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Abstract:  23 

Climate change has been driving terrestrial water storage variations in the high mountains of Asia in 24 

recent decades. This study is based on Gravity Recovery and Climate Experiment (GRACE) data to 25 

analyse spatial and temporal variations in terrestrial water storage (TWS) across the Tibetan Plateau (TP) 26 

from April 2002 to December 2016. Regional averaged TWS anomaly has increased by 0.20 mm/month 27 

(p<0.01) during the 2002-2012 period, but decreased by -0.68 mm/month (p<0.01) since 2012. The 28 

seasonal variations in TWS anomalies also showed a decreasing trend from May 2012 to December 2016. 29 

TWS variations in the TP also shown significant spatial differences, which is decreasing in southern TP 30 

but increasing in the Inner TP. And a declining trend was clearly evident in the seasonal variability of 31 

TWS anomalies in the south TP (about -30 to -55 mm/a), but increasing in the inner TP (about 10-35 32 

mm/a). Meanwhile, this study links temperature/precipitation changes, glacial retreat, and lake area 33 

expansion to explain the spatially differences in TWS. Results indicated that precipitation increases and 34 

lake area expansion drove increasing TWS in the Inner TP during the 2002-2016 period, but temperature 35 

increases and glacial retreat drove decreasing TWS in southern TP.   36 

Key words: Terrestrial water storage; Climate change; Spatial difference; GRACE; Tibetan Plateau 37 
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1 Introduction 45 

The Tibetan Plateau (TP) region is rich in water resources and is strongly impacted by climate change 46 

(Immerzeel et al., 2010). Regional air temperature has increased by 0.039 ℃/a during the last 50 years 47 

(Deng et al., 2017), and the warming drives glacial retreat (Jacob et al., 2012; Yao et al., 2012; Neckel et 48 

al., 2014). The rapid glacial retreat is also affected by other factors, such as atmospheric circulations (Yao 49 

et al., 2012) and black soot (Xu et al., 2009). Meanwhile, a shorter snow cover duration (-3.5±1.2 50 

days/decades) also with the plateau warming (Xu et al., 2017). As a result, many scholars have focused 51 

on the region’s distinctive glacial and snow melt-related features, such as terrestrial water storage (TWS) 52 

variations (Matsuo and Kosuke, 2010; Song et al., 2015), lake area expansion (Zhang et al., 2013; Song 53 

et al., 2015), and runoff changes (Sorg et al., 2012; Lutz et al., 2014; Khadka et al., 2014).  54 

The Gravity Recovery and Climate Experiment (GRACE) satellite mission were launched in March 2002. 55 

It monitors monthly variations in Earth’s gravitational field to determine the planet’s surface mass 56 

changes (Wahr et al., 1998). Since GRACE satellites launch, the data have been widely used in 57 

hydrological research to i) estimate global and regional TWS variations (Syed et al., 2008; Long et al., 58 

2015); ii) estimate evapotranspiration by evaluating the modelled evapotranspiration on a basin scale 59 

through the estimation of results (Rodell et al., 2004; Ramillien et al., 2006); iii) monitor drought by 60 

assimilating results to improve drought detection (Houborg et al., 2012; Long et al., 2013); iv) measure 61 

groundwater depletion, such as the analysis of groundwater changes in the northwest Indies, which 62 

showed groundwater depletion at a rate of 4 cm/a (Rodell, 2009); and v) estimate the mass balance of 63 

glaciers, as was done in the Antarctic (Chen et al., 2006), Greenland (Jin and Zou, 2015), and high Asia 64 

(Matsuo and Heki, 2010). Therefore, GRACE data now serves as a new data source for hydrological 65 

research. 66 
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The Tibetan Plateau region serves as Asia’s water tower (Immerzeel et al., 2010), and all rivers in the 67 

surrounding region originate there. Thus, the TP is very important to the ecological environment as well 68 

as to the economic development of the downstream regions. Previous studies indicated a negative glacial 69 

mass balance in the TP between 2003 and 2009/2010 (Matsuo and Heki, 2010; Jacob et al., 2012). Yi 70 

and Sun (2014) pointed out that there were positive glacial changes of about 30 Gt/a in the Inner TP 71 

during 2003-2012. Recent studies also indicate that TWS shows a decreasing trend in the middle 72 

Himalayas (-20 mm/a) but an increasing trend in the Inner TP (9.7 mm/a) during the period 2003-2012 73 

(Guo et al., 2016). So why has TWS increased in the Inner TP but decreased in the southern TP? Zhang 74 

et al. (2013) suggested that lake area expansion in the Inner TP can explain 61% of the increasing mass. 75 

Precipitation changes have also affected TWS variations in the TP (Yi and Sun, 2014). However, current 76 

studies lack a systematic and comprehensive analysis of spatial differences in TWS in the TP during 77 

recent climate changes. 78 

In this study, we focus on spatially differences in TWS variations in the TP during the 2002-2016 period. 79 

First, we describes the temporal and spatial variations in terrestrial water storage in the TP based on 80 

GRACE data. Second, we determine impact factors of the spatial differences in TWS in the TP. Section 81 

2 describes the study area, data, and methods. Section 3 presents the results, section 4 provides detailed 82 

discussions, and section 5 presents the conclusions. 83 

2 Data and Methods 84 

2.1 Study area 85 

The Tibetan Plateau is located in the southwest of China. It lies between Central and East Asia, and is 86 

largely defined as lying between 25°-39°N, and 70°-106°E (Fig. S1). The average elevation of the TP 87 

exceeds 4,000 m, which is why it is sometimes referred to as “the roof of the world” or the “third pole”. 88 
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Furthermore, it has nearly as many glaciers and glacial areas as Antarctica and Greenland (Yao et al., 89 

2012). The Tibetan Plateau is the headwater area of most rivers in the surrounding regions, including the 90 

Yellow River, the Yangtze, the Brahmaputra, the Ganges, and the Indus. The Inner TP is an exorheic 91 

drainage basin and the southern TP is an endorheic drainage basin (Fig.S1). The TP has a typical plateau 92 

climate (Table S1). The water vapor in this region is largely controlled by the India monsoon and the 93 

East Asia monsoon (Yao et al., 2012), with annual precipitation measuring about 472 mm and mainly 94 

occurring in summer (Table S1). 95 

2.2 Data 96 

2.2.1 Temperature and precipitation 97 

We collected observational data from 87 meteorological stations from the Climate Data Center 98 

(http://data.cma.cn/). Most stations are located in the southeastern portion of the Tibetan Plateau, while 99 

a few are in the northwest (Fig. S1). In this study, we analysed temperature and precipitation trends in 100 

the TP using daily observation data. 101 

2.2.2 GRACE data 102 

The GRACE data were provided by the Jet Propulsion Laboratory (JPL, available at 103 

https://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/) of the California Institute of Technology. 104 

In this study, the datasets are gridded at 0.5°×0.5°, and the time range is from April 2002 to December 105 

2016. Data were missing for 17 months (i.e., June and July 2002; January and June 2011; May and 106 

October 2012; March, August, and September 2013; February and December 2014; June, October, and 107 

November 2015; and April, September, and October 2016), and were therefore interpolated based on 108 

Long’s method (Long et al., 2015).  109 

2.2.3 GLDAS data 110 

http://data.cma.cn/
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The Global Land and Data Assimilation System (GLDAS) products are based on satellite- and ground-111 

based observational data products, then using advanced land and surface modeling and data assimilation 112 

techniques to generate optimal fields of land and surface states and fluxes (Rodell et al., 2004). The 113 

systems included four land and surface models, namely Mosaic, Noah, the Community Land Model 114 

(CLM), and the Variable Infiltration Capacity (VIC). In this paper, we selected runoff and evaporation 115 

data from the GLDAS-Noah model products. The GLDAS-Noah model is provided on 0.25-degree 116 

global grids (available at http://disc.sci.gsfc.nasa.gov/hydrology/data-holdings). Detailed information 117 

about the GLDAS land surface model is given in Rodell et al. (2004). 118 

2.3 Methods 119 

2.3.1 Terrestrial water storage calculations 120 

In this study, the Mascons approach (for details see Watkins et al., 2015) was used to calculate surface 121 

mass change based on the Level-1 GRACE observations, processed at JPL. The characteristic of this 122 

method is to helpful eliminate noise from outside the region of interest (ROI). The Earth’s oblateness 123 

scales (C20) coefficients were replaced in order to reduce uncertainty from the native GRACE-C20 124 

values (Chen et al., 2005; Cheng et al., 2011). Meanwhile, the degree-1 coefficients were estimated using 125 

the method from Swenson (2008). Then, a glacial isostatic adjustment (GIA) correction in the model 126 

(Geruo and Wahr, 2013) was applied to remove glacial rebound effects, especially in mountains regions 127 

and high latitude areas. The data anomalies base period is from January 2004 to December 2009, because 128 

there are no missing values in this period. Finally, the scaling factors were applied to the data over the 129 

study area, and the scale-corrected time series was calculated as follow:  130 

𝑔𝑔′(x, y, t) = 𝑔𝑔(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) ∗ 𝑠𝑠(𝑥𝑥, 𝑦𝑦)             (1) 131 

Where x is longitude, y is latitude, t is time (months), g(x,y,t) is the grid surface mass change value, and 132 

http://disc.sci.gsfc.nasa.gov/hydrology/data-holdings
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the scaling grid is s(x,y). The scaling factors are provided by the JPL website 133 

(https://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/). The uncertainty estimates approach in 134 

this study was described in Wahr et al., (2006).  135 

The seasonal cycle of terrestrial water storage has been removed. 136 

2.3.3 Trend test 137 

The Mann-Kendall (MK) non-parametric trend test is a powerful trend detection method that is widely 138 

used in hydrology and meteorology time series analyses (Hirsch, 1984; Hamed, 1998; Yue, 2002; Hamed, 139 

2008). In this study, the MK trend test was used to detect the trend of TWS, temperature, and precipitation. 140 

The slope of the trend is estimated by using Sen’s non-parametric trend estimator (Sen, 1968). 141 

3 Results 142 

3.1 Temporal and spatial variations in TWS 143 

3.1.1 Temporal variations 144 

The temporal variations in TWS anomalies were analysed for the Tibetan Plateau during the period from 145 

April 2002 to December 2016. The results (Fig. 1a) showed that a significant increasing trend of about 146 

0.20 mm/month (p<0.01) from April 2002 to April 2012, but a decreasing trend from May 2012 to 147 

December 2016, with a rate of around -0.68 mm/month (p<0.01). The results of seasonal variations in 148 

TWS anomalies showed a decreasing trend from May 2012 to December 2016 (Fig. 1b).  149 

https://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/
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 150 

Figure 1a shows the temporal variations in TWS anomalies in the Tibetan Plateau from April 2002 to 151 

December 2016 (blue bar represents the uncertainty). Figure 1b illustrates seasonal changes of TWS (DJF, 152 

MAM, JJA, and SON). 153 

The results for seasonal variations in TWS anomalies indicate positive anomalies in DJF and MAM (Fig. 154 

S2). There were negative anomalies in JJA and SON.  155 

3.1.2 Spatial variations 156 

The spatial variations in TWS anomalies indicate significant spatial differences in all seasons between 157 

April 2002 and December 2016 (Fig. 2). A declining trend was clearly evident in the seasonal variability 158 

of TWS anomalies in the south TP (about -30 to -55 mm/a), but increasing in the inner TP (about 10-35 159 
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mm/a). The results also showed that TWS decreased in the Inner TP since 2012 (Fig.S3), which may be 160 

due to rising temperature and increasing evaporation (Fig.S3).   161 

 162 

Figure 2 Spatial variations in seasonal TWS anomalies in the Tibetan Plateau between April 2002 and 163 

December 2016, with a spatial resolution of 0.5×0.5 degree; a is DJF, b is MAM, c is JJA, and d is SON. 164 

TWS has increased in the full TP and the Inner TP between April 2002 and December 2016 by 0.002 165 

mm/month, and 0.58 mm/month (p<0.01), respectively (Table 1). But TWS has decreased in the southern 166 

TP by -0.62 mm/month (p<0.01) during this period.    167 

Table 1 The TWS variations in the TP and sub regions (Inner TP and south TP) during 2002.04-168 

2016.12. Mean is the average value of TWS anomaly for 2002.04-2016.12. 169 

 Trend (mm/month) Significance Periods 

Full TP 0.002  2002.04-2016.12 

Inner TP 0.58 ** 2002.04-2016.12 

South river basin -0.62 ** 2002.04-2016.12 

** Significant at p<0.01 170 

3.2 Relationship between TWS variations and recent climate change 171 
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Climate change is an important factor driving TWS variations in mountains regions (Deng and Chen, 172 

2017). Temperatures have increased in DJF, MAM, JJA, and SON between April 2002 and December 173 

2016 in the south TP (Fig. 3). In the south TP, precipitation have decreased in DJF, JJA, and SON during 174 

this period (Fig. 4), but increased in MAM. In the Inner TP, temperatures decreased in full seasonal (Fig. 175 

3). Precipitation has increased in MAM, JJA, and Son in the Inner TP (Fig.4), but decreased in DJF. 176 

 177 

Figure 3 Spatial variations in temperature in the Tibetan Plateau during 2002-2016, a is DJF, b is MAM, 178 

c is JJA, and d is SON. 179 

 180 

Figure 4 Same as Fig.3 but for precipitation. 181 
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TWS variations have increased in the Inner TP, with a rate of 0.58 mm/month (p<0.01) (Fig. 5a), but 182 

decreased in the south TP (-0.62 mm/month, p<0.01) (Fig. 5b). Temperature and precipitation changes 183 

in the Inner TP and south TP were also analysed over during the past decade. Moreover, temperature 184 

decreased (-0.38 ℃/a) and precipitation increased (1.07 mm/a) in the Inner TP (Fig. 5a), but temperature 185 

increased (0.01 ℃/a) and precipitation decreased (-2.82 mm/a) in the south TP (Fig. 5b).  186 

 187 

Figure 5. The left plane refers to a, TWS variations in the Inner TP between April 2002 and December 188 

2016, and blue shading is represents uncertainty. Right plane are the trend of temperature and 189 

precipitation during this period. “b” is the same to a but for the south TP. 190 

TWS variations have decreased in the Inner TP from May 2012 to December 2016, with a rate of -1- -191 

4mm/month (Fig.6b). We also analysis differences in temperature (Fig.6c), precipitation (Fig.6d), 192 

precipitation (Fig.6e), and evaporation (Fig.6f) between April 2002-April 2012 and May 2012-December 193 

2016. The mean and maximum temperature have positive value in the Inner TP, it is means that 194 

temperature increased in this region. Precipitation also increased in the Inner TP. Evaporation have 195 

increased in the Inner TP. Therefore, the rising temperature resulted in evaporation increased and glaciers 196 

retreat are an important factors for TWS variations in the TP. 197 
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 198 

Figure 6 a is the trend of TWS variations in the TP from April 2002 to April 2012. b is the trend of TWS 199 

variations in the TP from May 2012 to December 2016. c is the difference in Tmean between April 2002-200 

April 2012 and May 2012-December 2016. d, e, f same as c but for Tmax, precipitation, and evaporation, 201 

respectively. The evaporation data was provided by GLDAS Noah model at 0.25×0.25 degree. 202 

3.3 Effects of lake area changes  203 

Lake water storage is yet another component of TWS in the TP (Xiang et al., 2016), and is mainly 204 

distributed in the Inner TP. The number of small lakes (1-10 km2) decreased from 2005 to 2014, but the 205 

area also spawned six new lakes ≥10 km2 (Wan et al., 2016). Figure S4 reveals that lakes in the southern 206 

TP, between 2005 and 2014, show a decreasing rate by -7%, while those in the Inner and northern TP 207 

exhibit a growth rate of 15.5%.  208 

Figure 7 indicates that lake area changes, for areas >100 km2 between 2005 and 2014 in the eastern 209 
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portion of the Inner TP, exhibit increasing trends. Results show that most of the lake areas increased by 210 

at least 20% (Table 2), with Ayakkum Lake and Aqqikkol Lake having increased 30.79% and 31.75%, 211 

respectively. Therefore, lake water storage increased in the Inner TP are an important factor for TWS 212 

spatial variations in the TP during the past decade. Over the past decade, lakes on the Inner TP have 213 

displayed an expand trend. With the increasingly intensive temperature (Fig.3) and precipitation (Fig.4), 214 

the large amount of glaciers, snow and permafrost meltwater has caused lakes expanding (Song et al., 215 

2013).  216 

 217 

Figure 7. The typical lake area changes in the Inner TP (dataset provided by Wan et al., 2016). 218 

Table 2. Changes in the number and area of lakes in the Tibetan Plateau from 2005 to 2014 219 

(Δ=(Area2014-Area2005)/Area2005*100. The lake data are supported by Wan (2016). (Unite:km2) 220 

ID Name Area 
2005 

Area 
2014 

Δ（%） ID Name Area 
2005 

Area 
2014 

Δ（%） 

1 Aqqikkol 
Lake 

408.68 538.45 31.75 7 Wulanwula 
Lake 

566.74 650.99 14.87 

2 Dogaicoring 313.68 403.1 28.51 8 Xiangyang 100.8 121.01 20.05 
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Qangco Lake 
3 Dogai Coring 458.42 492.41 7.42 9 Xijir Ulan 

Lake 
371.88 462.69 24.42 

4 Jingyu Lake 280.42 339.57 21.1 10 Ayakkum 
Lake 

754.59 986.9 30.79 

5 Hoh Xil Lake 313.14 350.38 11.89 11 Rola Co 137.91 169.9 23.2 
6 Lexiewudan 

Co 
342.82 273.3 12.09 12 Yuye Lake 122.24 145.91 19.36 

3.4 Effects of glacial retreat 221 

In the Tibetan Plateau, glaciers have largely retreated over past decades, driven by climate change (Yao 222 

et al., 2012), and this has had an impact on water storage changes (Jacob et al., 2012). Table 3 showed 223 

that glaciers retreated slightly in the Ayakkum Lake and Dogai Coying areas from 2001 to 2013, with a 224 

rate of -1.45% and -1.93%, respectively. Figure 7 also shows that these two basins are located in the 225 

eastern Inner TP. The maximum decrease of TWS occurred in the eastern south TP (Fig. 2). Accordingly, 226 

glaciers sharply retreated in the Mekong River basin (-8.91%) during 2001-2013 (Table 3). Meanwhile, 227 

Table 3 also indicates glacial retreat in the Salween River and Ganges River areas of -2.32% and -3.4%, 228 

respectively. The joint results for Figs. S4 and S6 indicate that glacial retreat contributed to TWS 229 

decreases in the south TP.    230 

Table 3. Glacier area change in Inner TP and south river basin on the Tibetan Plateau during 2001-231 

2013 (Ye et al., 2017). 232 

Regions Basins Changes (%) Period 

Inner TP Ayakkum lake -1.45 2001-2013 

 Dogai Coying -1.93 2001-2013 

South river basin Mekong River -8.91 2001-2013 

 Salween River -2.32 2001-2013 

 Ganges River -3.14 2001-2013 



 15 / 24 
 

 233 

4. Discussion 234 

Terrestrial storage variations are closely related to precipitation and evaporation. Specifically, ΔS=P-E-235 

R, where ΔS is terrestrial water storage，P is precipitation, E is evaporation，and R is runoff. According 236 

to the water budget equation, we know that water storage is a transient state that is determined by the 237 

relationship between the input and output of the water system. Therefore, the water budget equation can 238 

be simplified as ΔS = (water)in - (water)out, where (water)in is the input variable (i.e., precipitation, runoff) 239 

and (water)out is the output variable (i.e., evaporation, runoff and human water use). The negative trend 240 

of TWS anomalies is caused by input less than output in the water system, i.e., drought. For example, the 241 

Amazon Basin experienced a negative trend of TWS anomalies during 2003-2013 due to decreased 242 

precipitation (Xavier et al., 2010). The drought events in northwestern India, however, were mainly due 243 

to irrigation consumption that led to groundwater overexploitation (Rodell et al., 2009). 244 

The warming environmental has a significant impact on runoff variations in the TP. Runoff reduction in 245 

the southern and eastern TP because of warming and wind stilling led to less precipitation in the monsoon 246 

impacted region (Yang et al., 2013). Annual runoff decreased in wet part of TP since 2000 (Liu et al., 247 

2018), but increased in dry part (Wang et al., 2017). According to future climate scenarios and VIC-248 

glacier model, the runoff will remain stable or moderately increase in 2011-2040 relative to 1971-2000 249 

in the six major river basins in the TP, but increase by 2.7-22.4% during 2041-2070 relative to 1971-2000 250 

(Su et al., 2015). 251 

The GLDAS runoff data can fill the gaps from the observation station sparse in TP. Some studies 252 

evaluated the runoff product of Noah model against observations station data in five river basin in the 253 

TP, and results shown that the best performance in capture the temporal variability of streamflow at 254 

monthly and seasonal scales (Bai et al., 2016). The uncertainties in GLDAS runoff simulations has been 255 
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discussed in detail in Bai et al. (2016), which is indicated that uncertainties sources from three parts: 256 

forcing data, model structure, and model parameters. Therefore, the quality of the atmospheric forcing 257 

data has significant influences on runoff simulated accuracy (Zaitchik et al., 2010), for example, 258 

precipitation and air temperature (Wang et al., 2016).  259 

We used GLDAS-Noah model evaporation and runoff datasets to analysis evaporation and runoff 260 

changes in the TP during 2002-2016. With rising air temperature, evaporation increased in most parts of 261 

the TP (Fig. S5b). Evaporation increased may be caused lake water storage decreased (Song et al., 2013). 262 

With the increasingly intensive climate warming tendency, the runoff of meltwater will be increased from 263 

mountainous glaciers/snow. But the runoff analysis results indicated that surface runoff has a decreased 264 

trend in most of the TP (Fig. S5c), especially in the south TP.  265 

Recent studies also indicate that TWS shows a decreasing trend in the middle Himalayas (-20 mm/a), but 266 

an increasing trend in the Inner TP (9.7 mm/a) during the period 2003-2012 (Guo et al., 2016). The 267 

spatio-temporal variations in TWS anomalies in the TP are related to temperature and precipitation. Over 268 

the past 40 years, the temperature has increased (You et al., 2015; Deng et al., 2017), such that the 269 

increased rate in winter is larger than that in summer (Xu et al., 2008). At the same time, annual mean 270 

precipitation also increased, showing obvious seasonal differences (Xu et al., 2008). Since 2000, data at 271 

the observation stations in this study show a clear temperature increase. Meanwhile, precipitation has 272 

decreased in the southern Tibetan Plateau, but increased in the northern Tibetan Plateau. Figure 4 shows 273 

that precipitation changes are consistent with spatial variations in TWS in the TP. The temperature 274 

increases likely accelerated the retreat of glaciers in southern regions (Fig. 3), which then led to a 275 

declining trend in precipitation (Fig. 4) and TWS anomalies.  276 

Overall, decreases in water storage in the TP were mainly caused by glacier retreat (Singh and Lars, 277 
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2004). According to the China Second Glacier Inventory (CSGI, Guo et al., 2014), glaciers cover 278 

approximately 4.54×104 km2 of the TP. Matsuo and Heki (2010) suggested that the glacier mass loss rate 279 

of -47 Gt/a in the high mountains of Asia (HMA) from 2003 to 2009 mainly occurred in the Himalayas. 280 

Yao et al. (2012) suggested that the glacier retreat in the Himalayas (about -790 mm/a) was due to 281 

increased temperatures and decreased precipitation, whereas the glacier advance in the Karakoram and 282 

Kunlun Mountains (about +250 mm/a) is caused by increased precipitation (0.01-0.02 mm/day). 283 

Meanwhile, glacier retreat is also closely related to freezing level heights (FLH) (Wang et al., 2014). For 284 

instance, FLH in the Kunlun Mountains showed a decreasing trend of -2.33 m/a (Chen et al., 2015). 285 

Decreased FLH can mainly influence the glaciers mainly either by inhibiting glacier retreat or 286 

accumulating snow. Moreover, we also suggest that decreased FLH will probably result in the advance 287 

of glaciers in the western TP. Thus, from 2003 to 2013, the increases in precipitation and snowfall, along 288 

with decreases in FLH resulting in glacier advance, are the primary impact factors contributing to the 289 

positive anomalies of TWS in the northwestern TP.  290 

The total lake area in the TP increased 7.03% during 2005-2014 (Wan et al., 2016). Precipitation 291 

increased and glacier retreat are contributed to lake expansion (Song et al., 2013; Zhang et al., 2017). 292 

Meanwhile, the increased rates for the total area of lakes were located in the Inner TP (Wan et al., 2016). 293 

But lakes in the south river basins are trending towards a decrease. The TWS variations are in good 294 

agreement with changes in temperature and precipitation (Fig. 5), and these results are similar to those 295 

of Song’s (2014), which showed that precipitation increases also supported lake expansion. In endorheic 296 

drainage basins, precipitation, glacier and snow melt will promote lake expansion, however, in exorheic 297 

drainage basins, the complex correlations between glacier retreat and lake changes depend primarily on 298 

differences between the amount of water flowing into and out of the lakes.  299 
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Additionally, glacier and snow melt changes also cause groundwater changes. From 2003 to 2009, 300 

groundwater in the Inner TP showed an increasing trend (about +1.66 ± 1.52 Gt/a) (Xiang et al., 2016), 301 

whereas the groundwater in the Bengal basin of Bangladesh and north-central India (which, in our study, 302 

includes the Brahmaputra and Ganges, respectively) exhibited a clear decreasing trend. Figure 4 shows 303 

that precipitation has an increasing trend in the Inner TP and a decreasing trend in the south of the TP. 304 

Yao et al. (2012) also found that glaciers retreated in the Himalayas region but advanced in the Kunlun 305 

region. Therefore, the groundwater changes in these areas may have been caused both by glacial melting 306 

and increased precipitation. 307 

Climate changes determine TWS variations by strongly influencing changes in glaciers and snow, lake 308 

water, soil moisture, and groundwater. The possible mechanism of TWS variations in endorheic drainage 309 

basins (i.e., Inner TP) differs from that in exorheic drainage basins (i.e., south of TP). In the Inner TP, 310 

increased precipitation led to increases in both lake water and groundwater storage, so the TWS increased 311 

in the inner TP. In endorheic drainage basins, the glaciers’ retreat did not lead to a TWS decrease because 312 

glacier and snow melt did not flow out of this region. In the southern TP (Fig. 5b), increases in 313 

temperature resulted in increases in glacier and snow melt, but decreases in precipitation (especially in 314 

snowfall). The end results of these changes were decreases in lake water and groundwater storage, 315 

resulting in a TWS decline. 316 

This study mainly focused on the effects of climate changes on TWS variations in high Asia. The work 317 

provided a comprehensive analysis of the effects of changes in climate factors on TWS variations in the 318 

region. Our future research focus will highlight a typical river basin in the Tibetan Plateau to 319 

quantitatively analyse the impact of climate changes on TWS variations. 320 

5. Conclusions 321 
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In this study, we investigated the temporal and spatial variations in TWS in the Tibetan Plateau from 322 

April 2002 to December 2016. The temporal variations in TWS anomalies can be divided into two stages. 323 

In the first stage (April 2002 to April 2012), TWS had a significant increasing trend of ~ 0.20 mm/month 324 

(p<0.01); in the second stage (May 2012 to December 2016), it deceased at a rate of -0.68 mm/month 325 

(p<0.01). At the same time, spatial variations in TWS anomalies indicate that the Inner TP had an 326 

increasing trend (0.58 mm/month, p<0.01), whereas the southern TP had a decreasing trend (-0.62 327 

mm/month, p<0.01).  328 

Seasonal variations in TWS anomalies indicate positive anomalies in the Inner TP, and shown negative 329 

anomalies in the southern TP. Temperatures increased and precipitation decreased has led to TWS 330 

declined in the southern TP. But contrast, temperatures decreased and precipitation increased finally 331 

resulted in TWS raised in the Inner TP. 332 

Increases in temperature accelerated the retreat of glaciers and evaporation decreased, which, together 333 

with precipitation decreases, resulted in TWS anomalies showing a reduced trend in the south TP. 334 

However, in the Inner TP, TWS showed an increase from April 2002 to April 2012, which was caused by 335 

increased precipitation and temperature decreased. But TWS have a decreased trend from May 2012 to 336 

December 2016, which was caused by evaporation increased and glaciers retreat. 337 
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