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ON THE PERTURBATION ALGEBRA

J. CHUANG AND A. LAZAREV

Abstract. We introduce a certain differential graded bialgebra, neither commutative nor co-
commutative, that governs perturbations of a differential on complexes supplied with an ab-
stract Hodge decomposition. This leads to a conceptual treatment of the Homological Pertur-
bation Lemma and its multiplicative version. As an application we give an explicit form of
the decomposition theorem for A∞ algebras and A∞ modules and, more generally, for twisted
objects in differential graded categories.
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1. Introduction

The Homological Perturbation Lemma (HPL) is a kind of homotopy transfer theorem: it
allows one to transfer a perturbed differential of a (co)chain complex onto another one, that
is a strong deformation retract of it. The first published reference for HPL is probably [4]
and further historic development is described in [8]. One interesting feature of HPL is that
it gives explicit universal formulas, as formal power series in the original strong deformation
retract data. The standard proof of HPL is based on algebraic manipulations with certain linear
operators and we introduce a certain algebra A that captures the properties of these operators,
leading to an abstract version of HPL, of which the ordinary HPL is a consequence. It should
be noted that in [1] the term ‘Perturbation Algebra’ is reserved for a different, though closely
related, algebra, that is not differential graded (the differential is viewed as its element rather
than an operator). It is possible that our results could be recovered in the framework of [1],
but we found that working with the smaller differential graded object is more natural.

The category of modules over A is, essentially, the category of strong homotopy retractions
(in fact, we find it more convenient to work with an equivalent notion of an abstract Hodge
decomposition) with a perturbed differential. This category is non-symmetric monoidal, which
corresponds to a certain comultiplication on A turning it into a noncommutative and nonco-
commutative bialgebra. We introduce a certain localization Â of A which turns out also to be
a bialgebra. This bialgebra, despite having a simple presentation by very few generators and
relations, exhibits a surprisingly rich structure; it is a central object of study in this paper. The
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algebraic structure of Â is responsible for all of the homological perturbation theory and as such,
this algebra is implicitly present in many of the earlier papers dealing with this subject, e.g. [7].

We discover a certain remarkable endomorphism of Â that leads to a strengthened version of
the HPL, as well as its multiplicative version [10]. As a corollary, we obtain a decomposition
theorem for A∞ algebras: every such algebra is isomorphic to the direct sum of a minimal A∞
algebra (having zero cohomology) and a linear contractible one. A similar result is also obtained
for A∞ modules over an A∞ algebra. The structure maps for the minimal module as well as
for the A∞ isomorphism are explicitly described in terms of summation over certain trees.

1.1. Notation and conventions. We work in the category of Z-graded (dg) vector spaces over
a fixed ground field k; an object in this category is a pair (V, dV ) where V is a graded vector
space and dV is a differential on it; it will always be assumed to be of cohomological type (so
it raises the degree of a homogeneous element). Unmarked tensor products will be understood
to be taken over k; we will abbreviate ‘differential graded’ to ‘dg’. The suspension of a graded
vector space V is the graded vector space ΣV so that (ΣV )i = V i+1.

The graded k-linear dual to a graded vector space V is denoted by V ∗; it is a pseudo-compact
vector space, i.e. an inverse limit of finite-dimensional (graded) vector spaces. Pseudo-compact
vector spaces are endowed with the topology of the inverse limit and form a category where maps
are required to be continuous. The category of pseudo-compact vector spaces is anti-equivalent
to that of (discrete) vector spaces via linear duality; we refer to [20] for a short account on
pseudo-compact spaces. All results and constructions of this paper are valid when we work in
the underlying category of pseudo-compact graded vector spaces.

A dg algebra is an associative monoid in the dg category of dg vector spaces with respect to
the standard monoidal structure given by the tensor product. A dg vector space V is a (left)
dg module over a dg algebra A if it is supplied with a dg map A⊗ V → V satisfying the usual
conditions of associativity and unitality.

A Maurer-Cartan (to be abbreviated as MC) element in a dg algebra A is an element x of
cohomological degree 1 satisfying the MC equation d(x) + x2 = 0. It determines a twisted
differential in A by the formula dx(a) := d(a) + [x, a] for a ∈ A; the MC equation ensures that
(dx)2 = 0. We will denote the dg algebra A supplied with the differential dx by Ax. The MC
element x also determines a twisting of any dg A-module (M,dM ); namely the differential d+x
(where x is viewed as an operator on M) makes M into a left dg Ax-module as could easily be

checked; we will denote this dg A-module by M [x]. The group A×0 of invertible elements γ of
A0 acts on the set of MC elements in A by via the gauge action: γ · x := γxγ−1 − d(γ)γ−1.

The paper is organized as follows. In Section 2 we recall the definition of an abstract Hodge
decomposition and introduce a dg bialgebra governing this structure. In Section 3 the Per-
turbation Algebra, our main object of study, is introduced and studied in some detail; this is,
in fact a dg bialgebra, neither commutative nor cocommutative. We formulate and prove an
abstract version of the HPL, of which the ordinary HPL is a corollary. We further strengthen
HPL by proving that the perturbed differential is actually conjugate to a transferred one in a
suitable sense. A decomposition theorem for twisted objects in a differential graded category is
a consequence of the strengthened HPL. Specializing further, we obtain an explicit form of the
decomposition theorem for A∞ modules.

2. Category of abstract Hodge decompositions

In this section we will recall the definition of an abstract Hodge decomposition on a dg vector
space; this terminology was introduced in [5] but the corresponding notion was known and used
for a long time, c.f. for example [18] .

Definition 2.1. An abstract Hodge decomposition on a dg vector space (V, d) is a pair of
operators t, s on V

t : V → V and s : V → V,

of degrees 0 and −1 respectively, such that
2



(1) s2 = 0,
(2) sd+ ds = 1− t,
(3) dt = td,
(4) t2 = t,
(5) st = ts = 0,

We will also refer to the quadruple (V, d, s, t) (or the triple (V, s, t) if d is clear from the context)
as an abstract Hodge decomposition and use the shorthand HD for it.

Remark 2.2. The notion of an HD could be reformulated as follows. Let U := Im(t) be the
image of the operator t. It follows from the identity (3) above that the differential on V restricts
to a differential on U and that the projection t : V → U and the inclusion i : U ↪→ V determine
chain maps between the dg spaces U and V . The conditions (2) and (4) above imply that
t ◦ i = idU and that i ◦ t is chain homotopic to the identity on V . Thus, the pair of dg vector
spaces V and U constitute a strong deformation retraction data. The condition s2 = 0, the
so-called side condition, can always be imposed at no cost. It is more convenient for us to view
the above as the structure on a single space V .

Let (V, tV , sV ) and (W, tW , sW ) be dg vector spaces with the choice of an HD. Then the
operators t⊗ t and s⊗1+ t⊗s determine an HD on the vector space V ⊗W . A straightforward
inspection shows that this turns the category of HDs into a (non-symmetric) monoidal category.
We will denote this category by H.

The content of an HD is captured by a certain dg bialgebra. The following result is obvious.

Proposition 2.3. Let H be the associative algebra spanned by three vectors s, t and 1, with the
relations st = ts = s2 = 0 and t2 = t and the differential d(s) = 1 − t, d(t) = 0. There is a
coassociative coproduct ∆ : H → H ⊗H so that ∆(t) = t ⊗ t and ∆(s) = s ⊗ 1 + t ⊗ s and a
counit ε : H → k : ε(t) = 1, ε(s) = 0; these turn H into a bialgebra. Furthermore, the monoidal
categories of dg H-modules and of HDs are isomorphic.

�

Remark 2.4.

(1) The bialgebra H lacks an antipode since the grouplike element t is a zero divisor, hence
non-invertible.

(2) The dg abelian group H is isomorphic to the normalized simplicial chain complex of
the unit interval [0, 1] with two 0-simplices and one 1-simplex; morever, the coalgebra
structure corresponds to Alexander-Whitney map; this was observed in [19], pp 503-504.
The commutative product on H corresponds to the ordinary multiplication on [0, 1].

Definition 2.5. We will call a monoid in H a multiplicative HD.

Recall that given two endomorphisms f, g ∈ End(B) of an associative algebra B, a linear map
s : B → B is called an (f, g)-derivation, if s(ab) = s(a)g(b) ± f(a)s(b) for any a, b ∈ B where
the sign is determined by the standard Koszul rule; this is a so-called (f, g)-Leibniz rule. Note
that f − g is always both an (f, g)-derivation and a (g, f)-derivation. We can give the following
characterization of multiplicative HDs:

Proposition 2.6. A dg algebra B is a multiplicative HD if its underlying dg vector space is
supplied with operators s and t satisfying the conditions of Definition 2.1, and such that t is an
algebra endomorphism of B and s is a (t, id)-derivation.

Proof. The condition that B is a multiplicative HD is equivalent to the multiplication map
B ⊗ B → B being an H-module map. Taking into account the comultiplication in H we see
that the latter is equivalent to t being an algebra map and s being a (t, id)-derivation. �

Example 2.7. Let (V, s, t) be an HD. Then the tensor algebra T (V ) :=
⊕∞

n=0 V
⊗n is a multi-

plicative HD where t is extended to an algebra endomorphism tT (V ) of T (V ) component-wise,
3



sT (V ) is extended from s by the (tT (V ), id)-Leibniz rule and dT (V ) is extended from d by the
ordinary Leibniz rule. Indeed, the identities

s2
T (V ) = tT (V )sT (V ) = sT (V )tT (V ) = 0 and t2T (V ) = tT (V )

are immediate. To see that dT (V )(sT (V )) = id−tT (V ), note that both sides of the last identity
are (tT (V ), id)-derivations and so it is sufficient to check on V where it is clear.

Remark 2.8. We considered the notion of an abstract Hodge decomposition in the category of
dg vector spaces; one can define it, completely analogously, in the category of pseudo-compact
dg vector spaces. The category of pseudo-compact dg vector spaces is symmetric monoidal, and
a monoid in this category is, essentially, the same as a dg coalgebra by linear duality. There is,
then, the notion of a pseudo-compact multiplicative HD analogous to Definition 2.5. We will
skip the (rather obvious) details.

3. The perturbation algebra

3.1. Definition and first properties. We will now introduce our main object of study: the
perturbation dg algebra A as well as its localization Â.

Definition 3.1. The perturbation algebra A is the associative dg bialgebra generated by the
elements s, t and x of degrees −1, 0 and 1 respectively, subject to the relations

s2 = st = ts = 0

t2 = t.

The differential on A is specified by

d(s) = 1− t; d(t) = 0

d(x) = −x2.

The comultiplication on A is specified by

∆(s) = s⊗ 1 + t⊗ s;
∆(t) = t⊗ t;
∆(x) = x⊗ 1 + 1⊗ x.

Additionally, the bialgebra A possesses a counit:

ε(s) = ε(x) = 0;

ε(t) = 1.

Thus, A is obtained from H by freely adjoining the primitive element x satisfying the MC
equation dx = −x2. Just as H, A does not possess an antipode. Nevertheless, there exists
a (unique, involutory) dg algebra anti-automorphism ρ : A → A fixing s and t, and sending
x to −x; using ρ one can define an A-module structure on a k-linear dual to an A-module.
Rather than being a coalgebra anti-automorphism like a Hopf algebra antipode, ρ is a coalgebra
automorphism; consequently, given A-modules V and W , the standard isomorphism of dg vector
spaces (V ⊗W )∗ ∼= V ∗ ⊗W ∗ is an isomorphism of A-modules.

The algebra A governs ‘perturbations’ of the differential on a given dg vector space supplied
with the choice of an HD. More precisely, the following result holds.

Proposition 3.2. Let (V, dV , s, t) be an HD and x be an endomorphism of V of degree 1 and
such that (dV + x)2 = 0. Then V is a dg module over A; conversely any dg A-module is of the
kind just described.

Proof. We just need to note that the equation (dV + x)2 = 0 is equivalent to [dV , x] + x2 = 0.
Thus, viewing the operators x, s and t as elements in End(V ) determines a map of dg algebras
A → End(V ) where End(V ) is supplied with the differential [?, dV ]. This map is equivalent to
giving V the structure of an A-module. �
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We also have a multiplicative version of this result; the proof is obvious.

Proposition 3.3. Let (V, dV s, t) be a multiplicative HD and x be a derivation of V of degree
1 and such that (dV + x)2 = 0. Then V is a dg algebra over A (i.e. the multiplication map
V ⊗ V → V is a dg A-module map); conversely any dg A-algebra is of the kind just described.

�

We will also be interested in the dg algebra Â obtained from A by formally inverting the elements
1+sx and 1+xs. In fact, invertibility of one of these elements implies that the other one is also
invertible, e.g. (1 +xs)−1 = x(1 + sx)−1s+ 1 as was observed in [2, Remark 2.4]. Then Â turns

out to be a dg bialgebra (despite 1 + sx and 1 + xs not being grouplike). The dg bialgebra Â
could be realized as a dg subbialgebra of the completion of A at the two-sided ideal generated
by x. The inverses of 1 + sx and a + xs are represented by power series

∑∞
n=0(−1)n(sx)n

and
∑∞

n=0(−1)n(xs)n respectively. We will denote these inverses by α := (1 + sx)−1 and
β := (1 + xs)−1.

3.2. Abstract Perturbation Lemma and its consequences. We will now delve a little
deeper in the structure of the algebra Â, and, in particular, prove an abstract version of the
Homological Perturbation Lemma.

Note the following useful identities, to be used repeatedly in calculations:

αs = sβ, xα = βx,

sα = s, βs = s,

tα = t, βt = t,

βα = α+ β − 1.

(3.1)

These are all obvious except, perhaps, the last one. To deduce it, note that α− 1 = −sxα and
β − 1 = −βxs from which it follows that (β − 1)(α − 1) = 0 or βα = α + β − 1. Furthermore,
the following identities hold:

d(α) = (αt− 1)xα,

d(β) = βx(1− tβ).
(3.2)

The first formula above is given by the calculation

d(α) = −αd(α−1)α = −α((1− t)x− s(−x2))α = α(t− α−1)xα,

and the second formula by a similar calculation, or by using the anti-involution ρ.

Proposition 3.4. There exists a unique algebra automorphism

φ : Â→ Â

such that

φ(s) = αs = sβ,

φ(t) = αtβ, φ(x) = −x,
φ(α) = α−1, φ(β) = β−1

It is an involution commuting with ρ. Moreover, there is a dg bialgebra structure on Â extending
that on A; with this structure φ is a bialgebra automorphism.

Proof. If such an endomorphism taking the stated values exists, it is clearly an involutory auto-
morphism that commutes with ρ. To check that such a φ is a well-defined algebra endomorphism,
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we compute, using (3.1),

(αs)(αs) = (αs)(sβ) = 0,

(αtβ)2 = αt(α+ β − 1)tβ = αtβ + αtβ − αtβ
= αtβ,

(αs)(αtβ) = αstβ = 0,

(αtβ)(sβ) = αtsβ = 0,

α−1φ(α−1) = α−1[1 + (αs)(−x)]

= α−1 − sx = 1,

φ(β−1)β−1 = [1 + (−x)(sβ)]β−1

= β−1 − xs = 1.

To deal with the comultiplication, let us embed Â into Ã, the completion of A by the two-sided
ideal generated by x. Note that Ã is a (topological) dg bialgebra; it is topologically generated

by s, t and x and the diagonal ∆ : Ã → Ã⊗̂Ã is continuous. Let us check compatibility of φ
and ∆ in Ã; it suffices to check it on s, t and x.

Since x and φ(x) = −x are both primitive, we just need to show that φ(t) = αtβ is group-like
and φ(s) = αs is skew-primitive with respect to the idempotent αtβ, i.e.

(3.3) ∆(αs) = αs⊗ 1 + αtβ ⊗ αs.
We compute:

∆(α−1)(αt⊗ αt) = ∆(1 + sx)(αt⊗ αt)
= [(1 + sx)⊗ 1 + s⊗ x− tx⊗ s+ t⊗ sx](αt⊗ αt)
= t⊗ αt+ t⊗ sxαt
= t⊗ (1 + sx)αt

= t⊗ t.

This shows that αt is grouplike. Similarly tβ is grouplike and then αtβ = (αt)(tβ) is likewise
grouplike. Next,

∆(α−1)(αs⊗ 1 + αtβ ⊗ αs) = [(1 + sx)⊗ 1 + s⊗ x− tx⊗ s+ t⊗ sx](αs⊗ 1 + αtβ ⊗ αs)
= s⊗ 1 + tβ ⊗ αs+ txαs⊗ s+ tβ ⊗ sxαs
= s⊗ 1 + tβ ⊗ s+ txαs⊗ s
= s⊗ 1 + t⊗ s.

This implies (3.3) and shows that φ is a coalgebra endomorphism of Ã. Thus, φ⊗̂φ ◦∆ = ∆ ◦φ
and ∆ = φ⊗̂φ ◦∆ ◦ φ−1 on Ã. This allows one to restrict ∆ on Â by ∆(α) := (φ ⊗ φ)∆(α−1)
and ∆(β) := (φ⊗ φ)∆(β−1). �

The endomorphism φ is, however, not a dg endomorphism of Â. Consider Âx, the algebra Â
supplied with the twisted differential dx = d+ [x, ?]. The following result is an abstract version
of the HPL.

Theorem 3.5.

(1) The following equation of endomorphisms of Â holds:

(3.4) φd = dxφ.

Thus φ defines isomorphisms of dg bialgebras:

φ : Â→ Âx,

φ : Âx → Â.
6



(2) The map tat 7→ α(tat)β determines an isomorphism of dg bialgebras

(tÂt, d+ txαt)
∼=−→ ((αtβ)Â(αtβ), dx)

Proof. Both φdφ and dx are derivations of Â, so it suffices to check (3.4) on the generators s, t
and x. Then

φ(d(x)) = φ(−x2)

= −(φ(x))2

= −x2,

and similarly,

dx(φ(x)) = −(−(−x)2) + [x,−x]

= −x2

Using (3.1) and (3.2) we obtain:

dx(φ(s)) = dx(αs)

= (αt− 1)xαs+ α(1− t) + xαs+ αsx

= αtβxs+ α(1 + sx− t)
= 1− αt(1− βxs)
= 1− αtβ
= φ(d(s)).

Finally,

dx(φ(t)) = dx(1− φ(d(s)))

= dx(1− dx(φ(s)))

= 0 = φ(d(t)).

This finishes the proof of the first claim. To prove the second, we note first that, since t and
αtβ are grouplike idempotents, the spaces tÂt and αtβÂαtβ are (graded) bialgebras. To see

that they are multiplicatively isomorphic, let a, b ∈ Â. Then

(αtatβ)(αtatβ) =αta(tβαt)atβ

=(αta)(tbβ)

as required. Next, since dx(αtβ) = 0, the vector space αtβÂαtβ is closed with respect to dx and

thus is a dg algebra. Similarly, tÂt is closed with respect to d+ txαt. The following calculation
shows that the actions of dx and d+ txαt are compatible (and thus, d+ txαt squares to zero in

tÂt). Let a ∈ Â. We compute:

dx(αtatβ) = d(αtatβ) + [x, αtatβ]

= (αt− 1)xαtatβ + (−1)|a|αtatβx(1− tβ) + αtd(a)tβ + xαtatβ − (−1)|a|αtatβx

= αt(da+ xαta− (−1)|a|atβx)tβ

= αt(da+ [a, txαt])tβ

as claimed. �

Corollary 3.6.

(1) The element ξ := txαt(= tβxt) ∈ Â is an MC element in Â.
(2) It is t-primitive, i.e. ∆(ξ) = ξ ⊗ t+ t⊗ ξ.

7



Proof. We saw that the twisted differential dξ : a 7→ dA(a) + [ξa] squares to zero in tÂt and it

follows that ξ is an MC element in the dg algebra tÂt. Since tÂt is a retract of Â, the element
ξ is also MC in Â. Furthermore,

∆(ξ) = ∆(txαt)

= (t⊗ t)(x⊗ 1 + 1⊗ x)(αt⊗ αt)
= txαt⊗ t+ txαt⊗ t
= ξ ⊗ t+ t⊗ ξ.

�

The ordinary HPL is a consequence of the abstract one:

Corollary 3.7.

(1) Let (V, dV , s, t) be an HD and x ∈ End(V ) is such that [d, x] + x2 = 0. Additionally,
we assume that the operators 1 + sx and 1 + xs act invertibly on V . Then (V, dV +
x, αs, αtβ) is also an HD. If (V, dV , s, t) is a multiplicative HD and x was a derivation,
then (V, dV + x, αs, αtβ) is also a multiplicative HD.

(2) The operator αt ∈ End(V ) restricts to an isomorphism of dg tÂt-modules, which is
multiplicative if the HD (V, dV , s, t) is multiplicative:

αt : (tV, dV + txαt)→ (αtβV, dV + x),

where tÂt acts on (αtβV, dV +x) via the dg algebra map tÂt→ (αtβ)Â(αtβ) constructed
in Theorem 3.5. The inverse isomorphism is given by tβ ∈ End(V ):

tβ : (αtβV, dV + x)→ (tV, dV + txαt).

Proof. The vector space V supplied with the perturbed differential d + x is a dg module over
the twisted perturbation algebra (A, dx). Therefore the composite map

H �
� // (Â, d)

φ // (Â, dx)

makes V into an H-module (an H-algebra in the multiplicative case) with elements t, s ∈ H
acting on V as operators αtβ and sα respectively. This proves statement (1). For statement

(2) note first that since d(t) = 0 in Â, the differential dV restricts to tV ↪→ V , the image of the
projector t, making it a dg vector space. Similarly, αtβV is a dg vector space with respect to
the perturbed differential dV +x. In the multiplicative case both tV and αtβV are dg algebras.
Statement (2) above now follows form the corresponding statement of Theorem 3.5. The claim
about the inverse isomorphism also follows, taking into account the identity tαβt = t. �

Remark 3.8. The HPL is particularly useful when (V, s, t) is a harmonious HD, i.e. when
tV carries the homology of V . In that case the differential dV vanishes in tV and there is an
isomorphism of dg vector spaces

(tV, txαt) ∼= (αtβdV , V + x).

3.3. Minimal models for A∞ algebras. We will now outline a standard application of the
HPL, cf. for example [9], [17].

Recall that an A∞ algebra structure on a dg vector space (V, dV ) is a continuous derivation

m = m2+m3+. . . of the completed tensor algebra T̂ΣV ∗, the free local pseudo-compact algebra
on the pseudo-compact vector space V ∗; here mi is the component of m that raises the tensor
degree by i − 1. The derivation m is determined by its restriction on ΣV ∗ that we will also

denote by m. Thus, m : ΣV ∗ → T̂ΣV ∗ and mn : ΣV ∗ → (ΣV ∗)⊗̂n. Note that this definition is
equivalent by dualization to the, perhaps, more familiar one given in terms of multilinear maps
V ⊗n → V .

Furthermore, an A∞ map between two A∞ algebras (V, dV ,mV ) and (U, dU ,mU ) is a contin-

uous algebra map f = f1 + f2 + . . . : T̂ΣU∗ → T̂ΣV ∗ such that f ◦ (dU +mU ) = (dV +mV ) ◦ f ;
8



here fn is the component of f raising the tensor degree by n− 1. The map f it is called a weak
equivalence if f1 : ΣU∗ → ΣV ∗ is a quasi-isomorphism; there is also an appropriate notion of a
homotopy between two A∞ maps. We refer to [6, 13] for details on A∞ algebras.

If V is supplied with an HD then so is V ∗ and therefore T̂ V ∗, cf. Example 2.7; there the
definition was given for an ordinary (non-completed) tensor algebra, but the completed case is

similar, cf. Remark 2.8. Additionally, the action of A on T̂ V ∗ extends to an action of Â (for
this the completeness of the tensor algebra is necessary).

If the underlying space of an A∞ algebra has vanishing differential, the corresponding A∞
algebra is called minimal. The well-known result of Kadeishvili [11] states that for any A∞
algebra (V, dV ,mV ) there is an A∞ structure on H∗(V ) that is weakly equivalent to (V, dV ,mV ).
More recently, many proofs of this important results appeared, particularly those giving explicit
formulas for minimal models. Perhaps the most straightforward and compact way to obtain
these formulas is through the HPL. The following result was essentially formulated in [9]. Its
proof is just the unwrapping of the (pseudo-compact analogue of) Corollary 3.7.

Theorem 3.9. Let (V, d,m) be an A∞ algebra and suppose that V is supplied with operators
s, t constituting an HD on V , we will denote by t̃, s̃ the corresponding operators giving a multi-
plicative HD on T̂ΣV ∗ (cf. Example 2.7 for the construction in the discrete case). Then:

(1) The dg space tV supports the structure of an A∞ algebra given by

mt(V ) := t̃m(1 + s̃m)−1t̃;

(2) There are A∞ maps between (V,m) and tV,mt(V ) represented by

(1 + s̃m)−1t̃ : T̂Σ(tV )∗ → T̂ΣV ∗;

t̃(1 +ms̃)−1 : T̂ΣV ∗ → T̂Σ(tV )∗,

such that

t̃(1 +ms̃)−1) ◦ (1 + s̃m)−1t̃ = idtV and

t̃(1 + s̃m)−1) ◦ (1 +ms̃)−1t̃ = id−s̃(1 + s̃m)−1.

�

This is a compact version of the minimal model theorem for A∞ algebras; writing the corre-
sponding formulas in components leads to summations over certain decorated planar trees as
explained in the papers of Markl and Huebschmann cited above.

3.4. Gauge equivalence and the decomposition theorem. Let V be a dg Â module, in
other words a dg vector space with an HD and an MC operator x ∈ End(V ) : [d, x] = −x2, such
that 1+sx and 1+xs act invertibly on V . We saw in Corollary 3.7 that dg spaces (tV, dV +tαxt)
and (αtβV, dV +x) are isomorphic. Note that since tαxt is an MC element (either in End(V ) or

Â, see Corollary 3.6), the operator dV + tαxt squares to zero on the whole of V . It makes sense
to ask, therefore, whether the operators dV + tαxt and dV + x are conjugate or, equivalently,
that the MC elements x and tαxt are gauge equivalent in End(V ). This turns our to be true
(see Corollary 3.13 below), and in fact we will show that these elements are gauge equivalent

in Â (Theorem 3.11 below). First we will introduce a certain invertible element in Â closely
related to the idempotent αtβ.

Proposition 3.10. Let g := (1 + t− αt)β. Then g is invertible and

g−1 = φ(g) = β−1(1− t+ αt).

Moreover, the following identities holds

(αtβ)g(αtβ) = αtβ

tg = tβ

g−1t = αt.
9



Proof. Using Proposition 3.4 we compute:

φ(g) = φ(1 + t− αt)φ(β)

= (1 + αtβ − tβ)β−1

= β−1(1− t+ αt).

Furthermore, taking into account the identity tα = t we compute

(1− t+ αt)(1 + t− αt) = 1 + t− αt− t− t− tαt+ αt+ αt− αtαt
= 1

Then also φ(g)g = φ(gφ(g)) = φ(1) = 1. To prove the stated identities we compute :

αtβgαtβ = αtβ(1 + t− αt)βαtβ
= (αtβ + αt− αt(α+ β − 1)t)βαtβ

= αtαtβαtβ

= αtβαtβ

= αtβ.

Next,

tg =t(1 + t− αt)βt
=(2t− tαt)β = tβ.

Finally,

g−1t = β−1(1− t+ αt)t

= β−1αt = αt.

�

We will now prove the promised gauge equivalence.

Theorem 3.11. Let g ∈ Â be defined as above. Then the MC elements x and ξ are gauge
equivalent via g, i.e. gxg−1 − d(g)g−1 = ξ.

Proof. Let k := 1 + t− αt; we have seen that g = kβ. We compute, taking into account (3.2):

β · x = βxβ−1 − d(β)β−1

= βxβ−1 − βx(1− tβ)β−1

= βxt.

Thus

g · x = k · (βxt)
= [kβxt− d(k)]k−1

= [(1 + t− αt)βxt+ (αt− 1)xαt](1− t+ αt)

= tβxt = ξ.

�

Remark 3.12. Using the anti-automorphism ρ, we can construct another invertible element of
Â effecting gauge equivalence of x and ξ. Indeed, since ρ(x) = −x and ρ(ξ) = −ξ, it is easy to
deduce from g · x = ξ that ρ(g)−1 · x = ξ. As a consequence the MC element x is fixed under
the gauge action of the ρ-invariant element ρ(g)g.

Taking ρ(g)−1 = (1 − t + tβ)(1 + sx) = 1 − t + sx + tβ in place of g, one obtains slightly
different versions of Corollary 3.13, Corollary 3.17, Theorem 3.14 and Proposition 3.18 below.
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Corollary 3.13. Let (V, dV , s, t, x) be a dg Â-module. Then the following equality of operators
on V holds:

(1 + t− αt)β(dV + x)((1 + t− αt)β)−1 = dV + tαxt.

Proof. The claimed equation is equivalent to

(1 + t− αt)βx((1 + t− αt)β)−1 − dV (1 + t− αt)(1 + t− αt)−1 = dV + tαxt

which holds in End(V ) because it holds in Â. �

We will now explain how this leads to an explicit form of the decomposition theorem for A∞
algebras, [5,12,15,16]. The latter result is a strengthened version of the minimal model theorem;
for an A∞ algebra (V, dV ,m) with a choice of an HD, it gives an A∞ isomorphism (as opposed
to merely a weak equivalence) between (V, dV ,m) and an A∞ algebra that is a direct sum of
one supported on tV and a linear contractible one supported on (1− t)V (a linear contractible
A∞ algebra has acyclic differential and vanishing higher products).

Let (V, d,m) be an A∞ algebra with an HD as above. Recall that there are also operators s̃

and t̃ giving a multiplicative HD on T̂ΣV ∗. Consider the operator mt(V ) = t̃m(1 + s̃m)−1t̃ ∈
End(T̂ΣV ∗). It is equivalent to the original m via the gauge transformation g = (1 + t̃ −
(1 + s̃m)−1t̃)(1 + ms̃)−1 ∈ End(T̂ΣV ∗). This is not yet the statement we are looking for.

Firstly, mt(V ) not a derivation of T̂ΣV ∗, but a t̃-derivation, i.e. for a, b ∈ T̂ΣV ∗ it holds that

mtV (ab) = mtV at̃(b) + (−1)|a|t̃(a)mtV (b). Secondly, g is not a multiplicative automorphism

of T̂ΣV ∗. Nevertheless it turns out, rather surprisingly, that a small modification to g does
produce the desired multiplicative isomorphism as we will now explain.

For any (continuous, possibly non-multiplicative) endomorphism h of T̂ΣV ∗, denote by h

the multiplicative endomorphism of T̂ΣV ∗ such that h|V ∗ = h|V ∗ ; this clearly determines h
unambiguously. It is easy to see that g−1(v) = v + terms of tensor degree >1 for any v ∈ V ∗.
It follows that g−1 is a multiplicative automorphism of T̂ΣV ∗. As such, it acts by gauge
transformations on derivations of T̂ΣV ∗ having degree quadratic or higher, i.e. A∞ structures
on V .

Furthermore, for an endomorphism (not necessarily a derivation) f of T̂ΣV ∗ denote by f̌

the derivation of T̂ΣV ∗ such that f̌ |V ∗ = f |V ∗ . Note that the derivation m̌ := m̌tV of T̂ΣV ∗

is an A∞ structure on V that is a direct sum of a minimal A∞ structure on V and a linear
contractible one.

Then we can formulate the following result, the promised decomposition theorem for A∞
algebras.

Theorem 3.14. The multiplicative automorphism g−1 determines a canonical (with respect to
the HD on V ) A∞ isomorphism (V,m)→ (V, m̌). More precisely, the following identity holds:

(3.5) m = g−1m̌g−1
−1 − dg−1 g−1

−1
.

Proof. The automorphism g determines a gauge equivalence between mtV and m:

mtV = gmg−1 − dgg−1.

Evaluating this on an element v ∈ V ∗ and multiplying through, we obtain:

(3.6) g−1mtV (v) = mg−1(v) + d(g−1)(v)

Since mtV = t̃mtV and g−1t̃ = αt̃, which is a multiplicative automorphism of ˆTΣV ∗, and since
mtV (v) = m̌(v), we can rewrite (3.6) as

g−1m̌(v) = mg−1(v) + d(g−1)(v).

or, equivalently, as

m̌(v) = g−1
−1
mg−1(v) + g−1

−1
d(g−1)(v)
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Since the last equality holds for any v ∈ V ∗, it follows that

m̌ = g−1
−1
mg−1 + g−1

−1
d(g−1)

which is clearly equivalent to (3.5).
�

3.5. Decomposition theorem in categories of twisted objects. Let C be a dg category,
i.e. a category enriched in dg k-vector spaces.

Definition 3.15. The dg category tw(C) of twisted objects in C is defined as follows. Its
objects are pairs (M,x), where M ∈ C and x is a MC element in the dga EndC(M), and the
morphism spaces are given by Homtw(C)((M,x), (M ′, x′)) = HomC(M,M ′) as graded spaces,

with differential dtw(C) defined by dtw(C)(f) = dC(f) + x′ ◦ f − (−1)|f |f ◦ x.

Note that the full subcategory of tw(C) consisting of objects of the form (M, 0) is equivalent
to C. Our definition differs to the standard one originally given in [3] in that the latter is
obtained by first adding formally all direct sums to C and then forming the tw-construction.

Example 3.16. Let B be a dg algebra.

(1) Viewing B as a dg category with one object, we see that tw(B) has MC elements in

B as objects. The dg space of morphisms between two MC elements x and y is B[x,y],
whose underlying vector space is B and the differential is d[x,y] is specified by the formula
d[x,y](b) = dB(b) + yb − (−1)bbx for b ∈ B. Note that B[x,y] is identified with the dg

space of right B-module morphisms between B[x] and B[y].
(2) Take C to be the category of free B-modules. Then tw(C) is what is normally called the

category of twisted complexes of B-modules. Its objects are free B-modules with twisted
differentials, and morphisms are the usual dg Hom-spaces of B-module morphisms.

Then the following general decomposition theorem holds.

Theorem 3.17. Let (M,x) be an object of tw(C). Suppose that M is equipped with a Hodge
decomposition, i.e, elements t, s ∈ EndC(M) of degrees 0 and −1, respectively, satisfying the
relations in Definition 2.1, and assume that 1 + xs (equivalently 1 + sx) is invertible. Suppose
further that the image of t in C splits: there exists a direct sum decomposition M = H ⊕ K
with EndC(H) = tEndC(M)t and EndC(K) = (1− t) EndC(M)(1− t). Then the automorphism
(1+t−(1−sx)−1t)(1−xs)−1 of M induces an isomorphism (M,x) ∼= (H, tx(1+sx)−1t)⊕(K, 0)
in tw(C), and therefore an isomorphism (M,x) ∼= (H, tx(1 + sx)−1t) in H0(tw(C)).

Proof. Because the element 1 + xs is invertible as an endomorphism of M , the action of the
dg algebra A on M extends to that of Â, i.e. there is a dg algebra map Â → EndC(M). Since

ξ = txαt ∈ Â is an MC element, its image tx(1 + sx)−1t is an MC element in EndC(M). Thus,
(M,x) and (M, tx(1 + sx)−1t) are objects in tw(C).

Furthermore, by Theorem 3.11 it holds that ξ = gxg−1 − dg · g−1 where g = (1 + t − αt)β;
this implies that dg+ ξ · g− gx = 0. It follows that the element g, viewed as an endomorphism
of M , determines a morphism (M, tx(1 + sx)−1t)→ (M,x) in tw(C), which is an isomorphism
since g is invertible. Finally, by assumption, there is an isomorphism (M, tx(1 + sx)−1t) ∼=
(H, tx(1 + sx)−1t)⊕ (K, 0) and we are done. �

We finish by applying our results to constructing an explicit minimal model for A∞ modules.
Let (V,m) be an A∞ algebra and (M,dM ) be a dg vector space. The structure of an A∞
module over V on M is a T̂ΣV ∗-linear differential mM on T̂ΣV ∗ ⊗M∗ having the form mM =
mM

2 +mM
3 + . . . where mM

i : M∗ → T̂ i−1ΣV ∗⊗M∗. We will refer to a pair (M,mM ) as an A∞
module over (V,m). A map between A∞ modules (M,mM ) and (N,mN ) is a morphism of the

corresponding T̂ΣV ∗ modules. Such a map will necessarily have the form f = f1+f2+. . . where
fi : N∗ → T̂ i−1ΣV ∗ ⊗M∗; it is a weak equivalence if f1 : N∗ → M∗ is a quasi-isomorphism.
We refer to [13,14] for a more detailed discussion of A∞ modules.
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Figure 1. Definition of mΓ.

An A∞ module (M,mM ) is minimal if the differential dM vanishes. Similarly to the case of
A∞ algebras, a weak equivalence between minimal A∞ modules is necessarily an isomorphism.
On the opposite end of the spectrum there is a linear contractible A∞ module: one having the
form (M, 0) and with a contractible differential dM .

Then the following decomposition result for A∞ modules holds as a direct consequence of
Theorem 3.17.

Proposition 3.18. Let (M,m) be an A∞ module over an A∞ algebra V . Suppose that the dg
vector space (M,dM ) is supplied with operators s, t turning it into an HD. Then the automor-
phism (1 + t− (1− sm)−1t)(1−ms)−1 of the dg space (M,dM ) determines an isomorphism of
(M,m) to the direct sum of a minimal A∞ module (tM, tm(1+sm)−1t) and a linear contractible
A∞ module ((1− t)M,dM ).

�

The (dual) structure maps (mtM
i )∗ : T i−1Σ−1V ⊗ tM → tM for the minimal model tM can

be described explicitly as follows. Let Γ be a planar rooted tree with i+ 1 extremities with the
property that every branching has valence at least three and is below the rightmost leaf; such
trees will be called admissible. Label the root and the rightmost leaf by t, all other leaves by id
and all internal edges by s. The following picture illustrates one such labelled tree. Define the
map mΓ : T i−1Σ−1V ⊗ tM → tM by composing labels in an obvious manner, working from the
leaves down to the root. For the tree pictured in Figure 1,

mΓ = tm3(id⊗2⊗sm2)(id⊗3⊗sm4)(id⊗6⊗t).
We then put (mtM

i )∗ =
∑
mΓ, with the sum taken over all admissible trees. Note that no

signs appear in this formula, since the action of the perturbation algebra Â on T̂ΣV ∗ ⊗M∗
dualises to an action of its opposite dg algebra Âop on TΣ−1V ⊗M ; the latter is then converted
to an action of Â via ρ. Explicit formulae for the structure maps of the A∞-isomorphism
g : (M,m) ∼= (tM, tm(1 + sm)−1t)⊕ ((1− t)M,dM ) and its inverse can be obtained in a similar
manner; we will refrain from giving details.
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