

Nodes Bully Kordafshari Consensus Vasudevan Voting

4 2.553191489 2.932193036 4.428485937 0.606060606 0.241254524

5 5.178907721 5.261509552 5.220883534 0.339820822 0.24607813

6 5.930044012 7.534406345 4.174228675 0.294384058 0.226705962

7 7.392514692 8.048289738 4.807546022 0.28592927 0.345086272

8 8.934782609 10.15531661 4.300847458 0.217910138 0.304781923

9 11.0479798 11.28580464 3.558594092 0.260869565 0.36761488

10 12.59145449 13.42920354 3.396624473 0.208333333 0.307606264

11 14.23574054 13.65821808 3.243395166 0.15459364 0.302351624

12 14.38222321 14.39159975 2.872228089 0.1506337 0.228504623

13 15.39275578 15.94806705 2.579946777 0.144806705 0.310335522

14 16.36790082 16.76953437 2.350410637 0.178395202 0.29650437

15 16.61240613 16.86393126 1.975609756 0.07390408 0.304741782

16 17.54458731 17.67211605 1.917044266 0.147132587 0.329489292

17 18.37302107 18.27495593 1.968480345 0.12982981 0.334801231

18 17.34642582 18.17743158 1.94861611 0.148737164 0.361934477

19 17.63929232 18.7511428 1.824019859 0.162436056 0.395224597

20 17.41733327 18.73859426 1.680794381 0.16033316 0.365124485



268 Simulation Result Data

Table A.7 MTBF (seconds) of the different election algoritms evaluated under Manhattan Grid
mobility model.

MTBF (seconds) - Manhattan Grid

Nodes Bully Kordafshari Consensus Vasudevan Voting

4 - - 3906 - -

5 - - 2099.625 - -

6 3517.125 3623.75 1116 - -

7 1544.1 1127.464286 1009.225 - -

8 851.2222222 826.0227273 865.2954545 - -

9 693.4305556 680.6590909 743.3846154 - -

10 482.640625 461.1785714 661.9166667 - -

11 341.4861111 295.1959459 548.234375 - -

12 252.2102273 259.3826531 475.0961538 - -

13 193.5076923 196.5 488.725 - -

14 153.4583333 142.5609756 443.5892857 - 6233.5

15 123.1186869 125.6173469 435.0769231 - 3694.833333

16 101.4944444 105.8253968 427.733871 5194 5512

17 83.7533557 84.08396947 391.2564103 4907.25 3703

18 74.09493671 75.58083832 379.8947368 6055.75 2750.083333

19 66.79868421 63.57981221 353.98125 8114 2981.5625

20 60.46052632 59.28196347 350.7714286 3470.4375 3001.8125



269

Table A.8 MTBF (seconds) of the different election algoritms evaluated under Random Walk
mobility model.

MTBF (seconds) - Random Walk

Nodes Bully Kordafshari Consensus Vasudevan Voting

4 - - 1982.583333 - -

5 2104.8125 1653.458333 1361.25 - -

6 1062.6875 1153.4375 1055.21875 - -

7 601.375 577.8375 777.625 - -

8 415.375 389.44 664.8947368 - -

9 288.8636364 286.7 668.90625 - -

10 191.119403 191.4375 570.8026316 - -

11 152.0958904 142.1084337 489.25 - 7734.75

12 115.3581081 113.0328947 489.4021739 - 8718.25

13 97.0984252 96.55381944 481.2421875 - 3821

14 79.57432432 79.76174497 461.0403226 - 3123.333333

15 68.7019774 69.41820988 413.0540541 - 3604.416667

16 59.73690476 60.69955157 449.8870968 6547 2653.75

17 56.27589641 57.1468254 441.1838235 4122.5 2543.2

18 52.11209964 52.90520833 435.3014706 4022.875 2245.6

19 49.39074074 50.61389961 447.9791667 4187.375 2205

20 48.57264151 48.95567376 473.4513889 3061.5625 2233.25



270 Simulation Result Data

Table A.9 MTBF (seconds) of the different election algoritms evaluated under RPGM mobility
model.

MTBF (seconds) - RPGM

Nodes Bully Kordafshari Consensus Vasudevan Voting

4 - - - - -

5 1818.25 2179.5 2058.666667 - -

6 1818.416667 1450 2863.5 - -

7 998.1944444 996.3125 1504.9375 - -

8 670.65625 608.1111111 1220.431818 - -

9 444.8863636 488.1 1161.84375 - -

10 372.4469697 344.7878788 1025.4 - -

11 270.5343137 302.125 1062.666667 - -

12 254.0243902 247.1890244 1046.75 - -

13 199.4221311 191.4035088 1091.909091 - -

14 178.5101351 162.1566265 1102.583333 - -

15 168.4240506 178.4756098 1111.222222 - -

16 145.3422619 142.2984694 1313.95 - -

17 129.0679825 122.9740566 1033.977273 - 6737.5

18 144.1852941 141.3297872 1075.525 - 4944.875

19 124.6659664 112.75 1030.769231 - 4481.875

20 104.6916058 103.4810606 1035.633333 - 4455.75



271

Table A.10 Number of Coordination Messages used by the different election algoritms evalu-
ated under Manhattan Grid mobility model.

Coordination Messages - Manhattan Grid

Nodes Bully Kordafshari Consensus Vasudevan Voting

4 150 184 206 291 173

5 335 415 549 687 381

6 659 829 1463 1339 735

7 1127 1464 2699 2353 1261

8 1822 2249 4207 3945 2031

9 2818 3552 5954 5955 3173

10 4237 5247 8480 9938 4713

11 6037 7108 13102 15082 6536

12 8269 9650 17155 21434 9353

13 11449 13025 23689 28863 12659

14 15678 16955 29369 41042 16837

15 21950 22935 38392 55756 21788

16 29599 29613 51235 68911 29560

17 41347 38530 62520 88942 39635

18 56629 47426 78135 113297 49439

19 74789 58179 98605 147707 60641

20 94950 69738 117128 174688 74326



272 Simulation Result Data

Table A.11 Number of Coordination Messages used by the different election algoritms evalu-
ated under Random Walk mobility model.

Coordination Messages - Random Walk

Nodes Bully Kordafshari Consensus Vasudevan Voting

4 326 382 450 599 353

5 703 882 1035 1385 769

6 1429 1717 3012 2920 1531

7 2542 3045 5310 5465 2821

8 4385 5143 9381 9662 4586

9 6944 7634 14519 16722 6845

10 10329 11282 20034 25844 10435

11 14779 16060 25510 38462 15229

12 21994 21808 38008 51191 20769

13 29052 29009 50220 73771 28239

14 40808 36659 61270 96415 36460

15 53982 46338 77256 124124 46368

16 74634 58119 101648 164854 59225

17 102217 70620 121138 206313 73071

18 136969 85308 145575 266263 90497

19 178324 100092 172310 316279 105190

20 238315 116733 209016 377784 123574



273

Table A.12 Number of Coordination Messages used by the different election algoritms evalu-
ated under RPGM mobility model.

Coordination Messages - RPGM

Nodes Bully Kordafshari Consensus Vasudevan Voting

4 210 287 1747 465 246

5 518 657 6295 1473 605

6 918 1131 8500 3278 995

7 1727 2053 12899 10408 1901

8 3230 3225 17406 22083 3019

9 4594 4899 20099 32402 4487

10 7303 6978 23793 51610 6551

11 10671 9730 31178 78243 9458

12 15092 12151 33578 111402 11528

13 20062 16336 46031 148193 15664

14 27476 21164 53196 204523 20213

15 35818 22531 58140 267613 22440

16 57332 28793 71696 385545 29103

17 76667 37468 89488 479338 36758

18 90684 39079 92339 614101 40018

19 122928 51441 105488 840905 48862

20 192576 62561 122626 1099211 59750



274 Simulation Result Data

Table A.13 TFND (minutes) under the different election algoritms evaluated under Manhattan
Grid mobility model.

TFND (minutes) - Manhattan Grid

Nodes Bully Kordafshari Consensus Vasudevan Voting

4 200.76 202.3613333 195.89325 197.0294167 201.2541667

5 193.2170833 194.1498333 190.45575 189.5835 193.9890833

6 190.5573333 191.85675 186.764 186.7729167 191.1590833

7 188.4825 189.0048333 184.312 183.3799167 187.8044167

8 186.323 187.9039167 183.3638333 183.8683333 189.11125

9 185.7624167 185.6970833 180.8230833 183.2615 186.2676667

10 183.7005 183.9770833 182.8701667 182.1730833 186.0325833

11 185.1125 186.18125 184.2685833 181.73125 188.111

12 186.64425 187.283 186.81075 184.3584167 189.1216667

13 187.08725 187.9841667 187.8998333 185.32675 189.662

14 187.6083333 188.7588333 188.2781667 186.7559167 189.8633333

15 189.0581667 189.7520833 190.2924167 187.107 190.1520833

16 189.7889167 190.4488333 191.3929167 188.2375833 192.19225

17 191.9019167 192.5314167 192.7416667 189.48475 193.3498333

18 191.55025 192.2998333 192.60425 188.0478333 192.83475

19 192.1198333 193.22725 192.7279167 189.193 193.65675

20 192.7644167 193.4905833 193.5634167 188.8573333 193.4064167



275

Table A.14 THND (minutes) under the different election algoritms evaluated under Manhattan
Grid mobility model.

THNA (minutes) - Manhattan Grid

Nodes Bully Kordafshari Consensus Vasudevan Voting

4 215.1805 216.7224167 212.33375 214.5995833 217.5933333

5 205.0831667 205.7315833 201.9333333 203.2070833 205.5435

6 206.8711667 208.3839167 205.0749167 207.0876667 210.1754167

7 206.2999167 207.2778333 204.5158333 206.2835833 210.7658333

8 207.4285833 208.4145833 207.46875 207.4495 212.93925

9 203.9566667 204.60025 204.6273333 204.0889167 210.0175

10 204.7800833 205.8879167 207.6535 206.6865833 212.51375

11 205.00525 205.9865 209.0151667 209.7256667 214.1619167

12 208.2043333 209.3654167 213.945 214.272 219.6459167

13 208.2154167 209.4733333 216.5825833 216.0774167 221.3425833

14 211.2431667 211.2730833 222.1893333 221.865 226.4553333

15 212.9233333 213.4505 227.2111667 225.9411667 230.9889167

16 215.626 216.43975 234.0065 232.1558333 236.7055

17 218.245 218.3935 238.849 237.4568333 241.4713333

18 220.072 220.3125833 243.7428333 242.77525 246.2558333

19 221.48525 220.1583333 246.643 246.14 249.2940833

20 223.7321667 221.7351667 253.4238333 252.33475 254.8660833



276 Simulation Result Data

Table A.15 TLND (minutes) under the different election algoritms evaluated under Manhattan
Grid mobility model.

TLND (minutes) - Manhattan Grid

Nodes Bully Kordafshari Consensus Vasudevan Voting

4 262.7306667 263.8375 263.45625 268.1075833 266.4278333

5 249.9193333 251.6878333 249.3398333 251.8080833 248.81275

6 247.3845833 247.0151667 245.2655 242.5049167 251.5758333

7 241.2320833 242.4736667 242.6315 248.133 250.1429167

8 237.9696667 239.6165833 240.3225833 244.9568333 245.5625

9 233.19 234.0214167 238.4135 240.2993333 244.8429167

10 229.5540833 230.9988333 233.92375 236.9165833 239.8981667

11 229.16225 229.50975 237.02925 238.4346667 240.8268333

12 228.5614167 230.00275 237.9089167 238.9763333 242.3141667

13 226.03225 228.2971667 238.6830833 239.51675 244.687

14 227.6945 228.8109167 241.6163333 242.3948333 246.47175

15 229.8316667 230.7783333 245.8485 248.8686667 250.05625

16 231.4495 232.9204167 251.59925 253.2855 254.6753333

17 234.8139167 233.8770833 257.16975 258.4546667 260.9539167

18 234.1669167 236.31275 260.717 262.941 264.309

19 235.0148333 236.1171667 265.95675 267.89475 268.0521667

20 237.27975 238.7174167 271.1639167 272.9501667 273.399



277

Table A.16 TFND (minutes) under the different election algoritms evaluated under Random
Walk mobility model.

TFND (minutes) - Random Walk

Nodes Bully Kordafshari Consensus Vasudevan Voting

4 201.8935 202.7266667 198.1645 199.1919167 203.7913333

5 196.196 196.8953333 193.2048333 194.0045833 197.5291667

6 192.6526667 192.9858333 191.7560833 191.9460833 196.4605833

7 194.2065 194.285 193.14475 193.11625 197.4514167

8 194.26725 195.37675 194.5898333 193.8415 198.6321667

9 194.4601667 196.05675 196.7465 194.271 198.7539167

10 193.8669167 194.9703333 196.8511667 193.36075 197.83125

11 195.1416667 195.9795833 197.3480833 193.539 198.84825

12 196.2806667 197.0725 199.0665 195.37725 199.7531667

13 195.02925 196.1231667 197.537 193.50825 197.2974167

14 195.3195 195.177 196.7695 193.27025 197.0648333

15 195.7113333 196.70325 197.3096667 193.2286667 197.28425

16 196.3868333 197.105 196.9154167 193.53925 197.1680833

17 196.6675 196.6361667 196.9085 193.4845 197.4634167

18 195.3380833 195.9483333 195.6896667 192.2335833 196.1086667

19 195.349 195.4419167 195.5163333 192.5134167 195.8575

20 195.4388333 195.2586667 195.0415833 192.217 195.6859167



278 Simulation Result Data

Table A.17 THND (minutes) under the different election algoritms evaluated under Random
Walk mobility model.

THNA (minutes) - Random Walk

Nodes Bully Kordafshari Consensus Vasudevan Voting

4 211.5348333 211.7688333 208.3289167 209.7653333 215.10975

5 204.36025 205.1900833 202.5795 203.3509167 207.9044167

6 205.1405833 206.22875 204.9840833 205.6190833 211.48075

7 206.0979167 206.3653333 208.7156667 208.7848333 214.1161667

8 208.5995833 209.4663333 212.77325 212.8208333 217.3334167

9 208.4996667 209.8108333 216.04525 214.5038333 219.6715

10 210.7861667 211.0659167 222.3665833 221.2285833 226.0445

11 213.1883333 213.2259167 225.8666667 224.9976667 229.4703333

12 216.8819167 217.6041667 235.4764167 233.9789167 238.1574167

13 218.88325 218.9123333 240.76275 239.0485 243.2424167

14 221.0424167 219.84625 248.9014167 246.8738333 250.383

15 222.7719167 221.9024167 254.6821667 252.2893333 255.6721667

16 224.7790833 224.0723333 262.98575 261.6028333 264.6415

17 227.4625 225.195 268.0393333 266.1474167 268.0383333

18 228.7020833 226.06175 274.5394167 272.7291667 274.1661667

19 230.4206667 226.5635833 277.8864167 277.105 278.0260833

20 233.85125 227.3101667 283.4975833 283.0906667 284.7745



279

Table A.18 TLND (minutes) under the different election algoritms evaluated under Random
Walk mobility model.

TLND (minutes) - Random Walk

Nodes Bully Kordafshari Consensus Vasudevan Voting

4 228.7595833 230.5470833 227.0539167 233.1580833 233.3755833

5 225.2951667 225.2015 225.6646667 227.9850833 231.49075

6 222.6560833 224.0280833 223.4035833 226.6045833 230.9376667

7 220.31125 220.6389167 223.7524167 226.29375 230.2911667

8 221.4453333 222.16875 228.1529167 229.93775 232.4458333

9 222.0131667 223.4075833 231.1420833 232.1809167 236.5973333

10 223.776 224.2820833 236.5775 236.1518333 239.76

11 226.2204167 225.8448333 241.6958333 243.5820833 245.3238333

12 229.0515833 229.5498333 250.3675833 251.1451667 253.1709167

13 230.5809167 231.1294167 255.346 257.5514167 258.2775

14 231.7780833 232.40025 262.3016667 262.6331667 264.4899167

15 235.3564167 234.7411667 268.7874167 269.89075 270.5395833

16 235.3999167 236.6188333 276.9761667 277.636 277.08725

17 238.7518333 238.06425 283.9778333 283.7350833 285.5545833

18 240.3616667 238.5149167 289.27 289.8836667 290.9798333

19 241.11275 234.406 295.8946667 294.7510833 296.9609167

20 245.0820833 239.6525 300.88625 299.92725 303.24525



280 Simulation Result Data

Table A.19 TFND (minutes) under the different election algoritms evaluated under RPGM
mobility model.

TFND (minutes) - RPGM

Nodes Bully Kordafshari Consensus Vasudevan Voting

4 158.9196667 159.8389167 160.7681667 154.6795 158.024

5 175.0833333 175.72525 175.3723333 172.5065833 177.5841667

6 178.5310833 178.4216667 180.57725 176.3401667 181.5649167

7 188.3188333 189.3008333 190.7716667 184.8956667 191.4230833

8 191.8070833 193.13975 192.5426667 188.9054167 195.1005833

9 186.5799167 187.0834167 188.07675 182.441 189.3346667

10 191.2974167 191.3834167 193.523 187.7578333 194.4675833

11 193.04625 194.6395833 195.1004167 189.577 195.53725

12 197.3285 197.80025 198.71375 193.0099167 199.3345

13 196.1856667 197.3039167 197.5961667 191.9126667 197.8431667

14 196.4633333 196.992 197.3501667 190.907 197.2545833

15 195.32825 195.9326667 196.5600833 191.7490833 196.4243333

16 196.22275 197.3295833 197.2014167 191.37875 196.7443333

17 197.02325 197.5234167 197.6506667 191.1996667 197.4305833

18 196.0215 196.4999167 196.1063333 192.0925833 195.8825

19 196.3758333 196.1935833 196.3890833 193.43075 195.8515

20 196.3220833 195.5763333 195.5409167 193.0063333 195.0475833



281

Table A.20 THND (minutes) under the different election algoritms evaluated under RPGM
mobility model.

THNA (minutes) - RPGM

Nodes Bully Kordafshari Consensus Vasudevan Voting

4 181.01 181.6578333 183.5369167 182.2925833 181.7369167

5 188.36825 188.9341667 192.9151667 191.6494167 191.4263333

6 200.1856667 198.1464167 205.4590833 203.0485 203.9768333

7 206.77475 206.836 211.9315833 213.1585 212.8704167

8 212.5720833 213.2654167 221.5549167 221.6675833 221.8993333

9 212.8421667 213.6655833 222.163 222.4785 223.0373333

10 217.543 216.8423333 230.7794167 230.3050833 231.90875

11 219.3430833 220.42475 235.73125 234.6878333 235.6721667

12 225.6433333 224.8676667 242.7875 241.7118333 242.9894167

13 224.90225 223.5580833 246.0469167 244.6555833 246.5759167

14 228.028 227.7339167 252.1060833 250.6828333 253.74125

15 230.80125 230.0445833 254.8305833 254.2628333 258.301

16 234.3753333 232.10225 262.6251667 261.4213333 266.1153333

17 235.1175833 233.1738333 266.4736667 265.4185833 270.4855833

18 240.3415833 236.7798333 272.8619167 271.3826667 279.8698333

19 242.1610833 236.65825 276.0199167 274.2265 283.5605833

20 242.8950833 236.7895 280.5253333 277.9296667 291.9001667



282 Simulation Result Data

Table A.21 TLND (minutes) under the different election algoritms evaluated under RPGM
mobility model.

TLND (minutes) - RPGM

Nodes Bully Kordafshari Consensus Vasudevan Voting

4 217.3985 219.26375 219.9325833 220.3223333 224.54275

5 221.1586667 222.0615 224.799 227.9044167 231.3400833

6 227.8123333 226.8664167 236.78025 235.95475 239.1425

7 227.6996667 228.10125 237.8681667 237.0311667 240.9768333

8 229.79925 229.67875 241.3446667 241.3064167 243.577

9 233.8051667 234.4163333 250.97775 249.6633333 252.66425

10 234.69475 229.1286667 251.3580833 252.01375 255.2046667

11 235.5958333 237.5231667 259.5136667 258.343 262.3011667

12 241.0865 241.6891667 265.7040833 263.0799167 268.0973333

13 238.35525 240.277 268.9115 265.90075 272.00725

14 239.6455 240.6465 275.57025 269.9900833 275.4621667

15 246.4205 246.9804167 285.73625 279.9863333 285.0711667

16 248.434 245.1340833 287.1625833 282.98575 290.58775

17 248.8080833 242.1036667 293.7808333 288.9179167 296.5381667

18 252.39375 249.85025 296.57475 292.1444167 302.3785833

19 255.28875 248.3811667 300.9949167 295.4241667 309.0971667

20 254.5863333 248.18525 305.2543333 299.78225 308.6295



283


	Table of contents
	List of figures
	List of tables
	I Introduction, Foundations and Related Work
	1 Introduction
	1.1 Introduction
	1.2 Description of the Problem and Motivation
	1.3 Hypothesis and Objective
	1.4 Structure of the Doctoral Thesis
	1.5 Publications

	2 Foundations
	2.1 Introduction
	2.2 Ubiquitous Systems
	2.2.1 Context-Aware Computing
	2.2.2 Advanced Systems

	2.3 Software Development Approaches
	2.3.1 Autonomic Computing and Self-adaptive Software Systems
	2.3.2 Service Oriented Architecture
	2.3.3 Microservices
	2.3.4 Event-Driven Architecture
	2.3.5 SOA 2.0
	2.3.6 Multi-Agent Systems

	2.4 Leader Election Problem
	2.4.1 Bully Algorithm
	2.4.2 Kordafshari Algorithm

	2.5 System Quality Attributes
	2.5.1 Agility
	2.5.2 Interoperability
	2.5.3 Reliability
	2.5.4 Scalability
	2.5.5 Service Availability

	2.6 Tools
	2.6.1 Network Simulator 3 (ns-3)
	2.6.2 SysML

	2.7 Summary

	3 Related Work
	3.1 Introduction
	3.2 Approaches to enhance data/service QoS through dynamic replication
	3.2.1 Hamdy et al.: Service Distribution Protocol
	3.2.2 Sun et al.: Minimum Access Cost replication strategy
	3.2.3 Ahmed et al.: Distributed Adaptive Service Replication
	3.2.4 Bellavista et al.: REDMAN middleware
	3.2.5 Dustdar et al.
	3.2.6 Kim et al.: Scalable Replica Allocation scheme
	3.2.7 Choi et al.
	3.2.8 Kumar et al.
	3.2.9 Zhang et al.
	3.2.10 Barolli et al.
	3.2.11 Xia et al.: ComPAS data replication method
	3.2.12 Shi et al.: RHPMAN data replication scheme
	3.2.13 Hirsch et al.
	3.2.14 Hara et al.

	3.3 Leader election algorithms in dynamic environments
	3.3.1 Malpani et al.
	3.3.2 Vasudevan et al.
	3.3.3 Park
	3.3.4 Brandner et al.
	3.3.5 Raychoudhury et al.
	3.3.6 Sabat et al.
	3.3.7 Mohammed et al.

	3.4 Cluster Head election approaches
	3.4.1 Wu et al.
	3.4.2 Torkestani et al.
	3.4.3 Venkanna et al.
	3.4.4 Benkaouha et al.

	3.5 Discussion
	3.6 Summary


	II Proteo Architecture: Design, Modelling, Simulation, and Evaluation
	4 Proteo: A Self-adaptive Software Architecture
	4.1 Introduction
	4.2 Motivating Scenario
	4.3 System Model
	4.4 Architectural Design Proposal
	4.4.1 Monitoring Subsystem
	4.4.2 Context Manager Service
	4.4.3 Replica Manager Service

	4.5 Host Feasibility Evaluation
	4.6 Election Algorithms
	4.6.1 Proposed Election Algorithms
	4.6.2 Proposed Adaptations on Existing Election Algorithms
	4.6.3 Theoretical Analysis of Message Complexity

	4.7 Summary

	5 Proteo Model
	5.1 Introduction
	5.2 Operational Domain Model
	5.3 Information Model
	5.3.1 Value Types
	5.3.2 Signals (Context Events)
	5.3.3 Standard Item Definitions

	5.4 Structural Model
	5.4.1 Monitoring Service
	5.4.2 Context Manager Service
	5.4.3 Replica Manager Service

	5.5 Behavioural Model
	5.5.1 Signals and Operations
	5.5.2 Election Algorithm State Machines
	5.5.3 updateScore Activity

	5.6 Summary

	6 Simulation: Development and Settings
	6.1 Introduction
	6.2 Design and Development
	6.2.1 ns-3 Node High-Level Architecture
	6.2.2 Extending ns-3: Proteo Module
	6.2.3 Configuring a ns3 Node to host Proteo Module
	6.2.4 Variations on ns-3

	6.3 Simulation Settings
	6.3.1 General and Node Settings
	6.3.2 Mobility Settings

	6.4 Summary

	7 Simulation Results in ns-3
	7.1 Introduction
	7.2 Service Availability
	7.3 Algorithm Reliability
	7.3.1 Redundant Server Elections
	7.3.2 Mean Time Between Failures (MTBF)

	7.4 Coordination Messages Usage
	7.4.1 Static and Reliable Networks
	7.4.2 Mobile and Unreliable Networks

	7.5 Network lifetime
	7.6 Efficiency
	7.6.1 Service Availability vs Coordination Message Usage
	7.6.2 Service Availability vs Network lifetime
	7.6.3 Algorithm Reliability vs Coordination Message Usage
	7.6.4 Algorithm Reliability vs Network lifetime

	7.7 Discussion on Global Performance
	7.8 Summary


	III Work in Progress and Conclusions
	8 Work in Progress
	8.1 Introduction
	8.2 Towards a Synchronization Solution
	8.2.1 Application Scenario: From FLERSA Tool to FLERSA Service
	8.2.2 Conclusions

	8.3 Scalability Analysis
	8.3.1 Evaluation
	8.3.2 Discussion
	8.3.3 Conclusions

	8.4 Summary

	9 Conclusions and Future Work
	9.1 Conclusions
	9.2 Future Work

	10 Conclusiones y Trabajo Futuro
	10.1 Conclusiones
	10.2 Trabajo Futuro

	References
	Appendix A Simulation Result Data




