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ABSTRACT 9 

Present-day along-strike heterogeneities within the Himalayan orogen are seen at many scales, 10 

from variations within the deep architecture of the lithospheric mantle, to differences in 11 

geomorphologic surface processes. Here, we present an internally consistent petrochronologic 12 

dataset from the Himalayan metamorphic core (HMC), in order to document and investigate the 13 

causes of along-strike variations in its Oligocene–Miocene tectonic history. Laser ablation split-14 

stream analysis was used to date and characterise the geochemistry of titanite from 47 calc-15 

silicate rocks across >2000 km along the Himalaya. This combined U-Pb–REE–Zr single 16 

mineral dataset circumvents uncertainties associated with interpretations based on data 17 

compilations from different studies, mineral systems and laboratories, and allows for direct 18 

along-strike comparisons in the timing of metamorphic processes. Titanite dates range from ~30 19 

Ma to 12 Ma, recording (re-)crystallization between 625°C and 815°C. Titanite T-t data overlap 20 

with previously published P-T-t paths from interleaved peltic rocks, demonstrating the 21 

usefulness of titanite petrochronology for recording the metamorphic history in lithologies not 22 

traditionally used for thermobarometry. Overall the data indicate a broad eastward-younging 23 

trend along the orogen. Disparities in the duration and timing of metamorphism within the HMC 24 

are best explained by along-strike variations in the position of ramps on the basal detachment 25 
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controlling a two-stage process of preferential ductile accretion at depth followed by the 26 

formation of later upper-crust brittle duplexes. These processes, coupled with variable erosion, 27 

resulted in the asymmetric exhumation of a younger, thicker crystalline core in the eastern 28 

Himalaya. 29 

 30 

Keywords: Himalaya; Petrochronology; Titanite; Metamorphic petrology 31 

 32 

 33 

1. INTRODUCTION 34 

1.1 Along-strike variations in the Himalaya 35 

The India-Asia collision has produced one of the largest and most laterally continuous 36 

mountain belts on Earth today. Plate reconstructions indicate that the counterclockwise rotation 37 

of India into Asia resulted in an oblique collision with along-strike variations in the amount of 38 

shortening and rate of collision, both of which increase from west to east (Molnar and 39 

Tapponier, 1975; Klootwijk et al., 1985; Treloar and Coward, 1991; Banerjee et al., 2008; Molar 40 

and Stock, 2009; Replumaz et al., 2010). Along-strike heterogeneities are present in the 41 

Himalaya in various forms, from the strength and geometry of the lithospheric mantle (Gahalaut 42 

and Kundu, 2012; Hammer et al., 2013; Chen et al., 2015; Hetényi et al., 2016; Webb et al., 43 

2017), to the geometry of orogen-defining structures (Robert et al., 2011; Gibson et al., 2016; 44 

Mercier et al., 2017), to differing amounts of strain accommodated by shortening (Long et al., 45 

2011; Burgess et al., 2012; Hirschmiller et al., 2014). Moreover, surface processes, such as the 46 

amount of precipitation and changes in surface topography also vary across the range (Duncan 47 

et al., 2003; Bookhagen and Burbank, 2010; Thiede and Ehlers, 2013; Harvey et al., 2015; 48 

Adams et al., 2016; Van der Beek et al., 2016).  49 

The Himalayan metamorphic core (HMC) provides the key to understanding the 50 

mechanisms controlling long-term lateral variations in the orogen’s collisional history. This high-51 
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grade package of metamorphic and igneous rocks records the Pressure-Temperature-time-52 

Deformation (P-T-t-D) history of the orogen from the Eocene to present (see Kohn, 2014 for 53 

review). The HMC is often described as a continuous unit that experienced a similar along-strike 54 

tectonothermal history (e.g. Hodges, 2000). There have been a variety of models proposed to 55 

describe the mechanism(s) by which the ductile HMC was emplaced during the Miocene (e.g. 56 

see Cottle et al., 2015a for review), including end-member models of channel flow (e.g. 57 

Beaumont et al., 2001) and critical taper-type wedge models (e.g. Robinson et al., 2006; Kohn, 58 

2008). In these models, extrusion of the HMC southward from beneath the Tibetan plateau is 59 

either controlled by gravity driven mid-crustal lateral flow (e.g. Grujic et al., 1996; Jamieson et 60 

al., 2006), or by foreland propagating thrust stacks (Davis et al., 1983). New data about the 61 

evolution of the Himalayan system through time, however, have led to the development of 62 

hybrid channel flow-wedging-type models in which the system is largely controlled by rheologic 63 

changes that migrate between these end-member states through space and time (e.g. 64 

Jamieson and Beaumont, 2013; Cottle et al., 2015a; Larson et al., 2015).  65 

Petrochronology is the geochronological approach were ages of minerals are linked to 66 

geological processes through combined detailed petrology, microstructural analysis, 67 

geochemical characterization, and radiometric dating (Engi et al., 2017). The recent explosion of 68 

petrochronological data from different transects along the length of the orogen has revealed 69 

significant complexity and heterogeneity within the HMC (e.g. Kohn, 2014; Goscombe et al., 70 

2018 and references therein). For example, when data from the entire HMC are compared, 71 

there are differences in the duration of metamorphism, conditions of metamorphism, presence 72 

or absence of intra-formational shear zones, unit thickness, thrusting and exhumation history 73 

between sections (Goscombe et al., 2018 and references therein). Four broad factors have 74 

been invoked to explain these along and across-strike variations, including (1) the influence of 75 

the geometry of the Main Himalayan Thrust (e.g. Robert et al., 2011), (2) tectonometamorphic 76 

discontinuities (i.e. intra-HMC structures) within the HMC (e.g. Larson and Cottle, 2014; 77 
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Montimoli et al., 2015), (3) the effect of inherited basement structures on Himalayan structures 78 

(Godin et al., 2018) and (4) variations in ductile accretion mechanisms of rock into the HMC 79 

through time and space (Larson et al., 2015; Mercier et al., 2017).  80 

1.1.1 Geometry of the Main Himalayan Thrust 81 

 The Main Himalayan Thrust (MHT) is the main thrust-sense decollement that has 82 

controlled the accommodation of deformation during the India-Asia collision (Hauck et al., 83 

1998). Along-strike variations in its geometry, and particularly the locations of ramps (Berger et 84 

al., 2004; Jouanne et al., 2004; Robert et al., 2011; Coutand et al., 2014; Singer et al., 2017) 85 

have been proposed as a major cause of lateral variations within the orogen. Evidence from 86 

geological studies (Larson et al., 2015; Martin et al., 2015; Gibson et al., 2016; Godin et al., 87 

2018), as well as those using 3D shear velocity imaging (Singer et al., 2017), gravity anomalies 88 

(Hetenyi et al., 2016), thermochronological modelling (Robert et al., 2011; Coutand et al., 2014), 89 

and geomorphological investigation (Duncan et al., 2003; Bookhagen and Burbank, 2010; 90 

Thiede and Ehlers, 2013; Harvey et al., 2015; Adams et al., 2016; Van der Beek et al., 2016), all 91 

support a model in which along-strike differences in the geometry of the MHT control variations 92 

in topography, seismic activity, the development of duplexes, tectonic windows, and high-grade 93 

metamorphic processes along-strike. The geometry and position of ramps on the MHT are also 94 

key factors for controlling the thickness of the HMC (Robert et al., 2011; Gibson et al., 2016; 95 

Mercier et al., 2017; Godin et al., 2018). 96 

1.1.2 HMC tectonometamorphic discontinuities  97 

 Tectonometamorphic discontinuities have been recognized within the GHS in several 98 

locations along the strike of the Himalayan orogen (see Montomoli et al., 2015 and Carosi et al., 99 

2017 for review). These are generally interpreted to represent both out-of-sequence (e.g. the 100 

Kakthang Thrust in Bhutan; Daniel et al., 2003) and in-sequence structures (e.g. Kalopani shear 101 

zoning in the Kali Gandaki, Carosi et al., 2016). The apparent lateral continuity of these 102 

structures has led to the suggestion that the mid-crustal tectono-metamorphic discontinuities 103 
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within the HMC form a continuous structure along the length of the orogen (Carosi et al., 2017). 104 

Such tectonometamorphic discontinuities have been identified more often by discrete breaks in 105 

geochronological and thermobarometric data rather than structural field-data controls. For 106 

example, both the Laya thrust in Bhutan (Warren et al., 2011), and the intra-GHS structure 107 

within the Sikkim HMC are mapped on P-T-t constraints alone (Rubatto et al., 2013).  108 

1.1.3 Inherited basement structures  109 

 Major NE-trending Pre-Cambrian basement ridges are present beneath the Himalayan 110 

front within the Indian basement (Godin and Harris, 2004; Godin et al., 2018 and references 111 

therein). Variations in the timing and conditions of both deep metamorphic (Gibson et al., 2015) 112 

and surface processes (Harvey et al., 2015) within different HMC transects separated by these 113 

basement ridges may be explained by strain partitioning along pre-existing crustal weaknesses. 114 

The potential for reactivation of basement ridges and deep-seated structures has been 115 

postulated as a mechanism for causing along-strike differences in ramp and flat geometries on 116 

the MHT, thus segmenting the orogen (Godin et al., 2018).  117 

1.1.4 Ductile accretion mechanisms  118 

Recent work reconstructing the detailed deformation and thrusting history of the HMC 119 

has revealed significant complexity within the timing and duration of thrusting (e.g. Larson et al., 120 

2017 and references therein).  The ‘integrated imbricate thrust system model’ of Larson et al., 121 

(2015) demonstrates how the geometry of the basal detachment (i.e. the paleo MHT) within the 122 

orogenic system may control the development of HMC. Subcretion of rock by ductile accretion 123 

of footwall material to the hanging wall occurs along ramps on the MHT throughout the Miocene 124 

in this model. This idea is supported by thermo-numerical models simulating material accreted 125 

along transient ramps on the MHT that migrate from the foreland of the orogen to the hinterland 126 

of the orogen (Mercier et al., 2017). 127 

1.2 Application of titanite petrochronology in the Himalayan metamorphic core 128 
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Similarities in the largely meta-sedimentary and igneous lithologies present within the 129 

HMC (e.g. DeCelles et al., 2016; Martin, 2017a) allow for comparison of orogen-controlling 130 

processes along-strike. Previous work has demonstrated that the ages of: metamorphism (e.g. 131 

Guillot et al., 1999; Goscombe et al., 2018), partial melting and leucogranite formation (e.g., 132 

Searle and Godin, 2003; Lederer et al., 2013), as well as cooling and exhumation (Warren et al., 133 

2014; Webb et al., 2017), decrease from dominantly Oligocene-early Miocene ages in the west, 134 

to mid-late Miocene ages in the east. Because of the scale of the Himalaya and difficulties in 135 

collecting enough samples from multiple transects along-strike, this trend has previously been 136 

inferred by comparing dates from different mineral systems (e.g. zircon U-Pb, monazite Th/Pb, 137 

muscovite 40Ar/39Ar), from several different studies (Guillot et al., 1999; Searle and Godin, 2003; 138 

Warren et al., 2014; Gibson et al., 2016; Goscombe et al., 2018). If real, this trend is significant 139 

because it reflects fundamental along-strike variation in the underlying processes that control 140 

mountain-building at the orogen-scale. This study aims to test both along-strike variations and 141 

intra-formational complexities in the timing of deformation in the HMC using a single mineral: 142 

titanite. 143 

Titanite-bearing calc-silicate rocks are found along the entirety of the Himalayan 144 

mountain belt, but remain a relatively understudied resource, holding potentially valuable 145 

information about the timing and conditions of metamorphism, as well as the role of fluids during 146 

metamorphism (Groppo et al., 2013a; Rolfo et al., 2017). These rocks represent an untapped 147 

resource to investigate along-strike temporal and thermal variations in the evolution of the HMC. 148 

Titanite petrochronology is a new and fast-developing method that has the potential to become 149 

an extremely useful tool for providing timing constraints to tectonic problems (e.g. Spencer et 150 

al., 2013; Stearns et al., 2016; Kohn, 2017), directly recording both temperature (T; Zr-in-titanite 151 

thermometer of Hayden et al., 2008), and timing (t) of (near peak) metamorphism via U-Pb 152 

geochronology (Kohn, 2017). Despite several recent papers applying titanite petrochronology to 153 

a variety of lithologies (Kohn and Corrie, 2011; Gao et al., 2012; Spencer et al., 2013; Stearns 154 
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et al., 2015; Garber et al., 2017; Walters and Kohn, 2017), no study has systematically 155 

addressed the role of bulk composition on titanite petrochronology. We therefore employ a 156 

‘campaign-style’ approach (Spencer et al., 2013), utilizing 47 titanite-bearing samples 157 

representing a >2000 km long orogen-parallel transect along the HMC, analysed during only 158 

two analytical periods, to produce the largest, most regionally-extensive and only “internally-159 

consistent” dataset to date. This dataset reveals the petrochronological complexities of titanite 160 

from the grain- to orogen-scale, allowing us to evaluate the role of titanite as a 161 

petrochronometer as well as the tectonic significance of the titanite U-Pb dates. Broadly, the 162 

dataset clearly shows an eastward-younging trend in the thermo-tectonic evolution of the core of 163 

the Himalayan orogen. The corroboration of this trend both validates the approach of combining 164 

methods and datasets to show orogen-scale age trends, and demonstrates the usefulness of 165 

titanite for recording T-t information in metamorphic rocks. By comparing the timing and 166 

conditions of metamorphism from a single mineral-system along-strike, it is possible to interpret 167 

large-scale, long-term variations in mid-crustal processes throughout the orogen, and ultimately 168 

provide insight into the processes controlling crustal extrusion in large hot orogens.  169 

2. GEOLOGICAL SETTING  170 

The Greater Himalayan Sequence (GHS) dominates the HMC (Figure 1). During the on-171 

going Himalayan orogeny (Najman et al., 2010 for review), the GHS was subducted into the 172 

India-Asia collisional zone, deformed, partially melted and extruded between the two bounding 173 

structures, the Main Central Thrust (MCT) and South Tibetan Detachment (STD). While there 174 

has been some debate about the definition of the MCT, herein we use the protolith boundary 175 

between the Lesser and Greater Himalayan Sequence (defined by largely by detrital zircon and 176 

εNd data), in addition to the presence of a thrust-sense shear zone to define the MCT (e.g. 177 

Martin, 2017b). These structures separate GHS metasedimentary (largely pelitic, calc-silicate 178 

and quartzite) and orthogneiss units, from the underlying largely metasedimentary Lesser 179 

Himalayan Sequence (LHS) and overlying (meta)sedimentary Tethyan Sedimentary Sequence 180 
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(TSS; e.g. Hodges, 2000 for review). The presence of a weak, partially-melted, extruding GHS 181 

is central to many continental-collision evolution models (see Cottle et al., 2015a for review), 182 

and the GHS has therefore been the focus of many petrochronological studies to constrain the 183 

temperature-time evolution of the rocks to test proposed tectonic models (Kohn, 2014 for 184 

review).  185 

For this study 47 samples, collected by 18 different geologists (see acknowledgments), were 186 

analysed from various structural levels along >2000 km of the GHS from NW India to central 187 

Bhutan (Fig. 1; Table 1). A further 12 samples were analysed, but titanite yielded very low U 188 

and/or high common Pb content and were therefore not possible to date. Below, a brief geologic 189 

context is given for each sampled region. 190 

The most westerly calc-gneiss samples (samples beginning K09-), located in the Sutlej 191 

Valley (Fig. 1a) experienced pro-grade to peak metamorphic conditions of ~630–700°C and 0.8 192 

GPa (Vannay and Grasemann, 1998; Walker et al., 1999) between ~35 Ma and 24 Ma, 193 

undergoing anatexis between ~22 Ma and 19 Ma (Langille et al., 2012; Lederer et al., 2013). 194 

In far-western Nepal both the GHS and STD form klippen (DeCelles et al., 1998; 195 

Robinson et al., 2006; He et al., 2015; Braden et al., 2017; La Roche et al., 2018). Sampled 196 

calc-gneiss and impure marble samples from the Dadeldhura klippe (samples beginning DH-), 197 

and the Mugu-Karnali (samples D13-49; Fig. 1b) area experienced peak metamorphic 198 

conditions of ~690–700°C and 0.7 GPa between ~23 Ma and 18 Ma (Montomoli et al., 2013).  199 

Calc-gneiss samples from the Kali Ghandaki valley (samples beginning P12/- and KL), 200 

the Modi Khola valley (samples beginning MK-) and the Marsyangdi valley (samples 402060–201 

63) in the Annapurna Himalaya (Figure 1c) experienced a protracted history of prograde to peak 202 

metamorphism between ~49 Ma and 20 Ma at metamorphic conditions of ~600–800°C and 0.8–203 

1 GPa (Vannay and Hodges, 1996; Catlos et al., 2001; Martin et al., 2010; Corrie and Kohn, 204 

2011; Kohn and Corrie et al., 2011; Carosi et al., 2015; Parsons et al., 2016a,b). 205 
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Calc-silicate boudins within kyanite-sillimanite bearing meta-pelite samples were 206 

collected from the lower and upper GHS in the Langtang Valley (samples beginning 14-; Fig. 207 

1d) structurally above the Langtang Thrust. These rocks experienced metamorphic conditions of 208 

1 GPa and <700°C during prolonged deformation between ~35 Ma and 15 Ma (Kohn et al., 209 

2004).  210 

Samples from the Mt. Everest transect include calc-gneisses from the lower GHS in the 211 

proximal hanging wall of the MCT and the upper GHS near the large leucogranite bodies in the 212 

vicinity of Mt. Everest. Calc-schist and amphibolite samples were also analysed from the 213 

Hermit’s gorge and Rongbuk Monastery sections of the Rongbuk glacier in the immediate 214 

footwall of the STD (samples beginning R03-; Fig. 1e). These rocks experienced prograde-peak 215 

metamorphism between ~38 Ma and ~25–16 Ma (Simpson et al., 2000; Viskupic et al., 2005; 216 

Jessup et al., 2008; Cottle et al., 2009, 2015b) at ~700°C and 0.5–0.6 GPa in the GHS (Searle 217 

et al., 2003), which reduce to ~630°C and 0.5 GPa close to the STD (Hodges et al., 2000; 218 

Jessup et al., 2008).  219 

Calc-gneisses found as metre-scale boudins within the lower GHS, pelite assemblages, 220 

and as tens to hundreds-metre thick bodies associated with marbles in the upper GHS rocks, 221 

were sampled from far-eastern Nepal (samples 05-55; 12:65 etc; Figure 1f). In the upper levels 222 

of the GHS peak metamorphism occurred at conditions of ~800°C and 0.8–1 GPa (Groppo et 223 

al., 2009) at ~18 Ma (Struele et al., 2010), with later decompression-related melt crystallisation 224 

at ~750–800°C and 0.4–0.5 GPa (Groppo et al., 2013b) at ~16 Ma (Struele et al., 2010).  225 

Calc-silicate boudins from the GHS of the Sikkim Himalaya (samples beginning SK12-; 226 

Fig. 1g) experienced peak metamorphic conditions of ~670–800°C and 0.8–1 GPa between ~26 227 

Ma and19.5 Ma (Dasgupta et al., 2004; Mottram et al., 2014; 2015a). 228 

Titanite-bearing amphibolite, impure marble and calc-gneiss rocks (samples DRB 1213, 229 

1219 and 1233, CWB-10-2, TH-B12-1605) were sampled from migmatitic gneiss of western 230 

Bhutan (Fig. 1h). This area is affected by the out-of-sequence Laya thrust (i.e. Warren et al., 231 
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2011), and two N-S trending normal fault systems, the Yadong-Gulu cross structure and the 232 

Lingtse Fault (Cooper et al., 2015). The host rocks experienced prograde to peak metamorphic 233 

conditions between ~36 Ma and 18 Ma (peak conditions of ~770°C and 0.8 GPa) in the western 234 

Jomolhari massif area and at 19.5–16.9 Ma (peak metamorphic conditions of ∼800°C and >0.8 235 

GPa) in the footwall of the Laya thrust (Regis et al., 2014). 236 

Impure marble and calc-gneiss rocks from the upper GHS were analysed from central 237 

Bhutan (samples beginning FB-; BU- and B-; Fig. 1i). The upper GHS rocks in the Ura Klippe 238 

experienced metamorphism between ~26 Ma and 15.4 Ma at peak conditions of ~790°C and 239 

0.9 GPa (Kellett et al., 2010).  240 

3. SAMPLE PETROGRAPHY  241 

In most of the 47 studied impure marble, amphibolite and calc-schist, calc-silicate and 242 

calc-gneiss samples, titanite is present as moderately large (typically of 200–1000 µm) euhedral 243 

grains that form part of the equilibrium assemblage (Figs. 1–-2). Chemical zoning was observed 244 

in a minority of crystals (Fig. 3). Detailed descriptions, petrography, photomicrographs and 245 

descriptions of reaction textures are given in Supplementary Material S1 and are briefly 246 

summarized here and in Table 1. 247 

Calc-gneiss (n = 16) and calc-silicate (n = 12) samples with the assemblage titanite + K-248 

feldspar + calcite + amphibole + zoizite + clinopyroxene + scapolite + plagioclase + quartz (± 249 

biotite, orthopyroxene, and garnet; Figure 2a), display granofels textures with granular 250 

interlocking grains, myrmekite textures, lobate grain boundaries indicative of grain boundary 251 

migration during high-temperature deformation. Common reaction textures in these rocks 252 

include: clinopyroxene rimmed by (1) epidote, amphibole and associated titanite (Fig. 2b), or (2) 253 

biotite, calcite, zoizite and scapolite. Garnet-clinopyroxene symplectite textures are observed in 254 

six samples (Fig. 2a). Impure marbles (n = 9) contain the assemblage titanite + zoizite + 255 

muscovite + K-feldspar, biotite + clinopyroxene, + quartz + calcite (± amphibole; Fig. 2c). 256 

Titanite is associated with clinopyroxene and zoizite breakdown in these samples. Amphibolite 257 
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schists (n = 10; Fig. 2d) are defined by assemblages of titanite + biotite + plagioclase + quartz 258 

(± zoizite ± muscovite ± clinopyroxene ± amphibole) , where titanite is part of an equilibrium 259 

assemblage in the matrix. 260 

Titanite-forming reactions are strongly sensitive to the bulk composition and the CO2 content 261 

of the rock (Groppo et al., 2017). However, titanite is generally stable at a range of CO2 contents 262 

for the conditions of T >600°C and ~0.8–1.0 GPa experienced by these samples (Zr-in-titanite 263 

data from this study and from estimates from previously published P-T data; Table 1; 264 

Supplementary Table S3; Groppo et al., 2017).  The textures observed in the samples indicate 265 

that titanite generally formed during initial decompression when peak metamorphic minerals 266 

became unstable and started to react. For example, in several samples titanite is associated 267 

with clinopyroxene break down reactions: clinopyroxene + ilmenite + quartz + H2O = titanite + 268 

hornblende (Stephenson and Cook, 1997; Harlov et al., 2006). In lower-grade samples, such as 269 

the impure marbles, titanite likely formed from a precursor Ti-bearing phase such as rutile (e.g. 270 

rutile + calcite + quartz = titanite + CO2; Frost et al., 2000; Mathavan and Fernando, 2001).  271 

4. TITANITE PETROCHRONOLOGY METHODS AND RESULTS 272 

4.1 Methods 273 

Select titanite grains were identified through back-scatter electron microscopy and 274 

energy-dispersive spectroscopy on a FEI Q400f FEG scanning electron microscope and 275 

mapped using a Cameca SX-100 electron microprobe (EMP) at the University of California, 276 

Santa Barbara (UCSB), USA. U-Pb isotopic concentrations and trace-element compositions in 277 

titanite were analysed in-situ in thin section using Laser Ablation Split Stream Inductively 278 

Coupled Plasma Mass Spectrometry (LASS-ICPMS) at UCSB, following methods of Kylander-279 

Clark et al. (2013) and Spencer et al. (2013). The Zr-in-titanite thermometer of Hayden et al., 280 

(2008) was used to calculate titanite temperatures. Full analytical conditions are described in 281 

Supplementary Material S2 and Supplementary Table S2. 282 

4.2 U-Pb Petrochronology 283 
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Titanite U-Pb petrochonology results are summarized in Table 2, Fig. 3, and in 284 

Supplementary Tables S1 and Supplementary Material S3. Titanite 238U/206Pb–207Pb/206Pb lower 285 

intercept dates range from ~30 Ma to 12 Ma along the orogen, however, dates as young as 12 286 

Ma are only found east of Mt. Everest. 287 

U-Pb systematics fall into three types, with no correlation between the type of age trend 288 

and the structural or along-strike location (Fig. 3; Supplementary Material S3). (1) In 27 289 

samples, the U-Pb data form a single population with a well-defined lower intercept date (Fig. 290 

3a). Such samples span in age from the youngest sample 09-25 from far-eastern Nepal, that 291 

yields a date of 13.7 ± 0.5 Ma (MSWD = 0.9), to the oldest sample KL-8-11-8 from the 292 

Annapurna Himalaya at 24 ± 0.8 Ma (MSWD = 0.9). 2). (2) A further 12 samples yield a spread 293 

of dates (Fig. 3b). Lower intercept dates in these samples span ca. 14–13 Ma in sample CWB-294 

10-2 in Bhutan, to 27–18 Ma in sample 402063 in the Annapurna Himalaya. (3) In 8 samples, a 295 

combination of low U and/or varying common Pb composition in analyses yield poorly defined 296 

U-Pb date(s), as indicated by the high MSWDs yielded in some of these sample populations 297 

(Fig. 3c). Dates within this type of sample range from ~12.4 Ma (sample 13-26 from far-eastern 298 

Nepal; MSWD = 0.8) to ~31 Ma (sample KL-4-11-5, from the Annapurna Himalaya; MSWD = 299 

74). 300 

Dates between 20 Ma and 30 Ma are present throughout the orogen; however, the 301 

youngest dates recovered reveal a consistent eastward-younging trend (Fig. 7). The youngest 302 

dates in each region from west to east are: ~20.5 Ma in NW India, ~18.2 Ma in central Nepal; 303 

~15.2 Ma in the Everest region; ~14.8 Ma in Sikkim; and ~12.6 Ma in eastern Bhutan. If only 304 

samples from the structurally upper 20% of the GHS in each transect are compared, a 305 

consistent younging trend is still observed (Figure 7), where ages vary from ~22 Ma at 78° 306 

longitude to ~17–13 Ma at 90° longitude, demonstrating that this pervasive eastward-younging 307 

trend is not simply a function of sampling bias. Due to disagreements regarding how the MCT is 308 

defined along strike (see Martin, 2017b for review), and lack of suitable titanite-bearing 309 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

lithologies in the immediate vicinity of the MCT, a similar comparison for the MCT is not 310 

possible. 311 

Differing host lithologies, and coexisting phases all contribute to variable titanite REE 312 

content (Figure 3). Low count rates for trace elements in some samples also limit detection of 313 

certain elements in some samples (Supplementary Tables S1-2; Supplementary Material S3). 314 

Samples with single age populations generally show a limited spread in trace element 315 

abundances; for example, sample KL-8-11-8, from the Annapurna Himalaya, is enriched in 316 

LREE, contains a Eu anomaly and is relatively depleted in HREE (Fig. 3a). Samples that yield a 317 

spread in ages commonly also have a spread in HREE composition; e.g., Sikkim sample SK12-318 

216 is relatively depleted in HREE in the oldest age analyses and more enriched in HREE in the 319 

youngest age analyses (Fig. 3b). Samples that contain varying amounts of common Pb 320 

generally have different REE patterns for the apparent older analyses, which in the case of 321 

sample 13-26, from far-eastern Nepal, are relatively more enriched in HREE (Fig. 3c).  322 

4.3 Zr-in-titanite thermometry 323 

Zr-in-titanite temperatures were calculated at pressures based on previous 324 

thermobarometrical modelling of the host rocks (Section 2; Supplementary Material S2; 325 

Supplementary Table S4). Temperatures vary from 626-814°C and there are overall no 326 

systematic variations in temperature either along or across strike (for example a decrease in 327 

temperature towards the MCT; Figs. 4–5). Temperatures range of ~657–700°C in the Sutlej 328 

valley, NW India; ~710–740°C in western Nepal; ~678–780 °C in the Annapurna area, central 329 

Nepal; ~716–785 °C Ma in Langtang valley, central Nepal; ~665–687 °C in the Everest region of 330 

central Nepal; ~686–814 °C Ma in eastern Nepal; ~742–762°C in the Sikkim Himalaya; ~716–331 

791°C the Jomolhari area of eastern Bhutan; and ~626–730 °C Ma in central Bhutan. There is a 332 

strong correlation between lithologies and temperature; calc-gneisses yield temperatures 333 

ranging of 711–814°C, calc-silicate samples range of 657–791°C, garnet-bearing calc-gneisses 334 
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range in temperatures between 686–754°C, amphibolite samples range of 665–766°C and 335 

impure marble samples range of 626–738°C.  336 

5. DISCUSSION 337 

5.1 Titanite Petrochronology 338 

The large-scale titanite petrochronological dataset presented here represents several 339 

different lithologies with variations in the metamorphic reaction textures shown in the rocks. 340 

Moreover, titanite varies in grain size, elemental zoning, and U-Pb dates and trace element 341 

patterns. The details of this new dataset provides an opportunity to discuss some of the wider 342 

implications for titanite petrochronology. 343 

5.1.1 Titanite closure temperature  344 

The temperature at which titanite closes to thermally mediated volume diffusion of Pb 345 

has been a matter of debate for some time (as summarized by Kohn, 2017), and in empirical 346 

studies has been estimated to be >650–700°C (Scott and St-Onge, 1995; Zhang and Scharer, 347 

1996), to as high as 800°C (Gao et al., 2012). The titanite ‘Pb closure temperature’ based on 348 

the Dodson approach is defined as 668°C at a cooling rate of 10°C/Ma for a spherical geometric 349 

factor and a 5 mm diffusion radius and grain diameter (Cherniak, 1993). Based on this 350 

approach, it might be reasonable to consider titanite U-Pb dates to reflect the timing of cooling 351 

(Warren et al., 2012). Increasingly, however, it is being recognized that U-Pb titanite dates 352 

instead record the timing of crystallization (e.g. Kohn, 2017; Stearns et al., 2015; 2016 and 353 

references therein). If the closure temperature concept is applicable to titanite, there should be a 354 

systematic relationship between grain size and age, with smaller grains yielding younger ages 355 

based on shorter diffusion distances. However, similar to the observation of Stearns et al., 356 

(2015), we find no such relationship. In 57% of our samples, titanite of varying grain size 357 

records a single 238U/206Pb–207Pb/206Pb isochron (Figure 3a, Supplementary Material S1). For 358 

titanite that range in size from 50 µm to –500 µm diameter, a cooling rate of 200°C/Ma is 359 

required to produce a single age by thermally-mediated diffusion (Cherniak, 1993). The typical 360 
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cooling rate for rocks in the Himalaya of 50°C/Ma (Godin et al., 2001; Vannay et al., 2004; 361 

Kellett et al., 2013; Mottram et al., 2015b), is inconsistent with the diffusion-based modelled 362 

cooling rate, indicating that the single age population samples represent the timing of complete 363 

(re)crystallization of titanite.  We therefore infer that the closure temperature of titanite is 364 

significantly higher than suggested by experimental data (e.g., Spencer et al., 2013). 365 

5.1.2 Age, temperature and trace element trends 366 

Titanite U-Pb ages from this study falls into three main trends with analyses either 367 

yielding: one age population, already discussed in the previous section (Fig. 3a); a spread 368 

between two intercepts (Fig. 3b) or; Pb isotopic signatures indicative of the influence of a non-369 

common 207Pb/206Pb component (Fig. 3c). 370 

In ~25% of the samples, a ~5–10 Ma spread in dates is accompanied by a spread in Zr-371 

in-titanite temperature and REE concentrations (Figures 3b and 4). These trends can be 372 

explained by either thermally mediated volume diffusion of Pb (e.g. Scott and St-Onge 1995), or 373 

one or more phases of (re-)crystallization (e.g. Stearns et al., 2015). Zr diffusion in titanite is 374 

prohibitively slow to cause age/ temperature variations except at very high temperatures (10’s of 375 

m.y. at >800°C; Kohn, 2017). Samples in this study have a maximum titanite age spread within 376 

a single sample of 10.5 Ma (sample 12-65 from eastern Nepal) and have largely experienced 377 

temperatures below 800°C (for example, temperatures range of 723–740°C ± 18°C for sample 378 

12-65). We therefore interpret that the age spread within titanite is a result of (re)crystallization. 379 

This interpretation is supported by the observation that in samples that display a spread in age 380 

there is also distinct elemental zoning patterns and trace element patterns that covary with age, 381 

inconsistent with thermally mediated volume diffusion.  382 

Trace-element concentrations in titanite vary significantly between samples 383 

(Supplementary Material S3). It has been demonstrated that trace element patterns in titanite 384 

can reflect interaction with fluids, melt and other minerals within the metamorphic assemblage 385 

(Garber et al., 2017). In this study, titanite with Zr-in-titanite temperature of >750°C generally 386 
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have a narrower range in trace element concentrations, often with a Eu anomaly and systematic 387 

variations in either the HREE or LREE or both (for example 402060; 07-22; 12-65; CWB-10-2; 388 

TH-B12-1605; Supplementary Material S3). In contrast, samples with average Zr-in-titanite 389 

temperatures below 750°C have diffuse, scattered trace element patterns, often enriched in 390 

MREE (06-57; 10-37; DRB1219; K09-65; KL-4-11-5; R03-71; Supplementary Material S3). This 391 

difference is likely due to the relationship between temperature, Al content and trace element 392 

partitioning as highlighted by Garber et al., (2017). In some samples, younger titanite is 393 

enriched in LREE (e.g. samples CWB-10-2, DRB1233, SK12-216, TH-B12-1605 from the 394 

Bhutan Himalaya; Supplementary Material S3) and are sometimes accompanied by an 395 

enrichment in HREE (e.g. sample SK12-216 from the Sikkim Himalaya; Figure 3). This indicates 396 

either enriched whole-rock concentrations, breakdown of a LREE-bearing accessory phase(s), 397 

interaction with an enriched fluid, or an increased compatibility of such elements during 398 

(re)crystallization (Garber et al., 2017). Enrichment in Y in these samples indicates that titanite 399 

grew during post-peak metamorphism when Y was released by garnet breakdown (e.g. Kohn et 400 

al., 2005). Breakdown of other accessory phases such as xenotime, apatite or allanite could 401 

also provide trace elements on the prograde path for titanite-forming reactions, for example the 402 

release of HREE through the breakdown of xenotime (e.g. Larson et al., 2018).  403 

Zr-in-titanite temperatures derived in this study vary through time, with temperatures 404 

both increasing and decreasing in different samples (Fig. 4). Samples that show an increase in 405 

temperature through time are interpreted to record prograde growth. For example, sample 406 

DRB1233 from western Bhutan records increasing Zr-in-titanite temperature through time (Fig. 407 

4a). In sample DRB1233 from Bhutan, the majority of analyses overlap with interpreted 408 

prograde-peak metamorphic conditions of ~750°C between ~29 Ma and 18 Ma (Regis et al., 409 

2014; Figs. 4 and. 6b). In sample DRB1213 from the same area in western Bhutan (Fig. 1), a 410 

decreasing temperature-time path (Fig. 4b) roughly overlaps with interpreted retrograde path 411 

post-17 Ma (Warren et al., 2012; Regis et al., 2014). Sample SK12-216 from the nearby Sikkim 412 
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Himalaya (Fig. 1), records a temperature range of ~710–810°C among individual analyses that 413 

indicates titanite growth during both heating and cooling (Fig. 4c). The age trends overlap with 414 

interpreted P-T-t paths from the area, where prograde metamorphism is recorded by monazite 415 

between ~20.7 Ma and 15.8 Ma with peak metamorphic conditions occurring at 14.5–13.1 Ma 416 

(Mottram et al., 2015a).  417 

Nearly one fifth of all samples yield arrays in Tera-Wasserburg space consisting of one 418 

(or more) Himalayan-age discordia trajectories and a sub-vertical discordia trajectory indicating 419 

the presence of a (partially recrystallised) older component (Fig. 3c; Supplementary Material 420 

S3). These older generations of titanite also yield significantly different REE patterns, indicating 421 

that they likely crystallised under different chemical and/or physical conditions (Fig. 3c; 422 

Supplementary Material S3). We therefore infer that the titanite in these samples contains 423 

remnant Pb from older (probably Proterozoic) titanite, or other accessory phase, such as rutile, 424 

that survived several millions of years of Cenozoic metamorphism at upper amphibolite-facies 425 

conditions without equilibrating with the whole rock. This indicates that at least part of the initial 426 

titanite can survive high-temperature metamorphism; this inheritance can have a major 427 

influence on the common Pb isotopic ratios of titanite (Pidgeon et al., 1996; Zhang and Scharer, 428 

1996; Rubatto and Hermann, 2001; Aleinikoff et al., 2002; Kylander-Clark et al., 2008; Gao et 429 

al., 2012;; Spencer et al., 2013).  430 

5.1.2 The effect of bulk composition  431 

The 59 samples analysed in our study (47 of which gave suitable U/Pb ratios to be 432 

successfully dated), span a range of lithologies (Table 1, Fig. 2), with 18 amphibolites (61% 433 

dating success rate), 17 calc-gneisses (100% dating success rate), 17 (garnet-bearing) calc-434 

silicates (71% dating success rate), and 7 marbles (100% dating success rate). There appears 435 

to be a link between metamorphic reaction textures, bulk composition and type of age spectrum 436 

yielded by samples. Titanite within amphibolite samples are the least likely to yield useable 437 

ages, which we speculate may be due to low U in the protolith. For the successfully dated 438 
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samples, there is a link between lithology, age spectra, Zr-in-titanite temperatures and 439 

metamorphic reaction textures present in the rocks. A higher proportion of the marble and 440 

amphibolite samples yield a single population age (90% of amphibolite samples and 56% 441 

marble samples; Table 3). Titanite within amphibolite and marble samples also yield the 442 

average lowest Zr-in-titanite temperatures of 665 ± 19°C and 626 ± 18°C respectively (Table 3). 443 

For example, amphibolite schist sample R03-40 from the Everest section yields a single age 444 

population of 18.8 ± 2.5 Ma and a temperature of 665 ± 40°C. Marble sample B126 from central 445 

Bhutan yields a single age population of 15.5 ± 0.8 Ma and a temperature of 658 ± 38°C. This is 446 

in contrast to the calc-gneiss samples, which in 50% of cases yield a spread in ages. For 447 

example, calc-gneiss sample TH-B12-1605 from western Bhutan yields a spread in ages 448 

between two intercepts at 19.1 ± 2 Ma and 15.3 ± 1.3 Ma (Supplementary Material S3). Calc-449 

gneiss samples also yield some of the highest Zr-in-titanite temperatures of 814 ± 16°C. 50% of 450 

calc-silicate samples yield U-Pb data that indicate partial recrystallization of an older phase 451 

(Table 3). 452 

It is postulated that in the samples with clear reaction textures, titanites may 453 

(re)crystallise by dissolution-precipitation mechanisms in the presence of fluid or melt, causing a 454 

younger (re)crystallised titanite rim (Garber et al., 2017; Stearns et al., 2016). For example, in 455 

calc-gneiss sample 402063 from the Marysangdi valley, titanite is associated with a reaction 456 

texture of clinopyroxene rimmed with epidote and amphibole (Supplementary Material S1) and 457 

yields a spread of ages between two intercepts at 27.4 ± 1.6 Ma and 18.2 ± 1.9 Ma. It could 458 

therefore be suggested that the titanite rims represent (re)crystallization during clinopyroxene 459 

breakdown reactions. In less fertile samples, such as the calcite-dominated impure marble 460 

samples, titanite is not related to reaction textures. In these samples, unfavourable bulk-461 

compositions, or limited fluid availability, results in the titanite recording only one 462 

(re)crystallization event. It is therefore likely that the availability of fluids, the deformational 463 
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history of the rock, and bulk compositions favourable for metamorphic reactions are important 464 

factors dictating the degree of age complexity observed in metamorphic titanite.  465 

In aggregate, our empirical titanite dataset adds to the mounting evidence that the 466 

closure temperature of titanite is much higher than originally suggested (Cherniak, 1993; 2006), 467 

and is likely to be over ~700°C. Age and temperature variations preserved in crystals that have 468 

experienced metamorphism at 626-814°C indicate the prohibitively slow nature of Pb and Zr 469 

diffusion within titanite. Bulk composition, availability of fluids and deformation-related 470 

recrystallisation are likely to be key controlling factors in defining the age trends documented 471 

within titanite from metamorphic rocks. 472 

5.2 Case study-specific implications for the HMC 473 

Titanite in this study was analysed from eleven different transects along much of the 474 

length of the central Himalaya. Because this dataset is large and covers a significant portion of 475 

the HMC, there is merit in discussing in detail a sub-section of the transects in detail. The 476 

implications of the large-scale trends of the dataset are then discussed in the subsequent 477 

section. 478 

5.2.1 Annapurna Himalaya 479 

The presence of the intra-GHS Kalopani Shear zone (Carosi et al., 2016), and a long 480 

history of burial, metamorphism, partial melting and exhumation, which spans from as early as 481 

48–18 Ma (as summarized by Carosi et al., 2015; Iaccarino et al., 2015; Larson and Cottle, 482 

2015), make the Kali Gandaki in the Annapurna Himalaya interesting for exploring the evolution 483 

of the evolution of the HMC. The titanite data presented here spans between 31 ± 10 Ma and 20 484 

± 1 Ma (Tables 2 and 4; Fig. 7). U-Pb geochronology from deformed and undeformed 485 

leucogranites constrain movement on the South Tibetan Detachment system in the area to 486 

between ~22.5 Ma and 18.5 Ma (Hodges et al., 1996; Godin et al., 2001). The titanite U-Pb date 487 

of 23.4 ± 5.6 Ma from sample P12/48, located in the immediate vicinity of the STDS in the Kali 488 
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Gandaki, overlaps with the earliest period of STD movement. Structurally beneath the STD, 489 

within the upper GHS the Kalopani shear zone is interpreted to have initiated at ~41–30 Ma 490 

(Carosi et al., 2016), which is in agreement with U-Pb dates and Zr-in-titanite temperatures of 491 

31 ± 10 Ma and 734 ± 37°C yielded here from sample KL-4-11-5 in the footwall of the Kalipani 492 

shear zone. Monazite is interpreted to have grown during peak metamorphism at ~36–28 Ma at 493 

temperatures of ~710–720°C at 1 GPa in the same area, overlapping within uncertainty with our 494 

titanite data (Iaccarino et al., 2015; Fig. 6a). On the retrograde path, rocks experienced P-T 495 

conditions of 650–670 °C and 0.7–0.8 GPa, with monazite dates spanning between ~25 and 18 496 

Ma (Iaccarino et al., 2015). Titanite data yielded here constrains the initial part of this 497 

decompression path with U-Pb dates and Zr-in-titanite temperatures of 24 ± 0.8 Ma/ 766 ± 39°C 498 

and 20 ± 1 Ma /743 ± 40°C (samples KL-8-11-8 and P12/054 from this study; Table 2; Table 4; 499 

Fig. 6a). Collectively, this supports a prolonged period of heating and cooling within the HMC in 500 

the Annapurna Himalaya, but at relatively lower temperatures than other samples from similar 501 

structural levels along-strike in the orogen (Figure 6). 502 

Titanite in samples from the Modi Khola also record over 10 million years of protracted 503 

crystallization during heating (Kohn and Corrie, 2011). Previous work has outlined titanite 504 

growth along a prograde path at temperatures of 700–750°C at ~37 Ma increasing to 505 

temperature of 775°C by ~24 Ma (Kohn and Corrie, 2011). Titanite in samples analyzed in this 506 

study, MK9, MK14 and MK15, from the Modi Khola record metamorphic crystallization from 24.5 507 

± 1.5 Ma to 18.2 ± 1.2 at temperatures of 739–780 ± 15° and therefore overlap with, and extend 508 

beyond the final stages of titanite (re)crystallization in the Kohn and Corrie (2011) study. It can 509 

be interpreted that titanite recrystallized during melt crystallization between 22-17 Ma in this 510 

section, coeval with peritectic monazite crystallising in nearby pelitic samples (Corrie and Kohn, 511 

2011). Titanite is associated with clinopyroxene break down reactions in the samples reported 512 

herein. It can therefore be interpreted that samples do not record the older heating history either 513 

due to complete recrystallization of titanite during clinopyroxene breakdown reactions in the 514 
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initial retrograde metamorphic stages, and/or due to differences in fluid-mediated dissolution-515 

precipitation growth of titanite during the early metamorphic history. This demonstrates that 516 

samples collected from the same outcrop can record different P-T-t paths depending on the 517 

local bulk composition, availability of elements for reactions and due to fluid/ melt distribution in 518 

the rocks. 519 

5.2.2 Everest, Nepal 520 

In the Everest Himalaya, the South Tibetan Detachment is exposed as the Lhotse 521 

detachment. Here, the rocks have undergone sub-simple shear on the margins of the extruding 522 

GHS, (Jessup et al., 2006), during up to 170 km of movement on the STD (Law et al., 2011). 523 

There has been telescoping of the isotherms in the vicinity of the thrust, with higher flow 524 

stresses of ~25–35 MPa in the immediate 50 m vicinity of the thrust reducing to 10–15 MPa 525 

~100–550 m beneath the fault (Law et al., 2011). Monazite from the footwall of the STD in 526 

Hermit’s gorge (Fig. 7), yield a spread of dates that are interpreted to represent metamorphism 527 

at 24 Ma, and melt crystallization at 20.4 Ma (Cottle et al., 2015b). In the immediate footwall of 528 

the fault, movement on the detachment is constrained to between ~16.4 Ma and 15.4 Ma (Cottle 529 

et al., 2015b). Brittle deformation during exhumation is recorded by muscovite 40Ar/39Ar dates of 530 

~15.5–14.2 Ma and zircon and apatite U-Th-He dates of ~14.5–11 Ma (Schultz et al., 2017). 531 

Meteoric water has been shown to have percolated into the ductile shear zone associated with 532 

the STD, causing (re)crystallization of micas (and titanites) from ~16.7–15 Ma (Gebelin et al., 533 

2017). Titanite data in our study ranges from 19.1 ± 1.6 Ma to 15.2 ± 0.9 Ma (Tables 2, 4; Fig. 534 

7), and therefore overlaps and extends beyond the interpreted timing of metamorphism of the 535 

Everest schists at ~20 Ma (Cottle et al., 2015b), and can be interpreted to have 536 

(re)crystallization in the presence of fluid during the final stages of ductile movement on the 537 

STD. For example, the Rongbuk Monastery titanite samples yield dates from ~16.9 ± 0.6 Ma to 538 

15.6 ± 0.5 Ma, overlapping the final stages of ductile shearing on the STD. In Hermit’s gorge, 539 

ages increase from 15.2 ± 0.9 Ma (sample ET-16) to 19.1 ± 1.6 Ma (sample R03-36) in the 540 
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immediate vicinity of the shear zone. In sample ET-16, titanite is associated with clinopyroxene 541 

reaction textures, whereas in samples with older titanite ages, R03-36 and 40, titanite is a stable 542 

matrix phase. This indicates that titanites in pockets of the Everest schists record older 543 

metamorphic conditions and have survived resetting during shearing and fluid flow in the shear 544 

zone, possibly due to the patchy nature of fluid flow. Bulk composition and fluid can again be 545 

interpreted to play an important role in whether titanite recrystallizes during deformation (i.e. 546 

sample ET-16) or whether older generations of titanite are preserved (in the case of samples 547 

R03-36 and 40).  548 

5.2.3 Kanchenjunga, eastern Nepal 549 

In the Kachenjunga region of far-eastern Nepal, the GHS is defined by an upper and 550 

lower unit, where metamorphic monazite dates progressively decrease down section (Fig. 7). 551 

Prograde metamorphism occurs at ~40–25 Ma, followed by melting at ~25 Ma and retrogression 552 

between 24 Ma abd 20 Ma in the upper structural levels of the GHS (Ambrose et al., 2015). 553 

While in the structurally lower units, prograde metamorphism is interpreted to have occurred 554 

~25–18 Ma and retrograde metamorphism at between ~18 Ma and 13 Ma (Ambrose et al., 555 

2015; Fig. 6a). In the upper levels of the GHS retrograde metamorphism is therefore interpreted 556 

to have occurred at the same time as prograde metamorphism in the lower structural levels. 557 

This is indicative of progressive accretion of material into the HMC (e.g. Larson et al., 2015). 558 

Monazite rims in sample KA044 from Ambrose et al., (2015), located within the structurally 559 

lower part of the GHS, grew during melt crystallization >800°C at ~17–16 Ma; these dates 560 

overlap, within uncertainty, both the U-Pb (17.4 ± 1.7 Ma) and Zr-in-titanite temperature (814 ± 561 

45°C) from titanite sample 08-57 from the Kachenjunga Himalaya from this study (Fig. 6a). A 562 

pronounced Eu anomaly within the trace element pattern of the same sample supports coeval 563 

titanite and peritectic feldspar crystallization from melt (Supplementary Material S3). Later 564 

titanite growth at 13.7 ± 0.5 Ma (806 ± 44°C) recorded by sample 09-25, from the Kachenjunga 565 

area, suggests further (re-)crystallization of titanite on the early decompression path until ~14 566 
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Ma (Fig. 6a). Similar trends are seen within other samples where titanite ages are comparable 567 

to previously published P-T-t paths from monazite-bearing pelitic samples in nearby Sikkim (Fig. 568 

6b), indicating that titanite within the GHS along-strike grew through peak, to retrograde 569 

metamorphic conditions during initial decompression of the GHS. These overlapping ages and 570 

temperatures demonstrate that titanite records ages that are very close to peak metamorphism, 571 

and support a high (>600°C) closure temperature to Pb diffusion in titanite (Schärer, U. et al., 572 

1984; Zhang and Scharer, 1996; Kohn and Corrie, 2011; Gao et al., 2012; Spencer et al., 2013; 573 

Stearns et al., 2015).  574 

5.2.4 Jomolhari, western Bhutan 575 

The Jomolhari dome exposes the high grade metamorphic GHS rocks in far western 576 

Bhutan and is bound by the N–S trending Yadong-Gulu graben normal fault and Lingtse fault 577 

(Fig. 7). This area is interpreted to have undergone a prolonged metamorphic history between 578 

~38 Ma and 18 Ma (Kellett et al., 2009; Grujic et al., 2011; Regis et al., 2014, 2016; Fig. 6b). 579 

Monazite and zircon U-Pb data reveal an early high P phase between ~38 Ma and 36 Ma, 580 

followed by up to 15 Ma of prolonged heating and prograde metamorphism up to 800°C 581 

between 35 Ma and 29 Ma, and final melt crystallization at 18 Ma (Regis et al., 2014, 2016; Fig. 582 

6b). Monazite in sample DRB1229 records prograde 36 Ma sub-solidus crystallization, which 583 

was subsequently rimmed by peritectic monazite at 18 Ma (Fig. 6b). Samples from our study 584 

overlap in both age and temperature with the later part of this metamorphic history; titanite cores 585 

in sample DRB1233 yield a U-Pb intercept age of 19.6 ± 1.3  Ma and a Zr-in-titanite temperature 586 

of 757 ± 40°C, DRB1219 yields an average titanite age of 18.2 ± 2.3 Ma and temperature of 730 587 

± 38°C. Titanite rims on sample DRB1233 record a further stage of titanite growth at 16.1 ± 0.9 588 

Ma and temperatures of ~779 ± 41°C, potentially during initial decompression (Fig. 6b). Titanite 589 

from other samples in the region located in the area of the Yadong-cross structure, yield dates 590 

as young as 13 ± 0.5 Ma and temperatures of 716 ± 38°C (sample DRB1213). In this area, 591 
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simultaneous movement on the STD as well as the Yadong-Gulu graben system and Lingtse 592 

fault is thought to have occurred until at least 15–14 Ma (Kellett et al., 2009; Cooper et al., 593 

2015). The titanite dates here could therefore record the final stages of decompression of the 594 

GHS rocks due to movement on the Lingtse/Yadong system of normal faults.  595 

5.3 Large-scale trends 596 

5.3.1   Eastward younging in the Himalayan Metamorphic Core 597 

Titanite U-Pb data from our study consistently record ages of ~30–20 Ma throughout the 598 

orogen, with dates between ~15 Ma and 12 Ma only seen east of Mt. Everest (Fig. 8a; Table 4). 599 

The oldest titanite dates from each transect vary between 28.6 ± 1.7 Ma (Western Nepal) and 600 

17.2 ± 0.7 Ma (Central Bhutan), with no systematic younging trend within these oldest titanite 601 

data along-strike (Table 3; Fig. 9). The youngest titanite dates range from 20.5 ± 2.9 Ma (in the 602 

Sutlej Valley) to 12.5 ± 0.4 Ma in western Bhutan, and displaying a significant younging trend 603 

within the youngest titanite ages in each transect (R2 = 0.7, Table 4; Fig. 9). The eastward 604 

younging trend within the youngest titanite data is supported by the body of previously published 605 

monazite and titanite U-Th-Pb data from the HMC (Fig. 8b; Table 5 and references therein) 606 

where the youngest recorded ages in each transect decrease towards the east, with the 607 

youngest monazite or titanite ages ranging from 17.9 ± 0.1 Ma (Sutlej valley) to 11.5 ± 0.4 Ma 608 

(Arunarchal; Table 5); this is similar to the compilation of previously published leucogranite 609 

crystallization ages (Fig. 7 and references in Supplementary Table S3). Combined, this dataset 610 

shows that Oligocene to early Miocene metamorphic processes have consistently occurred 611 

throughout the HMC along-strike, however late Miocene metamorphism has only occurred in the 612 

eastern Himalaya. Until now, this trend had not been supported by a single, internally-consistent 613 

dataset. The confirmation of this trend by titanite petrochronology, solidifies this approach as a 614 

robust method for constraining the timing and temperatures of metamorphic processes 615 

elsewhere.  616 

5.3.2 Across strike variations within the HMC 617 
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Our dataset reveals that titanite in largely meta-carbonate rocks commonly record a 618 

similar T-t path to monazite in interleaved meta-pelitic samples (Fig. 6). The overlap between 619 

titanite and monazite datasets highlights the usefulness of titanite for recording the peak to 620 

retrograde metamorphic history in rocks, such as calc-silicates, that have traditionally been 621 

difficult to estimate P-T-t conditions. This allows for confidence in the interpretation of titanite 622 

ages and temperatures yielded from metamorphic rocks. This study therefore demonstrates that 623 

titanite petrochronology is a useful tool for providing T-t constraints in other regions, beyond the 624 

Himalaya, that lack pelitic assemblages.  625 

When comparing the P-T-t paths and duration of metamorphism recorded between 626 

transects, the rocks have largely experienced similar P-T paths, with the exception that the 627 

Annapurna Himalaya records a lower temperature history (Fig. 6). There are, however, some 628 

discrepancies between the timing of metamorphism between transects. For example, although 629 

most of the studied transects were at peak temperature from ~36 Ma to 26 Ma, the rocks were 630 

subsequently exhumed at different rates in different transects (Fig. 6). Differences in the timing 631 

of exhumation along-strike may be explained by variations in the style, timing and nature of 632 

development of underlying structures (e.g. the Lesser Himalayan Duplex) in different transects 633 

along-strike (discussed below). 634 

There are variations in the duration of metamorphism recorded by our titanite data 635 

along-strike, for example western Nepal (Braden et al., 2017; La Roche et al., 2018) and the 636 

Kachenjunga region of eastern Nepal and Sikkim (Rubatto et al., 2013; Ambrose et al., 2015) 637 

record a longer duration of metamorphism than the Sutlej Valley and central Bhutan (Table 5). 638 

This ‘pinching and swelling’ of the metamorphic history can clearly be shown in the compilation 639 

of data in Fig. 8b. Although this overall pattern could be an artifact of sample bias, if real, it is 640 

likely to reflect differences in the mechanisms responsible for the addition, extrusion and 641 

exhumation of the rocks within the HMC along-strike (discussed below).  642 
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When titanite dates from our study are plotted with respect to their location along-strike 643 

and colour-contoured by the estimated structural thickness of the HMC in that area (Fig. 10), a 644 

general trend is evident where transects with a thicker HMC (up to ~35 km structural thickness), 645 

yield the largest differences in Zr-in-titanite temperatures, with temperatures varying up to 646 

128°C between grains in one transect (Table 4). Areas with a thicker HMC also tend to yield 647 

some of the youngest titanite U-Pb dates, for example, sample SK12-119 from the Sikkim 648 

Himalaya, where the GHS is ~30 km thick, yields a titanite age of 14.8 ± 0.5 Ma (Table 4). 649 

5.3.3 Tectonometamorphic evolution of the HMC 650 

Our dataset reveal (1) broad eastward, along-strike younging within the timing of final 651 

crystallization of titanite, (2) differences in the duration of metamorphism within the HMC along 652 

strike, and (3) correlation between the thickness of the GHS and the temperatures and timing of 653 

metamorphism. It is beyond the scope of this manuscript to pose a thermomechanical model to 654 

explain these trends, but such observations raise some important questions about the causal 655 

relationships between different tectono-metamorphic processes in the Himalaya. 656 

a. The broad along-strike younging seen in the timing of metamorphism in the HMC may 657 

be explained by the overall asymmetry of the timing and amount of shortening during the 658 

India-Asia collision (Molnar and Tapponier, 1975; Klootwijk et al., 1985; Treloar and 659 

Coward, 1991; Banerjee et al., 2008; Molar and Stock, 2009; Replumaz et al., 2010). 660 

However, there remain unanswered questions about why consistent Oligocene to early 661 

Miocene metamorphic dates are recorded along the length of the HMC, with mid to late 662 

Miocene ages only in the east. Potential models to explain this could involve variations in 663 

processes in the lithospheric mantle (Gahalaut and Kundu, 2012; Hammer et al., 2013; 664 

Chen et al., 2015; Hetényi et al., 2016; Webb et al., 2017) or due to the geometry and 665 

evolution of the orogen-controlling structures (see 2). 666 

b.             The location and migration of ramps on the MHT are key factors for controlling 667 

the temporal and thermal evolution of the HMC and for controlling the location of ductile 668 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

duplexing and accretion of rock into the HMC through time (e.g. Larson et al., 2015; 669 

Mercier et al., 2017)., and can therefore explain the disparities in the timing, duration and 670 

temperature of metamorphism in the HMC between transects. When small ramps on the 671 

MHT are located directly beneath the Main Boundary Thrust, such as in western Nepal 672 

(Robert et al., 2011), movement is likely to be dominated by the formation of a thick 673 

duplex of material in the Lesser Himalayan and therefore a thinner GHS material 674 

(Mercier et al., 2017; Figure 11a). Where ramps are located towards the hinterland (such 675 

as in central-eastern Nepal; Jouanne et al., 2004), the basal detachment is at a more 676 

mature stage in the ramp accretion cycle and thus there has been more time for material 677 

to accrete into the thrust system (Mercier et al., 2017; Figure 11b).  678 

A conceptual model can be developed from our data, where a thicker GHS, such 679 

as eastern Nepal and the Sikkim Himalaya (Ambrose et al., 2015; Mottram et al., 2015a, 680 

respectively), is formed in the eastern Himalaya due to multiple footwall accretion events 681 

and/or out-of-sequence thrusts (i.e. Montimoli et al., 2015) adding material to the HMC 682 

throughout the Miocene (e.g. Larson et al., 2015). A hinterland-located ramp on the 683 

basal decollement (i.e. the MHT) throughout the Miocene would have resulted in the 684 

prolonged ductile accretion of material into the GHS (Fig. 11b). This is supported by data 685 

from this study where transects with a structurally thicker GHS such as in eastern Nepal, 686 

also yield the largest range of titanite ages, which spread between ~26 Ma and 12.5 Ma 687 

(Fig. 10). Disparities in the timing, duration and temperature of metamorphism in the 688 

HMC between transects may therefore be explained by differences in the geometry of 689 

the orogen-scale decollement, however further work is needed to fully understand the 690 

3D evolution of the MHT through time. 691 

c. Differences in the accretion, duplexing and exhumation history, largely controlled 692 

through the formation of the Lesser Himalayan Duplexes (e.g. Robinson and McQuarrie, 693 

2012), are likely very important processes for controlling differential exposure of varying 694 
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structural levels of the HMC. Through this process, material that was accreted into the 695 

GHS more recently is brought up to the surface, thus exposing samples with younger 696 

metamorphic ages in thicker exposures of the HMC (Figs. 10,11; Larson et al., 2015, 697 

2017). Differences in the accretion, duplexing and exhumation history along-strike may 698 

help explain the differences in timing of exhumation between transects (e,g, Figs. 6, 8b). 699 

Moreover, the eastward increase in rainfall rates and specific stream power (e.g. Duncan 700 

et al., 2003; Hirshmiller et al., 2014), potentially forced by tectonically-driven orographic 701 

controls, could be an important compounding factor for focusing preferential erosion and 702 

thus exposing the thicker, younger HMC in the east of the orogen.  703 

d. The presence of pre-existing basement structures within the Indian crust (e.g. Godin et 704 

al., 2018) could potentially provide a mechanism for explaining differences in the location 705 

of ramps on the MHT along-strike. For example, there is a major shift in the duration of 706 

metamorphism between the Sutlej Valley (~11 Ma) and the Karnali Klippe (~44 Ma), 707 

which are separated by the Delhi-Hariwar ridge. The Faizabad ridge separates western 708 

from central Nepal and the Mungo-Saharsa ridge separates eastern Nepal and Sikkim 709 

from Bhutan (Godin et al., 2018). These structures therefore may have had a major 710 

influence on the along-strike geometry of the MHT and thus the accretionary history of 711 

the HMC.  712 

6. CONCLUSIONS 713 

We present a ‘campaign-style’ petrochronological study of titanite U-Th-Pb-REE-Zr data 714 

from 47 calc-silicate samples from >2000 km along-strike distance along the GHS crystalline 715 

core of the Himalaya. The results indicate that titanite U-Pb ages commonly represent 716 

crystallization rather than cooling ages and can therefore be used to understand the timing, 717 

duration and temperature conditions of metamorphic processes. When compared as a whole, all 718 

titanite crystallised at temperatures of 620–810°C. The oldest titanite U-Pb dates are 719 

consistently between ~30 Ma and 20 Ma along the entire length of the studied area, with an 720 
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eastward-younging trend in the youngest titanite dates, which are as young as ~12 Ma east of 721 

Mt. Everest. The titanite data presented here are interpreted to indicate that lateral variations in 722 

the geometry of the basal decollement play an important role in controlling the amount and 723 

timing of ductile accretion into the HMC at depth, leading to heterogeneities in the duration and 724 

minimum timing of metamorphism between transects. A transition to duplexing within the 725 

underlying Lesser Himalayan rocks towards the foreland, coupled with erosion at the surface led 726 

to differential exposure of a younger and thicker GHS in the east of the orogen. This study 727 

represents the only internally-consistent orogen-scale study of its type in the Himalaya and 728 

demonstrates the potential for ‘campaign-style’ petrochronology for revealing large-scale lateral 729 

variations in the timing of deformation in collisional orogens.  730 
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FIGURE CAPTIONS 1182 

Figure 1: Geological map of the Himalaya (adapted from Kohn, 2014; Yin, 2006). Close up 1183 

maps of sample location regions and U-Pb and Zr-in-titanite data from this study (a. Sutlej 1184 

valley, b. western Nepal, c. Annapurna area, d. Langtang, e. Mt. Everest, f. eastern Nepal, g. 1185 

Sikkim, h. western Bhutan and i. central Bhutan. Map based on a. Vannay and Grasemann, 1186 

1998; Webb et al., 2007; Chambers et al., 2008; Lederer et al., 2013;  b. DeCelles et al., 1998; 1187 

Carosi et al., 2007, 2010;Yakymchuk and Godin, 2012; Montimoli et al., 2013; He et al., 2015 c. 1188 

Parsons et al., 2016a;  d. Inger and Harris, 1993; Macfarlane, 1993; Kohn, 2008; e. Searle et 1189 

al., 2003; Jessup et al., 2008; f. Groppo et al., 2009, 2013b; g. Mottram et al., 2014; h. Grujic et 1190 

al., 2011; Warren et al., 2011, 2012; Kellett and Grujic, 2012; Regis et al., 2014; i.  Grujic et al., 1191 

2011; Cooper et al., 2012. 1192 

 1193 

Figure 2: Representative photomicrographs of samples analysed. (a) garnet-bearing calc-1194 

gneiss, (b) calc-silicate, (c) impure marble and d) amphibolite 1195 

 1196 

Figure 3: Tera-Wasserburg plots summarizing the three main types of titanite U-Pb data yielded 1197 

from this study, with representative chemical maps and trace element concentrations of titanite 1198 
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grains: (a) single isochon population sample KL-8-11-8, (unanchored; 27 samples show this 1199 

trend), (b) Sample SK12-216 with a spread of ages between two common-Pb anchored (Stacey 1200 

and Kramers, 1975) intercepts (12 samples); (c) Sample 13-26, poorly-defined (unanchored) 1201 

populations, with excess Pb analyses (8 samples). Tera-Wasserburg plots of each sample can 1202 

be found in Supplementary Material S3.  1203 

 1204 

Figure 4: Zr-in-titanite temperature data plotted against the 207Pb corrected 206Pb/238U titanite 1205 

date (Ma) for sample (a) DRB1233 (western Bhutan), (b) DRB1213 (western Bhutan) and (c) 1206 

SK12-216 (Sikkim Himalaya). 1207 

 1208 

Figure 5: (a) U-Pb titanite isochron dates and b) Zr-in-titanite temperatures of samples plotted 1209 

with respect to their across strike position within the GHS relative to the MCT (0%) and the STD 1210 

(100%). 1211 

 1212 

Figure 6: Interpreted previously published P-T paths based on pseudosections (from metapelite 1213 

samples proximal to samples analysed in this study), and previously published monazite data. 1214 

The timing of core and rim U-Pb and Zr-in-titanite temperatures from titanite within this study are 1215 

plotted for case study areas a) Kachenjunga, eastern Nepal (Ambrose et al., 2015) and 1216 

Annapurna Nepal, (Iaccarino et al., 2015), b) Sikkim, India (Mottram et al., 2014) and d) 1217 

Jomolhari, Bhutan (Regis et al., 2014). 1218 

 1219 

Figure 7: Case study areas: (a) Annapurna, (b) Everest, (c) Eastern Nepal and (d) Jomolhari, 1220 

showing titanite U-Pb Concordia dates (this study) compared to other published 1221 

geochronological data (see references in Figure). Geology legends are the same as Fig. 1. 1222 

 1223 
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Figure 8. Compilation of along-strike age data from the central and eastern Himalaya. (a) 1224 

Titanite data from this study is coloured by the average structural thickness of the Greater 1225 

Himalayan Sequence (GHS) in each location. B) Summary of previously published monazite, 1226 

titanite data and leucogranite data (from monazite and zircon data). References for previously 1227 

published data are reported in Supplementary Table S3. 1228 

 1229 

Figure 9: Summary of along-strike titanite U-Pb age trends for the oldest and youngest titanite 1230 

from this study. 1231 

 1232 

Figure 10: (a) Zr-in-titanite temperature, and (b) titanite U-Pb isochron age for each sample 1233 

plotted against the average structural thickness of the GHS in that area and coloured by the 1234 

along-strike longitudinal location of each sample. 1235 

 1236 

Figure 11. Conceptual model showing schematic cross section across a) areas with a thick GHS 1237 

where ductile accretion has occurred at depth, and (b) areas with a thinner GHS, where there 1238 

has been less ductile accretion at depth and the development of a larger LHD. MFT= Main 1239 

Frontal Thrust, MBT= Main Boundary Thrust, MCT= Main Central Thrust, GHS= Greater 1240 

Himalayan Sequence and LHD= Lesser Himalayan Duplex. Adapted from Cottle et al., 2015a; 1241 

Larson et al., 2015; Mercier et al., 2017. 1242 

TABLES 1243 

Table 1: Sample locations and mineral assemblages  1244 

Table 2: Summary of titanite U-Pb, Zr-in-titanite temperatures and trace element concentrations 1245 

Table 3: Lithology vs titanite age and temperature trends 1246 

Table 4: Comparison of differences in timing and temperatures of titanite crystallization in the 1247 

different geological transects studied. 1248 
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Table 5: Table 5: Comparison of differences in timing and temperatures of accessory phase 1249 

crystallization ages in the different geological transects from a compilation of published HMC 1250 

data. 1251 

SUPPLEMENTARY MATERIAL 1252 

Supplementary Table 1: Full U-Pb-Zr-REE dataset for all analysed titanite grains 1253 

Supplementary Table 2: Reference material reproducibility 1254 

Supplementary Table 3: Previously published petrochronology dataset 1255 

Supplementary Table 4: Zr-in-titanite temperatures 1256 

Supplementary Material S1: Detailed maps of titanite locations, temperatures, petrography and 1257 

zoning 1258 

Supplementary Material S2: Detailed methods 1259 

Supplementary Material S3: Full Concordia diagrams, trace element profiles and Zr-in-titanite 1260 

temperatures and data trends. 1261 

 1262 
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Country Location

Decimal 

Lat

Decimal 

Long MCT STD dip ref dip

STRUCT. 

THICK

PROP

ORTIO

N

402060 1 3 Nepal Marysangdi valley 28.494 84.364 cg UGHS 38 12 Vannay and Hodges, 1998 40 19 32  Hae, Py

402063 1 3 Nepal Marysangdi valley 28.507 84.361 cg UGHS 38 12 Vannay and Hodges, 1998 40 19 32  Py

05-55_ 2 6 Nepal Khumbu 27.850 86.783 cs UGHS 25 20 Jessup et al., 2008 45 21 57

06-57_ 2 6 Nepal Milke Danda 27.445 87.452 g-cs LGHS 15 60 Groppo et al., 2009 35 29 85

06-62_ 2 6 Nepal Milke Danda 27.398 87.450 g-cs LGHS 10 60 Groppo et al., 2009 35 29 85 Gph

07-22_ 2 6 Nepal Makalu 27.798 87.126 cg UGHS 25 20 schelling et al., 1992 40 27 62

08-57_ 2 6 Nepal Mewa Khola 27.681 87.587 cg UGHS 37 27 schelling et al., 1992 40 27 43  Sil

09-25_ 2 6 Nepal Khancenjunga 27.602 87.870 cg UGHS 20 40 schelling et al., 1992 40 27 48

10-37_ 2 6 Nepal lower Khumbu 27.620 86.719 g-cs UGHS 5 40 Jessup et al., 2008 45 21 81  Sil

12-65_ 2 6 Nepal Dudh-Khunda 27.702 86.599 cg UGHS 20 40 Jessup et al., 2008 45 25 80  Hae, Gph

13-26_ 2 6 Nepal Singalilla Ridge 27.106 87.992 g-cs LGHS 10 65 schelling et al., 1992 40 27 85  Gph

14-17b_ 2 4 Nepal Langtang 28.197 85.617 cg UGHS 20 15 Fraser et al., 2000 45 30 51

14-44c_ 2 4 Nepal Gosaikund 28.087 85.393 cs UGHS 2 33 Fraser et al., 2000 45 30 84

14-74b_ 2 4 Nepal Gosaikund 27.849 85.459 g-cs UGHS 3 32 Fraser et al., 2000 45 30 73 Tur

B126 3 9 Bhutan C/E Bhutan- Jakar 27.511 90.286 m UGHS/TSS 69.9 0.1 Kellett et al., 2010 ish 30 30 2

BU14-137 16 9 Bhutan N. Central Bhutan 27.826 90.491 cg UGHS 65 5 Kellett et al., 2010 ish 30 30 7

CWB-10-2 4 8 Bhutan Gasa 27.910 89.734 cg LGHS 60 15 Average 40 27 28

D13-49B 5 2 Nepal Mugu Karnali 29.661 82.625 a UGHS/TSS ? 1 Montimoli et al., 2013 45 18 4

DH12-4-10-4 6 2 Nepal Dadeldhura klippe 29.253 82.132 m UGHS 15 6 Robinson et al., 2006 40 15 34 Rt

DH12-5-10-11 6 2 Nepal Dadeldhura klippe 29.236 82.061 cg UGHS 23 4 Robinson et al., 2006 40 15 23 Hae

DH12-6-10-3 6 2 Nepal Dadeldhura klippe 29.228 82.013 m UGHS 35 1 Robinson et al., 2006 40 15 5

DRB1213 7 8 Bhutan Far western Bhutan 27.741 89.266 m UGHS 24.9 0.1 Kellett and Grujic, 2012 40 19 2  Hae

DRB1219 7 8 Bhutan Far western Bhutan 27.736 89.291 g-cs UGHS 24.9 0.1 Kellett and Grujic, 2012 40 19 2

DRB1233 7 8 Bhutan Far western Bhutan 27.797 89.350 cs UGHS 24.8 0.2 Kellett and Grujic, 2012 40 19 2 Fl

ET-16 8 5 Nepal Hermit's gorge 28.141 86.876 a UGHS 64.8 0.2 Jessup et al., 2008 30 30 6

FB118 9 8 Bhutan Far western Bhutan 27.780 89.339 m UGHS 24.8 0.2 Kellett and Grujic, 2012 40 19 2

FB123 9 9 Bhutan C/E Bhutan- Jakar 27.512 90.284 m UGHS/TSS 59.1 0.1 Kellett et al., 2010 ish 30 30 0.5

FB72 9 9 Bhutan C Bhutan, Punakha 27.609 89.938 cg UGHS 58 2 Kellett et al., 2010 ish 30 30 4 Ccp

K09-25c 11 1 India Manikaran 32.005 77.410 g-cs LGHS 2 3 webb et al., 2007 30 4 88

K09-65a 11 1 India Sutlej- Ribba 31.581 78.387 a UGHS 24 3 Caddick et al., 2007 30 17 10

K09-75d 11 1 India Sutlej- Poo 31.767 78.637 cs GHS? ? 3 Caddick et al., 2007 30 17 10

KL-4-11-5 5 3 Nepal Kali Gandaki 28.628 83.582 a UGHS 22 3 Parsons et al., 2014 30 17 10

KL-8-11-8 5 3 Nepal Kali Gandaki 28.629 83.594 a UGHS 22 3 Parsons et al., 2014 30 17 10  tur

MK14 12 3 Nepal Modi Kohlar 28.471 83.869 cs UGHS 23 2 Parsons et al., 2014 40 19 28

MK15 12 3 Nepal Modi Kohlar 28.507 83.904 cg UGHS 23 2 Parsons et al., 2014 40 19 28

MK9 12 3 Nepal Modi Kohlar 28.471 83.869 a UGHS 15 10 Parsons et al., 2014 40 19 28

P12/048 13 3 Nepal Kali Gandaki 28.590 83.648 m UGHS 15 10 Parsons et al., 2014 30 17 34 Rt, Tur

P12/054 13 3 Nepal Kali Gandaki 28.616 83.638 cg UGHS 20 5 Parsons et al., 2014 30 17 17 Tur

P13/031 13 3 Nepal Kali Gandaki 28.665 83.583 a UGHS 24 1 Parsons et al., 2014 30 17 3

R03-36 8 5 Nepal Hermit's gorge 28.161 86.880 s UGHS 64.8 0.2 Jessup et al., 2008 30 30 1

R03-40 8 5 Nepal Hermit's gorge 28.166 86.880 s UGHS 64.8 0.2 Jessup et al., 2008 30 30 0.5

R03-69 8 5 Nepal Hermit's gorge 28.141 86.876 s UGHS 64.8 0.2 Jessup et al., 2008 30 30 1

R03-71 8 5 Nepal Hermit's gorge 28.141 86.876 s UGHS 64.8 0.2 Jessup et al., 2008 30 30 3

SK12-119 14 7 Sikkim Lava- Neora 27.084 88.674 cg LGHS 7 60 Mottram, 2014 30 30 95 Ccp, Sil

SK12-216 14 7 Sikkim Pelling-Yuksom 27.363 88.204 cg LGHS 3 50 Mottram, 2014 35 30 95

SK12-344 14 7 Sikkim Mirik-Darjeeling 27.007 88.212 cg LGHS 10 60 Mottram, 2014 35 30 85 Ccp

Table 1: Sample locations and mineral assemblages
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(Ma)

Transect
1

Date
3

± 2σ
4

MSWD Th/U U Th Pb Y 2SE Zr 2SE Fe 2SE Nb 2SE Nd Eu* Yb/Gd

402060 C cg cores/ larger grains 250-500 16 22.4 0.7 1.9 752 41 16 0.4 110.2 39.8 0.9 1058 96 230 24 3691 337 579 55 1201.7 0.6 0.6

402060 C cg rim/ small grains 250-500 7 (+7 others) 19 0.9 6.4 3.4 751 40 14 0.5 118.3 65.4 1.0 1145 89 237 23 4149 454 516 51 1564.6 0.6 0.7

402063 C cg cores/ larger grains 250-1000 20 27.4 1.6 4.8 737 39 14 0.2 98.2 22.3 1.1 794 74 180 16 3606 343 712 70 670.5 0.9 0.7

402063 C cg mainly rim, Eu anom 250-1000 6 (+10 others) 18.2 1.9 4 9.2 743 40 15 0.3 125.6 50.3 1.0 830 84 208 18 4890 447 773 69 30.3 0.9 0.9

05-55_ F cs single population 100-300 47 21.8 1.3 0.7 711 42 17 1.6 62.5 102.0 3.4 310 34 253 28 4155 609 919 106 609.1 0.8 0.4

06-57_ F g-cs
some inherited grains 50-200 42

12.5 8.4 1 Yes 743 39 17 0.0 6.8 0.4 2.4 220 24 140 20 1373 363 1522 171 52.0 1.0 1.1

06-62_ F g-cs
some inherited grains

100-200 26 15.3 0.7 1.2 Yes 753 41 15 0.1 37.5 3.9 1.4 262 18 357 26 1215 363 1565 100 171.2 1.1 0.5

07-22_ F cg cores 100-800 12 18.8 1.4 7 808 45 16 3.4 187.6 629.4 1.8 379 30 813 51 2294 246 1053 69 874.0 0.6 0.4

07-22_ F cg rims 100-800 6 (+27 others) 12 0.5 0.7 6.8 770 43 13 1.3 156.4 229.6 0.8 738 57 555 47 1808 184 1052 83 1488.4 0.6 0.4

08-57_ F cg single population 400-800 48 17.4 1.7 0.4 814 45 16 6.3 74.1 480.3 3.4 1310 96 761 65 3454 352 1073 87 3339.8 0.4 0.6

09-25_ F cg single population 100-300 48 13.7 0.5 0.9 806 44 15 1.9 174.7 288.0 1.4 1497 110 654 52 2374 264 1584 126 2675.3 0.5 0.7

10-37_ F g-cs
some inherited grains 100-200 37

19 6.5 1.9 Yes 686 40 18 0.2 8.6 1.1 1.8 662 58 115 13 1727 424 4021 365 57.0 0.8 2.5

12-65_ F cg
no clear relationship 100-400 7

25.5 4.1 6.6 740 40 15 3.0 68.3 24.4 1.0 1270 109 194 23 2239 397 1195 138 1227.3 0.5 0.8

12-65_ F cg
no clear relationship 100-400

7 (+32 others) 15 3.1 8.5 10.5 723 45 18 0.4 126.0 377.2 1.0 1405 133 822 77 3720 549 839 97 3369.8 0.6 0.6

13-26_ F g-cs
some inherited grains 100-200 41

12.4 5 0.8 Yes 754 39 16 0.1 13.8 0.9 1.7 167 22 134 16 1988 655 2597 293 58.4 0.7 0.6

14-17b_ D cg single population 300-800 46 19.2 0.5 2 785 44 16 2.4 99.9 236.9 4.3 1106 90 555 49 3807 371 684 57 2283.3 0.6 0.8

14-44c_ D cs
some inherited grains 100-200 30

14 3.3 0.3 Yes 716 38 16 0.1 12.1 0.2 4.7 128 12 113 11 623 428 7823 830 57.3 1.0 0.2

14-74b_ D g-cs single population 200-300 40 17.9 1.4 0.7 748 40 16 0.1 8.0 0.3 1.6 142 15 234 24 1665 396 1837 198 36.4 1.5 0.4

B126 I m single population 100-300 44 15.5 0.8 2.4 658 38 16 0.1 18.2 2.1 1.6 164 16 102 12 1269 424 1009 134 117.2 0.7 0.7

BU14-137 I cg single population 200-450 21 16 2.1 1 730 40 17 0.1 5.9 0.6 0.3 513 60 187 23 7343 985 1220 142 36.6 0.7 10.9

CWB-10-2 H cg rim/core/small 200-450 10 14.4 1.4 7 770 41 16 1.0 183.2 199.5 1.8 1638 150 368 31 2753 223 803 67 2944.4 0.5 0.5

CWB-10-2 H cg rims 200-450 13 (+13 others) 12.6 0.4 3.7 1.8 764 40 14 1.4 110.8 176.3 1.4 1429 117 319 28 3158 265 501 44 2273.5 0.5 0.7

D13-49B B a single population 100-300 34 18.8 1.5 1.3 710 38 16 0.4 10.1 5.3 0.8 576 57 146 17 3334 648 5852 576 93.8 0.7 2.1

DH12-4-10-4 B m single population 100 26 16.6 2.7 0.3 738 38 15 0.2 23.8 2.6 1.9 395 32 183 19 1513 331 3197 275 357.3 0.8 0.5

DH12-5-10-11 B m core and rim 300-750 7 26.5 1.8 10.5 740 39 13 0.9 154.3 137.7 0.8 432 33 172 13 2774 187 629 49 889.7 0.7 0.4

DH12-5-10-11 B cg rims 300-750 5 (+6 others) 18.3 2 4.7 8.2 735 38 13 0.5 152.4 67.3 1.0 492 40 156 10 2708 208 571 42 908.1 0.6 0.4

DH12-6-10-3 B m single population 100 40 20 0.7 1.3 735 41 15 0.1 119.3 14.6 3.4 1079 90 165 15 2687 482 3155 264 788.5 0.7 0.7

DRB1213 H m cores and rims 100 9 21.9 0.6 2 733 41 15 0.8 127.5 105.3 1.3 681 50 171 16 1014 106 714 56 1033.9 0.4 0.7

DRB1213 H m small grains 100 8 (+ 14 others) 13.1 0.5 0.6 8.8 716 38 13 1.4 103.9 280.4 2.8 679 44 127 9 1118 89 565 45 1364.0 0.4 0.6

DRB1219 H g-cs single population 100-400 33 18.2 2.3 0.8 730 38 14 0.0 5.2 0.2 1.2 112 11 179 13 1604 124 687 55 20.8 0.8 1.0

DRB1233 H cs rims and cores 200-750 18 19.6 1.3 2.8 757 39 12 0.4 69.0 30.1 1.6 1126 76 198 14 2096 173 1044 88 710.2 0.5 0.9

DRB1233 H cs small grains 200-750 7 (+7 others) 16.1 0.9 3.2 3.5 779 41 14 0.7 101.1 85.4 1.3 1232 93 304 24 2186 183 534 41 1392.3 0.5 0.6

ET-16 E a single population 100-200 34 15.2 0.9 3.6 672 38 13 0.5 55.4 28.5 1.1 836 62 100 7 9335 799 560 44 461.1 0.7 0.9

FB118 H m cores/ larger grains 200-300 16 19 0.6 2.6 791 41 16 1.5 141.5 223.9 5.4 462 40 420 43 670 398 1212 123 1230.0 0.5 0.5

FB118 H m rims 200-300 27 14.3 1.3 2.2 4.7 742 38 14 1.3 106.0 134.2 13.6 691 66 150 16 801 446 643 66 1216.0 0.4 0.6

Table 2: Summary of titanite U-Pb, Zr-in-titanite temperatures and trace element concentrations
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FB123 I m single population 100-200 46 17.2 0.7 4.3 626 38 18 0.2 51.5 8.6 3.4 152 12 37 6 1129 411 669 56 348.4 0.6 0.3

FB72 I cg single population 300-700 43 14.9 0.8 1.6 715 42 15 0.3 37.9 13.3 0.7 842 67 248 21 2329 436 1034 93 569.4 0.7 0.8

K09-25c A g-cs
some inherited grains

100-200 21 21.4 3.9 1.3 Yes 657 36 17 0.5 26.0 9.2 12.4 935 102 29 5 4559 613 565 63 171.9 1.0 2.2

K09-65a A a single population 100 38 22.8 1.7 2.8 695 36 14 0.1 20.5 3.4 2.2 837 73 80 8 3294 598 651 58 190.7 0.7 1.2

K09-75d A cs single population 100-200 44 20.5 2.9 0.3 700 37 15 0.2 19.7 3.5 2.3 556 54 94 10 1421 374 1222 122 239.7 1.1 0.5

KL-4-11-5 C a some inherited grains
200-300 35 31 10 74 Yes 734 37 15 0.7 34.1 23.0

1.4
914 83 129 16 4126 555 1620 152 363.0 1.0 2.6

KL-8-11-8 C a single population 1000 45 24 0.8 0.9 766 39 16 0.1 100.7 87.9 4.6 484 51 201 22 6810 941 4284 452 803.7 0.4 0.6

MK14 C cs single population 100-300 48 22.6 0.9 2.8 780 40 15 0.8 77.9 33.4 1.5 68 295 25 2053 1836 376 2053 210 1055.6 0.7 0.4

MK15 C cg cores and rims 200-500 10 24.5 1.5 1.3 778 41 15 0.1 26.3 2.8 0.8 661 45 317 22 1784 154 688 47 228.3 0.7 1.0

MK15 C a cores and rims 200-500 16 (+4 others) 18.2 1.2 4.1 739 38 13 0.1 32.7 2.9 1.2 630 41 140 10 2043 195 628 51 239.0 0.8 1.0

MK9 C m
some inherited grains

100-200 47 18.9 1.3 1 Yes 759 39 15 0.2 88.0 19.8 3.5 91 191 20 2222 3628 538 2222 264 569.8 0.7 1.3

P12/048 C m single population 300-700 46 23.4 5.6 0.2 678 36 14 0.2 40.6 6.9 13.8 583 46 77 7 1526 420 1517 148 410.5 0.8 0.5

P12/054 C cg single population 100-300 32 20 1 4.5 743 40 15 0.2 78.4 12.9 1.1 1423 126 205 17 3312 496 1501 136 765.7 0.8 1.1

P13/031 C a single population 100-300 42 28 11 0.2 747 37 13 0.2 2.3 0.7 2.5 373 25 168 12 6020 499 1084 85 40.9 0.8 6.1

R03-36 E as single population 100-300 30 19.1 1.6 1.1 687 41 19 0.2 19.6 5.9 1.7 722 109 144 21 6250 1192 540 88 235.6 0.8 2.1

R03-40 E as single population 100 35 18.8 2.5 0.3 665 40 19 0.2 29.4 8.4 7.2 1539 236 111 17 15364 2875 758 122 165.5 1.0 3.1

R03-69 E as single population 100-200 28 15.6 0.5 1.5 677 41 19 0.1 99.0 11.4 3.3 4338 691 113 17 11620 3113 1277 207 629.4 0.7 2.9

R03-71 E as single population 100-300 44 16.9 0.6 1.2 680 41 20 0.1 46.1 7.1 1.6 952 165 121 19 14479 2060 739 122 331.7 0.7 2.4

SK12-119 G cg single population 100-300 40 14.8 0.5 1 742 39 14 0.7 256.0 122.2 13.2 2489 196 195 14 3575 358 1185 94 1196.4 1.0 1.7

SK12-216 G cg mainly cores 200-500 12 22.3 0.7 2.6 748 38 13 1.6 148.7 252.9 0.7 216 16 224 17 5676 424 382 28 1148.1 0.6 0.1

SK12-216 G cg rims 200-500 8 (+8 others) 15.4 1.2 3.4 6.9 757 40 14 1.7 157.1 259.2 0.6 629 42 308 24 5596 464 24 609 1237.3 0.6 0.5

SK12-344 G cg single population 200-500 40 18.7 1.2 0.6 762 38 13 0.2 59.5 14.1 1.8 635 39 190 12 3986 233 546 35 405.5 0.8 0.8

TH-B12-IG05 H cg cores 200-500 10 19.1 2 6.2 773 41 15 0.5 305.3 362.9 2.1 1277 68 356 21 2442 148 526 26 3838.4 0.4 0.4

TH-B12-IG05 H cg rims 200-500 15(+15 others) 15.3 1.3 6.6 3.8 744 38 13 1.2 192.0 95.5 1.9 1255 99 210 12 2584 153 654 38 1670.0 0.6 0.6

1. A= Sutlej  valley area NW India, B= Western Nepal, C=Annapurna, Nepal, D= Langtang, E= Everest, F= Kachenjunga and Eastern Nepal, G= Sikkim, H= Jomolhari, Western Bhutan, I= Central Bhutan 

2. Rock type- a= amphibolite, as= amphibolite schist, cg= calc-gniess, cs= calc-silicate, g-cs= garnet-bearing calc silicate, m= impure marble.

3. U-Pb isochron date (unanchored except for samples which yield a spread of ages [highlighted in light grey in table] which were anchored at 0.83±0.02- Stacey and Kramers, 1975 common-Pb composition)

4. Uncertainties includes in-run errors, decay constant errors and propogated uncertainties for reproducibility of secondary reference materials FC and Y1710C5

5. Approximate date of inherited titanite analyses

6. Zr-in-titanite temperature (Hayden et al., 2008)

7. Uncertainties includes propogated analytical uncertainties, and additional uncertainties for errors in pressure determination and activity of rutile (for comparing with external results.

8. Uncertaintie include propogated analytical uncertainties and additional uncertainty for errors in pressure determination (for comparing samples internally)

9. Normalised to McDonough and Sun, 1995
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Table 3: Lithology vs titanite age and temperature trends

Rock type n

S
in

g
le

S
p

re
a

d

E
x

ce
ss

 P
b

Average 

titanite 

date (Ma)

2σ

Oldest 

titanite 

date (Ma)

2σ

Youngest 

titanite 

date (Ma)

2σ
Average Zr-

in-ttn T (°C)
2σi

Maximum 

Zr-in-ttn T 

(°C)

2σi

Minimum 

Zr-in-ttn T 

(°C)

2σi

Amphibolite 10 9 0 1 21 3.1 31 10 15.2 0.9 703 16 766 16 665 19

Marble 9 5 3 1 18.7 1.5 26.5 1.8 13.1 0.5 721 15 791 16 626 18

Calc-gneiss 16 8 8 0 18.1 1.4 27.4 1.6 12 0.5 758 15 814 16 715 15

Calc-silicate 12 5 1 6 17.8 3 22.6 0.9 12.4 5 732 16 780 15 657 17
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Location δt
1
 (Ma) δT

2
 (°C)

Average 

thickness 

of GHS 

(km)

Average 

structural 

location 

(no unit)
3

Average 

Longitude 

(decimal 

degree)

Oldest 

titanite 

date (Ma) 2σ ab

Youngest 

titanite 

date (Ma) 2σ ab

Highest Zr-

in-titanite 

T (°C) 2σ ab

Lowest Zr-

in-titanite 

T (°C) 2σ ab

Sutlej valley 2.3 43 13 36.0 78.1443 22.8 1.7 20.5 2.9 700 15 657 17

Western Nepal 12.0 30 16 17.6 82.1785 28.6 1.7 16.6 2.7 740 13 710 16

Kali Gandaki 13.1 102 15 17.0 84.3627 31.0 10.0 17.1 1.1 752 16 737 14

Modi Khola 9.9 15 19 23.7 83.7325 22.9 0.6 17.9 1.0 780 15 678 14

Langtang 5.4 69 30 69.4 85.4898 19.2 0.5 13.8 3.3 785 16 716 16

Everest 4.4 22 30 2.3 86.8777 19.1 1.6 15.6 0.5 687 19 665 19

Eastern Nepal 16.0 128 26 69.7 87.2092 28.2 7.2 12.5 0.7 814 16 686 18

Sikkim 7.6 20 29 92.8 88.3237 21.9 1.1 14.3 1.0 757 14 742 14

Jomolhari 8.8 64 19 2.0 89.7302 26.6 2.9 12.5 0.4 773 15 744 13

Laya 14.1 26 27 28.1 89.3143 23.0 0.5 13.2 0.5 791 16 716 13

Central Bhutan 2.3 72 30 3.2 90.2495 17.2 0.7 14.9 0.8 730 17 626 18

1. δt = duration of metamorphism, the difference between maximum and minimum titanite U-Pb age in each section

2. δT= difference between maximum and minimum titanite Zr-in-titanite temperature in each section

3. Average structural location= structural location within the GHS in relation to the STD (0) and the MCT (100).

Table 4: Comparison of differences in timing and temperatures of titanite crystallization in the different geological transects studied.
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Location
1

Average 

Longitude 

(decimal 

degree)

Oldest 

Mnz/ttn 

date (Ma) 2σ ab

Youngest 

mnz/ttn 

date (Ma) 2σ ab Duration 2σ ab n=

Sutlej valley 78.606 29 0.2 17.9 0.1 11.1 0.2 28

Karnali Klippe, Western Nepal 81.931 53.3 3.9 9.2 0.2 44.1 3.9 26

Upper/Mugu Karnali, Western Nepal 82.435 41.4 3.9 17 0.2 24.4 3.9 15

Kali Gandaki 83.614 48.8 2 20 0.9 28.8 2.2 9

Modi Khola 83.856 40.3 2 17.9 0.9 22.4 2.2 21

Marysangdi Valley 84.327 33.2 1.4 14.5 0.3 18.7 1.4 29

Langtang 85.452 32.4 0.7 12.8 1.1 19.6 1.3 22

Tami Khosi 86.369 26 0.5 14.6 0.5 11.4 0.7 20

Everest 86.822 32.2 0.4 15 0.1 17.2 0.4 27

Makalu-E 87.227 38.9 0.9 12 0.4 26.9 1.0 26

Kachenjunga 87.824 41.5 0.9 12.4 0.4 29.1 1.0 19

Sikkim 88.555 36.4 0.9 13.1 0.4 23.3 1.0 52

Jomolhari 89.277 36.1 0.9 13.1 0.4 23 1.0 17

Laya 89.65 24.2 0.9 13.3 0.4 13.9 1.0 24

Central Bhutan 90.517 24.5 0.7 12.5 0.4 12 0.8 19

Eastern Bhutan 91.062 26 0.9 14.5 0.4 11.5 1.0 8

Arunarchal 91.745 27.3 0.9 11.5 0.4 15.8 1.0 12

Table 5: Comparison of differences in timing and temperatures of accessory phase crystallization ages in the different geological transects 

from a compilation of published HMC data.

1. Data from: This study; Ambrose et al., 2015; Bardden et al., 2017; Carosi et al., 2010; 2016; Catlos et al., 2001; 2004; Corrie and Kohn, 

2011; Cottle et al., 2009; 2015; Daniel et al., 2003; Edwards and Harrison, 1997; From et al., 2014; Groppo et al., 2010; Harrison et al., 

1995; 1997; Hodges et al., 1998; Jessup et al., 2008; Kellett et al., 2010; 2013; Kohn and Corrie, 2011; Kohn et al., 2004; Larson and Cottle, 

2014; Larson et al., 2013; Lederer et al., 2013; Leloup et al., 2010; Montimoli et al., 2013; Mottram et al., 2014; 2015; Murphy and 

Harrison, 1999; Regis et al., 2014; 2016; Rubatto et al., 2013; Scharer et al., 1986; Searle et al., 2003; Simson et al., 2000; Soucy La Roche 

et al., 2017; Streule et al., 2010; Tobgay et al., 2012; Walters and Kohn, 2017; Warren et al., 2011; 2012; 2014; Zeiger et al., 2015.
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Campaign-style U-Pb titanite petrochronology; along-strike variations 

in timing of metamorphism in the Himalayan Metamorphic Core. 
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Highlights 

• Investigation of along-strike variations in the Himalayan mountain belt 

• Campaign-style titanite petrochronology study analyzing 47 samples from >2000 km 

• Results show eastward younging in titanite ages 

• Younger, thicker and hotter core of the mountain belt in the east  

• Accretion and duplexing along the basal detachment control along-strike trends 


