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We here report on the optical pumping of both14NH and 15NH radicals from the metastablea 1D state into
the X 3S2 ground state in a molecular beam experiment. By inducing the hitherto unobserved spin-forbidden
A 3P←a 1D transition, followed by spontaneous emission to theX 3S2 state, a unidirectional pathway for
population transfer from the metastable state into the electronic ground state is obtained. The optical pumping
scheme demonstrated here opens up the possibility to accumulate NH radicals in a magnetic or optical trap.
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I. INTRODUCTION

During the last few years a variety of experimental meth-
ods have been developed to produce translationally cold
molecules@1–3#. Photoassociation of trapped alkali atoms is
the method used by most research groups working in this
field. Thus produced diatomic molecules can subsequently be
trapped in the focus of an intense off-resonant laser beam or
in a magnetic trap. Recently, a total number of 23105 Cs2
molecules at a density of about 107 molecules/cm3 have
been magnetically trapped at a temperature of 30mK @4#. In
another experimental approach, paramagnetic molecules that
are injected into a cryogenic He cell are thermalized using
multiple collisions with the He atoms. By placing the He cell
at the center of an inhomogeneous magnetic field, this
method of buffer-gas cooling has yielded a relatively large
number of 108 trapped CaH molecules in a 1-cm3 volume at
a temperature of 400 mK@5#. The method developed in our
laboratory makes use of a series of time-varying electric
fields to repeatedly extract kinetic energy from polar mol-
ecules in a pulsed molecular beam. With this method of Stark
deceleration the high phase-space density present in the
moving frame of a pulsed molecular beam is transferred to
the laboratory frame. The slowed beams of molecules are
subsequently electrostatically trapped@6# or confined in a
storage ring@7#. To date, ND3 molecules have been trapped
in a 1-mm3 volume in a quadrupole trap at densities higher
than 107/cm3 and at temperatures around 25 mK@8#. These
experimental advances, together with the many other experi-
mental techniques that are currently being explored and to-
gether with the numerous theoretical predictions on the fas-
cinating properties of dense samples of cold~polar!
molecules@9#, make the field of cold molecules a very active
and promising field of research.

To be able to study intermolecular interactions in these
cold gases, for instance, to investigate the prospects of
evaporative cooling to reach quantum degeneracy, the phase-
space density of the trapped molecular sample needs to be
increased, i.e., the number density needs to be increased
and/or the temperature needs to be reduced. Simply reload-
ing the trap to increase the number density is not possible

without losing the molecules that are already stored; the
Liouville theorem dictates that dissipation is required to in-
crease the phase-space density. Recently we proposed a
scheme that circumvents this fundamental obstacle and that
enables, specifically for the NH radical, reloading of a mag-
netic trap@10#. For this scheme, a beam of NH molecules in
the long-lived metastablea 1D state needs to be produced.
Molecules in this state interact strongly with electric fields
and, when in the appropriate quantum levels, can be effi-
ciently decelerated in a series of time-varying electric fields.
At the point where the NH molecules have come to a near
standstill, they can be optically pumped to theX 3S2 elec-
tronic ground state by inducing the spin-forbiddenA 3P
←a 1D transition, followed by spontaneous emission in the
triplet system. In this way a unidirectional pathway for popu-
lation transfer of the translationally cold molecules from the
metastable state into the electronic ground state can be ob-
tained. In the ground state, the NH molecules interact
strongly with magnetic fields and can be readily trapped in
inhomogeneous magnetic fields; its 2mB magnetic moment
actually makes the NH radical one of the prime candidates in
molecular magnetic trapping experiments. As the Stark inter-
action in the ground state is very weak, the electric fields of
the decelerator hardly affect the magnetic trapping potential
and the magnetic trap can therefore be directly superimposed
with the point where the NH radicals have been electrostati-
cally stopped. Alternatively, optical trapping can be em-
ployed near the exit of the decelerator.

There are additional features that make the NH radical an
interesting system to the field of cold molecules. Two
bosonic (15NH,14ND) and two fermionic (14NH,15ND) iso-
topomers can be produced, of which in particular15NH has a
relatively simple hyperfine structure. Molecules in both the
electronic ground state and in the electronically excited
metastable state can be sensitively detected using laser in-
duced fluorescence~LIF! on strong, electric dipole allowed,
transitions in the ultraviolet spectral region. Moreover, the
A 3P,v50←X 3S2,v50 transition around 336 nm has a
Franck-Condon factor of better than 0.999@11#. It should be
remarked, however, that in this highly diagonal system the
actual ratio of the oscillator strengths of the diagonal to the
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off-diagonal transitions depends sensitively on ther depen-
dence of the transition dipole moment. But even so, measure-
ments indicate that the ratio of the transition probabilities of
the (v50→v50) and the (v50→v51) transition is better
than 99.3%@12#. As in addition a closed rotational transition
can be found, this offers interesting prospects for direct laser
cooling. The NH radical is also an interesting species for
cold chemistry studies. NH radicals in their metastablea 1D

state, which are isoelectronic with O (1D) and CH2 (ã 1A1)
and isovalent with NF (a 1D) and NCl (a 1D), are regarded
as a model system to study elementary reactions of electroni-
cally excited species@13#.

To investigate the prospects of the proposed optical
pumping scheme of the metastable NH radicals into their
electronic ground state, the spin-forbiddenA 3P←a 1D tran-
sition needs to be characterized. Although this transition has
never been experimentally observed, the singlet-triplet split-
ting in NH is known quite well. The singlet and triplet sys-
tems of NH were first connected by the observation of the
b 1S1→X 3S2 transition@14# in emission. The most accu-
rate value of the singlet-triplet splitting to date is derived
from a direct measurement of thea 1D→X 3S2 transition
@15#. Based on these measurements, theA 3P,v50
←a 1D,v50 transition is expected around 584 nm, and can
be recorded using LIF detection. For the application of NH
in Stark deceleration experiments, an intense pulsed beam of
metastable NH radicals is required. Although many cell ex-
periments with NH (a 1D), using a variety of production
schemes, have been carried out, only a few studies have been
performed with metastable NH in a molecular beam@16–
19#. We here report on the successful production of a pulsed
molecular beam of metastable NH (a 1D) radicals using a
discharge source. Efficient transfer of the molecules to the
electronic ground stateX 3S2 by optical pumping via the
spin-forbiddenA 3P←a 1D transition, the most critical step
in the proposed trap reloading experiments@10#, is demon-
strated to be possible.

II. EXPERIMENT

The experiments are performed in a molecular beam ma-
chine consisting of two differentially pumped vacuum cham-
bers. The source chamber and detection chamber are pumped
by a 1400 l/s~Pfeiffer Vacuum TMU 1600M! and a 400 l/s
~TMU 400M! turbomolecular drag pump, respectively. The
NH molecules are formed in an electrical discharge during
the expansion of a mixture of about 1% NH3 in He into
vacuum through a commercially available pulsed supersonic
valve ~R.M. Jordan, Inc.!. The valve has a pulse duration of
approximately 40ms and operates at a repetition rate of 10
Hz. With a stagnation pressure of 1.5 bar, the pressure in the
source chamber does not exceed 331026 Torr under operat-
ing conditions. The geometry of the discharge source is simi-
lar to that used by Van Beeket al. for the production of a
pulsed beam of OH radicals@20#. To confine the discharge, a
sharp-edged nozzle with an orifice of 0.5 mm diameter is
used. A 0.5-mm diameter stainless steel ring with an inner
diameter of 4.5 mm is mounted 2.5 mm in front of the
nozzle. A voltage difference of 4.0 kV is applied between the

ring and the valve body and can be pulsed using a fast high
voltage switch~Behlke Electronic, HTS 61-03-GSM!. The
discharge has a duration of typically 10ms. In the discharge,
the NH molecules are produced in various electronic states,
with only a fraction occupying the long-liveda 1D state. The
quenching rate for the removal of NH molecules from this
state by collisions with the He atoms is sufficiently low@21#
that a beam of metastable NH can be produced. The beam
passes through a 1.5-mm diameter skimmer and enters the
detection chamber where the molecules can be state-
selectively detected in a LIF zone 24 cm downstream from
the nozzle. Here, a pulsed laser beam crosses the molecular
beam at right angles. Laser induced fluorescence from this
interaction region is spatially filtered and imaged on a pho-
tomultiplier tube ~Electron Tubes B2/RFI, 9813 QB!. A
near-UV bandpass filter~Schott glass; UG11 filter! is used to
block the ambient laboratory light. Stray light from the laser
is reduced by using several 4-mm diameter light baffles. To
reduce stray light further, the LIF optics are mounted inside a
hollow, blackened stainless steel tube. Blackening of the sur-
faces is performed by growing a 10–20mm thick copper
film on the surfaces using electrolysis in a copper sulphate
bath. A black copper-~II !oxide layer is formed when placing
the product in a 100 °C bath containing sodium hydroxide
and a strong oxidizer. The black surface attaches very well to
the stainless steel and is, after baking, compatible with ultra-
high vacuum applications (<10210 Torr), i.e., for future
trapping experiments.

III. RESULTS AND DISCUSSION

A. Characterization of the molecular beam

To characterize the rotational state distribution of the
metastable NH radicals in the molecular beam, the NH
(a 1D) radicals are detected by inducing the strong dipole
allowed c 1P,v50←a 1D,v50 transition around 326 nm.
Pulsed laser radiation is generated by frequency-doubling the
output of a Nd:YAG laser pumped dye laser system~Spectra
Physics GCR-170/PDL3 combination! operating on DCM
dye; typically some 10 mJ of tunable UV radiation with a
bandwidth of 0.07 cm21 is produced. In the experiment a
pulse energy of only 0.5 mJ in a 4-mm diameter beam is
used, sufficient to saturate the transition. Although the rota-
tional levels in thec 1P,v50 state are predissociated, the
lifetime is still around 460 ns and the total fluorescence
quantum yield of these levels is about 90%@22,23#. Radia-
tive decay from thec 1P,v50 state can occur via thec 1P
→b 1S1 and thec 1P→a 1D transitions. Only a few percent
of the total fluorescence is in thec 1P→b 1S1 channel
around 450 nm@24#, which is suppressed by the optical filter
in our experiment. The observedc 1P←a 1D excitation
spectrum is depicted in Fig. 1.

The observed lines are readily assigned using the line po-
sitions given by Ramet al. @25#. The ground rotational state
J52 is the most populated in the beam, but population of
states up toJ511 is observed. The splitting of the lines due
to the combinedL-doublet splitting in thec 1P and thea 1D
state is only resolved for highJ-levels. Although no single
rotational temperature can be fitted to the observed spectrum,
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a rotational temperature of about 120 K can be used to de-
scribe the relative population distribution of the lowest rota-
tional levels. This relatively high rotational temperature is
not unexpected in view of the limited cooling capacity of He
in the expansion region combined with the hot discharge
source. For the present study, the relatively wide rotational
population distribution in the beam has the advantage that a
rich A 3P←a 1D spectrum can be expected from which the
relative rotational transition probabilities can be accurately
determined.

From the observed LIF signals, an absolute number den-
sity for the NH radicals in oneL-doublet component of the
a 1D,v50,J52 level of order 108 molecules/cm3 is esti-
mated. As the entrance of a decelerator will be closer to the
source than the present LIF detection region, this value can
be extrapolated to an anticipated number density of
109 molecules/cm3 that can be accepted by a decelerator, and
subsequently trapped. In successive experiments we have
measured the population in the lowest rotational level in the
metastable state and in the electronic ground state, i.e., the
population in thea 1D,v50,J52 level and in theX 3S2,v
50,N50,J51 level. The latter is measured by recording
~part of! the A 3P←X 3S2 excitation spectrum around 336
nm. From these measurements it is deduced that with the
present production method the population in the metastable
state is about an order of magnitude less than the population
in the electronic ground state.

B. The A 3P]a 1D transition

The spin-forbiddenA 3P←a 1D transition around 584
nm is induced by the fundamental output of the same dye
laser system, now operating on Rhodamine B dye. The ra-
diative lifetime of theA 3P state is around 425 ns@26# and
the far off-resonantA 3P→X 3S2 fluorescence around 336
nm is collected in the LIF detection zone. Detection of the
metastable NH radicals in this way is almost background-
free as straylight from the laser beam is completely blocked
by the optical filter. For the excitation, a 4-mm diameter laser

beam with a pulse energy of typically 30 mJ in a 0.04 cm21

bandwidth is used. Under these conditions the spin-forbidden
transition is still not saturated, as will be discussed later.
Absolute frequency calibration of the excitation laser is
achieved by passing a reflection of the laser beam through an
iodine absorption cell. The reported frequencies are corrected
for systematic errors in the iodine reference atlas@27,28#.
Measurements are performed for both14NH and 15NH; the
latter is produced from15NH3 ~Campro Scientific;15N pu-
rity better than 99%!.

The observedA 3P←a 1D excitation spectrum for14NH
in the 17 000–17 200 cm21 region is shown in Fig. 2. The
spin-forbidden transition can gain intensity from the mixing
of singlet character into theA 3P wave function. The latter
can in principle occur via spin-orbit mixing of theA 3P state
with the a 1D, b 1S1, or c 1P state. Only thea 1D and the
c 1P state can contribute to theA 3P←a 1D transition inten-
sity as theb 1S1←a 1D transition is not electric dipole al-
lowed. Since the spin-orbit coupling only connects levels
with the sameV quantum number, thec 1P state and the
a 1D state only couple to theV51 and to theV52 compo-
nents of the wave functions in theA 3P state, respectively.
From the lowa 1D→X 3S2 spontaneous emission rate@15#
the triplet character in thea 1D state is known to be low, and
the A 3P2a 1D coupling can be expected to be small.
Therefore, theA 3P←a 1D excitation spectrum is simulated
by taking exclusively theA 3P2c 1P coupling into account.
This simulated spectrum is shown underneath the observed
spectrum in Fig. 2.

The spectral lines are assigned by using the molecular
constants fora 1D and A 3P states given in the literature

FIG. 1. The observedc 1P,v50←a 1D,v50 excitation spec-
trum for 14NH, together with the assignment of the spectral lines.

FIG. 2. ObservedA 3P,v50,1←a 1D,v50,1 excitation spec-
trum of 14NH together with the line assignment. The simulated
spectrum, based on the spin-orbit coupling between theA 3P and
c 1P states, is shown underneath. In the simulated spectrum, the
intensity of the strongP2(2) line is reduced by a factor of 3. The
line indicated with an arrow is due to metastable He atoms present
in the beam.
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@25,29,30#. The labelling of the lines is performed according
to standard spectroscopic nomenclature. Using Hund’s case
~a! description, the threeFi manifolds in the invertedA 3P
state are labeledF1 , F2, and F3 for V52, V51, andV
50, respectively. This gives rise to nine branches in the
A 3PV ,J8←a 1D,J9 transition which are denoted as
DJi(J9). The Q1 , R1 , P2 , Q2, and theP3 branch of thev
50←v50 band are contained in the measured frequency
range. Due to theL-doublet splitting in both electronic
states, all lines in principle appear as doublets. The
L-doublet splitting in thea 1D state is very small@30#, and
can be neglected in this study. The splitting of the lines as
observed in the spectrum therefore directly reflects the
L-doublet splitting in theA 3P state. The magnitude of this
splitting strongly depends on theV character in the wave
function of the specific rotational level involved.

For the simulation of the relative intensities of the spectral
lines, the degree ofV51 character in the wave function of
the various rotational levels in theA 3P state has to be cal-
culated. Since the ratio of the spin-orbit coupling constant to
the rotational constant in theA 3P state is relatively small,
this state rapidly approaches Hund’s case~b! for higher ro-
tational quantum numbers. Even for low values ofJ there is
a large degree ofV mixing, and a significant fraction ofV
51 character is present in the wave function of all rotational
levels. The relative intensity of a A 3PV ,J8,e/ f
←a 1D,J9,e/ f transition is simulated by multiplying the
amount ofV51 character in the wave function of the upper
level with the Hönl-London factor of the corresponding di-
pole allowed c 1P,J8←a 1D,J9 transition and with the
population in the lower level. For the latter, the population
distribution, as deduced from the experiments described in
Sec. III A, is used.

As indicated in Fig. 2, a significant population in thev
51 level of thea 1D state is present. Thev51←v51 band
of the spin-forbidden transition is shifted some 150 cm21 to
the red, but several branches of this hot band appear in this
same spectral region. The line observed at 17 030.59 cm21

~indicated with an arrow! is not reproduced in the simulated
spectrum. This line appears at the same frequency in the
spectra of both14NH and 15NH and can be assigned to the
He(53D←2 3S) two-photon transition, which is expected at
exactly this frequency@31#. The long-lived metastable
He(23S) atoms are produced in the discharge source, and
their spectral signature serves as an additional absolute fre-
quency marker in our spectrum.

The correspondence between the observed and simulated
spectrum is excellent, confirming that theA 3P←a 1D tran-
sition indeed mainly gains intensity due toA 3P2c 1P spin-
orbit coupling. Within the experimental accuracy no evi-
dence for aA 3P2a 1D coupling is found.

The measured and calculated line positions are given in
Table I for both14NH and 15NH for levels up toJ954. The
rotational constants for15NH are deduced from those of
14NH using the isotope scaling laws. For each isotope and
for both vibrational bands theA 3P2a 1D singlet-triplet
splitting is adjusted such that the calculated frequency of the
most intense line, indicated in Table I, coincides with the

observed line position. The overall agreement is excellent
and apart from the singlet-triplet splitting for both isoto-
pomers no adjustment of the spectroscopic constants is
needed to fit the observed line positions.

As mentioned above, the measurements shown in Fig. 2
are taken under conditions away from saturation. In order to
investigate the optical pumping efficiency from thea 1D
state to theX 3S2 ground state, experiments on theA 3P
←a 1D transition have been performed with a narrow-band
pulsed laser system with a superior spectral brightness. In
this laser the output of a frequency stabilized single mode
ring dye laser~Spectra Physics 380! is amplified in a three
stage pulsed dye amplifier~Lambda Physik LPD 3000!
pumped by a frequency-doubled injection seeded Nd:YAG
pump laser~Spectra Physics GCR 190-50!. Up to 80 mJ of
584 nm radiation is produced in a 5-ns duration pulse, with a
Fourier transform limited bandwidth of approximately 90
MHz.

In view of the limited tunability of this laser system only
the A 3P1 ,v50,J51,e/ f←a 1D,v50,J52,e/ f transitions,
the two strong components of theP2(2) doublet~see Fig. 2!,
are measured. The intrinsic shape of these lines is recorded
using a pulse energy of 1 mJ in a 4-mm diameter beam,
avoiding saturation broadening. The measured line profiles
are shown for14NH in Fig. 3, and indicate unresolved hy-
perfine structure. Due to the nuclear spin of bothN and H
nucleus, thea 1D,J52,e/ f and A 3P1 ,J51,e/ f L-doublet
components are split into 6~4! and 5~4! hyperfine levels for
14NH (15NH), respectively. The hyperfine structure on the
A 3P,v50←X 3S2,v50 transition and on thec 1P,v50
←a 1D,v50 transition has been resolved and analyzed ear-
lier @18,30#. Unfortunately, there are some mistakes in the
formalism used in that analysis, which complicates the inter-
pretation of the hyperfine interaction parameters presented in
that work. We therefore reanalyzed the original data of
Ubachset al. @18,30# from which we calculated the expected
hyperfine structure on theP2(2) line of the spin-forbidden
transition. The transitions between the various hyperfine lev-
els are indicated in Fig. 3 as a stick spectrum. The dashed
curve is a convolution of the calculated spectrum with the
spectral profile of the laser; for the latter a Gaussian distri-
bution with a full width at half maximum of 90 MHz is
assumed. There is an excellent match between the observed
and expected line profiles. Equally good agreement is ob-
tained for 15NH ~data not shown!, when the reanalyzed hy-
perfine constants for14NH are isotopically scaled to15NH.

The absolute line frequencies for the two components of
the P2(2) line as determined in these high resolution mea-
surements, calibrated against the simultaneously measured
iodine absorption spectrum, are incorporated in Table I. The
tabulated experimental errors are deduced from the accuracy
of the frequencies and the number of the individual iodine
lines @27# that are used as frequency markers. The frequency
of the P2(2) component that is most accurately measured in
our experiments can be used to accurately determine the
singlet-triplet splitting in NH. Together with the absolute fre-
quencies of transitions in theA 3P,v50←X 3S2,v50
band@29#, this yields a splitting between the lowest rovibra-
tional level in theX 3S2 state and the lowest rovibrational

van de MEERAKKERet al. PHYSICAL REVIEW A 68, 032508 ~2003!

032508-4



level in the a 1D state for 14NH of 12 688.622
60.004 cm21. From a direct measurement of thea 1D,v
50,J52→X 3S2,v50,N50,J51 transition, this singlet-
triplet splitting has previously been reported to be 12 687.8
60.1 cm21 @15#. The inaccurate frequency calibration
method used in those experiments probably explains the dis-
crepancy with the value determined in our measurements.

By increasing the pulse energy of the narrow-band pulsed
dye laser system, theP2(2) line of the spin-forbidden tran-
sition can be saturated; with 10 mJ in a 4-mm diameter beam
saturation effects are already observed. This leads to an order
of magnitude estimate for the peak absorption cross section

for this transition of 10218 cm2, corresponding to a value of
the EinsteinA-coefficient of order unity. In a previous paper
we calculated, taking exclusively the3P21P interaction
into account, the transition dipole moment for theP2(2)
transition would be around 4.431024 atomic units ~a.u.!
@10#, in good agreement with the present findings of about
531024 atomic units. In the accumulation scheme discussed
earlier, the NH radicals are optically pumped to their elec-
tronic ground state at a point where the molecules have come
to a near standstill. The strength of the spin-forbidden tran-
sition in NH suggests that in this case it will even be possible
to achieve efficient optical pumping from the metastable

TABLE I. Observed and simulated line positions~vacuum cm21) of theA 3P,v50,1←a 1D,v50,1 transition for14NH and 15NH. The
experimental error in the measured values is 0.03 cm21, unless stated otherwise. The deviation between measured and calculated values
(observed-calculated) is given in parentheses. The lines that are used to determine theA 3P2a 1D singlet-triplet splitting are indicated.

14NH 15NH
1D,J,e/ f line v50←v50 v51←v51 v50←v50 v51←v51

2, e Q1(2) 17082.01 ~0.02! 17082.31 ~0.01!
R1(2) 17153.70 (20.01) 17002.20 ~0.01! 17153.75 ~0.03! 17002.68 ~0.00!
P2(2) 17117.993~2! ~fixed! 17118.315~10! ~fixed!

Q2(2) 17178.53 (20.01) 17027.23 (20.01) 17178.57 (20.01) 17027.73 (20.03)
P3(2) 17191.02 ~0.01! 17039.98 ~0.02! 17191.08 ~0.02! 17040.49 ~0.00!
Q3(2) 17128.81 ~0.00! 17128.94 ~0.02!

2, f Q1(2) 17082.01 ~0.02! 17082.31 (20.01)
R1(2) 17153.63 ~0.01! 17002.13 ~0.02! 17153.63 (20.01) 17002.59 (20.01)
P2(2) 17118.675~10! ~0.014! 17118.987~2! ~0.006!
Q2(2) 17177.49 ~0.00! 17026.25 (20.01) 17177.53 ~0.00! 17026.76 (20.02)
P3(2) 17192.90 ~0.01! 17041.78 ~fixed! 17192.96 ~0.01! 17042.31 ~fixed!

Q3(2) 17127.49 ~0.03! 17127.60 ~0.03!
3, e Q1(3) 17055.13 ~0.00! 17055.58 ~0.00!

R1(3) 17156.87 (20.01) 17004.62 ~0.00! 17156.90 ~0.00! 17005.09 (20.03)
P2(3) 17078.99 ~0.00! 17079.47 ~0.00!
Q2(3) 17174.95 ~0.02! 17022.91 ~0.01! 17174.97 (20.01) 17023.42 ~0.00!
P3(3) 17184.52 ~0.01! 17032.70 ~0.03! 17184.56 ~0.00! 17033.21 ~0.00!
Q3(3) 17154.52 ~0.00! 17154.50 ~0.00!

3, f Q1(3) 17055.21 ~0.00! 17055.66 (20.01)
R1(3) 17156.62 (20.02) 17004.40 ~0.01! 17156.64 (20.02) 17004.90 ~0.01!
P2(3) 17080.05 ~0.00! 17080.52 ~0.00!
Q2(3) 17173.59 (20.01) 17021.67 ~0.02! 17173.65 ~0.01! 17022.16 (20.01)
P3(3) 17185.91 ~0.02! 17034.01 (20.01) 17185.95 ~0.00! 17034.55 (20.01)
Q3(3) 17153.56 ~0.01! 17153.53 ~0.00!

4, e Q1(4) 17025.49 (20.01) 17026.09 (20.02)
R1(4) 17158.46 (20.02) 17005.19 ~0.01! 17158.51 ~0.01! 17005.72 ~0.01!
P2(4) 17042.45 (20.01) 17043.07 (20.02)
Q2(4) 17172.42 (20.01) 17172.46 (20.02)
P3(4) 17180.25 ~0.01! 17027.34 (20.01) 17180.31 ~0.01! 17027.88 (20.01)
Q3(4) 17180.76 ~0.01! 17180.02 ~0.03!

4, f Q1(4) 17025.72 (20.02) 17026.34 (20.01)
R1(4) 17157.98 (20.02) 17004.77 ~0.02! 17158.02 ~0.00! 17005.27 ~0.01!
P2(4) 17043.79 ~0.00! 17044.41 (20.02)
Q2(4) 17170.80 (20.01) 17170.86 ~0.00!
P3(4) 17181.22 (20.01) 17028.31 (20.01) 17181.30 ~0.01! 17028.85 (20.01)
Q3(4) 17180.16 ~0.02! 17180.02 ~0.03!
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state to the electronic ground state using a cw laser system.
This allows optical pumping from selected hyperfine levels,
and enables the production of trapped molecules that occupy
only a limited, and well-defined, number of hyperfine levels.

IV. CONCLUSIONS

An intense pulsed molecular beam of metastable NH
(a 1D) radicals is produced and characterized. By inducing
the hitherto unobserved spin-forbiddenA 3P←a 1D transi-
tion, efficient optical pumping of the metastable radicals to
their electronic ground state is demonstrated. The expected
mechanism via which this transition gains intensity is veri-
fied, and the absolute transition probability is estimated from
the experimental data. The optical pumping scheme opens up
the possibility to accumulate the NH radicals in a trap. It is

remarked that theA 3P←a 1D transition characterized in
this work allows the complete background free detection of
metastable NH radicals; although the use of a spin-forbidden
transition for LIF detection of molecules is unconventional,
it might actually be the most sensitive method to detect
metastable NH radicals.
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