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Trapping polar molecules in an ac trap
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Polar molecules in high-field seeking states cannot be trapped in static traps as Maxwell’s equations do not
allow a maximum of the electric field in free space. It is possible to generate an electric field that has a saddle
point by superposing an inhomogeneous electric field to an homogeneous electric field. In such a field,
molecules are focused along one direction, while being defocused along the other. By reversing the direction
of the inhomogeneous electric field the focusing and defocusing directions are reversed. When the fields are
being switched back and forth at the appropriate rate, this leads to a net focusing force in all directions. We
describe possible electrode geometries for creating the desired fields and discuss their merits. Trapping of
15ND3 ammonia molecules in a cylindrically symmetric ac trap is demonstrated. We present measurements of
the spatial distribution of the trapped cloud as a function of the settings of the trap and compare these to both
a simple model assuming a linear force and to full three-dimensional simulations of the experiment. With the
optimal settings, molecules within a phase-space volume of 270 mm3 �m/s�3 remain trapped. This corresponds
to a trap depth of about 5 mK and a trap volume of about 20 mm3.

DOI: 10.1103/PhysRevA.74.063403 PACS number�s�: 33.80.Ps, 33.55.Be, 39.10.�j

I. INTRODUCTION

Trapping particles has proven a successful strategy for the
study of their properties and interactions. Traps allow long
interaction times and, therefore, potentially high resolution in
spectroscopic and other types of measurements. Not surpris-
ingly, trapped particles are used in various precision tests of
fundamental physics theories. Moreover, as the particles are
thermally isolated from the outside world, they can be cooled
to very low temperatures, making it possible to study cold
collisions and create quantum degenerate gases.

Traps for neutral molecules can be formed using static
inhomogeneous electric and magnetic fields. In these traps,
molecules in states that have a positive energy shift in the
applied field—so-called low-field seekers—experience a
force toward the center of the trap where the field has a
minimum. Magnetostatic trapping has been demonstrated for
CaH �1� and Cs2 molecules �2�. Electrostatic trapping has
been demonstrated for ND3 �3� and OH �4� molecules. Al-
though Maxwell’s equations allow for a minimum, they do
not allow a maximum of a static magnetic or electric field in
free space, required to trap molecules in high-field seeking
states. It is possible, however, to create an electric field maxi-
mum using optical fields. Optical trapping has been demon-
strated for Cs2 molecules �5�. Unfortunately, the trap depth
and volume of optical traps are rather limited. Recently, we
have demonstrated a considerably deeper and larger trap for
high-field seeking molecules using ac electric fields �6�. In
this paper we describe this trap in more detail.

Trapping molecules in high-field seeking states is of par-
ticular interest for two reasons. �i� The ground state of a
system is always lowered by an external perturbation. There-
fore, the ground state of any molecule is high-field seeking.

In the ground state, trap loss due to inelastic collisions is
absent, making it possible to cool these molecules further
using evaporative or sympathetic cooling. This is particularly
relevant as the dipole-dipole interaction is predicted to lead
to large cross sections for inelastic collisions for polar mol-
ecules in excited rovibrational states �7�. �ii� Molecules com-
posed out of heavy atoms or many light atoms, such as poly-
cyclic hydrocarbons, have small rotational constants.
Consequently all states of these molecules become high-
field-seeking in relatively small magnetic or electric fields.

Ac-trapping of polar molecules is closely related to focus-
ing beams of polar molecules using arrays of electrostatic
lenses in alternating gradient �AG� configuration. Together
with M. R. Tarbutt and E. A. Hinds at Imperial College Lon-
don, our group has recently published a review on AG focus-
ing �8�. Some of the theory incorporated in that paper is
duplicated here.

Our paper is organized as follows. In Sec. II we discuss an
extension of Earnshaw’s theorem, that shows that molecules
in high-field-seeking states cannot be trapped in a static elec-
tric field and discuss how one can circumvent this theorem
by using ac electric fields. In Sec. III we present three elec-
trode geometries suitable for ac trapping. The optimal shape
of the electrodes making up one of these geometries is de-
termined in Sec. IV. In Sec. V we consider the motion of the
molecules in an ac trapping field and calculate the depth and
volume of an idealized ac trap. In Sec. VI we present an
experimental study of the stability of an AC trap. We present
measurements of the spatial distribution of trapped 15ND3
molecules as a function of the settings of the trap and com-
pare these to both a simple model assuming a linear force
and to full three-dimensional �3D� simulations of the experi-
ment. A summary of our main conclusions and a discussion
of future prospects are given in Sec. VII.
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II. EARNSHAW’S THEOREM

For a force field F� �r�� to keep a particle in static equilib-

rium around r�=0� , two conditions must be met. The applied

force must vanish at r�=0� , and, for small displacements, the

force field should tend to restore the particle toward r�=0� . To
achieve the latter it is necessary that the divergence of the

force be negative, �� ·F� �0 in a volume around r�=0� .
The force on a charged particle placed in an electric field

is given by F� =qE� . Since �� ·E� =0 �or �2V=0�, a charged
particle cannot be held in stable equilibrium by electrostatic
forces alone. This is known as Earnshaw’s theorem �9�. The
application of Earnshaw’s theorem to polar molecules in in-
homogeneous electric fields was first discussed by Auerbach,
Bromberg, and Wharton �10� in a design study of a neutral
particle accelerator. The implications of Earnshaw’s theorem
for trapping neutral atoms and molecules in electromagnetic
fields were discussed by Wing �11� and by Ketterle and Prit-
chard �12�.

The force acting on a polar molecule in an inhomoge-

neous electric field E� �r�� is given by

F� �r�� = − �� W�E� , �1�

with W�E� the Stark energy of a polar molecule in an electric

field of magnitude E= �E� �. In most common cases the Stark
shift of a molecule is either a linear or quadratic function of
the applied field. For molecules that experience a linear Stark
shift in the applied field, W=−�effE, it can be shown that
�10�

�� · F� =
�eff

E3 �
i,j,k=1

3 �� ��

�xk
	2� �2�

�xi � xj
	2

− � ��

�xi
	� ��

�xk
	

�� �2�

�xi � xj
	� �2�

�xk � xj
	
 , �2�

where � is the electrostatic potential and �eff is an effective
dipole moment which depends on the particular molecular
state. Using Schwarz’s inequality, it can be seen that the sum
is always larger than, or equal to, zero. Therefore, for mol-

ecules having a linear Stark shift the sign of �� ·F� is deter-
mined solely by the sign of �eff.

Similarly, for molecules that experience a quadratic Stark
shift in the applied field, W=−1/2�effE

2, it can be shown
that �10�

�� · F� = �eff �
i,j=1

3 � �2�

�xi � xj
	2

, �3�

where �eff is the effective polarizability which depends on
the particular molecular state. Again, it is seen that the sign

of �� ·F� is only determined by the sign of �eff.
For molecules in low-field seeking states, i.e., for mol-

ecules that have a negative �eff or �eff, it is seen from Eq. �2�
and Eq. �3� that �� ·F� �0 and trapping is straightforward.
This is equivalent to saying that it is possible to create an
electric field minimum. For molecules in high-field seeking

states, i.e., for molecules that have a positive �eff or �eff it is

seen from Eq. �2� and Eq. �3� that �� ·F� �0 and trapping is
more problematic. This is equivalent to saying that it is not
possible to create an electric field maximum. Trapping mol-
ecules in high-field seeking states is nevertheless possible
using �i� Circular motion. In a storage ring the curvature of
the trajectory adds a centrifugal force which, in an appropri-
ately shaped electric field, stabilizes the motion of the mol-
ecules, similar to “weak focusing” storage rings for ions
�13�. For example, the electric field in a capacitor formed by
two coaxial cylinders scales as 1 /r, with r the distance from
the axis. Molecules that have a linear Stark shift in the ap-
plied field will experience a force that is proportional to 1/r2.
These molecules therefore move in stable Kepler-type orbits
around the central electrode �14–16�. By shaping the outer
cylinder appropriately, molecules are also trapped along the
direction of the central electrode �17,18�. �ii� Time varying
electric fields. Although it is not possible to create a field for

which �� ·F� �0 at any given position, it is possible to create

a field for which �� ·F� is equal to zero at a certain position,
irrespective of �the sign of� the Stark shift. As a consequence,
at this position the focusing force along one direction is
equal to the defocusing forces along the other directions, i.e.,
the electric field strength has a saddle point here. In some
cases it is possible to reverse the focusing and defocusing
directions by changing the voltages applied to the electrodes.
If we switch the voltages between these two configurations,
molecules will be alternately focused and defocused. As mol-
ecules tend to be farther away from the saddle point along
the focusing direction and closer to the saddle point along
the defocusing direction, this leads to a net focusing. This
principle is used in ion traps �19� and alternate gradient syn-
chrotrons �20�.

From this discussion, we see that in order to circumvent
Earnshaw’s theorem we need to introduce some form of mo-
tion or time variation �11�. This can be either motion of the
molecule—in case of trapping molecules in a storage
ring—or a time variation of the applied electric field—in
case of an ac trap.

III. ELECTRODE GEOMETRY

In Fig. 1 three electrode geometries are depicted that are
suitable for ac trapping of polar molecules. These geometries
have in common that the symmetry of the electrostatic po-

tential is such that �� ·F� =0 at the center, and that the direc-

tion of F� can be reversed by changing the voltages applied to
the electrodes �47�.

A. Linear ac trap

Consider the geometry shown in Fig. 1�a�. The four iden-
tical electrodes are positioned on the corners of a square. A
positive voltage is applied to the upper electrode, while an
equal negative voltage is applied to the lower electrode. The
other two electrodes are at ground potential �48�. Molecules
in high-field-seeking states are focused toward the center
along the x axis while they are defocused along the y axis.
We will first assume the electrodes to be of infinite length, in
which case �� /�z=0 and �2� /�z2=0. The electrostatic po-
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tential is symmetric under reflection in the y-z plane and
therefore �� /�x=0 everywhere on this plane. The electro-
static potential is antisymmetric under reflection in the x-z
plane, and therefore �2� /�y2=0 everywhere on this plane.
At the intersection of the two planes, the z axis, both
�2� /�y2=0 and �2� /�z2=0. As the electrostatic potential
obeys Laplace’s equation, �2�=0, it follows that �2� /�x2

=0 at the z axis. Using these relations we find from Eq. �2�
and Eq. �3� that for molecules experiencing a linear or qua-

dratic Stark shift �� ·F� =0 at the z axis. The force constants in
the two transverse directions, kx=−�F /�x and ky =−�F /�y,
are therefore equal and opposite, kx=−ky. The focus and de-
focus direction can be reversed by switching the voltage off
on the upper and lower electrodes while applying a voltage
difference to the two electrodes that were initially at ground
potential. By alternating between these two configurations at

the appropriate frequency, this geometry acts as 2D guide for
polar molecules in both high-field and low-field seeking
states. This guide was first proposed by Auerbach, Bromberg,
and Wharton �10� and recently demonstrated by Junglen et
al. �23�. By bending this guide into a torus it can be used as
a storage ring �10,24�. Let us now consider what happens if
the electrodes are of finite size. Along the z axis the electric
field will have a maximum at the center of the trap, therefore,
molecules in high-field-seeking states will experience a
�static� trapping potential along this direction. It is easily

seen that at the center of the trap �� ·F� =0. However, since
kz�0 the defocusing force will be larger than the focusing
force. When kz is not too large, this does not dramatically
decrease the stability and molecules can be trapped in three
dimensions. This trap is the neutral analog of the linear Paul
trap for ions and was recently demonstrated for neutral mol-
ecules by Schnell et al. �25�. A microstructured version of
this trap for neutral atoms was proposed and demonstrated
by Katori et al. �26,27�.

B. Cylindrical ac trap

Consider the geometry shown in Fig. 1�b�. The structure
consists of two ring electrodes and two cylindrically sym-
metric end caps. A negative voltage, −	, is applied to the left
end cap while an equal positive voltage, 	 is applied to the
right end cap. The left ring electrode is kept at a positive
voltage, 
 while the right ring electrode is kept at an equal
negative voltage −
. The electrostatic potential is antisym-
metric about the x-y plane and therefore, �2� /�z2=0 every-
where on this plane. The electrostatic potential is symmetric
about any plane containing the z axis, and therefore �� /�x
=0 and �� /�y=0. Due to symmetry, �2� /�x2=�2� /�y2 at
the z axis, and from Laplace’s equation both terms are zero at
the point of intersection between the symmetry axis and the
plane of antisymmetry, at the center of the trap. Again, in

case of a linear or quadratic Stark shift, �� ·F� =0 at the center
of the trap �49�. The force constant along the z axis is twice
the force constant along �, kz=−2k�, where �=�x2+y2. The
size and direction of the force depend on the ratio of 	 to 
.
This ratio can be chosen such that kz�−2k��a or kz�−2k��
−a, with a a constant �see Sec. IV�. In this case the electric
field at the center of the trap is equal in magnitude and di-
rection for both configurations. This trap is the neutral analog
of the Paul trap for ions �19� and was first proposed by Peik
�28�. This trap was recently demonstrated for neutral mol-
ecules by van Veldhoven et al. �6�.

C. Three-phase ac trap

Consider the geometry shown in Fig. 1�c�. The structure
consists of six hemispherically ended electrodes that point
toward the center of the trap. A positive voltage is applied to
the right electrode and a negative voltage to the left electrode
while the other electrodes are kept at ground potential �50�.
Although the cylindrical symmetry is lost, the field has es-
sentially the same form as the cylindrical ac trap discussed
before. The main difference lies in the way the voltages are
being switched. In the three-phase trap the voltages are alter-
nately applied to the electrodes at the x, y, or z axis. In this
way, molecules will experience a focusing force 2/3 of the

(a)

(b)

(c)

FIG. 1. Three possible electrode geometries that can be used for
ac trapping of polar molecules. �a� Linear ac trap. �b� Cylindrical ac
trap. �c� Three-phase ac trap.
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time, while they experience a two-times-larger defocusing
force 1/3 of the time. This trap is the neutral analog of the
three-phase trap for ions �29� and was proposed by Shimizu
and Morinaga �30�.

IV. OPTIMAL SHAPE

In this section we will determine the optimal shape of the
electrodes making up an ac trap. We will concentrate on the
cylindrical ac trap which is used in the experiments to be
described in Sec. VI. The optimal shape of the electrodes of
a linear or three-phase ac trap can be determined in a similar
fashion �see also �8��.

As we will see later, an ac trap has the largest depth and
volume if the molecules experience a harmonic interaction
potential. For molecules that experience a linear Stark shift
the ideal form for the field strength is therefore also har-
monic; E�z ,��=E0+�z2− 1

2�2�, where the sign of  can be
reversed by switching the voltages.

We start by expanding the electric field in a Legendre
series following �31�. In a region devoid of charges the
electric field can be derived from the electric potential �;

E� =−�� �, with �2�=0. � may be represented by a sum over
spherical harmonics:

� = �
L,M

aLMrLYLM . �4�

Of most interest to us are terms with M�0, as these have
cylindrical symmetry. Looking only at these terms, we write

� = �0 + �1
z

z0
+ �2

�z2 − �2/2�
z0

2 + �3
�z3 − 3

2z�2�
z0

3 ¯ , �5�

with z0 a scaling factor that characterizes the size of the
electrode structure. The first term in Eq. �5� represents a
constant voltage, the second term represents a constant elec-
tric field, and the third and fourth terms represent a quadru-
pole and hexapole trap, respectively. The voltage at z=z0,
�=0, is simply the sum over all coefficients, i.e., ��z=z0 ,�
=0�=��n with the subscript n denoting the different terms
in Eq. �5�. The electric field magnitude at the center is given
by E0=�1 /z0. As discussed in Sec. II, we require the mag-
nitude of the electric field to be nonzero at the center of the
trap, and symmetric under reflection in the x-y plane and in
any plane containing the z axis. To achieve this we retain
only terms of odd n �51�. Anticipating the result that high-
order terms introduce undesirable nonlinearities in the force
we choose to retain only �1, �3, and �5. Hence

� = �0 + �1
z

z0
+ �3

�z3 − 3
2z�2�

z0
3 + �5

�z5 − 5z3�2 +
15

8
z�4	

z0
5 .

�6�

From this potential, we obtain the electric field magnitude,
E�z ,��=�� ��

�z
�2+ � ��

��
�2. Throughout the region z�z0, ��z0

this can be expanded as a power series. For the case
�5��3��1 we obtain

E�z,�� = E0�1 + 3��3

�1
	�z2 − 1

2�2�
z0

2 + ��3

�1
	2� 9

2z2�2�
z0

4

+ 5��5

�1
	�z4 − 3z2�2 + 3

8�4�
z0

4 ¯ 
 . �7�

The first two terms have the desired form and dominate the
expansion. The other terms produce nonlinearities in the
force, that, as we will see in Sec. VI, limit the trap depth. The
field ideally contains only a �1 and �3 term.

Before looking at how we can create such a field we will
first turn our attention to atoms and molecules that experi-
ence a quadratic Stark shift. In this case the electric field
needs to be of the form E2�z ,��=E0

2+�z2− 1
2�2�. In a similar

fashion we write E2 in a power series as

E2�z,�� = E0
2�1 + 6��3

�1
	�z2 − 1

2�2�
z0

2 + 2��3

�1
	2� 9

2z2�2�
z0

4

+ 9��3

�1
	2�z2 − 1

2�2�2

z0
4

+ 10��5

�1
	�z4 − 3z2�2 + 3

8�4�
z0

4 ¯ 
 . �8�

Again, we see that the field ideally contains only a �1 and
�3 term. Compared to the case of a linear Stark shift, the
potential contains extra terms in ��3 /�1�2, causing stronger
deviations from an harmonic force.

In order to create the desired fields, we use the electrode
configuration shown in Fig. 2. The surfaces of the electrodes,
indicated by the bold curves in Fig. 2, are mapped onto the
equipotentials of a cylindrical hexapole field. Consequently,
when voltages of U3 and −U3 are applied alternately to the

FIG. 2. Electrostatic potential obtained by applying different
voltages to the electrodes of a cylindrical hexapole trap. �a� Dipole
field. �b� Hexapole field. �c� z-focusing, obtained by subtracting a
hexapole field from a dipole field. �d� �-focusing, obtained by add-
ing a hexapole field to a dipole field. U1 is taken to be equal to 3U3.
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four electrodes of the trap as shown in Fig. 2�b�, a perfect
hexapole field is obtained, i.e., �3�U3, and �n�0, for n
�3. In order to generate a dipole term, we apply voltages of
−U1, −0.6U1, 0.6U1, and U1 to the electrodes as shown in
Fig. 2�a�. Fitting this field to Eq. �5� yields �1=0.88U1,
�3�0, and �5=0.11U1, with even terms being zero due to
symmetry. For ac trapping, we apply a large dipole term and
add �or subtract� a small time-varying hexapole field. Figure
2�c� shows the electrostatic potential when we subtract the
hexapole field from the dipole field, with U1=3U3. Along
z, the electric field has a maximum at the center. Along �,
the electric field has a minimum at the center. Molecules in
high-field-seeking states will be focused along z and defo-
cused along �, and we will refer to this configuration as
“z-focusing.” Figure 2�d� shows the electrostatic potential
when we add the hexapole field to the dipole field, again
with U1=3U3. Along � the electric field has a maximum at

the center. Along z, the electric field has a minimum at the
center. Molecules in high-field-seeking states will be focused
along � and defocused along z, and we will refer to this
configuration as “�-focusing.”

The electric fields generated in this way contain a rather
sizable �5 term that makes the force more nonlinear. Unfor-
tunately, to decrease the �5 term present in the z-focusing
field, we need to bring the electrodes closer together and
increase the radii of the ring electrodes, whereas to decrease
the �5 term present in the �-focusing field, we need to move
the electrodes farther apart and decrease the radii of the ring
electrodes. Improving the linearity of one configuration thus
unavoidable results in deteriorating the linearity of the other.
The use of a hexapole trap is a compromise, forced by the
need to reverse the focusing and defocusing directions by
adjusting the voltages only.

Figure 3�a� schematically shows the practical realization

(a)

(b) (c)

(d) (e)

FIG. 3. �a� Schematic view of
the cylindrical symmetric ac trap
used in our experiments. �b� and
�c� Electric field magnitude as
function of the position along z
�b� and � �c� when voltages of 5,
7.5, −7.5, and −5 kV �z-focusing�
or 11, 1.6, −1.6, and −11 kV
��-focusing� are applied to the
electrodes. �d� and �e� Force on
ammonia molecules in the high-
field seeking component of the
�J ,K�= �1,1� level along z �d� and
� �e�.
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of our trap. The electrodes are truncated to avoid the distance
between them becoming too small. The two end caps are
placed a distance 2z0=9.1 mm apart. The two ring electrodes
have a radius equal to �3/2z0=5 mm. Both end caps have
been given a hole with a 2 mm diameter to allow molecules
to enter the trap and to extract ions that are produced in
our laser-based detection scheme. In our experiment we
use U1=8 kV and U3=3 kV, resulting in voltages of 5, 7.5,
−7.5, and −5 kV �z-focusing� or 11, 1.6, −1.6, and −11 kV
��-focusing� being applied to the electrodes. Fitting these
fields to Eq. �5� yields �1=7.0 kV, �3=−3.0 kV, and �5
=0.88 kV �z-focusing� and �1=7.0 kV, �3=3.0 kV, and
�5=0.62 kV ��-focusing�. The resulting electric field mag-
nitude as a function of the position along z and � is shown in
Figs. 3�b� and 3�c�, respectively. In the center of the trap the
electric field magnitude is 16 kV/cm. Figures 3�d� and 3�e�
show the corresponding force exerted on ammonia molecules
in the high-field-seeking component of the �J ,K�= �1,1� level
along the z and � axes, respectively. For ease of comparison
the force in the �-focusing configuration in Fig. 3�d� and the
force in the z-focusing configuration in Fig. 3�e� is multiplied
by −1. It is seen that the focusing and defocusing forces are
equal at the center of the trap and that close to the center they
are roughly linear, with the force constants given by

�k�� = �kz/2� =
3�eff�3

z0
3 . �9�

With �eff=0.0126 cm−1/�kV/cm� the effective dipole mo-
ment of 15ND3, we find �kz � =0.024 and �k� �
=0.012 cm−1/mm2. Further away from the center, the non-
linearity due to �5 acts to strengthen the defocusing power
whereas the focusing is weakened. We will see later that this
nonlinearity severely reduces the depth of the trap.

V. MOTION IN THE TRAP

In this section, the motion of molecules in the trap is
investigated and the trap depth is determined as a function of
the applied frequency. We start by assuming that the mol-
ecules experience a linear force that is alternately focusing
and defocusing. Let us examine the motion along one of the
principal axes of the trap, say x. The equation of motion can
be written as

m
�2x

�t2 + k�t�x = 0, �10�

with m the mass of the molecule and k�t� the force constant.
We will apply a square wave voltage to the trap such that k�t�
is equal to k during the time interval �0, 1

2T� and equal to −k
during the time interval � 1

2T ,T�. In this case Eq. �10� has a
piecewise solution and is known as Hill’s equation �32�.
When k is positive, the molecule will oscillate with a fre-
quency �hex=��k � /m around the center of the trap; x�t�
=x�t0�cos �hex�t− t0�+vx�t0��hex

−1 sin �hex�t− t0�, with x�t0�
and vx�t0� the initial position and velocity of the molecule,
respectively. As the oscillation frequency is a function of the
hexapole term we denote it with subscript “hex.” When k is
negative, the amplitude will grow exponentially; x�t�
=x�t0�cosh �hex�t− t0�+vx�t0��hex

−1 sinh �hex�t− t0�. The solu-
tion of the equation of motion is conveniently written in
matrix form as

� x�t�
vx�t�

	 = M�t�t0�� x�t0�
vx�t0�

	 , �11�

with the transfer matrix M�t � t0� given by

M�t�t0� = �
cos �hex�t − t0� �hex

−1 sin �hex�t − t0�
− �hexsin �hex�t − t0� cos �hex�t − t0�

	 �F, focusing force� ,

� cosh �hex�t − t0� �hex
−1 sinh �hex�t − t0�

�hexsinh �hex�t − t0� cosh �hex�t − t0�
	 �D, defocusing force� .� �12�

The transfer matrix is called F when the force is focusing
and D when the force is defocusing.

The transfer matrix for any interval made up of subinter-
vals is just the product of the transfer matrices of the sub-
intervals:

M�t2�t0� = M�t2�t1�M�t1�t0� . �13�

The transfer matrix for a single cycle is F�T � 1
2T�D� 1

2T �0�.
The transfer matrix for N cycles is simply M
= (F�T � 1

2T�D� 1
2T �0�)N. In order for molecules to be stably

trapped, it is necessary that all the elements of this transfer
matrix remain bound when N increases indefinitely. This is
the case when −1�

1
2 Tr�M�� +1 �see, for example, �33��.

It is useful to parametrize the transfer matrix for one cycle
as �20�

M�t + T�t� = �cos � + � sin � � sin �

− � sin � cos � − � sin �
	 ,

�14�

where ��t�, ��t�, and ��t� are the Courant-Snyder param-
eters. It can be shown that the distribution of the molecules
in phase-space is given by the Courant-Snyder phase-space
ellipse:

��t�x2 + 2��t�xvx + ��t�vx
2 = � , �15�
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with � a constant which is called the emittance. The area
enclosed by the Courant-Snyder ellipse is ��. The maximum
position spread of a sample of trapped molecules with emit-
tance � is ���. The maximum velocity spread of the trapped
sample is ���. � is the phase advance per cycle, which is a
measure for how far along the period a molecule has pro-
ceeded from its initial position. We see that the stability cri-
terion is identical to requiring � to be real.

In Fig. 4 some trajectories in the trap are plotted as a
function of time for two different values of the frequency of
the applied voltage, �driven. The time is given in units of T
=2� /�driven, and the position is given in units of d, the dis-
tance between the trap electrodes along x. For the trajectories

shown in Fig. 5�a� �driven/�hex � 3.3, which corresponds to
a phase-advance of � /6, implying that molecules return to
their starting point after 12 cycles of the driving field. In the
lower panel trajectories are shown for �driven/�hex=2.0,
which corresponds to a phase-advance of � /2, implying that
molecules return to their starting point after four cycles of
the driving field. The gray shaded area shows the size of the
trapped cloud, bounded by ±���. It can be seen that mol-
ecules are on average farther away from the center of the trap
when the force is focusing than when the force is defocusing.
This is the origin of the stability of the trap. At any fixed
position, the divergence of the force averaged over one
cycle, �1/T��� /�x��0

TF�x�dt, is equal to zero. However, a
molecule does not stay at a fixed position but will move
toward the center of the trap under the influence of the fo-
cusing force. It will then be closer to the center, where the
force is smaller, when the defocusing force is applied. This
defocusing force will move the molecule farther away from
the center again, bringing it in a region of a larger force
when the focusing force is applied. As a consequence, the
divergence of the force averaged over the trajectory of the
molecule over one cycle, �1/T��� /�x��0

TF(x�t�)dt, is less than
zero. As this is a result of the motion of the molecule, this is
commonly referred to as “dynamic” stability. For small val-
ues of �, the motion can be separated in a rapid oscillation—
analogous to the “micro motion” in ion traps �19�—at �driven,
the frequency of the applied fields, and a slower
oscillation—analogous to the “macro” or “secular” motion in
ion traps—at �driven� /2�.

In Fig. 4�c� the phase-space area occupied by the trapped
molecules is shown at four different phases of the driving
field. This area is enclosed by the Courant-Snyder ellipse
given by Eq. �15� and is equal to �� times� the emittance.
The phase space ellipse rotates at the frequency of the ap-
plied field. Both the velocity spread and the position spread
of the trapped cloud oscillate but the product of the two—the
emittance—remains constant. We will use the largest emit-

(a)

(b)

(c)

FIG. 4. �Color online� �a� Trajectories of ammonia molecules in
an ac trap for �driven/�hex=3.3 corresponding to a phase advance
of � /6. The time is given in units of T=2� /�driven, and the position
is given in units of d, the distance between the trap electrodes along
x. �b� As �a�, but with �driven/�hex=2, corresponding to a phase
advance of � /2. �c� Phase-space area occupied by the trapped mol-
ecules at four times in a single cycle. The position is given in units
of d and the velocity in units of d�hex.

FIG. 5. The acceptance of the trap in units of d2�hex as a func-
tion of the applied frequency in units of �hex calculated using the
matrix method �solid line�, and using an effective potential �dashed
line�. On the top the phase advance corresponding to some values of
�driven/�hex is shown.
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tance that can be accepted by the trap—the acceptance—as a
measure for the trap depth.

The solid line in Fig. 5 shows the 1D acceptance calcu-
lated from the matrix model as a function of the frequency of
the applied fields. The acceptance is given in units of d2�hex.
At low frequencies the trajectories of the molecules are un-
stable �� is imaginary� and the acceptance is zero. Above
�driven/�hex=1.67, corresponding to �=�, the trap becomes
abruptly stable. When the frequency is increased further, the
molecules have less time to move in between switching
times. Their amplitudes when the force is focusing and de-
focusing approach each other and the net force on the mol-
ecules averages out more �compare Figs. 4�a� and 4�b��. As a
result the acceptance decreases at higher frequencies. The
highest acceptance is 0.186d2�hex, obtained when
�driven/�hex=2.5. This may be compared to a dc hexapole
trap for low-field seekers which has an acceptance of
�� /4�d2�hex; over four times larger.

It is instructive to compare the trap operated with a square
wave by a trap operated with a sinusoidal function of the
same amplitude, k�t�=k sin �drivent. In this case Eq. �10� re-
duces to the well-known Mathieu equation �28,32�:

d2x

d�2 + �a − 2qxcos 2��x = 0, �16�

with

a = 0, qx =
2�hex

2

�driven
2 , � =

�drivent

2
. �17�

When a=0, solutions of the Mathieu equation are stable
when �qx � �0.907; i.e., when �driven/�hex�1.48. By compar-
ing the acceptance found by numerically integrating Eq. �16�
with the acceptance of the trap operated with a square wave,
we find that the two are identical when �3 is multiplied by a
factor 1.27 �and consequently �hex is multiplied by a factor
1.12� when operating the trap with a square wave. This factor
is equal to 4/� and can be understood by expanding the
square wave in a Fourier series. Molecules will mainly inter-
act with the first term in the expansion, which has a Fourier
coefficient equal to 4/� �34�. This is similar to the descrip-
tion of the longitudinal motion in a Stark decelerator in terms
of traveling waves �35�.

At high frequencies, �driven/�hex�1, the micromotion is
much faster than the secular motion. In this limit, it is pos-

sible to derive a static “pseudo” potential, W̄ �28,36,37�.
Again using the fact that, for a square wave, �hex should be
multiplied by �4/�, we find

W̄ =
4

�2m
�hex

4

�driven
2 x2. �18�

The secular motion in this pseudopotential is an harmonic
oscillation with frequency,

�secular =
2�2

�

�hex
2

�driven
. �19�

The acceptance of the pseudopotential is given by

�acceptance� =
�

4
d2�secular =

1
�2

d2 �hex
2

�driven
. �20�

Equation �20� is shown as the dotted line in Fig. 5. We see
that the acceptance can be reasonably well estimated from
the pseudopotential for �driven/�hex�7 �q�0.04�.

In our cylindrical trap, shown in Fig. 3, the hexapole fre-
quencies along z and � are �hex,z /2�=590 Hz and
�hex,� /2�=417 Hz, respectively. As a consequence, the
phase advance along z and � is different at a given frequency.
The trap can be made isotropic by switching the fields such
that the configuration which focuses molecules along the �
direction is on for a longer time than the configuration that
focuses molecules along the z direction. We will define a
duty cycle that is equal to 0% when �-focusing is continu-
ously on, and equal to 100% when z-focusing is continuously
on. In order to obtain an isotropic trap the duty cycle should
be adjusted such that �z=�� at each frequency. In the ex-
periments presented in Sec. VI the duty cycle is modified
either in this fashion or by using an approximated formula.

VI. TRAPPING AMMONIA MOLECULES
IN A CYLINDRICAL AC TRAP

The experimental setup used for ac trapping of ammonia
molecules is depicted schematically in Fig. 6. It consists of
two differentially pumped vacuum chambers separated by a
1 mm diameter skimmer. In the first chamber a molecular
beam is made by expanding a mixture of 5% 15ND3 mol-
ecules seeded in xenon. The molecular beam is then passed
through a Stark decelerator consisting of 95 electrode pairs.
Molecules in the low-field-seeking component of the �J ,K�
= �1,1� level of 15ND3 are decelerated to around 15 m/s.
This part of the setup and the operation principle of the de-
celerator have been described in detail elsewhere �38,39�.
The slow molecules exiting the decelerator are focused into
the ac trap using a 12.5 mm long linear hexapole focuser and
a cylindrical hexapole trap. The hexapole trap is almost iden-
tical to the AC trap depicted in Fig. 3. By applying a voltage
of 5 kV to the first ring electrode and the last end cap while
keeping the other electrodes at ground an electric field is

FIG. 6. Experimental setup. A molecular beam of 15ND3 mol-
ecules in the low-field seeking component of the �J ,K�= �1,1� level
is decelerated and loaded in the ac electric trap. Using a microwave
pulse molecules are transferred to the high-field seeking state and
subsequently trapped.
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created that is zero at the center, and increases quadratically
away from the center. By switching this field on and off
when the molecules fly through it, molecules are focused
along � and bunched along the z direction �39�. Using the
linear hexapole focuser and cylindrical hexapole trap we
make a 3D image of the packet exiting the Stark-decelerator
at the center of the ac trap. For molecules having a linear
Stark effect the force inside the linear and cylindrical hexa-
pole is perfectly harmonic and the imaging can be performed
without distortion. Due to the inversion splitting in 15ND3,
the force is nonlinear, causing the image to be distorted. As
the acceptance of the trap is smaller than the phase-space
volume of the beam exiting the decelerator �the emittance�
most of the molecules that are lost would not be trapped
anyway. When the packet of slow ammonia molecules enters
the trap, we apply voltages of 7.5, 5, 0, and −11 kV to the
electrodes of the ac trap. This creates an electric field that is
small at the entrance of the trap and increases toward the
center of the trap. Molecules with a forward velocity of
15 m/s will come to a standstill at the center of the trap. At
that time, the high voltages on the trap are switched off and
only the voltages used for extracting the ions remain. Using
a 20 �s long microwave pulse the transition from the low-
field-seeking to the high-field-seeking hyperfine levels in the
�J ,K�= �1,1� state of 15ND3 can be induced. In zero electric
field this transition is centered at 1.43 GHz �38�. In the ap-
proximately 400 V/cm extraction field, this transition is
shifted to 1.46 GHz. The microwave radiation is generated
by a Rohde&Schwartz �SMR27� signal generator. Under op-
timum conditions, about 20% of the ammonia molecules are
pumped to high-field-seeking levels. When the ac electric
trap is switched on, the voltages on the trap are alternated at
a frequency �driven between the two configurations shown in
Fig. 3. The frequency is generated by a function generator
�Agilent 33220A� that triggers a total of eight high voltage
switches �Behlke HTS201-03-GSM�. The voltages are deliv-
ered by eight FUG �HCK400-20000� high voltage power
supplies. After a certain trapping time, the trap is switched
off, and the molecules are detected using pulsed UV-laser
ionization followed by mass-selective detection of the parent
ions. The �2+1� resonance enhanced multi photon ionization
scheme that is used selectively ionizes the 15ND3 molecules
in the upper or lower component of the �J ,K�= �1,1� inver-
sion doublet, containing the low-field seeking or high-field
seeking levels, respectively.

In Fig. 7 the ion signal is shown as a function of the
switching frequency for molecules in low-field-seeking and
high-field-seeking states. For clarity, the signal for molecules
in low-field-seeking states has been given an offset. The sig-
nal for the high-field seekers is scaled up by a factor of 5, to
correct for the 20% conversion efficiency in the microwave
pumping process. The time the laser is fired is adjusted to be
in phase with the switching frequency. Therefore, the time
that the trap is on depends on the applied frequency but is
always chosen to be close to 80 ms. The measurements agree
with the qualitative description of the dependence of the sta-
bility of the trap on �driven as described in Sec. V. As we
detect only molecules in the laser focus, our signal reflects
the density at the center of the trap rather than the total
number of molecules that are trapped. The signal is therefore

not proportional to the acceptance but rather proportional to
�1/�z�1/���, with � being the Courant-Snyder � coefficient
introduced in Sec. V �see Fig. 4�. This function is shown as
the bold line in Fig. 7. The thin line, also shown in Fig. 7,
results from a numerical simulation of the experiment using
the true �nonlinear� force on molecules. In the simulation the
phase-space density in the trap is assumed to be homoge-
neously filled, i.e., it is assumed that the phase-space volume
of the molecules exiting the decelerator is much larger than
the acceptance of the trap. Both curves have been scaled to
match the signal for high-field seekers at �driven/2�. The
experimentally found cutoff frequency is around 900 Hz, in
good agreement with both the linear model and the simula-
tion. Note that the cutoff frequency for the high-field seekers
is slightly higher than for the low-field seekers due to an
about 4% difference in the magnitude of �eff in the electric
field at the center of the trap. With the present settings, the
highest density of trapped molecules is observed at a switch-
ing frequency of 1100 Hz, again in agreement with the cal-
culations. At higher frequencies the signal decreases. The
measured decrease is faster than predicted from the linear
model. This is due to the higher-order terms in Eq. �7� giving
rise to a �frequency independent� potential that lowers the
trap depth for molecules in high-field-seeking states and in-
creases the trap depth for molecules in low-field-seeking
states. As seen, the experimentally observed density drops
more rapidly than expected from the numerical simulation
using the true force. We believe that the remaining difference
is caused by a slight misalignment of our trap electrodes

FIG. 7. Density of 15ND3 molecules in low-field-seeking �lfs�
and high-field seeking levels �hfs� of the �J ,K�= �1,1� state at the
center of the trap as a function of the switching frequency, after the
trap has been on for about 80 ms. The signal of the high-field seek-
ers is scaled up by a factor of 5. The solid lines show the result of
a linear model �bold� and a numerical simulation of the experiment
using the true force �thin�.
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�vide infra�. This also explains the rapid decrease in signal of
molecules in low-field-seeking states at higher frequencies.
Note the dip in the measured and simulated curves around
1000 Hz due to nonlinear couplings that cause instabilities,
also observed in ion traps �41�.

Figure 8 shows the density at the center of the trap as a
function of the duty cycle for a number of values of the
frequency of the applied fields. The left column shows the
measurements taken for molecules in low-field-seeking
states and the right column those for molecules in high-field-
seeking states. As expected, the density is increased when the
trap depth along � is increased at the cost of a decrease of the
trap depth along z. The vertical lines show the value of the
duty cycle for which the phase advance along z and � are
equal for the different frequencies. As can be seen, the ver-
tical lines are always positioned at a duty cycle that is 3%
higher than the maximum. We believe this is due to a slight
misalignment of the electrodes which effectively adds an ex-
tra hexapole term—adding a force that is focusing along the
z direction and defocusing along � for high-field-seeking
states and vice versa for molecules in low-field-seeking
states. This misalignment was also observed in an experi-
ment on trapping molecules in a double-well potential per-
formed in the same setup �40�.

In our experiment, we use a tightly focused laser beam for
detecting the molecules. This allows us to measure the spa-
tial profile of the trapped molecules by scanning the position
of the laser focus. Figure 9 shows measurements of the spa-
tial distribution along the z direction for molecules in high-
field-seeking states. The trap is operated with a frequency of
�driven/2�=1100 Hz with a duty cycle equal to 45%. The
spatial distribution is recorded after 79 �lower� and 791

2 �up-
per� cycles of the applied field, corresponding to two of the
vertical lines in Fig. 4�b�. The bold line shows the result of a
Gaussian fit to the distribution. As expected, the packet is

larger when the force is focusing along z �z-focusing� than
when the force along z is defocusing ��-focusing�. Interest-
ingly, the ion signal at z�0 is roughly equal in both cases.
When the width of the packet along z is largest, the width
along � is smallest, i.e., the cloud oscillates between a cigar-
shaped distribution and a pancake-shaped distribution while
the density at the center stays approximately constant.

Figure 10 shows the full width at half-maximum
�FWHM� of the distribution of the trapped molecules as a
function of the driving frequency. Shown are measurements
after 79 ��� and 791

2 ��� cycles of the applied field, corre-
sponding to �-focusing and z-focusing, respectively. In the
linear model, the width of the packet along z is proportional

FIG. 8. Density of 15ND3 molecules in the low-field-seeking
�left column� and high-field-seeking state �right column� at the cen-
ter of the trap as a function of the duty cycle for a number of
different values of the applied frequency. The vertical lines show
the value of the duty cycle for which the phase advance along z and
� are equal.

3

z focusing

ρ focusing

FIG. 9. Spatial distribution along z of 15ND3 molecules in high-
field-seeking states after 79 �lower� and 791

2 �upper� cycles of the
applied field with �driven/2�=1100 Hz and duty cycle�45%. The
bold line shows a Gaussian fit to the distribution.

FIG. 10. FWHM of the spatial distribution of the trapped mol-
ecules as function of the drive frequency. The triangles show the
measurements after 79 ��� and 791

2 ��� cycles of the applied field.
The bold curves show the result of the matrix model, the thin curves
show the result from a numerical simulation including the true
force.
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to ��z, with � being the Courant-Snyder � coefficient intro-
duced in Sec. V �see Fig. 4�. The bold curves in Fig. 10 show
��z as a function of �driven. The curves have been scaled to
match the experimentally found width at 1100 Hz. If the
force is perfectly linear the width of the packet along z at
z-focusing is limited by the physical dimensions of the trap
and is constant over the whole frequency range over which
the trap is stable. In contrast, the width along z at �-focusing
depends strongly on the driving frequencies. At high fre-
quency the width at �-focusing is equal to the width at
z-focusing. At lower frequency the width of the packet along
z at �-focusing decreases until it becomes zero at the cutoff
frequency. In our trap the width of the packet is determined
by the nonlinearities in the force. The thin line also shown in
Fig. 10 results from a numerical simulation using the true
force. The numerical simulation is seen to reproduce the
measured widths—both the absolute value and the frequency
dependence—rather well. We attribute the 20% difference
between the measured and calculated width to the slight mis-
alignment of the trap electrodes discussed earlier. Around
�driven/2�=1000 Hz, the simulated width is seen to oscil-
late. This is caused by the nonlinear resonance discussed
earlier in connection to Fig. 7. At the resonance, the distri-
bution of the trapped molecules at z-focusing is no longer
correctly described by a single Gaussian profile. Rather, the
distribution consists of a main peak with smaller side-peaks.

At high frequency, we can use the effective well model
for predicting the width of the packet. For molecules in high
field seeking states the nonlinear terms in Eq. �7� create a
repulsive—frequency independent—potential. In order for
molecules to stay trapped this potential must be balanced by
the potential due to the ac force. Using Eqs. �7� and �18�, we
find the resulting potential, Wsecular:

Wsecular =
4

�2m
�hex,z

4

�driven
2 z2 − �effE0��5

�1
	5z4

z0
4 , �21�

where the duty cycle is set at 50% and terms going beyond
�5 are ignored. The maximum extent of the packet is found
by finding the position where the force on the molecules,
−�Wsecular /�z, becomes equal to zero:

zmax =�12

5

1

�
��3

�5

�hex,z

�driven
z0. �22�

From Eq. �22�, we find that the width of the spatial profile
decreases as 1/�driven, in agreement with the numerical
simulations shown in Fig. 10. At �driven/2�=2000 Hz, we
find from Eq. �22� zmax=1.2 mm. When the duty cycle as
used in our experiment is taken into account, we find zmax
=0.9 mm. This is the maximum extent of the packet and can
therefore not be compared directly to the FWHM plotted in
Fig. 10. From numerical simulation we find zmax=0.8 mm.

We can determine the velocity distribution of the trapped
molecules by measuring how rapidly the cloud expands after
the trap has been switched off. In Fig. 11 the spatial distri-
butions of 15ND3 molecules in high-field-seeking states are
shown after an expansion time that is indicated in the figure.
The molecules are released after 79 cycles of the applied
field with �driven/2�=1100 Hz and duty cycle�45%. The

bold line shows the result of a Gaussian fit to the distribu-
tion. Similar measurements were taken for molecules re-
leased after 791

4 , 791
2 , and 793

4 cycles.
In Fig. 12 the FWHM that result from a Gaussian fit to the

spatial distribution are shown as a function of the time after
the molecules have been released from the trap. The trap is
switched off after 79 ���, 791

4 �+�, 791
2 ���, or 793

4 ���
cycles of the applied field with �driven/2�=1100 Hz and
duty cycle�45%. These times correspond to those shown as
the vertical lines in Fig. 4. As expected, if we release the
molecules after 79 cycles of the applied field—when the field
is focusing along �—the cloud starts off small, but expands
rapidly. If we release the molecules after 791

2 cycles of the
applied field—when the field is focusing along z—the clouds
starts off larger but expands less rapidly. After 791

4 and 793
4

cycles of the applied field the phase-space distribution is
tilted with respect to the position and velocity axes. In both
cases the velocity spread is larger than the velocity spread
after 79 cycles of the applied field as is apparent from Fig. 4.
Interestingly, after 793

4 cycles the phase-space distribution is
tilted such that all molecules have a velocity toward the cen-
ter of the trap along the z axis of the trap. Therefore, at first
the width along z becomes smaller and comes to a minimum
about 250 �s after the trap is switched off.

If we assume the velocity distribution to be Gaussian, the
cloud expands as

FIG. 11. Spatial distributions of 15ND3 molecules in high-field-
seeking states after having expanded for a time indicated in the
figure. The molecules are released from the trap after 79 cycles of
the applied field with �driven/2�=1100 Hz and duty cycle�45%.
The bold line shows the result of a Gaussian fit to the distribution.
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�z�t� = �
„�z�t = 0�…2 + ��vzt�2 �23�

with �z�t=0� the initial spatial distribution of the trapped
molecules and �vz the velocity distribution. The bold curves
show the fitted formula to the data. The fitted values for the
velocity spread and the initial position spread are given in
the figure. As the area of the phase-space distribution stays
constant we expect �z�t=0� times �vz to be a constant. In
actual effect, we find that the measured areas differ by more
than 50%. Note that the determined velocity spread after 79
cycles of the applied field is more precise than the one mea-
sured after 791

2 cycles. After 79 cycles the cloud expands
rapidly along z and much more slowly along the � direction.
Therefore, the signal integrated over z stays nearly constant.
After 791

2 cycles the cloud expands rapidly along � and
much more slowly along the z direction. The signal inte-
grated over z, therefore, drops rather quickly.

Figure 13 shows the density at the center of the trap as a
function of time for molecules in low-field-seeking �upper
curve� and high-field-seeking states �lower curve�. The bold
lines through the data show an exponential fit. Molecules are
seen to escape the trap with a 1/e time of 0.17 s for low-field
seekers and 0.18 s for high-field seekers. Within the error
bars these lifetimes are equal to one another and to the 0.17 s

found in earlier experiments performed in the same setup on
molecules in low-field seeking states trapped in a static trap
�40�. We therefore conclude that the dominant loss channel is
due to collisions with background atoms in the relatively
poor �P=5�10−8 torr� vacuum.

At early times immediately after the trap is switched on,
the density at the center of the trap shows some slight oscil-
lations. These are mainly due to molecules that do not re-
main trapped. In order to measure the trap frequency of the
molecules directly, we have tried to make these oscillations
more pronounced by deliberately switching the trap on too
early, or by switching the trap off temporarily after having
been on for 80 ms. Although these attempts were unsuccess-
ful, we were able to verify that the trap frequency of the
molecules along z, �secular,z /2�, is equal to about 240 Hz,
when we apply a frequency �driven/2�=1100 Hz with a duty
cycle of 45%, as expected from our simulations.

In all experiments discussed so far, we switch instanta-
neously �within 200 ns� between the two different trap con-
figurations. Under some conditions the trap will still be
stable if we leave it off for a certain time before switching to
the next configuration. During this time the motion of the
molecules is x�t�=x�t0�+vx�t0��t− t0�, with x�t0� and vx�t0�
the initial position and velocity of the molecule, respectively.
So the transfer matrix is simply:

M�t�t0� = �1 t − t0

0 1
	 �O, free flight� . �24�

The transfer matrix during free flight is written as O. The
transfer matrix for a single cycle now becomes

F�Ton + Toff�
1
2Ton + Toff�O� 1

2Ton + Toff�
1
2Ton + 1

2Toff�D� 1
2Ton + 1

2Toff�
1
2Toff�O� 1

2Toff�0� .

FIG. 12. The FWHM that result from a Gaussian fit to the spa-
tial distribution as a function of the expansion time. The molecules
are released from the trap after 79 ���, 791

4 �+�, 791
2 ���, or

793
4 ��� cycles of the applied field with �driven/2�=1100 Hz and

duty cycle�45%. The bold curves show a square root formula fitted
to the data.

FIG. 13. Density of 15ND3 molecules in low-field-seeking �up-
per curve� and high-field-seeking states �lower curve� at the center
of the trap as a function of time. The bold lines show an exponential
fit to the data with 1/e=0.17 s �low-field seekers� and 1/e=0.18 s
�high-field seekers�.
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The stability for this arrangement can be determined as be-
fore. Figure 3 of �8� shows the stability diagram for an alter-
nate gradient decelerator. This can be translated to our situ-
ation by simply replacing �L and �S by �hexTon and
�hexToff, respectively.

Figure 14 shows the density at the center of the trap as a
function of Ton for a number of different values of Toff. The
measurements on the left are for molecules in low-field-
seeking states, the measurements on the right for molecules
in high-field-seeking states. As before, the duty cycle is ad-
justed such that the phase advance along z is equal to the
phase advance along �. The measurements taken with Toff
=0 are identical to those shown in Fig. 7 but now plotted as
function of 2� /�driven. When Toff is increased, the maximum
of the curves shifts to smaller values of Ton. Interestingly, the
maximum density drops only slightly for higher values of
Toff. When the fields are switched off for 500 �s, the maxi-
mum density is obtained for Ton=500 �s, i.e., the fields are
applied only half of the time. With these settings, the density
at the center of the trap is decreased by less than 20% com-
pared to the situation that the fields are applied all the time.

VII. SUMMARY AND CONCLUSIONS

In this paper, we have experimentally demonstrated trap-
ping of molecules in both high-field-seeking and low-field-
seeking states in a cylindrically symmetric electric ac trap.

We have measured the spatial profile of the trapped cloud
immediately after release and after a variable expansion
time. We have compared these measurements to a simple
linear model and to numerical simulations taking into ac-
count the true force on the molecules. By changing the duty
cycle of the square wave voltage that is applied to the trap,
the trapping frequencies along z and � can be chosen to be
the same. At 1100 Hz and a duty cycle of 45% the trapping
frequency is around 240 Hz. With these settings we find the
FWHM to be �z=1.3 mm, �vz=1.3 m/s �T=0.8 mK� and
�z=0.63 mm, �vz=1.8 m/s �T=1.5 mK� when the fields
are focusing along z and �, respectively. From numerical
simulations, we find the phase-space volume that can be con-
fined by the trap �the acceptance� to be 270 mm3�m/s�3, cor-
responding to a trap depth of about 5 mK and a trap volume
of about 20 mm2. The phase-space volume �the emittance� of
the Stark decelerated molecular beam used to load the trap is
about five times larger than the acceptance of the trap �39�.
Therefore, we expect to homogeneously fill the acceptance
of the trap, which is consistent with our measurements.

We find—both from simulation and from measure-
ments—that the acceptance is limited by the nonlinearities of
the forces. Due to these nonlinearities the maximum position
spread of the packet scales as 1 /�driven

3 , and consequently,
the acceptance scales as 1 /�driven

9 rather than the expected
1/�driven

3 if the forces would be perfectly linear. This has
important consequences for the possibility of using
evaporative—and to a lesser extent—sympathetic cooling in
ac traps. When collisions between trapped molecules occur,
energy that is stored in the micro motion can be transferred
into secular motion. This process is called “viscous” heating.
Viscous heating competes with the “good” consequences of
collisions—thermalization and evaporation of the hottest
molecules over the trap barrier leading to cooling. As the
amount of viscous heating scales as ��secular /�driven�2, evapo-
rative cooling is more likely to work at higher frequencies
�22,42�.

In minimizing nonlinearities, we are constrained by the
need to reverse the focusing and defocusing directions by
adjusting the voltages only. When the shape of the electrodes
is modified to improve the linearity of the focusing force in
one configuration, the linearity of the other configuration is
deteriorated. It was argued in Sec. IV that the cylindrical
hexapole geometry used in our experiments has in fact the
optimal shape. Other possible electrode geometries suffer
from the same problem. Using the experimentally validated
program used for the cylindrical trap, we have also calcu-
lated the acceptance for the linear and three-phase ac trap
presented in Sec. III and found them to be comparable.

Besides the acceptance and strength of confinement, there
are other important criteria to choose a specific ac trap. The
main advantage of the cylindrical trap over the other two
traps is that at the center the electric field has a �controllable�
constant direction and magnitude. This may be important for
collision studies and experiments aimed at detecting the per-
manent electric dipole moment of the electron. Moreover,
this may be needed for avoiding Majorana transitions in-
duced by the varying electric field. As demonstrated in this
paper the electric fields of the trap can also be repeatedly

FIG. 14. Density of 15ND3 molecules in low-field-seeking �left
column� and high-field-seeking states �right column� at the center of
the trap as function of the time that the focusing and defocusing
fields are on for a number of different values for which the fields are
off.
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switched off—or switched to a variable homogeneous elec-
tric field—for as long as half a millisecond without signifi-
cantly decreasing the trap depth. The cylindrical and three-
phase trap can be used for ac trapping molecules in both
high-field-seeking and low-field-seeking states. Furthermore,
by applying the appropriate voltages, the cylindrical sym-
metric trap can be used for trapping molecules in low-field-
seeking states in a static quadrupole or hexapole potential
�40�, and the three-phase trap can be used for trapping mol-
ecules in low-field-seeking states in a Ioffe-Pritchard trap
�43,44�. The main advantages of the linear and, to a lesser
extent, the three-phase trap are that they are conveniently
loaded from a Stark decelerator �25�, and are very accessible
for laser beams to detect and manipulate the trapped mol-
ecules.

It is useful to compare the ac traps with other traps for
neutral molecules that have been demonstrated. Traps using
inhomogeneous static electric and magnetic fields are easily
1 K deep and typically have a trap volume of 1 cm3 �1–4�.

These traps can only be used to trap molecules in low-field-
seeking states. Alhough it is impossible to create a field
maximum using static electric or magnetic field, this does
not apply to optical �45� or microwave fields �46�. Molecules
in high-field-seeking states have been trapped in the focus of
a CO2 laser beam �5�. The light traps thus far demonstrated
have typically a trap depth of a few hundred �K and a vol-
ume of 10−5 cm3. Our ac electric trap demonstrated here can
be used to trap molecules in both low-field- and high-field-
seeking states and has a trap depth of about 5 mK and a trap
volume of about 20 mm3.
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