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Abstract. For the most part, carbonate soils are of biogenic origin comprising 

skeleton bodies and shells of small organisms, the shelly carbonate sands. Ow-

ing to the complex microstructure of these soils, there are many uncertainties 

related to their mechanical behavior, in particular, regarding their high com-

pressibility. Aside from obvious safety concerns, the inability to predict the be-

havior of carbonate sands involves extensive remedial measures and leads in-

variably to severe time delays and increased construction costs. This study 

makes use of 3D images of the internal structure of a shelly carbonate sand un-

der compression on a small oedometer placed inside an x-ray scanner. The im-

ages are first used to gain insights into the grain-scale properties of the material 

and then the soil microstructure is virtualized and simulated within a framework 

of combined discrete–finite-element method. This study contributes towards a 

better understand the grain-scale phenomena shaping the macro response of 

shelly carbonate sands, which differs considerably from more commonly stud-

ied silica sands of terrigeneous origin. 

Keywords: Carbonate Sand, Microstructure/Fabric, Numerical Modelling. 

1 Introduction 

The behavior of offshore foundations in shelly carbonate soils is challenging, as evi-

denced by numerous accidents occurring during platform installation in the 80s [1]. 

While failures are now relatively rare, conservative methods and high factors of safety 

are used to account for the poor predictions obtained from traditional design methods 

[2]. As a consequence of the many uncertainties related to the soil properties and be-

havior, carbonate sands have been placed into a niche classification of ‘problematic 

soils’ in most design guides [2,3]. According to international practice guides for off-

shore platforms, general design procedures for foundations in carbonate soils are not 

available [e.g. 3].  

The less conventional behavior of shelly carbonate sand, when compared to more 

common sands of terrigenous origin, has been attributed to the unique shape of their 

constituent grains [4,5,6]. In particular, the irregular and angular shapes of the skele-
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ton bodies and shells tend to form interlocked fabrics of large voids within. The col-

lapse of these intricate microstructures under loading are believed to be associated 

with the high compressibility of the material. This paper presents recent advances on 

the characterization and modelling of sands with complex morphologies. 

2 Experimental tests 

The experiments consisted of testing small samples of a shelly sand from the Persian 

Gulf using a mini oedometer placed inside an µCT x-ray scanner. The system used 

was a Nikon XTH 225 ST located at the Research Centre at Harwell, Oxfordshire 

(UK). The mini oedometer had a diameter of 13.5mm and an aspect ratio 

(height/diameter) of approximately 1. The force was exerted by a micrometer with 

500N axial loading capacity [7].  The soil container was made of Perspex with 2mm 

thickness which yields less than 3 µm deflection under the maximum applied force.  

Possible lateral friction resulting from the displacement of the container has been 

minimized by considering a 1 mm gap between the container and the x-ray window. 

A schematics of the experimental set-up comprising the load cell, the vertical piston, 

the micrometer and the mini oedometer is shown in Fig.1a. Fig.1b provides a view 

from inside the scanner showing the x-ray source and the soil sample. The sand is a 

well graded material with a median grain size of 2mm. The 3D images were acquired 

at a resolution of 9.5 µm (length of voxel edge). Top and side views of the scanned 

sample before loading are presented in Figs. 2a and 2b, respectively. The diversity 

and of shapes and complexity of features can be observed. 

 

 

 
(a) (b) 

Fig. 1. (a) Schematic of the experimental set-up used to carry out the 1D compression tests, (b) 

view from inside the x-ray scanner showing the x-ray source and the soil inside the mini-

oedometer. 
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(a) (b) 

 

Fig. 2. Cross sections through the 3D tomographic image of the shelly sand prior to 

loading. (a) top view; (b) side view. 

3 Grain-scale characterization 

In order to extract quantitative information from the 3D tomographic images it is 

necessary to segment the images and identify the individual grains. In-house imaging 

processing codes were developed to first binarise the images using Otsu’s threshold-

ing and subsequently apply an iterative watershed algorithm to separate the grains 

touching. The codes are fully described in [8]. The key advantage of the watershed 

code, when compared with previously used codes, is its ability to overcome the chal-

lenges posed by the diversity and complexity of the shapes associated with the bio-

clastic nature of shelly sands.  

 The measurements of grain properties presented here comprise the size and shape 

parameters. The grain size was quantified by means of the major, intermediate and 

minor axis lengths, denoted by a, b and c, respectively. These lengths were obtained 

using principal component analysis (PCA), more details can be found in [5]. The 

shape of the grains was quantified using four parameters comprising: elongation, 

flatness, convexity and sphericity. The elongation (IE) and flatness (IF) indices are 

obtained by IE=(a-b)/a and IF=(b-c)/b, respectively. The convexity and circularity are 

calculated as IC=Vgrain/Vcon and IS=Vgrain/VS, where Vgrain is the volume of the grain, 

Vcon is the volume of the minimum convex hull that encloses the grain and VS is the 

volume of the circumscribed sphere of the grain. An additional parameter, the angu-

larity index (IA as defined in [5]), is used to quantify the major surface irregularities, 

i.e., edges and corners. The index is defined such that rounded grains will yield low IA 

and angular grains will have high IA values, more details in [8]. These parameters 

definitions were such that the values will vary between 0 and 1, the latter correspond-

ing to an ideal shape. This simplifies the understanding of the geometrical meaning 

and provides a better link between visualization and quantification. Fig. 3 shows 
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shape measurements for typical grains in the sample to demonstrate the effectiveness 

of the proposed indices. Fig. 3a shows a very elongated grain and this feature is well 

captured by the elongation index which takes a value of 0.82; the flatness index 

measured is very small, 0.16, as expected. Fig. 3b shows another grain with the asso-

ciated convex hull represented by a triangular mesh and the convexity value measured 

was of 0.52. Fig. 3c displays a grain with the associated circumscribed sphere, a sphe-

ricity value of 0.33 was measured that captures well the deviation of this shape to that 

of the sphere. The same grain is used to quantify the angularity of the sharp corners, 

represented here with a brighter color (Fig. 3d). The overall angularity value meas-

ured was of 0.55. 

 

 
 

(a) (b) 

 
 

(c) (d) 

 

Fig. 3. Typical grains used to demonstrate the efficiency of the shape indices, val-

ues measured: (a) IE = 0·82, IF =0·16; (b) IC = 0·52; (c) IS =0:33; (d) IA= 0.55 
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4 Numerical modelling 

The microstructure of the sample prior to loading, obtained from the µCT images, 

was virtualized to be used to numerically simulate the 1D compression test [9]. The 

first step consisted of meshing the individual grains using a refinement of the con-

strained Delaunay triangulation implemented in Matlab [10]. Subsequently the nu-

merical mesh was imported into a micro Finite Element (µFE) model that runs in 

Abaqus [11]. The sample was confined laterally using a rigid cylinder, as shown in 

Fig. 4a, and the displacement was applied at the top of the sample. The evolution of 

the stress distribution in the full assembly as the deformation progresses is investigat-

ed here. The von Mises criterion is used. Fig. 4b shows a vertical cut through the as-

sembly prior to the application of the vertical load. As the applied load increases, so 

does the stress measured within the grains, in particular for those involved in the 

stress transmission chain. This can be visualized in Figs. 4c and 4d, where the higher 

stresses are represented by brighter colors according to the colormap presented. 

 

 
 

(a) (b) 

  
(c) (d) 

Fig. 4 (a) Boundary used in the numerical simulation, (b) Cross section through the 

sample prior to loading and (c) (d) at two stages of loading.   
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5 Conclusions 

This paper demonstrates the potential of using advanced image-based techniques to 

gain insights into the microstructure of shelly carbonate sands and better understand 

the physical phenomena triggering their high compressibility.  It is shown that using a 

numerical tool that accounts for the true shape of the grains and for the stress propa-

gation within the grains is pivotal for a more accurate modelling of soils with com-

plex morphologies.  
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