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Abstract. We consider a multiperiod inventory-routing problem where a 
vendor serves multiple geographically dispersed customers who receive units of 
a single product from a depot with adequate supply. The class of problems 
arising from the combination of distribution and inventory management 
decisions is perhaps the most striking example of this concept and is known as 
the inventory routing problem (IRP). In this category of problems, the inventory 
routing problem with backlogs (IRPwB) deals with determining inventory level, 
backlogging and vehicle routing decisions from a single depot to a set of n 
customers over a specific number of time periods, using a fleet of homogenous 
vehicles. The aim is to minimize the average daily cost for the planning period, 
while ensuring that inventory level capacity constraints are not violated. We 
first develop an Integer Programming model to provide an accurate description 
of the problem and in a second phase a Genetic Algorithm (GA) with suitably 
designed genetic operators, is employed in order to obtain near optimal 
solutions. 

Keywords: Supply Chain Management, Inventory Routing Problem, Genetic 
Algorithms. 

1. Introduction 

Nowadays, the business world comes to realize the immense potential that the 
combination-integration of various elements of the Supply Chain Management has to 
offer such as significant savings in inventory handling cost, increased efficiency, 
higher delivery performance to requested or committed due dates. More and more 
researchers are focusing on implementing techniques that render this integration not 
only viable but also profitable. The present work considers the most typical example 
of this concept, that is, the integration of distribution management and inventory 
control. Specifically, instead of the customers having to monitor their inventory and 
make sure that it is replenished on a regular basis, the supplier is responsible for 
serving customer needs by determining simultaneously the timing and sizes of the 
deliveries as well as efficient vehicle schedules so as to minimize total transportation 



2      S. Sofianopoulou  

and inventory carrying costs.  The category of problems arising from the combination 
of distribution and inventory management decisions is known as “Inventory Routing 
Problems” (IRP) and generally is considered to be an extension of the Vehicle 
Routing Problems (VRP).  In IRP, the inventory routing problem with backlogs 
(IRPwB) deals with determining inventory level, backlogging and vehicle routing 
decisions from a single depot to a set of n customers over a specific number of time 
periods, using a fleet of homogenous vehicles. A variety of industries have provided 
fertile ground for the development of IRP and within such industries there are 
situations where backorders are permitted. Researchers have generated numerous 
methods of solving IRP and in a less extend IRPwB. Most of the methods proposed 
employ either a “theoretical” approach or a more “practical” one. The theoretical one, 
consists of attempting to specify the lower bounds to the problem, whereas the 
practical one employs heuristics in order to obtain near optimal solutions.  

 
Currently most researchers concentrate on the IRP where inventory and routing 

decisions are combined in a cost optimization problem where backorders are not 
permitted and multiple distribution levels may occur (Jianxiang Li , Feng Chu and 
Haoxun Chen, 2011). Depending now on the approaches developed for the solution of 
IRP, we will adopt the classification introduced by Bramel and Simchi-Levi (1997). 
According to this, most of the research on IRP is in one of three directions: single-day 
models using deterministic demand (Chien, Balakrishnan, and Wong, 1989; Bertazzi, 
Paletta, and Speranza, 2002), multi-day models using deterministic demand (Bard, 
Huang, Jaillet and Dror, 1998; Campbell and Savelsbergh, 2004), and infinite time 
horizon usually for long-term planning purposes (Anily and Bramel, 2004).  Finally, 
stochastic demand has also been considered by several researchers (Kleywegt, Nori, 
and Savelsbergh, 2002). Concerning now the literature that refers to IRP models with 
backlogging recent works include a local search approach applied to the problem 
(Zachariadis, Tarantilis, and Kiranoudis, 2009), where two local search operators for 
jointly dealing with the inventory and routing aspects of the problem are employed 
together with a Tabu Search approach for the transportation cost reduction. Also in 
(Abdelmaguida, Dessouky and Ordóñez, 2009) the authors study an inventory-routing 
problem in which multiperiod inventory holding, backlogging, and vehicle routing 
decisions are to be taken using constructive and improvement heuristics. 

 
 
In this paper a multi-retailer single product  routing problem where backordres are 

permitted is examined and thoroughly reviewed.  In the following section the problem 
is formally stated, while in the next section Genetic Algorithms are introduced and 
related operators are discussed. Then, the application of the algorithmic procedure to 
IRPwB is implemented, while concluding remarks and suggestions for further 
research  are presented in the last section. 
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2. Problem statement 
 
IRPwB is concerned with the repeated distribution of a single product, from a 

single facility, i.e. a central depot, to a set of N={1,2,…,n} dispersed retailers over a 
given planning horizon of length T. For each retailer , we have a deterministic 
demand , a level of inventory (with a maximum of Ci) and a backlogging level 

€ 

Bi
t  per time period . The amount of delivery , to customer i in period t, is to 

be decided and based on the delivery amounts in period t. Each retailer i, incurs an 
inventory holding cost of hi and a shortage cost (penalty) of bi per period per unit. We 
assume that the depot has a sufficient supply of items to cover all customers’ demands 
throughout the planning horizon. Deliveries can be carried out at any time period 

, using vehicles with virtually unlimited capacity. Any combination of retailers 
can be visited in a single delivery route and the transportation cost , i.e. from 
retailer i to retailer j, is given. The following is an Integer programming formulation 
of IRPwB: 

  

€ 

min hi∑∑ Ii
t

+ bi∑∑ Bi
t

+ cij∑∑∑ wij

t

   (1) 

subject to the following constraints: 
 
 

€ 

Ii
t+1

= Ii
t − Bi

t + qi
t − di

t   (2)  

      (3) 

   ,          (4) 

              (5) 

          (6) 

            (7) 

 

€ 

Ii
t ,Bi

t ,qi
t ,zij

t ≥ 0 , , Μ: large number (8) 
 
The total cost comprises of the inventory holding cost, the transportation cost, and 

the shortage cost as depicted in the objective function (1). Constraint (2) is the 
inventory balance equation for the customers. Constraint (3) limits the total amount of 
inventory to . Constraint (4) ensures that a vehicle will not visit the location of a 

specific retailer more than once.  is a binary variable that is equal to 1, if the 
vehicle visits retailers at location i and j successively.  Constraint (5) makes sure that 



4      S. Sofianopoulou  

if there isn’t a vehicle travelling between two locations (i.e. retailers) then the amount 
delivered between them will be zero.  is a continuous variable representing 
material flow.  Constraint (6) is used in order to ensure route continuity and constraint 
(7) reflects the equity between materials flow and the quantity of products to be  

3. Genetic algorithms 
 
Since the IRPwB is NP-hard, accurate solution methods are difficult to adopt, 

while heuristic approaches are more promising. Genetic algorithms (GAs) are 
efficient heuristic procedures often surpassing the effectiveness of more “traditional” 
algorithms.  There are several reasons for that.  Firstly, GAs work with a coding of the 
parameters whereas “normal” optimisation and search procedures use the parameters 
themselves. Secondly, GAs perform their search from a population of points, not a 
single point. Thirdly, they use payoff (objective function) information and do not rely 
on derivatives or other auxiliary information. Finally, GAs make use of probabilistic 
transition rules, not deterministic ones.   

 
In genetic algorithms, the term “chromosome” typically refers to a candidate 

solution to a problem, often encoded as a bit string. The "genes" are either single bits 
or short blocks of adjacent bits that encode a particular element of the candidate 
solution (e.g., in the context of multi-parameter function optimization the bits 
encoding a particular parameter might be considered to be a gene). An allele of a bit 
string is either 0 or 1; for larger alphabets more alleles are possible at each locus. In 
correspondence to the term genotype used in natural systems, in artificial systems the 
term structure is employed in order to refer to the total package of strings. Moreover, 
the term “phenotype” is analogous to a “parameter set”, or a “solution alternative” 
that is formed by the decoding of a structure and the locus of a gene is analogous to 
the position of a bit in a string. 

3.1 Genetic Operators 
 
As mentioned earlier, GAs resemble natural systems and basically follow the same 

principles. In GAs, during each successive generation, a proportion of the existing 
population is selected to breed a new generation. Individual solutions (strings) are 
selected through a fitness-based process. In GAs, as a number of genetic operators is 
employed (selection, crossover, mutation) to ensure that the average fitness of the 
population of strings will continue to increase in successive generations, good partial 
solutions combine to form even better composite solutions. 

 
Genetic operators lie at the core of GAs and are of crucial importance to the ability 

of the algorithm to produce high quality solutions.  Selection ensures the survival of 
the fittest and resembles the “natural selection” process. It determines during each 
successive generation, which strings will reproduce and pass on their genes to the 
next generation, according to fitness criteria. Popular and well-studied selection 
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methods include roulette wheel selection and tournament selection. In roulette-wheel 
selection, the fitness function assigns a fitness value to possible solutions (strings).  

 
After selecting the strings, the next step is to generate a new population of 

solutions from those selected through genetic operators: crossover (also called 
recombination), and/or mutation. For each new solution to be produced, a pair of 
"parent" solutions is selected for breeding from the pool selected previously. By 
producing a "child" solution using the methods of crossover and mutation, a new 
solution is created which typically shares many of the characteristics of its "parents". 
New parents are selected for each child, and the process continues until a new 
population of solutions of appropriate size is generated.  These processes ultimately 
result in the next generation population of chromosomes that is different from the 
initial generation. Generally the average fitness will have increased by this procedure 
for the population, since only the best organisms from the first generation are selected 
for breeding, along with a small proportion of less fit solutions, for reasons already 
mentioned above. 

 
Analytically, during the process of crossover, two individuals are selected from the 

population and a crossover site (a position) along the bit strings is randomly chosen. 
Then, substrings from corresponding positions within the individuals are exchanged. 
One or both of the new individuals are inserted into the population at the next 
generation. For example if S1=000000 and S2=111111 are the parent strings and the 
crossover point is 2 then S1'=110000 and S2'=001111. Mutation helps the GA 
procedure to maintain genetic diversity from one generation of a population of 
chromosomes to the next.  A common method of implementing the mutation operator 
involves generating a random variable for each bit in a sequence. This random 
variable tells whether or not a particular bit will be modified 

 
3.2 Structure of the Algorithm 

 
The steps for implementing a GA are the following:  
1. Randomly create an initial population (generation 0)  
2. Iteratively perform the following sub-steps on the population until the 

termination criterion (i.e. a satisfactory fitness level or a maximum number of 
generations), is satisfied:  

a. For each string in the population calculate its fitness.  
b. Select one or two individual(s) from the population with a probability 

based on fitness to participate in the genetic operations in (c).  
c. Create new individual for the population by applying the following genetic 

operations with specified probabilities: 
 Reproduction: Copy the selected individual to the new population. 
 Crossover: Create new offspring(s) for the new population by 

recombining randomly chosen parts from two individuals. 
 Mutation: Create one new offspring for the new population by 

randomly mutating a randomly chosen part of one selected 
individual.  
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3. After the termination criterion is satisfied, the single best individual (string) in 
the population produced during the run (the best-so-far individual) is harvested 
and designated as the result of the run. If the run is successful, the result may 
be a solution to the problem. 

 

4. A Genetic Algorithm Adapted to the Inventory Routing 
Problem 

 
In order to use GAs for solving a problem, the encoding of candidate solutions is 
necessary . Refering to IRPwB, a representation of a solution is a two-dimensional 
matrix (Abdelmaguid and Dessouky, 2006), with each cell containing the quantity of 
product delivered to customer i during time period t, each row corresponding to a 
specific customer I and each column corresponding to a time period t. It is worth 
noting that delivery amounts are set to be integers. 

 
An initial population is required. The genesis of this population is conducted using 

a two-step heuristic algorithm. In phase one, the heuristic procedure examines which 
customers are in need of a delivery. Generally, retailers are served if their inventory 
level in period t cannot cope with the demand of that period. Firstly the heuristic 
decides which customers are in immediate need of a delivery, simply by using a 
function that calculates the inventory level of customer i, in period t.  In phase two, a 
network of the customers who are to be serviced is generated and the transportation 
cost, for supplying each retailer in the network is minimised with the use of a 
modified Dijkstra algorithm. The amount of product to deliver to each retailer in the 
network is 

€ 

qi
t = di

t − Ii
t−1 + Bi

t−1. This procedure is repeated for each of the time 
periods. The heuristic also makes sure that none of the constrains of the IRP is 
violated by the proposed solution.   

Genetic Operators 
 
The selection of individuals to produce successive generations plays an extremely 

important role in GAs. The basic methods we have chosen to apply are selection 
based on roulette wheel and elitism.  Our selection operation at first locates the elite 
chromosome that is the solution with the least total cost. This solution is 
automatically passed on to the new population in order to safeguard that it will not be 
“eliminated” during the selection process. Next, the fitness of each individual is 
computed. As we are dealing with a minimization problem in that our goal is to 
minimize the sum of the inventory, backorder  and routing costs for a number of 
periods, it is vital to map the underlying natural objective function to a fitness 
function. This transformation is performed using the method proposed by  Goldberg  
(1989), according to which: 
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when g(x)<Cmax 

      otherwise 
where g(x) is the cost minimization function,  f(x) is the fitness function and Cmax 

the largest g value in the current population. The new population is then created using 
the fitness values computed earlier and a roulette wheel mechanism. 

  
Given the nature of the problem and the encoding selected, crossover is the most 
intriguing operator. Crossover in our case can be performed either horizontally or 
vertically. While horizontal crossover, that is random exchange of delivery schedules 
(rows) of certain customers between the “parent” solutions, poses no problem, vertical 
crossover may cause a violation of the constraint concerning the capacity of each 
retailer. Vertical crossover i.e. exchange of rows between “parent” solutions 
corresponds to the possibility of having excessive amounts of product which in turn 
results to poor fitness -as inventory holding cost are too great. Consequently, the latter 
method is not given any possibility to occur. 

 
Following the crossover operation, mutation is applied to each offspring generated 
with a probability equal to the mutation rate. Specifically the amount of product to be 
delivered is mutated (decreased or increased) randomly by a small amount; and 
consequently new solutions are created. As with the previous operators, violations of 
constraints by the mutated solutions are not allowed. 
 

5. Illustrative example 
 

The proposed method is applied to a simple example which concerns a single depot 
and six customers.  The distribution plan spans over 3 periods, while demand, holding 
costs and distances between customers and depot are shown in Tables 1-3 
respectively. Shortage costs are assumed to be twice the holding costs. Starting 
inventory at T=0 is also  presented in Table 3. Maximum inventory capacity for each 
customer is 29, 40, 19, 42, 94 and 32 respectively. 

 
Results computed for the distribution plan are presented in Table 4, whilst the 

corresponding routes travelled in each time period are as following: [0 5 6 2 3 0]  [0 5  
3  1 2 4 0] [0 5 6 4 3 1 0] correspondingly with a total cost of 158 . 

6. Concluding Remarks 
 

The purpose of this work is to present a GA approach for solving the Inventory 
Routing Problem with backlogs. The paper consists of three parts. Firstly, IRPwB is 
introduced, followed by a formal problem statement. A description of the problem, 
using a model of Mixed-Integer Programming is given at the end of this part. 
Secondly, the basic theoretical foundations for Genetic Algorithms are presented and 
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a solution for the Inventory Routing Problem is demonstrated through an illustrative 
example which depicts the structure of the data required and the solution produced.  
In order to test the algorithm, further experiments should be carried out using a 
variety of test problems which hasn’t been the case in this study, where only a small 
test problem was used for illustrative purposes. Further experimentation will make it 
possible for the researchers to determine the best combination of algorithmic features. 

 

 

 

TABLES 

 

Table 1: Distances between individual customers and Depot 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Holding costs for each customer per period 
 
 
 
 
 
 
 
 
 

 
 
 

Table 3: Demand per period and beginning inventory 

for each customer i 
 

 

 1 2 3 4 5 6 D 
1 0 5 1 30 10 4 5 
2 5 0 4 15 20 18 32 
3 1 4 0 9 10 25 6 
4 30 15 9 0 15 3 10 
5 10 20 10 15 0 9 1 
6 4 18 25 3 9 0 2 
D 5 32 6 10 1 2 0 

T= 1 2 3 
1 3 2 1 
2 2 3 4 
3 4 1 2 
4 3 2 5 
5 4 3 2 
6 1 3 4 

     
1 10 11 12 12 
2 15 15 8 14 
3 12 10 11 2 
4 13 10 9 14 
5 14 13 7 9 
6 8 14 15 1 
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Table 4: Distribution plan for each customer per period 
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