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Abstract
This paper describes an application worked out in collaboration with a company that produces
made-to-order machine components. The goal of the project is to develop a system that can
support the company’s engineers by automating parts of their component design process. We
propose a knowledge extraction methodology based on the recent DMN (Decision Model and
Notation) standard and compare a rule-based and a constraint-based method for representing
the resulting knowledge. We study the advantages and disadvantages of both approaches in the
context of the company’s real-life application.
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1 Introduction

This research is conducted in collaboration with a company that has engineering and
manufacturing offices all over the world. To protect its trade secrets, the company wishes
to remain anonymous and they have also requested that we avoid providing too much
information about its products. In certain branches of its activities, the company specialises
in producing made-to-order components, designed specifically to meet a customer’s particular
requirements. Like many such companies, it has significantly automated its manufacturing
activities, but the design activities of its engineers are still performed “manually”. That
is to say, the engineers of course make use of computers to perform calculations or create
3D models of the components they design, but there is no software support for the crux of
their activity, namely the actual design process itself. To perform this task, the engineers
follow an ad hoc process, based on past experience, talks with their colleagues, their own
preferences, etc.

This way of working is still common in industry. However, it has several downsides. First,
the lack of standardisation means that different engineers at different locations may come
up with different designs for the same set of requirements, some of which may be worse
than others. Second, the company also depends to a large extent on the expertise of some
of its key senior engineers. If these should suddenly leave the company, a great deal of the
knowledge they have built up over the years would leave with them, significantly reducing
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13:2 Application of Logic-Based Methods to Machine Component Design

the efficacy of the engineering department. Finally, the lack of software support also means
that – in particular, for less challenging design tasks – the engineers often have to spend
time carrying out the same routine tasks, reducing their efficiency.

The goal of this research is to develop a system to assist the engineers in their design
process. We focus specifically on the design of one particular type of component. This type
of component consists of a number of different subparts, each of which exists in a number of
different variants and sizes, and which can be produced from different kinds of materials.
Customers request components for a specific set of requirements, including a temperature
range under which the component should function, pressures the component should be able
to withstand, the size that the component should have, etc. The engineers then decide which
combination of subparts should be used, which variants of these subparts should be chosen,
how big each subpart should be and out of which material it should be made. It is with this
task that we want to assist them.

We follow a knowledge-based approach, in we represent the engineers’ knowledge in a
suitable formal language, and then apply logical inference to this representation in order to
provide suggestions to the engineers. This approach starts with a knowledge extraction step
in which a knowledge engineer works together with a number of domain experts, in this case
the company’s design engineers, in order to construct the formal model of their knowledge.
Typically, this knowledge extraction is a challenging task, because the knowledge engineers
are not familiar with the problem domain, while the domain experts are not familiar with
the idea knowledge representation. Good communication between the parties is therefore
very important.

In addition to providing automated support, the knowledge extraction process also
has the benefit of producing a standardised formal description of the company’s design
knowledge, thereby eliminating personal preferences of each engineer, regional differences,
out-dated habits, and of course human mistakes. For this process to be successful, we believe
that it is crucial that the formal specification is not only executable, but that it is also
understandable by the engineers. This helps to avoid misunderstandings and errors in the
knowledge extraction process. Moreover, it will also allow the engineers to get a better
understanding of what is going on inside the decision support system, it will help them to
adopt and evaluate the standardised procedure, and it will allow the knowledge base to be
maintained after completion of the project.

In [24], the ability to extract knowledge in a format readable by domain expert was
identified as a weakness of current product configuration methods. In order to achieve
our stated goals, we therefore propose a novel method, consisting of a two-step knowledge
extraction methodology. First, we focus on representing the decision process that the
engineers follow when making a new design. For this, we make use of the recent Decision
Model and Notation (DMN) [13] standard, which has been developed with the specific aim
of being usable by domain experts, without help from a knowledge engineer or software
developer. Using an off-the-shelf implementation of the standard, such as that provided by
the OpenRules system [14], this DMN model is already fully executable, which allows it to
be used by the engineers and validated w.r.t. a batch of test cases.

As we will discuss below, the DMN model by itself is not expressive enough to achieve all
of the project’s goals. We therefore propose a second knowledge extraction step, in which the
DMN model is further analysed together with the design engineers. Having the DMN model
already available in this step provides a way of focusing the discussion, ensuring that all the
relevant questions end up being discussed, and avoiding misunderstandings. The result of



B. Aerts and J. Vennekens 13:3

this second step is a logical specification, written in classical first-order logic – which can be
used by an automated reasoning system – in our case the IDP system [3]. This specification
can then be validated by comparing its conclusions to those of the original DMN models.

In the following sections, we first provide some more details on the context and goals of
the project. We then discuss the first step of the knowledge extraction methodology, using
DMN, together with its implementation and limitations. We then present the second step,
using the IDP system, again also discussing implementation and limitations. We discuss the
validation efforts that were made and finally also related work.

2 Problem Description

The company designs and produces components based on specific customer requests. These
customers typically are engineerings from other production companies, who want a specific
part to be manufactured according to a detailed set of requirements. In contrast to typical
configuration problems, understanding and explicitating the customers’ needs is therefore
not an issue in this application.

Incoming requests are initially handled by the sales staff. If the customer’s requirements
can be met by one of the companies standard solutions, the sales staff autonomously handles
the request. They are supported in this by a Visual Basic tool that inspects a Microsoft
Access database to select the appropriate standard design for a particular request. Requests
that fall outside the scope of this tool are forwarded to the engineering department. Here,
one of the engineers analyses the requirements and proposes a suitable component design. A
distinction is made between requests that fall within known application areas and those that
do not. Handling the first kind of requests is a routine job for the engineers and they always
follow roughly the same procedure when doing so. The second kind of requests are more
challenging and may require a significant amount of creativity from the engineers.

Our project has three main goals. First, the company has noted that is quite difficult and
time-consuming to extend the scope of the tool that is used by the sales staff and they are
looking for a more maintainable solution. Second, the “routine” work done by the engineers
for known applications should be standardised and automated as much as possible. Third,
the company also wishes to develop a decision support system that the engineers can use
when handling the more challenging requests.

3 Knowledge extraction of the design process

The engineers have a “standard” decision process that they use to handle routine requests.
However, this process is not explicitly standardised and different engineers at different
locations may do certain things somewhat differently. To fully standardize this process and to
be able to automate it, the engineers’ detailed technical knowledge needs to be represented in a
formal and structured manner. This section describes the knowledge extraction methodology
that we have followed.

Because the design process had not yet been internally standardised, we chose to start
from a series of brainstorming workshops with all of the involved parties. Each workshop
takes a couple of days and results in an initial representation of the design process for a
specifically delineated application area. The involved parties are a number of design engineers
(representing each of the locations worldwide that are involved in the particular application
area), a manager and one external knowledge engineer to guide the workshop. This approach
offers a number of advantages.
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13:4 Application of Logic-Based Methods to Machine Component Design

Since multiple participants are involved, we do not blindly adopt the approach of one
engineer or one particular location.
The face-to-face time allows intensive discussion about why certain decisions are taken,
which is often necessary when different engineers are used to follow different approaches.
During one multiple-day workshop, all parties focus solely on one specific application,
which helps to keep the discussion focused.
The knowledge engineer not only helps with technical issues concerning the representation,
but he also assists the engineers in clarifying their design process: as a non-expert in the
domain, he is able to ask “trivial” questions that help to ensure that all the engineers are
on the same page and that nothing is being overlooked.

Such a workshop results in a formal representation of the engineers’ relevant knowledge,
which is then used to build an initial prototype of a decision support system for that particular
application area. This prototype is then presented to the design engineers for evaluation.
The evaluation can be done briefly by e-mail or in another workshop, depending on how
close to reality the preliminary model is. Based on the feedback, the model is refined. This
process is repeated until all parties agree that the model is correct.

To support this knowledge extraction process, we need a notation that allows all aspects of
the decision process to be expressed. In addition, the notation should not only be readable by
the knowledge engineer, but also by the domain experts, who have no background in computer
science or logic. This will allow the notation to be used as an effective communication tool
throughout the brainstorming workshops and will also give the domain experts confidence in
the correctness of the automated system. After surveying the different possibilities, we have
decided to use the DMN standard that is explained in the following section.

3.1 The Decision Model and Notation (DMN)
The Decision Model and Notation (DMN) is a relative new standard [13], which is best
known for also being responsible for the widely used UML standard. This standard was
developed specifically for describing and modeling repeatable decision processes. In addition,
it is especially designed to be usable by “business users”, without involvement of IT personnel.
These two properties make it uniquely well-suited for our purposes. In addition, as an open
standard from a well-known organisation, it enjoys tool-support from multiple vendors, which
means that it can be adopted without running the risk of vendor lock-in.

In general, a DMN model consists of two components. The first is a Decision Requirement
Diagram (DRD). This is a tree-like graph which specifies dependencies between different
(sub-) decisions. Figure 1 displays a fragment of the complete DRD representing the decision
procedure used in our application.

The other part of a DMN model consists a number of in-depth decision tables, one for each
decision in the DRD. An example can be found in Table 1. The purpose of this table is to
decide whether the chosen design should contain a wiper, a bent piece of plastic that protects
the component from environmental factors, such as dirt or reverse pressure (i.e., pressure
from the outside to the inside, instead of the other way around). Each column of such a
table corresponds to either an input variable (Dirty Environment and Reverse Pressure, in
this case) or an output variable (Wiper). In this example, all variables are boolean, but in
general DMN also allows other data types. A row in a decision table specifies that if the row
is applicable (i.e., all of the input variables satisfy the conditions given by this row) then all
of the output variables must have the values given by this row. For instance, the first row of
Table 1 states that a wiper must be used whenever the environment is dirty (regardless of
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Figure 1 Fragment of the Decision Requirement Diagram.

Table 1 Decision table describing whether or not to use a wiper.

Any Input Output
Dirty Environment Reverse Pressure Wiper

1 True - True
2 - True True
3 False False False

whether there is reverse pressure); the second row states that if there is reverse pressure, a
wiper must also be used; finally, the third row states that if the environment is not dirty and
there is no reverse pressure, a wiper should not be used.

The entries in the table are written in a syntax called the Friendly Enough Expression
Language (FEEL), which is also part of the DMN standard. In addition to simple values (as
used in Table 1), FEEL also allows numerical comparisons, ranges of values and calculations
to be expressed.

If multiple rows in a table might be applicable for some combination of input values,
then the table’s so-called hit policy determines how this should be handled. Table 1 has the
hit policy Any, as can be seen in its upper left cell. This means that different rows may be
applicable for a given input (e.g., the first two rows are applicable in a dirty environment
with reverse pressure), but that all applicable rows have the same output, so that it does not
matter which row is applied. Other hit policies are Unique (only one row may be applicable)
and First (when multiple rows are applicable, only the top one is considered). In addition,
there are also multiple hit policies that allow, e.g., the output of all applicable rows to be
gathered into a list.

Another, more advanced example is the following. In the design of a component, a spring
is used to keep it in place. The type of this spring is determined by two decision nodes in
the DRD. First, the general shape of spring is determined (whether to use a stiffer closed
spring or a weaker open spring). This influences the overall form of the design. Later, the
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13:6 Application of Logic-Based Methods to Machine Component Design

Table 2 Decision table for Spring Shape.

First Input Output
Orientation Reverse Pressure Location Pressure Temperature Spring Shape

1
Radial True

Pressure Accumulating - - Open
2 Bi-directional - - Open
3 - ≤ 100 - Open
4 - - - - - Closed

Table 3 Decision table for Use Of Spacer.

Unique Input Output
Spring Shape Use Spacer

1 Closed False
2 Open True

specific spring is selected, based on how much the component would shrink in the given
circumstances. Table 2 shows how the general shape of the spring is decided, based on the
reverse pressure and various other inputs.

Another part of the design is a spacer, whose purpose is to keep the component in place,
even when there is a high pressure from the backside of the seal. Based on the spring shape,
the need for a spacer is decided in Table 3.

3.2 Results
Following the methodology outlined above, we have extracted the knowledge of the routine
design process in six different application fields. A total of 75 decision tables were constructed.
In each of the applications, one or two tables were pure data tables, consisting of all numerical
data for dimensioning the component. Since the discussed applications are more or less
similar, some of the already constructed data and decision tables from one application could
be reused in another. The extracted tables had an average size of approximately 5 rows
and 3 input conditions.

Each workshop started with a brief introduction to DMN, after which the knowledge
engineer started to guide the domain experts through the modelling process. We typically
started by constructing a DRD to get a general overview of the structure of the design process,
and then proceeded to construct detailed decision tables for each of the decisions. The
company’s engineers found the DMN format quite intuitive and after some initial questions,
they were typically able to easily interpret and reason about the knowledge in the tables.
Our experiences therefore indeed confirm that DMN’s readability for domain experts is a big
advantage of this standard.

A small exception to our normal way of working occurred when representing the design
process for applications that fall within the scope of the Visual Basic tool that had already
been developed for the sales staff. Here, we simply started from the existing VB code and
transformed this into a DMN model, which proved to be significantly shorter (360 lines of
VB code were reduced to 80 table rows) and easier to maintain.

Overall, the DMN representation seemed to fit well with the engineers’ own way of
thinking about their design process. However, there were some exceptions. In a few limited
cases, the engineers themselves do not follow a strict bottom-up decision procedure when
making their design. For instance, in certain circumstances, it is necessary to ensure that the
component stays in place. This can be done by using a stiffer spring than usual to prevent
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the component from sliding in the wrong direction. Adding a spacer and keeping the normal
shape of spring is the preferred approach, but this is not always feasible. In particular, in
cold circumstances, the component may shrink to such an extent that the normal spring
would fail. However, to know whether this is the case, the shrinkage of the component has to
be computed. Because this depends on the materials being used and the precise layout of the
different parts of the component, this computation can only be done at the very end of the
design process. Therefore, what the engineers currently do is they assume that the spacer
option will work, completely design the component based on this assumption, compute the
shrinkage and then backtrack over their initial choice if it turns out that the shrinkage is
too big. Such a “guess and check” procedure cannot be elegantly represented in DMN. In
Section 4 we discuss the work-around that we have used for this.

In general, we perceived the use of a formal representation in the workshop as a significant
added value. The precision of the notation allowed us to quickly detect inconsistencies and
missing cases in the information that the domain experts were providing. In addition, once
they had gotten used to the notation, also the design engineers themselves started to notice
flaws in the decision tables, such as implementation mistakes from our side or previously
unnoticed exceptions in their own design process. Towards the end of a workshop, the design
engineers were comfortable enough with the notation that we could leave certain decision
tables to be constructed as “homework” after the end of the workshop.

Based on our experiences, we are confident that the design engineers will be able to
maintain the existing decision tables and, with a bit more experience, would be able to
construct additional DMN models for new application areas.

4 Direct implementation of the design process

DMN is designed to be a fully executable specification and is currently supported by a number
of different tools, both commercial and open source. By providing it with the constructed
DMN tables, we have implemented an automated design system in the OpenRules [14] system,
currently for two of the six application areas for which the DMN knowledge extraction has
been performed.

This direct encoding of the design engineers’ design process has the advantage that it
is easy to implement, and that is easy to understand for the engineers what is going on.
However, there are also downsides to this approach.

First, as mentioned in Section 3.2, a few aspects of the design process do not fit readily
into the DMN model. Currently, we have worked around this problem by an “err on the
side of safety” approach: for the example given Section 3.2, the engineers have determined
a set of parameters within which it is always safe to use the preferred solution of adding a
spacer; whenever the input falls outside of this safe range, the alternative option of using a
stiffer spring is always chosen. While this solution is suboptimal (in the sense that sometimes
a stiffer spring is used when the combination of a weaker spring and a spacer would have
sufficed), it avoids the risk of suggesting faulty designs in a way that does not introduce
complicated decision structures, which would reduce the legibility of the DMN model.

Second, the DMN representation forces one to mix different kinds of knowledge within
a single table, which reduces the maintainability. For instance, Table 2 is based on both
physical constraints and preferences of the company. However, the actual constraints and
preferences cannot be deduced from this table alone. For instance, the decisions could be
explained in any of the following three ways:
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13:8 Application of Logic-Based Methods to Machine Component Design

A closed spring is always preferred, but it is unusable in situations 1, 2 and 3;
An open spring is always preferred, but it can only be used in situations 1, 2 and 3;
An open spring is preferred if there is reverse pressure, while closed springs are preferred
in all situations when there is no reverse pressure.

Now, suppose that a supplier changes the price of the closed spring. This will have an
impact on which shape of spring is preferred, but it is impossible to judge the impact of this
change on Table 2, without knowing the underlying reason for why this table is as it is. A
representation that separates preferences from constraints would not have this problem.

Third, all of the currently available DMN rule engines support only a single inference
task, namely that of computing the “output” decision variables given values for all the input
variables. In a system that is used interactively by a design engineer, however, we may also
envisage other useful inference tasks. For instance, after filling out only a subset of the input
variables, the engineer may be interested in knowing whether a design with a closed spring is
still possible. Or, in discussions with a customer, he may interested in knowing which values
of the input variables would have allowed such a spring to be used if one cannot be used now.

Fourth, DMN keeps the complexity of the decision process manageable by splitting it
into different decision tables. A downside of this approach is that it is not possible to talk
about global properties of the design. For instance, we may be interested in selecting the
cheapest possible design. The cost of a design depends on which parts are included in the
design and on which materials are used to make these parts. Both of these decisions influence
each other: certain parts can only be made out of certain materials, while the use of a better
material might eliminate the need for a particular additional part. This interdependency
means that we cannot hope to always find the cheapest global design by making a sequential
series of local decisions.

Finally, the entire DMN approach of course assumes that there is a decision procedure to
model. If we want to develop a system that could provide some assistance to engineers in
those challenging new application areas where they themselves do no yet know how precisely
a new design should be made, then there is no decision procedure and the DMN approach
will be of no use at all.

5 A Constraint-Based Approach

As discussed in the previous section, we cannot hope to achieve all of our stated goals by
an approach in which we simply use a direct implementation of the design procedure as the
engineers follow it. We will need to take into account also the underlying physical constraints
that have led the engineers to adopt this procedure in the first place.

In general, the design process followed by the engineers is governed by a number of
physical constraints (e.g., a material M1 can only be used in temperatures < 100◦C) and
preferences (e.g., material M2 is preferred over material M1, perhaps because it is cheaper
or more durable). In order to develop a decision support system that can also provide
useful information for challenging new application areas, we need to make direct use of these
underlying constraints and preferences, rather than of the engineers’ existing design process.
These constraints provide more information than is explicitly present in the design procedure,
because they also explain why certain designs are impossible. Therefore, it is not possible to
automatically deduce these constraints from the design procedure. Instead, coming up with
them requires additional discussions with the design engineers.

To illustrate the constraint-based approach, we return to the running examples of
Section 3.1. First, we consider Table 1. The engineers explain the contents of this table as
follows: they prefer not to include a wiper unless one is necessary, and a wiper is required
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to cope with either reverse pressure or a dirty environment. In other words, this table can
be explained as the combination of a preference for not having a wiper, together with two
constraints: ReversePressure⇒Wiper and DirtyEnvironment⇒Wiper.

The underlying reasons for Tables 2 and 3 are more complex. Discussions with the
engineers have revealed that these tables can be explained as follows:
1. Only open springs are able to release reverse pressure.

SpringShape = ”Open”⇔ AbleToReleaseBP.

2. It is impossible to use a spacer in combination with a closed spring.
SpringShape = ”Closed”⇒ SpacerDesign = ”null”.

3. When the component should be placed in a pressure accumulating location, it should be
able to release reverse pressure.
Location = ”PressureAccumulating”⇒ AbleToReleaseBP.

4. A spacer is needed (in radial applications) if the reverse pressure is bigger than 100 bar.
ReversePressure ∧ Pclass > 100⇒ SpacerDesign 6= ”null”.

5. In the bi-directional location, the component tends to move back and forth excessively,
so in order to avoid damage, a spacer is always needed.
Location = ”Bi− directional”⇒ SpacerDesign 6= ”null”.

6. Lastly, closed springs tend to be cheaper and outperform open springs, so they are the
preferred type of spring.

Notice that 1–5 are constraints, while 6 is a preference.
The first line in Table 2 is a result of combining constraint 1 and 3. The component

should be able to release reverse pressure and since closed spring designs cannot do that,
an open spring design is the only option. The second row is a combination of constraint 2
and constraint 5. In the “Bi-directional” location a spacer is always needed, and since it
is impossible to have a spacer in closed spring designs, the only remaining possibility is to
go for an open spring design. Analogously, the third line in the decision procedure can be
obtained from combining constraint 4 and 2. In all other situations, both closed and open
spring designs are possible, but closed designs are preferred, which explains the last row in
the decision procedure.

5.1 Knowledge extraction of the physical constraints and preferences

In order to use the physical constraints, we must of course again first elicitate them from the
design engineers. In our experience, it was difficult to do this directly. The engineers often
did not know quite where to start and discussions tended to be chaotic and unstructured. For
this reason, we have chosen to base the knowledge extraction of the constraints on the DMN
models. We again organise a discussion with the engineers who were originally involved in
the construction of these models and then go over each row of each table and ask them why
this row produces that particular output. Unlike the workshops in which the DMN models
are initially constructed, here it is less crucial to involve different engineers: even though
different engineers may disagree on the best solution for a given problem, they tend to all
agree on the reason why certain solutions might or might not work.

This use of the DMN tables provides a structured way of working, in which different topics
are addressed in a meaningful order and we can be sure that all of the relevant constraints
will eventually be mentioned. Moreover, because the engineers know and understand the
DMN model, there is never any confusion about which particular question is being discussed
at any particular point in time.
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To reduce the time investment required from the engineers, it is useful to carefully
prepare these discussions in advance. Often, the form in which a particular table has been
written down already suggests a certain underlying reason (e.g., the “default” row at the
bottom of Table 2 suggests that the closed spring is the preferred choice, with the other rows
describing circumstances in which this preferred choice is not possible). In addition, general
knowledge about how the components function or considerations that were mentioned during
the workshops that constructed the DMN models may provide further clues. In practice, we
have found that we can construct most of the constraints without help of the engineers and
only need them to verify and help us revise our initial guesses.

Most of the decision tables can be discussed independently. However, certain constraints
influence multiple tables. Section 5 handles a detailed example of this.

The preferences we have encountered so far have been quite simple: when a particular
part exists in a number of different variants or can be made from a number of different
materials, the engineers have been able to rank the variants/materials in an absolute order
of preference, typically based on cost and reliability. There has been no need to handle more
complex issues such as conditional preferences.

6 Implementation of a constraint-based approach

We have used the knowledge based IDP system [3] to implement a prototype of a constraint-
based design system. IDP allows constraints to be expressed in a rich extension of classical
first-order logic. Some examples of constraints used, are:

∀s[Subpart] : SubpartUsed(s)⇒ ∃ 1 m[Material] : Material(s, m).

This IDP formula states that for each subpart it holds that if the subpart is used, there
exists exactly one material for that subpart.

sum{s[Subpart] : SubpartUsed(s) ∧ Length(s, l) : l} < AvailableSpace.

This formula states that the length of the component, computed as the sum of the lengths of
all its subparts, must fit in the available space.

The IDP system offers a number of different algorithms, implementing a number of logical
inference tasks, based on Answer Set Programming (ASP), Logic Programming (LP) and
SAT solving technology. In recent editions of the ASP Competition [1], it was shown to be
competitive with other state-of-the-art ASP systems, though typically somewhat slower than
systems such as Clasp.

Our main reason for using IDP is its use of classical logic as an input language. This
allows individual constraints to be represented in a modular way, which can typically
be reasonably well explained to the company’s design engineers without requiring much
additional background. While the engineers would probably not be able to write down
constraints correctly, they are able to read them pretty well. We suspect that for instance
ASP specifications would have been harder for the engineers to read, due to the presence of
non-classical connectives such as negation-as-failure. A second advantage of IDP is that it
provides support for different logic inference tasks. Our current prototype only offers the
functionality of generating design proposals, but IDP’s different logic inference methods may
prove useful if we would want to extend this to other functionalities in the future. This is
one potential advantage that IDP offers over the use of constraint-programming languages
such as MiniZinc [12].



B. Aerts and J. Vennekens 13:11

Our input for IDP consists of six theories: one theory expresses the constraints about
the general design of the component; another describes the material choice of each of the
parts; the third defines how the component shrinks in low temperatures; a fourth theory
describes whether the component will remain in place also in cold environments; the fifth
defines whether the complete component fits in the available space; the final theory expresses
the preferences by assigning a cost to the design, based on price, durability, availability, etc.

In order to use these theories to compute a design, we can apply the logical inference task
of Model Expansion [11]. This takes as input a theory T and a structure Sin for part of the
vocabulary of T , and the goal is to produce a structure Sout for the remaining part of the
vocabulary such that Sin ∪ Sout |= T . In our case, the structure Sin describes the problem
specification, by providing an interpretation for predicates such as Temperature, Pressure

and Location (giving the temperature and pressure ranges and the location in which the
component should function); the structure Sout then describes a design, by providing an
interpretation for predicates such as SpringShape and functions such as Material, which
maps each component used in the design to the material it should be made from.

However, rather than just computing any model expansion, we make use of IDP’s
optimisation functionality. This allows us to specify a numerical term t for a model expansion
problem (T, Sin). IDP will then compute not just any solution to the model expansion problem,
but the solution Sout that, in addition to being such that Sin ∪ Sout |= T also minimizes
the value tSin∪Sout of this term. In our case, the term t is of the form sum{p[Penalty] :
V iolation(p) : p}, i.e., we associate to each violation of a preference a certain penalty and
the goal is to compute the design for which the sum of all incurred penalties is minimal. IDP
implements this inference task by an optimisation loop, which iteratively produces better
solutions by each time adding as a new constraint that the next solution must have a lower
score than the previous solution. This is the same method as is typically used in, e.g., ASP
solvers.

As an implementation of the knowledge base paradigm [5], IDP allows different inference
tasks to be performed on the same knowledge base in order to provide different functionalities.
Currently, our focus lies on generating designs using the inference task of model expan-
sion. However, in the future, other inference tasks may prove useful for offering additional
functionalities, such as explaining why a certain design is not feasible.

6.1 Limitations
Even though using the constraint representation has a lot of interesting advantages, there
are also a few downsides to it. The main disadvantage is that it is harder for the domain
experts to understand. On the one hand, the syntax for writing down individual constraints
is more complex. While we have used IDP because we believe it is quite understandable for
untrained experts, it is still much more complex that the simple table-based DMN format.
On the other hand, also the constraint-based approach itself seems inherently more difficult
for the domain experts. In a DMN decision model, there is always a clear link between input
and output, which makes the model easy to interpret and inspect by a domain expert. When
using constraints to express design knowledge, a single decision may be affected by numerous
constraints. For example in Section 5, the spring design is influenced by a multitude of
constraints. Finding out which constraints influence a particular aspect of the design and
determining their joint outcome is not a straightforward task and we find this often confuses
the domain experts.

A second downside is tied to the particular technology used in the IDP system. IDP’s
model expansion algorithm follows a ground-and-solve strategy (similar to, e.g., ASP solvers),
in which all variables are first translated away, by replacing them with all of their possible

ICLP 2018



13:12 Application of Logic-Based Methods to Machine Component Design

values. However, this requires that each variable must have a finite domain, such that the
grounding phase can enumerate all of its possible values. Moreover, in order for the grounding
to be computed in reasonable time, these domains should be relatively small. Because our
application requires some calculations with floating point numbers (e.g., when calculating
the shrinkage in cold circumstances), we have had to implement a work-around to perform
these calculations outside of the normal ground-and-solve workflow.

7 Validation and Experimental Results

The DMN model. Starting from a direct formalisation of the engineers’ design process
proved noticeably useful. Not only did the engineers appreciate the intuitive way of reasoning
in the DMN standard, it made them think about how they come to a design in a given
situation and about why certain design decisions are made. Moreover, when transforming the
Visual Basic tool developed for the sales staff into a DMN model, a number of irregularities
surfaced. Without a formal representation of this knowledge, it would have been a far more
difficult and time consuming task to detect these faults.

To ensure correctness of the DMN model, the engineers not only inspected the decision
tables in detail, but also provided us with ten test cases that represent both normal sets of
requirements and a number of edge cases. Our OpenRules implementation using the DMN
model generates the correct design in all of the test cases. Computing a design takes about
0.3 seconds single core on an Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz.

The IDP model. While it proved relatively easy to construct the DMN model in collabora-
tion with the engineers, constructing the more expressive IDP constraint-based model was
more significantly more challenging. We therefore want to use to former to validate the latter.
In particular, we want to check two correspondences between the output D(I) of the DMN
model D for a given input I and the solutions Sout of the model expansion problem (T, SI)
for the IDP constraint theory T . The vocabulary of the theory T was chosen such that the
DMN input I and output D(I) can be easily translated into structures SI and SD(I).

The first property to check is that the constraints should not be too strict: for each
possible set of inputs I, the design D(I) that would be constructed by the DMN model D(I)
should satisfy the constraints in theory T , i.e., SI ∪ SD(I) |= T or in other words, SD(I) is a
solution the model expansion problem (T, SI).

Second, to verify that the constraints are not too weak, we also check that the design
D(I) proposed by the DMN model D is among the optimal solutions of this model expansion
problem, i.e., that tSI∪SD(I) ≤ tSI∪S′ for any other solution S′ to the model expansion
problem (T, SI), where t is the optimisation term that should be minimised. This both
checks that the constraints do not fail to rule out designs with a higher score that are in fact
impossible and that the weights used in the optimisation criterion are assigned correctly.

We implement both of these checks using IDP. We first transform the DMN model to
IDP syntax as described in [4]. We can then use IDP to perform the required checks on
relation between the IDP theory derived directly from the DMN model and the IDP theory
that represents the constraints.

The first check initially revealed a small number of errors in the constraint-based repres-
entation. After minor fixes to the constraints, the first check was concluded successfully. The
second check then revealed that, in a number of cases, the constraint-based model produced
more optimal designs than the DMN model. While we initially thought that this was due to
more errors in the constraints, an analysis together with the design engineers revealed that
the outcome of the constraint-based model was in fact correct and that their own design
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process was in these cases non-optimal. This non-optimality turned out to be caused by the
difficulty of making the decisions in a fixed order. When using the constraint-based method,
no fixed decision order is needed, so a better scoring global optimum can be found.

The IDP system typically finds the optimal design in about 3.15 seconds on one core of
an Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz.

8 Related Work

A large body of research has been conducted on the topic of automatic product configuration,
typically defined as the task of automatically constructing a design from a set of pre-defined
components, considering several constraints and some optimisation criteria [2]. Research
shows that product configurators have a positive impact on lead time [8, 6] and quotation
time [10]. Other comparison studies [18] investigate the effect of configuration systems on
product quality, also showing promising results.

A thorough literature review on product configuration was performed by [24]. Their
findings reveal that, despite the wide range of existing research, several topics still require
further exploration. First, although knowledge acquisition from historical data has been
extensively studied, less research has been done on extracting knowledge from domain experts.
Moreover, knowledge representation research typically focusses on methods that are intended
to be used by knowledge engineers. Little attention has been paid to representations that
are usable by domain experts. Our work examines the use of DMN to address these issues in
the context of one concrete application domain.

A second aspect which according to [24] has not yet received much attention is the ability
to suggest new designs. The majority of existing product configuration approaches focus on
selecting the most appropriate option among a fixed range of possibilities. By contrast, our
constraint-based approach is also able to provide useful information to the engineers in cases
that fall outside the scope of existing solutions.

Third, [24] also identifies several ways in which additional forms of inference might be
useful to provide functionality other than suggesting a design. For example, she identifies such
tasks as explaining which conflicting constraints have led to a rejected design or reconfiguring
an existing design to cope with changed requirements. The IDP system has been developed
according to the knowledge base paradigm [5], in which different logical inference methods
can be applied to the same knowledge base in order to implement different functionalities.
Both of the tasks of explaining conflicts and of reconfiguration have already been considered
in the context of this system [19, 22]. The IDP system therefore provides a suitable formalism
to express the design knowledge.

9 Conclusions and future work

In this paper, we have presented an approach to develop a decision support system for the
design of mechanical components. This research was conducted in collaboration with a
multinational company that wants to standardise and partially automate its design process,
both for “routine” applications and challenging new application areas.

This project’s main challenge is that there are two potentially contradictory requirements.
On the one hand, a flexible and powerful knowledge representation is needed that will allow
useful conclusions to be provided to the engineers even in circumstances that fall outside of
their designs’ usual scope. On the other hand, the engineers need to be closely involved in
the formal specification since they are expected to agree on and understand the model, and
to help maintain it.
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To cope with these two requirements, we propose a two-step methodology. First, we use
the new DMN standard to extract the “routine” design process into an executable formal
model, which can already by automatically validated. We then use this DMN model as
a basis to perform a second knowledge extraction step, which results in a first-order logic
representation that can be given to the state-of-the-art IDP knowledge base system in order
to also perform useful inferences in circumstances that fall outside the scope of the routine
design process. This IDP model can then be automatically validated w.r.t. the DMN model.

In future work, we plan to examine the possibility of extending the expressivity of DMN
to reduce the gap between DMN and IDP, without sacrificing the ease of understanding for
the domain experts. Moreover, we also plan to examine the use of IDP’s different inference
algorithms to address some of the issues highlighting by [24]. Finally, we also wish to develop
a method that would allow the more general knowledge expressed in the IDP model to
automatically derive DMN design procedures for new application areas.
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