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The Inflammasome and Caspase-1 Activation: A New
Mechanism Underlying Increased Inflammatory
Activity in Human Visceral Adipose Tissue
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The immune competent abdominal adipose tissue, either stored viscerally [visceral adipose tissue
(VAT)] or sc [sc adipose tissue (SAT)], has been identified as a source of IL-1� and IL-18. To become
active, the proforms of these cytokines require processing by caspase-1, which itself is mediated by
the inflammasome. In this descriptive study, we investigate the expression of inflammasome com-
ponents and caspase-1 in human fat and determine whether caspase-1 activity contributes to the
enhanced inflammatory status of VAT. Paired SAT and VAT biopsies from 10 overweight subjects
(body mass index, 25–28 kg/m2) were used to study the cellular composition and the intrinsic
inflammatory capacity of both adipose tissue depots. The percentage of CD8� T cells within the
lymphocyte fraction was significantly higher in VAT compared with SAT (41.6 vs. 30.4%; P � 0.05).
Adipose tissue cultures showed a higher release of IL-1� (10-fold; P � 0.05), IL-18 (3-fold; P � 0.05),
and IL-6 and IL-8 (3-fold, P � 0.05; and 4-fold, P � 0.05, respectively) from VAT compared with SAT
that was significantly reduced by inhibiting caspase-1 activity. In addition, caspase-1 activity was
3-fold (P � 0.05) higher in VAT compared with SAT, together with an increase in the protein levels
of the inflammasome members apoptosis-associated speck-like protein containing a C-terminal
caspase-recruitment domain (2-fold; P � 0.05) and nucleotide-binding oligomerization domain-
like receptor pyrin domain containing 3 (2-fold; nonsignificant). Finally, caspase-1 activity levels
were positively correlated with the percentage of CD8� T cells present in adipose tissue. Our results
show that caspase-1 and nucleotide-binding oligomerization domain-like receptor pyrin domain
containing 3 inflammasome members are abundantly present in human VAT. The increased in-
trinsic caspase-1 activity in VAT represents a novel and specific inflammatory pathway that may
determine the proinflammatory character of this specific depot. (Endocrinology 152: 3769–3778,
2011)

Chronic low-grade inflammation has now been recog-
nized as one of the key steps in the pathogenesis of

obesity-induced insulin resistance and type 2 diabetes mel-
litus. The metabolically active abdominal adipose tissue
secretes a wide variety of cytokines, that may promote the
development of peripheral insulin resistance (1). Obesity-
induced enlargement of adipose tissue is accompanied by

elevated plasma levels of cytokines, including IL-6, IL-8,
IL-1�, IL-18, and TNF� that affect insulin sensitivity in
peripheral tissues (2–6). It has been suggested that espe-
cially visceral adipose tissue (VAT), rather than sc adipose
tissue (SAT), contributes to the elevated circulating levels
of inflammatory cytokines in obese individuals (7, 8) that
may be attributed to enhanced influx of immune cells,
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including macrophages, monocytes, and B and T cells (9,
10). However, efforts to identify possible mechanisms un-
derlying the enhanced inflammatory capacity of VAT
compared with SAT are scarce.

Recently, it was shown that the Toll-like receptor
(TLR)-4 inflammatory pathway is activated in the adipose
tissue during obesity and affects insulin responsiveness
(11). The expression levels of multiple TLR family mem-
bers were enhanced in VAT compared with SAT, suggest-
ing that the TLR signaling pathway may contribute to an
enhanced inflammatory capacity of VAT (12). IL-1� and
IL-18 have been linked to the development of obesity and
insulin resistance, and they partly originate from adipose
tissue (4, 13). To become active, the proform of IL-1� and
IL-18 is processed by a cysteine protease named caspase-1.
Activation of caspase-1 itself is mediated by a multiprotein
complex entitled the inflammasome (6, 14). Upon stimu-
lation by exogenous (bacterial products) or endogenous
(uric acids crystals, hyperglycemia, or cholesterol crystals)
signals, formation of the inflammasome complex consist-
ing of a nucleotide-binding oligomerization domain-like
receptor (NLR) family member and the adaptor protein
apoptosis-associated speck-like protein containing a C-
terminal caspase-recruitment domain (ASC) occurs (15–
19). To date, activation and function of the NLR pyrin
domain containing 3 (NLRP3) inflammasome composed
of NLRP3, the adaptor molecule ASC and caspase-1, is
most fully characterized and responsible for recognition of
invading pathogens and nonmicrobial molecules that
eventuates into IL-1� and IL-18 production (20, 21).

Inasmuch adipose tissue has been identified as a signif-
icant source of IL-18 and IL-1�, this suggests the presence
of the NLRP3 inflammasome machinery at the tissue level.
Indeed, we have recently described that caspase-1 is well
expressed in adipose tissue of obese animals and in human
SAT (22, 23), yet nothing is known about the NLRP3
inflammasome expression in human VAT compared with
SAT. Therefore, we set out to study the presence of the
NLRP3 inflammasome components and caspase-1 in hu-
man fat and to determine whether caspase-1 activity con-
tributes to the enhanced inflammatory status of VAT vs.
SAT.

Materials and Methods

Subjects
Paired SAT and VAT (omentum) samples were obtained ac-

cording a standardized procedure from 10 patients (five females
and five males) undergoing a cholecystectomy or an inguinal
hernia surgery. Inclusion criteria were age between 40–60 yr and
body mass index (BMI) of 25–28 kg/m2. Subjects were nor-
moglycemic and had a mean waist to hip ratio of 0.90 (Supple-

mental Table 1, published on The Endocrine Society’s Journals
Online web site at http://endo.endojournals.org). Metabolic dis-
eases, endocrine diseases, and chronic and/or acute inflamma-
tory diseases (high sensitivity C-reactive protein above 1 mg/
liter) were excluded. The tissue samples were collected after
written informed consent, and the protocol was approved by the
ethical committee of the Radboud University Nijmegen Medical
Centre.

Ex vivo stimulation experiments with human
adipose tissue

Intact human adipose tissue fragments from paired SAT and
VAT were used to study the presence of the NLRP3 inflam-
masome components and the intrinsic caspase-1 activity as well
as the cytokine release of IL-1� and IL-18 during a 24-h culture
using standard conditions (DMEM supplemented with 10% fe-
tal calf serum containing 5 mM glucose) with or without the
addition of the caspase-1 inhibitor pralnacasan (100 �M) (24).

Part of the freshly collected SAT and VAT samples was dis-
aggregated using collagenase digestion to isolate mature adi-
pocytes and the stromal vascular fraction (SVF). Purity of the two
different fractions was confirmed with the markers adiponectin,
leptin (adipocyte specific), and CD45 (hematopoietic cell line
marker) (Supplemental Fig. 1). The separate cellular fractions
were subsequently used for cell culture using standard conditions
for 24 h, fluorescence-activated cell sorter (FACS) analysis, and
RNA isolation, followed by real-time PCR analysis.

RNA isolation and PCR analysis
RNA was extracted from total SAT and VAT or different

adipose tissue cell fractions using TRIzol reagent (Invitrogen,
Carlsbad, CA). RNA concentration was determined using a
NanoDrop (NanoDrop Technologies, Wilmington, DE), and
cDNA synthesis was performed using the iScript cDNA Synthesis
kit (Bio-Rad Laboratories, Hercules, CA). Real-time PCR was
done using Power-SYBR Green master mix and the 7300 Real-
Time PCR system (Applied Biosystems, Warrington, UK). Ex-
pression of genes was normalized to �2M gene expression levels.
Primer sequences are available upon request.

Protein analysis
Protein lysates from total adipose tissue of both depots were

prepared to determine the presence of caspase-1 (Santa Cruz
Biotechnology, Inc., Santa Cruz, CA), NLRP3 (Abcam, Cam-
bridge, MA), and ASC (Abcam) by Western blotting. Secretion
of IL-1�, IL-6, IL-8, IL-18, TNF�, and adiponectin was analyzed
by ELISA (R&D Systems, Minneapolis, MN). Bioactive IL-1
secretion was quantified in a bioassay using the murine thymoma
cell line EL4/NOB-1 that produces IL-2 in response to bioactive
IL-1 (25). IL-2 levels were measured by ELISA (R&D Systems).

Caspase-1 activity assay
Caspase-1 activity in total SAT and VAT protein lysates was

determined with a caspase-1 fluorometric kit (BioVision, Moun-
tain View, CA) by measuring the cleavage of 50 �l of the
caspase-1 substrate YVAD-AFC. The fluorescence of the
cleaved substrate was measured every 90 sec using a fluorom-
eter (Polarstar BMG, fluostar galaxy; BMG Labtech, Orten-
berg, Germany).
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FACS analysis
SVF of both SAT and VAT were analyzed by flow cytometry

(FC500; Beckman Coulter, Brea, CA). To this purpose, 100,000
cells/100 �l PBS � 1% BSA were incubated in three separate
cocktails with the following conjugated monoclonal antibodies:
anti-CD14 (Ph imm27074)-ECD, anti-CD45 (A 07785)-PCy5,
anti-CD3 (A 07747)-PE, anti-CD8 (737659)-ECD, anti-CD4
(6604727)-ECD (Beckman Coulter), anti-F4/80 (ab60343-50)-
FITC (Abcam). Blood contamination of the samples was pre-
vented by treating the SVF with an erythrocyte lysis buffer.

Statistical analysis
Data are presented as mean � SEM. Comparisons between

SAT and VAT parameters were calculated using the nonpara-
metric Wilcoxon rank test. Correlations were determined using
a Spearman correlation test. The cut-off for statistical signifi-
cance was set at a P value of 0.05 or below. All statistics were
performed using SPSS software (version 16.0; SPSS, Inc., Chi-
cago, IL).

Results

Cellular composition of SAT and VAT
Because adipose tissue-resident macrophages represent

potent inflammatory cytokine producers during obesity
(26, 27), we set out to study the macrophage content in the
SVF of both SAT and VAT obtained by flow cytometry
(Table 1). Our study revealed that the numbers of mac-
rophages were equally distributed throughout SAT and
VAT. Subsequent FACS analysis of the SVF of the adipose
tissue to determine the cellular immune cell composition,
including monocytes and granulocytes, did not show sig-
nificant differences between both fat depots. However, the
percentage of CD8� (cytotoxic) T lymphocytes was sig-
nificantly increased in VAT compared with SAT, whereas
the CD4� cell number was not different in both depots
(Table 1). Supplemental Fig. 2, A and B, shows repre-
sentative dot plots of flow cytometry data of the differ-

ent immune cells within the SVF of SAT and VAT,
respectively.

Enhanced release of bioactive IL-1� and IL-18 from
VAT compared with SAT

To examine the production capacity of IL-1�, IL-18,
and other cytokines by VAT and SAT, total adipose tissue
was brought into culture, and cytokine production was
measured after 24 h. Interestingly, secretion of both total
IL-1� and bioactive IL-1, as determined by ELISA and the
NOB-1 bioassay, respectively, was significantly higher
(P � 0.05) in VAT compared with SAT. In addition, IL-18
production from VAT was also significantly enhanced
(Fig. 1A). The production of other proinflammatory cy-
tokines, including IL-6, IL-8, and IL-1Ra, was also ele-
vated in VAT compared with SAT explants (3-fold, P �

0.05; 4-fold, P � 0.05; and 2-fold, P � 0.05, respectively),
and secretion of adiponectin, a protein known for its
insulin-sensitizing action (28), was reduced by VAT com-
pared with SAT (P � 0.05) (Fig. 1B). Noticeably, secretion
levels of the proinflammatory cytokine TNF� were com-
parable between VAT and SAT (Fig. 1B).

To determine gene expression levels of different cyto-
kines in VAT and SAT, quantitative PCR analysis was
performed. Although IL-1� gene expression levels were
similar in both depots, IL-18 mRNA levels were signifi-
cantly up-regulated in VAT (Fig. 2A). Gene expression
levels of IL-6, IL-8, and adiponectin did not differ between
both fat depots (data not shown). Fractioning of VAT into
mature adipocytes and the SVF component revealed that
IL-1� and IL-18 mRNA were significantly more expressed
in the SVF (Fig. 2B). In accordance with the gene expres-
sion profile, IL-1� production was elevated in the SVF
compared with the mature adipocyte fraction in both fat
depots. However, the production of IL-1� by mature adi-
pocytes and SVF was higher in VAT compared with the
correspondence fractions isolated from SAT (Fig. 2C).

Inflammasome expression and caspase-1 activation
are increased in VAT compared with SAT

Inasmuch the adipose tissue is able to secrete IL-1� and
IL-18 (Fig. 1A), it suggests the presence of active caspase-1
in human adipose tissue. Indeed, the active form of
caspase-1 was detectable in both fat depots (Fig. 3, A and
B). Although caspase-1 gene expression was similar in
both fat depots (data not shown), a 3-fold increase in
caspase-1 protein levels was observed in the VAT samples
from the 10 study subjects as determined by Western blot
analysis [Fig. 3, A (Western blot analysis image from one
subject) and B (all subjects)]. In addition, caspase-1 activ-
ity was enhanced in VAT compared with SAT as deter-

TABLE 1. Immune cell composition of SAT and VAT
from seven subjects

Immune cells in SVF SAT (%) VAT (%)

Granulocytes (% of CD45� cells) 29.0 � 5.6 31.0 � 6.5
Monocytes (% of CD45� cells) 3.7 � 0.8 2.8 � 0.7
Macrophages (% of CD45� cells) 5.7 � 1.5 3.6 � 1.3
Lymphocytes (% of CD45� cells) 39.4 � 6.0 47.3 � .6.0a

T cells (% of CD45� cells) 29.2 � 4.6 38.6 � 5.4a

CD4 T cells (% of CD45� cells) 14.7 � 3.0 16.4 � 3.2
CD8 T cells (% of CD45� cells) 10.8 � 2.0 16.6 � 2.4b

Number of immune cells (percentage) part of the innate immune system
(granulocytes, monocytes, and macrophages) or adaptive immune system
�total lymphocytes and T (CD4� or CD8�) lymphocytes� in the SVF of SAT
and VAT. Data are presented as mean � SEM (n � 7).
a P � 0.05.
b P � 0.01.
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mined by a functional caspase-1 activity assay in freshly
isolated adipose tissue from two patients (Fig. 3C).

The abundant activity of caspase-1 in VAT (Fig. 3,
A–C) implies the presence of the inflammasome machin-
ery in human adipose tissue. Therefore, we tested whether
the inflammasome components NLRP3 and ASC were
present in the 10 human VAT and SAT samples. Similar to
caspase-1, ASC protein was detected in both depots, yet
significantly up-regulated in VAT [Fig. 3, A (Western blot
analysis image from one subject) and B (all subjects)]. Due
to a large interindividual variation in NLRP3 protein lev-
els between SAT and VAT, the expression levels of this
protein only tended to be higher in VAT without reaching
statistical significance. (Fig. 3, A and B). To investigate the
cellular origin of the inflammasome components in human
adipose tissue, quantitative PCR analysis of fractionated
VAT revealed that caspase-1 gene expression mainly orig-

inated from mature adipocytes, whereas ASC mRNA ex-
pression levels were higher in the SVF (Fig. 3D). NLRP3
transcription levels were equally distributed between the
two fractions of VAT (Fig. 3D).

Blocking of caspase-1 inhibits cytokine release of
VAT

To determine the potential of caspase-1 blockage to
reduce the inflammatory trait of VAT, caspase-1 activity
was blocked by the specific inhibitor pralnacasan. In Fig.
4A, the enhanced release of both IL-1� and IL-18 in VAT
was significantly reduced when caspase-1 was blocked.
The diminished IL-1� production in VAT was observed in
both adipocytes and SVF cells, illustrating that caspase-1
is functionally active in both cellular fractions (Fig. 4B).
Interestingly, inhibition of caspase-1 activity also limited
the boosted production of IL-6 (P � 0.06) and IL-8 (P �

FIG. 1. Enhanced production of IL-1�, IL-18, IL-6, IL-8 yet not TNF� from VAT. A, Secretion of IL-1�, bioactive IL-1 (#, measured as IL-2 production
from NOB-1 cells in response to bioactive IL-1), and IL-18 in intact SAT and VAT fragments cultured for 24 h (n � 5; BMI range, 25–28). B,
Secretion levels of IL-6, IL-8, IL-1Ra, adiponectin, and TNF� by VAT and SAT after 24 h of culturing (n � 5). *, P � 0.05; **, P � 0.01 using a
Wilcoxon rank test.
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0.05) by VAT, yet no effect was observed on adiponectin
and TNF� secretion levels (Fig. 4C). These results dem-
onstrate that caspase-1 activity is mainly responsible for
the production of IL-1� and IL-18 by VAT.

The percentage of CD8� T cells in adipose tissue
positively correlates with caspase-1 activity levels

Adipose tissue inflammation is partly caused by the
influx of immune cells, including macrophages, mono-
cytes, and T cells (10, 29–31). To examine whether the
intrinsic activity of caspase-1 in adipose tissue is associ-
ated with the immune cell composition, we studied cor-
relations between caspase-1 activity levels and the number
of immune cells present in both adipose tissue depots as
determined by FACS analysis (Table 1). As shown in Fig.
5, a significant positive correlation was observed between
caspase-1 activity levels and the percentage of CD8� T
cells present in adipose tissue. Noticeably, none of the
other cells measured by FACS analysis (Table 1) correlated
significantly with caspase-1 activity levels (data not shown).
Interestingly, CD8� T cells have been shown to serve as a
major contributor to adipose tissue inflammation (32). In
line with the differences in caspase-1 activity levels between
VAT and SAT, the number of CD8� T cells was significantly
lower in SAT (Table 1). Moreover, both in SAT and VAT
separately, a positive correlation was observed between
caspase-1 activity levels and the CD8� T cells present in ad-
ipose tissue (data not shown). These results suggest that

caspase-1 activity in adipose tissue is associated with the in-
flux of CD8� T cells.

Discussion

In this descriptive study, we demonstrate that in paired
human adipose tissue biopsies, the innate immune system
represented by the NLRP3 inflammasome is abundantly
present in VAT compared with SAT. In addition, intrinsic
caspase-1 activity is elevated in VAT, contributing to the
production of IL-1� and IL-18 as well as IL-6 and IL-8.
Moreover, caspase-1 activity levels positively correlated
with CD8� T cells present in the adipose tissue.

In addition to the storage of excessive amounts of
energy, adipose tissue has been identified as a source of
many inflammatory mediators (1). Interestingly, obesity-
induced low-grade inflammation originating from ex-
panding adipose tissue exploits similar pathways initiated
by host defense mechanisms, suggestive of an important
function of the innate immune system in fat (5, 33). Cir-
culating levels of IL-1� and IL-18, both part of the innate
immune response, are increased in obese and insulin re-
sistant individuals and have robust effects on atheroscle-
rosis and insulin resistance (34, 35). Several reports have
identified adipose tissue as a potent source of IL-18 and
IL-1� (4, 22, 36). Human adipose tissue depots have
unique inflammatory characteristics exemplified by en-

FIG. 2. Expression profile of IL-1� and IL-18 in VAT and SAT. A, Relative IL-1� and IL-18 gene expression levels in total SAT and VAT (n � 8, each
specific symbol corresponds with the same individual). B, Relative IL-1� and IL-18 gene expression in mature adipocytes (MAT) and the SVF isolated
from VAT (n � 7, each specific symbol corresponds with the same individual; BMI range, 25–28). C, IL-1� production by MAT and SVF isolated
from 1 g of SAT and VAT cultured for 24 h (n � 4). *, P � 0.05; **, P � 0.01 using a Wilcoxon rank test.
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hanced production of IL-6, IL-8, TNF�, and C-reactive
protein by VAT compared with SAT, which contribute to
key features of the metabolic syndrome (7, 8, 37–39). In
line with these studies, we showed an increased produc-
tion of IL-6, IL-8, and IL-1Ra, together with lower secre-
tion levels of adiponectin in VAT explants.

In this study, we extended the proinflammatory prop-
erties of VAT by demonstrating that the protein levels of

the inflammasome members NLRP3 and ASC were more
expressed in this specific depot and that caspase-1 activa-
tion is severely increased in VAT compared with SAT
resulting in a higher production of IL-1� and IL-18. In
addition, secretion levels of the antiinflammatory cyto-
kine IL-1Ra by VAT were also enhanced and may be the
result of a compensatory protective response aimed at
counteracting the excessive IL-1� secretion by VAT.

FIG. 3. Protein levels of ASC, NLRP3, and caspase-1 in VAT and SAT. A. Caspase-1, ASC, and NLRP3 protein levels in paired total SAT and VAT
samples. Western blot analysis images are shown for one subject. Several bands observed for NLRP3 represents the difference in length of the
leucine-rich repeats, which forms a part of NLRP3 (51). B, Mean caspase-1, ASC, and NLRP3 protein expression in paired SAT and VAT samples
from 10 subjects quantified by densitometry relative to actin protein levels. C, Functional caspase-1 activity assay in paired SAT and VAT of two
different subjects. D, Relative caspase-1, ASC, and NLRP3 gene expression in MAT and the SVF isolated from VAT (n � 7, each specific symbol
corresponds with the same individual); *, P � 0.05; **, P � 0.01 using a Wilcoxon rank test.
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Caspase-1-dependent production of IL-1� and IL-18 is
supported by the observation that blocking caspase-1 ac-
tivity in VAT by pralnacasan reduces the secretion of both
cytokines. Furthermore, IL-1� release was reduced in both
adipocytes and SVF after inhibiting caspase-1, indicating
that this enzyme is involved in the IL-1� production in
both fractions of VAT. The caspase-1-dependent release
of IL-6 and IL-8 by VAT fits with the well-known capacity

of IL-1� to enhance the production of IL-6 and IL-8 by
adipose tissue (40, 41). Our results show that activation of
caspase-1 controls the production of these proinflamma-
tory proteins by VAT. However, secretion levels of TNF�

from both fat depots were comparable, suggesting that the
enhanced release of IL-1� and IL-18 is conveyed by a spe-
cific mechanism and does not involve a general increase in
inflammatory status of VAT.

Although our study clearly demonstrated that IL-1�

production was mainly derived from the SVF within VAT,
mature adipocytes were also capable to release IL-1�. We
hypothesize that in vivo, an interaction between adi-
pocytes and various cells from the SVF determine the
caspase-1-dependent cytokine-secreting capacity of the
adipose tissue, hence explaining the high levels of
caspase-1 gene expression in adipocytes. Additionally,
these high mRNA expression levels in adipocytes may also
indicate IL-1�-independent effects. Caspase-1 has been
shown to regulate insulin sensitivity and to suppress per-
oxisome proliferator-activated receptor-� activity in adi-
pocytes (22, 42). Despite the enhanced IL-1� production
in VAT compared with SAT and elevated protein levels of
caspase-1 and ASC analyzed by Western blotting, we
would like to emphasize that these outcomes can only be
used as indirect measurements of inflammasome-depen-
dent caspase-1 activation, because the inflammasome de-

FIG. 5. Caspase-1 activity levels correlates positively with CD8� T-cell
number present in both SAT and VAT. Caspase-1 activity is
represented by the density of the active caspase-1 band (p35).
Percentage of CD8� T lymphocytes in the SVF from both SAT and VAT
was obtained by FACS analysis (n � 7, dots represent caspase-1
activity levels and CD8� T-cell number in both SAT and VAT of seven
individuals); P � 0.01 using Spearman’s rank correlation.

FIG. 4. Caspase-1 inhibition reduces production of IL-1�, IL-18, IL-6, IL-8 yet not TNF� from VAT. A, Secretion of IL-1�, bioactive IL-1 (#,
measured as IL-2 production from NOB-1 cells in response to bioactive IL-1), and IL-18 by intact VAT (n � 5) cultured for 24 h in the presence or
absence of pralnacasan (100 �M). B, IL-1� production by MAT and SVF isolated from 1 g of SAT and VAT (n � 4) cultured for 24 h in the presence
or absence of pralnacasan (100 �M). C, Secretion of IL-6, IL-8, TNF�, and adiponectin by intact VAT (n � 5) cultured for 24 h in the presence or
absence of pralnacasan (100 �M). *, P � 0.05; **, P � 0.01 using a Wilcoxon rank test.
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pends on protein-protein interactions to activate
caspase-1.

Even though it has been clearly established that VAT
displays enhanced inflammatory properties compared
with SAT, much less is known about the underlying mo-
lecular mechanisms. Macrophage infiltration is known to
contribute to the inflammatory status of a tissue (27). In
the present study, FACS analysis revealed no differences in
macrophage content in both fat depots, although we did
not differentiate between the resident macrophage pop-
ulations and the infiltrating macrophages that may rep-
resent the primary proinflammatory cells (43). The
percentage of adipose tissue macrophages in this study
was relatively low compared subjects suffering from se-
vere obesity (44). This could be explained by inclusion of
solely (healthy) overweight subjects (average BMI, 26.1
kg/m2 � SD 2.7). In addition to macrophages, the percent-
age of other immune cells that are part of the innate im-
mune system (monocytes and granulocytes) present in the
SVF of VAT and SAT did not differ. These results rule out
differences in caspase-1 activity in VAT compared with
SAT due to the influx of innate immune cells. However, in
this study, caspase-1 activity was associated with the in-
filtration of cytotoxic T lymphocytes into adipose tissue.
A robust positive correlation was observed between
caspase-1 activity levels and the number of CD8� T cells
present in adipose tissue. Moreover, differences in the per-
centage of CD8� T cells in VAT compared with SAT were
mirrored by similar changes in caspase-1 activity levels.
Although we did not study the direct effect of caspase-1 on
CD8� T-cell influx in the adipose tissue, caspase-1 itself or
by its activation of IL-1� and IL-18 might control the
activation and number of CD8� T cells present in human
adipose tissue. Inasmuch a recent study has demonstrated
an important role for CD8� T cells in determining adipose
tissue inflammation, the influx of these T cells may rep-
resent an important mechanism by which caspase-1 con-
trols adipose tissue inflammation (32). However, further
studies will be needed to reveal the possible role of
caspase-1 in controlling the influx of CD8� T cells into
adipose tissue.

Future research should be aimed at identifying possible
signals that trigger caspase-1 activation specifically in
VAT. The enhanced rate of lipolysis and resistance to in-
sulin action in VAT (45, 46) may contribute to elevated
activity levels of caspase-1. Hyperglycemia may also be
one of the stimulators of caspase-1 in VAT (18), although
it remains to be determined why high glucose levels would
specifically activate caspase-1 in VAT and not in SAT. In
addition to NLRP3, other members of the NLR family that
can activate caspase-1, including NLRP1 and NLRC4 (in-

terleukin-converting enzyme protease-activating factor),
should be studied in human adipose tissue.

Irrespective of the cellular origin or activators of
caspase-1, we demonstrate that the differences in IL-1�

and IL-18 release in VAT are mediated by caspase-1.
Previously, it has been suggested that expression and reg-
ulation of IL-1� are not solely dependent on inflam-
masome-mediated caspase-1 processing (47, 48). Several
studies have identified other enzymes that can process pro-
IL-1� and pro-IL-18 into their active forms, including
the neutrophil-derived proteinase-3 under circumstances
when neutrophils infiltrate sites of infection (49). Inter-
estingly, it has been reported that neutrophils are activated
to a greater extend in obese subjects (50), suggesting that
these cells may also contribute to processing of bioactive
IL-1� and IL-18. However, FACS analysis revealed no
difference in granulocyte infiltration in both fat depots,
making it less likely that IL-1� and IL-18 production by
VAT occurred independently of caspase-1.

Although our study population was composed of a rel-
atively small number of overweight subjects, future studies
should be aimed at comparing caspase-1 levels in severely
obese and nonobese individuals with or without type 2
diabetes mellitus in larger study populations. Hypotheti-
cally, enhanced caspase-1 activation in VAT of severely
obese individuals may explain why an increase in this fat
depot is associated with an enhanced proinflammatory
status that may contribute to the progression of cardio-
vascular disease and type 2 diabetes mellitus.

In conclusion, we demonstrate that the inflammasome
components NLRP3, ASC, and caspase-1 are present in
human abdominal adipose tissue and are highly activated
in VAT compared with SAT. Caspase-1 activation leads to
an increased release of IL-1� and IL-18, regulates the pro-
duction of other proinflammatory cytokines, including
IL-6 and IL-8, and appears to be associated with the num-
ber of CD8� T cells present in adipose tissue. These find-
ings give new insight into the important function of
caspase-1 activation in determining the inflammatory
characteristics of human adipose tissue.
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