
Towards Static Performance Guarantees for
Programs with Run-Time Checks
Maximiliano Klemen
IMDEA Software Institute and Universidad Politécnica de Madrid (UPM), Spain
maximiliano.klemen@imdea.org

https://orcid.org/0000-0002-8503-8379

Nataliia Stulova
IMDEA Software Institute and Universidad Politécnica de Madrid (UPM), Spain
nataliia.stulova@imdea.org

https://orcid.org/0000-0002-6804-2253

Pedro Lopez-Garcia
IMDEA Software Institute and Spanish Council for Scientific Research (CSIC), Spain
pedro.lopez@imdea.org

https://orcid.org/0000-0002-1092-2071

José F. Morales
IMDEA Software Institute, Spain
josef.morales@imdea.org

https://orcid.org/0000-0001-9782-8135

Manuel V. Hermenegildo
IMDEA Software Institute and Universidad Politécnica de Madrid (UPM), Spain
manuel.hermenegildo@imdea.org

https://orcid.org/0000-0002-7583-323X

Abstract
This document is an extended abstract of the Technical Report CLIP-1/2018.0.

2012 ACM Subject Classification Theory of computation → Program semantics, Theory of
computation → Program analysis, Theory of computation → Pre- and post-conditions, Theory
of computation → Invariants

Keywords and phrases Run-time Checks, Assertions, Abstract Interpretation, Resource Usage
Analysis

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.10

Category Extended Abstract

Related Version Technical Report CLIP-1/2018.0 [2], https://arxiv.org/abs/1804.02380.

Funding Research partially funded by EU FP7 ENTRA agreement no 318337, Spanish MINECO
TIN2015-67522-C3-1-R TRACES project, and Madrid M141047003 N-GREENS program.

Dynamic programming languages, such as Prolog, are a popular programming tool for
many applications (e.g., web programming, prototyping, and scripting) due to their flexibility.
The lack of inherent mechanisms for ensuring program data manipulation correctness (e.g.,
via full static typing or other forms of full static built-in verification) has sparked the evolution
of flexible solutions, including assertion-based approaches in (constraint) logic languages, soft-

© Maximiliano Klemen, Nataliia Stulova, Pedro Lopez-Garcia, José F. Morales, and
Manuel V. Hermenegildo;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 10; pp. 10:1–10:2

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/161824672?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:maximiliano.klemen@imdea.org
https://orcid.org/0000-0002-8503-8379
mailto:nataliia.stulova@imdea.org
https://orcid.org/0000-0002-6804-2253
mailto:pedro.lopez@imdea.org
https://orcid.org/0000-0002-1092-2071
mailto:josef.morales@imdea.org
https://orcid.org/0000-0001-9782-8135
mailto:manuel.hermenegildo@imdea.org
https://orcid.org/0000-0002-7583-323X
https://doi.org/10.4230/OASIcs.ICLP.2018.10
https://arxiv.org/abs/1804.02380
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de


10:2 Towards Static Performance Guarantees for Programs with Run-Time Checks

and gradual- typing in functional languages, and contract-based approaches in imperative
languages. A trait that many of these approaches share is that some parts of the specifications
may be the subject of run-time checking (e.g., those that cannot be discharged statically
in systems that support this functionality). However, such run-time checking comes at the
price of overhead during program execution, that can affect execution time, memory use,
energy consumption, etc., often in a significant way.

Reducing run-time checking overhead is a challenging problem. Proposed approaches
include discharging as many checks as possible via static analysis, optimizing the dynamic
checks themselves, or limiting run-time checking points. Nevertheless, there are cases in
which a number of checks cannot be optimized away and must remain in place, because of
software architecture choices (e.g., the case of the external interfaces of reusable libraries or
servers), the need to ensure a high level of safety (e.g., in safety-critical systems), etc.

At the same time, low program performance may not always be due to the run-time
checks. A technique that can help in this context is profiling, often used to detect performance
“hot spots” and guide program optimization. Prior work on using profiling in the context
of optimizing the performance of programs with run-time checks clearly demonstrates the
benefits of this approach. Still, profiling infers information that is valid only for some
particular input data values, and thus the results obtained may not be valid for other inputs,
and thus detecting the worst cases can take a long time, and is impossible in general.

We propose a method that uses static cost analysis (instead of – or as a complement to –
dynamic profiling) to infer upper and lower bounds (guarantees) on the costs introduced by
the run-time checks in a program (i.e., on the run-time checking overhead). Such bounds
are safe, in the sense that are guaranteed to never be violated in actual executions. Since
such costs are data-dependent, these bounds take the form of functions that depend on
certain characteristics (generally, data sizes) of the program inputs. Our method provides
the programmer with feedback and guarantees at compile-time regarding the overhead
that run-time checking will introduce. Unlike profiling, the bounds provided hold for all
possible execution traces, and allow assessing how such overhead varies with the size of the
input. We also propose an assertion-based mechanism (as an extension to the Ciao assertion
verification framework [1]) that allows programmers to specify bounds on the admissible
overhead introduced by run-time checking. Our method then statically and automatically
compares the inferred run-time checking overhead against the admissible levels and provides
guarantees on whether the instrumented program conforms with the specifications.

We formalize and implement the method in the context of the Ciao assertion language
and the CiaoPP verification framework, and present results from its experimental evaluation.
Such results suggest that our method is feasible and also promising in providing bounds that
help the programmer understand at the algorithmic level the overheads introduced by the
run-time checking required for the assertions in the program, in different scenarios, such as
performing full run-time checking or checking only the module interfaces.

References
1 M.V. Hermenegildo, F. Bueno, M. Carro, P. López, E. Mera, J.F. Morales, and G. Puebla.

An Overview of Ciao and its Design Philosophy. TPLP, 12(1–2):219–252, 2012.
2 M. Klemen, N. Stulova, P. Lopez-Garcia, J. F. Morales, and M. V. Hermenegildo. An

Approach to Static Performance Guarantees for Programs with Run-time Checks. Technical
Report CLIP-1/2018.0, The CLIP Lab, IMDEA Software Institute and T.U. Madrid, April
2018. arXiv:1804.02380.

http://arxiv.org/abs/1804.02380

