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Abstract. A multi-period inventory-routing problem is considered where a vendor serves multiple 
geographically dispersed customers who receive units of a single product from a depot, with adequate 
supply, using a capacitated vehicle. The class of problems arising from the combination of routing 
and inventory management decisions is known as the inventory routing problem (IRP). In this 
category of problems, the inventory routing problem with backorders (IRPB) deals with determining 

inventory levels when backorders are allowed. The aim is to minimize the total cost for the planning 
period, comprising of holding cost, transportation and backorder penalty cost while ensuring that 
inventory level capacity constraints are not violated. An Integer Programming model is first developed 
to provide an accurate description of the problem and then a Genetic Algorithm (GA) with suitably 
designed genetic operators is employed in order to obtain near optimal solutions. Computational 
results are presented to demonstrate the effectiveness of the proposed procedure. 
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Introduction 

Vendor Managed Inventory together with the underlying Inventory Routing Problem results 

in significant cost savings of inventory handling, increased efficiency, better performance, 

and committed delivery dates. More precisely, instead of customers need to keep their 

stocks and make sure it is replenished on a regular basis, the supplier is responsible for 

responding to customer needs by simultaneously determining the timing and size of 

deliveries and schedules effectively vehicles to minimize the total transportation and 

inventory holding costs. The class of problems arising from the combination of inventory 

control problems and NP-hard vehicle routing problems, which determines delivery volumes 
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to the customers that the supplier serves in each period, and vehicle routes to deliver the 

volumes is known as "inventory routing problems" (IRP). The inventory routing problem 

with backlogging (IRPB), i.e. the inventory routing problem when backorders are 

allowed, is an IRP variant with the aim to determine inventory levels, backlogging and 

vehicle routing decisions for a set of n customers on a number of time periods. A variety 

of industries have provided fertile ground for the development for the IRP and its variants. 

Researchers have generated many methods of solving IRP and to a lesser extend IRPB. 
Most of the proposed methods use either a "theoretical" or a more "practical" approach. 

The theory concentrates mainly to compute lower bounds of the problem, while the 

practical approaches employ heuristic procedures to obtain near optimal solutions. 

Most researchers concentrate on the IRP where inventory and routing decisions are 

combined in a cost optimization problem where backorders are not permitted and multiple 

distribution levels may occur (Jianxiang Li , Feng Chu and Haoxun Chen, 2011). 
Depending now on the approaches developed for the solution of IRP, we will adopt the 

classification introduced by Bramel and Simchi-Levi (1997). According to this, most of 

the research on IRP is in one of three directions: single-day models using deterministic 

demand (Chien, Balakrishnan, and Wong, 1989; Bertazzi, Paletta, and Speranza, 2002), 

multi-day models using deterministic demand (Bard, Huang, Jaillet and Dror, 1998; 

Campbell and Savelsbergh, 2004), and infinite time horizon usually for long-term planning 

purposes (Anily and Bramel, 2004).  Finally, stochastic demand has also been considered 
by several researchers (Kleywegt, Nori, and Savelsbergh, 2002). Concerning now the 

literature that refers to IRP models with backlogging, recent works include a local 

search approach applied to the problem (Zachariadis, Tarantilis, and Kiranoudis, 2009), 

where two local search operators for jointly dealing with the inventory and routing aspects 

of the problem are employed together with a Tabu Search approach for transportation 

cost reduction. Also in (Abdelmaguida, Dessouky and Ordóñez, 2009) the authors study 

an inventory-routing problem in which multi-period inventory holding, backlogging, and 

vehicle routing decisions are to be taken using constructive and improvement heuristics. 

The inventory routing problem with backlogging (IRPB) is introduced and solved in this 

work. In this paper a multi-retailer single product routing problem where backorders are 

permitted is examined and reviewed.  In the following section the problem is formally 

stated, while in the next section a Genetic Algorithm is presented and related operators 
are discussed. Next the application of the algorithmic procedure to IRPB is implemented, 

while concluding remarks and suggestions for further research are presented in the last section. 

Problem Statement 

IRPB is formally presented in this section.  The problem is concerned with the repeated 

distribution of a single product, from a single facility, i.e. a central depot, to a set of 

N={1,2,…,n} dispersed retailers over a given planning horizon of length T using a single 

vehicle of given capacity. For each retailer Ni , we have a deterministic demand
t

id , 
a level of inventory 

t

iI (with a maximum capacity of Ci) and a backlogging level 



Bi
t
 

with a maximum level 



Bli  per time period t . The amount of delivery



qi
t
, to customer 

i in period t, is to be decided and based on the delivery amounts to other retailers in period t. 
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Each retailer i, incurs an inventory holding cost of hi and a shortage cost (penalty) of bi 

per time period per unit. We assume that the depot has a sufficient supply of items to 

cover all customers’ demands throughout the planning horizon. Deliveries can be carried 

out at any time period t , using a vehicle of limited capacity. Any combination of 

retailers can be visited in a single delivery route and the transportation cost ijc , i.e. 

from retailer i to retailer j, is given. The following is an Integer programming formulation of 

IRPB presented in the paper mainly for accurately describing the problem tackled: 
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The total cost comprises of the inventory holding cost, the transportation cost, and 

the shortage cost as depicted in the objective function (1). Constraints (2) are the inventory 

balance equations for customers. Constraints (3) and (4) limit the total amount of inventory 

and backlogging to iC  and 



Bi  respectively. Constraints (5) ensure that a vehicle will 

not visit the location of a specific retailer more than once. 
t

ijw  is a binary variable that 

is equal to 1, if the vehicle visits retailers at location i and j successively.  Constraints 

(6) make sure that if there isn’t a vehicle travelling between two locations (i.e. retailers) then 

the amount delivered between them will be zero. 



zij
t
 is a continuous variable representing 

material flow. Constraints (7) ensure that the total quantity delivered to all customers 

during period t does not exceed vehicle’s capacity VQ. Constraints (8) are used in order 

to ensure route continuity and constraints (9) reflect the equity between materials flow 

and the quantity of products to be delivered. Constraints (10) are domain constraints. 
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Genetic Algorithms 

The IRP is classified as NP-hard problem since it subsumes the Vehicle Routing Problem 

(VRP). This fact led to the development of many heuristic approaches, although a small 

number of exact methods have been recently introduced (Archetti et al. 2007; Solyalı and 

Süral 2011; Adulyasak, Cordeau, and Jans 2012; Coelho and Laporte 2013). Nevertheless, 

there are limitations in their use as benchmarks as there exist several IRP variants. Since the 
IRPB is NP-hard, accurate solution methods are difficult to adopt, and heuristic approaches 

are more promising. Genetic Algorithms (GAs) are efficient heuristic procedures often 

surpassing the effectiveness of more “traditional” algorithms.  There are several reasons 

for that.  Firstly, GAs work with a coding of the parameters whereas “normal” optimisation 

and search procedures use the parameters themselves. Second, GAs perform their 

search from a population of points, not a single point. Third, they use payoff (objective 

function) information and do not rely on derivatives or other auxiliary information. Finally, 

GAs make use of probabilistic transition rules, not deterministic ones. 

In genetic algorithms, the term “chromosome” typically refers to a candidate solution 

to a problem, often encoded as a bit string. The "genes" are either single bits or short 

blocks of adjacent bits that encode a particular element of the candidate solution (e.g., 
in the context of multi-parameter function optimization the bits encoding a particular 

parameter might be considered to be a gene). An allele of a bit string is either 0 or 1; for 

larger alphabets more alleles are possible at each locus. In correspondence to the term 

genotype used in natural systems, in artificial systems the term structure is employed in 

order to refer to the total package of strings. Moreover, the term “phenotype” is analogous to 

a “parameter set”, or a “solution alternative” that is formed by the decoding of a structure 

and the locus of a gene is analogous to the position of a bit in a string. 

Genetic operators 

As mentioned earlier, GAs resemble natural systems and basically follow the same 

principles. In GAs, during each successive generation, a proportion of the existing 

population is selected to breed a new generation. Individual solutions (strings) are selected 

through a fitness-based process. In GAs, as a number of genetic operators is employed 

(selection, crossover, mutation) to ensure that the average fitness of the population of 

strings will continue to increase in successive generations, good partial solutions combine 

to form even better composite solutions. 

Genetic operators lie at the core of GAs and are of crucial importance to the ability of 

the algorithm to produce high quality solutions.  Selection ensures the survival of the fittest 
and resembles the “natural selection” process. It determines during each successive 

generation, which strings will reproduce and pass on their genes to the next generation, 

according to fitness criteria. Popular and well-studied selection methods include roulette 

wheel selection and tournament selection. In roulette-wheel selection, the fitness function 

assigns a fitness value to possible solutions (strings).  

After selecting the strings, the next step is to generate a new population of solutions 

from those selected through genetic operators: crossover (also called recombination), 

and/or mutation. For each new solution to be produced, a pair of "parent" solutions is 
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selected for breeding from the pool selected previously. By producing a "child" solution 

using the methods of crossover and mutation, a new solution is created which typically 

shares many of the characteristics of its "parents". New parents are selected for each 

child, and the process continues until a new population of solutions of appropriate size 

is generated.  These processes ultimately result in the next generation population of 

chromosomes that is different from the initial generation. Generally the average fitness 

will have increased by this procedure for the population, since only the best organisms 
from the first generation are selected for breeding, along with a small proportion of less 

fit solutions, for reasons already mentioned above. 

Analytically, during the process of crossover, two individuals are selected from the 

population and a crossover site (a position) along the bit strings is randomly chosen. 

Then, substrings from corresponding positions within the individuals are exchanged. 

One or both of the new individuals are inserted into the population at the next generation. 

For example if S1=000000 and S2=111111 are the parent strings and the crossover point 

is 2 then S1'=110000 and S2'=001111. Mutation helps the GA procedure to maintain genetic 

diversity from one generation of a population of chromosomes to the next.  A common 

method of implementing the mutation operator involves generating a random variable 

for each bit in a sequence. This random variable tells whether or not a particular bit will 
be modified. 

Structure of the algorithm 

 The steps for implementing a GA are the following:  

 Randomly create an initial population (generation 0)  

 Iteratively perform the following sub-steps on the population until the termina-

tion criterion (i.e. a satisfactory fitness level or a maximum number of genera-
tions), is satisfied:  

 For each string in the population calculate its fitness.  

 Select one or two individual(s) from the population with a probability based on 

fitness to participate in the genetic operations in (c).  

 Create new individual for the population by applying the following genetic op-

erations with specified probabilities: 

 Reproduction: Copy the selected individual to the new population. 

 Crossover: Create new offspring(s) for the new population by recombining 

randomly chosen parts from two individuals. 

 Mutation: Create one new offspring for the new population by randomly mu-
tating a randomly chosen part of one selected individual.  

 After the termination criterion is satisfied, the single best individual (string) in 

the population produced during the run (the best-so-far individual) is harvested 

and designated as the result of the run. If the run is successful, the result may 

be a solution to the problem. 
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A Genetic Algorithm Adapted to IRPB 

In order to use GAs for solving a problem, the encoding of candidate solutions is necessary. 

Referring to IRPB, a representation of a solution is a two-dimensional matrix 

(Abdelmaguid and Dessouky, 2006), with each cell containing the quantity of product 

delivered to customer i during time period t, each row corresponding to a specific customer i 

and each column corresponding to a time period t. It is worth noting that delivery 
amounts are set to be integers. 

Generally, retailers are served if their inventory level in period t cannot cope with the 

demand of that period. When retailers are served at a certain time period and quantity 

delivered is not adequate to cover demand, backlogging is assumed. In practice, 

backlogging decisions are generally justified in two cases. The first is when there is a 

transportation cost saving that is higher than the incurred shortage cost by a customer. 

The second case is when there is a holding cost saving that is higher than the incurred 

shortage cost by a customer. Then care is taken that backorders are satisfied by the 

quantity shipped in next period. 

An initial population is required. The genesis of this population is conducted using a 

two-step heuristic algorithm. In phase one, the heuristic procedure examines which 

customers are in need of a delivery. The heuristic decides which customers are in immediate 

need of a delivery, simply by using a function that calculates the inventory level of customer 

i, in period t.  In phase two, a network of the customers who are to be serviced is generated 

and the transportation cost, for supplying each retailer in the network is minimised with 

the use of a modified Dijkstra algorithm. The amount of product to deliver to each retailer in 

the network is 



qi
t  di

t  Ii
t1 Bi

t1
. This procedure is repeated for each of the time 

periods under examination. The heuristic also makes sure that none of the constraints of 

the IRPB model is violated by the proposed solution.   

Genetic operators 

The selection of individuals to produce successive generations plays an extremely im-

portant role in GAs. The basic methods we have chosen to apply are selection based on 

roulette wheel and elitism. Our selection operation at first locates the elite chromosome 
that is the solution with the least total cost. This solution is automatically passed on to 

the new population in order to safeguard that it will not be “eliminated” during the se-

lection process. Next, the fitness of each individual is computed. As we are dealing with 

a minimization problem in that our goal is to minimize the sum of the inventory, 

backorder and routing costs for a number of periods, it is vital to map the underlying 

natural objective function to a fitness function. This transformation is performed using 

the method proposed by  Goldberg  (1989), according to which: 

)()( max xgCxf  when g(x)<Cmax       (11) 

0)( xf    otherwise       (12) 
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where g(x) is the cost minimization function, f(x) is the fitness function and Cmax the 

largest g value in the current population. The new population is then created using the 

fitness values computed earlier and a roulette wheel mechanism. 

Given the nature of the problem and the encoding selected, crossover is the most 

intriguing operator. Crossover in our case can be performed either horizontally or vertically. 

While horizontal crossover, that is random exchange of delivery schedules (rows) of 

certain customers between the “parent” solutions, poses no problem, vertical crossover 
may cause a violation of the constraint concerning the capacity of each retailer. Vertical 

crossover i.e. exchange of rows between “parent” solutions corresponds to the possibility of 

having excessive amounts of product which in turn results to poor fitness -as inventory holding 

cost are too great. Consequently, the latter method is not given any possibility to occur. 

Following the crossover operation, mutation is applied to each offspring generated 

with a probability equal to the mutation rate. Specifically the amount of product to be 

delivered is mutated (decreased or increased) randomly by a small amount; and consequently 

new solutions are created. As with the previous operators, violations of constraints by 

the mutated solutions are not allowed. 

Algorithm Testing 

The heuristic method has been coded and compiled in MATLAB (version R2008b) 

while computational testing was performed on a 2.17 GHz Intel Core 2 Duo processor 

with 4 GB of RAM. For the evaluation of the proposed approach we have used the instances 

suggested by Abdelmaguid et al. (2009) for the Inventory Routing Problem. In this latter 

work instances for IRP were tested both for the IRP with backorders and without. Those 

IRP with backorders instances were adapted to our IRPB. 

Abdelmaguid et al. (2009) consider three scenarios in their problem instances, where 

the second scenario is designed using such parameters so to provide conditions in which 
backorder decisions are economical to be taken. We have therefore chosen to run instances 

with 5 customers, 5 time periods and one vehicle with limited capacity of 150, since only 

one vehicle is considered in our work. It should be also noted that no fixed usage cost 

per vehicle travelling per period was considered in our work. 

Following the name convention adopted by Abdelmaguid et al. (2009) the instances 

selected to run are denoted by x-cc-t-v-i where x stands for the scenario (we have selected 

only second scenario instances), cc stands for the number of customers considered (five 

customers instances were selected), t for the number of time periods of the planning 

horizon (5 periods), v for the number of vehicles utilized and finally i stands for the instance 

number. It should be mentioned at this point that these test cases used provide fertile 

ground for a preliminary testing of the algorithmic procedure described and further tests 
should be performed on larger problems. 

In Table 1 the results for those instances are reported when backorders are allowed.  

Table 1 presents the cost components of solutions obtained in each case. The optimum 

(obtained through a MPI solver) is listed in the second column while TR, H and B are 

the transportation, holding and backorder costs respectively for each solution obtained 

by our heuristic procedure while the total cost, calculated as the sum of all cost components, 

is listed in the last column. 
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Table 1.  Results for the IRP with backorders 

Problem Optimum TR H B Total Cost 

2-05-5-1-1 599,80 510 7,78 223,07 740,85 

2-05-5-1-2 418,00 481 8,72 53,22 542,94 

2-05-5-1-3 350,00 347 18,66 53,04 418,7 

2-05-5-1-4 425,29 396 6,95 110,97 513,92 

2-05-5-1-5 376,01 449 6,62 46,06 501,68 

Concluding Remarks 

The purpose of this work is to address the Inventory Routing Problem when backorder 

decisions are allowed (IRPB). We present a simple GA approach for solving the problem. 

The paper consists of three parts. Firstly, IRPB is introduced, followed by a formal 

problem statement where a description of the problem, using a model of Mixed-Integer 
Programming is given. Second, some basic theoretical foundations for Genetic Algorithms 

are presented. The solution for the IRPB is demonstrated in the third part through some 

basic testing using instances of the problem presented in the related literature. Further 

experimentation will make it possible for the researchers to determine the best combination 

of algorithmic features required to improve the algorithmic procedure or to incorporate 

additional features to the problem examined. 
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