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Radiotherapy planning is a vital for ensuring the maximum level of effectiveness of treatment. In the 
planning task, there are at least two connected decision problems that can be modelled and solved using 
Operational Research techniques: determining the best position of the radiotherapy machine (beam angle 
problem) and the optimal dose delivered through each beam (dose distribution problem). This paper 
presents a mathematical optimisation model for solving the combined beam angle and dose distribution 
problems in the presence of multiple objectives. A matheuristic based on Tabu Search (called TSrad) is 
developed to solve realistic large-scale instances. The performance of the proposed method is assessed 
on two prostate cancer instances, namely a single computed tomography (CT) slice and a set of CT slices 
(3D problem). For the single-slice problem, the results of TSrad are compared to the optimal solutions 
obtained by an exact method. Our experiments show that TSrad is able to achieve optimality for some 
instances. For the multi-slice problem, our experiments show that TSrad produces viable solutions that 
can be attained in a reasonable computational time.

Keywords: Healthcare; Radiotherapy optimisation; Tabu Search; Matheuristic.

1. Introduction

Radiotherapy is currently one of the main modalities in treating cancer. A critical factor for effective
radiotherapy planning is to determine the necessary dose to reduce or eliminate a tumour and to en-
sure that the side effects on the surrounding healthy organs are minimised. The classical problem in
radiotherapy planning includes two important decisions, as follows (Ehrgott et al., 2008):

• The position of the gantry (the beam angle/direction problem).

• The quantity of the dose that needs to be delivered through each beam and sub-beam (the dose
distribution problem).

An optimisation model for the dose distribution problem was first introduced by Bahr et al. (1968).
Thereafter, many improvements to the modelling process and solution methodologies have been con-
ducted resulting in potentially better radiotherapy planning. Romeijn et al. (2006), Acosta et al. (2009),
Viana et al. (2011) and Obal et al. (2013) proposed the solution of the dose distribution problem us-
ing an exact methodology. Rocha et al. (2013), Dias et al. (2014) and Dias et al. (2015) developed
non-exact approaches to solve the beam direction problem. Considering the inherent characteristics of
radiotherapy planning problems, some research has been conducted to solve both beam angle and dose
distribution problems as the dose distribution depends on the beam angle. For example, Souza (2004),
Lim et al. (2008), Lim et al. (2012) and Gevert et al. (2013) used exact methods, whilst Bertsimas et al.
(2013), Breedveld (2013) and Voet (2014) used hybrid approaches to solve the problems.
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Obal et al. (2015) proposed a matheuristic method, a hybridization of an exact method and a Genetic
Algorithm (GA), and applied it to a prostate cancer case with one CT slice. Petrovic et al. (2016) used
a case based reasoning system (CBR) where a treatment plan for a new patient is retrieved from a case
base containing patient cases treated in the past and their treatment plans. They also investigated an
approach called knowledge-light adaptation to avoid too much requirement of domain knowledge. A
two phase strategy for a multiobjective problem was proposed by Cabrera et al. (2018a), where beam
angles are selected by a deterministic local search algorithm and dose distribution is calculated using an
exact nonlinear programming algorithm. Cabrera et al. (2018b) develop two bi-objective local search
algorithms which aim to find a set of (approximately) efficient beam angle configurations.

This paper deals with the IMRT (Intensity Modulated Radiotherapy) combined beam angle and
dose distribution problems where the number of beams that can be selected from the available ones
is known. The problem is inherently multi-objective because there is a conflict between the goals of
delivering a sufficiently high dosage to the tumour voxels and delivering a sufficiently low (and ideally
zero) dosage to the healthy tissue and organs at risk. Here, we formulate the IMRT problem as a Goal
Programming (GP) model that can be solved using exact methods, heuristics or metaheuristics. In this
case, a matheuristic base on Tabu Search (TSrad) is proposed to solve the GP model as the exact method
experienced difficulties when solving relatively large problems (the realistic 3D instances). Matheuristic
is a hybridization of a metaheuristic and an exact method that can be used for finding good solutions
(Maniezzo et al., 2010). To the best of our knowledge, the proposed matheuristic method has not been
reported in the literature to address the combined beam angle and dose distribution problems. In this
present research work, the main contributions are as follows:

• The development of a novel multi-objective optimisation model using goal programming for solv-
ing the combined beam angle and dose distribution problem.

• The development of a novel matheuristic (TSrad) for solving the model.

• The generation of optimal solutions for one CT slice instances along with viable solutions for
more challenging 3D problems.

The remainder of this paper is organized as follows: the mathematical formulation of the multi-
objective radiotherapy planning problem is given in Section 2. The proposed matheuristic is described
in Section 3. Section 4 presents the computational results of the proposed methods. The final section
provides a summary of the findings.

2. Multi-objective optimisation model

This section presents the multi-objective optimisation model for the combined beam angle and dose
distribution problem. In this study, Goal Programming (GP) is used to model the problem due to the
inherent goal-based nature of the objectives. Furthermore, the pragmatic nature of the goal program-
ming model allows solutions to be found to computationally complex multi-objective models, without
imposing an excessive extra computational burden on account of the multiple objectives. The solutions
to a goal programming model are optimal with respect to the preferences of the decision maker that are
inputted to the model as target values and weights associated with unwanted deviational variables. Thus
goal programming is an a priori multi-objective technique. Providing the target values are sufficiently
strictly set then the resulting solution is Pareto optimal with respect to the underlying multiple objectives
of the problem (Jones and Tamiz, 2010). In our generic model the preferences of the decision maker are
set by the weights which are elicited a priori.
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In the model, a set of available beams (B) is given where the optimal beam configuration consisting
of η beams needs to be determined and η << |B|. Once a set of selected beams has been determined,
the model will define their dose distribution. We present a mathematical model using mixed integer
linear programming (MILP) for such problem. The following notations are used to describe the sets and
parameters of the proposed model.

Sets

S: set of CT slices indexed by s.

V : set of voxels indexed by v with ρ = |V |= l× c×|S|

V̂s: set of voxels for slice s ∈ S

V R
s : set of risk voxels for slice s ∈ S (V R

s ⊂ V̂s ⊂V )

V H
s : set of healthy voxels for slice s ∈ S (V H

s ⊂ V̂s ⊂V )

V T
s : set of tumour voxels for slice s ∈ S (V T

s ⊂ V̂s ⊂V )

B: set of possible beam angles with b as its index

Qb: set of sub-beams of beam b (b ∈ B) indexed by q.

|η |: the number of beams that can be selected.

r: set of organs at risk.

Parameters

dR: the upper limit dose allowed to reach the at risk voxels.

dH : the upper limit dose allowed to reach the healthy voxels.

dT : the dose intensity prescribed by the doctor to address the tumour voxels.

abqsv: the absorption percentage of the of the dose emitted from sub-beam q of beam b for slice s
on voxel v.

Decision variables

Kbqs: the quantity of the dose delivered by sub-beam q of beam b for slice s.

Lb: = 1 if beam b is selected, or = 0 otherwise.

nR
sv: the negative deviation between the absorption dose and the recommended upper limit for

slice s ∈ S on voxel v in the organ at risk (v ∈V R
s ).

pR
sv: the positive deviation between the absorption dose and the recommended upper limit for slice

s ∈ S on voxel v in the organ at risk (v ∈V R
s ).

nH
sv: the negative deviation between the absorption dose and the recommended upper limit for

slice s ∈ S on voxel v in the healthy organ (v ∈V H
s ).
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pH
sv: the positive deviation between the absorption dose and the recommended upper limit for slice

s ∈ S on voxel v in the healthy organ (v ∈V H
s ).

nT
sv: the negative deviation between the absorption dose and the recommended upper limit for

slice s ∈ S on voxel v in the tumour (v ∈V T
s ).

pT
sv: the positive deviation between the absorption dose and the recommended upper limit for slice

s ∈ S on voxel v in the tumour (v ∈V T
s ).

Objective functions

The problem is treated as a multi-objective problem with the presence of four objectives as follows:

• Minimise total unwanted positive deviations of the organ at risk voxels ( f1r j )
Minimise f1r j = ∑

s∈S
∑

v∈V R
s

(pR
sv) ∀r j ∈ r (1)

• Minimise total unwanted positive deviations of the healthy voxels ( f2)
Minimise f2 = ∑

s∈S
∑

v∈V H
s

(pH
sv) (2)

• Minimise total unwanted positive deviations of the tumours voxels ( f3)
Minimise f3 = ∑

s∈S
∑

v∈V T
s

(pT
sv) (3)

• Minimise total unwanted negative deviations of the tumours voxels ( f4)
Minimise f4 = ∑

s∈S
∑

v∈V T
s

(nT
sv) (4)

The model aims to find the optimal beam configuration along with the dose distribution for each
beam so as the quantity of the dose absorbed by the tumour voxels is close to dose dT , which is repre-
sented by objective functions (3) and (4). In addition, it also minimises the quantity of dose absorbed by
the organ at risk and healthy structures, given by objective functions (1) and (2). The proposed model
is formulated as a weighted GP model where the weights α,β ,γ1 and γ2 are introduced to represent the
importance of f1, f2, f3 and f4, respectively. So, γ1 and γ2 are the weights related to the tumour organ,
whereas αr′ and β are related to the organ at risk and healthy tissue, respectively. A single objective
function (5) is proposed to minimise the value of g which consist of objective functions (1)-(4). In
the objective function (5), the normalisation process of the weights is not required as the deviational
variables have the same measurement unit.
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min Z =
( r

∑αr′ f1r′ +β f2 + γ1 f3 + γ2 f4

)
(5)

subject to 

∑
b∈B

∑
q∈Qb

(abqsv.Kbqs)+nR
sv− pR

sv = dR, ∀s ∈ S,v ∈V R
s (6)

∑
b∈B

∑
q∈Qb

(abqsv.Kbqs)+nH
sv− pH

sv = dH ∀s ∈ S,v ∈V H
s (7)

∑
b∈B

∑
q∈Qb

(abqsv.Kbqs)+nT
sv− pT

sv = dT ∀s ∈ S,v ∈V T
s (8)

∑
b∈B

Lb = η (9)

Kbqs 6 M.zb, ∀b ∈ B,q ∈ Qb,s ∈ S (10)
Kbqs,nR

sv, pR
sv,n

H
sv, pH

sv,n
T
sv, pT

sv > 0 (11)
Lb = {0,1} (12)

where M is an arbitrarily large constant.
Constraints (6) and (7) ensure that the absorption of the dose emitted from all sub-beams on an

organ at risk or healthy voxel is equal to the upper limit dose absorption allowed on this type of voxel
along with its positive and negative deviations. Constraints (8) guarantee that the recommended dose
with its deviation for a tumour voxel is the same with the quantity of the dose absorbed by the voxel.
Constraint (9) ensures that η beams will exactly be selected. Constraints (10) guarantee that the dose is
only required for the selected beams. Constraints (11) state non-negative variables. In sign restrictions
(12), variable Lb is set as binary.

The proposed model is a mixed integer goal programme with (2.|V |.|S|+ |B|.|Qb|.|S|+ |B|) decision
variables and (|V |.|S|+ |B|.|Qb|.|S|+ 1) constraints which is considered as a large-scale problem. In
real 3D cases, for example, the number of decisions variables and constraints can be higher than 15
and 7 billion, respectively. With this size, it is currently impossible to solve the problem on a standard
desktop computer using an exact method. Although a super computer could potentially be utilised for
solving this problem, the aim of this study is to produce a methodology potentially usable in current
hospitals, where the use of a supercomputer is not an option. Therefore, a matheuristic is proposed to
overcome the computational complexity of exact methods and give near-optimal solutions in reasonable
computational time on a standard desktop computer.

3. Development of the Matheuristic

In this section, a matheuristic is developed to solve the beam angle and dose distribution problem.
Matheuristics is found to be successful in solving optimisation problems (Maniezzo et al., 2010; Irawan
et al., 2017a, Irawan et al., 2017b). We refer to the proposed matheuristic as TSrad, where Tabu Search
(TS) is implemented (Glover, 1989; Talbi, 2009). Tabu search is a metaheuristic search where this
solution method can be applied to solve problems in health care (Djenic et al, 2017; Xiao et al. 2018).
TSrad is applied to find the best beam configuration (beam angle problem) where η beams from the
|B| possible beams available are selected. Within the search, an exact method is used to solve the dose
distribution problem and hence to calculate the objective function value using the set of selected beams
determined by the metaheuristic approach.

In case that a set of selected beams X ,X ∈ B, |X | = η are known/fixed, the problem reduces to the
dose distribution problem whose the mathematical formulation is presented as follows.
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min Z =
(

α f1 +β f2 + γ1 f3 + γ2 f4

)
(13)

subject to 

∑
b∈B

∑
q∈Qb

(abqsv.Kbqs)+nR
sv− pR

sv = dR, ∀s ∈ S,v ∈V R
s (14)

∑
b∈B

∑
q∈Qb

(abqsv.Kbqs)+nH
sv− pH

sv = dH ∀s ∈ S,v ∈V H
s (15)

∑
b∈B

∑
q∈Qb

(abqsv.Kbqs)+nT
sv− pT

sv = dT ∀s ∈ S,v ∈V T
s (16)

Kbqs,nR
sv, pR

sv,n
H
sv, pH

sv,n
T
sv, pT

sv > 0 (17)

Constraints (14)-(16) act similarly to Constraints (6)-(8) except that in this model, beam b is element
of the selected beams (X) instead of all possible beams available (B). This model is a linear programming
with (2.|V |.|S|+ |X |.|Qb|.|S|) decision variables and (|V |) constraints. The model is significantly easier
to solve using an exact method as compared to the combined beam angle and dose distribution problem.

The main steps of the proposed TSrad are presented in Algorithm 3.1. Firstly, as an initial solution,
η beams are randomly selected from the set of possible beams (B). Let X be a set of solution whereas
Ỹ a set of |B| −η beams not selected, X ∪ Ỹ = B and X ∩ Ỹ = /0. The quality of the solution (K) is
evaluated by solving the dose distribution problem (Equations 13-17) using the exact method (CPLEX)
which also determines the value of decision variable Kbqs. In this solution method, two parameters are
used, namely the number of neighbourhood solutions (ns) and the size of tabu-list tt . The procedure
runs until the computing time, tmax is reached.

Algorithm 3.1 The main steps of TSrad

Function TSrad (B,η ,ns, tt , tmax)

1. Generate randomly an initial solution X and construct set Ỹ .

2. Evaluate X by solving the dose distribution problem using an exact method. Let Z be its
objective function value.

3. Set X ′ = X∗ = X and Z′ = Z∗ = Z where X∗ denote the best solution to the current time.

4. Set tabu-list = /0 and N(X) = /0.

5. Repeat the following steps (a - f) until computational time tmax is reached:

(a) Construct the neighbourhood of X ,N(X), with ns solutions. Each neighbour solution
XN

k , k = 1, ...,ns is generated by copying set X and removing randomly a beam, say
beam i, from this copy (i ∈ X) and inserting randomly a beam, say beam j, into this
copy, where j ∈ Ỹ . The kth modified copy is the kth neighbour solution of the X , XN

k .
Store XN

k in N(X).

(b) Evaluate the solutions in N(X) by solving the dose distribution problem using an exact
method.

(c) Select the best solution X ′ ∈ N(X) where this solution is treated as ‘candidate move’.
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(d) If Z′ < Z∗, set X∗ = X ′ and Z∗ = Z′.

(e) While ‘candidate move’ is tabu and the aspiration criterion is not satisfied (i.e. Z′ >
0.9.Z), select next best solution X ′ ∈ N(X) and mark as ‘candidate move’.

(f) If (candidate move is not tabu) or (candidate move is tabu and the aspiration criteria is
satisfied) then insert the move (beam i and j) in the tabu-list and set X = X ′.

6. Choose X∗ as the best solution along with the dose distribution for each selected beam. The
best objective function value will be Z∗.

4. Computational experiments

The data used for examining the performance of the proposed methods is cancer data relating to the
prostate region. The prostate cancer was selected because, in general, it is one of the most common
cases. The data is obtained from Erasto Gaertner Hospital (Curitiba/PR/Brazil), where the ethical com-
mittee has approved the project. The data is composed of two instances where the first instance consists
of one CT slice data given in Figure 1, whereas the second one comprises a set of thirty CT slices (3D).
The first instance can be considered as a small instance that may be solved optimally by an exact method
using CPLEX. This instance is also solved using the matheuristic in order to assess its performance by
comparing its results with the optimal solution. The second instance is a large scale instance which is
a realistic radiotherapy planning configuration. For this instance, the optimal solutions cannot be gen-
erated using an exact method due the large size of the instance. Therefore, TSrad is used to solve such
large practical instances.

In the experiments on both instances, 72 possible beam angles are used, where the angle of the
beam corresponding to a perpendicular plan of the patient is set from 0◦ to 355◦ with increments of 5◦

using a counter clock wise direction. Currently, it is common practice to use 4 or 6 beam directions in
the prostate cancer radiotherapy treatment. Therefore, in the experiments η is set to 4 and 6 for both
instances. Based on the clinical practice, the dose limit for the healthy and the tumour structures are set
to 60 and 70 Gy, respectively. Three organs at risk are considered namely the bladder, head of femur,
and rectum where their dose limits are set to 65, 50 and 50 Gy, respectively. The weights of the objective
function (5) are set to 0.4 for γ1 and γ2 whereas the values of α and β are set to 0.1. These values are
chosen based on the experiments conducted in Gevert et al. (2013), which show that this set of weight
values provide better results for this case study. This can be considered as a conservative strategy to
assign a large relative importance to preventing the damage of healthy and organ tissue.

Table 1 presents the upper limit percentage of region in the organ at risk that is allowed to receive
a certain dose. For example, in the rectum column of Table 1, V75 < 15% means that it is not recom-
mended that more than 15% of rectum region receives more than 75Gy. Although this parameter is not
directly considered by the proposed model, this data is important to determine the quality of the solu-
tions generated for the treatment. It can be noted that in addition to having a small objective function
value (Z), a good solution needs to meet several criteria as follows: (i) for organ at risk, the upper limit
percentage constraint presented in Table 1 and (ii) for the tumour structure, the percentage of the region
that receives the dose and the average dose per voxel which is desirable to be close to the prescribed
one.
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Figure 1. An example of a CT slice

Table 1. The upper limits percentage constraints for organ at risk (QUANTEC)
Organ

Head of femur Rectum Bladder

Upper limits percentage V50<5%

V75<15% V80<15%
V70<20% V75<25%
V65<25% V70<35%
V60<35% V65<50%
V50<50%

4.1 Computational Results on 1D instance

4.1.1 Experiments using the exact method
The combined beam angle and dose distribution problem on 1D Instance is first solved by the exact

method using IBM ILOG CPLEX version 12.6. Table 2 shows the results of the exact method where the
objective function value (Z∗), the computational time required to solve the problem (CPU) in seconds
and the optimal selected beams (beam angle) are presented. For η= 4-7 beams, CPLEX was not able
to solve the problem optimally due to out of memory after running over 10 hours. Therefore in this
subsection we only analyse the optimal solution when η = 4.

Table 2. Results of the exact method on 1D Instance
η Z∗ CPU (s) Beam angle selected
4 115.0239 1,512 5◦, 30◦, 170◦, 270◦

5 NA NA NA
6 NA NA NA
7 NA NA NA

Table 3 presents the average dose that reaches the organ at risk and healthy structures when η = 4.
The results also show that each structure has an acceptable percentage of total pixels that receive the
dose more than its limit given in Table 1. For example, only 2.69% of bladder region receives more than
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Figure 2: Dose and volume histogram of the optimal solution to 1D Instance with η = 4
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80Gy where Table 1 indicates that up to 15% of bladder region could receive more than 80Gy. Although
the proposed model does not explicitly optimise the percentage of a region that receives the dose, it
can be noted that the radiotherapy planning obtained from the optimal solution is very good as the dose
covers the tumour structure while preventing significant damage to the organ at risk.

Table 3. Results of the exact method for organ at risk and healthy tissues on 1D Instance when η = 4

Femur Bladder Rectum

Dose
(Gy)

Average Standard Average Standard Average Standard

Deviation Deviation Deviation

29.26 12.47 33.53 11.71 52.18 11.93

Dose
limit (Gy) 50 80 75 70 65 75 70 65 60 50
% pixel
that re-
ceives
more than
the dose
limit

4.57 0.00 0.44 2.69 2.69 9.09 18.18 22.73 22.73 50

Figure 2 presents the dose vs volume histogram (DVH), which indicates the dose decomposition per
percentage on each organ at risk and tumor. For example: 100% of the tumor receives at least 63Gy and
then the percentage decreases with the amount of dose. The optimal solution found here will be used to
evaluate the performance of TSrad for solving the combined beam angle and dose distribution problems
in radiotherapy planning on Instance 1 with η = 4 beams.
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4.1.2 Experiments using the matheuristic
This subsection presents the comparative analysis of the proposed solution method for solving the

radiotherapy problem on Instance 1. Table 4 shows the summary of the average, best and worst results
of TSrad, where the CPU time and objective function value are also given for the problems with 4-7
beams, respectively. In Table 4, %gap is provided to determine the deviation of the solution obtained
by the corresponding proposed TSrad to the best solution attained from either the exact method or the
proposed matheuristic. This %gap is calculated as follows:

%gap =
Zm−Zb

Zm
×100 (17)

where Zm and Zb refer to the feasible solution cost obtained by the corresponding matheuristic approach
and the best solution respectively. For η = 4, as the optimal solution was obtained by the exact method,
the proposed matheuristic will produce an optimal solution if %gap = 0.

For the proposed matheuristic TSrad, preliminary experiments were conducted to determine the pa-
rameters values that will be used. Two kinds of neighbourhood are considered, namely deterministic and
probabilistic neighbourhoods. For the deterministic neighbourhood, all possible solution neighbours are
considered while for the deterministic one, only 10 solution neighbours out of all possible ones are ran-
domly chosen. For both type of neighbourhoods, the value of Tabu tenure is set to 2. Two experimental
scenarios are carried out based on computational time (tmax) . The algorithm will stop when the comput-
ing time reached the maximum computational time limit, which is 60 and 1512 seconds, respectively.
The first computational time is based on our preliminary experiments where relatively good solutions
were found within this short computational time. The second one is based on the computational time
required by the exact method to solve the 4 beams problem to optimality. To evaluate the consistency of
the proposed matheuristic method, in each problem TSrad is executed 10 times, therefore the average,
best and worst results are given.

According to Table 4, TSrad is able to obtain good solutions in a relatively small computing time
for the problem with η = 4 beams, and it produces the optimal solution within 60 seconds. When
the probabilistic TSrad is executed for 1512 seconds, it obtains the optimal solution for each run as
shown by %gap of the worst result. For the problem with η = 5− 7 beams, in general TSrad with
probabilistic approach also produces better results than the one with deterministic. The quality of the
solution increases with the computational time.

For illustration, Table 5 presents the results on organ at risk and healthy tissues with η = 6 beams
where, for all tissues, the percentage of pixels that receive higher dose than the limit is less than the
required percentage presented in Table 1. The best solution found is considered as a good solution as
the dose also covers the tumour structure while avoiding significant damage on the organ at risk.

Figure 3 presents the dose vs volume histogram (DVH) for the organ at risk and tumour when η

value is set to 6. It is worth noting that the diagram for 6 beams produced by TSrad is relatively similar
to the one for 4 beam generated by the exact method (CPLEX).
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Table 4. Comparative analysis for TSrad on 1D Instance

η tmax
(s) Neighbourhood Average result Best result Worst result

Z %gap Z %gap Z %gap

4
60 Probabilistic 117.31 1.98 115.02 0.00 120.82 5.04

Deterministic 124.92 8.60 118.72 3.26 137.43 19.48

1512 Probabilistic 115.02 0.00 115.02 0.00 115.02 0.00
Deterministic 116.1 0.10 115.02 0.00 118.43 2.96

5
60 Probabilistic 108.12 5.12 102.58 0.00 110.41 7.09

Deterministic 117.95 13.03 107.61 4.67 126.70 19.03

1512 Probabilistic 103.40 0.79 102.58 0.00 105.59 2.84
Deterministic 107.57 4.64 102.58 0.00 112.83 9.08

6
60 Probabilistic 101.75 6.21 95.48 0.05 105.2 9.29

Deterministic 122.98 22.40 108.11 11.73 138.17 30.93

1512 Probabilistic 95.43 0.00 95.43 0.00 95.48 0.05
Deterministic 98.29 2.91 95.43 0.00 103.72 7.99

7
60 Probabilistic 96.76 7.76 91.77 2.76 102.48 12.92

Deterministic 121,12 26.32 106.00 15.81 136.60 34.67

1512 Probabilistic 89.37 0.15 89.24 0.00 90.50 1.40
Deterministic 90.38 1.28 89.23 0.00 93.91 4.98

Table 5. Results of the best solution for organ at risk and healthy tissues on 1D Instance with η = 6 beams

Femur Bladder Rectum

Dose
(Gy)

Average Standard Average Standard Average Standard

Deviation Deviation Deviation

27.51 15.68 36.72 9.60 52.56 10.09

Dose
limit (Gy) 50 80 75 70 65 75 70 65 60 50
% pixel
that re-
ceives
more than
the dose
limit

9.15 0.00 0.45 2.69 2.69 4.55 13.66 22.73 22.73 40.91
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Figure 3: Dose and volume histogram of the best matheuristic solution on 1D Instance with η = 6 beams
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4.2 Computational Results on 3D instance

For the experiments on this instance, a set of 30 CT slices is used where the data structure used is
the same as the one used in Instance 1. The combined beam angle and dose distribution problems are
only solved using TSrad as the exact method is not able to solve them due to memory issues. When a
set of selected beams (X) is fixed, the problem reduces to the dose distribution problem expressed in
Equations (13)-(17). The dose distribution problem can be divided into |S| sub-problems as each slice
has independent objective function and constraints.

In these experiments, the possible angles of the beam are the same as the ones in the previous
experiments where there are 72 possible beams available to select. The number of selected beams is
also set to 4-7 (η = 4−7). Regarding the beam angle problem (solved by TSrad), the complexity of the
problem on this instance is the same as the one on Instance 1. The significant challenge is in solving
the dose distribution problem (solved by the exact method) within TSrad, as the number of variable
and constraints is relatively large. These numbers are dependent on the set of beams which achieves
different voxels in each CT slice.

In these experiments, the parameters values of TSrad on 3D instances are set the same as the ones on
1D instance. The maximum computational time (tmax) is set to 600 and 3,600 seconds. It is set longer
than the one in the previous experiments as the computational time required to solve the dose distribution
problem is much longer. In the first scenario, the computational time is set to 600 seconds, which is ten
times the one in the previous experiments. In the second set of experiments, 3,600 seconds is set which
can be considered a realistic upper time limit for providing a viable radiotherapy plan, bearing in mind
the volume of patients requiring radiotherapy plans in a hospital. The weights of the objective functions
and the dose limits are also set to the same values used for solving 1D Instance. For 3D Instance, the
quality of a solution is evaluated by analysing the dose percentage limits and the tumour coverage.

Table 6 presents the average, best and worst result of deterministic and probabilistic TSrad on
the 3D Instance with 4-7 beams angles to be selected. Similar to the previous results, probabilis-
tic TSrad outperforms the deterministic one when CPU time is set to 3600 seconds. In the best so-
lution, for η = 4 the selected beam directions are {55◦,180◦,265◦,330◦} whereas for η = 6 it is
{55◦,155◦,180◦,185◦,265◦,315◦}

For illustration, Tables 7 and 8 resent the average dose that reaches the organ at risk and healthy
structures based on the best solution for η = 4 and 6 respectively. Based on the tables, each structure
has an acceptable percentage of total pixels that receive the dose more that its limit which is given in
Table 1. Figures 4 and 5 describe the dose per percentage in each organ at risk and tumour on 3D
instance with η = 4 and 6 respectively.

The analysis on the percentage of voxels that receive the dose based on its limit is considered as
an important factor especially in the tumour structure. Lack of doses in this structure will affect the
performance of the radiotherapy process. In this sense, although the mathematical model does not
include the dose per percentage, the results for both instances are within the imposed limits presented
in Table 1. However, there is a relative lack of dose in tumour structure on 3D Instance shown in Figure
4 and 5. Based on the best solution, the percentage of tumour voxels that receive more than or equal to
the prescribed dose 70 Gy are 53% and 56% for the 4 and 6 beams problems respectively. The average
tumour dose for the 4 and 6 beams problems are 65±10.78 Gy and 66.17±10.34 Gy respectively.
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Table 6. Comparative analysis for TSrad on 3D Instance

η tmax
(s) Neighbourhood Average result Best result Worst result

Z %gap Z %gap Z %gap

4
600 Probabilistic 3603.85 5.93 3473.6 2.40 3805.4 10.91

Deterministic 3797.4 10.73 3446.5 1.64 4312 21.38

3600 Probabilistic 3424.97 1.02 3390.1 0.00 3474.2 2.42
Deterministic 3552.33 4.57 3426.5 1.06 3796.1 10.70

5
600 Probabilistic 3458.49 6.26 3343.2 3.02 3592.00 9.74

Deterministic 3945.14 17.82 3526.10 8.05 4770.90 32.04

3600 Probabilistic 3280.62 1.17 3242.10 0.00 3302.00 1.81
Deterministic 3617.17 10.37 3397.60 4.58 4072.20 20.38

6
600 Probabilistic 3352.91 5.71 3283.6 3.72 3510.1 9.93

Deterministic 3616.89 12.59 3323.2 4.87 4107.3 23.03

3600 Probabilistic 3190.95 0.93 3161.4 0.00 3237.6 2.35
Deterministic 3561.75 11.24 3374.3 6.31 4003.5 21.03

7
600 Probabilistic 3288.01 6.34 3179.40 3.14 3499.30 12.00

Deterministic 3520.75 12.53 3235.80 4.83 4110.40 25.08

3600 Probabilistic 3104.89 0.82 3079.50 0.00 3133.00 1.71
Deterministic 3382.21 8.95 3208.40 4.02 3685.60 16.45

Table 7. Results of the best solution for organ at risk and healthy tissues on 3D Instance with η = 4 beams

Femur Bladder Rectum

Dose
(Gy)

Average Standard Average Standard Average Standard

Deviation Deviation Deviation

6.17 11.02 29.51 12.67 43.97 14.38

Dose
limit (Gy) 50 80 75 70 65 75 70 65 60 50
% pixel
that re-
ceives
more than
the dose
limit

1.06 0.00 0.50 2.64 3.64 0.18 8.66 12.24 14.12 37.66
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Figure 4: Dose and volume of the best solution on 3D Instance with η = 4 beams

Tumour
Femur

Bladder
Rectum



14 of 17

Table 8. Results of the best solution for organ at risk and healthy tissues on 3D Instance with η = 6 beams

Femur Bladder Rectum

Dose
(Gy)

Average Standard Average Standard Average Standard

Deviation Deviation Deviation

28.40 14.03 6.18 10.05 43.50 15.42

Dose
limit (Gy) 50 80 75 70 65 75 70 65 60 50
% pixel
that re-
ceives
more than
the dose
limit

0.18 0.00 0.20 1.97 3.25 0.56 5.84 13.75 16.76 29.38
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Figure 5: Dose and volume of the best solution on 3D Instance with η = 6 beams
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Experiments using different weights

The weights of the objective functions are affected by several factors such as the singularity of
tumor, patient structure and the necessity of custom treatment planning. In this subsection, we also
carried out computational experiments using a different weight for each objective function. As the
weight represents the importance of the dose deviation for a tissue (tumour, healthy and noble organs),
we aim to generate an alternative solution when we change the priority of each objective function.
For demonstration purposes, the experiment was performed only on 3D instance with η = 4 using the
Probabilistic TSrad as this method yields the best solution in the previous experiments. Here, the weight
values are set to as follows: γ1 = 0.3,γ2 = 0.6,α = β = 0.05, which means that we are relatively more
concerned about the lack of dose on the tumor organ (γ2 = 0.6) than the other goals. The excess of dose
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on tumor (γ1 = 0.3) is the second most important factor followed by the excess of dose on organs at risk
and healthy tissues (α = β = 0.05).

Figure 6 describes the dose per percentage in each organ at risk and tumour on 3D instance with
η = 4 beams using a different weight for each objective function. The configuration of the selected
beam directions are {150◦,180◦,220◦,240◦} with the objective function value (Z) = 3,465.15 Gy.

This solution can be considered as a better solution compared to the previous solution as it covers
the tumor organs more. However, Table 9 shows that the percentage of dose received by rectum is above
the limit (55.41% of rectum receives more than 50Gy whereas the upper limit is only 50% as shown in
Table 1). Therefore, there is a trade-off/conflict on radiotherapy planning when determining the weight
for each objective function. This decision is reliant on the specialist, because it will be patient specific.
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Figure 6: Dose and volume using a different set of weights on 3D Instance with η = 4 beams

Tumour
Femur

Bladder
Rectum

Table 9. Results of the TSrad for organ at risk and healthy tissues using a different set of weights

Femur Bladder Rectum

Dose
(Gy)

Average Standard Average Standard Average Standard

Deviation Deviation Deviation

9.47 14.76 25.55 17.85 51.05 17.92

Dose
limit (Gy) 50 80 75 70 65 75 70 65 60 50
% pixel
that re-
ceives
more than
the dose
limit

2.47 0.00 1.68 4.40 5.58 3.28 14.67 17.95 25.10 55.41
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5. Conclusion

This paper presents a multi-objective optimisation model for the combined beam angle and dose dis-
tribution problem. A solution method based on matheuristic technique to tackle large-scale realistic
problem which we refer to as TSrad is proposed. A set of experiments were carried out on two instances
to evaluate the performance of the proposed matheuristic. The first instance considers one CT slice
which can be solved using an exact method when η = 4. Therefore, the performance of the proposed
matheuristic can be assessed by comparing their solutions to the optimal one. For this instance, the
Probabilistic TSrad produces the optimal solution within 60 seconds. The second instance consists of
a set of CT slices which is more realistic in practice than the first one. The proposed matheuristic can
solve this instance in a reasonable computational time for the domain of radiotherapy planning. The
experiments show that the Probabilistic TSrad has great potential to assist the radiotherapy planning
since it provides better solutions for both computational time limits used.

For future work, it is worth investigating the radiotherapy planning problem with non-coplanar
beams with CT 3D configuration. Other multi-objective methods, such as Pareto frontier generation
and compromise programming, could also be used to produce multiple solutions for the combined beam
angle and dose distribution problems.
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