
Declarative Algorithms in Datalog with Extrema:
Their Formal Semantics Simplified
Carlo Zaniolo
University of California, Los Angeles, USA
zaniolo@cs.ucla.edu

Mohan Yang
Google, USA
yang@cs.ucla.edu

Matteo Interlandi
Microsoft Corporation, USA
matteo.interlandi@microsoft.com

Ariyam Das
University of California, Los Angeles, USA
ariyamo@cs.ucla.edu

Alexander Shkapsky
University of California, Los Angeles, USA
shkapsky@gmail.com

Tyson Condie
University of California, Los Angeles, USA
tcondie@cs.ucla.edu

Abstract
Recent advances are making possible the use of aggregates in recursive queries thus enabling the
declarative expression classic algorithms and their efficient and scalable implementation. These
advances rely the notion of Pre-Mappability (PreM ) of constraints that, along with the seminaive-
fixpoint operational semantics, guarantees formal non-monotonic semantics for recursive pro-
grams with min and max constraints. In this extended abstract, we introduce basic templates to
simplify and automate task of proving PreM.

2012 ACM Subject Classification Information systems → Query languages

Keywords and phrases Recursive Queries

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.9

1 Pre-Mappable Extrema constraints in Recursive Rules
Pre-mappable (PreM ) extrema constraints in recursive Datalog programs enable concise
declarative formulations for classical algorithms [3]. The programs expressing these algorithms
have formal non-monotonic semantics [1, 2]. For instance, a classical recursive application
for traditional databases is Bill of Materials (BOM), where we have a Directed Acyclic
Graph (DAG) of parts-subparts, assbl(Part, Subpart, Qty) describing how a given part
is assembled using various subparts, each in a given quantity. Not all subparts are assembled,
since basic parts are instead supplied by external suppliers in a given number of days, as per
the facts basic(Part, Days). Simple assemblies, such as bicycles, can be put together the
very same day in which the last basic part arrives. Thus, the time needed to produce the

© Carlo Zaniolo, Mohan Yang, Matteo Interlandi, Ariyam Das, Alexander Shkapsky, and Tyson
Condie;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 9; pp. 9:1–9:3

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/161824671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:zaniolo@cs.ucla.edu
mailto:yang@cs.ucla.edu
mailto:matteo.interlandi@microsoft.com
mailto:ariyamo@cs.ucla.edu
mailto:shkapsky@gmail.com
mailto:tcondie@cs.ucla.edu
https://doi.org/10.4230/OASIcs.ICLP.2018.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de


9:2 Datalog with Extrema

assembly is the maximum number of days required by the basic parts it uses. This can be
computed by the following stratified program:

I Example 1 (How many days till all the required parts arrive).

deliv(Part, Days)← basic(Part, Days), is_max(Part, Days).
deliv(Part, Days)← deliv(Sub, Days), assbl(Part, Sub).
actualDays(Part, Days)← deliv(Part, Days), is_max(Part, Days).

But the iterated fixpoint computation of the perfect model of this program can be very
inefficient. This problem is solved by transferring is_max((Part), Days), to the rules
defining deliv, whereby the rule defining actualDays now becomes a redundant copy rule.
Thus from the previous exo-max version of our program we obtain its endo-max version as
follows:

deliv(Part, Days)← basic(Part, Days), is_max((Part), Days).
deliv(Part, Days)← deliv(Sub, Days), assbl(Part, Sub), is_max((Part), Days).
actualDays(Part, Days)← deliv(Part, Days).

The questions we need to answer about our exo2endo transformation are the following two:
(i) is this a valid optimization inasmuch as the fixpoint computation of the endo-max

program delivers the same model as the iterated fixpoint of the original exo-max program
(and still allows recursive optimizations such as seminaive-fixpoint and magic-sets)?

(ii) once we re-express is_max using negation, does the transformed program has a unique
stable model semantics, efficiently computed as described jn (i).

The notion of PreM [3] provides provides a formal answer to both these questions?

I Definition 2 (The PreM Property). In a given Datalog program, let P be the rules defining
a (set of mutually) recursive predicate(s). Also let T be the ICO defined by P . Then, the
constraint γ will be said to be PreM to T (and to P ) when, for every interpretation I of P ,
we have that: γ(T (I)) = γ(T (γ(I))).

The importance of this property follows from the fact that if I = T (I) is a fixpoint for T ,
then we also have that γ(I) = γ(T (I)), and when γ is PreM to T then: γ(I) = γ(T (I)) =
γ(T (γ(I))). Now, let Tγ denote the application of T followed by γ, i.e., Tγ(I) = γ(T (I)). If
I is a fixpoint for T and I ′ = γ(I), then the above equality can be rewritten as: I ′ = γ(I) =
γ(T (γ(I))) = Tγ(I ′). Thus, when γ is PreM , the fact that I is a fixpoint for T implies that
I ′ = γ(I) is a fixpoint for Tγ(I). In many programs of practical interest, the transfer of
constraints under PreM produces optimized programs for the naive fixpoint computation
that are safe and terminating even when the original programs were not. Thus we focus on
programs where, for some integer n, T ↑n

γ (∅) = T ↑n+1
γ (∅), i.e., the fixpoint iteration converges

after a finite number of steps n. As proven in [3], the fixpoint T ↑n
γ (∅) so obtained is in fact a

minimal fixpoint for Tγ , where γ denotes a min or max constraint:

I Theorem 3. If γ is PreM to a positive program P with ICO T and, for some integer n,
T ↑n
γ (∅) = T ↑n+1

γ (∅), then:
(i) T ↑n

γ (∅) = T ↑n+1
γ (∅) is a minimal fixpoint for Tγ , and

(ii) T ↑n
γ (∅) = γ(T ↑ω(∅)).

Therefore, when the PreM holds, declarative exo-min (or exo-max) programs are transformed
into endo-min (or endo-max) programs having highly optimized operational semantics that
computes the perfect model of the former and the unique stable modelof the latter.



C. Zaniolo, M. Yang, M. Interlandi, A. Das, A. Shkapsky, and T. Condie 9:3

2 Proving Premappability
The application of a min or max constraint to the ICO of a rule r can be expressed by the
addition of a min or max goal to r, whereby PreM holds if this insertion of a new goal does
not change the mapping defined by the rule. For the example at hand, we have:

deliv(Part, Days)←
deliv(Sub, Days),\is_max((Sub),Days)/, assbl(Part, Sub), is_max((Part), Days).

Thus, we must prove that the insertion\is_max((Sub),Days)/does not change the mapping defined
by our rule–a property that is guaranteed to hold if can prove that the original mapping
already satisfies this constraint. We next define the concept of min- and max-constraints for
individual tuples:

I Definition 4. We will say that a tuple t ∈ R satisfies the min-constraint is_min((X), A)
and write X−min−→ A when R contains no tuple having the same X-value and a smaller A-value.
Symmetrically, we say that the tuple t ∈ R satisfies the max-constraint is_max((X), A)
and write X−max−→ A when R contains no tuple with the same X-value and a larger A-value.

Thus in our example we have Part−max−→ Days and must prove that Sub−max−→ Days. Toward
that goal, we observe that X−min−→ A and X−max−→ A can be informally viewed as “half
functional dependencies (FDs)”, since both must hold before we can conclude that X → A.
In fact, although min- and max-constraints on single tuples are much weaker than regular
FDs, they preserve some of their important formal properties including those involving
multivalued dependencies (MVDs) that result from the natural joins in the recursive rules –
e.g. Sub →−→ Days and Sub →−→ Part, in our example.

Therefore, the following properties, proven in [4], hold for tuple for min-constraints,
max-constraints, and MVDs, and also illustrate the appeal of the arrow-based notation:
Min/Max Augmentation: If X−min−→ A and Z ⊆ Ω, then X ∪ Z−min−→ A.

If X−max−→ A and Z ⊆ Ω, then X ∪ Z−max−→ A.
MVD Augmentation: If X →−→ Y , Z ⊆ Ω and Z ⊆W , then X ∪W →−→ Y ∪ Z.
Mixed Transitivity: If Y →−→ Z and Z−min−→ A , with A /∈ Z, then Y−min−→ A.

If Y →−→ Z and Z−max−→ A, with A /∈ Z, then Y−max−→ A.

For the example at hand, Sub →−→ Part and Part−max−→ Days implies Sub−max−→ Days, by mixed
transitivity. Since this constraint holds, the additional goal\is_max((Sub),Days)/enforcing thus
max constraint does not change it. Q.E.D.

References
1 Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson Condie, and

Carlo Zaniolo. Big Data Analytics with Datalog Queries on Spark. In SIGMOD, pages
1135–1149. ACM, 2016.

2 Mohan Yang, Alexander Shkapsky, and Carlo Zaniolo. Scaling up the performance of more
powerful Datalog systems on multicore machines. The VLDB Journal, 26(2):229–248, 2017.

3 Carlo Zaniolo, Mohan Yang, Ariyam Das, Alexander Shkapsky, Tyson Condie, and Mat-
teo Interlandi. Fixpoint semantics and optimization of recursive Datalog programs with
aggregates. TPLP, 17(5-6):1048–1065, 2017.

4 Carlo Zaniolo, Mohan Yang, Matteo Interlandi, Ariyam Das, Alexander Shkapsky, and
Tyson Condie. Declarative Algorithms by Aggregates in Recursive Queries: their Formal
Semantics Simplified. Report no. 180001, Computer Science Department, UCLA, April,
2018.

ICLP 2018


	Pre-Mappable Extrema constraints in Recursive Rules
	Proving Premappability

