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An improved intermolecular potential surface for the benzene dimer is constructed from interaction

energies computed by symmetry-adapted perturbation theory, SAPT(DFT), with the inclusion of

third-order contributions. Twelve characteristic points on the surface have been investigated also

using the coupled-cluster method with single, double, and perturbative triple excitations, CCSD(T),

and triple-zeta quality basis sets with midbond functions. The SAPT and CCSD(T) results are in close

agreement and provide the best representation of these points to date. The potential was used in

calculations of vibration–rotation-tunneling (VRT) levels of the dimer by a method appropriate for large

amplitude intermolecular motions and tunneling between multiple equivalent minima in the potential.

The resulting VRT levels were analyzed with the use of the permutation-inversion full cluster tunneling

(FCT) group G576 and a chain of subgroups that starts from the molecular symmetry group Cs(M)

of the rigid dimer at its equilibrium Cs geometry and leads to G576 if all possible intermolecular

tunneling mechanisms are feasible. Further information was extracted from the calculated wave

functions. It was found, in agreement with the experimental data, that for all of the 54 G576 symmetry

species (with different nuclear spin statistical weights) the lower VRT states have a tilted T-shape (TT)

structure; states with the parallel-displaced structure are higher in energy than the ground state of A+
1

symmetry by at least 30 cm�1. The dissociation energy D0 equals 870 cm�1, while the depth De of the

TT minimum in the potential is 975 cm�1. Hindered rotation of the cap in the TT structure and tilt

tunneling lead to level splittings on the order of 1 cm�1. Also intermolecular vibrations with excitation

energies starting at a few cm�1 were identified. A further small, but probably significant, level splitting

was assigned to cap turnover, although in scans of the potential surface we could not find a plausible

‘reaction path’ for this process. Rotational constants were extracted from energy levels calculated for

total angular momentum J = 0 and 1, and from expectation values of the inertia tensor. Although the

end-over-end rotational constant B + C agrees well with the measured microwave spectra, there is

disagreement with the measurements concerning the (a)symmetric rotor character of the benzene dimer.

It is concluded from calculations for the 54 nuclear spin species that the microwave spectrum should

show overlapping contributions from many different species. Another interesting conclusion regards the

role of the quantum number K, for a prolate near-symmetric rotor the projection of the total angular

momentum on the prolate axis. For the benzene dimer, K has a substantial effect on the energy levels

associated with the intermolecular motions of the complex.

I. Introduction

Just as the water dimer has served as a prototype for hydrogen

bonding, the benzene dimer is a prototypical example of

London (dispersion) forces between nonpolar molecules. The

interactions between aromatic systems are of special interest,

since they can play an important role in determining protein

and DNA stability1–4 and DNA–protein interaction.5,6

The benzene dimer has received much attention both from

experimentalists7–24 and theorists.25–48 Theorists have been

challenged in particular by the subtle binding energy difference

between two equilibrium structures of the benzene dimer, a

T-shaped one and a parallel-displaced one. The relative stability

of such edge-to-face and face-to-face structures can be important

in determining the conformation adopted by some proteins.1–3
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Dispersion forces, which are so important especially for the

bonding between p-systems, are a nonlocal electron correla-

tion effect. Since the accurate accounting for electron correla-

tion is an important issue in electronic structure calculations,

the benzene dimer has become a benchmark system for

electronic structure methods. The investigation of which of

the two benzene dimer structures is more stable has been the

focus of a series of calculations using more and more advanced

methods.30,32–35,38,41,42 When it was discovered38,42,49 that the

T-shape structure is further stabilized by a slight tilt of the

monomers, it became clear that the (tilted) T-shaped structure

is lower in energy than the parallel-displaced structure. The

experimental evidence17,19–23 confirms this conclusion.

Although the energy difference between the two structures is

small, the parallel-displaced structure is not observed in experi-

ments due to collisions with the carrier gases used.22,50 Also in

density functional theory (DFT), the benzene dimer has been

used as a benchmark system. DFT, as it is commonly imple-

mented, does not include nonlocal electron correlation effects.

It completely fails in describing van der Waals binding between

(stacked) p-systems. Authors who tried to account for this

deficiency, either by a first-principles approach,40 or by fitting

functionals to interaction energies,51 or by DFT + dispersion

(DFT-D) methods,45,46,52 have often included the benzene

dimer in their training and/or validation sets.

From the calculations it has become clear that the benzene

dimer is a floppy system with low barriers to internal rotation.

Quantum mechanical tunneling can occur between various

equivalent minima in the potential surface that are separated

by these low barriers. Hence, if one wants to understand the

properties of the benzene dimer and make comparisons with

experimental data, a theoretical description of the benzene

dimer cannot be limited to the usual treatment of determining

the equilibrium structure, the binding energy, and the harmonic

vibrational frequencies; one should use a treatment that

properly accounts for the large amplitude internal motions.

Moreover, one cannot use the point symmetry group of the

equilibrium geometry, because the system is delocalized over

many equivalent equilibrium structures (minima in the poten-

tial surface). One-dimensional model studies of some tunneling

processes in the benzene dimer and a harmonic (normal mode)

calculation of the intermolecular vibrations have been made by

Spirko et al.31

A quantum mechanical method applicable to weakly bound

dimers that includes all six (coupled) intermolecular degrees of

freedom has been developed53–56 and successfully applied, for

example, to the ammonia dimer53 and the water dimer.56–62 A

global six-dimensional intermolecular potential surface is

needed in such a treatment. This has led to a useful under-

standing of the nature of the internal motions in these systems

and to an interpretation of the experimental spectra. At

the same time, the comparison of the calculated vibration–

rotation-tunneling (VRT) levels with high-resolution spectro-

scopic data provided a very critical test of the quality of the

global potential surface used in the calculations. Making

similar calculations for the benzene dimer is very difficult.

The benzene dimer potential has 288 equivalent tilted T-shaped

minima and 144 equivalent (less deep) parallel-displaced minima.

The permutation-inversion (PI) symmetry group that should

be used for such weakly bound systems has 576 elements in

this case, and is called G576.
25,26 What makes the calculations

particularly demanding is that some of the barriers between

the minima are very low and allow delocalization by tunneling

between equivalent minima, whereas the barriers in other

degrees of freedom are much higher so that the internal states

are localized in these directions. This implies that the internal

rotor basis used in the calculations must be extremely large, in

order to allow sufficient localization and converge the smaller

tunneling splittings.

A global intermolecular potential energy surface for the

benzene dimer is available from ab initio calculations for a

large number of geometries, combined with analytical fitting

of the computed data points.38 The ab initio method used was

SAPT(DFT): symmetry-adapted perturbation theory (SAPT)

based on monomer wave functions, orbital energies, and

response properties obtained from (time-dependent) DFT

calculations. This method, initially proposed by Williams

and Chabalowski,63 was later extended and implemented by

Misquitta et al.64–66 and by Heßelmann et al.37,67,68 It is much

more economical than the regular SAPT69 or the coupled-

cluster method using single, double, and perturbative triple

excitations, CCSD(T), the two approaches that have estab-

lished themselves currently as the most accurate of practically

applicable methods for obtaining intermolecular interaction

potentials. Both groups have shown that SAPT(DFT) results

for the benzene dimer are about as accurate as the results from

CCSD(T). The benzene dimer potential of ref. 38 gave the

second virial coefficient in excellent agreement with experi-

ment, and produced the best estimate of the lattice energy of

the benzene crystal.70 Also for polycyclic aromatic hydro-

carbons, the SAPT(DFT) method was successful.50,71 The

potential surface used in the present study is partly based on

the SAPT(DFT) interaction energies calculated in ref. 38.

These calculations were extended by adding third-order SAPT

terms and slightly increasing the number of grid points. We

have also made a new analytic fit of the data points that is

more accurate in the low-energy region. In ref. 72, it was

shown that the third-order SAPT corrections based on the

Hartree–Fock description of the monomers improve the inter-

action energies for nonpolar systems. We will show here that

the third-order terms also improve the accuracy of the

SAPT(DFT) benzene dimer potential. We used this improved

potential to compute converged VRT levels of the benzene

dimer for all the 54 irreducible representations of the group

G576. Furthermore, to understand the nature of the calculated

VRT states, we computed some of their properties and plotted

various two-dimensional cuts of the six-dimensional global

wave functions. A symmetry analysis provides the selection

rules for allowed transitions and tells us how the different VRT

levels relate to different tunneling mechanisms and to the

intermolecular vibrations.

II. Potential surface

The benzene dimer potential in ref. 38 was based on

SAPT(DFT) calculations for 491 intermolecular geometries

of the benzene dimer, followed by an analytic fit of the

calculated interaction energies. We will denote this fit as

8220 | Phys. Chem. Chem. Phys., 2010, 12, 8219–8240 This journal is �c the Owner Societies 2010

D
ow

nl
oa

de
d 

on
 1

6 
O

ct
ob

er
 2

01
2

Pu
bl

is
he

d 
on

 2
0 

M
ay

 2
01

0 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

00
26

53
K

View Online

http://dx.doi.org/10.1039/c002653k


‘pot1’. The main reason for the present modification of pot1

was that it did not sufficiently accurately reproduce the data

points in the region of the potential minima. It was found, in

particular, that the binding energies for the global minimum,

the tilted T-shape (TT) structure, and the local minimum, the

parallel-displaced (PD) structure, were nearly the same in

the analytic fit, whereas the TT structure was more stable

than the PD structure by 10 cm�1 in the SAPT(DFT) calcula-

tions and by 34 cm�1 in CCSD(T) calculations. In calculations

of the VRT states of the benzene dimer, as described here, this

would have led to unphysical results.

We have obtained two new potentials for the benzene dimer.

First, we fitted the set of SAPT(DFT) interaction energies

from ref. 38 supplemented by a few extra points computed

at the same level of theory as in ref. 38. We used the same analytic

functional form as in ref. 38, but with larger weights in the

low-energy region. This led to ‘pot2’. Second, we performed

calculations of the third-order SAPT(DFT) induction and

exchange-induction energies and added these to the first- and

second-order terms already included. In SAPT(DFT), these

third-order energies are calculated by replacing Hartree–Fock

orbitals and orbital energies by their Kohn–Sham (KS)

counterparts in the regular SAPT formulas for the E(30)
ind and

E(30)
exch�ind corrections developed in ref. 72. We will denote the

KS-level corrections as E(3)
ind (KS) and E(3)

exch�ind (KS), respec-

tively. Also, one more grid point was added at this stage. The

fit of this data set, done in the same way as the fit of pot2, will

be called ‘pot3’.

The SAPT(DFT) calculations were performed using the

methodology of ref. 66 extended by our implementation of

third-order terms. Similarly to ref. 38, the density-fitting

SAPT(DFT) implementation was used.73 The density fitting

was shown to provide significant computational savings with

only a negligible loss of accuracy.37,73,74 We have applied

the aug-cc-pVTZ basis set75 in the ‘‘monomer-centered plus’’

approach.76 The basis set was supplemented by midbond (mb)

functions with exponents and a position-placement algorithm

described in ref. 38. The auxiliary basis sets required for the

density-fitting approach were taken from ref. 77 (for all terms

except electrostatics) and from ref. 78 (electrostatics). The

midbond auxiliary functions were taken from ref. 74. The

monomer DFT calculations with the PBE0 functional79 were

done using the DALTON
80 program. We applied the Fermi–

Amaldi–Tozer–Handy asymptotic correction81 with an experi-

mental ionization potential of benzene of 0.3397 a.u.82 The

SAPT(DFT) calculations used the SAPT2008 code.83

During the fitting process, it turned out that the total

potential became divergent in the region of the repulsive wall.

One of the main reasons for this was that E(3)
exch�ind(KS) is

calculated with the S2 approximation, where S is a typical

intermolecular overlap integral between monomer orbitals.

Since the absolute values of E(3)
ind(KS) and E(3)

exch�ind(KS) are

large while their sum is very small, small errors in E(3)
exch�ind

(KS) result in significant errors in the sum. To correct this

behavior, we have scaled the third-order exchange-induction

term analogously to the formula proposed in ref. 84

Ẽ(3)
exch�ind(KS)= E(3)

exch�ind(KS)(S2)E(1)
exch(KS)/E(1)

exch(KS)(S2),

(1)

where E(1)
exch(KS) is the first-order exchange energy calculated

to infinite order in S and E(1)
exch(KS)(S2) is the first-order

exchange energy calculated in the S2 approximation. Such a

procedure was important in the repulsive region and had a

negligible effect near the minima.

A. Analytic fit

The fitting site–site formula

V ¼
X
a2A

X
b2B

uabðrabÞ; ð2Þ

was the same as in ref. 38. The summation runs over all sites a

(on and off the nuclei) of monomer A and sites b of monomer

B, while rab denotes the distance between two such sites. The

function uab given by38

uab ¼ 1þ
X2
m¼1

aabm rmab

 !
expðaab � babrabÞ

þ f1ðdab1 ; rabÞ
qaqb

rab
þ

X
n¼6;8;10

fnðdabn ; rabÞ
Cab

n

rnab
ð3Þ

may be considered a generalization of the popular Buckingham-

type exp-6 potential. The exponential terms model both the

exchange-repulsion contributions (first-, second- and third-

order) and part of the short-range overlap (penetration) effects

in the Rayleigh-Schrödinger contributions (electrostatic, induc-

tion, and dispersion). The 1/rab Coulomb term involving the

charges qa and qb models the electrostatic interactions, and the

1/rnab terms involving the van der Waals coefficients Cab
n model

the long-range dispersion and induction interactions. The

latter two terms in eqn (3) are multiplied by the Tang–Toennies

damping functions85

fnðd; rÞ ¼ 1� e�dr
Xn
m¼0

ðdrÞm

m!
; ð4Þ

that become unity for large r, and continuously go to zero when

r decreases. These functions are necessary to damp the 1/rnab
divergent character of the latter two terms in eqn (3) at short

intermolecular distances.

The sites used in the summation of eqn (2) are the same as in

ref. 38 and include the C and H nuclear positions and 13 off-

atomic sites on each benzene monomer. Six of the latter sites

are placed on the C–H bonds, 0.752214 Å away from the C

atoms. Another six of the sites are located on the bisectors

between the C atoms, 1.45129 Å from the geometric center of

the molecule. The last off-atomic site is at the geometric center

of the molecule. Thus, there are five symmetry-distinct sites

per monomer. Not all of the components of eqn (3) are utilized

on all the sites. Only the C and H sites have nonvanishing

Cab
n and dabn , n = 6, 8, 10 parameters. The central site carries

only the exponential terms of eqn (3) and the other off-atomic

sites have exponential terms and charges.

Out of the total of 92 fit parameters, the 4 charges qa and the

9 asymptotic coefficients Cab
n were taken from ref. 38. The 15

aab parameters, 15 bab parameters, 19 damping parameters dabn ,

and 30 polynomial coefficients aabm were found here by least-

square fitting of the SAPT(DFT) interaction energies. The use

of the Cab
n coefficients from ref. 38 neglects the E(3)

ind(KS)

contribution to the asymptotic dependence. However, since

This journal is �c the Owner Societies 2010 Phys. Chem. Chem. Phys., 2010, 12, 8219–8240 | 8221
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this contribution decays as R�11 such an approximation

should have a negligible effect on our potential.

We fitted our potentials to 479 out of the 491 SAPT(DFT)

interaction energies computed on a set of grid points in ref. 38,

plus to a number of additional interaction energies (21 for

pot2 and 22 for pot3) computed here. The additional points

were placed at and near the characteristic points of pot1. The

12 points from ref. 38 not used in the present fits were utilized

as a testing set. The points of ref. 38 were corrected for a

mistake in the energy conversion which resulted in a 0.03%

error. The interaction energies and the interaction energy

components for these points are given in the ESI.w
Compared to pot1, the important difference in the fitting

algorithm was that the weight of a configuration i was taken

equal to exp[2(E0 � Ei)/(kcal mol�1)] if Ei o E0 and (E0/Ei)
2

otherwise, with the parameter E0 chosen as 3 kcal mol�1. In

ref. 38, the Ei o E0 weight was equal to exp[(E0 � Ei)/

(kcal mol�1)]. In effect, the low-energy regions most relevant

for the present application are now weighted more strongly

relative to higher-energy regions than in ref. 38. This change

significantly improved the accuracy of the fit in the lower-

energy region, for instance, the maximum error for Ei o
�2 kcal mol�1 was reduced from 0.04 kcal mol�1 for pot1 to

0.02 kcal mol�1 for pot2. At the same time, the unweighted

root mean square error (RMSE) of pot2 and pot3 for the

points with Ei o 0 kcal mol�1, amounting to 0.020 and

0.019 kcal mol�1, respectively, was virtually unchanged com-

pared to pot1 of ref. 38 (0.019 kcal mol�1). The overall RMSE

increased to 0.47 and 0.44 kcal mol�1, respectively, compared

to the value of 0.15 kcal mol�1 for pot1. However, this

increase was almost exclusively due to several points with

Ei > 10 kcal mol�1 that are irrelevant for the present applica-

tion. The maximum error of pot3 for Ei o �2 kcal mol�1 was

again 0.02 kcal mol�1, the same as for pot2. The RMSE for the

12 testing point set increased from 0.033 kcal mol�1 for pot1 to

0.044 kcal mol�1 for pot2 and 0.048 kcal mol�1 for pot3,

which is not surprising since these points were included in the

fit of pot1, but not in the fits of pot2 and pot3. The parameters

of the fits are given in the ESI.w
For the application to the benzene dimer VRT states, the

fits were regularized since the original version behaved

unphysically for very short intermonomer distances, with the

interaction energy becoming strongly negative. We found that

the main reason for this behavior was the carbon–carbon

function uab(rab) of eqn (3). Therefore, for rab r rmax, where

rmax is the point where uCC reaches its maximum, this function

was set to a constant value, equal to its value at rmax E 2.5 Å.

This simple regularization removed all unphysical behavior at

short distances and changed the potential only in regions with

interaction energies above 5 kcal mol�1, not relevant for the

present applications.

B. Characteristic points on the potential energy surface

The benzene dimer potential surface pot1 was explored in

ref. 38 by localizing, in addition to the TT and PD minima,

several other stationary points. Here, we did the same for the

new potentials, pot2 and pot3. We present the results for pot3

since it differs most from pot1 and should be more accurate

than pot2. The method used to find the stationary points was

identical to that of ref. 38; it involved eigenvector-following

local optimization86 starting from randomly selected configu-

rations. We found three minima, six saddle points of index 1,

two stationary points of index 2, and one of index 3. The

structures are displayed in Fig. 1–4. The search was extensive

for the minima and index 1 saddle points and this list is

probably complete for this potential. For the higher-index

points, we only searched for the most important configura-

tions. We retained the labeling of ref. 38, even though the

energetic ordering of the structures has changed. An addi-

tional saddle point, not found in ref. 38, is labeled S3a. Table 1

includes some geometric parameters and the interaction

energies at the characteristic points of the fitted potential.

The pot3 interaction energies are compared with results from

ab initio SAPT(DFT) calculations (with and without third-

order energies) and from CCSD(T) calculations. In the

CCSD(T) method, we used the aug-cc-pVTZ basis set supple-

mented by the same midbond functions as in the SAPT(DFT)

calculations. The calculations were performed in the frozen-

core approximation with the Boys–Bernardi counterpoise

correction for the interaction energies,87,88 using the MOLPRO

suite of programs.89 The basis set is significantly larger than

Fig. 1 Structures at the minima in the potential surface. For the M1

structure, the Euler angles defined in the text are related to the angles

indicated as bA = 901 � yA and bB = 901 � yB. For the M2 structure,

bA = yA � 901 and gB = 601 � yB.

Fig. 2 Structures at the saddle points S1 to S3. For the S1 structure,

the Euler angles defined in the text are related to the angles indicated as

bA = yA � 901 and gB = 601 � yB. For the S2 structure, bA = 901 � yA
and bB = 901 � yB.

8222 | Phys. Chem. Chem. Phys., 2010, 12, 8219–8240 This journal is �c the Owner Societies 2010
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that used for the CCSD(T) calculations in ref. 38 and therefore

provides interaction energies of better quality. In fact, this is

the best quality basis applied so far at the CCSD(T) level for

geometries of the benzene dimer other than the PD, T-shape,

and sandwich structures considered in ref. 41.

Comparison of Table 1 with Table 1 of ref. 38 shows that

the fit of pot3 is significantly more accurate at the charac-

teristic points than the fit of pot1 in ref. 38. Except for the S4

saddle point, where the fitted and calculated SAPT(DFT)

energies differ by 0.04 kcal mol�1, the accuracy of the fit is

better than 0.02 kcal mol�1 for all structures. This is in

contrast to the potential of ref. 38, where the M1, S3, and

S4 structures had errors larger than 0.02 kcal mol�1 and, due

to inaccuracies of the fit, M1 was the global minimum on the

fitted potential instead of M2 (although with a very small

energy difference)—opposite to the ordering of the ab initio

energies. The lower accuracy of the pot3 fit at S4 is probably

the result of a relatively less dense coverage of this region,

compared to the vicinities of other characteristic points.

It can be seen in Table 1 that the sum of the third-order

induction and exchange-induction terms is not very large

compared to the total interaction energies—the largest contri-

bution is 0.068 kcal mol�1 or 2.5%. However, stacked configu-

rations (in particular, the PD minimum M1) are destabilized

by the third-order energies, while non-stacked (in particular,

the TT (M2) and T-shape (S3) structures) are stabilized.

Therefore, the third-order effects become fairly important

for the relative interaction energies of these structures. In

particular, the M1 structure shifts up from 7 to 36 cm�1 above

the M2 structure. This effect, combined with the changes in the

fitting procedure that emphasize the low-energy regions, leads

to important qualitative differences between pot1 and pot3.

The M1 and M2 structures were isoenergetic in pot1 to within

1 cm�1, whereas in pot3 the M2 structure is the global

minimum, by 36 cm�1 (0.10 kcal mol�1) lower than M1. This

energy gap is very close to the 39 cm�1 in the SAPT(DFT)

energies.

The SAPT(DFT) interaction energies with third-order con-

tributions agree very well with the CCSD(T) interaction

energies at the characteristic points, with an RMSE for the

whole set of only 0.10 kcal mol�1 compared to 0.13 kcal mol�1

for the SAPT(DFT) energies at the second-order level. The

discrepancies between the SAPT(DFT) and CCSD(T) energies

are largest for the S7 and S8 ‘sandwich’ structures (similar to

those in ref. 38), but these are less important, higher-energy

structures. The third-order terms improve also the agreement

Fig. 3 Structures at the saddle points S3a to S5. For the S3a

structure, the Euler angles defined in the text are related to the angles

indicated as bA = yA � 901 and bB = 901 � yB. For the S4 structure,

bA = 901 � yA and bB = 901 � yB.

Fig. 4 Structures at the saddle points S6 to S8. For the S6 structure,

the Euler angles defined in the text are related to the angles indicated

as bA = 901 � yA and gB = 601 � yB.

Table 1 Stationary points on the pot3 potential energy surface. The point group symmetry of the corresponding structures is given in the second
column. The geometric parameters R, yA, yB are marked in Fig. 1–4 and are related there to the Euler angles defined in the text. The remaining
columns contain interaction energies (in kcal mol�1) from the pot3 fit and calculated by: SAPT(DFT) with third-order terms included [SAPT], by
SAPT(DFT) limited to second order [SAPT2], and by supermolecular CCSD(T). Basis sets are specified in the text. Energies relative to the M2
global minimum (in cm�1) are given in parentheses

Sym R/Å yA yB pot3 SAPT SAPT2 CCSD(T)

M1 C2h 3.937 62.12 62.12 �2.686 (36.1) �2.683 (39.2) �2.751 (7.1) �2.619 (46.4)
M2 Cs 4.944 99.22 11.75 �2.789 (0.0) �2.795 (0.0) �2.772 (0.0) �2.752 (0.0)
M3 D2d 6.103 �1.796 (347.4) �1.789 (351.8) �1.817 (334.0) �1.785 (338.0)
S1 Cs 4.948 98.37 11.12 �2.773 (5.6) �2.781 (4.9) �2.755 (5.6) �2.740 (4.2)
S2 Cs 3.959 63.91 59.55 �2.666 (43.1) �2.666 (45.3) �2.731 (14.0) �2.601 (52.5)
S3 C2v 4.970 �2.712 (27.1) �2.698 (33.9) �2.661 (38.8) �2.640 (39.0)
S3a Cs 4.843 103.29 15.78 �2.719 (24.8) �2.733 (21.8) �2.711 (21.3) �2.669 (28.7)
S4 Cs 4.221 66.65 45.28 �2.634 (54.2) �2.591 (71.2) �2.636 (47.3) �2.474 (97.1)
S5 C2v 5.009 �2.451 (118.2) �2.441 (123.8) �2.419 (123.1) �2.333 (146.3)
S6 Cs 5.908 29.46 19.27 �1.739 (367.3) �1.738 (369.7) �1.760 (353.6) �1.747 (351.4)
S7 C6v 3.803 �1.804 (344.7) �1.788 (352.2) �1.857 (319.9) �1.589 (406.6)
S8 D6h 3.816 �1.772 (355.8) �1.782 (354.5) �1.849 (322.7) �1.593 (405.1)
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of the SAPT(DFT) and CCSD(T) energies relative to the

minimum M2 for almost all the characteristic points. In

particular, for the structures M1 and S2, the effect is quite

significant: the present SAPT(DFT) relative energy of M1 vs.

M2 (39 cm�1) compares very well with the value of 46 cm�1

obtained from CCSD(T) calculations. Exceptions to the

favorable effect of the third-order corrections are the M3,

S6, and S3 structures, but the relative values of these correc-

tions are very small there. The improvement of the relative

energies of the stacked and non-stacked configurations due to

the third-order effects is also visible in the S3 vs. M1 energy

ordering. SAPT(DFT) calculations predict that S3 is 5 cm�1

below M1, in good agreement with the 7 cm�1 predicted by

CCSD(T). The energy difference between S3 and M1 can also

be compared to the most accurate calculations for the benzene

dimer to date by Janowski and Pulay (JP)41 (these authors did

not include the M2 structure) who used basis sets up to aug-cc-

pVQZ, performed extrapolations to the complete basis set

limit, and obtained 8 cm�1 for the M1-S3 difference, with S3

lower in energy. Although JP used the quadratic configuration

interaction [QCISD(T)] method and different geometries,

these factors should introduce only small effects relative to

CCSD(T) results and our geometries. Thus, it appears that the

relative ordering of the low-energy characteristic points is now

established to within a few wave numbers. The potential pot3

gives the correct order of M1 and S3 and 9 cm�1 for the energy

difference, whereas in pot1 the order was opposite. Also

SAPT(DFT) at the second-order level gives an incorrect order

of S3 vs. M1 and, interestingly, the same is true for the

CCSD(T) interaction energies calculated in ref. 38. The latter

were actually obtained from interaction energies computed by

MP2 (second-order supermolecular perturbation theory with

the Møller–Plesset partitioning of the Hamiltonian) in the

aug-cc-pVTZ+mb basis, with the addition of a CCSD(T)–MP2

contribution computed in the aug-cc-pVDZ+mb basis. Thus,

this often-used approach fails in this case. Overall, the

closeness of the current SAPT(DFT) and CCSD(T) results

as well as the very good reproduction of those results by pot3

suggests that pot3 should be a good model for the benzene

dimer spectroscopic properties.

The impact of the third-order energies and of the modified

fit procedure is less pronounced for the geometries. The

geometric parameters of the characteristic points in pot3 are

in most cases similar to those of pot1 in ref. 38. In particular,

the structures of the major minima, M1 and M2, are almost

identical to the M1 and M2 structures from ref. 38. Also the

high-energy M3 minimum is little changed. Bludský et al.45

and Gräfenstein and Cremer48 suggested that the M3 structure

is not a local minimum but a saddle point. The current results

on the pot3 surface do not support this suggestion. The

most significant geometry change between the pot1 and pot3

surfaces occurs for the saddle point S4. This is not surprising,

since this saddle point separates the minima M2 and M1 and

the relative energy of these minima is significantly different in

pot1 and pot3. Also in pot2, the S4 configuration differs

significantly from that of pot1 and, therefore, the change of

the S4 geometry is partly due to the modification of the fitting

procedure. Another important difference between pot1 and

pot3 is found in the region of the T-shape structure S3 of C2v

symmetry that lies midway between two equivalent tilted

T-shape minima M2 of symmetry Cs. In pot1, S3 is a saddle

point of index 1, in pot3 it has become a stationary point of

index 2. A nearby saddle point S3a of index 1 was found in

pot3. It is of Cs symmetry, just as the M2 minimum, but it

corresponds to a perturbation of the C2v symmetry structure

S3 by ‘sideways’ bending of the stem—rather than tilting it,

which yields M2. The point S3a was found as a result of the

improved fit, it is not due to the inclusion of the third-order

effects, since it is also a saddle point on the pot2 surface

(although the energy separation depends on the third-order

terms). The importance of the S3a structure is that it has a

slightly lower energy (25 cm�1 above M2) than the S3 struc-

ture (27 cm�1 above M2) and is probably relevant for tunnel-

ing between equivalent M2 structures. The lower energy of the

S3a point compared to S3 is also confirmed by the CCSD(T)

energies. Interestingly, the S3a structure was also found in

ref. 45 and 48, but was interpreted as a S4-type structure. In

ref. 45, the energy of this characteristic point was found to be

lower than that of the S3 structure, but the importance of this

finding for tunneling pathways was not realized. In contrast, in

ref. 48 the energy of the S3a point was higher than that of S3,

and the S3 saddle point was of index 1 (the authors of ref. 45

did not publish the indices of their stationary points). More

detailed information on the stationary points of our potential

surface can be found in the ESI.w
One may wonder why the relatively small third-order effects

led to such significant improvements in the relative positions

of the characteristic points. The reason is that the charac-

teristic points have mostly quite distinct monomer orientations

and the sum of the third-order induction and exchange-

induction energies is fairly sensitive to the orientation. The

third-order dispersion interaction, which we did not include, is

much more isotropic and, therefore, should not affect too

much the relative energies of the different characteristic points.

The third-order dispersion energy is expected to be positive,72

and the observation that the aug-cc-pVTZ+mb SAPT(DFT)

results for the M1 and S3 structures agree better with the

complete basis set QCISD(T) results of ref. 41 than with the

aug-cc-pVTZ+mb CCSD(T) results in Table 1 is perhaps due

to the fact that the lack of the third-order dispersion energy (and

of other, most likely smaller, third-order contributions: exchange-

dispersion, induction-dispersion, and exchange-induction-

dispersion) partly cancels the basis set incompleteness error.

III. Symmetry

The molecular symmetry group of the benzene molecule is

D6h(M); see Table A-11 in ref. 90. This group is the direct

product of the permutation group D6(M) and the inversion

group {E, E*}. The carbon nuclei are labeled C1 to C6

consecutively around the ring and the attached protons are

similarly labeled H1 to H6. The notation used is such that the

permutation (1 2), for example, exchanges C1 with C2 and also

exchanges H1 with H2, so that the permutations that generate

D6(M) are (1 2 3 4 5 6) and (2 6)(3 5). If we assume that all

internal rotations of the benzene monomers within the dimer

are feasible in the sense defined by Longuet-Higgins,91 then the

molecular symmetry group of the benzene dimer is the group

8224 | Phys. Chem. Chem. Phys., 2010, 12, 8219–8240 This journal is �c the Owner Societies 2010

D
ow

nl
oa

de
d 

on
 1

6 
O

ct
ob

er
 2

01
2

Pu
bl

is
he

d 
on

 2
0 

M
ay

 2
01

0 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

00
26

53
K

View Online

http://dx.doi.org/10.1039/c002653k


G576 first described in ref. 25; some misprints in the character

table in ref. 25 are corrected in ref. 26. The molecular

symmetry group of any complex in which all monomer rota-

tions are feasible is called the full cluster tunneling (FCT)

group;90 thus G576 is the FCT group of the benzene dimer. For

the symmetry analysis of the VRT states we consider the group

G576 and various subgroups of it.

As with the product decomposition of D6h(M), group

G576 can also be written as a direct product of its permuta-

tion subgroup (which we call GPSG
576 ) and the inversion

group {E, E*}. Group GPSG
576 is the semi-direct product of

D6(M)A # D6(M)B with {E, PAB}. The labels A and B refer

to the monomers in the dimer: The CH nuclei in monomer A

are labeled from 1 to 6, those in monomer B from 10 to 60. The

interchange permutation PAB is defined as (1 10)(2 20)(3 30)-

(4 40)(5 50)(6 60). The irreducible representations (irreps) of

G576 and the corresponding nuclear spin statistical weights for

(C6H6)2 and (C6D6)2 are listed in Table 2. Also the irreps in the

direct product group D6(M)A # D6(M)B from which they are

induced by the inclusion of PAB and E* are shown in Table 2.

In ref. 26, it is explained how the character table25 of G576 and

the nuclear spin weights can be computed by means of the

program package GAP.92 The weights in Table 2 or—if two

irreps occur on the same line—their sums, can be obtained by

multiplication of the benzene monomer nuclear spin weights.93

The tilted T-shape (TT) structure at the global minimum in

the potential, see M2 in Fig. 1, has Cs = {E, s} point group

symmetry. This group has an order 2, which implies that there

are 288 versions of the TT equilibrium structure between

which tunneling could occur in the dimer. If none of the

internal rotation tunneling motions were feasible then for a

version of the TT structure that has monomer A as the ‘cap’

oriented so that the reflection symmetry plane bisects the

bonds 2–3 and 5–6, the molecular symmetry group would be

Cs(M) = {E, (1 4)(2 3)(5 6)*}. Since some, but not all, internal

rotations in the benzene dimer appear to be feasible, i.e., to

give rise to observable tunneling splittings, we considered

various group chains connecting the molecular symmetry

group Cs(M) of the rigid TT dimer to the FCT group G576.

As an example with A as the cap, we discuss here the group

chain Cs(M) C C6v(M) C G24 C G48 C G288 C G576 that

actually agrees with the splitting pattern of the calculated

levels, see section VA. Starting from the group Cs(M) of the

rigid TT equilibrium structure, the possible internal motions

and the corresponding molecular symmetry groups are:

- Cap C6 internal rotation: Cs(M) ) C6v(M),

- Tilt tunneling: C6v(M) ) G24,

- Cap turnover: G24 ) G48,

- Stem C6 internal rotation: G48 ) G288,

- Cap-stem interchange: G288 ) G576.

The group G288 mentioned here is not GPSG
576 , the permuta-

tion subgroup of G576, although these two groups both have

order 288. Internal rotation of the cap about its C6 axis

corresponds to the lowest (sixfold) barrier (of about 6 cm�1)

in the potential at the saddle point S1, see Fig. 2. This process

interconnects six equivalent TT minima in the potential. If we

assume it to be feasible, the molecular symmetry group Cs(M)

is augmented to C6v(M) by means of the generator (1 2 3 4 5 6);

see Table A-7 in ref. 90. Next, a specific TT structure can be

converted into a nearby equivalent structure by undoing the

tilt and then tilt to the opposite direction. The ‘untilted’

T-shape structure S3, see Fig. 2, with C2v symmetry and an

energy of 27 cm�1 relative to the TT minimum, is a stationary

point of index 2. Two nearby saddle points S3a of index 1 with

Cs symmetry, see Fig. 3, have the slightly lower energy of

25 cm�1. The permutation-inversion operation that inter-

connects the two TT structures involved in this tilt tunneling

process is (2 6)(3 5)(20 60)(30 50)* and it leads from C6v(M) to

G24 = C6v(M)A # {E, (20 60)(30 50)}; see Table A-27 in ref. 90

where one should replace the permutation (7 8) by (20 60)(30 50).

Then, we found in the analysis of our calculated VRT levels

(see below) that cap turnover, an operation that reverses the

direction of the cap C6 symmetry axis, is feasible. This process

corresponds to operations such as (2 6)(3 5) or (1 4)(2 3)(56).

Both of these types of operation are included because they are

converted into each other by the feasible sixfold permutation

(1 2 3 4 5 6). Cap turnover increases the PI symmetry group

from G24 to G48 = D6h(M)A # {E, (20 60)(30 50)}. The

operations that subsequently generate the FCT group G576

are the sixfold rotation of the ‘stem’ (10 20 30 40 50 60), yielding

G288 = D6h(M)A # D6(M)B = D6h(M)cap # D6(M)stem, and

the interchange PAB then producing G576.

Our calculated VRT levels, see below, lead us to conclude

that only three motions will produce observable splittings: Cap

C6 internal rotation, stem tilt, and cap turnover. In this

circumstance the molecular symmetry group would be G48.

If stem C6 internal rotation tunneling were also observed then

the molecular symmetry group would be G288 = D6h(M)cap #
D6(M)stem. Of these four tunneling motions, if cap turnover

tunneling were not observable, then the molecular symmetry

Table 2 Irreducible representations G of the FCT group G576, with
their dimension nG, and of the subgroup D6(M)A # D6(M)B and the
corresponding nuclear spin statistical weights. The superscripts� refer
to the inversion, E*, symmetry

G576

nG

D6(M)A # D6(M)B
Spin statistical weight

Irrep Irrep (C6H6)2 (C6D6)2

A�1,2 1 A1 # A1 28, 21 4278, 4186

A�3,4 1 A2 # A2 6, 3 741, 703

B�1,2 1 B1 # B1 78, 91 2628, 2701

B�3,4 1 B2 # B2 1, 0 1081, 1035

E�1 2 A1 # A2 21 3496

E�2 2 A1 # B1 91 6716

E�3 2 A1 # B2 7 4232

E�4 2 A2 # B1 39 2774

E�5 2 A2 # B2 3 1748

E�6 2 B1 # B2 13 3358

G�1,2 4 E1 # E1 66, 55 6786, 6670

G�3,4 4 E2 # E2 45, 36 7750, 7626

G�5 4 A1 # E1 77 10672

G�6 4 A1 # E2 63 11408

G�7 4 A2 # E1 33 4408

G�8 4 A2 # E2 27 4712

G�9 4 B1 # E1 143 8468

G�10 4 B1 # E2 117 9052

G�11 4 B2 # E1 11 5336

G�12 4 B2 # E2 9 5704

K� 8 E1 # E2 99 14384
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group would be the group G144 = C6v(M)cap # D6(M)stem

considered before by Spirko et al.31

The symmetry adaptation of the basis, explained in section

IVB, ensures that the calculated VRT states carry the irreps of

the FCT group G576. The particular molecular symmetry

group corresponding to the calculated level splitting pattern,

can be determined via subduction of the G576 irreps along

different subgroup chains. We made such an analysis only for

the TT structure, since the PD structure was not observed

experimentally and our calculations produced only a limited

number of VRT states located near the PD minima, at higher

energies. We note, though, that the PD (local minimum)

structure has C2h point group symmetry, of order 4, so there

are 144 equivalent PD structures. For one of those PD

structures the operations C2 and sh in the group C2h corres-

pond to the PI operations (1 4)(2 3)(5 6)(10 40)(20 30)(50 60)PAB

and (2 6)(3 5)(20 60)(30 50)*, respectively.

IV. Computational method

A. Formalism

The methods that have been developed53–57 to compute the

VRT states of a weakly bound dimer start from the

Hamiltonian of a rotating dimer with two internally rotating

(rigid) polyatomic monomers, expressed in body-fixed (BF)

dimer coordinates

H ¼TAþTBþ
1

2mABR2
��h2

@

@R
R2 @

@R
þ J2þ j2AB� 2jAB �JBF

� �

þVðR;bA;gA;a;bB;gBÞ:
ð5Þ

The two-angle embedded94,95 dimer BF frame has its z-axis

along the vector RR RAB that points from the center of mass

of monomer A to that of monomer B, R is the length of this

vector, oA R (aA, bA, gA) and oB R (aB, bB, gB) are the Euler
angles describing the orientations of local coordinate frames

(MF) on monomers A and B with respect to the dimer BF

frame. The z-axes of the MF frames are chosen parallel to the

benzene monomer C6 axes, the x-axis of the MF frame on

monomer A points from the center of this monomer to CH

fragment 1, and the x-axis of the MF frame on B from the

center of B to CH fragment 10. The angle a = aA � aB is the

dihedral angle defined by the monomer z-axes and the dimer

z-axis along R.

The operator JBF represents the total angular momentum

with components defined relative to the dimer BF frame,

jAB = jA + jB is the sum of the monomer angular momenta

with respect to the dimer frame, and mAB is the dimer reduced

mass. The kinetic energy operator of monomer X ( = A or B)

is given by

TX = AX(j
MF
Xx )

2 + BX(j
MF
Xy )

2 + CX(j
MF
Xz )

2, (6)

with the rotational constants AX, BX, and CX. The superscript

MF implies that x, y, and z refer to the components of jX along

the principal axes of monomer X. The Hamiltonian in eqn (5)

was derived by Brocks et al.94 with the use of the chain rule.

An alternative derivation is given in Appendix A-4 of ref. 95.

It has been applied in calculations of the VRT levels of the

NH3 dimer53,95,96 and the water dimer.54–57,61,62

Just as in the earlier work on the NH3 and water dimers,

we introduce a coupled product basis of symmetric rotor

functions—Wigner D-functions97—for the angular coordinates

jjA;kA; jB;kB; jAB;J;K;Mi¼
ð2jAþ1Þð2jBþ1Þð2Jþ1Þ

256p5

� �1=2

�
X
mAmB

D
ðjAÞ
mAkA
ðoAÞ�DðjBÞmBkB

ðoBÞ�

�hjAmA; jBmBjjABKiDðJÞMKðF;Y;0Þ
�

ð7Þ

in which hjAmA; jBmB |jABKi is a Clebsch–Gordan coupling

coefficient.97 The angles (Y, F) are the polar angles of the

intermolecular vector R with respect to the space-fixed frame.

The total angular momentum J is a good quantum number and

is held fixed. Its projection K on the dimer axis R is a nearly

good quantum number and can be used in combination with J

to label the dimer VRT states, but there is some mixing between

basis functions with different values of K by off-diagonal terms

in the Coriolis coupling operator jAB�JBF.
In applications to the NH3, H2O, andD2O dimers,53,54,56,57,61,62

the basis in eqn (7) could always be truncated at maximum jA
and jB values of 13, at most. As one will see below, the benzene

dimer requires the use of extremely large basis sets with

maximum jA and jB values of 24 (even 28, in some cases) to

obtain sufficiently well converged results. Among the different

methods that have been developed, the pseudo-spectral method

of Leforestier et al.54 is the most efficient one, in terms of

computer time and storage. Actually, because of the very high

values of jA and jB needed, it is the only method that we could

apply here. The method is called a split Wigner method,

because it employs, in addition to the analytical Wigner

function basis of eqn (7), an appropriate numerical grid basis.

The lower eigenvalues of the Hamiltonian in eqn (5) are

determined iteratively by means of the Lanczos algorithm.

The so-called Lanczos vectors in this algorithm are obtained

by repeatedly operating with the Hamiltonian on an initial

(arbitrary) seed vector. The kinetic energy terms in the

Hamiltonian are easily evaluated in the analytical basis, while

the potential V is diagonal in the grid basis: its diagonal matrix

elements are simply the values of the potential at the grid

points. The Lanczos method is applied in the analytical basis,

adapted to the irreps of the FCT group G576, see section IVB.

In the potential energy calculation, one transforms the

Lanczos vectors to the grid basis, multiplies with the potential

on the grid, and then transforms back to the symmetry-

adapted analytical basis. This, together with the fact that these

transformations are made in a very efficient manner,54 is what

makes this method very economical both in the use of storage

and in computer time. A potential-optimized98 DVR (discrete

variable representation) is used for the coordinate R. The

calculations were made for total J values of 0 and 1. In the

calculations for J = 1 we included the off-diagonal Coriolis

coupling between angular basis functions with K = 0 and

K = �1, because without this coupling K would be a good

quantum number, the levels with K = �1 would be
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degenerate, and we could not compute a possible asymmetry

splitting between the |K| = 1 levels of opposite parity.

B. Symmetry adaptation

In order to adapt the basis in eqn (7) to the irreps of the group

G576, we must first derive how the elements of this group act on

the coordinates. We consider the generators of the group: the

permutation (1 2 3 4 5 6), the permutation (2 6)(3 5), the

interchange PAB, and inversion E*. It is easily seen that (1 2 3 4 5 6)

increases the angle gA by 60 degrees. The action of the other

generators on the coordinates is less trivial; the results are

summarized in Table 3. From the properties of the Wigner

D-functions,97 it follows then what is the effect on the basis in

eqn (7). One finds, in particular, that the Wigner function

D
ðjAÞ
mAkA
ðoAÞ�, and therefore also each basis function, is an

eigenfunction of (1 2 3 4 5 6) with eigenvalue exp(2pikA/6).
This property is commonly used to relate the symmetric rotor

functions D(j)
mk(o)* of a benzene monomer to the irreps of the

group D6(M). Functions with k = 0(mod 6) belong to the D6

irreps A1 and A2, functions with k = �1(mod 6) carry the E1

irrep, functions with k = �2(mod 6) the E2 irrep, and

functions with k = 3(mod 6) the B1 and B2 irreps. This can

be applied to both monomers A and B and, therefore, it

follows immediately from the D6(M)A # D6(M)B subduction

of the G576 irreps, see Table 2, which particular combination of

kA and kB (modulo 6) values belongs to each G576 irrep. The

results are included in Table 4.

The twofold symmetry operators have the following effects

on the basis

(2 6)(3 5)| jA, kA, jB, kB, jAB, J, K, Mi =
(�1)jA| jA, �kA, jB, kB, jAB, J, K, Mi (8)

(20 60)(30 50)| jA, kA, jB, kB, jAB, J, K, Mi =
(�1)jB| jA, kA, jB, �kB, jAB, J, K, Mi

PAB| jA, kA, jB, kB, jAB, J, K, Mi =
(�1)jA+jB+J| jB, kB, jA, kA, jAB, J, �K, Mi

E*| jA, kA, jB, kB, jAB, J, K, Mi =
(�1)J�jAB+kA+kB| jA, kA, jB, kB, jAB, J, �K, Mi.

Given the fact that the basis functions in eqn (7) are already

adapted to C6(M)A #C6(M)B by choosing a specific combina-

tion of kA and kB (modulo 6) values, it is easy to use the

relations in eqn (8) to construct a set of projection operators

that produce symmetry-adapted basis functions for all irreps

of G576. We use the so-called Wigner or matrix-element

Table 3 Effect of the G576 group generators on the angular coordi-
nates defined in the text

E (123456) (26)(35) PAB E*

Y Y Y p � Y p � Y
F F F p + F p + F
aA aA aA + p �aB �aA
bA bA p � bA p � bB p � bA
gA gA+2p/6 �gA p +gB gA
aB aB aB �aA �aB
bB bB bB p � bA p � bB
gB gB gB p + gA gB

Table 4 Projection operators and kA, kB values for the G576 irreps

G576 irrep kA, kB (mod 6) Projector

A�1 0, 0 1
16
½E � E��½E þ PAB�½E þ ð26Þð35Þ�½E þ ð2060Þð3050Þ�

A�2 0, 0 1
16
½E � E��½E � PAB�½E þ ð26Þð35Þ�½E þ ð2060Þð3050Þ�

A�3 0, 0 1
16
½E � E��½E þ PAB�½E � ð26Þð35Þ�½E � ð2060Þð3050Þ�

A�4 0, 0 1
16
½E � E��½E � PAB�½E � ð26Þð35Þ�½E � ð2060Þð3050Þ�

B�1 3, 3 1
16 ½E � E��½E þ PAB�½E þ ð26Þð35Þ�½E þ ð2060Þð3050Þ�

B�2 3, 3 1
16
½E � E��½E � PAB�½E þ ð26Þð35Þ�½E þ ð2060Þð3050Þ�

B�3 3, 3 1
16
½E � E��½E þ PAB�½E � ð26Þð35Þ�½E � ð2060Þð3050Þ�

B�4 3, 3 1
16
½E � E��½E � PAB�½E � ð26Þð35Þ�½E � ð2060Þð3050Þ�

E�1 0, 0 1
8
[E � E*] [E + (26)(35)] [E � (20 60)(30 50)]

E�2 0, 3 1
8
[E � E*] [E + (26)(35)] [E + (20 60)(30 50)]

E�3 0, 3 1
8
[E � E*] [E + (26)(35)] [E � (20 60)(30 50)]

E�4 0, 3 1
8
[E � E*] [E � (26)(35)] [E + (20 60)(30 50)]

E�5 0, 3 1
8
[E � E*] [E � (26)(35)] [E � (20 60)(30 50)]

E�6 3, 3 1
8
[E � E*] [E + (26)(35)] [E � (20 60)(30 50)]

G�1 �1, �1 1
4
[E � E*] [E + PAB]

G�2 �1, �1 1
4
[E � E*] [E � PAB]

G�3 �2, �2 1
4
[E � E*] [E + PAB]

G�4 �2, �2 1
4
[E � E*] [E � PAB]

G�5 0, �1 1
4[E � E*] [E + (26)(35)]

G�6 0, �1 1
4
[E � E*] [E + (26)(35)]

G�7 3, �1 1
4
[E � E*] [E � (26)(35)]

G�8 3, �1 1
4
[E � E*] [E � (26)(35)]

G�9 0, �2 1
4
[E � E*] [E + (26)(35)]

G�10 0, �2 1
4
[E � E*] [E + (26)(35)]

G�11 3, �2 1
4
[E � E*] [E � (26)(35)]

G�12 3, �2 1
4
[E � E*] [E � (26)(35)]

K� �1, �2 1
2
[E � E*]
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projectors99 listed in Table 4. Actually, there are nG of such

projectors for an irrep G of dimension nG, but we need only

one of them per irrep to construct a symmetry-adapted basis

for the computation of the VRT levels. The partners in a

symmetry-adapted basis carrying a multi-dimensional irrep

yield the same energies. If needed, the partner wave functions

can be obtained by the action of those generators in eqn (8)

that are not contained in the projectors in Table 4. Operating

with these projectors on the basis functions of eqn (7), with the

application of eqn (8), yields the symmetry-adapted basis

functions for all G576 irreps. These functions are linear combi-

nations of, at most 16, primitive basis functions. From the

properties of the matrix-element projectors,99 one can derive

that matrix elements of the Hamiltonian can be rewritten such

that only the basis functions in the ket need to be symmetry

adapted, while one keeps the primitive basis functions in the

bra (or vice versa). The calculation of the VRT levels was

performed for each G576 irrep separately.

C. Computational details

It was already mentioned above that the angular basis had to

be very large to obtain sufficiently well converged energy

levels. The basis was truncated by choosing maximum values

of jA, jB, and kA, kB. After a series of convergence tests, we

used a maximum jA, jB value of 24 in most calculations and

included all the allowed values of kA, kB. In calculations aimed

at checking whether the very small interchange tunneling

splittings had converged, we even used a maximum jA, jB value

of 28, while maintaining the highest kA, kB at 24. With a

maximum jA, jB of 24, the corresponding grid contained 27

Gauss–Legendre quadrature points in the angles bA and bB,
and 54 equidistant points in gA, gB, and a. When the maximum

jA, jB was increased to 28, the grid consisted of 32 points in bA
and bB, and 60 points in gA, gB, and a. For the radial

coordinate, we used 53 equidistant grid points in the range

from R= 5.7 to 16 a0, 50 sine basis functions, and a potential-

optimized DVR. The 16 potential-optimized DVR points and

weights were determined by solving a one-dimensional eigen-

value problem with an effective radial potential obtained by

choosing for each R value the lowest value of the potential on

the five-dimensional angular grid.

After some experimentation with different energy thresholds,

it was concluded that rejecting all grid points for which

the potential (with well depth �975.5 cm�1) was higher than

�100 cm�1 had a negligibly small effect on the energy levels.

Further checks were made after obtaining converged energy

levels and it turned out that less than 0.0001 of the integrated

squared amplitude of the wave functions was rejected by using

this energy threshold. The final grid for the ‘standard’ basis

with a maximum jA, jB of 24 contained nearly 0.8 � 109 points

and for the extended basis more than 1.5 � 109 points. The

number of grid points on which the potential was evaluated

was reduced by a factor of 72 through the use of symmetry.

With the standard basis, the size of the primitive angular basis

set was 9.6 � 106 and 26.3 � 106 for J = 0 and 1, respectively,

and with the extended basis it was 20.6 � 106 for J = 0. With

the potential-optimized DVR in R, the total basis size is

16 times larger. The largest size of the symmetry-adapted

standard basis for J = 0 was nearly 2.2 � 106. It occurs for

the K� irreps of dimension nG = 8; the size of the symmetry-

adapted basis is roughly proportional to the dimension of the

irrep. Up to 250 Lanczos iterations were needed to converge at

least the lowest eight energy levels of a given symmetry to

10�6 cm�1 or better.

For the benzene monomer rotational constants we used the

experimental100,101 ground state values: A= B= 0.1898 cm�1

and C = 0.0949 cm�1. The atomic masses are 12.0000 u for

carbon and 1.0078 u for hydrogen, which yields a dimer

reduced mass mAB of 39.0235 u.

As explained in section II, we expect that the new potential

pot3 which includes third-order induction and exchange-

induction terms is the most accurate one. So we used pot3

for the calculation of the VRT levels. In order to check how

sensitive the calculated levels are to changes in the potential,

we also performed calculations with pot1 and pot2.

D. Convergence, one-dimensional models

In section VA, where we present the calculated VRT levels, we

will see that the values of D0 computed with the standard and

extended basis sets, 870.3481 and 870.9526 cm�1, respectively,

are still rather different. Hence, we must conclude that the

absolute energies of the levels are not converged to better than

about 1 cm�1. Fortunately, the energy differences between the

levels are converged much better. How much better, depends

on the effect that the basis set truncation has for different

irreps. In section IVB, it was explained how the different irreps

correspond to specific values of kA and kB (modulo 6). For

irreps with the same values of kA and kB, the effect of the basis

truncation on the energies is about the same and the energy

differences between such levels seem to be converged to about

3 � 10�4 cm�1 with the standard basis, see below. The energy

differences between levels that belong to irreps with different

kA and kB appear to be converged only to a few tenths of cm�1.

In addition to the symmetry, also the height of the barriers

to internal rotation determines how well the energies are

converged with a given basis size. We investigated this in

one-dimensional models for the internal rotations of the cap

and the stem, hindered by sixfold barriers. With the assump-

tion of an ideal T-shaped structure, the reduced rotational

constant for internal rotation of the cap is the sum of the

monomer rotational constants, A+ C. The reduced rotational

constant for internal rotation of the stem was assumed to be

C + 1/(2mABRe
2), with an equilibrium center-of-mass distance

Re of 9.35 a0. The height of the sixfold barrier in the model for

cap rotation was chosen to be 6 cm�1, which is about the

energy difference between the saddle point S1 and the TT

equilibrium geometry M2, see section II. In the model for stem

rotation we used the value of 118 cm�1 for the height of the

sixfold barrier, which is the energy difference between the

saddle point S5 and the TT minimum M2. For cap rotation

with its very low barrier, a one-dimensional free rotor basis

with a maximum ki of 18 already yields energy levels con-

verged to better than 10�7 cm�1. For stem rotation with the

much higher barrier of 118 cm�1 a basis with maximum ki of

24 still yields truncation errors of about 0.03 cm�1 in the

energies. This should be seen in the perspective of the actual

8228 | Phys. Chem. Chem. Phys., 2010, 12, 8219–8240 This journal is �c the Owner Societies 2010
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size of the level splittings. Cap rotation with its barrier of

6 cm�1 gives rise to splittings on the order of 1 cm�1, stem

rotation hindered by a barrier of 118 cm�1 gives rise to

splittings of about 3 � 10�8 cm�1 E 1 kHz. As a consequence,

our results are well converged for tunneling processes leading

to relatively large splittings, whereas very small tunneling

splittings cannot be converged at all in our full six-dimensional

approach.

V. Vibration–rotation-tunneling states

A. Energy levels, properties

The energy levels calculated for J = 0 with the standard basis

are listed in Table 5–8. A representative set of levels is shown

in Fig. 5(a). As we will explain below, all of these energy levels

correspond to the vibrational ground and first excited states

localized near the TT equilibrium geometry and the splittings

between the levels of a given vibrational state are caused by

tunneling between equivalent TT minima in the potential

surface. The levels in Fig. 5(a) belong to those G576 irreps that

are induced from identical irreps on monomers A and B, see

Table 2. Therefore, it is not clear whether the tunneling

mechanisms causing the splittings between the levels in

Fig. 5(a) involve the cap or the stem in the TT structure.

Fig. 5(b) displays the levels obtained from the one-dimensional

model for the hindered rotation of the cap. If the sixfold

barrier to internal rotation of the cap were zero then the levels

in Fig. 5(b) would be the |ki| = 0 through 6 internal rotation

energy levels with energies increasing as k2i . As the sixfold

barrier to cap internal rotation is raised, the |ki| = 3 level splits

into two and the energy spacing pattern between the |ki| = 0,

1, 2 and 3(lower) levels approaches the high barrier 1 : 2 : 1

ratio; these four levels correlate with the ground cap-torsion

vibrational state of the high barrier complex which has

symmetry A0 in the point group Cs of the TT structure. These

levels, with the C6 irrep labels ki(mod 6) = 0, �1, �2, and 3,

have symmetries A1, E1, E2, and B2, respectively, if we extend

the C6 symmetry of the one-dimensional model to C6v by

inclusion of the reflection. The levels in the upper half of

Fig. 5(b) have |ki| = 3(upper), 4, 5, and 6(lower) in the free

internal rotor limit and correlate with the v = 1 first excited

cap-torsion vibrational state of the high barrier complex which

has symmetry A0 0 in Cs. These levels have B1, E2, E1, and A2

symmetry, respectively, in C6v. In the high-barrier case, the

vibrational excitation energy is large relative to the tunneling

splittings. Here, the barrier for cap rotation is low, the

Table 5 Tilt tunneling ground levels for the ground vibrational state
of A0 symmetry calculated for J = 0 with the standard basis, and
symmetry with respect to the group chain G24 C G48 C G288 C G576.
The energy zero of the ground level of A+

1 symmetry corresponds to a
binding energy D0 of 870.3481 cm�1

kA (mod 6) G24 G48 G288 G576 Energy/cm�1

0 A1s A01g A1g#A1 A+
1 , A+

2 0.0000, 0.0003

A1g#E1 G+
5 0.3077

A1g#E2 G+
6 0.2084

A1g#B1 E+
2 0.2239

A02u A2u#A1 E�1 0.2837

A2u#E1 G�7 0.5899

A2u#E2 G�8 0.4923

A2u#B1 E�4 0.5068

�1 E1a E001g E1g#A2 G�7 0.4018

E1g#E1 G�1 ,G
�
2 0.6569, 0.6569

E1g#E2 K� 0.5916
E1g#B2 G�11 0.5729

E001u E1u#A2 G+
7 0.4954

E1u#E1 G+
1 ,G+

2 0.7479, 0.7482

E1u#E2 K+ 0.6846
E1u#B2 G1

+
1 0.6647

�2 E2s E02g E2g#A1 G+
6 1.2669

E2g#E1 K+ 1.4604
E2g#E2 G+

3 ,G+
4 1.4047, 1.4050

E2g#B1 G+
10 1.3762

E02u E2u#A1 G�6 1.2836

E2u#E1 K� 1.4762
E2u#E2 G�3 ,G

�
4 1.4214, 1.4214

E2u#B1 G�10 1.3921

3 B2a B001g B1g#A2 E�4 2.0840

B1g#E1 G�9 2.2086

B1g#E2 G�10 2.1724

B1g#B2 E�6 2.1235

B002u B2u#A2 E+
5 2.0860

B2u#E1 G+
11 2.2102

B2u#E2 G+
12 2.1744

B2u#B2 B+
3 ,B+

4 2.1250, 2.1253

Table 6 Tilt tunneling excited levels for the ground vibrational state
of A0 symmetry calculated for J = 0 with the standard basis, and
symmetry with respect to the group chain G24 C G48 C G288 C G576

kA (mod 6) G24 G48 G288 G576 Energy/cm�1

0 A1a A001g A1g#A2 E+
1 0.9130

A1g#E1 G+
5 1.3120

A1g#E2 G+
6 1.1878

A1g#B2 E+
3 1.2070

A002u A2u#A2 A�3 ,A
�
4 1.2214, 1.2217

A2u#E1 G�7 1.6217

A2u#E2 G�8 1.4977

A2u#B2 E�5 1.5169

�1 E1s E01g E1g#A1 G�5 1.3012

E1g#E1 G�1 ,G
�
2 1.6480, 1.6483

E1g#E2 K� 1.5520
E1g#B1 G�9 1.5430

E01u E1u#A1 G+
5 1.4175

E1u#E1 G+
1 ,G+

2 1.7641, 1.7642

E1u#E2 K+ 1.6685
E1u#B1 G+

9 1.6589

�2 E2a E002g E2g#A2 G+
8 2.1468

E2g#E1 K+ 2.3770
E2g#E2 G+

3 ,G+
4 2.3314, 2.3315

E2g#B2 G+
12 2.2719

E002u E2u#A2 G�8 2.1675

E2u#E1 K� 2.3978
E2u#E2 G�3 , G

�
4 2.3522, 2.3525

E2u#B2 G�12 2.2926

3 B2s B01g B1g#A1 E�2 2.8444

B1g#E1 G�9 3.0250

B1g#E2 G�10 2.9664

B1g#B1 B�1 ,B
�
2 2.9211, 2.9206

B02u B2u#A1 E+
3 2.8466

B2u#E1 G+
11 3.0276

B2u#E2 G+
12 2.9691

B2u#B1 E+
6 2.9235
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‘vibrationally excited’ state already lies above this barrier, the

energy gap between the two ‘vibrational’ states in Fig. 5(b) is

of the same magnitude as their ‘tunneling’ splittings, and the

latter are far from corresponding to a 1 : 2 : 1 ratio. Still, we

will use the designation vibrational ground and excited states

for the states that correlate with the vibrational states of A0

and A0 0 symmetry in the point group Cs of the TT equilibrium

structure. The relation between the levels from the full calcula-

tions in Fig. 5(a) and those from the one-dimensional model in

Fig. 5(b) can be understood if one realizes that the G576 irreps

A1 and A2 originate from the A1 irreps on both monomers, the

irreps A3 and A4 from the monomer A2 irreps, the irreps G1

and G2 from the monomer E1 irreps, the irreps G3 and G4 from

the monomer E2 irreps, the irreps B1 and B2 from the mono-

mer B1 irreps, and the irreps B3 and B4 from the monomer B2

irreps. The similarity between the pictures in Fig. 5(a) and (b)

shows that it is the hindered rotation of the cap that is

primarily responsible for the energy level pattern.

The splittings between the levels belonging to the same cap

hindered rotation quantum number can be interpreted by

looking at the full set of levels in Table 5–8 and their

symmetries with respect to the group chain Cs(M) C C6v(M)

C G24 C G48 C G288 C G576, see also section III. The Cs

symmetry label indicates whether a level correlates with the

vibrational ground state, A0, or with the lowest vibrationally

excited A0 0 state. We also found vibrationally excited states

with A0 symmetry, but these have higher energies and are not

included in Table 5–8. The splittings of the levels with the same

A0 or A0 0 symmetry are due to different tunneling mechanisms.

We already saw that the splittings between levels belonging to

different irreps of C6v are caused by the sixfold hindered

rotation of the cap. The further splittings on the order of

1 cm�1 between the levels in Table 6 and those in Table 5 and

between the levels in Table 8 and those in Table 7, see also

Fig. 5(a), are caused by tilt tunneling. The levels in each tilt

tunneling pair belong to the same C6v irrep and the same

kA (mod 6), but to different G24 irreps [distinguished by

their parity ‘s’ or ‘a’ with respect to the twofold operation

(2 6)(3 5)(20 60)(30 50)* that represents tilt tunneling]. The small

splittings between levels in the same table with the same G24

irrep and different G48 irreps are caused by cap turnover.

These splittings are 0.28, �0.09, 0.016, �0.002 cm�1 for the

levels in Table 5 and 0.31, �0.12, 0.021, �0.0025 cm�1 for the

levels in Table 6. For the vibrationally excited levels in Table 7

and 8 the corresponding splittings are �0.003, 0.003, �0.007,
�0.33 cm�1 and �0.004, 0.005, �0.008, �0.10 cm�1, respec-

tively. Positive values of the splitting imply that the levels of +

parity under E* are lower in energy than the levels of � parity,

negative values imply the opposite. One observes that this sign

is the same as the parity ‘s’ (symmetric) or ‘a’ (antisymmetric)

Table 7 Tilt tunneling ground levels for the lowest excited vibrational
state of A0 0 symmetry calculated for J=0 with the standard basis, and
symmetry with respect to the group chain G24 C G48 C G288 C G576

kA (mod 6) G24 G48 G288 G576 Energy/cm�1

3 B1a B002g B2g#A2 E�5 4.0534

B2g#E1 G�11 4.1141

B2g#E2 G�12 4.0805

B2g#B2 B�3 ,B
�
4 4.0424, 4.0422

B001u B1u#A2 E+
4 4.0567

B1u#E1 G+
9 4.1170

B1u#E2 G+
10 4.0837

B1u#B2 E+
6 4.0452

�2 E2s E02g E2g#A1 G+
6 5.4322

E2g#E1 K+ 5.4476
E2g#E2 G+

3 ,G+
4 5.4009, 5.4010

E2g#B1 G+
10 5.3773

E02u E2u#A1 G�6 5.4354

E2u#E1 K� 5.4507
E2u#E2 G�3 ,G

�
4 5.4042, 5.4041

E2u#B1 G�10 5.3804

�1 E1a E001g E1g#A2 G�7 7.9937

E1g#E1 G�1 ,G
�
2 7.9466, 7.9467

E1g#E2 K� 7.8824
E1g#B2 G�11 7.8769

E001u E1u#A2 G+
7 8.0006

E1u#E1 G+
1 ,G+

2 7.9532, 7.9533

E1u#E2 K+ 7.8892
E1u#B2 G+

11 7.8837

0 A2a A001u A1u#A2 E�1 9.3330

A1u#E1 G�5 9.2392

A1u#E2 G�6 9.2862

A1u#B2 E�3 9.1871

A002g A2g#A2 A+
3 ,A+

4 9.6672, 9.6677

A2g#E1 G+
7 9.5711

A2g#E2 G+
8 9.6176

A2g#B2 E+
5 9.5199

Table 8 Tilt tunneling excited levels for the lowest excited vibrational
state of A0 0 symmetry calculated for J=0 with the standard basis, and
symmetry with respect to the group chain G24 C G48 C G288 C G576

kA (mod 6) G24 G48 G288 G576 Energy/cm�1

3 B1s B02g B2g#A1 E�3 5.1728

B2g#E1 G�11 5.2820

B2g#E2 G�12 5.2286

B2g#B1 E�6 5.1855

B01u B1u#A1 E+
2 5.1772

B1u#E1 G+
9 5.2865

B1u#E2 G+
10 5.2333

B1u#B1 B+
1 ,B+

2 5.1904, 5.1898

�2 E2a E002g E2g#A2 G+
8 6.4354

E2g#E1 K+ 6.4725
E2g#E2 G+

3 ,G+
4 6.4161, 6.4166

E2g#B2 G+
12 6.3811

E002u E2u#A2 G�8 6.4406

E2u#E1 K� 6.4778
E2u#E2 G�3 ,G

�
4 6.4217, 6.4220

E2u#B2 G�12 6.3865

�1 E1s E01g E1g#A1 G�5 8.8366

E1g#E1 G�1 ,G
�
2 8.7917, 8.7920

E1g#E2 K� 8.7180
E1g#B1 G�9 8.7091

E01u E1u#A1 G+
5 8.8446

E1u#E1 G+
1 ,G+

2 8.7997, 8.8002

E1u#E2 K+ 8.7264
E1u#B1 G+

9 8.7173

0 A2s A01u A1u#A1 A�1 ,A
�
2 10.8577, 10.8583

A1u#E1 G�5 10.7754

A1u#E2 G�6 10.7073

A1u#B1 E�2 10.6763

A02g A2g#A1 E+
1 10.9552

A2g#E1 G+
7 10.8925

A2g#E2 G+
8 10.7914

A2g#B1 E+
4 10.7738
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of the G24 irrep to which the levels belong. In view of the

convergence problem discussed in section IVD one may

wonder whether such small splittings are reliably calculated,

but we believe this to be the case. One can verify that these

splittings are very nearly equal for different levels belonging to

the same G24 irrep. Moreover, the two G576 irreps involved in

each tunneling level pair always belong to the same values of

kA and kB (mod 6) so that both levels are equally affected by

the basis truncation error. We estimated this truncation error

to be about 0.0003 cm�1 in this case, an order of magnitude

smaller than the smallest splittings found.

Furthermore, one observes splittings between levels belonging

to the same G48 irrep and different G288 irreps, but these are

rather irregular and do not have any physical meaning. Such

irregular splittings are caused by the nonuniform basis set

truncation errors for energy levels belonging to irreps with

different values of kA and kB. The process that would cause

such splittings in reality is the sixfold hindered rotation of the

stem with a barrier of 118 cm�1; from our one-dimensional

model calculations for this process we estimate that the

corresponding splittings are on the order of 3 � 10�8 cm�1 E
1 kHz. Such small splittings cannot be converged with our

approach, see section IVD.

Finally, we observe splittings of about 0.0003 cm�1 E
10 MHz between the levels of A�1 and A�2 , A

�
3 and A�4 , G

�
1

and G�2 , G
�
3 and G�4 , B

�
1 and B�2 , B

�
3 and B�4 symmetries. If this

splitting is real, it is due to interchange tunneling which, in

combination with stem rotation, would increase the feasible PI

group from G48 to the FCT group G576. In order to check

whether interchange is indeed feasible or if the splitting is an

artefact due to a basis truncation error (very small, in this case,

because these irrep pairs correspond to identical values of

kA and kB), we increased the basis from a maximum jA, jB
value of 24 to 28. The basis became so large that this calcula-

tion could be done only for the one-dimensional G576 irreps.

We had already seen in tests with smaller basis sets that the

‘interchange’ splitting systematically decreases when the

maximum jA, jB value of the basis is increased. Obviously,

an increase of the maximum jA, jB value allows the wave

functions to be more localized and to have smaller overlap

(and less tunneling) between different wells in the potential.

Since it turned out that the ‘interchange’ splittings decreased

by another factor of 10 when the maximum jA, jB value was

increased to 28, we conclude that this splitting has not yet

converged, but that we can set an upper bound of 1 MHz to

the actual interchange splitting.

The states shown in Table 5–8 and Fig. 5(a) belong to the

vibrational ground state of A0 symmetry and the lowest excited

vibrational state of A0 0 symmetry in the point group Cs of the

TT structure. We also calculated higher states for all irreps, a

selection is shown in Table 9. Also the expectation value hRi of
the center-of-mass distance is included in this table, as well as

the dimer ‘rotational constants’ A, (B + C)/2, and B � C. The

latter were not computed in the standard way, with respect to

a body-fixed frame obeying the Eckart conditions,90 because

this method is only applicable to nearly rigid molecules that

exhibit small-amplitude vibrations with respect to a single

equilibrium geometry. Here, as already discussed, we have

Table 9 Energy levels (in cm�1) for the A+
1 , A+

2 and A+
3 , A+

4 irreps,
relative to the ground A+

1 level at �870.3481 cm�1, expectation values
hRi (in a0), and rotational constants (in MHz) derived from the
expectation values of the inertia tensor, see text. The properties of
the A+

1 , A+
2 states and those of the A+

3 , A+
4 states are very nearly the

same

G576 irrep Energy hRi A (B+C)/2 B � C

A+
1 /A+

2 0.0000/ 0.0003 9.418 1908.9 423.9 11.2

A+
1 /A+

2 11.2857/11.2864 9.420 1908.3 423.8 12.0

A+
1 /A+

2 15.4264/15.4267 9.320 1895.4 431.7 20.7

A+
1 /A+

2 19.2080/19.2081 9.358 1898.0 428.7 18.4

A+
1 /A+

2 21.0491/21.0495 9.348 1899.4 429.5 18.9

A+
1 /A+

2 28.9401/28.9407 9.252 1889.7 436.9 22.2

A+
1 /A+

2 30.7557/30.7580 9.160 1876.6 444.3 23.9

A+
1 /A+

2 31.4828/31.4812 9.385 1897.9 426.7 17.2

A+
3 /A+

4 9.6672/ 9.6677 9.344 1900.1 429.8 19.9

A+
3 /A+

4 12.1429/12.1434 9.416 1909.3 424.1 11.4

A+
3 /A+

4 20.5728/20.5731 9.338 1899.5 430.3 20.0

A+
3 /A+

4 23.3783/23.3789 9.218 1885.5 439.7 23.7

A+
3 /A+

4 27.4755/27.4760 9.267 1892.0 435.9 22.4

A+
3 /A+

4 30.2274/30.2282 9.294 1889.5 433.8 23.0

A+
3 32.0419 7.602 1608.8 609.2 29.2

A+
3 /A+

4 37.7031/37.7026 9.133 1872.6 446.6 25.2

TT equil. �105.2 9.342 1914.5 430.0 31.5
PD equil. �69.2 7.440 1651.5 626.7 38.3

Fig. 5 (a) Calculated VRT levels for J = 0 for selected irreps, and

(b) vibration-tunneling levels from a one-dimensional model for cap

rotation.
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288 equivalent TT equilibrium structures which are inter-

connected in sets of 24 by feasible tunneling mechanisms.

Instead, we calculated the expectation values of the instanta-

neous inertia tensor and computed the ‘rotational constants’

from their eigenvalues. Although we realize that this definition

of the rotational constants does not allow precise comparison

with experimental data, it gives a good idea of the average

structure of the dimer. Further on, we will also present

rotational constants derived from the energy levels computed

for total angular momentum J = 0 and 1.

The first observation is that also the higher levels of A+
1 , A+

2

symmetry and almost all of those of A+
3 , A+

4 symmetry are

split by about 0.0003 cm�1, just as the lower levels of these

symmetries. We already discussed that this splitting is caused

by cap-stem interchange tunneling in the TT structure, but

that the splitting is exaggerated, perhaps by several orders of

magnitude, by the truncation of the basis. The values of hRi,
A, (B+C)/2, and B � C are so similar for these pairs of

symmetries that these values were not separately given in

Table 9, which is another indication that cap-stem interchange

is (nearly) quenched. An exception to this rule is the 7th state

of A+
3 symmetry, which has no A+

4 counterpart. Also the

properties of this state differ strongly from those of all other

states, which are mutually quite similar. The substantially

smaller value of hRi and the values of the rotational constants

are close to the values computed for the PD equilibrium

geometry, which leads to the conclusion that the 7th state of

A+
3 symmetry does not have the TT structure, but rather the

PD structure. Its energy of 32 cm�1 above the ground level of

A+
1 symmetry is similar to the energy difference of 36 cm�1

between the local minimum M1 with the PD geometry and the

global minimum M2 with the TT geometry, which shows that

the zero-point vibrational energy is not very different for the

two structures. Also the fact that this A+
3 state has no nearly

isoenergetic counterpart of A+
4 symmetry is explained by the

fact that it has the PD structure. The PD equilibrium geometry

has point group symmetry C2h. The element C2 in this group

contains the interchange operation PAB, see section III. The

A+
3 state is symmetric with respect to C2, the A+

4 state is

antisymmetric. Therefore, the 7th A+
4 state, which has the PD

structure, is vibrationally excited with respect to the corres-

ponding A+
3 state and, accordingly, should have substantially

higher energy. The assignment of the 7th state of A+
3 symmetry

to the PD structure will be confirmed when we look at the

wave functions in section VB. Although this state is not the

only one among our computed states that has the PD struc-

ture, we did not find many because of the limited energy range

for which we have converged levels.

A further conclusion from the results in Table 9 is that there

are many low lying vibrationally excited levels. Their rota-

tional constants are similar to the values calculated for the TT

and PD equilibrium geometries. There are small, but signifi-

cant, differences between different vibrational states. The zero-

point vibrational energy for the most stable isomer with the

TT structure, the difference between De and D0, is 105 cm�1.

A theoretically better way to compute the rotational con-

stants for a floppy system as the benzene dimer is to extract

them from the energy levels calculated for higher values of J.

Due to size limitations, we could only compute the levels for

J = 1 and only for the one-dimensional irreps. Results for the

Ai
� irreps (i = 1,. . .,4) for J = 0 and J = 1 are shown in

Fig. 6. In order to understand the rotational level pattern of a

given vibration-tunneling state, one must first look at the

symmetry. From the symmetry of the basis functions discussed

in Sec IVB, we derived, for example, that for an A+
1 level with

J = 0 the corresponding level with J = 1, K = 0 has A�2
symmetry, while the two levels in the asymmetry doublet for

J = 1, K = �1 have A+
1 and A�2 symmetry. Similar relations

for other irreps can be read from Table 10, which contains the

rotational constants extracted from the J= 1 and J=0 levels.

It follows from the standard asymmetric rotor Hamiltonian90

that the rotational constant B + C equals the energy difference

between the J = 1, K = 0 level and the J = 0 level. The

rotational constant A can be extracted from the difference

A + (B + C)/2 between the average energy of the two J = 1,

K = �1 levels and the J = 0 energy, and the constant B � C

equals the energy difference between the J = 1, K = �1 levels

of opposite parity. The latter difference is on the order of

0.0005 cm�1 and, in view of the basis truncation error, one

may wonder whether it is significant. The two irreps involved

belong to the same kA, kB (mod 6) values and we estimated the

Fig. 6 VRT levels of Ai
�(i = 1,. . .,4) symmetry calculated for J = 0

and 1.

Table 10 Energy levels for J = 0 (in cm�1) relative to the ground A+
1

level at �870.3481 cm�1 and rotational constants (in MHz) extracted
from energy differences between J = 1 and J = 0 levels, see text. The
irreps indicated belong to the J = 0 and J = 1, K = 0 levels,
respectively, while the J = 1, K = �1 asymmetry doublets carry both
irreps

G576 irrep Energy A (B + C)/2 B � C

A+
1 , A�2 0.0000 33744 436.4 28.8

A+
2 , A�1 0.0003 33731 436.4 28.8

A�3 , A
+
4 1.2214 –21558 440.3 31.9

A�4 , A
+
3 1.2217 –21585 440.3 31.9

A+
3 , A�4 9.6672 –17250 448.5 5.6

A+
4 , A�3 9.6677 –17268 448.5 5.6

A�1 , A
+
2 10.8577 –44764 473.6 14.7

A�2 , A
+
1 10.8583 –44791 473.6 14.7
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basis truncation error to be about 0.0003 cm�1 in this case.

With our basis of symmetric rotor functions K is a good

quantum number if we neglect off-diagonal Coriolis coupling.

We found, indeed, that when we made this approximation, the

two J = 1, K = �1 levels in the asymmetry doublets become

exactly degenerate. Hence, the asymmetry doubling from

which we extract B � C is due to a small perturbation by

the off-diagonal Coriolis terms in the Hamiltonian of eqn (5)

and we believe it to be significant, although not very accurate.

It is clear from Table 10 that the rotational constants are very

similar for irreps that differ only in their parity with respect to

interchange PAB, such as A+
1 and A+

2 , A+
3 and A+

4 , etc.

In Fig. 6 the levels for J= 1, K=�1 are compared with the

J = 0 levels. The J = 1, K = 0 levels are not shown because

on the scale of the figure these levels would overlap with the

J = 0 levels. Also the very small asymmetry doubling of the

J = 1, K = �1 levels is not visible. Still, the figure shows an

interesting feature, namely that the value of |K| has a signifi-

cant effect on the vibrational excitation energy and the tilt

tunneling splittings. Even the order of the levels in the lower

tunneling doublet is reversed for |K| = 1 with respect to

K = 0. What looks still stranger for a prolate near-symmetric

rotor as the benzene dimer is that the J= 1, K= �1 levels are
often below the corresponding J= 0 levels. This is reflected by

the (very large) negative values of the rotational constant A in

Table 10, which were extracted from these levels. The value of

A for the ground state is positive, but it is also larger by an

order of magnitude than the value in Table 9 obtained from

the expectation value of the inertia tensor. Obviously, the

relative energies of the levels for different values of |K| are not

so much determined by the structure of the complex, but

rather by its internal motions. In other words, K cannot be

considered as a standard rigid rotor quantum number. This is

characteristic for weakly bound dimers, see for example the

results for the water dimer,61,62 but the ‘K anomaly’ is

stronger here.

One may wonder what is the effect of changing the potential

on the calculated VRT level structure, since the (pot3) poten-

tial surface used, although we believe it to be of good quality,

will certainly be amenable to improvement. We tried to get

some idea of this effect by repeating the calculations of the

one-dimensional irrep levels for J = 0 with the original

potential from ref. 38, pot1, and with the first potential

presented in section II, pot2. An idea of the differences

between the potentials pot1 and pot3 can be obtained from

the comparison of the stationary points in Table 1 and in

Table 1 of ref. 38. The results calculated with pot1 and pot2

may be summarized by saying that the picture of vibration,

cap hindered rotation, and tilt tunneling splitting of the VRT

levels remains quite similar to what we found for pot3. The

size of the splittings varies, but not dramatically. The main

difference between the results for different potentials is that we

found for pot2 and, especially, pot1 that the energies of several

states with the PD structure are not much higher than those of

the states with the TT structure. We remind the reader that for

pot3 almost all the states calculated have the TT structure and

the PD states start occurring at about 32 cm�1 above the

ground state (cf. the 7th state of A+
3 symmetry discussed

above). This is consistent with the fact that in pot1 the TT

and PD minima are of nearly equal depth, while in pot2 the

PD minimum is higher by 6 cm�1, and in pot3 it is higher by

36 cm�1. In the most complete SAPT(DFT) calculations the

PD minimum is higher than the TT minimum by about the

same amount as in pot3 and in good quality CCSD(T)

calculations it is even slightly higher, so we believe that our

results with pot3 are the most realistic. To our knowledge, no

other potential surface of similar quality is available for the

benzene dimer.

B. Wave functions

In order to get more insight in the nature of the internal

motions in the benzene dimer we also look at the wave functions.

In general these are complex-valued. For the one-dimensional

irreps of even parity under E* the wave functions are real-

valued, for the odd parity irreps they are purely imaginary.

The wave functions depend on six internal coordinates; we

show some relevant two-dimensional cuts through the J = 0

wave functions for the one-dimensional irreps. The program

already contained efficient transformations from the eigen-

vectors in the analytic basis to the eigenfunctions on the

coordinate grid; this was needed to compute the matrix

elements of the potential, see section IVA. The points on the

six-dimensional grid used to compute the energy levels and

eigenvectors are equidistant in four of the internal coordinates,

but not in the polar angles bA and bB. For the latter we used a

Gauss–Legendre quadrature grid. For plotting the wave func-

tions and properly displaying their symmetry we prefer a grid

that is equidistant in all coordinates and includes the end

points of the range in each coordinate, so we wrote additional

code to compute the wave functions on such a grid. The

plot grid included 27 equidistant points for bA and bB in the

range from 0 to 180 degrees, the same number of points as in

the calculation of the energy levels but differently distributed.

In all other directions we kept the same grid as defined in

Fig. 7 Potential (in cm�1) in the region of one of the TT minima,

monomer A is the cap, B the stem. The coordinates bA, a, and gB are

fixed close to their values at the minimum: 9, 90, and 481, respectively,

and also R = 9.3 a0 is close to its equilibrium value.
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section IVC, i.e., 53 points for R in the range from 5.7 to 16 a0,

and 54 points in the range from 0 to 360 degrees for the

azimuthal angles a, gA, and gB. The size of the wave function

calculations was reduced by using the sixfold symmetry for

both monomers.

In the discussion of Fig. 5 in section VA, we concluded that

the cap sixfold rotation tunneling levels of the ground and

excited vibrational state with the TT structure should rather be

interpreted as a set of cap hindered rotor levels. The levels of

the ‘vibrationally excited’ state are in fact above the very low

barrier to cap rotation. Fig. 7 shows one of the potential

minima as a function of the cap rotation angle gA and the stem

bend angle bB. The angle gA is limited from 01 to 601; had we

plotted the full range of gA from 0 to 3601 this minimum would

be repeated six times. It is clear from this figure that the

potential is quite flat in the direction of gA, the barrier at

gA =0 and 601 that separates the six equivalent minima is only

6 cm�1. Fig. 8 shows the wave functions for the irreps A+
1 , A�3 ,

A+
3 , A�1 , those for the A+

2 , A�4 , A+
4 , A�2 irreps are very

similar. First, it is clear from the A+
1 wave functions in

Fig. 8 that there is considerable tunneling through the cap

hindered rotation barrier; the amplitude of the wave function

at the barrier is more than half of the amplitude at the

minimum of the potential. Second, one observes indeed that

both the A+
1 and A�3 states belong to the ground vibrational A0

state of the TT structure. The A+
3 and A�1 states have a

node through gA = 301, bB = 901, the potential minimum,

and belong to the excited vibrational state of A0 0 symmetry.

The nodal plane is not vertical, however, which implies

that this A0 0 ‘vibration’ involves both the cap hindered rota-

tion (around the TT equilibrium value of 301) and the stem

bend (around the equilibrium value of 901). Fig. 8 shows

that these modes mix to a different extent in the A+
3 and

A�1 states.

Fig. 8 Wave functions of the lowest states of different symmetries in the same region as the potential in Fig. 7, with approximately the same values

of the fixed coordinates. For all of these symmetries, the wave functions have the same values for gA + n � 601 with n = 0,1,. . .,5.
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Fig. 9 shows the wave functions for the irreps B+
3 , B�1 , B

�
3 ,

B+
1 , which are very similar to those for the B+

4 , B�2 , B
�
4 , B

+
2

irreps. The symmetry implies that these wave functions change

sign at every 60 degree interval in the cap rotation angle gA.
The B+

3 and B�1 states change sign at the barriers, for gA = 0

and 601, and correlate with the vibrational ground state of A0

symmetry. The B�3 and B+
1 states have a node at the potential

minimum and correlate with the vibrationally excited state of

A0 0 symmetry. Here, the nodal plane is almost vertical, so the

stem bend mode is less involved in the vibration than for the

(higher) A+
3 and A�1 states.

Fig. 10 displays the potential surface as a function of the

angles bA and gB involved in the tilt of the T-shape structure.

The region chosen contains two equivalent TT minima. The

barrier between these minima at bA = 01 and gB = 601 in the

plot corresponds to the ideal T-shape structure S3 with C2v

symmetry. Actually, S3 is a stationary point of index 2, but the

barrier of 27 cm�1 at S3 is only slightly higher than the barrier

of 25 cm�1 at the saddle point S3a of Cs symmetry. The

‘reaction path’ from one of the TT minima to the other one via

the S3a structure involves the simultaneous change of several

coordinates. So, we chose to plot the potential and the wave

functions along the simpler path through S3 that involves only

two Euler angles. Fig. 11, which shows the wave functions of

the lowest A+
1 and A�3 states along this path, gives a good

impression of tilt tunneling. The A+
1 ground state has sub-

stantial amplitude at the barrier and the A�3 state is the upper

tilt tunneling component that changes sign between the two

equivalent minima. One should realize, of course, that the

actual tilt tunneling process also involves the S3a saddle point

and that the amplitude of the A+
1 ground state will be even

somewhat larger there.

Finally, Fig. 12 displays a cut of the potential surface that

contains two of the PD local minima and the wave function of

Fig. 9 Wave functions of the lowest states of different symmetries in the same region as the potential in Fig. 7, with approximately the same values

of the fixed coordinates. For all of these symmetries, the wave functions should be multiplied by (�1)n for gA + n � 601 with n = 0,1,. . .,5.
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the 7th state of A+
3 symmetry for which we already concluded

on the basis of its properties that it is localized near the PD

minima. The wave function contour plot shows that this is

indeed the case. We checked the amplitude of this state near

the TT minima and found that it is very small.

We also searched for A+
1 states that are excited in the

intermolecular stretch mode by looking for a node in the wave

functions in the radial coordinate R. In the A+
1 state at

48.7 cm�1 above the ground state we found such a node, while

the monomer orientations are similar to those in the ground

state. So we conclude that the stretch fundamental frequency

of the benzene dimer is 48.7 cm�1. A one-dimensional model

with a radial cut of the potential obtained by fixing the angular

coordinates at the equilibrium values gave a stretch frequency

of 54 cm�1. Spirko et al.31 in harmonic model calculations on

their NEMO potential estimated the stretch fundamental

frequency to be about 38 cm�1, but it should be mentioned

that this potential has a much shallower well (De = 595 cm�1)

than ours and a larger value of Re (9.85 a0).

C. Discussion

We may conclude from the preceding discussion that both

processes, cap hindered rotation and tilt tunneling, that give

rise to energy level splittings on the order of 1 cm�1 are

now well understood. On the basis of the symmetry of the

calculated levels with respect to the group chain Cs(M) C
C6v(M) C G24 C G48 C G288 C G576 , see Table 5–8, we

concluded in section VA that also cap turnover produces

small, but probably significant, tunneling splittings. Looking

at the TT structure it seems, however, that cap turnover by a

twofold rotation C02ðAÞ or C002ðAÞmust have a high barrier. We

made a careful search of the potential energy surface for any

low-barrier pathway, but the lowest barrier pathway found

involves the saddle point S4 at 54 cm�1 above the TT

minimum (18 cm�1 above the PD minimum). This barrier

separates the TT minimum from the PD local minimum and,

in fact, the lowest energy pathway for cap turnover proceeds

from a TT minimum through S4 to a PD local minimum, then

again through S4 to an equivalent TT minimum with the cap

and stem interchanged. Then, from this cap-stem interchanged

TT structure, it proceeds in the same way through S4 (twice)

and the PD minimum to a TT structure with the cap turned

over with respect to the start structure. Since the cap-stem

interchanged TT structure occurs halfway along this cap turn-

over path, one would think that cap turnover should give rise to

smaller tunneling splittings than cap-stem interchange. We

found, however, that interchange tunneling produces only very

small—and still smaller when we enlarged the basis—energy

Fig. 10 Potential (in cm�1) in the region of two of the equivalent TT

minima related by tilt tunneling, monomer A is the cap, B the stem.

The coordinates gA, a, and bB are fixed to their values at the minimum:

30, 90, and 901, respectively, and also R = 9.3 a0 is close to its

equilibrium value.

Fig. 11 Wave functions of the ground and excited tilt tunneling states in the same region as the potential in Fig. 10, with approximately the same

values of the fixed coordinates.
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level splittings, much smaller than the splittings assigned to

cap turnover. So, we must conclude that we cannot explain the

origin of the ‘cap turnover’ splittings at this stage. One might

think of trying to follow the amplitude in some of the wave

functions, but such a search is difficult in six dimensions and

the wave functions are known only on a grid in coordinate

space that may not be sufficiently dense.

Our work on the Ar-benzene complex,102–104 the ammonia

dimer,53 and the water dimer56–62 has shown that the comparison

of calculated VRT levels with experimental (high-resolution)

spectroscopic data is an excellent way to check and, if needed,

improve the quality of intermolecular potential surfaces.

Although much experimental data is available also for the

benzene dimer, most of these data consists of UV, Raman, and

infrared spectra that address the properties of the (perturbed)

monomers. A direct comparison of our calculated inter-

molecular VRT levels is possible, in principle, with the

Raman spectra of Venturo and Felker.20 Low frequency

transitions, with two peaks in the ranges of 3.35 to 3.60 and

9.00 to 9.95 cm�1 for different benzene dimer isotopologues,

were found in these Raman spectra, which agrees with our

finding of low lying intermolecular vibration-tunneling levels.

Unfortunately, the low-resolution spectra in ref. 20 did not

show sufficient detail to allow a more specific comparison and

the peaks are quite broad, so that they may cover many

different transitions. Further spectroscopic work in the far-

infrared region would be extremely useful.

Microwave spectra of the benzene dimer were taken by

Arunan and Gutowski19 and, later, by Erlekam.23 Only part of

the observed lines was assigned; these lines correspond to a set

of symmetric rotor levels. The measured end-over-end rota-

tional constant (B + C)/2 of 427.7 MHz agrees well with

our calculated values. In our calculations we found, both

from the vibrationally and tunneling averaged inertia tensor

and from the asymmetry doubling of the |K| = 1 levels,

that the benzene dimer appears to be an asymmetric rotor.

Moreover, we found that states exist for many different G576

irreps with non-zero nuclear spin statistical weights and

slightly different rotational constants. In both experimental

papers each of the assigned lines in the microwave spectrum

was split into a quartet. The lines in this (probably tunneling)

quartet were split by about 60 kHz, with a specific splitting

pattern in the ratio of 1 : 2 : 1. As discussed above, such small

splittings could not be converged in our full six-dimensional

calculations. It is still not clear what is the mechanism that

causes this splitting, so further work is still needed also on this

feature.

During the work described above, we also derived the

selection rules for dipole-allowed transitions. The dipole

operator is invariant under all permutations and odd under

inversion E*, so it is of symmetry A�1 in the group G576. For

DK = 0 transitions, for example, the parallel component of

the dipole moment is of symmetry A+
2 in the internal coordi-

nates (and A�2 in the overall rotation). Hence, parallel transi-

tions obey the selection rule: even2 odd, where the even/odd

in this case refer to the symmetry of the internal states under

interchange PAB. Examples areA�1 2A�2 ,A
�
32A�4 ,G

�
1 2G�2 ,

and G�3 2 G�4 . For all other irreps of dimension higher than

one, PAB interchanges different components of the same

irrep and the individual components are localized in the

sense that monomer A is the cap and B the stem in one

component, and vice versa in another component. Transitions

between levels that carry the same internal state irrep are

allowed in this case, but it was found for the water dimer105

that pure tunneling transitions of this type are very weak for

complexes with nonequivalent monomers, because of small

Frank-Condon overlap. When far-infrared spectra become

available, it will be useful to compute transition intensities

from our wave functions, as it has been done for the water

dimer in ref. 105.

Fig. 12 Potential (in cm�1) in the region of two of the equivalent PD

minima and wave function of the 7th state of A+
3 symmetry.

The coordinates gA, a, gB are all fixed at 01, their value at the PD

minimum, and R = 7.5 a0 for the potential plot, 7.6 a0 for the wave

function plot.
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IV. Summary and conclusions

This paper describes an intermolecular potential surface for

the benzene dimer from SAPT(DFT) calculations, which is

improved compared to the potential in ref. 38, and the

calculation of the VRT levels on this potential surface. The

potential was obtained with the inclusion of additional, third-

order, terms in the interaction energies and in the fitting

process the low-energy region was weighted more heavily than

in ref. 38. The extended SAPT(DFT) calculations agree better

than those of ref. 38 with CCSD(T) interaction energies

computed by us in large basis sets at characteristic points of

the potential. Also the new fit reproduces the region including

these points better than the fit of ref. 38. This is in particular

true for the energy difference between the global minimum at

the TT geometry and the local minimum at the PD geometry,

as well as for the energy barriers at the stationary points.

A coupled-channel type method with a rigid-molecule

scattering Hamiltonian in a dimer-fixed coordinate frame

was used for the calculation of the VRT states. The channel

wave functions consisted of coupled symmetric rotor functions

for the internal and overall rotations of the dimer; a potential-

optimized DVR method was used for the radial coordinate.

Eigenvectors of the Hamiltonian were computed with the

iterative Lanczos method. Symmetry adaptation of the channel

basis to each of the 54 irreps of the FCT group G576, in

combination with an efficient calculation of the matrix

elements of the potential, made it possible to use extremely

large basis sets and obtain rather well converged energy levels.

The method correctly includes large amplitude internal motions

and tunneling between the multiple equivalent minima in the

global six-dimensional potential surface. Very small energy

level splittings associated with high-barrier tunneling processes

could not be completely converged, however.

Symmetry analysis of the calculated VRT levels, supported

by displays of the corresponding wave functions, allowed the

assignment of the levels and level splittings to different inter-

molecular vibration and tunneling mechanisms. In agreement

with the experimental data, it was found that almost all of the

low lying VRT levels correspond to a tilted T-shape (TT)

structure. The global TT minimum (actually 288 equivalent

minima) in the potential has a depth De of 975 cm�1, the

lowest VRT level of A+
1 symmetry corresponds to a dissocia-

tion energy D0 of 870 cm�1. States with the parallel displaced

(PD) structure were found from about 31 cm�1 upwards. The

energy difference between the PD and TTminima in the potential

surface is 36 cm�1. The energies of some of the intermolecular

vibrations are as low as a few cm�1 above the ground state,

which agrees with results from Raman spectroscopy.20 Inter-

molecular vibrations, which are in fact hindered rotations of

the cap in the TT structure, were identified; some of these

vibrations also involve the stem bend mode. The lower series

of cap hindered rotor levels, with splittings increasing from

0.4 to 0.8 cm�1, is still below the barrier of 6 cm�1 and these

levels might be considered as low-sixfold-barrier tunneling

levels. These levels correlate with the vibrational ground state

of A0 symmetry in the point group Cs of the TT equilibrium

structure. The next higher series of levels lies above the sixfold

barrier. The wave functions of these states have nodal planes

at the minima of the potential and correlate with the lowest A0 0

vibrational state of the TT equilibrium structure. So, in that

sense, these states may be characterized as vibrationally

excited. Another tunneling mechanism is clearly identified: tilt

tunneling between nearby TT (tilted T-shape) minima. The

energy barrier for this process is about 25 cm�1 and it gives

rise to energy level splittings of about 1 cm�1. Extension of the

group Cs of the TT equilibrium structure with the additional

permutations that become feasible by cap hindered rotation

and tilt tunneling yields the PI group G24. Further small, but

probably significant, splittings found in the calculated VRT

levels would indicate that also cap turnover is feasible, leading

to an effective symmetry group G48, but we were not able to

find a plausible low-barrier ‘reaction path’ for this process.

The sixfold barrier for hindered rotation of the stem is 118 cm�1

in our potential. The tunneling splittings on the order of 1 kHz

for this process that we estimated on the basis of one-dimensional

model calculations are smaller by many orders of magnitude

than the ‘numerical noise’ in the energy levels caused by the

fact that the basis size in the full six-dimensional calculations

could not be further increased. The splitting caused by cap-stem

interchange was calculated to be on the order of 10 MHz with

the ‘standard’ basis, but the fact that this splitting systemati-

cally decreases when the basis is enlarged indicates that it has

not yet converged. The value of about 1 MHz from the largest

possible basis may be considered as an upper bound, the

interchange splitting may actually be unresolvable even in

high-resolution spectra.

For J = 0, the eight lowest energy levels were calculated for

each of the 54 G576 irreps. For the one-dimensional irreps, the

levels were also computed for J = 1, with the inclusion of the

Coriolis coupling between the levels with K = �1 and K = 0.

Also some properties of the VRT states were computed from

the J = 0 wave functions: expectation values of the inter-

molecular distance R and of the instantaneous inertia tensor.

The resulting end-over-end rotational constant (B + C)/2

agrees well with the value from microwave spectra.19,23 The

small rotational constant B � C extracted from the asymmetry

doubling of the calculated J = 1, K = �1 levels is probably

rather inaccurate, since the basis cannot be completely

saturated, but we believe that it significantly differs from zero.

Also the B � C value obtained from the average inertia tensor

indicates that the benzene dimer is an asymmetric rotor.

However, the analysis of a series of lines in the microwave

spectrum19,23 led to the conclusion that it is a symmetric rotor.

We could not find any plausible explanation for this

discrepancy. The C6H6 dimer has as many as 53 different

symmetry species with non-zero nuclear spin statistical weight.

The calculations predict that these species have slightly different

rotational constants. The assigned lines in the measured micro-

wave spectra were split into quartets. The components in this

(possibly tunneling) quartet may originate from different nuclear

spin species, but we could not relate them to our calculated

results. Clearly, further work is needed.

Another interesting observation regarding the levels with

J= 1, K= �1 is that these levels are below the corresponding

levels with K= 0 in several cases. If the J= 0 and J= 1 levels

are considered as those of a prolate, slightly asymmetric rotor,

this leads to large negative values of the rotational constant A.
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In cases where the K = �1 levels are above the corresponding

K = 0 levels, the (positive) value of A extracted from these

levels is larger than the expected rigid rotor value by an order

of magnitude. Obviously, the (approximate) quantum number

K is not just a near-rigid rotor property, but substantially

affects the energies associated with the internal motions.

Although there is a large amount of experimental spectro-

scopic data for different isotopologues of the benzene dimer,

further direct comparisons of our results with these data

cannot be made because most of the spectra were taken in

the UV and infrared regions and concern the (perturbed)

monomer transitions. Similar work on the ammonia and water

dimers has shown that a comparison of calculated VRT levels

with (high-resolution) Terahertz spectra is extremely useful,

both to understand the nature of the internal motions in these

weakly bound dimers and to check the reliability of the

intermolecular potential surface used. We hope that also our

theoretical study of the benzene dimer will be followed up by

further experimental work. Our wave functions can be applied

to compute transition intensities, which might be useful to

guide future experiments that adress the intermolecular rovi-

brational and tunneling motions.
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