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Figure S1. Cr 2p region showing fits to Cr2O3 and Cr
0
 contributions; doublet peaks were fixed in a 2:1 

ratio. The energy split was found to be 9.8 eV in good agreement with reference values.
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Figure S2. Survey spectrum, C 1s, F 1s and Cr 2p regions (50 eV pass energy) of a SS316 sample 

modified with 2-fluoro-4-aminophenol-β-D-lactopyranose using HCl in place of HBF4 under 

identical functionalization conditions. Spectra are compared to that of a pre-treated SS316 

surface. The presence of a F 1s peak confirms that functionalization takes place with 

chloride counterions in the aryldiazonium salt, and that the F 1s signal in Figure 5 of the 

main text does not arise from contamination with tetrafluoroborate. 
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Scheme S1. Proposed SN1 mechanism for the reaction of aryldiazonium salts with –OH groups 

at surfaces, based on the well understood hydrolysis reaction in solution.
2
 Both nylon 6 and 

SS316 display –OH groups after the pre-treatment process described in the Experimental 

Section in the main text.  
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Figure S3. Optical microscope images of SS316, nylon-6 and PES coupons extracted after 20 day 

immersion in coastal waters prior to rinsing; scalebar = 1 mm. Left column: typical images for 

coupons that had not undergone coating with lactosides prior to immersion. Right column: typical 

images for coupons that had undergone coating with lactosides prior to immersion. All samples 

displayed biomass accumulation and the density of foulants appears to be similar independently of 

surface coating.   
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Figure S4. Optical microscope images of SS316 coupons extracted after 20 day immersion in coastal 

waters at sites 1 and 2 (see Figure 1); samples were rinsed under the same conditions prior to 

imaging. Top row: coupons not coated with an aryldiazonium layer of glycosides. Middle row:  

coupons coated with a layer of lactosides prior to immersion. Bottom row: a coupon sample as 

supplied by the vendor, without undergoing any immersion tests. All samples displayed biomass 

accumulation but the density of foulants is higher on unmodified than on lactoside-modified 

samples. Similar conclusions can be drawn based on images of samples from either site. All images 

have a width of 6.2 mm. 
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Figure S5. Optical microscope images of Nylon-6 coupons extracted after 20 day immersion in 

coastal waters at sites 1 and 2 (see Figure 1); samples were rinsed under the same conditions prior 

to imaging. Top row: coupons not coated with an aryldiazonium layer of glycosides. Middle row:  

coupons coated with a layer of lactosides prior to immersion. Bottom row: a coupon sample as 

supplied by the vendor, without undergoing any immersion tests. All samples displayed biomass 

accumulation but the density of foulants is higher on unmodified than on lactoside-modified 

samples. Similar conclusions can be drawn based on images of samples from either site. All images 

have a width of 2.6 mm. 
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Figure S6. Optical microscope images of PES coupons extracted after 20 day immersion in coastal 

waters at sites 1 and 2 (see Figure 1); samples were rinsed under the same conditions prior to 

imaging. Top row: coupons not coated with an aryldiazonium layer of glycosides. Middle row:  

coupons coated with a layer of lactosides prior to immersion. Bottom row: a coupon sample as 

supplied by the vendor, without undergoing any immersion tests. All samples displayed biomass 

accumulation but the density of foulants is higher on unmodified than on lactoside-modified 

samples. Similar conclusions can be drawn based on images of samples from either site. All images 

have a width of 2.6 mm. 
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Text S1. Preparation of fluorinated precursor compound  

Commercially available D-Lactose 1 was peracetylated on treatment with sodium acetate and acetic 

anhydride to give 2. The product was converted to the corresponding lactosyl bromide 3 upon 

treatment with hydrogen bromide in acetic acid.
3
 Glycosylation of the bromide with 2-fluro-4-

nitrophenol furnished 4 exclusively as the β-anomer which was reduced through catalytic 

hydrogenation to give 5. The synthesis of the deprotected sugar required for XPS analysis was 

prepared as previously reported. 
3
  

 

Scheme S2. Synthetic strategy for the preparation of fluorinated lactose grafting agent 5 from 

lactose. 

2-Fluoro-4-aminophenyl-2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl-(1→4)-2,3,6-tri-O-acetyl-β-D-

glucopyranoside 5 

Lactosyl derivative 4 (2.0 g, 2.58 mmol) was dissolved in MeOH (50 ml) and the solution was 

degassed under N2 for 10 min. Pd(OH) on carbon (50 mg) as added and the mixture was further 

degassed for an additional 10 min. The flask was evacuated and subsequently saturated with H2 over 

a period of 2 h and monitored via TLC until complete consumption of the starting material was 

observed. The reaction mixture was filtered through a 0.4 micron filter and the solvent removed to 

give a solid product (1.7 g; 90%). 
1
H-NMR (400 MHz, CDCl3), δ ppm. 6.97 (1H, t, J = 8.6 Hz, H5-ar), 

6.42 (1H, dd, J = 12.1 Hz, J= 2.89 Hz, H6-ar), 6.33 (1H, m, H3-ar), 5.38 (1H, d, J = 2.7 Hz, H4-Gal), 5.27 

(1H, d, J = 8.67 Hz, H3-Glc), 5.13-5.16 (2H, m, H2-glc,H2-gal), 4.49 (1H, m, H3-gal), 4.74 (1H, d, J = 7.7 

Hz, H1-glc), 4.49 (2H, m, H1-gal, H6-glc), 4.16-4.03 (3H, m, H6’-glc, H6-gal, H6’-gal ), 3.90-3.83 (2H, m, 

H5-gal, H4-glc), 3.65 (1H, m, H5-glc), 2.17, 2.13, 2.11, 2.09, 2.08, 2.06, 1.93 (21H, m, 7 x CH3, OAc ) ; 
13

C-NMR (100 MHz, CDCl3), δ ppm. 170.4, 170.3, 170.2, 170.1, 169.8, 169.8, 169.1 (7 x C=O, OAc), 

153.2 (C2 aromatic), 144.1 (C4 aromatic), 136.5 (C1 aromatic), 123.0 (C3 aromatic ), 110.3 (C6 

aromatic), 103.3 (C5 aromatic), 101.8 (C1-glc), 101.0 (C1-gal), 76.4 (C4-glc), 72.8 (C5-glc), 72.6 (C3-

glc), 71.5 (C2-glc), 71.0 (C3-gal), 70.8 (C5-gal), 69.1 (C2-gal), 66.6 (C4-gal), 61.8 (C6-glc), 60.9 (C6-gal) 

20.8, 20.8, 20.6, 20.6, 20.6, 20.6, 2.05 (7 x CH3, OAc). 
19

F-NMR (376.4 MHz, CDCl3), δ ppm. -139.10 

(1F, s, F1-ar); [M+Na]+ calculated for C32H40FNNaO18 = 768.2122, Found 768.2117.  
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(Compound 5) 
1
H NMR spectrum, 400 MHz, (CDCl3) 
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(Compound 5) 
13

C NMR spectrum, 100 MHz, (CDCl3) 

 

 

(Compound 5) 
19

F NMR spectrum, 376.4 MHz, (CDCl3) 
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(Compound 5) ESI+ Mass Spectrum 
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