
Explaining Actual Causation via Reasoning About
Actions and Change
Emily C. LeBlanc
College of Computing and Informatics
Drexel University
Philadelphia, PA
leblanc@drexel.edu

Abstract
In causality, an actual cause is often defined as an event responsible for bringing about a given
outcome in a scenario. In practice, however, identifying this event alone is not always sufficient
to provide a satisfactory explanation of how the outcome came to be. In this paper, we motivate
this claim using well-known examples and present a novel framework for reasoning more deeply
about actual causation. The framework reasons over a scenario and domain knowledge to identify
additional events that helped to “set the stage” for the outcome. By leveraging techniques from
Reasoning about Actions and Change, the approach supports reasoning over domains in which
the evolution of the state of the world over time plays a critical role and enables one to identify
and explain the circumstances that led to an outcome of interest. We utilize action language
AL for defining the constructs of the framework. This language lends itself quite naturally to an
automated translation to Answer Set Programming, using which, reasoning tasks of considerable
complexity can be specified and executed. We speculate that a similar approach can also lead to
the development of algorithms for our framework.

2012 ACM Subject Classification Computing methodologies → Knowledge representation and
reasoning, Computing methodologies → Causal reasoning and diagnostics, Computing methodo-
logies → Temporal reasoning

Keywords and phrases Actual Cause, Explanation, Reasoning about Actions and Change, Action
Language, Answer Set Programming, Knowledge Representation and Reasoning

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.16

1 Introduction and Problem Description

The comprehensive goal of this research has been to design, evaluate, and implement a novel
causal reasoning framework to discover causal explanations that are in closer agreement
with what common sense might lead one to conclude. Identifying actual causation concerns
determining how a specified consequence came to be in a given scenario and has long been
studied in a diversity of fields, including law, philosophy, and, more recently, computer science.
Also referred to as causation in fact, actual causation is a broad term that encompasses all
possible antecedents that have played a meaningful role in producing the consequence [5].
Consider the well-known Yale Shooting problem [16]:

Shooting a turkey with a loaded gun will kill it. Suzy loads the gun and then shoots
the turkey. Why is the turkey dead?

Intuition tells us that Suzy’s shooting of the turkey is the actual cause of its death. However,
if we know for certain that the gun was not loaded at the start of the story, then it is also
important to recognize that Suzy’s loading the gun played a key role in producing this
consequence. On the other hand, if the gun was loaded from the start, then this point may

© Emily C. LeBlanc;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 16; pp. 16:1–16:11

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/161824678?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:leblanc@drexel.edu
https://doi.org/10.4230/OASIcs.ICLP.2018.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

16:2 Explaining Actual Causation

not be as significant. Moreover, if we build upon this example to say that Tommy handed
Suzy the gun at the start of the scenario, then surely we want to identify Tommy’s action as
a contributory cause of the turkey’s death. Hall [11] gives another classic example of actual
causation in which two actors have each thrown a rock at a bottle and we wish to determine
which actor’s throw caused the bottle to break. It is easy to imagine similar extensions to the
example that require deeper reasoning about causation to properly explain how the bottle
broke – for example, did a third actor instruct the original two to throw their rocks in the first
place? Literature examples aside, sophisticated actual causal reasoning has been prevalent in
human society and continues to have an undeniable impact on the advancement of science,
technology, medicine, and other important fields. From the development of ancient tools to
modern root cause analysis in business and industry, reasoning about causal influence in a
historical sequence of events enables us to diagnose the cause of an outcome of interest and
gives us insight into how to bring about, or even prevent, similar outcomes in future scenarios.
Consider problems such as explaining the occurrence of a set of suspicious observations in a
monitoring system, reasoning about the efficiency actions taken in an emergency evacuation
scenario, or verifying how an automatically generated workflow produces the expected results.
It is easy to imagine that in cases such as these, determining surface-level causation (e.g.,
Suzy shot the turkey) may not be sufficient to provide a satisfactory explanation of how an
outcome of interest to be.

In this dissertation work, we claim that reasoning about actual causation in complex
scenarios requires the ability to identify more than the existence of a causal relationship.
We may want a deeper understanding of the causal mechanism – was the outcome caused
directly or indirectly? Did previously occurring events somehow support the causing event or
the outcome’s ability to be caused? To this end, the overall goal of the dissertation work is to
investigate and demonstrate the suitability of action language and answer set programming
to design and realize a novel approach to automated reasoning about actual causation as
described above. The framework leverages techniques from Reasoning about Actions and
Change (RAC) to support reasoning over domains that change over time in response to a
sequence of events, as well as to answer queries for detailed causal explanations of an outcome
of interest in a specific scenario. The language of choice for the formalization of knowledge
is action language AL [2] which enables us to represent our knowledge of the direct and
indirect effects of actions in a domain.

In the remainder of this summary, we present background on the action language AL
and its semantics, provide an overview of the framework and its behavior on a novel actual
causation scenario, survey existing literature, and finally discuss open issues and expected
achievements for the dissertation.

2 Preliminaries

As we have already described, this work leverages techniques from Reasoning about Actions
and Change [20] to support reasoning over domains that change over time. We assume that
knowledge of a domain exists as a set of causal laws called an action description describing
direct and indirect effects of actions using the action language AL [2]. These causal laws
embody a transition diagram describing all possible world states of the domain and the
events that trigger transitions between them. In the thesis investigation, we assume the
existence of knowledge in this form, and while the work describes the formalization of the
domain descriptions, the matter of the origin of knowledge is beyond the scope of the thesis.

E. C. LeBlanc 16:3

The syntax of AL builds upon an alphabet consisting of a set F of symbols for fluents and
a set E of symbols for events1. The AL is centered around a discrete-state-based representation
of the evolution of the domain.

Fluents are boolean properties of the domain whose truth value may change over time. A
(fluent) literal is a fluent f or its negation ¬f . Additionally, we define f = ¬f and ¬f = f .
A statement of the form

e causes l0 if l1, l2, . . . , ln (1)

is called dynamic causal law, and intuitively states that, if event e in E occurs in a state in
which literals l1, . . . , ln hold, then l0, the consequence of the law, will hold in the next state.
A statement

l0 if l1, . . . , ln (2)

is called state constraint and says that, in any state in which l1, . . . , ln hold, l0 also holds.
This second kind of statement allows for an elegant and concise representation of indirect
effects, which increases the flexibility of the language. Finally, an executability condition is a
statement of the form:

e impossible_if l1, . . . , ln (3)

where e and l1, . . . , ln are as above. (3) states that e cannot occur if l1, . . . , ln hold. A set of
statements of AL is called an action description. The semantics of an action description AD
is defined by its transition diagram τ(AD), a directed graph 〈N,E〉 such that:
1. N is the collection of all states of AD;
2. E is the set of all triples 〈σ, e, σ′〉 where σ, σ′ are states, e is an event executable in σ,

and σ, e, σ′ satisfy the successor state equation [17]:

σ′ = CnZ(E(e, σ) ∪ (σ ∩ σ′)) (4)

where Z is the set of all state constraints of AD.

The argument of CnZ in (4) is the union of the set of direct effects E(e, σ) of e, with the
set σ∩σ′ of the facts “preserved by inertia”. The application of CnZ adds the “indirect effects”
to this union. A triple 〈σ, e, σ′〉 ∈ E is called a transition of τ(AD) and σ′ is a successor
state of σ (under e). A sequence 〈σ1, α1, σ2, . . . , αk, σk+1〉 is a path of τ(D) of length k if
every 〈σi, αi, σi+1〉 is a transition in τ(D). We refer to state σ1 of a path p as the initial
state of p. A path of length 0 contains only an initial state. In the next section, we build
upon this formalization to define a query to our framework for representing and reasoning
about actual cause.

3 Framework Overview and Foundational Example

In this section, we provide an overview of the causal reasoning framework alongside a novel
foundational example that showcases the reasoning capabilities and explanatory power of
the framework. It is a straightforward scenario in which an outcome of interest, say θE , is
not satisfied at the start of the scenario. After the occurrence of three events, say e1, e2,

1 For convenience and compatibility with the terminology from RAC, in this paper we use action and
event as synonyms.

ICLP 2018

16:4 Explaining Actual Causation

and e3, the outcome has been caused. Given the outcome of interest, the sequence of events,
and knowledge of the domain in which they have occurred, our framework identifies causal
explanations for how θE may have come to be. In order to explain actual causation, we will
aim to characterize transition events which tell us the primary cause of an outcome and
whether or not it was caused directly or indirectly, as well as outcome and supporting events
which tell us which prior occurring events have contributed to causing the outcome.

Query
A query consists of an action description, a sequence of events, and the outcome of interest.
The sequence of three scenario events and the outcome of interest for our example are
represented by vE = 〈e1, e2, e3〉, and θE = {A,B,C,D,E, F}, respectively. The following
action description ADE characterizes events in the scenario’s domain:

e1 impossible_if A
e1 causes E if ¬ E
e2 causes D if ¬D
e3 causes A if ¬A
e3 causes C if ¬ C
e3 impossible_if ¬ E
e3 impossible_if ¬ F
B if C

(5)
(6)
(7)
(8)
(9)

(10)
(11)
(12)

Laws (5) and (6) describe event e1, telling us that e1 can only occur when A does not
hold and e1 will cause E if it does not already hold. Law (7) states that e2 will cause D to
hold if it does not already hold. Similar to causal laws (6) and (7), laws (8) and (9) tell us
that e3 will cause A and C to hold if they do not hold. The executability conditions (10) and
(11) state that e3 can only occur when both E and F hold. Finally, the state constraint (12)
tells us that B holds whenever C holds. Given the action description ADE , the sequence of
events vE , and the outcome of interest θE , the triple QE = 〈ADE , vE , θE〉 is the query for
our example. Next, we introduce the concept of a scenario path, a unique mapping of the
scenario described by a query to a representation of how the state of the world has changed
in response to the events.

Scenario Path
Scenario paths represent a unique unfolding of a scenario and provide a convenient represent-
ation of how the domain changes over time in response to the events of the scenario. We
reason over these paths to explain actual causation.

IDefinition 1. Given a queryQ = 〈AD, v, θ〉, a scenario path is a path ρ = 〈σ1, α1, σ2, ..., αk,

σk+1〉 of τ(AD) satisfying the following conditions:
1. ∀i, 1 ≤ i ≤ k, αi = ei
2. θ 6⊆ σ1
3. ∃i, 1 < i ≤ k + 1, θ ⊆ σi

Condition 1 requires that the events in ρ correspond to the events of v, capturing the
idea that each event of v represents a transition between states in ρ. Condition 2 requires
that the set of fluent literals θ is not satisfied by the initial state of ρ, ensuring that the

E. C. LeBlanc 16:5

Table 1 Tabular representation of the scenario path ρE ∈ P (QE).

State Event State Affecting Law(s)
σ1 = {¬A,¬B,¬C,¬D,¬ E, F} α1 = e1 e1 causes E if ¬E
σ2 = {¬A,¬B,¬C,¬D, E, F} α2 = e2 e2 causes D if ¬D
σ3 = {¬A,¬B,¬C, D, E, F} α3 = e3 e3 causes A if ¬A, e3 causes C if ¬C, B if C
σ4 = {A, B, C, D, E, F} – –

outcome has not already been caused prior to the known events of the story. Condition 3
requires that θ is satisfied in at least one state after the initial state in ρ. Conditions 2 and 3
together ensure that at least one event is responsible for causing θ to hold in ρ. The successor
state equation (4) tells us some event in the scenario path must have directly or indirectly
caused θ to be satisfied at some point after the initial state. The set of all scenario paths
with respect to the query Q is denoted by P (Q) = {ρ1, ρ2, . . . , ρm}.

It is clear that there are multiple valid scenario paths in the set P (QE), each representing
a valid evolution of state in response to the scenario’s events in the domain given by ADE .
For the purposes of this discussion, we choose a path with a complex causal mechanism that
will exercise the causal reasoning framework. We will refer to this path as ρE . Table 1 shows
the evolution of state in ρE in response to the events of vE . The first column lists each state
σi of ρE , and the second column gives the event αi that caused a transition to the state
σi+1. It is easy to see that ρE satisfies the conditions of Definition 1 with respect to ADE ,
vE , and θE .

Transition Event
A transition event is an event in a scenario path that causes a transition from a state of the
world where the outcome θ is not satisfied to a state of the world where θ is satisfied. In this
section, we identify transition events and their direct and indirect effects on the outcome.

I Definition 2. Given a scenario path ρ = 〈σ1, α1, σ2, . . . , αk, σk+1〉 and an outcome θ, event
αj , where 1 ≤ j ≤ k, is a transition event of θ in ρ if the following conditions are satisfied by
the transition 〈σj , αj , σj+1〉 of ρ:
1. θ 6⊆ σj
2. θ ⊆ σj+1

Intuitively, event αj is a transition event of outcome θ if the outcome was not satisfied
when αj occurred but was satisfied after its occurrence. Note that we have defined transition
events in such a way that there can be multiple transition events for θ in ρ. Using Table 1, it
is straightforward to verify that event e3 is the only transition event of θE in the example
scenario path ρE , clearly satisfying Conditions 1 and 2 of Definition 2.

Given a query Q = 〈AD, v, θ〉, a scenario path ρ = 〈σ1, α1, σ1, . . . , αk, αk+1〉 in P (Q),
and a transition event αj for θ, the set of direct effects of αj in θ is dθ(αj , ρ) = θ∩E(αj , σj).
Recall that E(αj , σj) is the set of all direct effects of event αj given that it occurs in state
σj . The set of all direct effects of e3 with respect to σ3, then, is E(e3, σ3) = {A,C}, in
accordance with laws (8) and (9) in ADE . The direct effects of e3 in θE , then, is given by
dθE

(e3, ρE) = θE ∩ E(e3, σ3) = {A,B,C,D,E, F} ∩ {A,C} = {A,C}.
To determine the indirect effects of an event with respect to the outcome, first let

S = E(αj , σj) ∪ (σj ∩ σj+1) represent the set of all literals directly caused by the transition
event αj and those preserved by inertia. Given a query Q = 〈AD, v, θ〉, a scenario path

ICLP 2018

16:6 Explaining Actual Causation

ρ = 〈σ1, α1, σ1, . . . , αk, αk+1〉 in P (Q), and a transition event αj for θ, the set of indirect
effects of αj in θ is iθ(αj , ρ) = θ ∩ (σj+1 \ S). Given the set SE = E(e3, σ3) ∪ (σ3 ∩ σ4) =
{A,C} ∪ {D,E, F} = {A,C,D,E, F} representing the direct effects of e3 and the literals
preserved by inertia, the indirect effects of e3 in θE is

iθE
(e3, ρE) =θE ∩ (σ4 \ SE)

={A,B,C,D,E, F} ∩ ({A,B,C,D,E, F} \ {A,C,D,E, F})
={A,B,C,D,E, F} ∩ {B}
={B}

This result is intuitive because e3 directly caused C to hold by law (9) and we know from
law (12) that whenever C holds in a certain state, then B holds. We claim that under these
conditions, it must be the case the e3 caused B indirectly.

First Causal Explanation
Both the knowledge of the transition event and its effects on the outcome are represented
by the first causal explanation. Given the query QE = 〈ADE , vE , θE〉, the scenario path
ρE ∈ P (QE), the transition event e3 in ρE , and e3’s direct and indirect effects, dθE

(ρE , θE)
and iθE

(ρE , θE), respectively, the first causal explanation for θE in ρE is the tuple

C1
E = 〈ρE , e3, dθE

(ρE , θE), iθE
(ρE , θE)〉

= 〈ρE , e3, {A,C}, {B}〉

Explanation C1
E summarizes our initial findings – the event e3 caused a transition from a

state where the outcome {A,B,C,D,E, F} did not hold to a state where it did hold in the
scenario path ρE . Specifically, literals A and C were direct effects of e3’s occurrence while e3
caused B indirectly.

While C1
E tells us how the set of literals {A,B,C} of θE were made to hold in scenario

path ρE , we are still missing information about which, if any, events prior to e3 caused the
remaining literals {D,E, F} to hold in state σ4. We also do not know if any prior occurring
events influenced e3’s ability to be a transition event of θE . In this work, supporting events
are events that have occurred prior to a transition event αj that enable αj to be a transition
event for the outcome θ. We identify two types of supporting events, outcome supporting
event (OSEs) and transition supporting events (TSEs), both which are presented in the
following sections. In order to identify both OSEs and TSEs in a scenario path ρ, we must
first introduce the notion that an event αi ensures that a literal l will hold in a specified
state σj if it is the most recent transition event for l.

I Definition 3. Given a scenario path ρ = 〈σ1, α1, σ2, . . . , αk, αk+1〉, event αi is an ensuring
event of l ∈ σj in ρ if:
1. αi is a transition event of {l} in ρ
2. i < j

3. j − i is minimal

Condition 1 leverages Definition 2 to require that event αi responsible for l holding in
some state of ρ. Condition 2 requires that αi occurs before αj in ρ. Condition 3 requires
that αi is the most recent transition event of l in ρ. We claim that if no event ensures l ∈ σj
for a path ρ, this implies that l holds in every state of ρ because there exists no transition
〈σi, αi, σi+1〉 in the path such that l 6∈ σi. Therefore, l must have held in the initial state and

E. C. LeBlanc 16:7

was never changed by a subsequent event prior to αj ’s occurrence. Note that because ensuring
events are also transition events, it is straightforward to leverage the characterizations of
direct and indirect effects of transition events from Section 3 to learn if events ensured l in
some state σ due to its direct or indirect effects.

Outcome Supporting Events
In the case where αj does not set all of the literals of θ, OSEs can be responsible for ensuring
that these remaining literals hold by the time αj occurs in ρ. Finding OSEs requires first
identifying if any literals in θ were not set as an effect of the transition event αj . The set of
remaining literals of an outcome θ is given by Rθ = θ \ (dθ(αj , ρ) ∪ iθ(αj , ρ)). If |Rθ| > 0,
then a previously occurring event may have supported the outcome θ by ensuring that the
remaining literals held in state σj+1.

I Definition 4. Given a query Q, a factual path ρ ∈ P (Q), a transition event αj of θ, and a
literal l ∈ Rθ, αi is an outcome supporting event (OSE) via l if αi ensures l ∈ σj+1.

We denote by Osupp the set of OSEs and the literals they ensure. Formally, the tuple
〈αi, l〉 ∈ Osupp if αi is a OSE via l. We denote by Oinit the set of literals in Rθ that were
not ensured by an event in ρ. Given a literal l ∈ Rθ, l ∈ Oinit if:

¬∃〈α, l′〉 ∈ Osupp s.t. l′ = l

Intuitively, a literal l is in Oinit when l has is no outcome supporting event in Osupp. In
our example, we already know that we require additional causal information about the set of
remaining outcome literals D, E, and F . Formally, the following literals in the outcome θE
have not been explained by C1

E :

RθE
=θE \ (dθE

(e3, ρE) ∪ iθE
(e3, ρE))

={A,B,C,D,E, F} \ ({A,C} ∪ {B})
={A,B,C,D,E, F} \ {A,C,B}
={D,E, F}

Because |RθE
| > 0, there is more causal information to uncover. As covered in the earlier

discussion on ensuring events, each literal in RθE
must either be ensured to hold in state

σ4 by an outcome supporting event or the literal has held consistently from the start of the
scenario. Event e2 is an outcome supporting event because it ensures that literal D held in
σ4. This event meets the three conditions of ensuring D ∈ σ4. First, it is a transition event of
{D} because the literal D did not hold in state σ2 but it did hold in σ3 after e2’s occurrence.
It clearly satisfies Conditions 2 because here i = 2 and j = 4, and so i < j. Finally, it
satisfies Condition 3 because event ei is the most recent transition event of {D}, and so
j − i is minimal. Similarly, it is straightforward to verify that e1 is an outcome supporting
event by ensuring that E holds in state σ4. The set of outcome supporting events is given
by OsuppE = {〈e2, D〉, 〈e1, E〉}. Finally, the set OsuppE = {F} because there exists no tuple
〈α, F 〉 ∈ OsuppE , and so F must have held in the initial state of ρE and never changed value.

Second Causal Explanation

Knowledge of outcome supporting events and remaining outcome literals that held from the
start is represented by the second causal explanation. Given the query QE = 〈ADE , vE , θE〉,

ICLP 2018

16:8 Explaining Actual Causation

the scenario path ρE ∈ P (QE), and the transition event e3 for θE , the second causal
explanation for θE in ρE is

C2
E =〈OsuppE , OinitE 〉

=〈{〈e2, D〉, 〈e1, E〉}, {F}〉

Explanation C2
E provides us with information about how the remaining outcome literals

{D,E, F} ∈ θE came to hold in the state σ4. Of these remaining literals, D and E were
ensured by events e2 and e1, respectively. The remaining literal F held in the initial state
and was not ensured in σ4 by any event prior to e1.

C2
E tells us how the remaining outcome literals came to hold in σ4, but there is even

more causal information to be revealed in this example. Next, we discuss an approach to
determining if any other events in scenario path ρE contributed to e3’s ability to be a
transition event of θE .

Transition Supporting Events
TSEs ensure that the preconditions of αj are satisfied in state σj so that αj could occur and
cause θ to be satisfied in σj+1. The approach to identifying TSEs is conveniently similar to
identifying outcome supporting events, and so we will omit the majority of technical details
in favor of working out the example in the interest of space. To determine whether or not
any prior events supported the transition event e3, we begin by identifying all preconditions
for e3’s occurrence and its ability to produce its effects in ρE . We obtain αj ’s preconditions
in ρ by reasoning over the of laws in AD. In the dissertation work, we introduce notation to
allow reasoning over the components of laws in an action description AD. For example, given
a dynamic causal law λ in AD of form (1), let e(λ) = e, c(λ) = l0, and p(λ) = {l1, l2, . . . , ln}.
We denote by D(AD) the set of all dynamic causal laws in AD. We use a similar representation
for executability conditions, and we introduce a set of conditions under which preconditions
can be extracted from these laws. In our example, the literals ¬A and ¬C are in prec(e3, ρE)
because of laws (8) and (9) in the action description ADE . By our definition of precondition,
the literals E and F are also in prec(e3, ρE) because of laws (10) and (11) in ADE . Therefore,
the set of preconditions of e3 in ρE is prec(e3, ρE) = {¬A,¬C,E, F}.

Similar to our definition of outcome supporting events, a transition supporting event is the
most recent transition event for a precondition of the transition event. It is straightforward
to verify that the set of transition supporting events is given by T suppE = 〈e1, E〉 and the set
of initially set literals is T initE = {¬A,¬C,F}.

Third Causal Explanation
Knowledge of transition supporting events and precondition literals that held from the start
is represented by the third causal explanation. Given the scenario path ρE ∈ P (QE), the
transition event e3, the set of transition supporting events T suppE , and the set of uncaused
literals T initE the third causal explanation for θE in ρE is

C3
E =〈T suppE , T initE 〉

=〈{〈e1, E〉}, {¬A,¬C,F}〉

Explanation C3
E tells us about the transition event e3’s preconditions and how they were

met by state σ3. The preconditions literals of event e3 were ¬A, ¬C, E, and F . Of these
precondition literals, E was ensured in σ3 by the occurrence of event e1. The remaining

E. C. LeBlanc 16:9

literals ¬A, ¬C, and F were not ensured in σ3 by any scenario event. For relative brevity,
we will not query further for details about the outcome and transition supporting events. It
is easy to see, however, that the framework could tell us that the precondition literal E for
e3 was made to hold as a direct effect of e1’s occurrence.

Actual Causal Explanation

As the research intends to prove, there exists a space of possible structures for causal
explanation. Recall that when there are remaining outcome literals to explain, there is
a second causal explanation. However, if a transition event has no preconditions in the
scenario path, then there is no third causal explanation. This implies that the structure of
the explanation depends on the information encoded by the corresponding scenario path.
We intend to characterize this space of structures in the dissertation. The framework can
identify all three causal explanations in our example (i.e., C1

E , C2
E , and C3

E). To summarize,
the framework has explained that e3 was a transition event for θE through both direct and
indirect effects, e1 and e2 were outcome supporting events, and e1 was a transition supporting
event in the scenario path ρE .

4 Overview of Existing Literature

While actual causation has been treated in numerous ways in the Artificial Intelligence
literature, the most relevant of which we will cover briefly in this section, existing approaches
do not possess the fine-granularity of reasoning and explanation required to meet the reasoning
needs of the examples discussed here. Many approaches to reasoning about actual cause have
been inspired by the human intuition that cause can be determined by hypothesizing about
whether or not a removing X from a scenario would prevent Y from being true [19]. Attempts
to mathematically characterize actual causation have largely pursued counterfactual analysis
of structural equations [22, 13, 15], neuron diagrams [12], and other logical formalisms
[18, 23, 4]. It has been widely documented, however, that the counterfactual criteria alone
is problematic and fails to recognize causation in some common cases such as preemption,
overdetermination, and contributory cause [21, 10]. More recent approaches such as [14] have
addressed some of these shortcomings by modifying the existing definitions of actual cause or
by modeling change over time with some improved results. However, there is still no widely
agreed upon counterfactual definition of actual cause in spite of a considerably large body of
work aiming to find one.

The work of [3] departs from the counterfactual approach, using a similar insight to our
own that actual causation can be determined by inspecting a specific scenario. Leveraging the
Situation Calculus (SC) to formalize knowledge, the approach uses a single step regression
approach to identify events deemed relevant to a logical statement becoming true. Although
the conceptual approach is similar to our own, the technical approaches differ significantly.
For example, [3] identifies a single sequence of causal events without explanation. There
are also ramifications due to the choices for the formalization of the domain. Compared to
AL formalizations, SC formalizations incur limitations when it comes to the representations
of indirect effects of actions, which play an essential role in our work, and the elaboration
tolerance of the formalization. Additionally, SC relies on First-Order Logic, while AL features
an independent and arguably simpler semantics.

ICLP 2018

16:10 Explaining Actual Causation

5 Open Issues and Expected Achievements

While the core of this framework is fairly well-developed at this stage, there remain some
open issues that will be addressed in the dissertation. Evaluation of the framework is
a crucial next step, and meaningful progress has been made towards demonstrating the
framework’s reasoning process when solving examples from causality literature in addition
to novel scenarios. We expect to demonstrate that the framework can solve numerous
classic examples with finer-grained causal explanations than the current state of the art.
Moreover, the dissertation will present a number of empirical studies to compare and evaluate
the ability of related approaches to solve the novel example presented in this paper. We
expect that related approaches will not be able to explain the causal mechanism of our
example in comparable detail. The dissertation will also present a novel set of identified open
problems whose investigation can advance the capabilities of the causal reasoning framework.
Regarding implementation, the choice of AL as the underlying formalism has useful practical
implications. As demonstrated by a substantial body of literature (see, e.g., [1]), AL lends
itself quite naturally to an automated translation to Answer Set Programming [8, 9], using
which, complex reasoning tasks can be specified and executed (see, e.g., [6, 7]). We speculate
that a similar approach can also lead to the development of algorithms for our framework,
and have begun translating AL queries, scenario paths, and transition events to ASP.

References
1 Marcello Balduccini and Michael Gelfond. Diagnostic reasoning with A-Prolog. arXiv

preprint cs/0312040, 2003.
2 Chitta Baral and Michael Gelfond. Reasoning agents in dynamic domains. In Logic-based

artificial intelligence, pages 257–279. Springer, 2000.
3 Vitaliy Batusov and Mikhail Soutchanski. Situation calculus semantics for actual causality.

In 13th International Symposium on Commonsense Reasoning. University College London,
UK. Monday, November, volume 6, 2017.

4 Sander Beckers and Joost Vennekens. A general framework for defining and extending
actual causation using CP-logic. International Journal of Approximate Reasoning, 77:105–
126, 2016.

5 Charles E Carpenter. Concurrent Causation. University of Pennsylvania Law Review and
American Law Register, 83(8):941–952, 1935.

6 Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and Axel Polleres. Answer
set planning under action costs. Journal of Artificial Intelligence Research, 19:25–71, 2003.

7 Esra Erdem, Michael Gelfond, and Nicola Leone. Applications of Answer Set Programming.
AI Magazine, 37(3), 2016.

8 Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
In ICLP/SLP, volume 88, pages 1070–1080, 1988.

9 Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunct-
ive databases. New generation computing, 9(3-4):365–385, 1991.

10 Clark Glymour and David Danks. Actual causation: a stone soup essay. Synthese,
175(2):169–192, 2010.

11 Ned Hall. Two concepts of causation. Causation and counterfactuals, pages 225–276, 2004.
12 Ned Hall. Structural equations and causation. Philosophical Studies, 132(1):109–136, 2007.
13 Joseph Y Halpern. Axiomatizing causal reasoning. Journal of Artificial Intelligence Re-

search, 12:317–337, 2000.
14 Joseph Y Halpern. Actual causality. MIT Press, 2016.

E. C. LeBlanc 16:11

15 Joseph Y Halpern and Judea Pearl. Causes and explanations: A structural-model approach.
Part I: Causes. The British journal for the philosophy of science, 56(4):843–887, 2005.

16 Steve Hanks and Drew McDermott. Nonmonotonic logic and temporal projection. Artificial
intelligence, 33(3):379–412, 1987.

17 Patrick J. Hayes and John McCarthy. Some Philosophical Problems from the Standpoint of
Artificial Intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence 4, pages
463–502. Edinburgh University Press, 1969.

18 Mark Hopkins and Judea Pearl. Causality and counterfactuals in the situation calculus.
Journal of Logic and Computation, 17(5):939–953, 2007.

19 David Lewis. Causation. The journal of philosophy, 70(17):556–567, 1974.
20 J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of artificial

intelligence. Readings in artificial intelligence, pages 431–450, 1969.
21 Peter Menzies. Counterfactual theories of causation. The Stanford Encyclopedia of Philo-

sophy, 2001.
22 Judea Pearl. On the definition of actual cause, 1998.
23 Joost Vennekens. Actual causation in CP-logic. Theory and Practice of Logic Programming,

11(4-5):647–662, 2011.

ICLP 2018

	Introduction and Problem Description
	Preliminaries
	Framework Overview and Foundational Example
	Overview of Existing Literature
	Open Issues and Expected Achievements

