
1 INTRODUCTION  

Stereolithography is one the most widely used tech-
niques belonging to the group of Layer Manufactur-
ing Technologies (L.M.T) or else Rapid Prototyping 
Technologies (R.P.T). Rapid prototyping technolo-
gies involve fabrication of parts directly from 3D-
CAD models by successive addition of layers of var-
ious kinds of materials like polymers, metals, ceram-
ics or paper. In stereolithography parts are fabricated 
by successive solidification (polymerization) of thin 
resin layers. For the solidification of the layers an 
UV laser beam, focused on the surface of the resin, 
is used. The laser beam, guided by a system of gal-
vanometer mirrors, scans selected areas at the sur-
face of the resin, thereby solidifying thin resin lay-
ers. Next, the platform, on which the part is attached, 
lowers a small distance (0.10-0.25 mm) and a re-
coating blade (sweeper) moves across the resin sur-
face applying and leveling a new layer of liquid res-
in on top of the already fabricated part of the part. 
The process continues in the same manner, gradually 
building the part from the bottom-up, until the entire 
part is fabricated. 

In the past few years researchers have investigat-
ed extensively the time needed for a part to be built 
by stereolithography systems (e.g. Giannatsis et al. 
2001). Thus the build-time has been expressed as:  
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where TLayer is the time required for the addition of 
the ith layer and n is the total number of layers. The 
addition of a layer consists of recoating and scan-
ning. Thus the time needed for the fabrication of a 
single layer may be expressed as the sum of recoat-
ing and scanning time. The recoating time now can 
be calculated as the sum of the time required for the 
lowering of the platform, the time required for the 
recoater movement and the pre- and post-scan delay 
periods. 

The time required for the lowering of the plat-
form, the time required for the recoater movement 
and the pre- and post-scan delay periods have been 
found to be independent of the number of parts be-
ing fabricated at a time. So, if we proceed in fabri-
cating one part at a time instead of fabricating as 
many parts as possible, the total sum of build-time 
will be significantly larger. Noting that the total cost 
of ownership (TCO) increases as the build time in-
creases, it becomes obvious that effective utilization 
of stereolithography relies on packing parts optimal-
ly on the fabrication platform of the machine. 

Quite a few researchers have examined the prob-
lem of packing several parts on the fabrication plat-
form of the machine. The methodologies and algo-
rithms employed tackle the relevant 3D bin packing 
problem mainly for the case of Selective Laser Sin-
tering technology. In most of the cases, heuristic 
methods have been used in conjunction with a 
placement rule (e.g. Hur et al. 2001) to produce near 
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optimal solutions. The corresponding work in stereo-
lithography technology, however, is rather limited. 
Decisions regarding packing rely mainly on the skill 
and experience of the stereolithography apparatus 
operator. Thus the purpose of this work is to present 
a methodology that “automates” the process of mak-
ing these decisions for the stereolithography tech-
nology and provides the operator with effective 
packing solutions. 

Due to the existence of support structures in SL 
technology, packing solutions/fabrication layouts 
where some parts are built on top of others are unac-
ceptable. Thus, the original 3-D packing problem is 
simplified by one dimension, by projecting each one 
of the parts on the build platform (x-y plane) and 
packing their projections instead of the actual parts 
themselves. The parts are being projected on the 
build platform only after the calculation of the desir-
able orientation for each part. Then the minimum 
bounding rectangle is being defined for each one of 
the projections. Finally the minimum bounding rec-
tangles are being used as input in the packing algo-
rithm. 

The packing algorithm consists of a Simulated 
Annealing procedure, which utilizes a polynomial 
time cooling schedule, in conjunction with a new 
improved placement rule. 

2 SIMULATED ANNEALING OVERVIEW 

Simulated annealing is a generalization of the Monte 
Carlo method, suitable for large scale optimization 
problems, especially those where a desired global 
extremum is hidden among many, poorer, local ex-
trema. It was motivated by an analogy to the ther-
modynamics of annealing in solids. In an annealing 
process, material is being heated to a temperature 
that permits many molecules to move freely with re-
spect to each other. Then it is cooled in a slow man-
ner, until the material freezes into a crystal, which is 
completely ordered, and thus the system is at the 
state of minimum energy. The temperature of the 
material must be gradually lowered so that at each 
temperature the atoms can move enough to begin 
adopting the most stable orientation. Noting that the 
target in a combinatorial optimization problem is to 
find an optimal solution or else the “minimum ener-
gy state of the problem”, simulated annealing tech-
nique uses an analogous cooling operation for trans-
forming a poor, unordered solution into an ordered, 
desirable solution, so as to optimise the objective 
function. 

By analogy to the physical annealing, simulated 
annealing uses the control parameters that follow: 
Cost function: An objective function that measures 
how well the system performs when a certain con-
figuration is given. 

Move schemes: A generator of random changes in 
the configuration so as to create new candidate solu-
tions. 
Temperature: A control parameter analogous to the 
temperature in the annealing process of solids. This 
artificial parameter acts as a source of stochasticity, 
which is convenient for eventually detrapping from 
local minima, and it represents the willingness of a 
system to accept a state/solution that is worse than 
the current.    
Cooling schedule: A definition of the cooling speed 
to anneal the problem from a random solution to a 
good, frozen one. In its details, it must provide a 
starting temperature, together with the rules to de-
termine when and how much the temperature should 
be reduced and when annealing should be terminat-
ed. 
Metropolis acceptance criterion: As it was pointed 
out simulated annealing is suitable for problems 
where the desired global optimum is hidden among 
many, poorer, local optima. Thus the method should 
be capable of escaping local optima. In order to 
achieve the previous mentioned goal, simulated an-
nealing takes not only downhill moves, but also 
permits uphill moves with an assigned probability of  
P(ΔC) =exp(-ΔC/T) where ΔC is the change in the 
objection function value and T is the temperature pa-
rameter. Thus a new candidate solution is accepted, 
if it has the same or smaller objective function value. 
However, if the new solution yields an increase in 
cost of the system, then the new solution is judged 
for suitability probabilistically according to the 
probability P(ΔC) =exp(-ΔC/T). Thus the new solu-
tion is being accepted if a random number, generated 
in the interval (0,1), is less than or equal to P(ΔC) 
=exp(-ΔC/T). Otherwise, it is rejected. 

A simulated annealing optimization starts with a 
Metropolis Monte Carlo simulation at an initial high 
temperature T. This means that a relatively large 
percentage of the random steps that result in an in-
crease of the cost of the objection function will be 
accepted with probability P(ΔC) =exp(-ΔC/T). Me-
tropolis Monte Carlo simulation is a randomization 
technique being used for optimizing a function using 
a random sampling of the solution space. After a 
sufficient number of Monte Carlo steps, the tem-
perature is decreased. The Metropolis Monte Carlo 
simulation is then continued. This process is repeat-
ed until the final temperature is reached. Actually a 
simulated annealing algorithm consists of a pair of 
nested loops. The outer loop controls the tempera-
ture parameter and the inner loop (or else Markov 
chain) runs a Metropolis Monte Carlo simulation at 
that temperature. The way in which the temperature 
is decreased has already been referred as the cooling 
schedule. 



3 PROBLEM FORMULATION 

In this section, the basic concepts of the methodolo-
gy utilized for solving the packing problem are de-
scribed in detail. As it was mentioned before, our 
target is to pack as many parts as possible on the 
platform of a stereolithography system in order to 
reduce the TCO or else to minimize the unoccupied 
area (trim loss) on the platform. Thus, we are deal-
ing with a minimization problem and the cost func-
tion F may be defined as the percentage of the area 
of the platform that is unused by the, say n, rectan-
gles: 
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where l and w are the length and the width of the 
fabrication platform respectively, and li, wi are the 
length and width of the ith rectangle. 

A packing pattern can be represented by a permu-
tation π=(i1,…..in) where i is the index of the ri rec-
tangle. Actually, a permutation represents only the 
sequence in which the rectangles will be packed by a 
placement rule. The advantage of this data structure 
is the facile creation of new permutation-solution by 
simply changing the sequence. For the assignment of 
each permutation to an unique packing pattern a 
placement rule is being utilized which will be dis-
cussed later in detail. After the creation of the pack-
ing pattern we are able to calculate its “cost” through 
the cost function. 

3.1 Cooling schedule  
The cooling schedule is being considered to be the 
most important factor in a simulated annealing algo-
rithm. It is composed by the starting temperature and 
the rules to determine when and how much the tem-
perature should be reduced and when annealing 
should be terminated. The cooling schedules may be 
divided into two broad groups, static and adaptive. 
Static schedules are those schedules that follow a 
predetermined course of decrement. Static schedules 
generally disregard the dynamic behaviour of the 
problem at hand. On the other hand, dynamic sched-
ules use statistical analysis of objective function val-
ues examined to control the temperature decrement, 
while they are computational expensive. 

It is apparent that if the temperature parameter is 
kept high or it is decreased too quickly then the pro-
cess will not tend toward globally optimal configura-
tions. Therefore, an efficient cooling schedule must 
be designed in order to successfully implement the 
simulated annealing algorithm. Thus, a dynamic 
polynomial-time cooling schedule has been adopted 
as the most promising approach. 

By using the polynomial-time cooling schedule 
suggested by Van Laarhoven (1988), the initial tem-
perature is being determined by generating candidate 
configurations/solutions and evaluating their suita-
bility according to the Metropolis Monte Carlo algo-
rithm. At the beginning of the annealing process the 
acceptance rate of new configurations, disregarding 
the objection function values, should be high enough 
in order not to get trapped easily in a local mini-
mum. The acceptance rate may be expressed as: 
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in Eq. (3), C is defined as the cost of the objection 
function, m1 as the number of transitions occurred 
resulting in decrease of the objection function 
(ΔC≤0), m2 as the number of the transitions oc-
curred resulting in increase of the objection function 
(ΔC>0) and finally +ΔC  is defined as the average 
increase in cost over m2 transitions. Eq. (3) can now 
be rewritten as: 
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By generating a fixed number of transitions and ac-
cepting all configurations with increased objective 
function values an initial temperature can be obtain 
using Eq.(4). 

After determining the initial temperature a dec-
rement rule must be established. Keeping a record of 
the cost values of the configurations π1,…,πj that oc-
cur during the generation of the kth Markov Chain 
(the inner loop), where j is the length of the kth 
Markov Chain, we are able to approximate the prob-
ability distribution of the cost values of the kth Mar-
kov Chain by a normal distribution with mean µk 
given by 
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Therefore, the decrement rule for the temperature 
may be expressed as 
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where δ is called the distance parameter. The choice 
of δ determines how closely the algorithm will ap-
proximate a globally minimum state. Moreover, δ 



controls the computational effort that is going to be 
needed to reach an approximate globally minimum 
configuration. Finally the simulated annealing algo-
rithm ends when temperature reaches zero. 

3.2 Move schemes 
Move schemes in the annealing process denote the 
generation of candidate configurations/solutions for 
the system. A new configuration/solution may or 
may not be accepted as the next state of the system 
depending upon the Metropolis criterion. Typically, 
modifying the current state of a system in some way 
is creating a new solution. In the presented method-
ology three move schemes have been adopted. The 
first one simply selects two rectangles from a per-
mutation π = (i1,…..in) and swaps their locations. For 
instance say that the current state of the system cor-
responds to the permutation π = (1, 2, 3, 4, 5, 6, 7) 
where each integer is the index of a rectangle. This 
move scheme would randomly select two indices, 
e.g. 3 and 5, and swap their locations. Thus, the new 
solution would be π = (1, 2, 5, 4, 3, 6, 7). 

The second move scheme was inspired by the 
SJX operator, introduced by Jakobs (1996) as a 
crossover operator in genetic algorithms. Given a 
permutation π= (i1,…..in), as well as two integers b 
and c, the scheme takes c consecutive indices start-
ing from the b-th index of the permutation and place 
them at the beginning of the new permutation. Then 
it fills the remaining unallocated slots of the new 
permutation by the remaining indices. Suppose, for 
example, that the initial configuration is π1 = {1, 2, 
3, 4, 5, 6, 7}, b = 2 and c = 3. Then 2, 3, 4 are the 
first three indices of the new configuration, and the 
other unused indices 1,5,6,7 will fill the rest of the 
new configuration. Thus the new solution is π2 = {2, 
3, 4, 1, 5, 6, 7}. 

The third move scheme randomly selects the 40% 
of the indices of a permutation π = (i1,…..in)  and ro-
tates by 90 degrees the rectangles that are being rep-
resented by those indices. 

3.3 Placement rule 
As it was mentioned before, a permutation repre-
sents only the sequence in which the rectangles will 
be packed. Thus, a placement rule is needed in order 
to perform the actual packing. Taking into account 
the nature of our problem, we can consider it as a 2-
D bin packing problem, which is commonly encoun-
tered in the field of operational research. In order to 
solve this kind of problems the majority of the re-
searchers use the standard bottom-left (BL) place-
ment policy which attempts to minimize the total 
length required by placing each part’s bounding rec-
tangle (BR) as far to the left as possible and by fa-
vouring positions near the bottom-lower and side of 
the container/platform. The disadvantage of standard 

bottom-left algorithm is that groups of polygons ex-
ist for which an optimal packing pattern cannot be 
generated. Thus, a new improved placement rule 
should be established in order to overcome the pre-
viously mentioned drawbacks. 

Before describing the algorithm the terms vertical 
insertion lines and horizontal insertion lines should 
be explained. Vertical insertion lines correspond to 
the lines, normal to the lower side of the platform, 
which are adjacent to the rightmost side of each rec-
tangle that has been placed on the fabrication plat-
form. Horizontal insertion lines are the lowest, in the 
y-wise sense, lines parallel to the x-axis of the plat-
form that ‘prevent’ the overlapping of the rectangle 
to be packed with the rectangles already placed on 
the platform. Where a vertical and a horizontal inser-
tion line intersect there is an insertion point where a 
new rectangle can be placed without overlapping 
with the rectangles already placed on the platform. 
Thus, there are as many insertion points as vertical 
insertion lines. 

For clarity reasons, the algorithm of placing-
packing the BR on the SLA fabrication platform will 
be described with reference to Figures 1-5. The algo-
rithm starts by placing the first BR on the platform 
employing a simple BL rule as it is shown in Figure 
1.  

Figure 1. Placement of first rectangle 
 
 
After the placement of the first rectangle there are 

two vertical insertion lines in order to pack the se-
cond rectangle. The first vertical insertion line coin-
cides with the left side of the platform, while the se-
cond is adjacent to the rightmost side of the 
rectangle that has already been packed. Moreover, 
there are two horizontal insertion lines respectively 
to the vertical insertion lines. A horizontal insertion 
line that is adjacent to the upper side (in the y-wise 
sense) of the rectangle already packed corresponds 
to the first vertical line. A horizontal line that coin-
cides with the lowest side of the fabrication platform 
corresponds to the second vertical line. As it is obvi-
ous, a horizontal line is being used simply as a mean 
to prevent overlaps. Thus, there are two insertion 
points where the second rectangle may be placed. In 
Figures 2 and 3 one can observe the two insertion 
points with their vertical and horizontal insertion 
lines as well as the actual packing of the second rec-
tangle in both positions. The hatched rectangle is the 
rectangle that we are trying to pack. The algorithm 



chooses that insertion point that corresponds to the 
lowest horizontal insertion line.  
 

Figure 2.  First possible placement of second object  
 

Figure 3. Second possible placement of second object 
 
 

In that way the second and the third rectangle are 
placed. For the packing of the fourth rectangle there 
are four vertical and horizontal insertion lines indi-
cating four insertion points. The first vertical inser-
tion line coincides with the left side of the platform. 
Now the horizontal insertion line for this vertical 
line depends on the length, in the x-wise sense, of 
the rectangle to be placed. For instance if the length 
of the rectangle to be placed is smaller than the 
length of the first rectangle then the horizontal inser-
tion line is adjacent to the upper size (in the y-wise 
sense) of the first rectangle, as it is shown in Figure 
4. If the length of the rectangle to be placed is bigger 
than the length of the first rectangle then the hori-
zontal insertion line is set at the top of an already 
packed BR for which there would be no overlaps 
(e.g. Fig 5). Using the same methodology the other 
three vertical and horizontal insertion lines are being 
calculated resulting in four insertion points. Finally, 
the rectangle is being placed at that insertion point 

that owns the lowest horizontal insertion line. If an 
insertion point results in a layout that is unaccepta-
ble, e.g the part is packed partially outside the plat-
form, then the algorithm simply disregards it. Final-
ly, if two or more insertion points share a common 
horizontal insertion line, then the algorithm selects 
the one that owns a vertical line nearest to the left 
side of the platform.   

 
Figure 4. First possible insertion point, given a vertical inser-
tion line 

 
 

Figure 5.Second insertion point, given a vertical insertion line  
 

3.4 Comparison with a genetic algorithm 
The proposed methodology has been coded in visual 
C++ allowing the user to define the length of the in-
ternal Markov chain, the initial temperature (in case 
there is a disagreement with the initial temperature 
provided by the algorithm) and the distance parame-
ter. Moreover, the user can define the initial ac-
ceptance percentage and the length of the trial run in 
order to obtain an estimate of a good initial tempera-
ture. Computational results were then compared with 
those produced by a methodology proposed by Man-
tzouratos et al. (2002) which utilizes a genetic algo-
rithm and an improved BL placement rule in order to 
solve the 2-D bin packing problem. Genetic algo-
rithms are also heuristic algorithms, which are based 
on the principles of natural selection and survival of 
the fittest. A genetic algorithm attempts to evolve a 
solution using a population of potential solutions, 
appropriately called chromosomes. New chromo-



somes/solutions are created through a process of 
breeding, where promising genetic material is passed 
from one chromosome to the other.  

In order to compare the two heuristic procedures, 
four test problems proposed by Lai & Chan (1997) 
and Jakobs (1996) were used, as well as two others 
of our own. For each test problem the simulated an-
nealing algorithm and the genetic algorithm were 
run 15 times and the average values where taken into 
account. Only the four test problems proposed by 
Lai & Chan (1997) and Jakobs (1996) have a known 
optimal solution of zero trim losses. Table 1 presents 
the dimensions of the fabrication platform as well as 
the number of rectangles to be packed for the six test 
problems. Finally in Table 2 the trim losses for each 
test and each algorithm are presented. 

 
Table 1. Test problems 
Size of fabrication 
platform 

Number of 
rectangles 

Known optimal  
solution 

Width Height    
400 200 10 Yes  
400 400 15 Yes 
70 80 20 Yes 
70 80 25 Yes 
50 50 25 No 
50 50 30 No 
  
 
Table 2. Trim losses per test problem and algorithm. 
Number of 
rectangles 

Known op-
timal  
solution 

Trim losses by 
simulated anneal-
ing algorithm 

Trim losses 
by genetic 
algorithm 

  % of the platform 
area 

% of the 
platform ar-
ea 

10 Yes  0 0.045 
15 Yes 1.25 1.25 
20 Yes 4.0179 3.571426 
25 Yes 3.2143 10.714287 
25 No 0 0 
30 No 4.24 7.49 
 
 
Though simulated annealing algorithm took much 
more time than the genetic algorithm to converge in 
a “good” solution, we observe that in most cases 
performed very satisfactory indicating the efficiency 
of the proposed methodology. Moreover, it must be 
pointed out that part of the success of the methodol-
ogy is due to the use of a new improved placement 
rule which results in much more dense packing lay-
outs than the one employed by the genetic algorithm.   

4 CONCLUSIONS 

In this paper, a methodology that “automates” the 
process of making decisions regarding packing for 
the stereolithography technology and provides the 
operator with effective packing solutions was pre-
sented. The methodology consists of a simulated an-

nealing algorithm and new improved placement rule. 
A software tool has been developed that can be used 
by the SLA operator at a pre-processing phase. Fi-
nally, the method has been found to be quite robust 
through the comparison with packing solutions pro-
vided by a genetic algorithm. 
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