
Natural Language Generation From Ontologies
Using Grammatical Framework

Van Duc Nguyen
Computer Science Department
New Mexico State University, USA
vnguyen@cs.nmsu.edu

Abstract
The paper addresses the problem of automatic generation of natural language descriptions for
ontology-described artifacts. The motivation for the work is the challenge of providing textual
descriptions of automatically generated scientific workflows (e.g., paragraphs that scientists can
include in their publications). The extended abstract presents a system which generates descrip-
tions of sets of atoms derived from a collection of ontologies. The system, called nlgPhylogeny,
demonstrates the feasibility of the task in the Phylotastic project, that aims at providing evol-
utionary biologists with a platform for automatic generation of phylogenetic trees given some
suitable inputs. nlgPhylogeny utilizes the fact that the Grammatical Framework (GF) is suit-
able for the natural language generation (NLG) task; the abstract shows how elements of the
ontologies in Phylotastic, such as web services, inputs and outputs of web services, can be encoded
in GF for the NLG task.

2012 ACM Subject Classification Computing methodologies → Logic programming and answer
set programming, Information systems → Web services, Computing methodologies → Natural
language generation

Keywords and phrases Phylotastic, Grammatical Framework

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.22

1 Introduction

In many applications whose users are not proficient in computer programming, it is of the
utmost important to be able to communicate the results of a computation to the users in an
easily understandable way (e.g., text rather than a complex data structure). The problem
of generating natural language explanations has been explored in several research efforts.
For example, the problem has been studied in the context of question-answering systems1,
providing recommendations2, etc. With the proliferation of spoken dialogue systems and
conversational agents on mobile robots, phones, etc., verbal interfaces such as Amazon
Echo and Google Home for human-robot-interaction, and the availability of text-to-speech
programs such as the TTSReader Extension3, the application arena of systems capable of
generating natural language representation will just become larger.

In this paper, we describe a system called nlgPhylogenyfor generating natural language
descriptions of collections of atoms derived from a set of ontologies. The system is powered
by Grammatical Framework.

1 http://coherentknowledge.com
2 http://gem.med.yale.edu/ergo/default.htm
3 https://ttsreader.com

© Van D. Nguyen;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 22; pp. 22:1–22:7

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/161824684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:vnguyen@cs.nmsu.edu
https://doi.org/10.4230/OASIcs.ICLP.2018.22
http://coherentknowledge.com
http://gem.med.yale.edu/ergo/default.htm
https://ttsreader.com
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de


22:2 Natural Language Generation From Ontologies Using Grammatical Framework

Ontology Linearization Pre-defined 
Conjunctive

Pre-defined 
Vocabulary

GF GeneratorAdapter

Portable 
grammar 

format

Sentence 
Model

English concrete 
syntax

Abstract 
syntax

Workflow Atoms English 
Description

GF Runtime API

Sentence generator

Figure 1 Overview of nlgPhylogeny.

2 Methodology

In this section, we describe the nlgPhylogeny system. Figure 1 shows the overall architecture
of nlgPhylogeny. The main component of the system is the GF generator whose inputs are
the ontology and the elements necessary for the NLG task (i.e., the set of linearizations,
the set of pre-define conjunctives, the set of vocabularies, and the set of sentence models)
and whose output is a GF program, i.e., a pair of GF abstract and concrete syntax. This
GF program is used for generating the descriptions of workflows via the GF runtime API.
The adapter provides the GF generator with the information from the ontology, such as the
classes, instances, and relations.

2.1 Web Service Ontology (WSO)
Phylotastic uses web service composition to generate workflows for the extraction/con-
struction of phylogenetic trees. It makes use of two ontologies: WSO and PO. WSO
encodes information about registered web services and their abstract classes. In the fol-
lowing discussion, we refer to a simplified version of the ASP encoding of the ontologies
used in [3], to facilitate readability. In WSO, a service has a name and is associated
with a list of inputs and a list of outputs. For example, the service which is named
in ontology phylotastic_FindScientificNamesFromWeb_GET is an instance of the class
names_extraction_web. The data that phylotastic_FindScientificNamesFromWeb_GET
uses and produces are encoded by the following 3 atoms:

instance_operation_has_input_has_data_format(
phylotastic_FindScientificNamesFromWeb_GET,
resource_WebURL,
url_format).

instance_operation_has_output_has_data_format(
phylotastic_FindScientificNamesFromWeb_GET,
resource_SetOfSciName,
scientific_names_format).

instance_operation_has_output_has_data_format(



V.D. Nguyen 22:3

phylotastic_FindScientificNamesFromWeb_GET,
resource_SetOfNames,
list_of_strings).

In regard the above atoms, the first argument is the name of the service, the second argument
is the service input or output, and the last argument is the data type of the second argument.

The web service ontology of the Phylotastic project is exported to an ASP program (from
its original OWL encoding) and an inference engine is provided for reasoning about classes,
inheritance, etc. nlgPhylogeny employs this engine in identifying information related to the
set of atoms whose description is requested by a user (e.g., What are the inputs of a service?
What is the data type of an input x of a service y?).

2.2 GF generator

Each Phylotastic workflow is an acyclic directed graph, where the nodes are web services,
each consumes some resources (inputs) and produces some resources (outputs). An example
of the specification of workflow is as follows.4

occur_concrete(phylotastic_ExtractSpeciesNames_From_Gene_Tree_GET,1)
occur_concrete(phylotastic_ResolvedScientificNames_OT_TNRS_GET,3)
occur_concrete(phylotastic_GenerateGeneTree_From_Genes,0)
occur_concrete(phylotastic_GeneTree_Scaling,2)

This set of atoms is a partial description of the result of a web service composition process,
as described in [3]. Intuitively, this set of atoms represents a plan consisting of 4 steps. At
each step, a concrete instance of the service class named by the first argument of the atom
occur_concrete/2 is executed.

To generate the description of a workflow, we employ the framework described in [4].
This framework consists of three major processing phases: (1) document planning (content
determination), (2) microplanning, and (3) surface realization. The document planning
phase is used to determine the structure of the text to be generated. Based on the structure
determined in the document planning phase, the microplanner makes lexical/syntactic choices
to generate the content of the sentences, and the realization phase generates the actual
sentences. In our work, we combine the microplanning and surface realization phase into a
single phase due to the nature of the grammar definition and the capability of GF in sentence
generation.

In the document planning step, we create – for each occurrence atom – a sentence which
specifies the input(s) and output(s) of the service mentioned in the first argument of the
atom. Optionally, to describe the service in more details, one or two more sentences about
datatype of the service’s inputs or outputs can be included. As we have mentioned in the
previous subsection, the information about the inputs, outputs, and data types of the inputs
and outputs of a service can be obtained via the ASP reasoning engine of the Phylotastic
system. In general, we identify the following document planning structure:

4 For simplicity, we use examples which are linear sequences of services.

ICLP 2018



22:4 Natural Language Generation From Ontologies Using Grammatical Framework

relation: IDENTITY
argument_1: instance or class in ontology
argument_2: list of service inputs
argument_3: list of service outputs

(optional)
relation: IDENTITY

argument_1: name of input or output of service
argument_2: data type of argument_1

(optional)
relation: IDENTITY
argument: actual data involved in the workflow

The document planning phase determines three messages for the sentence generation phase.
In the microplanning step, we focus on developing a GF generator that can produce a

portable grammar format (pgf) file [1]. This file is able to encode and generate 3 types of
sentences as mentioned above. The GF generator (see Fig. 1) accepts two flows of input data:
The first one is the flow of data from the ontology which is maintained by an adapter. The
adapter is the glue code that connects the ontology to the GF generator. Its main function is
to extract classes and properties from the ontology. The second one is the flow of data from
predefined resources that cannot be automatically obtained from the ontology – instead they
require manual effort from both ontology experts and linguistic developers:

A list of linearizations; these are essentially the translations of names of ontology entities
into linguistic terms. This translation is performed by experts who have knowledge of
the ontology domain. An important reason for the existence of this component is that
some classes or terms used in the ontology might not be directly understandable by the
end user. This may be the result of very specialized strings used in the encoding of
the ontology by the ontology engineer (e.g., abbreviations), or the use of URIs for the
representation of certain concepts. For example, the class phylotastic_OTResolvedNames
can be meaningfully linearized to OpenTree Name Resolution service.
Some model sentences which are principally Grammatical Framework syntax trees with
meta-information. The meta-information denotes which part of syntax tree can be
replaced by some vocabulary or linearization. As indicated above, we decided that each
occurrence atom of a workflow will be described by at most three sentences. For example,
in regards to the first message in the document planning structure, the generated sentence
will have the inputs and the outputs of a service; the second message indicates a sentence
about the data type of its first argument (input or output); the third message is about
the actual data used during the execution of the workflow. However, the messages do not
specify how many inputs and outputs should be included in the generated sentence. The
structure of the sentence representing a service that requires one input and one output is
different from the structure of sentence representing that a service that does not require
any inputs. These variations in sentences are recorded in the model sentence component.
An example of a model sentence, for the case of a service that has a single input is as
follows:
{
"s": "mkS (mkCl subject_in p_in_1);",
"placeholder": {
"subject_in": ["input of subject", "subject’s input"]
}
}



V.D. Nguyen 22:5

A list of pre-defined vocabularies which are domain-specific for the ontology. A pre-defined
vocabulary is different from linearizations, in the sense that some lexicon may not be
present in the ontology but might be needed in the sentence construction; the predefined
vocabulary is also useful to bring variety in word choices when parts of a model sentence
are replaced by the GF generator.
A configuration of pre-defined conjunctives which depend on the document planning
result. Basically, this configuration defines which sentences accept a conjunctive adverb
in order to provide generated text transition and smoothness.

To encode sentences, the GF generator defines 3 categories: Input, Output and Format in
the abstract syntax.

abstract Phylo = {
flags startcat = Message;
cat
Message; Input; Output; Format;
...

}

and the corresponding English concrete syntax:

concrete PhyloEng of Phylo = open
SyntaxEng, ParadigmsEng, ConstructorsEng in {
lincat
Message = S; Input = NP; Output = NP; Format = NP;
...

}

SyntaxEng, ParadigmsEng, ConstructorsEng are GF Resources Grammar libraries which
provide some constructors for sentence components like Verb, Noun Phrase, etc.. in English.

The GF generator obtains information about the services (e.g., how many inputs/outputs
has the service? what are the data types of the inputs/outputs? etc.) by querying the
ontology (via the adapter). Each service will be mapped to several functions in GF:

A function which encodes the meaning of the sentence used for describing the service.
The GF generator will prefix the name of the service with f_ to create this kind of
function name.
A function which encodes the meaning of each input. The GF generator will prefix the
name of the input with i_.
A function which encodes the meaning of each output. The GF generator will prefix the
name of the output with o_.

Based on the number of inputs and outputs of a service, the GF generator determines how
many parameters will be included in the GF abstraction function corresponding to the service.
Furthermore, for each input or output of a service, the GF generator includes an Input or
Output in the GF abstract function. As an example, the result of the encoding of the atom

occur_concrete(phylotastic_FindScientificNamesFromWeb_GET,1)

in the GF abstract syntax is

ICLP 2018



22:6 Natural Language Generation From Ontologies Using Grammatical Framework

f_phylotastic_FindScientificNamesFromWeb_GET: Input -> Output -> Message;
i_resource_WebURL : Input;
o_resource_SetOfNames : Output;

Next, the GF generator looks up in the sentence models a model syntax tree whose structure
is suitable for the number of inputs and outputs of the service. If such syntax tree exists,
the GF generator will replace parts of the syntax tree with the GF service input and output
functions, to create a new GF syntax tree which can be appended in the GF concrete
function. The functions in the abstract syntax corresponds to the following functions in the
GF concrete syntax:

f_phylotastic_FindScientificNamesFromWeb_GET i_resource_WebURL
o_resource_SetOfNames =
mkS and_Conj
(mkS (mkCl phylotastic_FindScienticNamesFromWeb_GET_in
(mkV2 "require")
i_resource_WebURL))
(mkS (mkCl phylotastic_FindScienticNamesFromWeb_GET_out
(mkV2 "return" )
o_resource_SetOfSciName ));

i_resource_WebURL = mkNP(mkCN (mkN "webURL"));
i_resource_SetOfNames = mkNP(mkCN (mkN "asetof names"));

The above functions consist of several syntactic construction functions which are implemented
in the GF Resources Grammar library:

mkN which creates a noun from a string;
mkCN which creates a common noun from a noun;
mkNP which creates a noun phrase from a common noun;
mkV2 which creates a verb from a string;
mkCl which creates a clause. Clause can be constructed from sequence of a noun phrase,
a verb and another noun phrase (NP V2 NP);
mkS which creates a sentence. Sentence can be constructed from a clause (Cl) or from 2
other sentences and a conjunction word (and_Conj S S).

From the abstract and concrete syntax built by GF generator, the atom
occur_concrete(phylotastic_FindScientificNamesFromWeb_GET,1) is translated into the sen-
tence
The input of phylotastic_FindScientificNamesFromWeb_GET is a web link and its outputs
are a set of species names and a set of scientific names.
We use the same technique to encode the other types of sentences indicated by the document
planning structure.

3 Discussion and future works

To the best of our knowledge, we found the work in [2] that reports on generating natural
language text from class diagrams highly related to what we are doing. In [2], authors
developed a system to generate specifications for UML class design. The difference between
our work and [2] is the design of the system to employ automation on text generation for a
given ontology under some assumptions.



V.D. Nguyen 22:7

From our case study we have identified two directions of future work that we find interesting.
The first direction is to generate descriptions from annotations in ontology. We observe
that the annotations play an vital role in ontology development in the sense of recording
notes and explanations about concepts. Ontology developers usually use annotations to
define the concepts and to describe relations between the concepts in the ontology, so that
they employ reusablitity of the ontology. It is possible to apply natural language processing
techniques to extract information from the annotation and tie that information with which
concept or relation the annotation describes to re-generate text when needed. We believe
that extracting and re-generating process is useful for query-answer system and information
retrieval system since the process reduces the effort of system developers to create a module
to explain the result of query.
The second direction is to make more use of the Grammatical Framework. We also want
to make more of GF’s capacity for several concrete languages to share the same abstract
syntax. In other words, given an annotated ontology, we would like to generate explanations
in multiple languages for a query.

References
1 Krasimir Angelov, Björn Bringert, and Aarne Ranta. PGF: A Portable Run-time Format

for Type-theoretical Grammars. Journal of Logic, Language and Information, 19:201–228,
2010.

2 Hakan Burden and Rogardt Heldal. Natural Language Generation from Class Diagrams. In
Proceedings of the 8th International Workshop on Model-Driven Engineering, Verification
and Validation (MoDeVVa 2011), Wellington, New Zealand, ACM, 2011.

3 Thanh H. Nguyen, Tran Cao Son, and Enrico Pontelli. Automatic Web Services Compos-
ition for Phylotastic. In Practical Aspects of Declarative Languages - 20th International
Symposium, pages 186–202, 2018. doi:10.1007/978-3-319-73305-0_13.

4 Ehud Reiter and Robert Dale. Building natural language generation systems. Cambridge
university press, 2000.

ICLP 2018

http://dx.doi.org/10.1007/978-3-319-73305-0_13

	Introduction
	Methodology
	Web Service Ontology (WSO)
	GF generator

	Discussion and future works

