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Abstract. We propose an alternative approach to the dissipative vortex dynamics

occurring in a superfluid vortex lattice at finite temperatures. Focusing upon the

pseudomomentum of a vortex and its surrounding quasiparticles, we derive an equation

of motion which, in spite of yielding the same evolution as the usual one for massless

vortices, does not involve the vortex mass. This picture could provide further insights

into the controversy about the nature of the vortex mass.
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1. Introduction

Below the lambda transition, at temperatures below Tλ = 2.172 K, liquid helium is

known as helium II and can be regarded as a mixture of a normal fluid with mass density

ρn and a superfluid with mass density ρs. Such densities are temperature dependent, so

that ρs(Tλ) = ρn(0) = 0, while the total density ρ = ρs + ρn remains nearly constant.

The most striking property of such a superfluid component is, perhaps, that it can only

rotate through vortices having microscopic cores and quantized circulations. In fact,

the circulation of the superfluid velocity field around each of such vortices is quantized

in units of h/m4, the so-called quantum of circulation κ, given by the ratio of Planck’s

constant and the mass of one 4He atom. In practice, however, we only find configurations

of one quantum per vortex, since they are favored by energetic considerations [1]. When

a rotating sample of liquid helium is cooled below the lambda temperature, all the

rotation of the superfluid becomes concentrated in such vortices, which eventually form

a lattice consisting in a uniform array of vortex filaments parallel to the axis of rotation

[1, 2, 3]. However, the macroscopic superfluid velocity field, which corresponds to spatial

averages over regions large compared with the spacing between vortices, yields the usual

configuration of solid body flow, vs(r) = Ωrotẑ× r for a rotation frequency Ωrot around

the z axis. On the other hand, the microscopic superfluid velocity field, ie without

averaging, is irrotational except where a vortex is located. Since the circulation of such

a field around a vortex yields the quantum of circulation κ, according to the Stokes’

theorem we may write

1

A

∫ ∫

A

dx dy ẑ · w = κNA/A, (1)

where the area A in the x-y plane contains NA vortices and w denotes the microscopic

vorticity, ie the curl of the microscopic superfluid velocity. On the left-hand side of (1)

we have an averaged vorticity which should be identified with the macroscopic value

∇ × vs = 2Ωrot ẑ. Thus, the above equation yields a link between the macroscopic

and the microscopic views of the superfluid component, namely the number of vortices

per unit area corresponds to the ratio of the macroscopic vorticity to the quantum of

circulation, NA/A = 2Ωrot/κ (Feynman’s rule [1, 4]).

Just as the superfluid flow is microscopically formed by vortices, the normal fluid

consists of superfluid quasiparticle excitations, phonons and rotons, the average flow of

which is characterized by a normal fluid velocity field vn given by Ωrotẑ × r. That

is, both fluids are expected to move with the same velocity at equilibrium. It is

important to recall, however, that there are remarkable exceptions to this result, eg

the equilibrium configuration of the Hess-Fairbank experiment [5], or the metastable

superflow states having effectively infinite lifetimes [6]. Now, keeping the focus on

the simpler situation of having identical normal and superfluid velocity fields at an

equilibrium state to be reached within a finite relaxation time, one may interpret that

such a behaviour arises, from a microscopic viewpoint, from the vortex motion with

the normal fluid velocity in order to avoid dissipation. That is, any relative motion
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of vortices with respect to the normal fluid in their vicinity, should be subjected to a

friction force that causes such a motion to eventually cease. Such a mutual friction

force [7] between the two fluids appears then as playing a central role in the mechanism

which maintains the stability of the above equilibrium state. A phenomenological model

for this macroscopic dynamics was proposed long ago through the so-called Hall-Vinen-

Bekharevich-Khalatnikov (HVBK) equations [7, 8]. These basically consist of a Navier-

Stokes equation for the normal fluid and an Euler equation for the superfluid, which,

in the absence of pressure and temperature gradients, are coupled together only by

a mutual friction term [1, 2]. The original proposal of the HVBK model was later

rederived from first principles within the framework of classical continuum mechanics

[9], but a derivation from a full microscopic theory is still lacking. On the other hand,

with the exception of a few works [10, 11] and because of their complexity, the HVBK

equations have been mainly utilized so far to model helium II with a spatially uniform

configuration of vortices.

The simplest departure from the rotating equilibrium configuration is given by a

normal fluid field of the form (Ωrot + w0) ẑ × r, but unfortunately a simple ansatz like

vn(r, t) = Ωn(t) ẑ×r does not constitute an acceptable solution of the HVBK equations.

Simplicity, however may be preserved by changing to a different geometry consisting in

rectilinear flows of uniform vorticity,

vs(r, t) = − 2 Ωs(t) y x̂ (2)

vn(r, t) = − 2 Ωn(t) y x̂ (3)

(y < 0), where Ωs(t) and Ωn(t) should converge for t → ∞ to a common steady

state value. Then, to make contact with the standard rotational configuration, we may

identify such a value with the former angular velocity Ωrot. Note that this assignment

leads to a uniform vorticity ∇×vs = 2 Ωrot ẑ, which coincides with that of the rotational

scheme.

The above macroscopic view of the interaction between superfluid and normal

fluid, ruled by the HVBK equations, is complemented by the microscopic picture of

a dissipative vortex dynamics arising from the scattering of quasiparticles by vortex

lines‡. In the usual approach, the vortex equation of motion arises simply from assuming

a vanishing total force, which is given by the sum of a hydrodynamic Magnus force and

a dissipative force. Such a neglect of the vortex inertia corresponds to the assumption

that its mass is given by the hydrodynamic mass of a core of atomic dimensions [1]. This

result, however, has never been experimentally confirmed owing to the difficulties that

embodies a direct measurement of the vortex mass [14]. Moreover, there are different

theories [15, 16, 17] that yield several orders of magnitude higher values for the vortex

mass, casting doubt on models based on massless vortices§. On the other hand, it

has been recently suggested that an unambiguous vortex mass may not exist, and that

‡ Vortex bending in the form of thermal excitation of vortex oscillation modes, or collective excitations

as Tkachenko waves are not expected to be relevant to this discussion [1, 12, 13].
§ There have also been conflicting results for the vortex mass in superconductors [18].
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inertial effects in vortex dynamics may be scenario-dependent [19]. Given such an open

debate, it seems to be quite advisable to follow an eclectic procedure, assuming in what

follows a finite vortex mass per unit length, which we shall denote through the parameter

mv.

There is a close analogy between the dynamics of massive rectilinear vortices and the

well-known electrodynamical problem of point charges subjected to a uniform magnetic

field and a perpendicular electric field. More precisely, there exists a whole mapping

by which a 2-D homogeneous superfluid can be mapped onto a (2+1)-D electrodynamic

system, with vortices and phonons playing the role of charges and photons, respectively

[15, 20, 21, 22, 23]. Here we shall only make a restricted use of this mapping, which

corresponds to the formal analogy between the Magnus and Lorentz forces. Thus

we may assume that the dissipative dynamics of the vortex lattice should be ruled

by three characteristic frequencies, namely the imposed rotational frequency Ωrot, an

initial departure w0 from this frequency and the cyclotron frequency stemming from the

electromagnetic analogy [13]

Ω = ρsκ/mv. (4)

Taking as a lowest estimate of the vortex mass the value arising from the above

hydrodynamical model, we have Ω . 3 × 1012 s−1 [1]. On the other hand, typical

experimental values are of order Ωrot ∼ 1 s−1, so we shall restrict our study to cyclotron

frequency values fulfilling Ωrot ≪ Ω.

The above assumption of massive vortices and rectilinear flows leads us to a very

useful magnitude, which to the best of our knowledge has not been utilized so far,

that is the concept of vortex pseudomomentum. In fact, such a pseudomomentum

corresponds to the vortex generator of translation, as can be straightforwardly shown

from the electromagnetic analogy [24]. More generally, the translation generated by a

pseudomomentum corresponds to a motion of the physical state (vortex) but keeping

the medium, the uniform superfluid in this case, fixed [25]. In addition, contrary to

the other two momenta (canonical and dynamical) that can be ascribed to a vortex,

the vortex pseudomomentum turns out to be free from the ambiguities carried by the

vortex mass. Here it is worthwhile noticing that a similar situation occurs in the case of

the normal fluid. In fact, it can be shown that the momentum of a sound wave (or of a

phonon in quantum mechanics), turns out to be a very complicated object, which may

not even have a well-defined value at all, while its pseudomomentum is a simple quantity

and far more useful [25, 26, 27]. This led us to investigate a pseudomomentum approach

to the dissipative vortex dynamics occurring in a uniform vortex lattice, finding that

this formalism leads to the same evolution as that predicted by the usual approach,

whereas it involves far less restrictive assumptions about the value of the vortex mass.

This paper is organized as follows. In the next section we study a solution of

the HVBK equations for the above rectilinear flows. In section 3 we analyze the

dissipative vortex dynamics from the viewpoint of the usual phenomenological approach.

A Hamiltonian approach is proposed in section 4, which consists of a vortex Hamiltonian
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based on the analogy to electrodynamics (section 4.1) and a Hamiltonian for the

quasiparticle gas representing the normal fluid (section 4.2). Finally a pseudomomentum

equation of motion is obtained and discussed in section 4.3.

2. Two-fluid equations

The HVBK equations for the rectilinear flows (2)-(3) are very simple and read

ρn
∂vn

∂t
= F (5)

ρs
∂vs

∂t
= − F, (6)

where the mutual friction force [1, 2, 7],

F =
ρnρs

ρ
Ωs(t)[−B(vn − vs) + B′ ẑ × (vn − vs)], (7)

becomes the single coupling term between both fluids and the dimensionless coefficients

B and B′ weight dissipative and nondissipative contributions to such a force. If we

assume that the system is not far from equilibrium, so that the factor Ωs(t) in (7) can

be approximated by Ωrot, replacing in (5) to (7) the velocity fields according to (2) and

(3), an elementary calculation leads to the solution

Ωn(t) = Ωrot + w0 e−ΩrotBt (8)

Ωs(t) = Ωrot −
ρn

ρ
w0 e−ΩrotBt, (9)

where we should assume temperatures below 1 K, so that the normal fluid density turns

out to be much smaller than the superfluid one (ρn/ρs < 10−3) and the last term in (9)

becomes negligible, ie
ρnw0

ρsΩrot

≪ 1. (10)

Note that this model of strictly rectilinear flows amounts to ignoring nondissipative

contributions to the mutual friction force, ie it leads to B′ ≡ 0.

3. Dissipative vortex dynamics: phenomenological approach

A microscopic view to the above lattice leads us to focusing on a single vortex dynamics.

Thus, we assume that the motion of each vortex is ruled by [1]:

mvr̈ = ρsκ ẑ × (ṙ − vs) − D(ṙ − vn), (11)

where r = xx̂+ yŷ denotes the position of the vortex core and D denotes a microscopic

friction coefficient arising from vortex-quasiparticle scattering. The right-hand side of

(11) represents the total force acting on the vortex, namely the Magnus force (first

term) plus the dissipative force (second term). Here we have disregarded again any
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contribution from a nondissipative component of the mutual friction force‖. Now,

replacing (2), (3), (8) and Ωs(t) ≃ Ωrot in (11) we obtain,

ẍ = − Ω
D

ρsκ
ẋ − Ω ẏ − 2 Ωrot Ω

D

ρsκ
y

(

1 +
w0

Ωrot

e−ΩrotBt

)

(12)

ÿ = − Ω
D

ρsκ
ẏ + 2 Ω Ωroty + Ω ẋ. (13)

The equation (12) can be formally solved in ẋ(t),

ẋ(t) = e−(ΩD/ρsκ)t ẋ(0) −

∫ t

0

dτe−(ΩD/ρsκ)τ

×

[

Ω ẏ(t − τ) + 2 Ωrot Ω
D

ρsκ
y(t − τ)

(

1 +
w0

Ωrot

e−ΩrotB(t−τ)

)]

(14)

and replacing the above expression in (13) we are led to a second-order integro-

differential equation in y(t). This problem, however, may be greatly simplified by

utilizing the Markov approximation. In fact, we first note that the coefficients in the

arguments of the exponentials in (14) define two very different time scales, namely a

microscopic one given by (ΩD/ρsκ)−1 and a macroscopic one given by (ΩrotB)−1, ie

ρs

ρn

Ωrot

Ω
≪ 1, (15)

where we have taken into account that the macroscopic and microscopic friction

coefficients are related for T . 1 K through [1],

B =
2D

ρnκ
. (16)

Note that the inequality (15) is expected to break down at extremely low temperatures.

Now, assuming that t in (14) belongs to the macroscopic time scale, we have that

the exponential factor in the first term will be negligible, while the same exponential

function, which depends on τ in front of the integrand, will make that only the lowest

portion of the integration domain (τ ≪ t) gives a nonnegligible contribution to the

integral. That is, we may safely approximate all the dependencies on t− τ in (14) by t,

and the upper limit of the integral by +∞. Finally, the Markov approximation to such

an equation reads as,

ẋ(t) = −

∫ ∞

0

dτe−(ΩD/ρsκ)τ

[

Ω ẏ(t) + 2 Ωrot Ω
D

ρsκ
y(t)

(

1 +
w0

Ωrot

e−ΩrotB t

)]

= −
ρsκ

D
ẏ − 2 Ωrot y

(

1 +
w0

Ωrot

e−ΩrotB t

)

, (17)

which replaced in (13) and using (16) yields,

ρnB

2ρsΩ
ÿ + ẏ +

ρn

ρs

B w0 e−ΩrotB t y = 0. (18)

‖ Actually, according to some theories [28] and related experimental evidence [29, 30], such a component

may in fact be non-existent.



Vortex pseudomomentum and dissipation 7

Here it is useful to change to the adimensional macroscopic time variable T = ΩrotB t,

1

2

(

ρnB

ρs

)2 (

ρs

ρn

Ωrot

Ω

)

d 2y

dT 2
+

dy

dT
+

(

ρnw0

ρsΩrot

)

e−T y = 0 (19)

and recall that ρn/ρs . 10−3 and B . 1 for T . 1 K. Then, assuming w0 . Ωrot and

taking into account (10) and (15), we realize that we may safely drop the term containing

the second derivative in (19), since we may estimate that the coefficient in front of such

a derivative will be a quantity of third order in comparison to the first-order small

parameter in front of the exponential. Note that according to (4), this approximation

turns out to be equivalent to the usual one of neglecting the vortex mass. Thus, we are

led to a first-order differential equation which is easily integrated yielding,

y(t) = y(0) exp[(ρnw0/ρsΩrot)(e
−ΩrotBt − 1)], (20)

ie a small vortex displacement in the direction perpendicular to the velocity of the

background superflow, while (17) becomes

ẋ = −2Ωroty, (21)

which simply states that the x-component of the vortex velocity will coincide with the

superfluid velocity.

4. Dissipative vortex dynamics: Hamiltonian approach

4.1. Vortex Hamiltonian

We start from the vortex equation of motion (11) in the absence of normal fluid

r̈ = Ω ẑ × (ṙ − vs), (22)

which turns out to be analogous to that ruling the two-dimensional motion of a negative

point charge in the presence of magnetic and electric fields in the z and y directions,

respectively [24]. Such an equation derives from the Hamiltonian

Hv =
mv

2
(v2

x + v2
y) − Ωrot ρsκ y2, (23)

being (Landau gauge)

vx =
px

mv

− Ω y

vy =
py

mv

,
(24)

where p = pxx̂+ pyŷ corresponds to the vortex canonical momentum. Note that such a

momentum as well as the Hamitonian (23) are given per unit length of the vortex line.

Then, from Hamilton equations it is easy to check that the expressions (24) correspond

to the velocity of the vortex core ṙ, while the acceleration is indeed given by (22). From

the above electromagnetic analogy it is also useful to represent the coordinate r as the
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sum of the center coordinate r0 = x0x̂ + y0ŷ of the cyclotron circle plus the relative

coordinate r′ from such a center [24], being

x0 = −
vy

Ω
+ x

y0 =
vx

Ω
+ y.

(25)

Then, it is easy to extract the time evolution of such coordinates working to zero-th

order in the small parameter Ωrot/Ω:

ṙ0 = −2Ωroty0 x̂, (26)

which means that the center coordinate r0 will move with the superfluid velocity, while

r′(t) will perform a counterclockwise circular cyclotron motion with angular frequency

Ω. Finally, we may see from (25) that the limit of a vanishing vortex mass (Ω → ∞),

which is often found in the literature [31], amounts to ignoring the cyclotron motion

(r′ → 0, r ≡ r0).

4.2. Quasiparticle Hamiltonian

Although we have described the vortex Hamiltonian in classical terms, it is immediate

by means of the electromagnetic analogy to switch to a quantum mechanical picture

[24]. This constitutes a necessary generalization, since the normal fluid will be treated

as a low-temperature quantum gas. In fact, such a fluid will be represented by the

following Hamiltonian:

Hn =
∑

q

~ωq a†
q
aq, (27)

where a†
q

denotes a creation operator of quasiparticle excitations of (pseudo-) momentum

~q and frequency ωq. Measuring such a frequency from the lab frame, it is written as a

Doppler-shifted frequency from the superfluid frame, ωq = ωq + q · vs, where ωq is the

familiar (isotropic) dispersion relationship of 4He quasiparticle excitations. Note also

that we disregard any interaction between the quasiparticles themselves, since we shall

work at low enough temperature, so that they remain dilute allowing their treatment

as a noninteracting gas.

4.3. Equation of motion in terms of pseudomomentum

Note that according to the electromagnetic analogy, there are three kinds of momentum

to be ascribed to the vortex, viz the canonical one p, the dynamical one mvv = ρsκẑ×r′

and the so-called pseudomomentum [24], which is given by K = −ρsκẑ× r0 and should

be regarded as the generator of translation. Then, adding such a pseudomomentum to

the quasiparticle pseudomomentum
∑

q
~q a†

q
aq, we have the pseudomomentum of the

whole system. Note that only the x-component of the vortex pseudomomentum ρsκ y0

will commute with the vortex Hamiltonian (23), unless Ωrot = 0. This result may be

easily interpreted, since a superflow of velocity vs = −2 Ωrot y x̂ produces a translation

symmetry breaking in the y-direction.



Vortex pseudomomentum and dissipation 9

Next let us analize the conservation of the x-component of the pseudomomentum

for a given vortex of the lattice and its surrounding quasiparticles¶:

ρsκL〈y0〉 +
∑

q

nq ~q · x̂ = const., (28)

where nq = 〈a†
q
aq〉 denotes the average number of quasiparticles with pseudomomentum

~q and L denotes the vortex line length. We shall assume that such a population is well

described by a local equilibrium form:

nq = [e~ωq/kBT − 1]−1 ≃ [e~ωq/kBT − 1]−1

+
~q · [vn − vs]

4kBT sinh2(~ωq/2kBT )
, (29)

where the quasiparticle frequency is measured from a reference frame where the local

normal fluid is at rest, ωq = ωq−q·[vn−vs], with vs = −2 Ωrot y x̂ and vn = −2 Ωn(t) y x̂,

[Ωn(t) given by (8)]. Then, replacing (29) in (28) we have,

ρsκ〈y0〉 + Av ρn(vn − vs) · x̂ = const., (30)

where

ρn =
~

2

12Av LkBT

∑

q

q2

sinh2(~ωq/2kBT )
(31)

yields the normal fluid density and Av = (2Ωrot/κ)−1 corresponds to the area per vortex

of the lattice (Feynman’s rule). Taking into account that the velocity fields in (30) must

be evaluated at y = 〈y0〉, and using the solutions (8) and (9) we obtain,

〈y0(t)〉 = 〈y0(0)〉 [1 + (ρnw0/ρsΩrot)(e
−ΩrotBt − 1)], (32)

which according to (10), turns out to be equivalent to (20). In other words, starting from

the conservation of pseudomomentum for a vortex and its surrounding quasiparticles,

without any further assumptions regarding the vortex mass, we have shown that the

y-component of r0 presents the same dissipative evolution as that obtained in section 3

for a vortex of negligible mass, for which r ≡ r0. Thus, we may see how the dynamics

in terms of the pseudomomentum makes the coordinate r0 the focus of attention,

while the less relevant cyclotron dynamics of r′, which was forced to vanish in the

phenomenological treatment through the neglect of the vortex mass, is now naturally

ignored.

To study the dynamics along the x-direction we must focus on the y-component

of pseudomomentum, which is given by the nonconserved vortex contribution −ρsκ〈x0〉

(cf (26)). Finally, taking into account the whole vector pseudomomentum Ktot of the

vortex plus surrounding quasiparticles, we may write the following equation:

dKtot

dt
= Fext, (33)

¶ Here it is worth comparing with a recently derived conservation theorem for wave pseudomomentum

plus a suitably defined classical vortex impulse [27].
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where

Ktot = −ρsκẑ × 〈r0〉 +
κ

2Ωrot

ρn(vn − vs) (34)

and

Fext = −ρsκẑ × vs (35)

represents the force exerted on the vortex by the superfluid current [3], which is

responsible for the nonconserved y-component of pseudomomentum.

The equation of motion (33) constitutes the central result of this paper, which

may be regarded as arising from a straightforward combination of the electromagnetic

analogy and the fruitful concept of pseudomomentum. Here it is important to remark

that contrary to the phenomenological equation of motion (11), the pseudomomentum

equation (33) does not involve the vortex mass, a fact to be regarded as most welcome,

given its apparent elusive and ambiguous nature [19].

To conclude we may observe that it would be important to generalize this picture

for the rotating superfluid, where the key magnitude would be represented by an angular

pseudomomentum. To achieve this goal, given the drawbacks of the HVBK equations

pointed out in section 1, it would be helpful previously to seek for a validation of the

present results without utilizing such equations as a starting point.
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