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Abstract
This document is an extended abstract of the Technical Report CLIP-1/2018.0.
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Dynamic programming languages, such as Prolog, are a popular programming tool for
many applications (e.g., web programming, prototyping, and scripting) due to their flexibility.
The lack of inherent mechanisms for ensuring program data manipulation correctness (e.g.,
via full static typing or other forms of full static built-in verification) has sparked the evolution
of flexible solutions, including assertion-based approaches in (constraint) logic languages, soft-
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10:2 Towards Static Performance Guarantees for Programs with Run-Time Checks

and gradual- typing in functional languages, and contract-based approaches in imperative
languages. A trait that many of these approaches share is that some parts of the specifications
may be the subject of run-time checking (e.g., those that cannot be discharged statically
in systems that support this functionality). However, such run-time checking comes at the
price of overhead during program execution, that can affect execution time, memory use,
energy consumption, etc., often in a significant way.

Reducing run-time checking overhead is a challenging problem. Proposed approaches
include discharging as many checks as possible via static analysis, optimizing the dynamic
checks themselves, or limiting run-time checking points. Nevertheless, there are cases in
which a number of checks cannot be optimized away and must remain in place, because of
software architecture choices (e.g., the case of the external interfaces of reusable libraries or
servers), the need to ensure a high level of safety (e.g., in safety-critical systems), etc.

At the same time, low program performance may not always be due to the run-time
checks. A technique that can help in this context is profiling, often used to detect performance
“hot spots” and guide program optimization. Prior work on using profiling in the context
of optimizing the performance of programs with run-time checks clearly demonstrates the
benefits of this approach. Still, profiling infers information that is valid only for some
particular input data values, and thus the results obtained may not be valid for other inputs,
and thus detecting the worst cases can take a long time, and is impossible in general.

We propose a method that uses static cost analysis (instead of – or as a complement to –
dynamic profiling) to infer upper and lower bounds (guarantees) on the costs introduced by
the run-time checks in a program (i.e., on the run-time checking overhead). Such bounds
are safe, in the sense that are guaranteed to never be violated in actual executions. Since
such costs are data-dependent, these bounds take the form of functions that depend on
certain characteristics (generally, data sizes) of the program inputs. Our method provides
the programmer with feedback and guarantees at compile-time regarding the overhead
that run-time checking will introduce. Unlike profiling, the bounds provided hold for all
possible execution traces, and allow assessing how such overhead varies with the size of the
input. We also propose an assertion-based mechanism (as an extension to the Ciao assertion
verification framework [1]) that allows programmers to specify bounds on the admissible
overhead introduced by run-time checking. Our method then statically and automatically
compares the inferred run-time checking overhead against the admissible levels and provides
guarantees on whether the instrumented program conforms with the specifications.

We formalize and implement the method in the context of the Ciao assertion language
and the CiaoPP verification framework, and present results from its experimental evaluation.
Such results suggest that our method is feasible and also promising in providing bounds that
help the programmer understand at the algorithmic level the overheads introduced by the
run-time checking required for the assertions in the program, in different scenarios, such as
performing full run-time checking or checking only the module interfaces.
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