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Abstract  

Previous prospective studies assessing the relationship between circulating concentrations of vitamin 

D and prostate cancer risk have shown inconclusive results, particularly for risk of aggressive 

disease. In this study, we examine the association between pre-diagnostic concentrations of 25-

hydroxyvitamin D (25(OH)D) and 1,25(OH)2D and the risk of prostate cancer overall and by tumor 

characteristics. Principal investigators of 19 prospective studies provided individual participant data 

on circulating 25(OH)D and 1,25(OH)2D for up to 13,462 men with incident prostate cancer and 

20,261 control participants. Odds ratios (OR) for prostate cancer by study-specific fifths of season-

standardized vitamin D concentration were estimated using multivariable-adjusted conditional 

logistic regression. 25(OH)D concentration was positively associated with risk for total prostate 

cancer (multivariable-adjusted OR comparing highest versus lowest study-specific fifth was 1.22, 

95% CI 1.13-1.31; P trend<0.001). However, this association varied by disease aggressiveness 

(Pheterogeneity=0.014); higher circulating 25(OH)D was associated with a higher risk of non-aggressive 

disease (OR per 80 percentile increase=1.24, 1.13-1.36) but not with aggressive disease (defined as 

stage 4, metastases, or prostate cancer death, 0.95, 0.78-1.15). 1,25(OH)2D concentration was not 

associated with risk for prostate cancer overall or by tumor characteristics. The absence of an 

association of vitamin D with aggressive disease does not support the hypothesis that vitamin D 

deficiency increases prostate cancer risk. Rather, the association of high circulating 25(OH)D 

concentration with a higher risk of non-aggressive prostate cancer may be influenced by detection 

bias. 

Statement of significance 

This international collaboration comprises the largest prospective study on blood vitamin D and 

prostate cancer risk and shows no association with aggressive disease but some evidence of a higher 

risk of non-aggressive disease.  
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Introduction 

It has been hypothesized that vitamin D deficiency may increase prostate cancer risk (1,2). A 

meta-analysis of 6 prospective studies published up to 2010 reported that circulating vitamin D 

concentrations were not related to prostate cancer risk (3); however, it was insufficiently powered to 

provide robust estimates of risk, especially for important disease subgroups. While the active 

hormonal form of vitamin D is 1,25-dihydroxyvitamin D (1,25(OH)2D), which is mainly formed by 

hydroxylation of 25-hydroxyvitamin D (25(OH)D) in the kidney under the control of parathyroid 

hormone, circulating 25(OH)D concentration is regarded as the most informative indicator of 

vitamin D status.  

The Endogenous Hormones, Nutritional Biomarkers and Prostate Cancer Collaborative 

Group (EHNBPCCG) was established to conduct collaborative reanalyzes of individual data from 

prospective studies on the relationships of circulating hormone concentrations and nutritional 

biomarkers with prostate cancer risk (4,5). With pooled individual participant data on pre-diagnostic 

circulating 25(OH)D and 1,25(OH)2D concentrations from 19 prospective studies (with up to 13,462 

men with incident prostate cancer), this analysis aimed to provide precise estimates of the association 

of circulating vitamin D with prostate cancer risk and to investigate whether these associations 

differed by tumor characteristics or time from blood collection to diagnosis. We also examined the 

cross-sectional relationships between lifestyle factors and vitamin D concentrations.  

 

Material and methods 

Data collection 

Published and unpublished studies were eligible for the current analysis if they had data on 

pre-diagnostic circulating concentrations of 25(OH)D or 1,25(OH)2D and incident prostate cancers. 
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Studies were identified using literature search methods from computerized bibliographic systems and 

by discussion with collaborators, as described previously (4,5). Data were available for 19 

prospective studies by dataset closure in May 2018.  

Individual participant data were requested on circulating 25(OH)D and 1,25(OH)2D, date, age 

and fasting status at sample collection, marital status, ethnicity, educational attainment, family 

history of prostate cancer, height, weight, waist and hip circumference, smoking status, alcohol 

intake, and vital status. Each study also provided data on prostate cancer stage and grade and death, 

if available, and the data were harmonized in a central database. Further details on data collection 

and processing are provided in the Supplementary Methods. 

Study designs and data processing 

The characteristics of the included studies are shown in Supplementary Table 1 and details 

of the assay methods are shown in Supplementary Table 2. Most of the studies were case-control 

studies nested within prospective cohort studies. Data on the control participants from The Prostate 

Testing for Cancer and Treatment (ProtecT) trial are included in cross-sectional analyses of vitamin 

D concentrations in relation to participant characteristics, but because cases were diagnosed at the 

start of the study rather than during follow-up, these data were not included in the main risk analyses. 

Written informed consent was obtained from study participants at entry into each cohort or was 

implied by participants’ return of the enrolment questionnaire. The study protocols were approved by 

institutional review boards of each study center. 

Prostate cancer was defined as being ‘early’ stage if it was tumor-node-metastasis (TNM) 

stage T1 with no reported lymph node involvement or metastases, or stage I; ‘other localized’ stage 

if it was TNM stage T2 with no reported lymph node involvement or metastases, stage II, or the 

equivalent; ‘advanced’ stage if it was TNM stage T3 or T4 and/or N1+ and/or M1, stage III–IV, or 

the equivalent; or stage unknown. Aggressive disease was categorized as “no” for TNM stage T0, 
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T1, T2 or T3 with no reported lymph node involvement and no metastases or equivalent, “yes” for 

TNM stage T4 and/or N1+ and/or M1 and/or stage IV disease and/or death from prostate cancer, or 

“unknown”. Histological grade was defined as ‘low-intermediate’ if the Gleason sum was < 8 or 

equivalent, ‘high’ grade if the Gleason sum was ≥ 8 or equivalent, or grade “unknown”. Fatal cases 

were men who died of prostate cancer during follow-up. 

Statistical analyses 

25(OH)D and 1,25(OH)2D concentrations were log-transformed to approximate a normal 

distribution for parametric analyses. To allow for the influence of month of blood draw on 

circulating concentrations, a regression model of log-transformed vitamin D concentration by month 

of blood collection was fitted for each study. All results are presented by season-standardized 

vitamin D, unless otherwise specified.  

The main method of analysis was logistic regression conditioned on the matching variables 

within each study. Men were categorized into fifths of the distribution of 25(OH)D and 1,25(OH)2D, 

with cut-points defined by the study-specific quintiles of the distribution within control participants, 

to allow for any systematic differences between the studies in assay methods and blood sample types 

(6). Linear trends were calculated by replacing the categorical variable representing the fifths of each 

analyte with a continuous variable that was scored as 0, 0.25, 0.5, 0.75, and 1; a unit increase in this 

variable can be taken to represent an 80 percentile increase in the study-specific concentration of 

vitamin D. To examine the effects of potential confounders (other than the matching criteria, which 

were taken into account in the study design and matched analyses), conditional logistic regression 

analyses included the following covariates: age at blood collection, body mass index (BMI), height, 

marital status, educational status, and cigarette smoking, all of which were associated with prostate 

cancer risk in these analyses. 
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In a sensitivity analysis, conditional logistic regression models were also fitted using quintile 

cut-points defined by the overall distribution among the control participants in all studies combined. 

The analyses were also repeated using predefined categories for concentrations of 25(OH)D of <30, 

30-<50, 50-<75 and ≥75 nmol/L, in order to investigate risks associated with very low (deficiency), 

low (insufficiency), moderate (sufficiency) and high circulating concentrations of vitamin D based 

on the Institute of Medicine recommendations (7).  

For each analyte, heterogeneity in linear trends between studies was assessed by comparing 

the χ2 values for models with and without a (study) x (linear trend) interaction term. Tests for 

heterogeneity for the case-defined factors were obtained by fitting separate models for each subgroup 

and assuming independence of the ORs using a method analogous to a meta-analysis, in which 

controls in each matched set were assigned to the category of their matched case. Tests for 

heterogeneity for non-case defined factors were assessed with χ2 tests of interaction between 

subgroups and the binary variable.  

In order to assess potential effect modification with different biomarkers, a χ2 test of 

interaction was used to determine whether risks by study-specific thirds of 25(OH)D varied 

according to study-specific thirds of 1,25(OH)2D (and vice versa), and according to study-specific 

thirds of circulating concentrations of insulin-like growth factor-I (IGF)-I, IGF binding protein-3 

(IGFBP3), testosterone, free testosterone, sex hormone-binding globulin (SHBG) and prostate-

specific antigen (PSA), where these data were available. 

The cross-sectional associations of 25(OH)D and 1,25(OH)2D with participant characteristics 

(among controls only) were examined using analyses of variance to calculate geometric mean 

concentrations and 95% confidence intervals (CIs), adjusting for study and age at blood collection, as 

appropriate.  
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All tests of statistical significance were two-sided, and statistical significance was set at the 

5% level. All statistical tests were carried out with Stata Statistical Software, Release 14 (StataCorp, 

LP, College Station, Texas). Full details of the statistical analyses are provided in the 

Supplementary Methods. 

 

Results 

Details of the 19 participating studies are shown in Table 1. Data on 25(OH)D concentrations 

were available for 13,462 men who subsequently developed prostate cancer and 20,261 control 

participants, and for 1,25(OH)2D concentrations for 1,885 case and 2,114 control participants. Mean 

age at blood collection across the studies ranged from 46.5 (SD = 4.2) to 76.3 (3.6) years. Blood 

collection preceded prostate cancer diagnosis by an average of 8.5 years (SD = 6.0 years), although 

there was a wide variation among the studies (Table 2). On average, cases were 67.5 years old (SD = 

7.3 years) at diagnosis and most (87.1%) were diagnosed after 1994. The majority of cases with 

information on stage and grade of disease had localized (early or other localized) disease (ranging 

from 47.8% to 99.0% of case patients across studies) and low-intermediate grade tumors (ranging 

from 75.8% to 100% of case patients). Concentrations of 25(OH)D and 1,25(OH)2D varied 

significantly by month among both the cases and controls (Supplementary Figure 1). 

Associations between circulating vitamin D concentrations and prostate cancer risk 

25(OH)D concentration was linearly positively associated with risk for total prostate cancer 

(Figure 1); the multivariate-OR for prostate cancer for men in the highest compared with the lowest 

study-specific fifth was 1.22 (95% CI 1.13 to 1.31; P trend < 0.001). The association was similar 

when only the matching factors were taken into account (Supplementary Figure 2) and there was 

no evidence of heterogeneity between the contributing studies (Figure 2A). When 25(OH)D was 
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categorized into study-specific tenths, the OR for the highest versus the lowest tenth was 1.34 (1.20 

to 1.49; P trend <0.001, Supplementary Table 3). 

There was no evidence of an association between 1,25(OH)2D concentration and risk for total 

prostate cancer (see Figures 1 and 2B). The association was similar when only the matching-factors 

were taken into account (Supplementary Figure 2). 

In sensitivity analyses that used overall quintile cut-points of 25(OH)D across all studies 

combined (rather than study-specific cut-points), the ORs for total prostate cancer were materially 

unchanged (Supplementary figure 3). When the analyses were repeated using predefined cut-points 

for 25(OH)D, multivariable-adjusted ORs for total prostate cancer were 0.84 (0.76-0.93), 0.89 (0.84-

0.95) and 1.07 (1.00-1.13), respectively, for men with 25(OH)D <30 (at risk for deficiency), 30-49 

and ≥75 nmol/L compared to those with concentrations of 50-74 nmol/L (Supplementary Table 4). 

While there was no evidence of heterogeneity in the association of 25(OH)D with risk by 

stage of disease, there were differences by disease aggressiveness (P heterogeneity = 0.014): the OR 

for an 80-percentile increase in 25(OH)D was 1.24, 1.13-1.36 for non-aggressive disease (T1-

T3/N0/M0) and 0.95, 0.78-1.15 for aggressive disease (T4, N1, M1 and/or fatal prostate cancer). 

Similar differences were also seen between low-intermediate and high-grade disease, although these 

differences were not statistically significant (Figure 3). There was no association between 

circulating 25(OH)D concentrations and fatal prostate cancer (Figure 3). Supplementary Figure 4 

shows results from categorical analyses of the associations of study-specific fifths of 25(OH)D with 

risk for advanced stage, aggressive disease and high-grade prostate cancer.  

There was no evidence of heterogeneity in risk of total prostate cancer associated with 

25(OH)D according to time to diagnosis or other participant characteristics (Figure 3), including 

season of blood draw (Figure 4A) or by circulating concentrations of 1,25(OH)2D, IGF-I, IGFBP-3, 

testosterone, free testosterone, SHBG or PSA (Supplementary Table 5A to 5G).  
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For 1,25(OH)2D, there was no evidence of heterogeneity by season of blood draw (Figure 

4B), time to diagnosis or other tumor characteristics (Supplementary Figure 5). There was some 

evidence of heterogeneity by family history of prostate cancer, with a positive association for men 

with a positive family history of the disease (P heterogeneity=0.03; multivariable-adjusted OR for an 80 

percentile increase = 2.26, 95% CI 1.19-4.32, Supplementary Figure 4), although this was based on 

small numbers. There was no evidence of heterogeneity by season of blood draw (Figure 4). 

Vitamin D concentrations in relation to other participant and sample characteristics 

Concentrations of 25(OH)D and 1,25(OH)2D were significantly but not strongly correlated 

with each other (r = 0.13, p < 0.001). In the subset of control participants with data available on other 

analytes, circulating 25(OH)D concentration was weakly correlated with sex hormones and other 

analytes (Supplementary Table 6), but neither 25(OH)D nor 1,25(OH)2D concentration was 

correlated with PSA (r = 0.01 for both). After adjustment for age, 25(OH)D concentration was lower 

in men who were obese, current smokers, poorly educated, unmarried and non-drinkers (Figure 5). 

1,25(OH)2D displayed generally similar associations (Supplementary Figure 6).  

 

Discussion 

This collaborative analysis of individual participant data does not support the hypothesis that 

vitamin D deficiency and/or insufficiency increases the risk of prostate cancer. Higher 25(OH)D 

levels were associated with an increased risk of non-aggressive disease, with no association for 

aggressive disease. We also found no evidence that circulating concentration of 1,25(OH)2D was 

related to risk for prostate cancer, overall or by tumor characteristics. 

This collaborative analysis includes information from the vast majority (>90%) for 25(OH)D 

and 85% for 1,25(OH)2D of the published prospective data. Of the 24 studies with published data on 
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25(OH)D, seven did not contribute data to this collaboration, all of which had fewer than 200 

incident cases and reported inconsistent findings (8-13).  Combining the results of the current 

analyses with those of six of the seven additional studies (for whom data could be extracted to 

perform a meta-analysis), did not change the overall finding (summary relative risk of highest 

compared with the lowest fifth of 25(OH)D = 1.21, 95% CI 1.13-1.30), suggesting that inclusion of 

participant-level data from these studies would not have materially altered the results. Two studies 

with published data on 1,25(OH)2D did not contribute data, one of which reported an inverse 

association (based on 181 cases, RR not given for 1,25(OH)2D alone) (10,14) and another that found 

no association (based on 136 cases) (9). Including these two studies would not have materially 

changed our results. Thus, we believe that the findings from the current study provide a reliable 

summary of the totality of the evidence on the association between circulating vitamin D 

concentrations and prostate cancer risk.  

Our findings do not appear to support the evidence from experimental research using cell 

lines and animal models that vitamin D compounds may promote cell differentiation, inhibit prostate 

cancer cell growth and invasion, and stimulate apoptosis (15,16). While there are no published data 

from adequately powered randomized controlled trials for the effects of vitamin D supplementation 

on prostate cancer incidence, two large recent studies have exploited GWAS-identified variation in 

genes related to vitamin-D synthesis, metabolism and binding to study the possible relationship with 

prostate cancer risk. A Mendelian randomization analysis of data from up to 69,837 prostate cancer 

cases in the PRACTICAL and GAME-ON consortia found no evidence for an association with risk 

for either total (OR in PRACTICAL per genetically-determined 25 nmol/L increase in 25(OH)D 

concentration = 0.95, 95% CI 0.80-1.13; P = 0.55) or aggressive prostate cancer (OR in GAME-ON 

= 1.14, 0.85-1.54; P = 0.38) (17).  
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It is possible that our finding of a positive association between overall and non-aggressive 

prostate cancer risk and circulating 25(OH)D concentration may be explained by detection bias, in 

that health-conscious men who may be more likely to have a higher sun exposure, a higher dietary 

intake of vitamin D and/or vitamin D supplementation, are more likely to have a PSA test or to seek 

medical attention with early symptoms. The observation that vitamin D deficiency was associated 

with a reduced risk of prostate cancer and higher levels with an increased risk (particularly for non-

aggressive disease) supports this hypothesis. Nonetheless, a positive association between 25(OH)D 

and prostate cancer risk was reported in both the PLCO and PCPT studies, in which almost all men 

had either regular PSA testing (as data were provided solely from the screening arm in PLCO and 

PCPT) or had an end-of-study biopsy (PCPT), suggesting that factors other than detection bias may 

be involved.  

It is difficult to draw conclusions from the current pooled analyses of 1,25(OH)2D as only a 

small number of prospective studies have measured this analyte. While circulating 1,25(OH)2D 

concentrations are considered to be tightly regulated within a narrow range (18), we found some 

evidence of seasonal variation in 1,25(OH)2D concentrations, similar to that of 25(OH)D, and also 

differences in concentrations according to age, adiposity, cigarette smoking status and alcohol 

consumption. It is difficult to determine the extent to which these associations are due to cross-

reactivity of the 1,25(OH)2D assay with 25(OH)D (or other molecules), although the correlation 

between 25(OH)D and 1,25(OH)2D was weak (r=0.13) and there was no evidence for an association 

between 1,25(OH)2D and prostate cancer risk.  

A number of previous studies have evaluated the joint association of 25(OH)D and 

1,25(OH)2D with prostate cancer risk (9,19-21), but their sample sizes were small. We found no 

evidence that the association of prostate cancer risk with 25(OH)D is modified by circulating 

concentrations of 1,25(OH)2D, although even in this collaborative pooled dataset, there are still 
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relatively few cases (n=1,885) with data on both vitamin D analytes. It has also been hypothesized 

that vitamin D may influence tumor growth by modulating the action of growth factors, such as IGF-

I, that normally stimulate proliferation (16), for example by stimulating the release of IGFBP-3 (22). 

We observed weak correlations of circulating 25(OH)D or 1,25(OH)2D concentrations with IGF-I, 

IGFBP-1, IGFBP-2 and IGFBP-3 concentrations and with levels of other blood biomarkers (e.g. free 

testosterone or PSA), and there was no evidence of modification of the association of 25(OH)D with 

risk according to these biomarkers.  

This study has some limitations. The calculated relative risks were based on single 

measurements of vitamin D, which may not accurately reflect long-term circulating concentration. 

Several studies have found moderate correlations between two measures of 25(OH)D, even when the 

samples were not taken at the same time of the year, with correlations between 0.42 and 0.70 in 

blood taken between 3 to 14 years apart (reviewed in (23)). These findings suggest that a single 

measure of circulating 25(OH)D is an informative measure of vitamin D status, at least over the 

medium term. The published prospective data on vitamin D and risk for aggressive prostate cancer 

subtypes are still relatively limited. Thus, even in this pooled analysis, the total number of cases with 

aggressive disease and data on 25(OH)D is relatively small (n=1,446), therefore the results by tumor 

sub-type should be interpreted with some caution. Moreover, we don’t have detailed data on other 

sun exposure measures, such as solar radiation levels in each study location, which would also vary 

within each individual study depending on where each participant lives. Finally, more than 95% of 

participants included in this pooled analysis were of White ethnicity, and results may therefore not be 

generalizable to non-White populations. 

In summary, this collaborative analysis of the worldwide data on circulating vitamin D and 

prostate cancer risk suggests that a high vitamin D concentration is not associated with a lower risk 

of prostate cancer. Rather, the findings suggest that men with elevated circulating concentrations of 
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25(OH)D are more likely to be diagnosed with non-aggressive prostate cancer, though this may be 

due to detection bias. There was no evidence for an association with aggressive disease, suggesting 

that vitamin D is not casually related to the risk of prostate cancer. 
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Table 1. Participant characteristics by study and case-control statusa 

Prospective studies (First author, year) 

Case-

control 

status 

Number 
Age at 

recruitment (y) 
BMI (kg/m2) 

Married or 

cohabiting 

(%)b 

Higher 

education 

(%)b 

Current 

smoker (%)b 

Intake of 

alcohol (g/d) 

Family history 

of prostate 

cancer  (%)b 

Geometric mean 

concentration  

(95% CI) 

25(OH)Dc 

(nmol/L) 

1,25(OH)2Dc 

(pmol/L) 

ARIC (Unpublished)d Case 700 55.4 (5.7) 27.5 (4.0) 88.3 17.9 20.6 9.1 (15.9) 13.3 60.1 (58.6-61.7) - 

 Control 2752 55.2 (5.7) 27.5 (4.2) 85.8 11.6 26.9 9.9 (18.3) 6.2 59.7 (58.8-60.5) - 

ATBC (Albanes et al., 2011) Case 996 58.4 (5.2) 26.3 (3.6) 82.5 6.1 100 17.3 (23.2) 7.3 32.6 (31.4-33.8) - 

 Control 996 58.4 (5.1) 26.1 (3.7) 81.4 4.3 100 15.4 (19.5) 3.5 31.4 (30.2-32.6) - 

CLUE 1 (Braun et al., 1995) Case 61 58.3 (8.5) - 91.8 11.5 29.5 - - 82.1 (76.3-88.2) 94 (87-102) 

 Control 122 58.3 (8.5) - 86.9 9.8 25.4 - - 79.0 (74.7-83.4) 91 (85-97) 

EPIC (Travis et al., 2010) Case 652 60.4 (6.3) 26.7 (3.4) 88.8 24.9 20.3 19.1 (23.9) - 53.8 (52.3-55.3) - 

 Control 752 59.9 (6.3) 26.8 (3.5) 88.6 19.8 22.6 17.0 (19.9) - 53.2 (51.8-54.7) - 

ESTHER (Ordonez-Mena et al., 2013) Case 216 64.3 (5.1) 27.3 (3.1) 83.9 - 13.9 16.6 (19.7) 5.1 55.3 (51.7-59.1) - 

 Control 841 64.3 (5.1) 28.0 (4.2) 84.6 - 14.6 14.2 (15.3) 3.8 54.2 (52.6-55.8) - 

FMC (Unpublished)d Case 161 57.9 (10.4) 25.8 (3.1) 90.6 - 29.0 - - 51.5 (47.6-55.6) - 

 Control 286 57.2 (10.4) 26.1 (3.6) 85.0 - 34.9 - - 50.4 (47.8-53.0) - 

HIMS (Wong et al., 2014) Case 332 76.4 (3.7) 26.4 (3.5) 86.7 22.9 4.5 11.7 (15.5) - 66.8 (64.5-69.2) - 

 Control 1317 76.3 (3.6) 26.5 (3.7) 86.2 21.7 4.6 11.8 (16.1) - 64.3 (63.1-65.5) - 

HPFS (Platz et al., 2004; Mikkah et al., 

2007; Shui et al., 2012) 
Case 1326 63.8 (7.8) 26.0 (3.3) 92.7 100 4.4 11.8 (15.4) 14.4 68.1 (66.5-69.7) 83 (81-86) 

Control 1326 63.7 (7.8) 26.1 (3.5) 93.0 100 3.5 11.6 (15.8) 10.6 66.2 (64.4-68.0) 83 (81-85) 

Janus part 1 (Tuohimaa et al., 2004) Case 575 46.5 (4.3) 25.4 (3.1) - - 60.6 - - 52.1 (50.6-53.7) - 

 Control 2233 46.5 (4.2) 25.1 (3.2) - - 62.3 - - 49.7 (49.0-50.4) - 

Janus part 2 (Meyer et al., 2013) Case 2106 47.7 (9.2) 25.5 (3.0) - - 32.8 - - 60.4 (59.6-61.3) - 

 Control 2106 47.7 (9.2) 25.6 (3.0) - - 34.5 - - 58.7 (57.9-59.6) - 

JPHC (Sawada et al., 2017) Case 201 59.5 (6.4) 23.4 (2.4) 100 - 34.3 26.9 (31.7) 0.5 86.9 (82.7-91.3) - 

 Control 402 59.2 (6.6) 23.3 (2.6) 100 - 40.8 31.6 (47.6) 0.0 85.6 (82.7-88.6) - 

MCCS (Unpublished)d Case 818 58.4 (7.4) 27.1 (3.4) 82.7 30.7 8.3 17.9 (22.8) - 52.5 (51.3-53.8) - 

 Control 1151 56.4 (7.7) 26.9 (3.4) 78.2 26.9 12.9 17.8 (23.9) - 50.2 (49.1-51.2) - 

MDCS (Brandstedt et al., 2012) Case 910 61.3 (6.4) 26.3 (3.3) 77.8 14.6 22.2 14.9 (14.6) - 83.4 (81.8-85.0) - 

 Control 910 61.1 (6.4) 26.1 (3.3) 75.7 12.6 26.7 14.6 (14.2) - 82.0 (80.4-83.6) - 

MEC (Park et al., 2010) Case 329 68.9 (7.1) 26.6 (4.0) 77.1 34.0 14.1 23.3 (44.1) 13.9 77.6 (74.2-81.2) - 

 Control 656 68.7 (7.2) 26.8 (4.0) 78.6 32.9 12.6 22.5 (39.1) 8.8 75.6 (73.2-78.0) - 
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PCPT (Schenk et al., 2014) Case 915 63.3 (5.5) 27.5 (4.2) 87.5 38.5 6.7 9.6 (15.8) 21.7 58.6 (57.2-60.0) - 

 Control 915 63.3 (5.5) 27.6 (4.0) 87.2 37.7 6.8 8.9 (13.7) 21.6 56.0 (54.7-57.4) - 

PHS (Gann et al., 1996; Ma et al., 1998; 

Li et al., 2007) 

Case 501 58.6 (7.6) 24.6 (2.5) - 100 7.8 7.2 (6.0) - 72.6 (70.3-75.0) 79 (77-80) 

Control 669 59.1 (7.6) 24.6 (2.5) - 100 7.0 7.1 (6.3) - 71.3 (69.3-73.3) 79 (77-80) 

PLCO (Ahn et al., 2008) Case 747 64.8 (5.0) 27.3 (3.6) 88.0 43.3 6.4 15.7 (29.5) 12.3 56.1 (54.8-57.4) - 

 Control 727 64.5 (4.9) 27.6 (3.9) 85.8 39.5 9.8 16.2 (30.1) 5.2 54.0 (52.7-55.4) - 

SELECT (Kristal et al., 2014) Case 1732 63.5 (6.1) 28.5 (4.3) 84.1 54.9 5.4 9.4 (15.7) 31.2 64.9 (63.6-66.3) - 

 Control 1732 63.6 (6.4) 28.7 (4.7) 82.6 51.0 7.1 9.2 (20.0) 15.3 63.8 (62.5-65.2) - 

SU.VI.MAX (Deschasaux et al., 2016) Case 184 54.1 (4.8) 25.5 (3.1) 93.3 30.2 11.1 25.1 (19.2) 12.7 44.1 (41.2-47.2) - 

 Control 368 53.8 (4.4) 25.7 (3.2) 89.3 26.8 12.8 25.5 (18.9) 4.4 45.9 (43.7-48.2) - 

a Values are mean (SD) unless otherwise indicated. Numbers are for men with a 25(OH)D measurement and in complete matched case-control sets. 
b Percentages exclude men with missing values. 

c 25(OH)D and 1,25(OH)D concentrations are season-standardised. 

d Unpublished vitamin D and prostate cancer data, Study references: Joshu et al., 2018 for ARIC, Knekt et al., 2008 for FMC and Milne et al., 2017 for MCCS 

Abbreviations: ARIC, Atherosclerosis Risk in Communities Study; ATBC, Alpha-Tocopherol Beta-Carotene Cancer Prevention Study; BMI, body mass index; CLUE, Campaign Against Cancer and Stroke 

(“Give Us a Clue to Cancer”) Study; EPIC, European Prospective Investigation into Cancer and Nutrition; FMC, Finnish Mobile Clinic Health Examination Survey; HIMS, Health in Men Study; HPFS, Health 

Professionals Follow-up Study; Janus part 1, Nordic Biological Specimen Biobank Working Group; Janus part 2, a second study using the Janus Serum Bank from Norway; JPHC, Japan Public Health Cohort; 

MCCS, Melbourne Collaborative Cohort Study; MDCS, Malmö Diet and Cancer Study; MEC, Multiethnic Cohort; N/A, data not available for this study; PCPT, Prostate Cancer Prevention Trial; PHS, 

Physicians Health Study; PLCO, Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial; SELECT, Selenium and Vitamin E Cancer Prevention Trial; SU.VI.MAX, Supplémentation en Vitamines et 

Minéraux Antioxydants; 25(OH)D,25-hydroxyvitamin D ; 1,25(OH)2D, 1,25-dihydroxyvitamin D. 
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Table 2. Characteristics of participants with prostate cancera 

Prospective 

studies 

Time from blood collection 

to diagnosis (%)a 
 Age at diagnosis (%)a  Year of diagnosis (%)a Disease stage, aggressiveness and grade (%) 

 <3 y 3-6 y ≥7 y  <60 y 60-69 y ≥70 y  Before 

1990 

1990-

1994 

1995-

Onward 

 Advanced 

stageb 

Unknown 

stage 

Aggressive 

diseaseb 

High 

gradeb 

Unknown 

grade 

ARIC 3.6 13.1 83.3  9.7 48.9 41.4  1.1 12.4 86.4  16.6 21.6 10.9 - 15.0 

ATBC 4.0 10.6 85.3  3.5 44.4 52.1  5.3 15.2 79.5  52.2 19.3 39.1 11.8 21.5 

CLUE I 0.0 1.6 98.4  8.2 23.0 68.9  59.0 41.0 0.0  23.5 16.4 37.7 5.1 3.3 

EPIC 33.1 50.9 16.0  17.2 62.6 20.3  0.0 0.8 99.2  26.2 28.7 21.3 10.4 16.1 

ESTHER 24.1 38.4 37.5  2.3 44.0 53.7  0.0 0.0 100  - 100 11.6 - 100 

FMC 6.2 16.8 77.0  10.6 34.2 55.3  87.0 13.0 0.0  - 100 42.2 - 100 

HIMS 42.2 45.8 12.0  0.0 0.0 100  0.0 0.0 100  - 100 11.5 - 100 

HPFS 23.9 42.8 33.3  12.5 37.5 50.0  0.0 6.0 94.0  4.3 8.6 7.7 8.6 11.2 

Janus part 1 1.2 5.0 93.7  20.7 69.2 10.1  27.0 56.2 16.9  - 100 - - 100 

Janus part 2 2.0 4.2 93.7  40.6 32.1 27.3  0.7 6.0 93.4  27.7 29.4 22.8 - 100 

JPHC 9.0 17.4 73.6  7.0 39.8 53.2  0.0 3.5 96.5  28.5 24.9 22.9 24.2 69.2 

MCCS 15.4 22.7 61.9  16.6 47.8 35.6  0.0 6.2 93.8  11.4 7.1 15.0 13.6 6.4 

MDCS 12.2 30.0 57.8  5.9 47.8 46.3  0.0 2.7 97.3  - 100 - - 100 

MEC 82.1 15.8 2.1  7.9 34.7 57.5  0.0 0.0 100  - 100 10.9 0.3 5.2 

PCPT 11.5 27.7 60.9  1.5 50.5 48.0  0.0 0.3 99.7  1.7 2.5 0.8 4.9 2.5 

PHS 7.6 17.0 75.5  11.8 50.7 37.5  25.6 59.9 14.6  13.7 3.8 24.6 10.1 3.6 

PLCO 56.4 39.1 4.6  7.5 52.2 40.3  0.0 0.0 100  18.6 0.0 7.6 10.7 0.3 

SELECT 39.9 58.3 1.8  10.4 56.3 33.3  0.0 0.0 100  1.0 1.4 1.2 7.0 13.6 

SU.VI.MAX 7.1 20.7 72.3  26.6 66.9 6.5  0.0 0.0 100  - 100 2.2 9.9 6.5 

a Percentages exclude cases with missing values. Percentages may not add up to 100 because of rounding. Stage and grade of disease are unavailable for some case patients; the percentages 

are shown in the “unknown stage” and “unknown grade” columns.  
b A tumour was categorised as advanced stage if it was tumor-node-metastasis (TNM) stage T3 or T4 and/or N1+ and/or M1, stage III–IV, or the equivalent. Aggressive disease was defined 

as tumours with TNM stage T4 and/or N1+ and/or M1 and/or stage IV disease and/or death from prostate cancer. High grade was defined as Gleason sum 8 or higher, or equivalent 

(undifferentiated).  

For expansion of study names see Table 1. Abbreviation: y, year.  
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Figure legends 

 
Figure 1. Odds ratios (95% confidence intervals) for prostate cancer associated with study-specific fifths of 

season-standardised 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D concentration in prospective studies.  

Estimates are from logistic regression conditioned on the matching variables and adjusted for exact age, marital status, 

education, smoking, height and body mass index. Ptrend was calculated by replacing the fifths of vitamin D with a 

continuous variable that was scored as 0, 0.25, 0.5, 0.75 and 1 in the conditional logistic regression model. Abbreviations: 

80%le= 80 percentile; CI = confidence interval; Ptr = Ptrend.  

 

Figure 2. Study-specific odds ratios (95% confidence intervals) for prostate cancer associated with an 80 

percentile increase in season-standardised 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D concentration. A) 

Blood season-standardised 25-hydroxyvitamin D concentration; B) Blood season-standardised 1,25-dihydroxyvitamin D 

concentration. 

Estimates are from logistic regression conditioned on the matching variables within each study and without mutual 

adjustment for the other analytes. Heterogeneity in linear trends between studies was tested by comparing the X2 values for 

models with and without a (studies) x (linear trend) interaction term. For expansion of study names see Table 1.  

              
Figure 3. Odds ratios (95% confidence intervals) for prostate cancer associated with a study-specific 80 

percentile increase in season-standardised 25-hydroxyvitamin D in prospective studies for selected subgroups.  
The odds ratios were conditioned on the matching variables and adjusted for exact age, marital status, education, smoking, 

height and body mass index. Tests for heterogeneity for the case-defined factors were obtained by fitting separate models for 

each subgroup and assuming independence of the ORs using a method analogous to a meta-analysis. Tests for heterogeneity 

for the other factors were assessed with a χ2-test of interaction between the subgroup and continuous trend test variable. Note 

that the number of cases for each tumour subtype may be fewer than shown in the baseline tables since here the analysis for 

each subgroup of a case-defined factor is restricted to complete matched sets for each category of the factor in turn; some 

matched sets contain a mixture of subtypes and while controls are allocated case-defined characteristics in equal proportion 

to the cases, 25(OH)D may be unknown for some participants, leading to incomplete matched sets.   

Stage (early, T1 and/or stage I; other localized, T2/N0/M0 and/or stage II, and advanced, T3-T4/N1/M1 and/or stage III-IV), 

grade (low-intermediate, Gleason sum was < 8 or equivalent; high, Gleason sum was ≥ 8 or equivalent, and aggressive 

(T4/N1/M1 and/or stage IV and/or prostate cancer death). White ethnicity (89.4% yes, 10.6% no). 

 
Figure 4. Odds ratios (95% confidence intervals) for prostate cancer associated with a study-specific 80 

percentile increase in 25-hydroxyvitamin D (A) and 1,25-dihydroxyvitamind D (B) concentration by season.  

The odds ratios were conditioned on the matching variables and adjusted for exact age, marital status, education, smoking, 

height and body mass index. Tests for heterogeneity were assessed with a χ2-test of interaction between the subgroup and 

continuous trend test variable. A) Blood 25-hydroxyvitamin D concentration; B) Blood 1,25-dihydroxyvitamin D 

concentration 

 
Figure 5. Geometric mean concentrations (95% confidence intervals) of season-standardised 25-

hydroxyvitamin D (nmol/L) for controls from all studies by various factors, adjusted for study and age at blood 

collection.  

Means are scaled to, and depicted as a proportion of, the overall geometric mean concentration (dotted line). P values are for 

tests of heterogeneity and, where applicable in parentheses, trend.   
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Supplementary methods 

Data collection 

The EHNBPCCG is described in detail elsewhere [1-7]. Published and unpublished studies were eligible 

for the current collaborative individual participant meta-analysis if they had data on pre-diagnostic circulating 

concentrations of 25(OH)D or 1,25(OH)2D and incident prostate cancers. Studies were identified through 

searches using the terms “vitamin D”, “25-hydroxyvitamin D”, “1,25 dihydroxyvitamin D”, and “prostate cancer” 

on computerized bibliographic systems, including PubMed, Web of Science, Cochrane Library, and CancerLit, 

through the reference lists of publications identified in this search, and through correspondence with study 

investigators. 

Individual participant data on circulating 25(OH)D for 13,462 men with prostate cancer and 20,261 

control participants were available from 19 prospective cohort studies by the date of dataset closure (May 2018): 

the Atherosclerosis Risk in Communities (ARIC) Study (unpublished, study described in [8], Alpha-Tocopherol, 

Beta-Carotene Cancer Prevention Study (ATBC) [9]; Campaign Against Cancer and Stroke (“Give Us a Clue to 

Cancer”) Study (CLUE) I [10]; Epidemiologische Studie zu Chancen der Verhütung, Früherkennung und 

optimierten THerapie chronischer ERkrankungen in der älteren Bevölkerung (ESTHER) [11]; European 

Prospective Investigation into Cancer and Nutrition (EPIC) [12]; Finnish Mobile Clinic Health Examination 

Survey (FMC) (unpublished, study described in [13]); Health Professionals Follow-up Study (HPFS) [14-16]; 

Health In Men Study (HIMS) [17]; the Janus study that formed part of the of the Nordic Biological Specimen 

Biobank Working Group (Janus part 1) [18]; a second study using the Janus Serum Bank (Janus part 2) [19]; 

Japan Public Health Center–based Prospective (JPHC) Study [20]; Melbourne Collaborative Cohort Study 

(MCCS) (unpublished, study described in [21]); Malmö Diet and Cancer Study (MDCS) [22]; Multiethnic Cohort 

(MEC) [23]; Prostate Cancer Prevention Trial (PCPT) [24]; Physicians’ Health Study (PHS) [25-27]; Prostate, 

Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO) [28]; Selenium and Vitamin E Cancer Prevention 

Trial (SELECT) [29]; and the SUpplémentation en VItamines et Minéraux AntioXydants (SU.VI.MAX) trial 

[30]. Data on 25(OH)D from seven relatively small studies (with a combined total of 1,047 cases) were not 

available for pooling: Helsinki Heart Study (HHS) [18, 31], Japan-Hawaii Cancer Study (JHCS) [32], Kaiser 

Permanente Medical Care Programme (KPMCP) [33, 34], The Osteoporotic Fractures in Men (MrOS) Study [35], 

Nutritional Prevention of Cancer (NPC) Trial [36], Northern Sweden Health and Disease Cohort (NSHDC) [18], 

and the Tromsø cohort study [37].  
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Individual participant data on circulating 1,25(OH)2D for 1885 men with prostate cancer and 2114 control 

participants were available from three studies (CLUE I, HPFS and PHS) [10, 14, 25], but were not available for 

KPMCP [33, 34] or JHCS [32]. 

Individual participant data were requested on circulating 25(OH)D and 1,25(OH)2D, date, age and fasting 

status at sample collection, marital status, ethnicity, educational attainment, family history of prostate cancer, 

height, weight, waist and hip circumference, smoking status, alcohol intake, and vital status. Each study also 

provided data on prostate cancer stage and grade and death, if available, and the data were harmonized in a central 

database. 

Study designs and data processing 

Most of the studies were case-control studies nested within prospective cohort studies, with some 

variation between the studies in the case mix, related for example to the prevalence of Prostate Specific Antigen 

(PSA)-testing within that population during follow-up. Four studies (ARIC, ESTHER, HIMS, and MCCS) 

provided cohort data; therefore cases and controls were matched at the pooling center (University of Oxford) (for 

details about the matching criteria please see Supplementary Table 1). Two studies (PCPT and PLCO) were 

observational investigations based within randomized controlled trials that included organized screening for 

prostate cancer [24, 28]. For both these studies, men with a raised prostate specific antigen (PSA) or abnormal 

digital rectal examination at recruitment were excluded, and the majority of cases were detected either through 

subsequent PSA-screening (PLCO and PCPT) or by end-of-study biopsy (PCPT). Data on circulating 25(OH)D 

and 1,25(OH)2D for 1,424 prostate cancer cases and 1,440 control participants from a cross-sectional study within 

The Prostate Testing for Cancer and Treatment (ProtecT) trial were also available for analysis. In this study, all 

men with a PSA≥3 ng/mL at recruitment were offered diagnostic biopsy and those diagnosed at this time were 

included as cases for the observational study [38, 39]. Data on the control participants are included in cross-

sectional analyses of vitamin D concentrations in relation to participant characteristics, but because cases were 

diagnosed at the start of the study rather than during follow-up data, these data were not included in the main risk 

analyses.  

Details of the recruitment of participants, informed consent and ethics approvals are provided in the 

original publications [8-12, 14-20, 22-30, 38, 39]. 

Statistical analyses 
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The methods of analysis were similar to those described previously by this collaborative group [3, 5]. 

25(OH)D and 1,25(OH)2D concentrations were used as provided by the authors and were log-transformed to 

approximate a normal distribution for parametric analyses. To allow for the influence of month of blood draw on 

circulating concentrations, a regression model of log-transformed vitamin D concentration by month of blood 

collection (as a categorical variable) was fitted for each study; the “season-standardized” concentrations of 

25(OH)D and 1,25(OH)2D were then calculated by subtracting the residuals from each regression model from the 

study-specific mean log vitamin D concentration, and then exponentiating these values. Thus, the “season-

standardized” values represent vitamin D concentration ‘corrected’ for month of blood collection. All results are 

presented by season-standardized vitamin D, unless otherwise specified. 

The main method of analysis was logistic regression conditioned on the matching variables within each 

study. Men were categorized into fifths of the distribution of 25(OH)D and 1,25(OH)2D, with cut-points defined 

by the study-specific quintiles of the distribution within control participants, to allow for any systematic 

differences between the studies in assay methods and blood sample types [40]. In order to provide a summary 

measure of the OR, a linear trend was calculated by replacing the categorical variable representing the fifths of 

each analyte with a continuous variable that was scored as 0, 0.25, 0.5, 0.75, and 1; because the mid-points of the 

lowest and highest fifths are the 10th and 90th percentiles of the study-specific vitamin D concentration, a unit 

increase in this variable can be taken to represent an 80 percentile increase in the study-specific concentration of 

vitamin D. To assess the risk for prostate cancer risk in men with very low vitamin D concentrations, season-

standardized 25(OH)D was also categorized into study-specific tenths. 

To examine the effects of potential confounders (other than the matching criteria, which were taken into 

account in the study design and matched analyses), conditional logistic regression analyses were performed that 

included the following covariates: age at blood collection (continuous), body mass index (BMI, continuous), 

height (continuous), marital status  (married or cohabiting, not married or cohabiting, or not known), educational 

status (did not graduate from high school/secondary school/college, high school/secondary school/college 

graduates, university graduates, or not known) and cigarette smoking (never smoker, past smoker, current, or not 

known), all of which were associated with prostate cancer risk in these analyses. 

In a sensitivity analysis, conditional logistic regression models were also fitted using quintile cut-points 

defined by the overall distribution among the control participants in all studies combined; this approach 

maximizes the ability to examine associations across the full distribution of biomarker concentration across all 
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studies but assumes that the differences in absolute values between studies are due to true population differences, 

rather than due to assay differences between the studies. The analyses were also repeated using predefined 

categories for concentrations of 25(OH)D of <30, 30-<50, 50-<75 and ≥75 nmol/L, in order to investigate risks 

associated with very low (deficiency), low (insufficiency), moderate (sufficiency) and high circulating 

concentrations of vitamin D based on the Institute of Medicine (IoM) recommendations [41]. We also assessed 

whether circulating concentrations of vitamin D were related to death from prostate cancer. 

For each analyte, heterogeneity in linear trends between studies was assessed by comparing the χ2 values 

for models with and without a (study) x (linear trend) interaction term. To test whether the estimates for each 

analyte varied according to case characteristics, ORs were estimated within a series of subsets for the following 

characteristics: age at diagnosis, years from blood collection to diagnosis, year of diagnosis, stage of disease, 

aggressive disease, and grade of disease. Controls in each matched set were assigned the value of their matched 

case for the case-defined factors (e.g. age at diagnosis, years from blood collection to diagnosis). For the multi-

matched sets in PLCO in which the case characteristics varied (e.g. some low-intermediate grade, some high 

grade), controls were randomly allocated to cases in the same proportions. Tests for heterogeneity for the case-

defined factors (were obtained by fitting separate models for each subgroup and assuming independence of the 

ORs using a method analogous to a meta-analysis. Subgroup analyses were also conducted by age at blood draw, 

PSA at blood draw, university or higher education, BMI, cigarette smoking, alcohol consumption, season of 

blood draw, ethnicity and family history of prostate cancer. Tests for heterogeneity for these factors were assessed 

with a χ2-test of interaction between subgroup and the continuous trend test variable.  

In order to assess potential effect modification with different biomarkers, a χ2-test of interaction was used 

to determine whether risks by study-specific thirds of 25(OH)D varied according to study-specific thirds of 

1,25(OH)2D (and vice versa), and according to study-specific thirds of circulating concentrations of insulin-like 

growth factor-I (IGF)-I, IGF binding protein-3 (IGFBP3), testosterone, free testosterone, sex hormone-binding 

globulin (SHBG) and prostate-specific antigen (PSA), where these data were available. 

To explore the relationships between analytes, partial correlation coefficients between season-

standardized 25(OH)D and 1,25(OH)2D and other selected circulating biomarkers were calculated using 

standardized log-transformed concentrations among controls from each study, adjusting for age at blood 

collection and, in a second analysis, also for BMI. Standardization (by subtracting the mean log concentration and 
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dividing by the standard deviation of the log concentration) was performed to minimize for any systematic 

differences in the biomarker concentration between studies owing to differences in the assays.  

The cross-sectional associations of 25(OH)D and 1,25(OH)2D with participant characteristics (among the 

controls) were examined using analyses of variance to calculate geometric mean concentrations and 95% 

confidence intervals (CIs), adjusting for study and age at blood collection, as appropriate. F tests were used to test 

for heterogeneity in the geometric mean analyte concentrations between the categories, and where appropriate, to 

test for trends across the categories, with the ordered categories scored from 1 to the maximum number of 

categories.  

All tests of statistical significance were two-sided, and statistical significance was set at the 5% level. All 

statistical tests were carried out with Stata Statistical Software, Release 14 (StataCorp, LP, College Station, 

Texas). 
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Supplementary tables and figures 

Supplementary Table 1. Study characteristics 

Study (First author, year) Sample population Location Recruitment 

period 

Prostate cancer 

ascertainment method 

Nested case-control study characteristics 

Ratio of case 

patients to 

control 

participants 

Matching criteria and comments 

ARIC (Unpublished)d Population-based cohort study USA 1987-1989 Cancer registry linkage 

supplemented with medical 

records; death certificates 

1:1-4 b Age at and date of blood collection (each ± 24 months), 

ethnicity, and requiring that controls had a vitamin D 

measurement if the matched case had one. 

ATBC (Albanes et al., 2011) Randomized trial of α-tocopherol 

and β-carotene among smokers 

Finland 1985-1988 Cancer registry linkage 1:1 Age at randomization (±1 year) and date of baseline 

blood collection (±30 days) 

CLUE 1 (Braun et al., 1995) Population-based cohort study USA 1974 Cancer registry linkage 1:2 Age (±1 year) 

EPIC (Travis et al., 2009) Population-based cohort study Europe 1991-2001 Cancer registry linkage; 

health insurance record 

linkage; Self-report with 

medical record review 

1:1 except for 

the Umeå 

center which 

was 1:2 

Study center, age enrolment (±6 months), time of blood 

draw (±1 hour), time between blood draw and last 

consumption of food/drink (<3 ,3-6, >6 hours; for Umeå 

<4, 4-8, >8 hours) 

ESTHER (Ordonez-Mena et al., 

2013) 

Population-based cohort study Germany 2000-2002 Active follow-up and record 

linkage with national and 

regional cancer registries 

1:4 b Age at blood collection (±12 months), month of the year 

(but not necessarily year) of blood collection (± 1 

month), fasting status, ethnicity, and family history of 

prostate cancer (where known for the case).  

FMC (unpublished)a  Population-based cohort study 

  

Finland 

  

1968-1972  Cancer registry linkage 1:2  Municipality (including time for blood collection), age 

(exact matching)    

HIMS (Wong et al., 2014)  Population-based cohort study 

 

Australia 1996-2004  Cancer registry linkage 1:4 b Age at blood collection (±12 months), date of blood 

collection (± 12 months), fasting status, and diabetes, and 

requiring that the controls in each matched set be 'alive 

and at risk' beyond the case's date of diagnosis 

HPFS (Platz  et al., 2004; 

Mikkah et al., 2007; Shui I et al., 

2012) 

Cohort study of male dentists, 

optometrists, osteopathic 

physicians, podiatrists, 

pharmacists, and veterinarians 

USA 1986 Self-report with medical 

record review; death 

certificates (for fatal) 

1:1 Year of birth (±1 year), date of recruitment (same year), 

time of blood collection (12 a.m.– 9 a.m., 9 a.m.–12 p.m., 

12 p.m.–4 p.m., 4 p.m.–12 a.m.), PSA test before blood 

draw (y/n), season of blood draw, control participants had 

≥1 screening PSA test after the date of blood draw     

Janus part 1 (Tuohimaa et al., 

2004) 

Population-based  cohort study of 

participants in county health 

examinations and blood donors 

Norway 1973-onward Cancer registry linkage 1:4 Age (±2 years), date (± 6 months) and season of blood 

draw and region 

Janus part 2 (Meyer et al., 2012) Participants in population-based 

health studies and had serum in the 

Janus Serum Bank  

Norway 1981-1991 Cancer registry linkage 1:1 Age at serum sampling (±6 months), date of serum 

sampling (±2 months) and county of residence (i.e. health 

examination)  
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JPHC (Sawada et al., 2017) Population-based cohort study Japan Cohort I – 

1990 

Cohort II - 

1993 

Hospital records and cancer 

registry linkage 

1:2 Age (±3 years), area (town or city, and village), public 

health center area, the date and time of day of blood 

collection (within 60 days and within 3 hours, 

respectively) and length of fasting time at blood sampling 

(within 3 hours). 

MCCS (unpublished)a Population-based cohort study Australia 1991-1994 Cancer registry linkage 1:1 or 1:2 b Age at blood collection (±24 months) and date of blood 

collection (±24 months), and requiring that the controls in 

each matched set be 'alive and at risk' beyond the case's 

date of diagnosis, and that controls had a vitamin D 

measurement if the matched case had one. Up to 2 

controls were matched with each case. 

MDCS (Brandstedt et al., 2012) Population-based cohort study Sweden 1991-1996 Cancer registry linkage 1:1 Calendar time at inclusion (±15 days), age at inclusion 

(±2 years) 

MEC (Park et al., 2010) Population-based cohort study USA 1993-1996 

(Blood 

collection 

2001-2006) 

Cancer registry linkage 1:2 Geographical location (California/Hawaii), ethnicity, 

birth year (±1 year), date blood draw (±6 months), time 

blood draw (±2 hours), fasting status (0<6, 6-<8, 8-<10, 

10+ hours) 

PCPT (Schenk et al., 2014) Randomized, placebo-controlled 

trial of finasteride and prostate 

cancer 

USA 1994-1997 Diagnosed as part of trial 

protocol. Annual digital rectal 

examinations and PSA 

measurements. Biopsy if 

abnormal DRE or  reported 

PSA level >4.0ng/ml. End-of-

study prostate biopsy 

1:1 Frequency matched: age (5-year age groups); PCPT 

treatment arm; positive family history for first-degree 

relative with prostate cancer. Controls required to have 

completed end of study biopsy procedure and had no 

evidence of prostate cancer.  

PHS (Gann et al., 1996; Ma et 

al., 1998; Li et al., 2007) 

Randomized trial of aspirin and β-

carotene among physicians 

USA 

  

1982-onward  Self-report with medical 

record review 

  

1:1-3 

  

Age (±1 year and ±5 years for older men), smoking status 

(never, former, current), length of follow-up. Participants 

included men from both placebo and treatment arms. 

Cases and controls were not matched by treatment arm 

but interaction analyses showed no modification of the 

vitamin D prostate cancer association by treatment arm.  

PLCO (Ahn  et al., 2008) Population-based randomized 

controlled multicenter trial of 

methods for early detection of 

cancer of the prostate, lung, 

colorectal and ovary. 

USA 1993-2001 Medical and pathology record 

review after screening and 

self-report with medical 

record review 

1:1 frequency 

matched 

Age at cohort entry (5-year intervals), time since initial 

screening (1-year time window), and calendar year of 

cohort entry. All study participants selected from trial 

screening arm, i.e. offered PSA at recruitment and 

annually for 5 years, plus DRE at recruitment and 

annually for three years. 

ProtecT (Gilbert  et al., 2011) Population-based PSA testing and 

randomized, controlled trial of 

treatments of localized prostate 

cancer 

United 

Kingdom 

2001-2009 

(Eligible for 

vitamin D 

study if 

recruited 

2003-2008) 

Diagnosed as part of trial 

protocol. PSA test at 

recruitment followed by 

diagnostic biopsy if PSA 

≥3ng/mL 

1:1 stratum 

matched 

5-year aged-band (age at PSA test) and GP/family 

practice, also by time and season of blood draw due to 

timing of recruitment clinic. (Vitamin D study nested 

within the prostate cancer detection phase of trial, 

controls with PSA <3.0ng/mL or raised PSA≥3.0 ng/mL 

combined with at least 1 negative biopsy) 

SELECT (Kristal et al., 2014) Randomized, placebo-controlled USA, July 2011- Most cases detected by PSA 1:3 for For each case men were selected for a subcohort at 
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trial of selenium and vitamin E in 

relation to prostate cancer risk 

Canada, 

Puerto 

Rico 

May 2004 and/or DRE screening, which 

was suggested annually but 

not required. Pathology 

reports and slides were 

obtained where possible.  

African 

American men 

1:1.15 for 

other men 

random from the same age/race group. 

Note that the SELECT intervention assignment was 

included as a covariate in the original multivariable 

regression models.  

SU.VI.MAX (Deschasaux et al., 

2016) 

Population-based, double-blind, 

placebo-controlled, randomized 

trial of supplementation with 

antioxidant vitamins and minerals 

(vitamin C, α-tocopherol, β-

carotene, selenium, and zinc)  

France 1994 Self-reported in a monthly 

questionnaire on health-

related events or detected 

through PSA screening of 

baseline bloods analyzed at 

the end of trial. PSA values 

PSA ≥ 4.0 μg/L were 

followed up. 

1:2 Men were matched on age at inclusion (<40/40–44/45–

49/50–54/55–65 years), intervention group of the initial 

SU.VI.MAX trial (placebo/antioxidants) and season of 

blood draw (a priori defined periods: June–

October/November–May) 

a Unpublished vitamin D and prostate cancer data, Study references: Joshu et al., 2018 for ARIC, Knekt et al., 2008 for FMC and Milne et al., 2017 for MCCS 

b Cases and controls were matched at the pooling center (University of Oxford) from the cohort study data provided. 

For expansion of study names see Table 1. 
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Supplementary Table 2. Assay details for 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D measurements 

Study (First author, 

year) 

Sample 25(OH)D assay  1,25(OH)2D assay Blinded Same batcha 

 Method (Manufacturer/ Laboratory) Intra-assay 

CV 

Inter-assay CV  Method (Manufacturer/ 

Laboratory) 

Intra-assay 

CV 

Inter-assay 

CV 

  

ARIC (Unpublished)d Serum Liquid chromatography-tandem high-

sensitivity mass spectrometry 

(University of Minnesota Molecular 

Epidemiology and Biomarker Research 

Laboratory, Minneapolis, MN, USA) 

- 20.8%  - - - Yes Not applicable 

– cohort 

ATBC (Albanes et al., 

2011) 

Serum DiaSorin Liaison platform Direct 

competitive chemiluminescence IA 

(Heartland Assays, Inc.) 

10.5% 12.3%  -  - - Yes Yes 

CLUE 1 (Braun et al., 

1995) 

Serum RIA (Hollis) 22.01% 11.1%  RRA (Hollis) 21.3% 14.3% Yes Yes 

EPIC (Travis et al., 2010) Serum EIA (Immunodiagnostic Systems, Ltd.) 3.9% - 14.8% 10.8% - 12.0%  -  - - Yes Yes 

ESTHER (Ordonez-Mena 

et al., 2013) 

 IDS-iSYS (Immunodiagnostic) <7.3% <8.9%. -  - - Yes Not applicable 

– cohort 

FMC (unpublished)b  Serum  EIA (Immuno Diagnostic Systems) - -  -  - - Yes NK 

HIMS (Wong et al., 2014) Plasma LIAISON 25 OH Vitamin D TOTAL 

chemiluminescence IA (DiaSorin Inc.) 

- 11.3 –  13.2%  - - - Not stated Not applicable 

– cohort 

HPFS (Platz et al., 2004; 

Mikkah et al., 2007; Shui 

et al., 2012) 

EDTA 

plasma 

RIA (Hollis) 5.4% - 14.8%  -  RIA (Hollis) 5.3% -7.3%  - Yes Yes 

Janus part 1 (Tuohimaa et 

al., 2004) 

Serum RIA (Incstar) 8.5% 16%  -  - - Yes Yes 

Janus part 2 (Meyer et al., 

2013) 

Serum HPLC atmospheric pressure chemical 

ionisation mass spectrometry (Vitas) 

 7.6% at 47.8 

nmol/L, 6.9% at 

83 nmol/L 

 - - - NK Yes 

JPHC (Sawada et al., 

2017) 

Plasma RIA (Mitsubishi Kagaku Bio-Clinical 

Laboratories Inc, Tokyo) 

8.9% -  - - - Yes Yes 

MCCS (unpublished)b  Dried 

blood 

spotsc 

LC-MS/MS (Queensland Brain 

Institute, University of Queensland) 

- 8.5%  - - - Yes Not applicable 

– cohort 

MDCS (Brandstedt et al., 

2012)  

Serum HPLC (Department of Clinical 

Chemistry, Skåne University Hospital) 

CVs were 8% 

at 65nmol/L, 

6.8% at 190 

nmol/L for 

25(OH)2D 

CVs were 8.5% 

at 70nmol/L, 

7.1% at 

210nmol/L for 

25(OH)3D 

 - - - NK Yes 

MEC (Park et al., 2010) Plasma IA (Immunodiagnostic Systems, Ltd.) 2% 3%  -  - - Not stated Yes 
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PCPT (Schenk 2014) Serum LIAISON 25 OH Vitamin D TOTAL 

Assay (DiaSorin Inc.) 

CV 8.3%  - - - Yes ‘All batched 

balanced for 

cases and 

controls) 

PHS (Gann et al., 1996; 

Ma et al., 1998; Li et al., 

2007) 

Plasma RIA (Hollis) 7.9% -  RIA (Hollis) 8.1% - Yes Yes 

PLCO (Ahn et al., 2008) Serum RIA (Heartland Assays) Overall CV 5.9%  -  - - Yes Yes 

ProtecT (Gilbert et al., 

2011) 

Heparin 

plasma 

Tandem MS  - 4.2% - 5.7%  -  - - Not stated Not stated 

SELECT (Kristal et al., 

2014) 

Plasma LIAISON®25 OH Vitamin D TOTAL 

Assay (DIaSorin Inc., Stillwater) 

- 12.1% for the low 

QC and 6.9% for 

the high QC 

 - - - Yes Yes 

SU.VI.MAX (Deschasaux 

et al., 2016) 

Plasma Roche Cobas® 

electrochemiluminescence total 

25(OH)D assay (Roche Diagnostics) 

4.5% 6.6%  -  - - Yes NK 

a Cases and controls were assayed in the same batch.  

b Unpublished vitamin D and prostate cancer data, Study references: Joshu et al., 2018 for ARIC, Knekt et al., 2008 for FMC and Milne et al., 2017 for MCCS. 

c For MCCS, plasma concentrations were estimated from dried blood spots following the approach detailed in Heath AK et al., 2014. 

Abbreviations: CV, coefficient of variation; EDTA, Ethylenediaminetetraacetic acid; EIA, enzyme immunoassay; HPLC, high-performance liquid chromatography; IA, immunoassay, type unspecified; LC-MS/MS, liquid 

chromatography/tandem mass spectrometry; MS, mass spectrometry; NK, not known; RIA, radioimmunoassay; RRA, radioreceptor assay; 25(OH)D, 25-hydroxyvitamin D; 1,25(OH)2D, 1,25-dihydroxyvitamin D. 

For expansion of study names see Table 1. 
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Supplementary Table 3. Odds ratios for prostate cancer by study-specific tenths of concentration of season-standardized 

25(OH)D among cases and their matched controls in prospective studies, conditioned on the matching variables and 

adjusted for exact age, marital status, education, smoking, height and body mass index. 

 25(OH)D 

Tenth OR (95% CI) 

1 1 (reference) 

2 1.12 (1.01-1.25) 

3 1.13 (1.01-1.25) 

4 1.14 (1.02-1.27) 

5 1.27 (1.14-1.42) 

6 1.16 (1.04-1.29) 

7 1.27 (1.14-1.41) 

8 1.28 (1.15-1.42) 

9 1.24 (1.12-1.39) 

10 1.34 (1.20-1.49) 

P for trend <0.001 
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Supplementary Table 4. Multivariable-adjusted odds ratios (95% confidence intervals) for prostate cancer in 

prospective studies by pre-specified categories of season-standardized 25-hydroxyvitamin D concentration 

Category 

(nmol/L) 
Cases/Controls 

Season-standardized 

25-hydroxyvitamin D 

 
 OR (95% CI) 

<30  919/1431 0.84 (0.76-0.93) 

30-49  3043/5163 0.89 (0.84-0.95) 

50-74 (reference) 5318/8018 1.00 (ref) 

≥ 75 4182/5649 1.07 (1.00-1.13) 

The odds ratios were conditioned on the matching variables and adjusted for exact age, marital status, education, smoking, height, 

and body mass index. Median concentrations of season-standardized 25(OH)D in each group were 23.8, 42.0, 61.5 and 89.7 

nmol/L, respectively. 
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Supplementary Table 5A. Multivariable-adjusted odds ratios for prostate cancer by study-specific thirds of 

concentration of season-standardized 25(OH)D and season-standardized 1,25(OH)2D, among cases and their matched 

controls in prospective studies. Data on both analytes were available for a total of 1885 cases and 2114 controls from 3 

studies (CLUE I, HPFS, PHS). 

  Odds ratio (95% confidence interval) 

  Third of 25(OH)D 

  1 2 3 

Third of 1,25(OH)2D 1 1 (reference) 0.96 (0.72-1.27) 1.00 (0.75-1.34) 

2 0.91 (0.69-1.20) 1.32 (1.01-1.73) 1.16 (0.87-1.54) 

 3 1.12 (0.83-1.52) 1.21 (0.91-1.59) 1.06 (0.81-1.39) 

P for interaction 0.23    

 

 

 

Supplementary Table 5B. Multivariable-adjusted odds ratios for prostate cancer by study-specific thirds of 

concentration of season-standardized 25(OH)D and IGF-I among cases and their matched controls in prospective studies. 

Data on both analytes were available for a total of 3050 cases and 4354 controls from 7 studies (EPIC phase 1, HIMS, 

HPFS, MEC, PCPT, PHS, SU.VI.MAX). 

  Odds ratio (95% confidence interval) 

  Third of 25(OH)D 

  1 2 3 

Third of IGF-I 1 1 (reference) 1.12 (0.91-1.39) 1.26 (1.02-1.56) 

2 1.07 (0.87-1.33) 1.19 (0.96-1.46) 1.22 (0.99-1.50) 

 3 1.10 (0.88-1.37) 1.27 (1.03-1.57) 1.31 (1.06-1.61) 

P for interaction 0.95    

 

 

 

Supplementary Table 5C. Multivariable-adjusted odds ratios for prostate cancer by study-specific thirds of 

concentration of season-standardized 25(OH)D and IGFBP-3 among cases and their matched controls in prospective 

studies. Data on both analytes were available for a total of 2971 cases and 4212 controls from 6 studies (EPIC phase 1, 

HIMS, HPFS, MEC, PCPT, PHS). 

  Odds ratio (95% confidence interval) 

  Third of 25(OH)D 

  1 2 3 

Third of IGFBP-3 1 1 (reference) 1.05 (0.84-1.30) 1.13 (0.91-1.42) 

2 1.09 (0.87-1.35) 1.32 (1.06-1.63) 1.38 (1.11-1.70) 

 3 1.18 (0.95-1.48) 1.31 (1.06-1.63) 1.38 (1.11-1.72) 

P for interaction 0.91    

 
 

 

Supplementary Table 5D. Multivariable-adjusted odds ratios for prostate cancer by study-specific thirds of 

concentration of season-standardized 25(OH)D and testosterone among cases and their matched controls in prospective 

studies. Data on both analytes were available for a total of 3003 cases and 6062 controls from 8 studies (EPIC phase 1, 

FMC, HIMS, JPHC, Janus part 1, MEC, PCPT, PHS). 

  Odds ratio (95% confidence interval) 

  Third of 25(OH)D 

  1 2 3 

Third of testosterone 1 1 (reference) 1.03 (0.85-1.24) 1.28 (1.05-1.55) 

2 0.98 (0.80-1.19) 1.05 (0.86-1.28) 1.27 (1.05-1.54) 

 3 0.98 (0.80-1.20) 1.06 (0.87-1.29) 1.08 (0.89-1.30) 

P for interaction 0.55    
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Supplementary Table 5E. Multivariable-adjusted odds ratios for prostate cancer by study-specific thirds of 

concentration of season-standardized 25(OH)D and free testosterone among cases and their matched controls in 

prospective studies. Data on both analytes were available for a total of 2969 cases and 6062 controls from 8 studies 

(EPIC phase 1, FMC, HIMS, JPHC, Janus part 1, MEC, PCPT, PHS). 

  Odds ratio (95% confidence interval) 

  Third of 25(OH)D 

  1 2 3 

Third of free 

testosterone 

1 1 (reference) 1.07 (0.88-1.30) 1.29 (1.06-1.57) 

2 1.08 (0.88-1.31) 1.10 (0.91-1.34) 1.27 (1.05-1.55) 

 3 0.98 (0.80-1.21) 1.07 (0.87-1.31) 1.18 (0.97-1.43) 

P for interaction 0.95    

 

 

 

Supplementary Table 5F. Multivariable-adjusted odds ratios for prostate cancer by study-specific thirds of 

concentration of season-standardized 25(OH)D and SHBG among cases and their matched controls in prospective studies. 

Data on both analytes were available for a total of 3088 cases and 6254 controls from 8 studies (EPIC phase 1, FMC, 

HIMS, JPHC, Janus part 1, MEC, PCPT, PHS). 

  Odds ratio (95% confidence interval) 

  Third of 25(OH)D 

  1 2 3 

Third of SHBG 1 1 (reference) 0.97 (0.80-1.17) 1.14 (0.94-1.38) 

2 0.91 (0.75-1.10) 0.96 (0.80-1.16) 1.15 (0.95-1.38) 

 3 0.81 (0.66-0.99) 0.93 (0.76-1.13) 1.03 (0.85-1.25) 

P for interaction 0.78    

 
 

 

Supplementary Table 5G. Multivariable-adjusted odds ratios for prostate cancer by study-specific thirds of 

concentration of season-standardized 25(OH)D and PSA among cases and their matched controls in prospective studies. 

Data on both analytes were available for a total of 4470 cases and 5111 controls from 8 studies (EPIC phase 1, Janus part 

1, MEC, PCPT, PHS, PLCO, SELECT, SU.VI.MAX) 

  Odds ratio (95% confidence interval) 

  Third of 25(OH)D  

  1 2 3 

Third of PSA 1 1 (reference) 1.38 (1.00-1.88) 1.09 (0.78-1.52) 

2 3.01 (2.26-4.01) 3.13 (2.36-4.16) 3.33 (2.51-4.43) 

 3 14.1 (10.8-18.4) 16.0 (12.2-20.9) 17.6 (13.5-23.1) 

P for interaction 0.36    
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Supplementary Table 6. Partial correlations among controls in all studies between log-transformed concentrations of 

circulating 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D and other analytes, standardized within each study and 

adjusted for age at blood collection (5 age-groups). 

 
Observed 

25(OH)D c 

Season-

standardized 

25(OH)D 

1,25(OH)2D 

Season-

standardized 

1,25(OH)2D 

Season-standardized 25(OH)D 0.95b - - - 

 (21,701)    

1,25(OH)2D 0.14b 0.13b - - 

 (3398)    

Season-standardized 1,25(OH)2D 0.12b 0.13b 0.99b - 

 (3398)  (3384)  

IGF-I 0.05b 0.06b 0.03 0.04 

 (5660)  (1893)  

IGF-II 0.06a 0.07b 0.03 0.03 

 (3061)  (1101)  

IGFBP-1 0.11b 0.12b 0.10a 0.11a 

 (2761)  (834)  

IGFBP-2 0.10b 0.10b -0.04 -0.04 

 (1996)  (1019)  

IGFBP-3 0.05b 0.06b 0.06a 0.07a 

 (5326)  (1882)  

SHBG 0.08b 0.08b 0.04 0.04 

 (6307)  (219)  

Testosterone 0.09b 0.10b -0.01 -0.01 

 (6256)  (219)  

Free testosterone 0.05b 0.06b -0.02 -0.01 

 (6235)  (219)  

Estradiol -0.01 -0.01 (<10 obs) (<10 obs) 

 (2224)    

Free Estradiol -0.04a -0.04a (<10 obs) (<10 obs) 

 (2220)    

Insulin -0.08b -0.08b -0.09 -0.11 

 (3441)  (33)  

C-peptide -0.11b -0.12b -0.13b -0.13b 

 (2166)  (849)  

Lycopene 0.07b 0.05a -0.00 0.00 

 (3483)  (1192)  

Prostate-specific antigen 0.01 0.01 0.01 0.01 

 (6768)  (1816)  

a Two -sided significance level P <0.05 
b Two-sided significance level P <0.001 
c Numbers in parentheses are numbers of controls with data on both analytes 

Abbreviations: IGF, insulin-like growth factor; IGFBP, insulin-like growth factor binding protein; SHBG, sex hormone binding 

globulin;  

25(OH)D,25-hydroxyvitamin D ; 1,25(OH)2D, 1,25-dihydroxyvitamin D. 
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A. 25-hydroxyvitamin D (nmol/L) 
 

 

 
B. 1,25 dihydroxyvitamin D (pmol/L) 

 

 
Supplementary Figure 1. Geometric mean concentrations (95% confidence intervals) of 25-hydroxyvitamin D (nmol/L) and 1,25 

dihydroxyvitamin D (pmol/L) for all prospective studies by month of blood collection (corrected for hemisphere so that January is treated 

as July, February as August, and so on for the HIMS and MCCS studies) and case-control status, adjusted for study and age at blood 

collection. The geometric means among case patients are depicted by solid circles and among control participants by open circles. 
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A. Study-specific cut-points    

 

 
 

 

B. Overall cut-points (across all prospective studies combined) 

 

 
 

Supplementary Figure 2. Odds ratios (95% confidence intervals) for prostate cancer associated with study-specific and overall 

fifths of concentrations of season-standardised 25-hydroxyvitamin D and 1,25-dihydroxyvitamind D concentration in prospective 

studies.  

Estimates are from logistic regression conditioned on the matching variables within each study, and without mutual adjustment for the other 

analyte. Ptrend was calcuated by replacing the fifths of concentration with a continuous variable that was scored 0, 0.25, 0.5, 0.75 and 1 in the 

conditional logistic regression model. Median concentrations in each fifth (using overall cut-points) are: 33.6, 48.6, 60.1, 73.3 and 96.1 nmol/L, 

respectively, for season-standardized 25-hydroxyvitamin D and 57.2, 72.8, 84.7, 97.7 and 122.2 pmol/L, respectively, for season-standardized 

1,25-dihydroxyvitamind D. Abbreviations: 80%le = 80 percentile; CI = confidence interval; Ptr = Ptrend.  
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Supplementary Figure 3. Odds ratios (95% confidence intervals) for prostate cancer associated with overall (across all 

prospective studies combined) fifths of season-standardized 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D concentration in 

prospective studies.  

Estimates are from logistic regression conditioned on the matching variables and adjusted for exact age, marital status, education, smoking, 

height and body mass index. Ptrend was calculated by replacing the fifths of vitamin D with a continuous variable that was scored as 0, 0.25, 

0.5, 0.75 and 1 in the conditional logistic regression model. Median concentrations in each fifth are: 33.2, 48.6, 60.3, 74.0 and 97.8 nmol/L, 

respectively, for season-standardized 25-hydroxyvitamin D and 57.2, 72.8, 84.7, 97.7 and 122.2 pmol/L, respectively, for season-standardized 

1,25-dihydroxyvitamind D. Abbreviations: 80%le= 80 percentile; CI = confidence interval; Ptr = Ptrend.  
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A. Advanced stage prostate cancer a   

 

B. Aggressive prostate cancer b    

 
 

C. High grade prostate cancer c 

 

 

Supplementary Figure 4. Odds ratios (95% confidence intervals) for advanced stage, aggressive and high grade prostate cancer 

associated with study-specific fifths of season-standardized 25-hydroxyvitamin in prospective studies.  

Estimates are from logistic regression conditioned on the matching variables and adjusted for exact age, marital status, education, smoking, 

height and body mass indexa. Abbreviations: 80%le= 80 percentile; CI = confidence interval; Ptr = Ptrend. 
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Ptrend (Ptr) was calculated by replacing the fifths of vitamin D with a continuous variable that was scored as 0, 0.25, 0.5, 0.75 and 1 in the 

conditional logistic regression model. 

a Prostate cancer was defined as being “advanced” stage if it was tumor-node-metastasis (TNM) stage T3 or T4 and/or N1+ and/or M1, stage III–

IV, or the equivalent (that is, a tumor extending beyond the prostate capsule and/or lymph node involvement and/or distant metastases).  

b Prostate cancer was defined as being aggressive disease if it was TNM stage T4 and/or N1+ and/or M1 and/or stage IV disease and/or death 

from prostate cancer. 

c Prostate cancer was defined as high-grade if the Gleason sum was at least 8 or equivalent (i.e. undifferentiated).  
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Supplementary Figure 5. Odds ratios (95% confidence intervals) for prostate cancer associated with an 80 percentile increase in 

season-standardized 1,25 dihydroxyvitamin D in prospective studies for selected subgroups. 

The odds ratios were conditioned on the matching variables and adjusted for exact age, marital status, education, smoking, height and body mass 

index. Tests for heterogeneity for the case-defined factors were obtained by fitting separate models for each subgroup and assuming 

independence of the ORs using a method analogous to a meta-analysis. Tests for heterogeneity for the other factors were assessed with a χ2-test 

of interaction between the subgroup and continuous trend test variable. Note that the number of cases for each tumor subtype may be fewer than 

shown in the baseline tables since here the analysis for each subgroup of a case-defined factor is restricted to complete matched sets for each 

category of the factor in turn; some matched sets contain a mixture of subtypes and while controls are allocated case-defined characteristics in 

equal proportion to the cases, 1,25(OH)2D may be unknown for some participants, leading to incomplete matched sets.   

Stage (early, T1 and/or stage I; other localized, T2/N0/M0 and/or stage II, and advanced, T3-T4/N1/M1 and/or stage III-IV), grade (low-

intermediate, Gleason sum was < 8 or equivalent; high, Gleason sum was ≥ 8 or equivalent, and aggressive (T4/N1/M1 and/or stage IV and/or 

prostate cancer death).           
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Supplementary Figure 6. Geometric mean concentrations (95% confidence intervals) of season-standardized 1,25 

dihydroxyvitamin D (pmol/L) for controls from all studies by various factors, adjusted for study and age at blood collection.  

Means are scaled to, and depicted as a proportion of, the overall geometric mean concentration (dotted line). P values are for tests of 

heterogeneity and, where applicable in parentheses, trend.   

 

 


