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D eclaration

The material in sections 1.1, 2.1, 2.2 and 2.3 is largely expository. Except where 
otherwise indicated, the material in this thesis is, to the best of my knowledge, 
original.
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O verview

In Chapter 1, we consider many topics that are both  combinatorial and dynamical 
in nature. In particular, we study substitution maps, subword complexity, symbolic 
dynamics and interval-exchange maps.

After describing the basic concepts and notation, we study the subword com­
plexity functions that arise from substitutions connected with /3-transformations. 
We then make some general observations regarding subword complexity functions 
associated with substitutions, before going on to study some specific examples with 
quadratic growth in section 1.4. In section 1.5, we study the symbolic dynamics 
associated with these types of substitutions, generalising the notions of recurrence, 
minimality etc. In section 1.6, we briefly describe and compute an invariant mea­
sure for the substitutions considered in section 1.4. We then prove a result that 
describes a connection between the symbolic dynamics and interval-exchange maps, 
and apply it to these substitution maps.

In Chapter 2, we study a dynamical skew-product and some o f  the combinato­
rial questions that it raises.

In sections 2.1 and 2.2 we describe the skew-product, and explain the connection 
between it and some one-player games. We then describe and analyse a code-word 
problem, and explain how we can generalise our results. In sections 2.6 and 2.7, we 
study a continuous version of the problem and prove a result that might shed some 
light on the original skew-product.

At the end of both chapters, we present some problems which we believe to be 
still open, and suggest ideas for further research into the topics presented in this 
thesis.
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1.1 D efin itions and notation

Let A  be a finite set o f symbols, which we call the alphabet. The symbols will 
generally either be lower-case letters (a, b, . . . )  or numbers (0 ,1 ,.. .) .  A word (over 
the alphabet A ) is an ordered collection of symbols, i.e., a member of the set

A " -  {e } U A  U A 2 U • • •,

where e denotes the empty word containing no symbols. The length of a word W , 
denoted by |W|, is the number of symbols it contains (and so |e| =  0). We do not 
distinguish between a symbol and a word of length 1. We will also use the notation 
| W\x to denote the number of symbols of W  which are equal to x, so that

m  =  ¿ 2  i^ i-
x £ A

Words and symbols are concatenated in the obvious way, e.g., if W  =  ab, then 
IVa =  aba. The operation of concatenation gives A  the structure of a monoid. We 
say that the word V occurs in the word W  (or V  is a subword of W ) if there are 
(possibly empty) words U and U' such that W  =  U VU '. If U =  e, we say that V 
is an initial segment o f W , and if U' =  e, we say that V  is a final segment o f W .

A sequence o f symbols of A  is formally an element of .4 , i.e., a mapping 
from N to A , and a sequence can be thought of as an infinite word s =  s0s j . . .  
where each .«, is a symbol of A. (The sequences that we consider will be one-sided, 
rather than bi-infinite.) The definitions above carry through for sequences (except 
that only certain concatenations make sense; if s is a sequence and W  is a word, 
then I f «  makes sense but * l f  doesn’t). We will generally use lower-case letters for 
symbols and sequences, but use upper-case letters to denote words. We say a word 
is s-admissible (or just admissible) if it occurs in s, and is inadmissible otherwise. 
For example, if .« is the periodic sequence ababab. . . ,  then ab, ba are admissible but 
aa, bb are inadmissible (the empty word is always admissible). A sequence x  is 
s-admissible if all its (finite) subwords are .«-admissible. The language o f a sequence 
s, denoted by £(.«), is the set of s-admissible words, i.e.,

C(s) =  {W  6 A* : W  is a subword o f s}.
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If W , X W  and W Y  are admissible words (and X , Y  are non-empty), then we 
say that W  left-extends to X W  and W  right-extends to W Y . If, for some admissible 
word W , there is a symbol x  such that x W  is admissible, we say that the word W  
can be left-extended. Obviously, any (admissible) word can be right-extended. If 
there is a unique symbol x  such that x W  is admissible, then W  has unique left- 
extension, otherwise W  has non-unique left extension. Let X  =  X1 X2  ■. ■ x „  (each 
Xi is a symbol). We say that W  uniquely left-extends to X W  if W  uniquely left- 
extends to x nW , x nW  uniquely left-extends to x n_ i x nW  etc. (Similar definitions 
apply for right-extensions.) The following proposition can easily be proved.

P roposition  1.1.1 For any sequence s, the following are equivalent:

(i) Every (finite) initial segment of s occurs elsewhere in s.

(ii) Every admissible word can be left-extended.

(iii) Every admissible word occurs at least twice in s.

(iv) Every admissible word occurs infinitely many times in s.

If s satisfies the properties above, then we say s is weakly recurrent. (The 
notion of recurrence will be defined in section 1.5.)

The subword complexity o f a sequence s is defined to be the function

p : N —► N

n h-* |£(s) n  A n\,

i.e., p(n) is the number of admissible words of length n (we set p(0) =  1). It is easy 
to see that, for a given value o f n, the number p(n  +  1) — p(n) is determined by the 
number of admissible words o f length n that have non-unique right extension, and 
the amount of choice there is in right-extending these words. For example, if there is 
exactly one admissible word with non-unique right extension and that word can be 
right-extended by adjoining exactly two symbols, then we have p(n +  1) =  p(n) +  1.
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Note that, if p(n  +  1) =  p(n) for some n, then each admissible word of length n has 
unique right extension, which implies that s is eventually periodic (since each symbol 
is uniquely determined by the preceding n symbols). For a non-periodic sequence s, 
we thus have p(n +  1) — p(n) ^ 1 for all n ^  0. If p(n +  1) — p(n) =  1 for sufficiently 
large n, the sequence s has minima] block growth. Such sequences (and the resulting 
dynamical systems) have been studied in [C] and [Pau]. If p(n +  1) — p(n) =  1 for 
all n ^  0, then the sequence s is an aperiodic Sturmian sequence, with p(n) =  n +  1 
for all n. These have been studied extensively (see, for example, [CH] and [HM]). 
Similar remarks apply for left-extensions (provided s is weakly recurrent). We will 
later make use of the observation that, if s is weakly recurrent and, for each n ^ 0, 
there is exactly one word of length n which has non-unique left extension, and that 
word is left-extendible by adjoining any of the symbols of A , then p(n) =  (k — l )n + l ,  
where k is the size of the alphabet A.

A substitution map is a mapping from A  to A* \ {e } which will usually be 
denoted by the letter <r. As an example, the Morse-Thue map ([M]) on the alphabet 
A  =  {0, 1}, is given by

<7 : 0 -♦ 01
1 -> 10.

This can be extended, by concatenation, to a mapping from A* to A * which satisfies 
<7(V )o (W ) =  (t(V W )  for all words V  and W . It can also be extended, in the obvious 
way, to a map from .4N to ,4N.

We can define powers of o  by iteration. In the example above, we have r72(0) =  
<7(01) =  0110 and similarly <72(1) =  1001. If we order the symbols o f A, so that 
A  =  { a i , . . . ,  a „ }, then we can define the matrix o f  o  to be

[o]ij =  |<r(a<)|a>.

It turns out that a lot o f the properties of the substitution o  are determined by this 
matrix. If we associate a column vector [W] to the word W  by defining

[W]i =  \W\ai,

then it is not hard to show that the substitution matrix satisfies

H W )]  =  [a][W],
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i.e., the vector associated with a (W ) is given by multiplying the matrix [cr] by the 
vector associated with W . It easily follows from this, that

There are two important classes of substitutions that have been studied in the 
literature, namely the constant-length and the primitive substitutions. A substitu­
tion o  is said to be of constant-length if the length of the word cr(x) is the same for 
each x  € A . A substitution a is primitive if, for all x ,y  € A , there exists N  such 
that, for all n >  N , the word ern(x) contains the symbol y. (See [Q] for a more 
detailed discussion of primitive and constant-length substitutions.)

Suppose, for some symbol a G A, that the word er(a) begins with a, and 
|<r(a)| >  1. It follows by induction that <r"(a) is an initial segment o f <r"+1(a). 
Hence there is a unique sequence s having each cr"(a) as an initial segment, and 
we have o (s )  =  s. We will insist that there is a symbol o f A  which satisfies this 
property, and we will refer to it as the special symbol o f  A . This will normally be 
the letter a, the number 0, or the number 1. For the Morse-Thue example above, if 
we take the special symbol to be 0, we have

s =  01101001100101101001. . . ,  

which defines the Morse-Thue sequence.

R em arks

(i) The sequence s is the unique cr-invariant sequence which begins with the 
special symbol. If s =  s i«2 . . . ,  then we also have s =  <t(« i )(t(s2) • • • •

(ii) The sequence s is weakly recurrent if and only if the special symbol occurs 
in s more than once.

If W  is an admissible word, then it follows from Remark (i) that W  is a subword 
of a word o f the form tj(di)o((l2 ) • • • <r(dm) for some (admissible) word D  =  d\ . . .  dm.
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If D  is a word such that cr(D) contains W  as a subword, and W  overlaps each of 
the <r(dj), then we say that the word D  represents a decoding o f  the word W  into 
the code-words o (x )  : x  € A . To illustrate the decoding of the word W , we write 
the word cr(D) as |<7(di)|<r(d2)| • • • |er(dm), possibly leaving out symbols which are 
not part o f W . The vertical bars mark the boundaries of the code-words. In the 
Morse-Thue example, the word 00 has the decoding 10|01 =  cr(10), and the word 
010 can be decoded as 0|10| or |01|0. The word 000 cannot be decoded.

If a word W  is admissible, then there must exist a decoding of W . Also, if 
the decoding word D  is unique, we can conclude that D  is also admissible. In this 
case, we say that W  uniquely decomposes into the code-words cr(x) : x  6 A , and 
we illustrate the relationships on a diagram, as in the following example:

This diagram shows that, if 1001 is admissible, then so is 10. This technique can be 
used to show that certain words are inadmissible, or that certain words have unique 
left-extension, for example.

For any infinite sequence of symbols s, we can define the corresponding symbolic 
subshift, or symbolic flow (see section 1.5 for more details). If the sequence s is 
generated by a substitution map <r, then we refer to the dynamical system as the 
symbolic flow associated with the substitution o . Many properties of the dynamical 
system, such as unique ergodicity, minimality etc. are related to corresponding 
properties of the substitution map <r.

. . .  1 | 0 •••

. . .  10 I 01 . . .
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1.2 C on n ection  w ith  /3-transform ations

For a general overview, and definitions, on the subject of /3-transformations, see [FS], 
[P2] and [Sch]. Let /3 be a real number (greater than 1) such that the /3-expansion 
of 1 is either finite or eventually periodic. It is known that there is an associated 
self-similar tiling of the real line with intervals, and that the self-similarity of the 
tiling can be described by a substitution map ([T], [So]). Let /3 be such that the 
/3-expansion of 1 be given by

1 =  • Tl\1l2 . . . TljUj+x . . . Tli+j

where the line denotes the periodic portion (assuming that the expansion is eventu­
ally periodic). Then the substitution map associated with the self-similar tiling is 
defined as follows: let the alphabet A  be the set of (i -I- j )  symbols { 1 ,2 , . . . ,  i +  j } .  
The substitution is then given by

a : 1 - t  l"1 2 
2 —> l " a 3

(• +  j - l ) - H " ‘« - ‘ (* +  i )

(» +  j )  -> l " ‘+> (i 4- 1) •

For example, if /3 is chosen (see [T] for details) so that the /3-expansion of 1 is 
• 21120, then the map a is given by:

1 -¥  112
2 — ► 13

3 — ► 14

4 -> 115

5 — ► 3 .

For the case where the /3-expansion o f 1 is finite, write 1 =  ■ n in j . . .  nt. Then the
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substitution map is given by:

a :  1 -► 1™ 2 
2 —> l nj 3

(i -  1) -> l ”i_1 i 
i -> l n> ,

so, for example, if (3 is such that 1 =  • 2012 , then a is given by:

1 -+ 112
2 -> 3

3 —► 14

4 —► 11.

Note that, if we write 1 =  • 2012 =  • 2011, we can treat this as a periodic /3-expan- 
sion of 1, and the rule given above for eventually periodic expansions now applies, 
which gives the correct form for the map a.

The dynamics o f  the substitution maps are related to properties of the corre­
sponding /3-transformations. For example, if the number (3 satisfies certain proper­
ties (described in detail in [So]), then the symbolic flow associated with the substi­
tution map has purely discrete spectrum ([So]). Our aim will be to investigate the 
subword complexity functions corresponding to these substitutions.

The special case o f the map a defined by

1 ->• 12 
2 —► 13

( i - l ) - H *  

i ->  1

8



has been studied extensively in [Si]. In particular, he gives a formula for the subword 
complexity function. We will show that this formula also applies to a similar class 
of examples.

T h eorem  1.2.1 Let /3 be such that the /3-expansion of 1 is -n00 • • ■ 01, and let 
a be the corresponding substitution map on the alphabet { 1,2, . . . ,  *}, so that cr is 
given by

1 - t  1"2
2 —► 3

(i — 1) —> i 

i —► 1 .

Then the associated complexity function is given by p(n) =  1 4- (» — l)n . Moreover, 
for any given length there is precisely one admissible word of that length with non­
unique left extension, and hence it can be left-extended by adjoining any one of the 
symbols in the alphabet.

P r o o f  For convenience, we will always take addition modulo i throughout the 
proof, so that ¿4-1 =  1 etc. This means that a  always maps the symbol x  to a word 
ending with (x  4- 1), i.e., if W  is a word ending with the symbol x , then a {W ) will 
be a word ending with ( i  +  l).

The symbol 1 is easily seen to occur at least twice in the sequence s, and 
therefore (by the cr-invariance of s) every admissible word occurs infinitely often in 
s. Consequently, every admissible word can be left-extended.

We will firstly consider the admissible words of length 2. It is easy to see that 
x\ is admissible for some x  (e.g. we could take x  =  i). Since a  maps the symbol x  
to a word ending with ( x + 1) and the symbol 1 to a word beginning with 1, we have 
ff(x l) =  • • • (x  4- 1)1 • • • and hence ( i4 -  1)1 is admissible. Applying this argument 
repeatedly, we see that the word x l  is admissible for all x  6 A.

9



Lem m a 1.2.2 Let k (E A  \ {1 }. Then k uniquely left-extends to (k — l)fc.

P r o o f  We prove this by induction on k. Looking at the words cr(l), cr(2) , ... , 
cr(n), the only occurrence of the symbol 2 is in the word er(l), and there it is preceded 
by the symbol 1 (because « i  ^  1). Therefore the symbol 2 uniquely left-extends to 
the word 12, and the result is true for the case k =  2.

Now suppose k has non-unique left extension (k ^  1). We aim to show that 
(k — 1) also has non-unique left extension. Suppose ak and bk are both admissible, 
with a 7̂ b. Let W  be an admissible word such that <j {W )  contains ak. Then, 
noting that a(k — 1) =  k, we can see from the diagram that W  must contain the 
word (a — 1)(A: — 1).

Therefore the word (a — 1)(A: — 1) is admissible, and similarly (b — 1)(A; — 1) is 
admissible, contradicting the assumption that (k  — 1) has unique left extension. We 
have shown that, if (k — 1) has unique left extension (and k /  1), then k must also 
have unique left-extension. It follows by induction that k has unique left extension 
for all k >  1.

Note that the admissibility of 12 implies the admissibility of 23 (on applying 
the map er). Similarly, the words 3 4 ,4 5 ,..., (k  — 1)A: are admissible. This proves 
the lemma. □

We have shown that every symbol, apart from the symbol 1, 1ms unique left 
extension. Also, the symbol 1 can be left-extended by appending any of the t 
symbols of A. It follows that there are exactly 2* — 1 admissible words o f length 
2 (and i words of length 1). This is consistent with the given formula p(N ) =  
1 +  (* — l)N .

We will generalise this to words of length N  by showing there is exactly one 
admissible word of length N  which has non-unique left extension. Moreover, this

W  =  . . .  (a -  1) | (k -  1) . . .

a (W ) =  . . .  a | k

10



word is an initial segment o f the sequence s, and it can be left-extended by adjoining 
any o f the symbols of A.

Lem m a 1.2.3 The infinite word xs  (formed by adjoining the symbol x  to the 
left of s) is admissible for any x  6 A. This means that any initial segment of s can
be left-extended by adjoining any symbol o f A.

P r o o f  We already know that 11 is admissible. Repeatedly applying the map a, 
we find that the words 2cr(l), 3<t2(1), .. . , ( k  +  l)erfc( l ) , . . .  are all admissible. Here, 
the (k +  1) is taken modulo i. If W  is any initial segment of s, then W  will be an 
initial segment o f crfc(1) for sufficiently large k. By choosing k so that (k +  1) =  x  
(mod i), we have that x W  is an initial segment of x<Tfc( l)  =  (k +  l)erfc(l) , which is 
admissible. Hence x W  is admissible. □

Lem m a 1.2.4 The word ln+1 is admissible, but the word l n+2 is not.

P r o o f  The word ¿1 is admissible, hence so is <r(il). Since a (i) ends with 1, and 
<7(1) begins with 1" , we have that ln+1 is admissible as required.

Now suppose that ln+2 is admissible. Then l ” +22 is admissible (because the 
symbol 1 can only right-extend to 11 or 12 and eventually we must reach the symbol 
2). This word must decompose into the code-words cr(l), <r(2),. . . ,  <r(t) as 1|1|1"2, 
where the bars indicate boundaries between code-words. By looking at the diagram:

we can see that the word ii would be admissible, which gives a contradiction. □

1 1 I 1

••• I 1 I 1 I 1"2

Lem m a 1.2.5 The word 1" has non-unique left extension but the word ln+1 
uniquely left-oxtends to i l n+1. Also, if A: < n, then l fc uniquely left-extcnds to 1*+1.

11



P r o o f  We already know that 1" has non-unique left extension because it is an 
initial segment o f s. However, the word 1"+1 decomposes into code-words as 1|1", 
which comes from applying er to the word »1. Since il  uniquely left-extends to 
(t — 1)*1, it follows that 1|1" uniquely left-extends to il| l". The last part o f the 
lemma is easily shown by considering the code-words <r(l),. . . ,  a{i). □

We aim to show that if a word W  has non-unique left extension, then W  must 
be an initial segment of s. Suppose that W  has non-unique left extensionand the 
length of W  is less than or equal to n. The first symbol of W  must be 1, as all the 
other symbols have unique left extension. We claim that W  =  11 • • • 1. Suppose not, 
so that W  begins 11 ■ • • 12 =  1*2, where k < n. The last part of the lemma above 
shows that W  has unique left extension, which gives a contradiction. Therefore 
W  =  1 1 ... 1, which is an initial segment of s.

If W  has non-unique left extension and |IV| =  n +  1, then we must have 
W  =  1"2 (the other possibility, W  - 1,,+1 is ruled out by the lemma above). We 
have shown that, if IV has non-unique left extension and |IV| ^ n +  1, then W  is 
an initial segment of s.

Now suppose x W  and yW  are both admissible and |IV| >  n +  1. Moreover, 
assume (for a contradiction) that W  is of minimal length such that W  is not an 
initial segment o f n. If W  ends with a symbol other than 1, then W  decomposes 
uniquely into code-words, with W  - a (W ) (note that W  begins with rx(l) =  l n2). 
It follows that (x — I) W  and (j/ — 1 )W  are both admissible, and so IV is an initial 
segment of s (by minimality of W ). Hence W  is also an initial segment o f s, 
contradicting our assumption.

If W  ends with the symbol 1, write W  as IV' 1 1 ... 1, where the last symbol of 
IV' is not equal to 1. We have two cases to consider, depending on whether or not 
the last symbol o f IV' is n.

(i) 'I'he last symbol of IV' is not equal to n. In this case, the word IV uniquely 
right-extends to IV' I"2  (because W 'l " +I is inadmissible by the lemma
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above). Hence x W ' l n2 and yW ' 1"2 are both admissible, and it follows that 
(x  — 1)1^1 and (y  — l ) i y i  are both admissible (where <r(W) =  W '). This 
means that W 1 has non-unique left extension and, since this word is shorter 
than W , it is thus an initial segment of s. It follows that cr(W l) =  W ' 1"2, 
and hence W , is an initial segment of s, giving a contradiction.

(ii) The last symbol o f  W ' is equal to n. This splits into 2 sub-cases:

(a) The word W  is equal to W'\k, where k ^  n. In this case, the 
word W ' uniquely right-extends to W . Since W  is not an initial 
segment o f  s, neither is W '. However, W ' also has non-unique left 
extension, contradicting the minimality o f W .

(b) The word W  is equal to W 'ln+1. In this case, W  uniquely right- 
extends to W 2, which also has non-unique left extension and is also 
not an initial segment of s. The word W 2 uniquely decomposes into 
code-words, and the decomposition is given by W 2 =  a(W \). If 
x W 2 and yW 2  are both admissible, it follows that (x  — 1)VT1 and 
(y — 1)WT are both admissible, and hence W 1 has non-unique left 
extension. This (shorter) word must be an initial segment o f s, 
because o f  the minimality of W . This implies that <r(Wl) =  W 2, 
and hence W , is an initial segment of s, giving a contradiction.

We have now shown that any word with non-unique left extension is an initial 
segment of s. This means that, for any given length, there is exactly one admissible 
word of that length which has non-unique left extension. This word will be an initial 
segment of s, and can thus be left-extended by adjoining any one of the n symbols 
o f the alphabet. This proves the theorem. D

13



1.3 Subw ord  com plex ity

The subword complexity functions o f sequences over a finite alphabet have been 
studied extensively in the literature ([AMST], [AR], [ELR], [F], [Kl], [Pan], [R]). 
There is also a survey on the subject in [A]. One o f the reasons for studying the 
subword complexity is that it provides some information about the dynamical prop­
erties of the associated symbolic flow. An example o f this is a result, due to Arnoux 
and Rauzy ([AR]) which states that a symbolic sequence having complexity func­
tion p(n) =  2n +  1 (and satisfying an additional combinatorial constraint) has an 
associated symbolic flow which is conjugate to an interval-exchange map on six in­
tervals. This generalises a classical result on aperiodic Sturmian sequences (those 
with p(n) =  n +  1) ([CH], [HM]). These give symbolic dynamical systems which 
are conjugate to irrational rotations of the circle (which can be viewed as interval- 
exchange maps on two intervals).

The interval-exchange maps (IEMs) are a well-studied class of dynamical sys­
tems ([Ke], [V]) which generate symbolic sequences whose complexity functions are 
bounded by linear functions, i.e., p(n) ^ Cn for some constant C. An interval- 
exchange map T  : [0,1] —> [0,1] (on n intervals) is a piecewise-translation map on 
the unit interval which is (almost-everywhere) bijective, i.e., there are open inter­
vals (7 i ,. . . , / „ )  and (J\,. . . ,  Jn) such that the restricted maps T  : /*, —► J*, are 
translations, the lengths o f h  and Jk are the same for each k, and the intervals 

are disjoint and cover (almost all of) the unit interval [0,1]. This defi­
nition extends in an obvious way to IEMs on infinitely many intervals, i.e., there 
are intervals (I\ ,h , ■ ■ •) and (Ji, J2, • • •) which satisfy the properties of the previous 
definition.

We label each interval of our IEM, T, with a symbol, thus identifying the orbit 
of a point (x , T (x ) ,T 2(x ) , . . . )  with an infinite sequence of symbols. It is therefore of 
interest to ask which sequences can arise in this way. In particular, many sequences 
generated by substitution maps have the property that p(n) ^  Cn, and so they are 
possible candidates for being generated by IEMs. It should be noted that not all 
IEMs (with finitely many intervals) give rise to sequences which can be generated
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by substitution maps. One way to see this is by considering the circle rotations

Ta : [0,1) -*■ [0,1)

x  i-> x  +  a  (mod 1)

which generate different sequences for different values of a  e  (0,1). There are 
uncountably many such values o f a  whereas there are only countably many substi­
tution maps, and so there is an IEM which generates a sequence that cannot be 
generated by a substitution map.

Some work has been done on characterising sequences with a prescribed com­
plexity function. The case p(n) =  n+1 is well-known ([CH]), and the casep(n) =  2n 
has been studied by G. Rote in [R]. Rote gives many different ways of constructing 
such sequences. One example is given by the irrational circle rotation Ta defined 
above, and a partition V  of the interval [0,1) into [0,/?) and [/3,1). Provided a  and 
(5 are suitably chosen (some simple inequalities need to be satisfied; see [R]), the 
transformation Ta and the partition V  give rise to a sequence on two symbols (a 
symbol for each interval of V) with p(n) =  2n. Note that if (3 =  a , we obtain the 
Sturmian sequences.

We now consider the question of which substitution maps give rise to com­
plexity functions which grow at most linearly (i.e. p(n) ^ C n  for some constant 
C ). R is well-known that this holds for primitive substitution maps ([Q]), and the 
constant-length maps ([Kl]). In fact, it also holds for a more general class of sub­
stitution maps. These maps satisfy the uniform-growth property, which says that 
the sequence of lengths |a:|, |<r(a:)|, |<r2(a:)|,. . .  grows at a rate that is independent 
o f the choice of symbol x. We now give the rigorous definition:

D efin ition  Let it be a substitution map over the alphabet A. Suppose there 
exists a constant C  such that, for all x, y 6 A  and n € N, we have

k " (* ) l  < C\an(y)\.

Then we say that a has uniform-growth.
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This property obviously holds for constant-length substitutions (we can take 
C  =  1). We now show that the property also holds for primitive substitutions.

T h eorem  1.3.1 Let a be a primitive substitution map. Then a  has uniform 
growth.

P r o o f  Let M  be the length of the longest word <t(x ), x € A. Then, for any 
word W , the length of a (W )  is at most M  times the length of W . To see this, 
write W  =  W1 W2  ■ • • Wk (so k is the length of W ). Then cr(W) is obtained by 
concatenating the words <r(wi) , . . . ,  cr(wk), each o f which has length at most M. 
Thus we have |<r(W)| ^ M k  =  M\W\. Applying this repeatedly gives

\<rn(W)\ ^ M n\W\ for all W , n. (1)

Given two symbols x  and y, we need to show that there is a constant C  such 
that |cr"(x)| ^  C\an(y)\ for all n. Our C  will depend on x  and y but we can take 
the maximum over all choices o f  x, y to obtain the required result.

Since a is primitive, the symbol x  will be contained in some iterate of a applied 
to y, so choose k such that x  is contained in ak(y). Then (applying the map an) 
we have that <r"(x) is a subword of an(crk(y)) =  o n~¥k(y). In particular, this means 
that

k"(*)l < k n+*(j/)l
^ M k\an(y)\ from (1).

Setting C  =  M fc then proves the result. D

We have seen that the uniform-growth property generalises both the constant- 
length and the primitiveness properties. Our next theorem is due to Pansiot ([Pan]); 
we present here an alternative proof.

T h eorem  1.3.2 Let a be a substitution map on the alphabet A  which gen­
erates an infinite sequence tt under iteration on the special symbol a 6 A  (see
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discussion in Section 1.1). If a  has uniform-growth, then the complexity function 
o f s grows at most linearly.

P r o o f  The aim will be to show that there is a constant K  such that, for all 
n e  N, there is an admissible word (subword of s) o f length at most K n  which 
contains all the admissible words of length n. There will therefore be at most K n  
different admissible words of length n. This will show that, at some point along s, 
we can find all the admissible words of length n occurring fairly closely together.

Let U be a fixed admissible word which contains all admissible words of length 
2. An obvious way of finding such a word U would be to list all the admissible 
words o f length 2, mark their first occurrences in the sequence s and take U to be 
an initial segment of s which is long enough to cover all the marked words.

Now consider the words crk(U) : k e N. We will show that, for any given n e N, 
there is some k such that the word crk(U) contains every admissible word of length 
n. This is certainly true for n =  2 because U contains every admissible word of 
length 2 by definition.

For the substitution a to generate an infinite word s under iteration on the 
special symbol a, we must have |<rfc(a)| —> oo as k —> oo. Since a satisfies the 
uniform-growth condition, it follows that |«fc(a;)| —► oo as k —> oo for any symbol 
x  € A . We can therefore choose k to be the smallest value such that

|<r*(x)| ^ n for all x  € A. (2)

Let 8 =  8i«2 • • •» where .<q € A. Since s is «--invariant, we can also write s as 
<7fc(si)<7fc(s2) . . . ,  where each word a k(8i) has length at least n, by (2).

Let W  be any admissible word of length n. Then W  appears somewhere within 
the sequence 8 =  a k(8i)<rk(i8 j ) . . .  and since each word rrfc(«i) has length greater 
than rt, it follows that W  can overlap at most two o f these words. Therefore there 
exists i such that W  is a subword of « fc(**)<7k(«i+ i). The word -vb+i is clearly
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an admissible word of length two, and is therefore a subword o f U. Applying the 
map crk, we have that crk (si)ak (si+ i) is a subword of crk(U), and therefore W  is a 
subword o f uk{U). We have now shown that the word crk(U) contains all admissible 
words of length n.

It remains to estimate the size o f the word crk(JJ), and to show that its length 
is bounded by K n , where A" is a constant (depending only upon the substitution 
<r).

Since k was chosen to be the smallest value satisfying condition (2), it follows 
that \crk~ 1(y)\ <  n for some symbol y € A. Let l =  \U\ and write U =  U\U2 . .. uj. 
Then we have

|<rfc(C/)| =  |£rfc(n1)| +  . . . +  |<rfc(ni)|

^ C\crk(y)\ + -----1- C\crk(y)\ by the uniform-growth condition

=  Cl\ak{y)\

< ClM\ffk~1(y)\ from (1)

<  CIMn.

Since the numbers C, l and M  depend only on a  and not on the value of n, we can 
set K  =  C IM , which proves the result. D

We have now exhibited a large class o f substitutions for which the complexity 
function grows at most linearly. Note that the uniform-growth condition depends 
only upon the matrix of the substitution map. The condition is independent of the 
order in which the symbols appear in each word <r(a;), where x  € A- To investigate 
this further, we concentrate on the case where the alphabet A  has just two letters 
a and b, and we assume that a is the letter which generates our infinite word under 
iteration o f  a. We therefore require tr(a) to be a word beginning with a. To avoid 
trivial cases, we need there to be at least one b occurring in <r(a). Finally, we 
suppose that a is not primitive, since we already know that the complexity function 
grows at most linearly for primitive substitutions. It follows that there can be no
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‘a ’s occurring in (r(b). The substitution matrix M  is therefore given by

where p, q, r are positive integers, a(a) consists o f  p ‘a ’s and q ‘b's (the first symbol 
being a), and cr(b) =  br =  bb..  .b. An easy calculation gives

/  pn ° ^[ q ^ r l\ 'i p—r rn )

(  pn ° Ïy qnpn~1 Pn J

if p ^  r,

if p =  r.

This gives the following expressions for the lengths of the iterates of a applied to 
the symbols a and b:

By considering the quotient |crn(a)| /  |crn(6)|, it is easy to see that the uniform- 
growth condition is satisfied if and only if p <  r. To give some examples, the 
substitution defined by

a —> aab 

b->bbb
(p =  2 ,q =  l , r  =  3)

satisfies the uniform-growth condition, whereas the substitutions defined by

a —> aaab
(p =  3,q =  1, r =  3)

b -¥ bbb

and
a —► aaaab

(p =  4,q  =  l , r  =  3)
b —► bbb

do not. In fact, substitutions similar to the last example above have complexity 
functions that grow faster than linear. The next proposition (proved by Pansiot in 
[Pan]) states this more precisely.
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P rop os ition  1 .3.3  Let a  be a substitution satisfying the conditions described 
above, and suppose that p >  r >  1 (using the above notation). Then the complexity 
function satisfies

C i(n log n ) <  p(n) <  C2(n log n) 

for some constants Ci and C2.

R em arks We need the restriction r >  1 because, for example, the substitution 
map

a —> aba 

b -> b

gives rise to the infinite sequence ababab. . .  which has bounded complexity function 
(there are only two distinct subwords o f any given non-zero length).

It is proved in [ELR] and [Pan] that, for any growing substitution map, the corre­
sponding complexity function satisfies

p(n) <  C (n  log n)

for some constant C . A substitution map a is said to be growing if, for any symbol 
x, the length of cr(x) is at least 2. This condition is satisfied by the substitution 
maps in the above theorem.
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1.4 Substitutions w ith quadratically -grow ing com p lex ity  functions

In [ELR] and [Pan], it is shown that the complexity function associated with any 
substitution map can grow at most quadratically, i.e., p(n) < 0 (n 2). We now look 
at some examples where p(n) is asymptotic to K n 2. The simplest such example is 
given by the map

£72 : o  — ► CLdb

b —y b,

which has the obvious generalisation

£jfc : cl —► a^b 

b -+ b .

The map <72 has been considered by Allouche, Betrema and Shallit in [ABS], al­
though the subword-complexity function is not discussed there. The aim of this 
section is to study the complexity functions and the associated symbolic dynam­
ics of these maps <7*.. There is a remarkable formula for the complexity function 
p2(n) associated with cr2, which was also discovered by Shallit. This generalises to 
a formula for Pfc(n), the complexity function of £7*. We define a sequence s*,(n) by 
writing down the natural numbers 1, 2, . . .  in order, with the powers of k appearing 
twice. Then the sequence of partial sums gives the complexity function p*(n), i.e.,

n
P k(n)  =  5 > ( i ) .

«=0
To illustrate this, we give some values for the case k =  2:

n 0 1 2 3 4 5 6 7 8 9 10 11 12
s2(n) 1 1 2 2 3 4 4 5 6 7 8 8 9
P 2(n) 1 2 4 6 9 13 17 22 28 35 43 51 60

The infinite sequence generated by £72 begins as follows:

aabaabbaabaabbbaabaabbaabaabbbbaab. . .

The sequence of run-lengths of ‘6’s is the so-called “ruler function”

1 ,2 ,1 ,3 ,1 ,2 ,1 ,4 ,1 ,2 ,1 ,3 ,. . .
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whose nth term is the index of the highest power of 2 dividing 2n. A similar pattern 
can also be verified for the sequence generated by <7*.

T h eorem  1.4.1 The function p/t(n) is given by the formula described above.

P r o o f  Since the alphabet A  has only two letters, it follows that p*(n +  1) — 
Pfc(n) is the number o f admissible words of length n which have non-unique right 
extension. We can replace “right” with “left” in the preceding statement, since every 
admissible word occurs infinitely many times in the symbol sequence. We give a 
characterisation of those admissible words which have non-unique left extension. 
This will allow us to enumerate those with a given length, and show that their 
number is given by s*(n +  1) as defined above. Noting that s/t(n +  1) =  p/t(n + 1 ) — 
Pfc(n) will complete the proof.

Define the words Wo, W i , . . .  as follows:

W0 =  ak~ l

Wi+i =  ba(Wi) i ^  0.

For example, if k =  3, we have

Wo =  an

Wi = baaabaaab

W2 = bbaaahaaabaaabbaaabaaabaaabb

We claim that the set o f initial segments of these words is precisely the set of 
(admissible) words with non-unique left extension.

P r o o f  o f  cla im  Let W  be an arbitrary word with non-unique left extension, and 
suppose there are i consecutive ‘6’s occurring at the beginning of W. If W begins 
with a, we set i =  0. We will show, by induction on t, that W  must be an initial 
segment of the word W^ By assumption, aW  and bW  are both admissible. For the
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case i =  0, W  must begin with a (assuming that W  is non-empty). We can see that 
W  cannot contain any ‘6’s since otherwise W would begin: a a .. .ab . . .  =  a^b. . .  for 
some j  >  1. Then aJ+1 and 6a-76 would both be admissible, giving a contradiction 
(note that consecutive ‘a ’s always occur in groups of length k in the infinite symbol 
sequence). Therefore W  =  a a .. .a  and the length of W  is at most k — 1, proving 
the statement for i — 0.

Now we assume the statement is true for i — 1, i.e., any word with non-unique 
left extension beginning with i — 1 ‘6’s is an initial segment of Wi-\. Let W  be 
a word with non-unique left extension, W  =  b 'a ..., and write W  =  bW '. Then 
aW , bW are both admissible and so abW', bbW' are both admissible. It can easily 
be seen that these words both decode uniquely into a sequence of the code-words 
cr(a) =  akb and cr(b) =  b. In the word abW1, the initial ‘aft’ must come from the 
code-word cr(a), and the second ‘b’ in bbW' must be the code-word cr(b) (the first ‘6’ 
could come from either of the two code-words). We can therefore write these words 
as ab\W' and b\b\W' where the vertical lines denote the boundaries o f code-words. 
Let W  be the (unique) word of shortest length such that W' is an initial segment 
of cr(W). Then, by looking at the diagrams:

. a | W  . . . ?

al I
, a b \ W ' . . . . . .  6

we can see that aW  and bW  are both admissible, i.e., W  has non-unique left ex­
tension. Since W ' begins with i — 1 consecutive ‘6’s, this must also be true of 

and hence of W . Therefore, by the induction hypothesis, W  is an initial 
segment o f W j_i. We will write this as W  h W i - Applying the map <r, we 
have a {W )  h <r(Wi-i). Since W ' a {W ), it follows that W ' h <r(PV<_i) ( V  is 
transitive). Multiplying by 6 gives bW 1 =  W  h ba(Wi-\) =  W* which proves the 
claim.

We can now count the words o f length n with non-unique left extension. The 
claim above tells us that each such word is an initial segment of some Wi, so 
the number we require is the number of words Wi with different initial segments of
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length n. Since (for any i) Wi begins with i consecutive ‘6’s, the words Wn, Wn+1, . . .  
all agree on their first n symbols, and the words W 0, W \,. . . ,  W n all disagree on their 
first n symbols. We are therefore interested in the number o f these words whose 
length is at least n (noting that the length of Wn is generally much bigger than n). 
Define l — l(n) to be the lowest value of i such that \Wi\ ^  n. Then the required 
number is the cardinality of the set {W i, Wi+i , . . . ,  W „}, which is n +  1 — l(n).

We now havepfc(n-l-l)—pfc(n) =  n + l —l(n) for n ^ 0, where pk is the complexity 
function. Define Sfc(n) so that Pfc(n) =  5Z”=0 Sfc(n), i.e., define «*,(0) =  p*;(0) =  1 
and sjt(n) =  Pk(n) — Pk(n — 1) =  n — l(n — 1) for n >  0. To complete the proof, 
we need to show that the sequences Sk(n) and §k(n) are the same, where Sfc(n) 
was defined as the sequence of positive integers with the powers of k appearing 
twice. One can easily check that Sfc(0) =  sjt(O) =  1 =  s*,(l) =  Sfc(l), and so 
the sequence Sfc(n) begins correctly (1,1, . . . ) .  Now we consider the behaviour of 
Sfc(rc) =  n — l(n — 1) as n increases by 1 (restricting attention to n ^ 1). The 
l(n — 1) term will be unchanged, except when n =  |Wj| +  1 for some i (in which 
case l(n) — l{n  — 1) =  1). To see this, note that if n =  |Wj| +  1, then l(n) =  i +  1 
and l(n  — 1) =  i. It follows that (for n ^ 1)

Using the description given earlier o f  Sfc(n), it is not hard to show that sk(n +  1) —

0 if n =  |W<| +  1 for some i,
1 otherwise.

An easy induction argument shows that

W l .  =  ( * - 1)**, 

I W U - t f  +  i - l ,

and hence
|Wj| =  ki+l + i -  1.

We therefore have

0 if n — k,+ l +  i for some i ^ 0,
1 otherwise.

s/b(n) is given by the same formula. This completes the proof. □
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From the formula, it is possible to obtain an expression for the asymptotic 
growth rate of p/t(n).

P rop os ition  1.4.2 The function Pfc(n) satisfies

^n2 -  C (n  log n) <  pk(n) <  ^n2 

for some constant C  and sufficiently large n.
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1.5 S ym bolic  D ynam ics

In this section we discuss aspects of the symbolic dynamics resulting from the 
maps <Jk and we compare this with the corresponding theory for primitive sub­
stitution maps. We describe in detail the connection between these maps and 
interval-exchange maps on a countable number of intervals.

As usual, A  denotes a finite alphabet of symbols, and the set o f (one-sided) 
infinite sequences over A , i.e., *4N will be denoted by E. We define the left-shift 
t : E —> E, (ai, 02, . . . )>-* (02,03, . . . ) .  This is a continuous map from E to itself 
when we give E the usual product topology, i.e., the basic open sets are the cylinders 
[xj , . . . ,  x v̂] =  { (a«) € E : a* =  Xj, 1 ^  i ^ N }■.

Given any (infinite) symbolic sequence s =  ( s„ )  6 E, we can turn it into 
a dynamical system as follows: Define (as usual) the orbit of s to be the set 
{s, t ( s),  t2(s ),  . . .} and define E„ C E to be the (topological) closure of the or­
bit of s. Then Es is a r-invariant subset of E and we can define (Es, r )  to be the 
dynamical system associated with s. For example, if s  is an eventually periodic 
sequence, the orbit o f s under the shift map r  is finite and hence its closure, E„, 
will also be finite. If we were to choose the sequence s randomly (say, by tossing a 
coin), the orbit of s would then be dense in E and so we would have Es =  E.

An alternative combinatorial characterisation of E , can be given. For any 
sequence x 6 E, we define the language o f  x, denoted by £ (x ), to be the set of all 
the (finite) subwords o f x. In other words, C(x)  is the set of x-admissible words, 
and is a subset o f A *, the set of words over A. Here, we are saying that a word 
is x-admissible if it is a subword of x. The notion of admissibility also carries over 
to infinite words (sequences). We say a sequence x is s-admissible if C(x)  C £(« ),  
i.e., all (finite) subwords of x are «-admissible. The following proposition gives an 
alternative definition o f E„, which is easily seen to be equivalent to the topological 
definition given above.

P rop osition  1.5.1 The set E„, defined above, is the set of «-admissible se­
quences of E.
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A dynamical system is said to be minimal if all its orbits are dense. In the 
dynamical system (E„, r ) , this means that for any x  € E„, the E,-closure of the 
orbit o f  x  is the whole o f E„. Note that “Enclosure” actually means the same thing 
as “closure” here (because E„ is closed). This means that x  e Es => Ex =  E„. In 
view o f this remark (and the proposition above), we can say that our dynamical 
system is minimal if and only if each sequence E , satisfies C(x) =  C(s). This 
gives a combinatorial characterisation of minimality in terms of the sequence s: the 
dynamical system associated with s is minimal if and only if

for all x  € E, we have C(x) C C(s) => C(x) =  C(s). (1)

A well-known result in symbolic dynamics says that the dynamical system 
associated with a sequence s is minimal if and only if s is almost-periodic (or 
recurrent). A sequence s  is recurrent if, given any (finite) subword W  o f s, there 
exists a positive integer N  =  N (W )  such that any subword U o f s o f length N  
contains the word W . This means that if a word W  occurs in s , then it occurs 
infinitely often, with bounded gap (i.e., the gaps between successive occurrences of 
W  are bounded). It can be shown that this is equivalent to condition (1), and we 
will generalise this in Theorem 1.5.2.

Let <7 be a substitution map, generating an infinite sequence s. It is easy to see 
that, in the case where a  is primitive, the sequence s is recurrent and the associated 
dynamical system is minimal. In fact, much more is true; the set E, is independent 
of the symbol used to generate the infinite sequence s. Also, the dynamical system 
is uniquely ergodic ([Q], Section V.4 on page 95). For any admissible word W , its 
frequency o f occurrence in a is well-defined, ami these frequencies can be used to 
describe the unique ergodic measure on E„. These results are proved by Queffelec 
in [Q],

The facts mentioned in the above paragraph all fail (in general) if we drop 
the requirement that the substitution a  should be primitive. As an example, if we 
consider the substitution a —► ab, b -> cc, c —> bb. we have

s =  abccbbbbccccccccbbb. . . ,
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and it is not hard to see that the symbols b and c do not have a well-defined frequency 
o f occurrence in s. However, we can weaken the minimality condition and we will 
define the notion of almost-minimality, which says that (generally) most orbits are 
dense.

Let A be a (non-empty) subset of the alphabet A. For a word W  (finite or 
infinite), we define \W\a to be the number of occurrences in W  o f symbols in A. 
Given an infinite sequence s with the associated dynamical system (£ ,, r ), we say 
that the system is almost minimal (with respect to the set A) if, for all x  € S ,  with 
\x \a  =  oo, the orbit o f x  is dense in £ a. Condition (1) then becomes:

For all x  € £ , we have (C(x) C C(s) and \x \a  =  oo) => C(x)  =  £ (s). (1')

Now we relax the condition that s is recurrent. W e will say a sequence s is almost 
recurrent (with respect to 4̂) if, given any (finite) subword W  o f s, there exists a 
positive integer N  =  7V(W) such that any subword U of s satisfying \U\a =  N  
contains the word W.

T h eorem  1.5.2 For a sequence s, condition (1 ') is satisfied if and only if s is 
almost recurrent. In other words, the dynamical system ( £ , , r )  is almost minimal 
if and only if the sequence s is almost recurrent.

P r o o f  The proof is virtually the same as the standard proof that the dynamical 
system is minimal if and only if s is recurrent.

First, suppose that s is almost recurrent. Let i  b ea  sequence such that C(x) C 
C(s) and \x \a  =  oo. We have to show that C(x) =  £ (s ). Let W  be a word in C(s). 
Since s is almost recurrent, there exists N  such that, for all U € C(s) with \U\a  =  N , 
U contains W  as a subword. Choose any U € C (x)  such that \U\a  = N  (this is 
possible since \x \a  =  oo). Then U € C(s) and so U  contains W  (by the almost- 
recurrence property). Hence W  6 C(x), showing that C(x) =  C(s) as required.

Now assume that s is not almost recurrent. We will construct (by a compactness 
argument) an infinite sequence x  which violates condition ( ! ') ,  i.e., Iil/i =  oo but
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£ (x )  is a proper subset of C(s). Since a is not almost recurrent, there exists a (finite) 
subword W  o f a such that, for all positive integers N  there is a subword U (N ) o f s 
with |{/(./V)|J4 =  N  which doesn’t contain the word W. We now apply the standard 
compactness argument to the sequence of words U(N).  Infinitely many of these 
words agree on their first symbol. Of these words, infinitely many will agree on 
their second symbol as well as their first. Continuing this process, we produce an 
infinite word x  such that any finite initial segment of x  is matched with infinitely 
many of the words U(N). It can easily be seen that x has all the required properties, 
i.e., |x|yi =  oo and £ (x ) C £ (s ), but W  is not a subword o f x and so £ (x ) ^  £ (s). 
This completes the proof. □

Up to now, the discussion has been about general sequences a which may or 
may not arise from a substitution map. We now describe how the theory relates to 
substitution maps.

The theorem above can be illustrated by applying it to the substitution map 
<T/t. This will also explain the use o f the term ‘almost’ . Here, the alphabet A  is the 
set {a , 6} and the map <Jk is described by a —> akb, b —► b. The infinite sequence s 
is generated by iterating this map, starting on the symbol a. Our subset A will be 
the singleton {a } . We will see later on that a is almost recurrent with respect to 
this subset, and hence the dynamical system is almost minimal.

The dynamical system (E„, r )  has a (unique) fixed point given by the sequence

6666666666. . . ,

which is unstable in the sense that, given any cylinder containing 666. . . ,  there are 
points (sequences) in the cylinder whose (forward) orbits are not contained within 
the cylinder. This is a consequence o f the fact that a contains arbitrarily long runs 
of consecutive ‘6’s, but does not actually terminate in an infinite run of ‘6’s. Indeed, 
one can consider the points a, r(a), r 2(a) etc. We can find k such that r k(a) begins 
with as many ‘6’s as we like, and therefore any open set containing 666. . .  will also 
contain such a r k(a).

In fact, the almost-minimality condition tells us that, given any z € E , with 
infinitely many ‘a ’s (i.e., not terminating in 666. . . ) ,  there will be points in its
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forward orbit which land in any (non-empty) cylinder. This means that any given 
forward orbit (z , r (z ), r 2(z), . . . )  is of one of the following types:

(i) If z  contains infinitely many ‘a’s, then the forward orbit of z is dense in £ ,.

(ii) If z  contains finitely many ‘a ’s, then the forward orbit of z eventually lands 
on the fixed point bbb. . . .

Most (uncountably many) orbits are o f the first type, whereas there are only 
countably many of the second type. Although this is not generally true for all pos­
sible substitution maps and partitions A C A, it illustrates that “almost minimal” 
means that most orbits are dense. Indeed, if we were to remove all those points 
of £ (s) which terminate in bbb. . . ,  we would still be left with a r-invariant subset, 
and the resulting dynamical system would then be minimal. O f course, the result­
ing subset o f E, would not be closed (and hence not compact) and so it would be 
unusual from a dynamical viewpoint.

It only remains to prove that s is almost recurrent with respect to the subset 
A. We will prove a more general result.

T heorem  1.5.3 Let a be any substitution map on the alphabet A  where <r(a) 
is a word beginning with a. We require that every symbol of the alphabet is “used” , 
i.e., for any symbol x  € A  there exists k such that <rk(a) contains x. Let s be the 
corresponding infinite symbolic sequence, and let A C A  be the set of symbols x  
in A  such that, for some k € N, the word ak(x) contains the symbol a. Then the 
sequence s is almost recurrent with respect to this subset.

Rem arks

(i) If <rk(x) contains a, then the words <rfc+1(x), a k+2 ( x ) , . . .  also contain a 
(because a [a) contains a). Therefore A is the set of symbols x  such that 
<rfc(x) contains a for all sufficiently large k. It also follows that there is a 
single k (independent of x ) such that rrfc(x) contains a for all x € A.

30



(ii) Given any x  A, we know by definition of A that crk(x)  never contains 
a. It follows that o k(x) cannot contain any other symbol from the set A. 
In other words, if x  £ A, then <r(x), er2( x ) , . . .  are words over the alphabet
A \ A .

(iii) Intuitively, we think of the set A as being as large as possible (generally 
speaking). If s is almost recurrent with respect to A, then it is also almost 
recurrent with respect to A' whenever A' C A.

(iv) If a is a primitive substitution map, then A  =  A. The converse is false, so 
Remark (iii) shouldn’t be taken too literally. As an example, the substitu­
tion map defined by a —y aba, b —> b is not primitive, though the sequence 
s =  ababab. . .  is clearly recurrent, and hence almost recurrent with respect 
to the set A =  A.

In order to prove the theorem, it is helpful to establish the following simple 
lemma:

Lem m a 1.5.4 Let W  be any word, and let M  =  maxxg/t |<t(x )|.4. Then we 
have

\*(W)\A *  M\W\a .

P r o o f  Writing W  =  W\Wi.. .wi, we have cr(W) =  <r(wi)cr(w2 ) • • ■ cr(wi), and 
hence

1=1
For the values o f i such that w, € D, we have ^ (u ),)^  =  0 by Remark (ii) above. 
These terms therefore contribute nothing to the sum. The number of terms remain­
ing in the sum is \ W \a and each o f these terms is bounded by M , hence the result.

□

The lemma is, o f course, valid when we replace a by a* throughout (although 
the value o f M  will depend on j ) .
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P r o o f  o f  th eorem  It is useful to introduce the notion o f ‘bounded ¿4-gap’ which
generalises the notion of ‘bounded gap’ . We say that two separate occurrences of a 
word W  in s are consecutive if there are no other occurrences of W  between them. 
More precisely, if SjSj+i . . .  s,+i =  SjSj+ i . . .  Sj+i =  W  for some i < j ,  then W  occurs 
in s at the places i and j .  If, for all k with i <  k < j ,  we have SkSk+i. . .  Sk+i i  
W ,  then the occurrences of W  (at the places i and j )  are consecutive. We will 
say that a word W  occurs in s with bounded ¿4-gap if, whenever we have two 
consecutive occurrences of W , they either overlap or there are a bounded number of 
symbols of A between them. In other words, whenever we write s as • • • W X W  ■ ■ •, 
and the corresponding occurrences of W  are consecutive, then I^U  is bounded 
(independently of whereabouts the words W  lie in s). (We also require that W  
occurs infinitely often in s.)

The notion of ‘bounded ¿4-gap’ differs from the notion o f ‘bounded gap’ in that 
there could still be arbitrarily many symbols between consecutive occurrences o f W. 
We only care about the number of these symbols belonging to ¿4. The definition of 
almost-recurrence can be rephrased by saying that s is almost recurrent whenever 
each admissible word W  occurs in s with bounded ¿4-gap. Note that, in order 
to show that the word W  occurs with bounded gap, it is enough to write s as 
X 1 W X 2 W X 3  • ■ ■ where the sequence of words (X<) is such that |XiU is bounded 
(independently of i). There may be extra occurrences of W  which aren’t exhibited 
by the above representation, but they don’t matter.

We need to show that, given any admissible word W ,  it occurs with bounded 
¿4-gap. Any admissible word W  is a subword of o J(a) for some j ,  and so it is 
sufficient to show that, for each j ,  the word <rJ(a) occurs with bounded ¿4-gap.

By Remarks (i) and (ii) above, we can choose k such that, for all x  € A ,  the 
word <rk(x) either contains the symbol a (when x  € ¿4) or consists o f symbols of 
A  -  A (when x  ^ ¿4). We can therefore write s =  <rfc(si)<rfc(«2) • ■ • =  U\U2  " ,  
where each Ui =  crk(si) is a word which either contains a or consists o f symbols in 
A  -  A. Letting M  =  maxl6 /t |<rfc(;r)|/t, it follows that, between any two consecutive 
occurrences o f  a, there are at most 2M  symbols from the set ¿4. This shows that 
the word ‘a ’ occurs with bounded ¿4-gap.
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We can therefore write s =  aW\aW2 aW 3 ■ • •, where the words Wj do not contain 
a and is bounded (independently o f i). Applying the map crJ (for fixed j) ,
we have

s =  <7J(a)i7J(Wi)cri(a )^ (W 2) • • • =  <r* (a)Xi<r* (a )X 2  • • •,

where Xi =  <yJ (W ,). To complete the proof, we only need to observe that | 
is bounded (for fixed j ) ,  which then implies that the word cr- (̂a) occurs with 
bounded A-gap. In fact, the lemma implies that ^ M\Wx\a where M  =
maxxeA \<̂ Hx )\a - The boundedness of \Xx\a therefore follows from the bounded­
ness of □
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1.6 Frequencies of words

In this section we will use ‘cr’ instead of ‘cr*’ for clarity.

Now that we have a rough topological description o f the dynamical system 
associated with <r, we move on to describe an invariant measure on a which depends 
upon the frequencies of the admissible words. We will show that all admissible 
words do (in this case) have well-defined frequencies of occurrence in s. First, we 
will find the frequencies o f the symbols a and b. The following formulae can readily 
be verified:

l<T"(a )|o = *"

It follows that, if the frequencies of a and b are well-defined, then they must be 
given by {k — l)/k and 1 /k respectively. We now show that these values do give the 
limiting frequencies of a and b.

Given an initial segment W  o f s, we can write it in the form:

W  =  tr"1 (a)<rn 3 (a) ■ • ■ an‘ (a),

where ni ^  n2 ^ • • • > rq ^  0. Here, er°(a) is understood to be the single symbol a. 
To explain how to construct this representation, we note that <xn+1(a) =  (crn(a))kb, 
i.e., to obtain <rn+1 (a), we concatenate k copies of <r"(a), together with the symbol 
b. (This fact is easily proved by induction on n.) If W  =  <r"(a) for some n, we 
are done. Otherwise, choose n such that |<r,l(a)| < |W| <  |<r” +1(a)|. Since we 
have strict inequality, it follows that W  is an initial segment of (ern(a))k. Therefore 
W  =  (tr’ ‘ (a))i W , where 1 ^ j  ^ k and W  is an initial segment of a “ (a). We can 
now set n j =  n2 =  • • • =  iij =  n and repeat the process with W . This establishes 
the above representation.

Noting that ni =  0 (log  |W|) and the exponents n, form a decreasing sequence 
with at most k repetitions of the same exponent, we can estimate the number of 
‘o ’s in W. It is easy to see from the formula; that |<7n(a)|a =  ĵjrH<Tn(a)| +  0 (1 ),
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where the constant of 0 (1 ) is independent o f n. We therefore have

|W'|0 =  k">(a)|0 +  . . .  +  |<7"'(a)la

=  ~ j j~ l£r"1 (a)l +  0(1) +  • • • +  ^ = - V ' ( a ) |  +  0(1),

where the number o f terms is at most k(ni +  1) =  0 (log  | W|). This gives 

\W\a =  ^ = - i ( K *  (a)| +  • • • +  K -(a )| ) +  0 ( l o g \W\)

=  ^ V | + 0 (log|W|), 

from which it follows that

\W\q
\W\

as |W| oo.

This proves that the frequency o f a is indeed given by (k — 1 )/k, which implies the 
corresponding result for b.

Once we know the frequencies of a and b, it is relatively easy to determine the 
frequency o f any given admissible word. Here, we are defining the frequency o f a 
word W  in s to be

J (W )  = lim
N—*oo

# (^ , .s  ,N )  
N

where # (W , s, N )  denotes the number o f occurrences o f the word W  in the initial 
segment o f » of length N . Using this definition of frequency, we can see that if an 
admissible word W  uniquely extends to an admissible word W '  =  W x  (by adding 
a symbol x  to the right of W ),  their frequencies are the same (if they exist), i.e., 
} ( W )  =  f (W ' ) .  Since every admissible word occurs somewhere in s other than at 
the beginning of s, we can say the same thing about unique left-extensions as well 
as right-extensions. Also, if a word W  has non-unique right extension, then we have 
f ( W )  =  f (W a )  +  f (W b )  (whenever these frequencies exist). Similarly, if W  has 
non-unique left extension, we have f ( W )  =  f ( a W )  +  f (b W ) .

In » the symbol a occurs in blocks of length k. Therefore, in each block, the 
first k — 1 ‘n ’s are immediately followed by o, whereas the last a is immediately
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followed by 6. From this we deduce

f(aa)
k2 ’

f(ab) =  i f  (a) =  ! L - i .

Similarly, we have / ( 6a) =  Also, since b has non-unique left extension, we 
have f(bb) — f(b )  — f(ab) =  ^¡. We can use the same ideas to find f(bbb), although 
we will only outline the method. We can uniquely decode s into a sequence of the 
words <j(a) and b, and we can observe that all the occurrences of er(a) inside s are 
accounted for in the decoding. The words tr(a) occur in groups of k, which are 
separated by varying numbers of ‘b’s, and so we deduce (as before)

f(cr(a)<T(a)) =  ^ -¡^ /(< r (a ))  =  ^  ^  ,

/Wo)i) = J/Wa))=^.
Here we have also used the fact that f (ab)  =  f(aab) =  ••• =  f ( a kb) =  /(o -(a )) =  
qjji. Now, since abb uniquely left-extends to akbb =  <r(a)6, we have f(abb) =  
Finally f(bbb) =  f(bb) -  f(abb) =

By suitably extending these arguments, it can be shown that f(b>) =  ¡¡U. We 
can also follow a different direction to find some other frequencies. For example, we 
know that f(ab)  =  f(aab) =  • ■ ■ =  f ( a kb) =  ^¿1. Therefore,

f(aa) =  f (a )  -  f (ab)  =  

f(aaa) =  f(aa)  -  f(aab) =  —----1- ~ — — ,

/(■ *) =

We can similarly work out expressions for f(tr(a)cr(a)), f(<r(a)a(a)a(a)) etc. Gen­

eralising further, we have /((<t' ( a))*) =  / ( ( t' ( « j )) =  + • Using these
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results, it is possible to find the frequency of any given admissible word by adding 
or removing forced symbols. The calculations are summarised in the following

P rop osition  1.6.1 For any admissible word W, the frequency of W  is well- 
defined and can be found by reducing it to one o f the following cases:

(i) f { V )  =  ¿ -  ( j  >  0),

(ii) / ( < r V ) )  =  ( —  1)?!rIJ  +  1} (t, j  >  0).

For example, f(aba) =  /(<r(a2)), f(abb) =  /(cr2(a)), f (bakb) =  /(<r(a)), etc. Us­
ing these frequencies, we can construct a measure /i on £* in the usual way, i.e., 
p([VF]) =  f ( W )  where [W] is the cylinder set determined by the word W. This 
measure is clearly r-invariant.
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An interesting, and apparently unsolved, question is whether or not a given sub­
stitution dynamical system can be conjugate (at least measure-theoretically) to an 
interval-exchange map (IEM). This can be answered in a few special cases. For ex­
ample, the well-known Sturmian sequences can arise both from substitution maps 
and from circle rotations ([CH], [HM]).

In this section, we will explicitly construct a conjugacy between the dynami­
cal systems associated with cr*, and an IEM on the unit interval [0,1] involving a 
countably infinite number of intervals. We will also investigate general conditions 
on a substitution dynamical system that will allow the construction o f a conjugacy 
with an IEM (with infinitely many intervals).

We consider IEMs on the unit interval [0,1] defined over a finite (or countably 
infinite) set of sub-intervals { I i ,  I 2 , • ■ ■} with a corresponding permutation map 
which describes how these intervals are rearranged. For example, the circle rotation 
map can be described as an IEM on two intervals, 7j =  [0, a] and I2  =  [a, 1]. 
The corresponding permutation map sends I\ to I2 and I2 to I\. We won’t be too 
concerned about the endpoints o f the intervals (they form a countable set), though 
these can be treated in a number of ways. For example, we could insist that all 
our intervals are half-closed at the left and half-open at the right. Our circle map 
example would then be described by

T : [0,1) — ► [0,1)

i m - o  (mod 1)

Alternatively, we could throw away all the endpoints and their pre-images, and 
replace each endpoint (or pre-image of an endpoint) x  with two new points, x — and 
x+ .  The orbit o f a point x -  would be described by looking at the orbits of points 
close to, but less than x - ,  and taking the limit (and similarly for x + ). This way of 
treating endpoints completely changes the topology of the dynamical system, and 
it also means that the map is no longer guaranteed to be bijective. Nonetheless this 
treatment seems more appropriate for our purposes.

1.7 Conjugacy with interval-exchange maps
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Given an IEM, we can label each interval Ik with a symbol from a finite alphabet 
A . We don’t require different intervals to be labelled with different symbols; indeed, 
this would be impossible for the case of an infinite number o f intervals and a finite 
alphabet. For any point x  in the interval [0,1], we can associate an infinite sequence 
of symbols to the orbit of x  under the IEM. The nth symbol of the sequence is given 
by the label of the interval Ik containing Tn~ 1 (x), where T  denotes the IEM on 

[0, 1).

It is not hard to  show that, for any symbolic sequence which arises in this 
way, its subword complexity function is always bounded above by a linear function 
(provided the IEM is defined on a finite number of intervals). Indeed, the number 
of words of length n cannot exceed the cardinality of the set

U  T ~k(s ).
0 f̂c<n

where S is the set o f endpoints of the constituent intervals o f the IEM. By treating 
the endpoints carefully (say, by insisting that the constituent intervals are half­
open), we can ensure that the map T  is one-one. It easily follows that the number 
of words of length n is bounded above by |S|n.

This therefore places a strong restriction on the kinds of sequences that can 
arise. We have already seen that this linear-growth condition is satisfied for se­
quences generated by a large class of substitution maps, and this is one of the main 
reasons why it is natural to ask whether there are connections between these two 
kinds of dynamical systems. We have also seen, however, that the maps a give rise 
to sequences which fail to satisfy the linear-growth condition. This means there are 
substitution maps which cannot be related to (finite) IEMs in the way described 
above. We will now describe a general method of setting up a conjugacy between 
substitution dynamical systems and IEMs on an infinite number of intervals, and 
use the maps rrk to illustrate the method.

Suppose, for simplicity, that A  =  {« ,/;}  (the method applies to any size of 
alphabet). As before, » is an infinite secpience of symbols in A, and is the 
topological closure o f  the orbit of s under the shift map. We assume that any

39



finite subword of s occurs at least twice (and hence infinitely many times) in s. 
Equivalently, any admissible word can be left-extended to a new admissible word (it 
is easy to see these are equivalent). We will also suppose that, for each admissible 
word W ,  there is an associated “frequency” , denoted f (W ) .  This will, for our 
purposes, be given by the frequency of occurrence o f W  in the sequence s, although 
this is not essential. We do, however, require that the function /  satisfies the right 
rules for frequencies, e.g., f ( W )  =  f (W a )  4- f (W b )  when Wa  and Wb  are both 
admissible. In fact, we could specify that, for non-admissible words W, f ( W )  =  0. 
This would allow us to state that f ( W )  =  f (W a )  4- f {W b )  for all words W .  We will 
refer to this property as a frequency rule. This frequency rule implies that f { W )  ^ 
f ( W x )  where x  is a symbol of A,  and hence f ( W )  ^  / ( W')  whenever W  is an initial 
segment o f W ' . We will also need the frequency rule: f ( W )  =  f (a W )  +  f (bW ).

The idea will be to assign a point in the interval [0,1] to each sequence z € Es. 
We do this by assigning a sub-interval of [0,1] to each finite initial segment of z. Let 
/„ ( z )  denote the interval assigned to the initial segment z\Z2 - ■ ■ zn o f z. Then the 
intervals In(z) will be nested, i.e., Ii(z )  D Iz{z) 3  • • • . The intervals will be chosen 
so that the length o f I„ {z )  is equal to f{z\Z2 ■ ■ • zn). In order for these intervals 
to define a single point, we will require that the length of I„(z)  tends to zero as n 
tends to infinity. In terms of the function / ,  we require that / (Z 1Z2 • • • zn) —> 0 as 
n —> oo for every sequence z 6 £ s. We will see in the following theorem that this 
condition is equivalent to the statement that f ( W )  —> 0 as |W| —> oo over all words
W .

T h eorem  1.7.1 Let E, be as above, and let /  be a function from the set of 
s-admissible words to the interval [0, 1], which satisfies the frequency rule f { W )  =  
f (W a )  4- f (W b ) .  Then the following are equivalent:

(1) / ( « i  • • • z„)  —► 0 as n —► oo for all z € E s,

(2) f ( W )  —► 0 as |W| —> oo, W  admissible.

P r o o f  Obviously (2) implies (1). To show (1) implies (2), suppose (2) is false. 
Then there exists e >  0 such that, for all N  € N there exists an admissible word
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W  o f length greater than N  with / (W ) > e. In other words, for our fixed e, there 
are arbitrarily long admissible words W  with f ( W )  >  e. We can therefore choose 
a sequence of admissible words W\, W 2 , ■ ■ . o f increasing length with f { W n) > e. 
Applying the standard compactness argument to this sequence of words, infinitely 
many of these words agree on their first symbol; o f these words, infinitely many 
agree on their second symbol as well as their first. Continuing, we find an infinite 
sequence w such that any initial segment of w agrees with the initial segments of 
infinitely many Wn. It follows that w is admissible, i.e., w 6 £ s, since, for any 
initial segment wi ■ ■ - wn o f w, there will be a word W m having w 1 ■ ■ - w„ as its 
initial segment. Since } ( W Tn) > e and /  satisfies the frequency rule, it follows that 
f {w i ,  • • • wn) > e for all n and therefore (1) is false. □

R em arks In the above theorem, £ „ could be any subshift of £  =  .4N, and an 
admissible word would be defined as any subword of a sequence in £ s. Also, we only 
need a weaker version of the frequency rule to hold, namely that f ( W )  ^ f (W ' )  
whenever W  is an initial segment of W '.

The theorem describes a requirement on £ s and /  for our nested intervals In{z) 
to define single points in the limit n —> 00. It remains to describe how the intervals 
In(z) are chosen. The interval Iu{z) will only depend on the first n symbols of z, 
and so we can write In{z) as I(z\ . . .  zn), and we think o f I {W )  as being the interval 
associated with the word W.

We define an arbitrary ordering on the symbols o f A  and extend it lexicograph­
ically to an ordering on A* and ,4N. In this case, A  — {a, b} and we will say that 
a <  b in the ordering. We will illustrate the method using the sequence

s — aabaabbaabaabbbaabaabbaabaabbbb. . .

generated by the substitution map <r2, and the function /  will be determined 
by the frequencies of occurrence in s o f the admissible words. The admissible 
words of length 1 (in lexicographical order) are a and b, and their frequencies 
are / ( h ) = /(b) = 1 / 2  (from tin; previous section). In general, we require that 
f (a )  +  /( /;)  =  !, which follows from the frequency rule if we specify that the empty
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word has frequency 1. We associate these words to intervals of length f (a )  and f(b)  
respectively. These intervals must be laid end-to-end in the order determined by the 
lexicographical order of the corresponding words. We therefore have 1(a) =  [0, 5] 
and 1(b) =  [5,1]. The admissible words of length 2 are aa, ab, ba and bb in lexico­
graphical order. Each of these has frequency 1/4 in s, and so we have I(aa) — [0, |], 
I(ab) =  [5,^], I(ba) =  [5, 5], I(bb) =  [|,1]. For words of length 3, we have 
I(aab) =  [0, A], I(aba) =  [£ ,§], I(abb) =  [§ ,£ ], I(baa) =  [|, f ], I(bba) =  [ f , |], 
I(bbb) =  [|, 1]. The following diagrams illustrate the first four stages:

a b

aa a b ba b b

aab

aaba aabb
----------1-------1------ h
abaa abba abbb baab --------- 1------1-----bbaa bbba bbbb
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Continuing this process, we obtain increasing refinements of the unit interval. 
Taking the limit n —> oo, we obtain a scheme whereby the sequences of E, are 
placed along the unit interval in lexicographical order. The condition f ( W )  —> 0 as 
| W| —► oo is needed to ensure that the sizes of the intervals tend to zero in the limit, 
and therefore a unique point of [0, 1] is assigned to any given infinite sequence of 
Eg. In this case, the condition on /  is indeed satisfied (from the previous section).

It is useful to compare with an example where the condition on /  is not satisfied. 
Define the sequence s to be the alternating sequence abababababab . . .  (this sequence 
can be generated by a substitution map, e.g., a —► aba, b —> bab). Here, the space 
Eg consists of just two points, ababab. . . and bababa . . . ,  and so it is impossible to 
allocate these sequences to every point o f [0,1]. In fact, for any given length, there 
are only two admissible words, and their frequencies are both 1/2. Therefore, at 
every stage of the process, the interval [0, 1] is divided up into just two sub-intervals, 
and thus the method fails to produce single points in the limit.

Going back to the previous example, we can see that every point in the interval 
[0,1] will be assigned to some sequence o f E , (because the condition on /  is satisfied). 
Given a point x  in [0,1], there are three cases to consider:

(1) x  is not an endpoint of any interval I {W ).  In this case, for any given value 
of n, there is precisely one admissible word Wu o f length n whose interval 
I (Wrl) contains x. Since these intervals I(W U) are nested, each word Wt is 
an initial segment of the next word Wxjr\. Hence there is a unique sequence 
of E(.s) corresponding to the point x.

(2) x  is an endpoint of some interval I {W )  and x  is not 0 or 1. Let m =  | W|.
Then there are exactly two admissible words o f length rn whose intervals 
contain x, say /(W'i„ft) =  [j/,x] and / ( WriKi,t) =  [x, z\, where y <  x  <  z and 
W  is one of the words H'W, This will also be the case for admissible
words of length m +  1, m +  2 etc. and we thus have two infinite sequences 
of E, which both correspond to the single point x.

(3) x  =  0 or x  =  1. In this case, the situation is the same as in case (1), i.e.,
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there is a unique sequence of E„ corresponding to the point x. This will 
be the least (if x  =  0), or the greatest (if x  =  1), sequence of E„ in the 
lexicographical ordering.

Hence the correspondence between sequences of E„ and points of [0,1] is one-one or 
two-one. Since there are only countably many admissible words (of finite length), 
there can only be countably many endpoints o f intervals I (W ) ,  and therefore we can 
say that the correspondence is one-one almost everywhere (with respect to Lebesgue 
measure on the unit interval). We remark that this “doubling up” of the endpoints 
o f intervals is similar to the treatment of endpoints o f IEMs mentioned earlier in 
this section.

Instead o f looking at words of length n (at the nth stage of the process), 
we could focus attention on those words having non-unique right extension. If a 
word W  has non-unique right extension, then the interval I {W )  splits into two 
“offspring” intervals I (W a )  and I(Wb).  If I (W )  =  [x,z], then I(W a)  =  [x, ^  
and I(W b) =  [y, z] for some y between x  and z. On the other hand, if W  is an 
admissible word which uniquely extends to the admissible word Wa, say, then we 
have I (W )  =  I (W a ).  This is because the intervals are nested (as described earlier), 
so I (W )  D I (W a ),  but f ( W )  =  f (W a )  (by the frequency rule) and so these two 
intervals have the same length, hence they are equal. This means that the only 
intervals which split into “offspring” intervals are the ones whose admissible words 
have non-unique right extension. In order to build up a tree o f offspring intervals, 
it is sufficient to record the words having non-unique right extension. This is done 
in the following diagram:
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bbaabaabb
baabb
baabaabb

b b b b
b b b a a b a a b b a a b a a b b b
b b a a b a a b b b
b b a a b a a b b a a b a a b b b
b a a b b b
b a a b b a a b a a b b b
b a a b a a b b b
b a a b a a b b a a b a a b b b

abaabb
aabb

aabaabb

a b b b
a b b a a b a a b b b
a b a a b b b
a b a a b b a a b a a b b b
a a b b b
a a b b a a b a a b b b
a a b a a b b b
a a b a a b b a a b a a b b b

The diagram shows a portion of the tree of admissible words with non-unique right 
extension. For each word in the tree, its offspring are obtained by adding a new 
symbol to the end o f the word, and then adding further symbols until we have 
a word with non-unique right extension. For example, the admissible word ah 
can be extended by adding either a or h. If wo choose a, we obtain the word 
aha which uniquely extends to the admissible word abaa. This in turn uniquely 
extends to abaab and finally we obtain the word abaabb which has non-unique right 
extension. From the earlier remarks about words with unique right extension, we 
have ¡(aba) =  ¡(abaa) — ¡(abaab) — ¡(abaabb). This illustrates the fact that we 
can find ¡ (W )  for any word W  by extending it to the right until we obtain a word 
with non-unique right extension. The tree diagram can then be used to find the 
corresponding interval (given the frequencies o f the words). In this case we have 
f (a )  =  f (b )  =  1/ 2, the frequencies of all the words in the second column are 1/4, 
those in the third column have frequency 1/ 8, and so on. In the tree diagram, the 
lexicographical ordering o f the words increases up the page. This is so we can rotate 
the diagram a quarter-turn clockwise to sec where the corresponding intervals lie, 
for example, ¡(aab) =  [0, £], ¡(ah) =  [|, j] ,  ¡(baab) =  [£, j]  etc.
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So far, we have described a correspondence between the sequences of Es and 
the points of the interval [0,1]. This means that the shift map r  : Eg —► E, induces 
a map from the unit interval to itself (we neglect those points of [0, 1] where the 
correspondence is two-one). This map will turn out to be an IEM on countably 
many intervals, and we will see that each interval of this map is associated with a 
(finite) admissible word with unique left extension.

The tree diagram contains a number o f portions which look similar. For ex­
ample, the portion consisting of ab and its descendants is similar to the portion 
consisting of aab and its descendants. Each descendant of ab corresponds to a de­
scendant of aab on adding an extra symbol a at the beginning. This is because 
the word ab uniquely left-extends to aab. For any word W , abW is admissible if 
and only if aabW  is admissible. There is therefore a direct correspondence between 
sequences of Eg beginning with ab and those beginning with aab. We expect that 
the shift map r  will induce a translation from I  (aab) to I(ab), and we will see from 
the following theorem that this is true.

T h eorem  1.7.2  Let s be a sequence o f ‘a ’s and ‘6’s, and suppose that the 
construction described above has been carried out using a frequency function / ,  
and so we have a correspondence between the sequences of Eg and the points of the 
interval [0,1]. We will assume that any admissible word can be extended to the left. 
Let U be an admissible word that uniquely left-extends to the word uU (u £ A). 
Let z be a sequence of Eg having uU as an initial segment (and so r(z ) has U as 
an initial segment). Let 6  : Eg —> [0,1] be the map defined by the correspondence 
described above. Let I(uU) =  [p, g] and I(U )  =  \p +  t,q  +  t] (the frequency rules 
imply that these intervals have the same length). Then 0(t(z)) =  0(z) + 1.

P r o o f  Let Z  be a word such that uUZ is an initial segment of z. We can think 
of the interval I(uUZ ) as being an approximation to the value of 0(z). We know, by 
definition of 6 , that 0(z) € I(uUZ). Also, the length of I(uUZ) tends to zero as the 
length of Z  tends to infinity, and so the interval I(u\JZ) represents an arbitrarily 
good approximation to 0(z) for sufficiently long Z. Similarly, the interval I(UZ) 
represents an arbitrarily good approximation to 0(t (z)). It is therefore sufficient to
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prove that I(UZ) =  I(uUZ) +  t. Here, we are using the notation \p,q] +  t to mean 
\p +  t,q +  t\.

We will use induction on the length of Z. The result is clearly true when Z  is the 
empty word, because I(U)  =  \p +  t ,q  +  t] =  I(uU) +  t. Suppose I(UZ) =  I(uUZ) +  t 
for some Z. We need to show that I(UZ')  =  I(uUZ')+t  where Z' is a right-extension 
of Z  by a single symbol (and uUZ' is an initial segment of the sequence z). The key 
fact we need is that UZ has unique right extension if and only if uUZ has unique 
right extension. This is because, for any word W , U W  is admissible if and only if 
uUW  is admissible (we require that all admissible words are left-extendible). There 
are therefore two cases to consider:

(1) UZ and uUZ are both uniquely extendible to UZ' and uUZ' respectively. 
In this case, I(UZ) =  I(UZ'), I{uUZ) =  I(uUZ')  and so the result holds.

(2) The words UZa, UZb, uUZa and uUZb are all admissible. In this case, the 
interval I(UZ) gives rise to the offspring intervals I(UZa) and I(UZb). If 
I(UZ) =  [p, r], then I(UZa) =  [p, q] and I(UZb) =  [9, r] (since UZa comes 
before UZb in the lexicographical ordering). The value of q is uniquely fixed 
by the value of f(UZa). Similarly, I(uUZ) =  [p +  t ,r  -ft] (by the induction 
hypothesis)^ and so we must have I(uUZa) =  [p +  t, q'] and I(uUZb) =  
[</', r+t] where q' is uniquely fixed by the value of f(uUZa). Since f(UZa)  =  
f(uUZa), the sizes of the intervals must match up (see diagram below) and 
therefore we must have q' =  q +  t. Therefore I(uUZa) =  I(UZa) +  t and 
I(uUZb) =  I(UZb) + 1. The result follows since Z' =  Za or Zb.

□

Case (2) is illustrated in the following diagram:
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p I(UZa) ? I(UZb) r

t -------------- *-

P+*__________ I(uUZa)___________g* I(uUZb) r+l

Theorem 1.7.2 allows us to find isolated sub-intervals of [0,1] on which the 
induced map is a translation ( r n i  +  i). If we can find enough admissible words 
with unique left extension, we will be able to partition the whole interval [0, 1] into 
these sub-intervals and therefore the map will be a piecewise translation mapping. If 
r  is an almost-everywhere one-to-one mapping (with respect to the measure induced 
by / ) ,  then the corresponding map on the unit interval will be one-to-one almost 
everywhere, and hence it will be an IEM. The number of intervals of the IEM will 
be countable since the corresponding words form a countable set.

We will therefore assume that r  is almost everywhere one-one. This means 
that, for almost all sequences z € z can be uniquely left-extended to a sequence 
z' such that t(z') =  z. Therefore, almost all points x  € [0,1] have the property 
that x  corresponds to a unique sequence z € £» and z has unique left-extension. 
We aim to show that, under this assumption, we can find a list of admissible words 
(W i, IV2, . . . )  with the following properties:

(1) Each word Wn has unique left-extension.

(2) No two words W m, Wn are initial segments of one another.

(3) For almost all sequences z (E £ „, there is a word WTl such that Wn is an 
initial segment o f z.

T h eorem  1.7.3 Suppose we have a list o f words satisfying the three properties 
above. Then the induced map on (almost all points of) the interval [0,1] is an IEM.

P r o o f  In order to show a map T  : [0,1] —> [0,1] is (almost everywhere) an 
IEM, we need to exhibit lists of disjoint intervals I\, / ? , . . .  and J\, J2, . . .  such that
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the intervals Ii, I 2 , ■.. are disjoint, the intervals J\,J2, . . .  are disjoint (ignoring 
endpoints), the map T  sends Ik to Jk by a translation for each k, and the lengths 
of the intervals I\, I ? , - . ,  sum to 1. (This implies that the lengths o f also
must sum to 1.)

If we set Jk =  I(Wk), then the intervals Jk are clearly disjoint (ignoring end­
points), since no two words Wi, Wj are initial segments of one another. Similarly, 
if we set Ik =  I(xkWk)  then these intervals are also disjoint. Here, the word XkWk 
is the word formed by uniquely left-extending Wk■ By the previous theorem, on 
setting [p, q] =  Ik =  I (xkWk) and [p +  f, q +  t] =  Jk =  I {W k), the induced map 
T[0, 1] —> [0, 1] (restricted to Ik) is a translation from Ik to Jk- It follows from re­
quirement (3) that the lengths of the intervals J\, J2} ■ ■ ■ must sum to 1. For almost 
all z € Es we have z € I (W n) =  J„ for some n, therefore the intervals Ji,J2, . . .  
cover almost all o f [0,1] and hence their lengths must sum to 1. This proves that 
the induced map T  : [0,1] —> [0,1] is an IEM, as required. □

Going back to the assumption made earlier that r  : Es —► E, is almost ev­
erywhere one-one, we need to show how to construct a suitable sequence of words 
W i, W2, . . .  satisfying the appropriate requirements.

We can certainly make a list o f (finite) words having unique left-extension, since 
there are only countably many such words. Let V), V j , . . .  be such a list. We need 
to show how to modify this list to produce a new list W j, W2, . . .  which satisfies all 
three requirements described earlier.

First, let Wi be the shortest word in the list Vi, V2, . . .  (if there is more than 
one shortest word, we just choose one of them). Now remove all the words from the 
list Vi, V2, . . .  which have W\ as an initial segment. Let W 2 be the shortest word in 
the new list V( , V2, . . . ,  and remove all the words having W 2 as an initial segment. 
Repeating this process ad infinitum gives a new list W i,W 2, . . .  o f words. If the 
process halts because we run out of words, then the new list will be finite. However, 
we will see that this can’t happen.

Once we have the list W i,W 2, . . we know that every word in the original
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list Vi,Va, . . .  has either been deleted at some stage of the process, or it has been 
included in the new list. It follows that, for every word Vm in the original list, there 
is a word Wn which is an initial segment of Vm. Therefore, every word having unique 
left-extension is an initial segment of some W„. Requirement (3) easily follows from 
this. For almost all sequences z 6 £ s, z has unique left-extension. Therefore, some 
finite initial segment V  o f z must also have unique left-extension (infinite words 
are admissible if and only if all their finite subwords are admissible). By the above 
remarks, there is some Wn which is an initial segment of V. Therefore W n is an 
initial segment of z and so requirement (3) is satisfied. (The other two requirements 
are easily seen to be satisfied.)

Note that we are still assuming that the frequency function /  satisfies f ( W )  —> 
0 as \W\ -¥ oo. Suppose the list o f words Wi, W 2 , . . .  turns out to be finite. Since 
their lengths sum to 1, the intervals / (W i) , / (W 2) , . - - must completely cover the 
unit interval. Hence every point x  € [0,1] lies in one of these intervals, and therefore 
every sequence z € Ea has one o f these words as an initial segment. Let M  be the 
length o f the longest word in the list. Then any word W  o f length greater than M  
can be right-extended to an infinite sequence z S E „. This sequence has some word 
Wk as an initial segment, as well as having IF as an initial segment. Therefore 
Wk is an initial segment of W .  Since Wk has unique left-extension, so does W. 
We have shown that every word o f length at least M  has unique left extension. 
Therefore we can keep left-extending such a word to produce arbitrarily long words 
(we are assuming that any admissible word can be left-extended). These words 
must all have the same non-zero “frequency” by the frequency rule for /  (since 
the left-extensions are unique), which contradicts our assumption that f ( W )  —> 0 
as |IF| —¥ 00. Therefore the list o f words Wi, W 2 , . . .  must be infinite, and so the 
process which generates them does not terminate.

Note that, even though the list of words is infinite, the IEM may nonetheless 
be defined using a finite number o f intervals, since different intervals for different 
words may coalesce.

In summary, we have a sequence a o f symbols o f A  =  {a, b} which is weakly re­
current, i.e., admissible words occur in a infinitely many times (therefore admissible
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words can be left-extended). This sequence gives rise to a dynamical system (Eg, r). 
We also (by assumption) have a frequency function /  which assigns a positive real 
number to every admissible word (and zero to every other word) satisfying the fre­
quency rule f{a\V) +  f {b W )  =  f ( W )  =  f ( W a )  +  f (W b) .  We assume the function 
/  also has the property that f { W )  —t 0 as I f  —> oo. The function /  induces a 
measure on the dynamical system (Eg, r)  and we suppose that the shift map r  is 
almost everywhere one-one with respect to this measure (in other words, almost 
all sequences of Eg have non-unique left extension). Under these assumptions, we 
have constructed a conjugacy (almost everywhere) between Eg and the unit interval 
[0,1] such that the induced map T  : [0,1] —> [0,1] is an IEM on countably many 
intervals. We now illustrate this with some explicit examples.

Consider the sequence s =  aabaabbaabaabbb. . .  generated by the substitution 
map <T2 (which we will write as cr). The tree diagram for this example has already 
been illustrated. We need to specify a list o f admissible words Wi, W? , . . .  satisfying 
the three requirements. Define the list of words

Uq =  ab, U\ =  baabb, Ui =  bbaabaabbb, . . . ,  Un =  bncrn(a)bn+1, . . .

and also define

Vo =  aab, Vi =  baabaabb, Vj =  bbaabaabbaabaabbb, . . . ,  V„ =  bncrn+1 (a) , . . . .

Then the list of words . . .  will be defined as Vo, Uq, V\, i / j , . . .  which can
easily be shown to have the following properties (we leave out the details):

(i) The words are arranged in lexicographical order,

(ii) Each word has non-unique right extension and unique left extension (Un 
extends to aUn and Vn extends to bV„),

(iii) The frequencies are - which sum to 1,

(iv) No two words are initial segments o f  one another,
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(v) Every sequence of apart from bbbbb . . . ,  has (exactly) one of these words 
as an initial segment.

The three requirements are therefore satisfied for this list o f words, and so it is 
possible to draw the graph of the corresponding IEM on the unit interval. Part of 
this graph is shown in the following diagram. The list of words Wi, W 2 , ■ ■ . appears 
up the left-hand side.
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For the case of the substitution map <73, we use the following list o f words:

aaab, aab, ab, baaabaaabaaabb, haaabaaabb, baaabb, . . . ,  

bna n(a3 )b, bna n{a2 )b, bna n(a)b,. . .

The frequencies of these words are which sum to 1 as before.
The words all have non-unique right extension and unique left extension. The first 
word is left-extended by adding the symbol b, the next two are extended by a, and 
so on (the pattern o f extensions being b, a, a, b, a, a, . . . ) .  The following diagram 
shows the graph of the corresponding IEM.
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1.8 Open problems

There are lots o f avenues for further research on the topics o f substitution maps, 
//-expansions, and interval-exchange maps. We present here some problems which 
have both a dynamical and a combinatorial flavour.

Given a substitution map, is there a way of finding out whether or not the 
associated symbolic dynamical system is (measure-1heoretically) conjugate to an 
interval-exchange map (given a suitable measure on the symbolic space)? There are 
several partial results, which we will describe, but the general problem appears to 
be open. For example, the Sturmian sequences that arise from substitution maps 
provide examples where the dynamical system is conjugate to a circle rotation ([CH], 
[HM]). There are also substitution maps derived from these by combining pairs of 
symbols into a larger alphabet. This construction is described in [Q], pp. 95-96. 
For example, the Fibonacci substitution map

<7 : 0 —► 01 

1 -> 0
generates the sequence

s = 01001010010010100101...
which can also be generated by a circle rotation map. We can represent this sequence 
using a larger alphabet {a, b, c }  where the letters a, b and c correspond to the words 
01, 10 and 00 respectively. For each subword of s o f length 2, we write down the 
letter corresponding to this subword. This produces the sequence

abcababcabcababcaba . . .

and it is not hard to see that this sequence is a fixed point of the derived substitution
map

a ' : a —> ab 

b —* c 

c  —> ab.

This sequence can also be generated by a circle rotation in a similar way to the 
original sequence, except we partition the circle into three intervals instead of two, 
as shown in the following diagram:



A A

Here, the circle rotation 4> maps the point B  to A, and C  to B. Any sequence of 
Os and Is produced by the circle rotation on the left will properly translate into a 
sequence o f ‘a ’s, ‘6’s and ‘c ’s produced by the circle rotation on the right.

Another partial result is given in [Si]. It was shown in [AR] that if a symbolic 
sequence has complexity function p(n) =  (k — 1 )n +  1 (where k is the size o f the 
alphabet) and it satisfies an additional combinatorial condition, then the sequence 
can be generated by an interval-exchange map on 2 k intervals. In [Si], it is shown 
that the sequence arising from the substitution map

1 -4 12 

2 -4  13

* - 1 - 4 1 *  

k —► 1

does indeed satisfy the required conditions, and hence the result o f [AR] can be 
applied.

Although the general problem is probably very difficult, it would be interesting 
if the problem could be solved for the special case o f substitutions arising from 
/^-expansions. For example, the map

1 -4 12 

2 -4  3 

3 -4 1
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generates a sequence having subword complexity p(n) =  2 n +  1. However, the addi­
tional combinatorial condition specified in [AR] is not satisfied (the right-extension 
properties of admissible words don’t work in the same way as the left-extension 
properties). Nonetheless, it may be possible to generate this sequence using an 
interval-exchange map.

The notions of substitution maps and interval-exchange transformations can 
both be generalised. Instead of iterating the same substitution map over and over 
again to produce an infinite sequence o f symbols, we could consider a finite col­
lection of substitution maps and iterate them in a random order. Under suitable 
conditions, this would produce an infinite symbol sequence. What can be said about 
the associated symbolic dynamics, and the subword complexity?

We can define an interval-translation map on the unit interval [0,1] to be 
a piecewise-differentiable map with derivative 1. This differs from an interval- 
exchange map in that the translated intervals may overlap one another, i.e., the 
map is no longer required to be bijective. These maps are studied in detail in [BK], 
and they will also be considered in the next chapter. It may be that such a map 
could generate a symbolic sequence which is invariant under a substitution map, 
but that sequence is not able to be generated by an interval-exchange map. It 
is not known whether or not the sequences generated by interval-translation maps 
necessarily have subword complexity functions that are bounded by linear functions.

57





2.1 Introduction

In this chapter, the main object of study is a certain skew-product extension o f the 
full one-sided two-shift with a circle rotation. This skew-product has been studied 
in depth by W. Parry in [P], and several interesting questions have been raised 
which are both combinatorial and dynamical in flavour.

In this section and the next two sections, we will give an overview of some 
of the material contained in [P], in order to indicate the connections between the 
results o f  section 2.4 onwards, and the dynamics of this skew-product.

Let £  =  .4N be the set of infinite sequences over the alphabet A  =  {0 ,1 }, and 
let t : £  —> E be the left-shift map. Let X  denote the product space E x [0,1). The 
skew-product map S on X  (with parameter a G R \ Q) is then defined by

S(x, y) =  (rx , y +  ax0 mod 1),

where xo denotes the first symbol o f  the sequence x. The probability measure /z 
on X  will be given by the product o f the Bernoulli (|, measure on E with the 
Lebesgue measure on [0,1].

The main problem is to determine the values of a for which we can construct 
a conjugacy between the dynamical systems S : X  —> X  and r  : E —> E using a 
specific partition of the space X .  The partition we consider is given by a  =  (.do, A\) 
where

A0 =  { (x ,y )  : 0 ^ 2/ < a i f x o =  0,0 ^ 2/ < l  — a i f x 0 =  l }  

and A\ =  X  \ Ao.

The map S can easily be seen to act as a measure-doubling isomorphism from 
Aq to X  and from A i to X .  This partition a  also has the property that, for (/*- 
almost) any point (x , y ) 6 X,  there are exactly two points which map to (x , y ) 
under S, one of which lies in Ao and the other in A\. Moreover, we can find a 
natural measure-preserving isomorphism 0 : Aq ► Ai  such that for (/z-almost) any
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point P  6 Aq, we have S(P)  =  S(<j>P). It follows that, for any (Borel) subset B  of 
X  we have

n({S~xB)  n  Ao) =  » ( ( S - ' B )  n  Ax) =  ^ ( B ) ,

i.e., the set S~1B  is equally split between the sets Aq and A\. An easy consequence 
o f this fact is that the partitions a, 5 _ 1a, S~2a  etc. form an independent sequence 
(in the sense that n((S~1Ao) D Ao) =  | etc.).

We would like to show that the partition a  is a strong generator for the skew- 
product S on X , from which it would follow that the skew-product S is (measure- 
theoretically) isomorphic to the shift map a. Equivalently, we would like to show 
that, for almost all sequences s g E ,  there is exactly one point of X  whose itinerary 
under the map S is given by A So, A Sl, . . .  (here, ,s0, .si,. . .  denote the symbols of 
the sequence s). It is known ([P], Theorem 6.1) that, for certain values of a which 
are well-approximable by rationals, the partition a  is indeed a strong generator. 
We don ’t yet know whether the same is true for values of a which are poorly- 
approximable by rationals.

For a pictorial representation of the dynamical system, we can represent the 
sequence space E by the unit interval [0, 1] on the real line (each sequence is con­
sidered as the binary expansion of some number between 0 and 1). The partition 
a  then appears as two L-shaped regions.
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2.2 A discrete version of the dynamical system
Instead of taking the product of E with the interval [0,1), we will consider the 
product o f E with the ring Z /g Z , where q ^  2 (we will write this ring as Z ,). The 
map S' on this new space X ' =  E x Z g will be defined as

S(x, y) =  (rx , y +  px0 mod q)

and the partition a' =  (A'0, A\) will be given by

A'0 =  {(*>!/) : 0 <  y < p if x 0 =  0,0 < y <  q - p  if x 0 =  1}

and A'x =  X '\ A g , where 1 ^  p ^  q — 1 and p is coprime to q. The rational number 
p /q  plays a similar role to the irrational number a, and p /q  can be thought of as an 
approximation to a.

It is shown in [P] that, for all values of p and q, the partition a ' is a strong 
generator for the system (S', X ') .  This result is used, together with a bound on the 
length of a certain code-word, to prove that a  is a strong generator for S whenever 
the number a is well-approximable by rationals.

We can picture this system by splitting the sequence space E into 2 halves, Eo 
and Ex, where E, denotes the set of sequences whose first symbol is i. This splits 
the space X '  =  E x Z ,  into portions (E j, { j } )  where i € {0 ,1 } and 0 < j  ^ q — 1. 
We represent each portion by a dot, so that our space X '  is represented by a 2 x q 
array of dots, and each dot will be described by an ordered pair o f numbers ( i , j )  
corresponding to the portion (E^, { j } ) .  We draw arrows (directed edges) between 
the dots to indicate the action of the map S', for example, a point in (Ei, {0 }) is 
(in some sense) equally likely to map to a point in (E0, {p }) or (E i ,{p }) , so we 
therefore draw an arrow from (1,0) to (0,p ) and another arrow from (1,0) to ( l,p ). 
The diagram for the case p =  2, q =  5 is shown below (each loop indicates an arrow 
from a point to itself):
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Z0

Referring back to the original system S : X  - »  X ,  we are interested in the 
points which visit the sets Aq, A i in some prescribed sequence under iteration of 
S. Solving the main problem amounts to showing that, for almost all sequences 
s =  «0*1*2 o f ‘0’s and ‘ l ’s, there is exactly one point p € X  such that

Sk(p) €  A ,k for all k, (1)

i.e., the point p visits the sets A q, A\ in the sequence determined by s. If we take a 
finite initial segment of s o f length n, we can consider the set o f points which visit 
A ,0, . . . ,  A ,n_l under iteration o f S (i.e., (1) holds when k is restricted to the values 
0 , 1 , . . . ,  n — 1). It would be sufficient to show that the diameter o f these sets (under 
a suitable metric) tends to zero as n tends to infinity.

In the diagram, it is therefore useful to reverse the directions of the arrows, 
to illustrate where points of X '  can come from under iteration of S'. We also
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colour each dot black if it corresponds to A'0, or white if it corresponds to A\. 
Each dot will then have two arrows leading from it, one landing on a black dot 
and the other landing on a white dot. We will refer to these arrows as “black” or 
“white” respectively. The diagram represents a directed graph, whose vertices are 
represented by dots, and the directed edges by arrows.

Z0
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2.3 A code-word problem
In [P], the following code-word problem is considered: Let ‘B ’ and ‘W ’ denote 
instructions to follow a black arrow and a white arrow respectively. Given a start 
vertex (a dot in the above diagram), a sequence of these instructions will determine 
a unique walk along the directed graph. The problem is to find a (finite) sequence 
of instructions (a code-word) such that, if we follow the instructions starting from 
any vertex, we always finish up at some fixed vertex, independent o f the starting 
vertex.

This problem is solved in [P] by considering the graph of levels obtained by 
identifying each dot (0, k) with the corresponding dot (1, k). Level k o f the new 
graph corresponds to the dots (0, A:) and (1, k). The important observation is that, 
i f O ^ f c ^ p —1 then the instruction ‘B ’ means ‘stay at level k' and the instruction 
‘W ’ means ‘move to level k +  q — p'. Also, if p  ^ k ^  q — 1, then ‘B ’ means ‘move 
to level k — p' and ‘W ’ means ‘stay at level k\ This is illustrated in the following 
diagram (for the case p =  2, q =  5):
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The aim is to find a code-word of ‘B ’s and ‘W ’s such that, when the instruc­
tions are carried out starting at any level, we finish at some fixed level. In the 
diagram above, the code-word BBW BW BB solves the problem. If we follow these 
instructions starting at any level, we always finish at level 0. In fact, this is the 
unique code-word of minimal length which solves this particular problem. (This 
can be verified either by an exhaustive search, or by using the algorithm which will 
be described later.)

This problem is equivalent to the one-player game described in [P], section 2. 
In this game, we place one counter on each of the levels. For each instruction (B 
or W ), we move the counters simultaneously. Whenever two counters occupy the 
same level, they fuse together into one counter. For example, in the diagram above, 
if we begin with the instruction ‘B ’ , the counters at levels 2, 3 and 4 would move to 
levels 0, 1 and 2. Levels 0 and 1 would then contain two counters, which fuse into 
one, so that levels 0, 1, 2 contain one counter and levels 3, 4 are empty. The object 
of the game is to carry out moves until all the counters have fused together. In [P], 
it is shown that the game can always be completed using at most q2 moves.

The problem can also be reformulated by defining the functions / b and /w  
from 7Lq to Z q as follows:

/ b ( * )  “  {  k  _  p i f

* , < » ) - { £ + * - » >

These functions / b and /w  describe the actions o f the instructions ‘B ’ and ‘W ’ 
respectively. The problem is equivalent to finding a code-word c\.. ,cn o f ‘B ’s and 
‘W ’s such that the composite function f Cn o • • - o / cl maps the set Zq onto a set with 
a single element.

This reformulation will be useful later on when we describe a continuous version 
of the problem, where the set Zq is replaced by the interval [0,1).

0 <  k ^  p — 1 
P ^ k ^  q — 1

if 0 ^  k ^  p — 1 
if p ^  k ^  q — 1
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2.4 Analysis of the one-player game
In [P], it is shown that the object of the game can be achieved using a code-word 
of length at most q2. The strategy that is used is to select a counter, called the 
leader, and to choose the moves so that the leader always moves. In the example 
described above, the leader was chosen to be the counter at level 4, giving rise to the 
code-word BBW BW BB. We will show that, for some choice of leader, this strategy 
does indeed produce the optimum code-word.

To do this, we will consider marked cards instead of unmarked counters, because 
we will want to keep track of the position of the cards after each move. Initially, 
we place a single card at each position 0, 1, . . . ,  q — 1, and we mark each card with 
its position number, as in the following diagram (p =  2, q =  5):

Each position can either be empty, or hold a pile of cards. The piles are moved 
according to the instructions (B or W) and, whenever a pile is moved to an occupied 
position, it is placed on top of the pile already there. The following diagram shows 
the position after the instruction ‘B ’ is carried out:
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If instruction ‘B ’ were carried out again, card 4 would move from position 2 
to position 0, on top of cards 0 and 2. The aim is therefore to move all the cards 
into a single pile. Our first observation is that, if the cards have successfully been 
moved into a single pile, the order of the cards in that pile is uniquely determined 
up to cyclic rearrangement.

Theorem 2.4.1 Suppose that, after applying some code-word, all the cards 
have been moved into a single pile according to the rules of the game. Then the 
order of the cards in that pile (reading from the bottom card upwards) is

u,u +  p,u +  2 p , . . . , u + ( q -  l)p

where u is the number of the bottom card, and the arithmetic is carried out modulo 
q (so that the top card is also given by u — p).

Proof The idea is to watch what happens to two cards which differ by an 
amount p as the moves take place. We will show that two such cards end up next 
to each other, or at the extreme top and bottom of the final pile.

Lemma 2.4.2 Consider the two cards v and v +  p, where 0 ^  v ^ q — 1. 
(Throughout this section, arithmetic will be carried out modulo q.) At each stage 
of the game, (exactly) one of the following is true:

1) The card v is immediately below card v +  p in the same pile.

2) The card v is at the top of the pile at some position h, and the card v +  p is at 
the bottom  of the pile at some position h -f kp, where 1 ^ k ^  q. Moreover (if 
k ^ 2), the positions h +  p, h +  2p , . . . ,  h +  (k — l)p  are all empty.

Remarks
(i) If statement 1) holds, then it will continue to hold for all subsequent moves. 

Once the two cards are in the same pile, they cannot be separated by subsequent 
moves.
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(ii) In statement 2), if k =  q, then the card v is at the top o f the pile at position h 
and the card v +  p is at the bottom of the same pile. It follows from the final 
sentence of 2), and the fact that p, q are coprime, that all the other positions 
must be empty.

Proof Whenever a card at position h moves, its new position is always h — p 
modulo q (whether the move is ‘B’ or ‘W ’). After the move, position h is then empty. 
Also, any new cards arriving at position h + p  must have come from position h. For 
example, if positions h and h +  p are both empty at some stage, then position h 
will definitely be empty after the next move.

Initially, statement 2) is true (with h =  v and k =  1). Suppose, after doing 
some moves, statement 2) holds. We will show that either 1) or 2) holds after the 
next move. The lemma will then follow by induction on the moves of the game.

There are four cases to consider, depending on whether the cards v and v +  p 
move or stay put:

(i) Cards v and v +  p both move. Card v (at the top of its pile) moves from 
position h to position h — p and so it remains at the top of its pile. Card 
v +  p (at the bottom o f its pile) moves from h +  kp to the empty position 
h +  (k — l)p  and so it remains at the bottom of its pile. If k ^ 2, then positions 
h + p , h +  2p, . . . ,  h + ( k — l)p are all empty before the move. Therefore, after the 
move, positions h +  p, h +  2p , . . . ,  h +  (k -  2)p will remain empty, and position 
h will become empty. Statement 2) will therefore hold, with the new value of 
h being the old value of h — p.

(ii) Cards v and v +  p both stay. The analysis is very similar to that for case (i). 
All the positions h +  p, h +  2p,. . .  h +  (k -  l)p  will remain empty.

(iii) Card v moves and card v +  p stays. In this case, the value of k will increase 
because we create an extra empty slot at position h. So the new value of k will 
be the old value of k 4- 1, and the new value of h will be the old value of h — p.
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(iv) Card v stays and card v +  p moves. Again, the analysis is very similar, except 
for the case where k =  1. If k =  1, the card v is at the top of the pile at position 
h and the card v +  p is at the bottom of the pile at position h + p .  These piles 
will then come together, so that the card v +  p is immediately above card v in 
the same pile. Statement 1) will therefore hold. □

To prove the theorem, let u be the card at the bottom  of the final pile. Applying 
the lemma to cards u and u +  p, we see that the card u +  p is immediately above 
card u. Similarly, card u +  2p is immediately above card u +  p, and so on, until we 
reach the top of the pile. □

We have seen that, whatever moves we use to solve the game, the final order 
of the cards is completely determined by the bottom card of the pile. In particular, 
the top card of the pile will be u — p when the bottom card is u. Our next theorem 
gives the converse o f this result.

Theorem 2.4.3 Let u € Z g. Suppose, after carrying out some sequence of 
moves, that the card u — p lies above the card u in the same pile. Then the game 
has been solved, with the card u at the bottom of the final pile.

Proof We apply the lemma o f  the preceding proof to the cards u — p and u, 
with v =  u — p. Statement 1) is false, and so statement 2) must be true. The card 
u — p therefore lies at the top o f some pile and the card u lies at the bottom  of the 
same pile, hence k =  q and the other piles are empty. □

Suppose we wish to find a code-word that solves the game, and we specify that 
the card u should end up at the bottom o f the final pile. The theorem above states 
that we only need to consider the positions of the cards u and n — p, so the problem 
reduces to finding a sequence of moves that places the card u — p on top o f the card 
u.

We aim to show that the best code-word is given by the sequence o f instructions 
which always moves the card u — p. We can already see that any move leaving the
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cards u and u — p fixed is a wasteful move. This is because such a move can be 
deleted from the code-word, leaving a shorter code-word that also solves the game. 
It remains to show that a move which fixes u — p but moves u is also wasteful.

Theorem 2.4.4 Let c be a minimal code-word such that, when the instructions 
are carried out, the cards are moved into a single pile whose bottom card is u. (There 
will be different code-words for different choices of u.) Then each instruction of c 
causes the card u — p to move, i.e., u — p is the “leader” card.

Proof Suppose c =  Ci . . .  cn contains an instruction c* that leaves the card 
u —p fixed. We will show that the code-word d  =  Ci . . .  Ck-iCk+i. . .  c„ obtained by 
deleting c* has the same effect as c, thereby contradicting the minimality of c.

If the move c*, leaves the card u fixed, as well as the card u —p, we have already 
seen that the new code-word d  will have the same effect as c. We can therefore 
assume that c* moves u and leaves u — p fixed.

Consider the position of the cards after the moves c j . . .  Ck-i have been carried 
out. At this stage, cards u and u — p are the only cards that matter. We know that 
the sequence of moves Ck--.Cn will position the card u — p above u. We want to 
show that the moves cjt+ i .. .c „  also have the same effect.

We apply the move c*, but we also remember where the card u was before 
applying this move. We can do this by inserting an extra card to mark the old 
position o f u, so that there are now three cards to consider. We apply the sequence 
of moves Ck+\ - - -c„  to these three cards, which are labelled A, B  and C on the 
following example diagram:
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Cards A  and B  represent the positions o f  the “leader” card u —p and the card u 
respectively, just before the move c* is carried out. Card C  represents the position 
of the card u after the move c* is carried out (this move leaves card A  fixed). After 
the moves c^+x ■ ■. cn have been carried out, we already know that the leader card A 
will be above card C  in the same pile. The card B  will be in the position that card 
u would have been if the move c* was omitted. In other words, after applying the 
shorter code-word c' to the initial configuration, A  and B  mark the final positions 
of the cards u — p and u respectively. If we applied the original code-word c instead, 
A  and C  would mark the final positions o f u — p and u (and we know that u — p 
ends up above u in the same pile).

We claim that, when A  finally lands above C, the card B  will end up sandwiched 
in between, i.e., A  has to land above B  before (or at the same time as) it lands 
above C. To prove this claim, let a, b and c be the positions of A, B  and C  (before 
applying the moves c/t+i. . .  c„). If a =  b, we are done, so assume a ^  b. We also 
know by definition that 6 ^  c (because the move c* causes the card u to move from 
position b to position c). Also a ^  c because the move c* leaves the card at position 
a fixed while moving the card u from position b onto position c. The cards A, B  
and C  are therefore at different positions. W e can fill out the remaining positions 
with new cards, label them all with their position numbers, and apply lemma 2.4.2 
to the final positions of the cards B  and C  (using the code-word Ck+x ■ . ■cn, with 
v =  c ,v  +  p =  b).

Statement 2) cannot hold, because card v (card C)  isn’t at the top o f its pile 
(card A  is above it). Therefore statement 1) holds, and card C  is immediately below 
card B  in the same pile. This proves the claim, and the theorem then follows. □

We now describe an algorithm for finding the shortest code-word that solves 
the problem. For each value of u from 0 up to q — 1, put a card at position u 
and another card at position u +  p, leaving the other positions empty. Carry out, 
and record, the sequence of instructions that always moves card u at each stage, 
stopping when the card u lands on top of the card u + p .  This gives a code-word for 
each value of u. The required code-word is the shortest one of these code-words.
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The case p =  2, q =  5 is illustrated below. The code-words for each value of u 
are given:

u Code-word Final position of leader

0 W BW BBW BW BB 0
1 W BBW BW BB 0
2 B W BW BBW BW BB 0
3 B W BBW BW BB 0
4 BBW BW BB 0

Here, the shortest code-word corresponds to the value u =  4. This confirms 
our earlier assertion that BBWBWBB is the unique minimal code-word for the case 
p =  2,q  =  5.

Theorem 2.4.5 The algorithm described above does indeed produce a minimal 
code-word that solves the problem.

Proof Let c be any code-word which solves the problem, and let u be the card 
at the bottom of the final pile after the instructions of c are carried out. By the 
previous theorem, the code-word found by the algorithm (for this particular value 
of u) is at most as long as c. It follows that the algorithm outputs a code-word 
which is at most as long as c. □

Some interesting patterns can be seen from the table of code-words above:

(i) The shortest code-word is symmetric (i.e. it is the same as its reversal).

(ii) The shortest code-word is a final segment of every other code-word.

(iii) As the value o f u increases by an amount p, the length of the code-word in­
creases by 1. More precisely, if u is the value o f u corresponding to the shortest 
code-word, and l is the length of this code-word, then the code-word corre­
sponding to u =  u +  pk has length l +  k where 0 ^ k ^ q — 1.
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(iv) The final position o f the leader is independent of the initial choice of leader.

Computer experimentation confirms that these statements hold for many dif­
ferent values of p and q, but we do not yet have a general proof. Another unsolved 
problem is to determine, efficiently, the optimum value of tt, without having to 
calculate the code-word for each possible value.

The code-words that are produced by the algorithm are examples of the classical 
Sturmian words, which are generated by circle rotations, and have been extensively 
studied in the literature ([CH], [HM]).

♦
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2.5 A generalisation
The methods o f the previous section can be applied to a more general problem. In 
the previous problem, we coloured the elements of 2.,, with two colours, black (B) 
and white (W). The positions 0 ,1 , . . .  , p  — 1 were coloured white and the positions 
p, p +  1 , . . . ,  q — 1 were coloured black. A move consisted of choosing one of the 
colours ‘B ’ , ‘W ’ and, for each position with that colour, moving the cards from that 
position to the next position in the cycle 0 —> p —► 2p —> • • • —> (q — l)p  —> qp =  0.

We can generalise the problem as follows: Choose any cycle pi —► P2 —> ■ • • —> 
Pq —t Pi, where p, 6 Z ,  and all the p*s are different. Also, choose a colouring of 
the elements o f Z ,  (positions) using the k colours C\,. . .  ,Ck (so that each position 
is given a single colour). A move then consists of choosing a colour and, for each 
position of that colour, moving the cards according to the cycle. Starting with a 
single card at each position, the aim is to choose a sequence of colours such that, 
when the moves are carried out, the cards all end up in a single pile.

To illustrate this, we choose the cycle 0 —► 1 —¥ 2 —> 3 —> 4 —> 5 —> 0 on Z G, 
and we colour the positions 0,1,3 black (B) and the positions 2,4,5 white (W). The 
diagram shows the position after the move ‘B ’ has been carried out.
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The methods used to prove the results of the previous section can also be used 
to prove analogous results for the generalised problem. In particular, an optimal 
code-word can always be found by choosing a leader, and then ensuring that the 
leader always moves. The lengths of the resulting code-words are bounded by q2 
as before, and the proof in [P] can be adapted here. The following table shows the 
code-words arising from the above example, for each choice of leader position u.

u Code-word Final position of leader

0 BBW BW W BB 2
1 BW BW W BBW BW W  0
2 W BW W BBW BW W  0
3 BW W BBW BW W  0
4 W W BBW BW W  0
5 W BBW BW W BB 2

We can see from the table that there are two optimal code-words, both of 
length 8, corresponding to u =  0 and u =  4. Statements (i), (ii), (iii) and (iv) of the 
previous section all fail to hold for this example. In order to prove these statements 
for the problem of the previous section, it seems that special properties of Sturmian 
words will need to be used.

It is worth mentioning a possible connection with interval-exchange maps. The 
diagram below shows a problem where three colours are used to colour the elements 
of Z 7 .  These elements are arranged to form three intervals, coloured white (W), 
grey (G) and black (B). The interval-exchange map is given by swapping the white 
and black intervals, and moving the grey interval to fit in between. If a card is 
placed at one of the positions, it will move along a cycle which visits every position, 
i.e., the cycle is given by 0 —► 5 —> 1 —>6 —> 2 —> 3 —► 4 —► 0.
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The table of code-words for each leader position is shown below.

u Code-word Final position of leader

0 W BW BGGBW BW B 2
1 W BGGBW BW B 2
2 GGBWBWB 2
3 GBW BWBGG 4
4 BWBWBGG 4
5 BW BGGBWBW B 2
6 BGGBW BWB 2

As in the previous example, there 
spond to u =  2 and u =  4.

are two optimal code-words, which corre-

77



2.6 A continuous version of the one-player game
In the one-player game studied in the previous sections, we considered a finite set 
Z q o f positions, which were initially occupied by counters or cards. These counters 
then moved according to certain rules and the objective was to find a sequence of 
moves which caused all except one o f the positions to be empty.

At each stage of the game, any given position is either empty or occupied. 
We can describe the configuration at any stage of the game by specifying which 
positions are empty and which are occupied. This can be done by specifying the 
subset A C  Zq of  occupied positions.

The functions / b and /w , defined at the end o f Section 1, describe the move­
ment of the counters under the instructions ‘B ’ and ‘W ’ respectively. It follows 
that, if the set A represents the configuration of counters at some stage of the 
game, then / b (A) represents the configuration after the move ‘B ’ has been carried 
out. Similarly, the move ‘W ’ transforms the configuration A  into fw (A ) .  The ob­
ject of the game is to compose these functions together, in some sequence, so that 
the composed function maps TLq to a set with just one element.

In the continuous game, we replace the finite set Z9 with the interval [0,1), 
and we define the functions / b and /w  as follows:

The parameter a is an irrational number between 0 and 1 (without loss of gener­
ality, we can assume a <  1/2). We colour the intervals [0, a) and [a, 1) white (W) 
and black (B) respectively, so that the instructions ‘B ’ and ‘W ’ correspond to the 
functions / b and /w - We think of the interval [0,1) as a set of uncountably many 
positions, each of which is either empty, or occupied by a counter. The instruction 
‘B’ moves the counters in the black interval, and leaves the counters in the white 
interval fixed (and vice versa for the instruction ‘W ’).

0 < x  < a 
a ^  x  <  1
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The object of the game is to choose an infinite code-word c =  C\C2 . . .  so that, 
as the instructions are followed, the diameter of the set of occupied positions is 
made arbitrarily small (under the standard Euclidean metric). We require that, for 
any e >  0, there exists n € N such that the diameter of the set f Cn o ■ ■ ■ o f Cl ([0,1)) 
is less than e.

We don’t require this diameter to tend to zero as n tends to infinity, because this 
is easily seen to be impossible. Once the set o f  occupied positions becomes small, 
the only way to get it to become smaller is by splitting it into two widely-separated 
chunks, and then bringing them together again. However, we are interested in 
whether the set can be made arbitrarily small.

We conjecture that, for any irrational value of a, this problem can be solved. 
Although the problem remains open, we will prove the conjecture for the case a =  
(3 -  y/5)/2, as well as for other closely-related numbers. We hope that a solution 
of this problem will shed light on the original skew-product considered in [P].

Let b =  1 — a, so that o and b denote the lengths of the white and the black 
intervals respectively. We will see that the nature of the problem is determined by 
the continued fraction expansion of b/a. We illustrate the actions of the functions / b 
and /w  using the following diagrams. Here, the domain and target of each function 
are represented by horizontal lines, and we assume without loss of generality that 
a <  1/2 <  b. The advantage of this representation is that we can visualise the 
composition of two functions simply by stacking their diagrams, one on top of the 
other.
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2.7 Renormalisation
The technique o f renormalisation in dynamical systems will prove to be very useful 
in analysing the continuous one-player game. We will begin by illustrating the case 
where a <  b <  2a. Initially, the set of occupied positions A  is the interval [0,1). 
After applying the function / b , this set becomes the interval [0,6) and so we have 
succeeded in reducing the diameter from 1 to b. We now focus our attention on this 
subinterval [0, b) and consider what happens as we apply various sequences of the 
functions / b and /w -

The diagram below illustrates the effect of carrying out /w  and then / b- It 
can be verified, either from the diagram or by direct calculation, that the composite 
function / b o / w  is given by

so that it acts as a circle rotation on identifying the endpoints of the interval [0,6).

0 a b-a a

b-a a a
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The function / b can also be restricted to the interval [0, b) and is given by

/ b (x ) =  | x  if 0 ^ i < a  
x  — a if a ^  x  <  b.

We now have two functions, / b °  /w  and / b which map the interval [0, b) to itself. 
For convenience, we label these functions b y and Wy respectively, and we set 60 =  / b , 

wo =  /w -  Our problem is now reduced to applying the functions b1 and wy, in some 
sequence, to the interval [0, b) so that the resulting set has arbitrarily small diameter. 
This is the same as the original problem, except that the original functions bo and w0 
have been replaced by bi and Wy, and these new functions act on a smaller interval. 
A solution to the new problem can be modified to give a solution to the old problem 
by carrying out the substitutions by =  b0ow0 and wy =  b0. This process is similar to 
the standard notion o f renormalisation in the theory o f dynamical systems, and we 
will use this idea to prove our conjecture for special values of a. The new functions 
are illustrated in the following diagram:

<

b
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Let a' = b — a and b' =  a. T h e  m ap W\ can  b e  seen to  be  a smaller, reflected 

version o f  the m ap wo, w ith  a' and b' in place o f  a  an d  b. In fact, in the case where 

a =  (3 — \/5 ) / 2 , the m ap w\ is exactly  a scaled-dow n , reflected copy  o f  w0.

So far, we have described the first stage o f  the renorm alisation procedure for 

the case w here a < b < 2a. For the case 2a < b < 3a, the procedure will be similar, 

except that we will set &i =  b0 o b0 o w0. In general, for  the case na < b < (n + l)a , 

we will set
n terms

b i =  bo °  • • • °  bo o w0 

w i =  b0.

T he follow ing diagram  illustrates the case n =  3:
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H ere, we have set a' =  b — 3a, b' =  a  so  that a =  b', b =  a' +  3b'. It can be  seen 

from  the diagram  that b\ maps the interval [0 ,1) on to  the interval [0, a ' +  b'). W hen 

restricted  to  this interval, this m ap is g iven  by the form ula

x + a' i f  0  ^  x  < b' 
x — b' i f  b' ^  x < a' +  6 '.

In general, i f  na <  b < (n +  l )a , we set a' = b — na  and b' =  a. T he function  b\ 

m aps the interval [0 ,1 ) on to the interval [0, a ' +  b') as before. W h en  restricted to 

this interval, the function is given by th e  above form ula.

W e have defined the function u>i t o  be the sam e as b0, b u t  restricted to  the 

interval [0, a ' +  b'). Prom  the form ula fo r  b0: i.e.,

T h e  formulae given for b\ and w i are va lid  for all positive integers n. T he description  

o f  th e  first stage o f  the renorm alisation procedure is therefore com plete .

T he connection  with continued fractions can be  seen by n o tin g  that

Let [ a j ,a 2, . . . ]  be the continued fraction  expansion o f  b/a, w here we are using the 

n ota tion  [a i, a 2, . . . ]  to  represent the continued fraction

S ince n  was chosen to  satisfy na < b < (n + l ) a ,  it follows th a t rt =  \b/a\ =  a j. 

W e then have b'/a1 = [a2 , a 3, . . . ] ,  i.e., the continued fraction  expansion  o f  b'/a' is 

obta in ed  from that o f  b/a by deleting th e  first term.

we can  easily deduce the following form ula  for w\:

1
a i + 1
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For the n ext stage o f  the renorm alisation process, we now  have to  assume 

that a' < b' < 2a !. In fact, for this m ethod  to  work, we will need to  assume 

that b'/a' =  (\/5 +  l ) / 2 , the golden  m ean, whose continued fraction expansion  is 

[ 1 ,1 , - ] .

Let a" = b' — a' and b" =  a', so that

i  f f  ! //o /a
1

6 ' / o '  -  1  ’

i.e., the con tin u ed  fraction  expansion  o f  b"/a" is obta ined  from  that o f  b'/a' by 

deleting the first term  as before (in  this case, the first term  will be 1 ). Define 

b2 = wi o bi and w2 =  w\ o bi o b\. T hese functions b o th  m ap the interval [0, a ' +  6 ')  

to  the interval [0, a"+b"), as show n in the follow ing tw o diagram s. Their restrictions 

to  the interval [0 , a" +  b") are also shown.
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T he functions b2, u)2 . when restricted to  the interval [0 ,a "  +  b"), are given by

b2(x)  =  •\ x  + b" 
\ x — a”

if
if

0  ^  x < a" 
a" <  x  <  a "  +  b"

w2(x) = •f  x + b” 
(  x  — a "

- a " if  0  ^  x < a" 
if  a" ^  x < a" -I- b"

These can be  verified by looking at the diagram s or  by  direct calcu lation . The 

function  6 2  is sim ilar to  b\, in that they are b o th  circle  rotations (on  identifying 

the endpoints 0 and a"  +  b"). W e w ill see, in the n ext stage o f  the renorm alisation 

process, that each o f  th e  functions 6 3  and W3 w ill be  a scaled-dow n cop y  o f  6 2  and w2 

respectively. This w ill allow  us to  continue the renorm alisation  process indefinitely.

For the third s ta g e  o f  the process, we assume th at a" < b" < 2a". Let a'" = 

b" — a", b"' =  a", 6 3  =  w 2 and W3 = ui2 0 b2 . T h e  functions 6 3  and W3 are illustrated 

in the follow ing diagram s:
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T he functions 6 3  and W3 , on  the interval [0 ,a '"  +  6 " ' ) ,  are given by

x  +  a'" if 0 ^ x <  b'"
x  -  b'" if a'" ^ x <  a"' -I- b'"

x  +  a"' if  0  ^  x < b'"
x  +  a'" -b '" if  a" ^  x < a'" +  b'"

B y looking at the diagram s for 6 2 1  6 3 , u>2 and w3 , we can  see that the functions 6 3  

and W3 are sca led-dow n , reflected copies o f  6 2  and w2 respectively . W e can therefore 

continue this renorm alisation  process as long as the co n d itio n  a M  < 2

is satisfied (w here a ^  = a', a 1-2'1 =  a" e tc .). For the next stage, we therefore define 

a"" = b'" — a"', b"" = a'", 6 4  =  1113 and w4 = W 3 0  6 3 . T h e  functions w4 and 6 4  both  

m ap the interval [0, a'" 4- b'") to  the interval [a '", a'" +  b'") an d  so we consider their 

restrictions on  th is interval [a '" , o '"  +  b'") o f  length b'" =  a"" +  b"".

In general, we define â n+1  ̂ = b ^  — a(n\ 6<n+1) =  a.(n\ bn+1 =  wn and 

wn+i =  wn o bn. T h e  functions bn+ j ,  wn + 1 will each m ap an interval o f  length 

a (") +  ft(” ) on to  an interval o f  length a^n+1) +  6 ( " +1). For all this to  work, we need 

to  ensure that the requirem ent < b ^  < 2 is satisfied for all n ^  1. From 

the theory o f  continued  fractions, it follow s that b'/a' has t o  have the continued 

fraction  expansion  [ 1 ,1 , . . . ] ,  i.e., b'/a' =  (\ /5 +  l ) /2 .

W e now  have the material to  prove the follow ing theorem :

Theorem 2 .7 .1  Let a be a real num ber betw een 0 and 1, such that the con ­

tinued fraction  expansion  o f  b/a (where b =  1 — a) is given b y  [n, 1 , 1 , . . . ]  for some 

n 1. T hen  the p rob lem  can be solved for this param eter value o f  a, i.e., there is a 

code-w ord  c  =  C1 C2  . . .  o f  ‘ B ’s and ‘ W ’s such that, for any e > 0, there exists N €  N 

such that the d iam eter o f  the im age o f the function

fcN °  /c*_, o • • • o / j  : [0,1) -> [0,1)

is less than e.

88



P roof If we carry out the above renormalisation procedure, we have

b/a=  [n, 1 , 1 , . . . ]

* 7 « ' =  [ i , i , . . . ]

b"/a" =  [1 , 1 , . . . ]

and so the requirem ent a ^  < b ^  < 2 is satisfied for all k ^  1 .

T he functions 6 1 and tiq b oth  m ap the interval [0 ,1 ) on to a subinterval o f  

length o ' +  b'. T he functions b2 and w2 b o th  m ap this interval onto a  subinterval 

o f  length a” +  b" . Continuing, we find that the com posite function

btf o ■ • ■ o b2 o b2 o W\

maps the interval [0 ,1 )  on to a subinterval o f  length +  b̂ N\ (W e are free to 

choose betw een  6 *, and tu* for each k\ we have m ade the choice that m inim ises the 

length o f  the resulting code-w ord for each N.) Since and b ^  decrease at a 

geom etric rate, it follows that the sequence o f  lengths a ^  + b ^  tends to  zero. 

W e can therefore choose N such that the im age o f  the function  com position  is an 

interval w hose length is less than t. T h e  corresponding ATh stage code-w ord  is 

obtained by  expressing the above function  com position  in term s o f  the functions 6 0  

and tuo-

For the case N =  1, the above function  is w 1 which equals bo and so the first 

stage cod e -w ord  is ‘ B ’ . I f  /V =  2, we have

b2 ow \ =  Wi o bi o w\ 

n terms
=  60 o 60 0 • • • 0 &o °  Wo 0 bo

and so the code-w ord  is ‘ B W B ” B ’ . T he code-w ords for other values o f  N can be 

found sim ilarly. T he following table shows the code-w ords for the first few values 

o f  N:
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N  Code-word
2 B W B nB

3 B W B nB W B nW B "B

4 B W B "B W B ” W B " B W B " B W B " W B n B

In the limit as N  -¥  oo, this generates the required infinite code-word c having
the above code-words as initial segments. □
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2.8 Open problems
It ought to be possible to make the above proof work for all parameter values, rather 
than just those for which the continued fraction expansion of b/a is [n, 1 ,1 ,...] . It 
is interesting that the above method works best when the parameter a is badly- 
approximable by rationals, whereas the problem of [P] was solved for parameter 
values which are extremely well-approximable by rationals.

The continuous one-player game lends itself to an obvious generalisation. The 
maps which arise in the above proof are all examples of interval-translation map­
pings ([BK]). An interval-translation map (from the unit interval to itself) is a 
piecewise linear map, where the linear portions of the map are translations, i.e., the 
map is piecewise differentiable with derivative equal to 1. Given a finite collection 
{ / i > . . . i / n }  of interval-translation maps, when is it possible to find a code-word 
C1C2 . . .  such that the image of the composition map

fcfil °  fcN-l fc\

has arbitrarily small diameter?

In the original one-player game, we described a strategy for finding a code-word: 
choose a counter to be the leader and choose the code-word so that the leader always 
moves. It is natural to expect the same strategy to work for the continuous game. 
If we choose a point of the interval [0,1) to be the leader, and choose the code-word 
C1C2. . .  so that the leader always moves, will the resulting code-word always be a 
solution to the problem?

The following question is asked in [P]. If we choose moves at random, how many 
moves on average will it take to solve the one-player game? A similar question can 
be asked for the continuous one-player game. If we choose a code-word o f length 
rt at random, what is the expected (average) diameter of the image of [0, 1) after 
carrying out the instructions of the code-word. How does this diameter behave as 
a function of n?

In [P], it is shown that q2 is a bound for the length o f the optimal code-word 
(where q is the number of positions). Is there a formula for the actual length of the
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optimal code-word, in terms of p and q? Such a formula would probably involve 
the continued fraction expansion of p/q, e.g., if p/q =  [0, a, b, c] and b ^  c, then the 
formula

(ab +  b +  1 )c2 — (ab +  b — a)c +  2(a -I- 1)62 — ab +  6 +  a

appears to work. The behaviour for the case b > c appears to be more complicated. 
For the case where p/q =  [0, a, 6], the formula

(a +  l)b2 — ab +  a

seems to work. Both these formulae are consistent with the results of computer 
experimentation.
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