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Abstract
In this thesis we begin the study of finite groups possessing a model subgroup, 

where a model subgroup H  of a finite group G  is defined to be a subgroup 

satisfying

1H t G= X-
*€/rr(G)

We show that a finite nilpotent group possesses a model subgroup if and only 

if it is abelian and that a Frobenius group with Frobenius complement C  and 

Frobenius kernel N  possesses a model subgroup if and only if

(a) N  is elementary abelian of order r".

(b) C  is cyclic of order (r" — 1 ) / ( r d — 1), for some d dividing n.

(c) The finite field F  =  Frn has an additive abelian subgroup HF of order 

rd satisfying NormF/K(HF) =  K , where K  =  Frd.

We then go on to conjecture that a finite soluble group G  possessing a model 

subgroup is either metabelian or has a normal subgroup N  such that G/N 

is a Frobenius group with cyclic Frobenius complement of order 2" +  1 and 

elementary abelian Frobenius kernel of order 22". We consider a series of 

cases that need to be excluded in order to prove the conjecture and present 

some examples that shed light on the problems still to be overcome.
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Introduction
The starting point for the material contained in this thesis was the following 

definition cited by Gollan [9]. A model of length k for the complex repre­

sentations of G, or shorter a model for G, is a set 7"i,. . .  , r* of monomial 

characters of G  such that

Gollan’s interest in models stemmed from the fact that given any complex 

irreducible character \ ° f  G and a model for G, one can construct a complex 

irreducible representation of G affording the character x • Gollan’s paper 

focussed on whether or not some of the sporadic simple groups had models. 

His results, that the smallest Janko group Ji has a model, but the sporadic 

simple groups

do not, are deceptively discouraging, because searches for models for other 

specific finite groups have been successful. In particular, Kljacko [10] has 

found a model for the full general linear group over a finite field and Inglis, 

Richardson and Saxl [11] have found a model for the symmetric group of 

degree n.

To be precise Inglis, Richardson and Saxl found an involution model for the 

symmetric group of degree n. In other words a set Ti, . . . ,  r* of monomial 

characters of G  and a set of conjugacy class representatives e \, . . .  ,e/t of the 

set {g  € G : g2 =  1}, such that each tv is induced from some linear character

k

Xelrr(G) «=1

J3 , R u , O 'N , M\\, M 2 2 , M c L , Ji
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of the centralizer of e* and

J2 * = ]>>•
Xe /r r (G )  ¿=1

Notice that if a finite group G has an involution model then

x ( i )  =  i + * ,
* € / r r ( G )

where t is the number of involutions in G, and consequently by a result of 

Frobenius and Schur [1, Corollary 4.6, page 51] every irreducible character 

of G is afforded by a real representation. From here Baddeley [12] took up 

the mantle and considered whether certain Weyl groups possessed involution 

models. He found involution models for Weyl groups of type Bn and type 

D n for odd n. However, W (75 4) was discovered not to possess an involution 

model and this put paid to hopes that the existence of an involution model 

might be both a necessary and sufficient condition for all representations to 

be afforded by a real representation.

Although involution models have been studied in some depth there is one 

type o f model that has received more attention than probably any other. 

Suppose that the set T\, . . . ,  r* of monomial characters is a model of length 

k =  | Irr ( G ) | for G, then we say that G  possesses a model o f maximal length 

or more commonly that G is an M-group. Much work has been done to 

try to classify M-groups. Perhaps the best known result to date being that 

of Taketa [I, Corollary 5.13, page 67] which states that every M-group 

is soluble. The converse is false however, although it is true that every 

supersolvable group [1, Corollary 6.22, page 87] is an M-group, the smallest 

counter-example being SL(2,3).
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The goal of this thesis is to begin the study of the opposite question to that 

of whether a finite group possesses a model of maximal length. Namely when 

does a finite group possess a model of minimal length. In other words when 

does a finite group possess a model of length 1.

In chapter 1 we state and prove a series of well-known results, which play 

a crucial role in the major theorems of this dissertation. In particular, we 

determine the faithful irreducible representations of an abelian group over a 

finite field, we introduce Zsigmondy’s theorem, and we examine the structure 

and describe the irreducible characters of special p- groups and Frobenius 

groups.

In chapter 2 we show, using Frobenius reciprocity, that a finite group G 

possesses a model of length 1 if and only if it has a model subgroup, where 

a model subgroup is defined to be a subgroup H  o f G such that

We then go on to prove that a finite nilpotent group has a model subgroup 

if and only if it is abelian.

In chapter 3 we show that a Frobenius group G  with Frobenius complement 

C  and Frobenius kernel N  has a model subgroup if and only if the following 

conditions are satisfied.

(a) N  is elementary abelian of order r".

(b) C  is cyclic of order (rn — l ) / ( r d — 1), for some d dividing n.

(c) The finite field F  =  Frn has an additive abelian subgroup H y  of order 

rd satisfying Nonnp/p(Hp) =  K , where K  =  Frd.

X€ /r r (G )
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One of the key observations in the proof is that if G is a non-abelian special 

2-group of rank 2n and the order of the centre o f G is greater than 2” , then 

the number o f maximal subgroups of the centre of G whose quotients are 

extra-special is even. This fact is itself a generalization, in the case where 

p =  2, of a result of Beisiegel [6, Satz 1], which states that if P  is a special p- 

group of rank 2n and P/N is extra-special for every maximal subgroup N  of 

the centre o f P, then the rank o f the centre of P  is less than or equal to n.

In chapter 4 we define a X -group to be either an abelian group or a group 

G  with subgroups G i , . . .  Gm, A  satisfying the following statements :

(a) G =  G i . . .  GmA;

(b) [Gi,Gj\ =  1 for i /  j ;

(c) [Gj, A] =  1 for 1 <  i <  m;

(d) Gi is not nilpotent for 1 <  i <  m;

(e) G\ is a minimal normal subgroup of Gi for 1 <  i <  m ;

(f) A is abelian.

We prove that a non-abelian A’-group possesses a model subgroup if and only 

if G/Z(G) is a direct product o f Frobenius groups satisfying the statements 

outlined on the previous page. We show that every epimorphic image of a 

-T-group is itself a A’-group and we define a minimal non-A’-group to be a 

finite soluble group not contained in the class but whose other epimorphic 

images are. We then move onto the main focus of the chapter which is to 

give the following classification of minimal non-A’-groups :
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Case A G is a p-group, G' is cyclic of order p and is the unique minimal 

normal subgroup of G.

Case B G =  UA, where U and A  are subgroups satisfying the following 

conditions.

(i) U is a central product of subgroups G i , . . . ,G m with amalgamated 

centres;

(ii) Gi — G'iCi, where (|GJ|, |Ci|) =  1, for 1 < i <  m;

(iii) G'i is an extraspecial p-group for all i;

(iv) Z(U) =  Z(Gi) =  Z(G') for all i;

(v) Gi/Z(U) is a Frobenius group at CiZ(U)/Z(U) =* Ci with minimal 

Frobenius kernel G '/Z ( i /)  for all i;

(vi) A is a p-group and Z(U) C A C  Cg(U);

(vii) Either A  is cyclic or A! =  Z(U) is the unique minimal normal subgroup 

of A.

Case C G =  G 'C  and the following conditions hold :

(i) (|G'|, |C|) =  1;

(ii) <I>(G') is the unique minimal normal subgroup of G of order rm;

(iii) G /$ (G ')  is a Frobenius group at G$(G')/«I>(G') with minimal Frobe­

nius kernel G '/$ (G ')  of order rn;

(iv) M  =  C c($ (G '));

(v) G' is either homocyclic or special.



6

Case D G =  (G'A)C and the following conditions hold :

(i) (\G'A\, |C|) =  1;

(ii) K  =  [G', A] is the unique minimal normal subgroup of G;

(iii) A/K =  Z(G/K);

(iv) G/A is a Frobenius group at CA/A with minimal Frobenius kernel 

G'A/A\

(v) G'A is an r-group;

(vi) A is elementary abelian;

(vii) G' is elementary abelian, homocyclic or special;

(viii) K  =  <S>(G'A) =  (G'A)' and K  Ç Z(G'A).

Case E G =  G 1G2 and the following conditions hold:

(i) Gi =  GJGjj

(ii) (|G5|,|C4|) =  1;

(iii) K  =  [G i.G j] is the unique minimal normal subgroup of G;

(iv) G/K ^ G J K  x G 2/K-,

(v) Gi/K is a Frobenius group at CtK/K with minimal Frobenius kernel 

G'i/K of order rni\

(vi) G ' is elementary abelian;

(vii) G\G'2 is special.

Case F G =  G"X  and the following conditions hold:

(i) G " n X  =  1;
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(ii) G " is the unique minimal normal subgroup of G;

(iii) X  is a non-abelian X -group;

(iv) X  C Aut{G").

Case G There exists a group L and a monomorphism n from G into L 

satisfying the following conditions:

(i) L =  To x ••• x Lm,

(ii) Li is a Frobenius group with minimal Frobenius kernel L[;

(iii) n(G ') =  L'0 x • • • x L'm\

(iv) L =  n(G)L{ for 0 <  i < m.

In Chapter 5 we consider under what circumstances a non-metabelian mini­

mal non- A"-group satisfying the co-prime condition

(\G : G'|, |G ' : G"|) =  1

can possess a model subgroup, and arrive at the following conclusions.

If G is a minimal non-A’-group satisfying the conditions outlined in Case B, 

then G  does not possess a model subgroup.

If G is a minimal non-A'-group of derived length 3 satisfying the conditions 

outlined in Case C and G  possesses a model subgroup, then n =  6, r =  2, 

m < n and M  acts reducibly on G'/$(G'). We give an example of a finite 

group possessing a model subgroup which satisfies these conditions.

If G is a minimal non-A’-group satisfying the conditions outlined in Case 

E and G  possesses a model subgroup, then the G x/K  are Frobenius groups
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with elementary abelian Frobenius kernels of order 2n' and cyclic Frobenius 

complements o f order 2"  ̂+  1. We give an example of a finite group possessing 

a model subgroup which satisfies these conditions whose derived subgroup is 

of a form outlined by Beisiegel [6, Lemma 4].

If G is a minimal non-^F-group satisfying (|G : G'|, |G' : G"|) and the condi­

tions outlined in Case F, then G either does not admit a model subgroup or 

there exists a normal subgroup N  of G such that G/N is a Frobenius group 

with elementary abelian Frobenius kernel of order 22n and cyclic Frobenius 

complement of order 2n +  1.

In Chapter 6 we prove that if a metabelian group G possesses a model sub­

group and

(\G:G'\,\G':G"\) =  1,

then there exists a monomorphism p c  from G to a A'-group.

Putting this together with the results from our case studies, we prove that if 

G is a finite soluble group and we assume that G possesses a model subgroup,

(|G : G '|, |G ' : G"|) =  1

and the monomorphism Hg/g" is in fact an isomomorphism, then G satisfies 

one o f the following statements :

(a) G is metabelian.

(b) G possesses a normal subgroup N such that G/N is a Frobenius group 

with elementary abelian Frobenius kernel of order 22n and cyclic Frobe­

nius complement of order 2n +  1.
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(c) G possesses a normal subgroup N  such that G/N is a Frobenius group 

with elementary abelian Frobenius kernel o f order 26 and cyclic Frobe­

nius kernel of order (26 — l ) / ( 22 — 1).

We go on to show that if G is a minimal non-A-group of derived length 3 

satisfying the conditions in Case D and G possesses a model subgroup, then 

G/A is a Frobenius group with elementary abelian Frobenius kernel G'A/A  of 

order 2" and cyclic Frobenius complement of order 2" -f 1. And consequently 

we can prove that if G is a finite nilpotent-by-abelian group and G IG "  is a 

A-group, then G  possesses a model subgroup only if one o f the statements 

above is satisfied.

We formulate the following conjecture.

Conjecture 1 If a finite soluble group G possesses a model subgroup, then 

G  satisfies one o f the following two statements :

(a) G  is metabelian.

(b) G  possesses a normal subgroup N  such that G/N is a Frobenius group 

with elementary abelian Frobenius kernel o f order 22n and cyclic Frobe­

nius complement of order 2" +  1.

We end by giving an example of a minimal non-A-group satisfying the con­

ditions in Case G and a metabelian minimal non-A-group satisfying the 

conditions in Case D which both possess model subgroups, giving an indi­

cation of what the structure of the additional minimal counter-examples that 

would need to be considered might look like.



Chapter 1

Background

In this chapter we state and prove a series of results, for reference purposes, 

that play a crucial role in this thesis. However, more general standard results 

about finite groups that can be found in Huppert [2] and about character 

theory that can be found in Isaacs [1] will be stated without proof when 

required.

1.1 Irreducible representations of abelian groups 

over finite fields

The result in this section can be found in Doerk and Hawkes [5, (9.8) Theo­

rem, page 161-162].

T h e o re m  1.1.1 Let A be an abelian group of order n, let q be a prime power 

satisfying (q,n) =  1, and let m be the smallest natural number such that

n | qm — 1 in other words m =  o(q) modn.

10
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Suppose that V  is an irreducible Fq[A\-module faithful for A. Then

A =  <  a >

is cyclic and there exists a primitive nth root of unity e of Fqm such that V 

is isomorphic to Fqm viewed as an Fq[A]-module via the A-action

xa' =  xe' (field multiplication)

for all x  € Fqm and 0 <  i < n — 1. Furthermore Fqm =  Fq(e) and the 

dimension of V over Fq equals m.

Proof. Let E  =  H om F̂ [A](V ,V ) C H om Fq(V ,V )  and let

p : Fq[A] ^  H om Fq(V ,V )

denote the representation of Fq[A\ afforded by V , thus vb =  vp(b) for all 

v € V  and b e  F?[/l]. Since A is abelian, Fq[A] is commutative, and therefore 

p(Fq[A\) C E. By Schur’s lemma E  is a division algebra, and therefore

p(Fq[A]) -  {0 }

is a group, because p(Fq[A]) — {0 } is a finite multiplicatively closed subset 

of the group E * . We have proved that K  =  p(Fq[A]) is an extension field 

of Fq. So p(A) is a subgroup of K x , the multiplicative group of K , and is 

cyclic as a consequence. Because V  is a faithful /1-module, A is isomorphic 

to p(A). So A =  < a >  and

K  =  p(Fq[A}) =  Fq(e),

where e =  p(a) is a primitive nth root o f unity. Moreover, when K  is viewed 

as an F,-space, it becomes an /1-module over Fq if we define

xa' =  xe' (field multiplication)
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for all x  6 K  and 0 <  i < n — 1. Now let r =  \K : Fq|. Since K * , which is 

cyclic of order qr — 1, contains the element e of order n, we have

qT =  1 mod n,

and therefore m divides r; in particular Fqm is a subfield o f Fqr. But by 

hypothesis n divides qm — 1, and so the multiplicative group o f  Fqm contains 

the unique subgroup <  e > of order n in Fqr. Since Fqv =  K  =  Fq(e), we 

therefore have K  C Fqm; hence

K  =  Fqm .

So regarding V  as a Hom F̂ (V, V/ )-module in the natural way, we may also 

regard V  as a -module (vector space over Fqm) by restriction. If U is a 

non-zero F,m-subspace of V, then

u  =  UFqm =  Up(Fq[A}) =  U{Fq[A])\

hence U is an F9[>l]-submodule o f V, and it follows from the irreducibility of 

V  that the dimension of V  over Fqm equals 1. Thus if w is a fixed non-zero 

vector in V , the map

0 : x  —► wx

is a Fqm-module isomorphism from the regular module Fqm onto V  since 

0(F,m) is a non-zero F,m- subspace of V. Regarding Fq™ as an F,[.4]-module 

via the A- action described above for x € Fqm we obtain

(xa)0 =  (xe)0 =  w(xt) =  (w x)t — (wx)p(a) — (x)Op(a) =  (x)0a ,

and therefore 0 is the desired Fq[A]- isomorphism from Fqm onto V . The 

proof is complete. □
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1.2 Zsigmondy’s Theorem

All of the results in this section can be found in Huppert and Blackburn [7, 

pages 503-509].

Lem m a 1.2.1 Let </>„ be the nth cyclotomic polynomial over the field of ra­

tional numbers. Let q be a prime , let a be an integer prime to q >  2 

and let f  be the order o f a modulo q. For each non-zero integer x, let 

wq(x) =  m ax{l |ql dividesx}. Then the following hold.

(a) wq(<j)f(a)) >  0 .

(b) uiq{(j)fqi{a)) =  1 for  all i >  1.

(c) wq(<f>m(a)) =  0 for all other m >  1.

Proof, (a) As /  is the order of a modulo q, wq(a' — 1) =  0 if /  does not divide 

i. Thus u>q(<l>i(a)) =  0 if /  does not divide i. From

<Ma) II &(°) = q/ ~ !.
it follows that wq(<t>f(a)) =  wq(af — 1) > 0 .  (b) Put n =  fq '} r =  fq '~ l. 

Then

an -  1 _  ((ar — 1) +  l ) 1* — 1
aT — 1 ar — 1

=  (ar -  1),_1 + q(ar -  l) ’ “2 +  • • • (| )  (ar -  1 ) +  q.

Since ar — 1 =  Omodg and (^) =  Omod^, we have (on —l ) / ( a r —1) =  ^modg2;
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because (a" — 1 ) / (a r — 1) =  Fldin d\f 4>d{o)- Hence there exists a d\n such 

that d does not divide r and u\,(<Ad(a)) =  1. Thus wq(ad — 1) >  0 and f\d. 

The only integer d satisfying these conditions is d =  n; thus wq((f>n(a)) =  1.

(c) If wq(<t>m(a)) ^  0, wq(am — 1) ^  0 and f\m. So we have to show that 

wq(<t>m(a)) =  0 if to =  fq 'l with i >  0, l >  1 and q not a divisor of /. If 

r =  fq\  (/>m(a) is a divisor of (am — l ) / ( a r — 1). Since ar =  1 modq, we have

Lem m a 1.2.2 Let 4>n be the nth cyclotomic polynomial over the field of ra­

tional numbers. Let a be an odd integer. For each non-zero integer x, let 

w?(x) =  m ax{l \2ldividesx}. Then the following hold.

(a) w2(< M °)) =  1 f or * > 2.

(b) w2(<f>n(a)) =  0 for  n /  2’ (t =  0, 1, . . . ) .

Proof. Write n =  2'l with i >  0, l odd and l >  1. If l >  1, then

((ar -  1) +  1)' _  1

(ar — 1),_1 +  l(ar — 1),_2 +  ••• +  /.

Thus wq(<j>m(a)) =  0. The proof is complete. □

=  (a2’ -  1)' 1 +  l(a2' -  1) ' 2 H--------(-1 ^ 0  mod 2
o* — 1

and W2 (<t>n(a)) = 0 .  If l =  1, then

so for i >  2, 02‘ (a) =  2 m od4 and W2 {<t>v(.a)) — 1- □
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Lem m a 1.2.3 Let <?>n (X ,y) =  y^ n)4> n{x/y), where <f> is the Euler function 

and <j)n is the nth cyclotomic polynomial. Let

L(n) =  inf\$„(a,b)\,

where a,b run through all complex numbers for which |a| >  |6| +  1 and |6| >  1. 

Then the following hold.

(a) If p divides n, L(np) >  L(n) and L(np) >  (1 +  p )^ n).

(b) If p does not divide n, L(np) >  L(n)p~l .

(c) For p >  5, L(p) >  2p.

(d) For p >  5, L(2p) >  2p.

Proof, (a) Since p divides n, $ n(a,b) =  <f>„(ap, 6p). Since |a| >  |6| +  1 and 

|5| >  1, |a|p >  |6|p +  1 and |6|p >  1, so L(np) >  L(n). Also

* n(a,b) =  H(a-eb)>(\a\-\b\)«n\
e

where e runs through the 4>{n) primitive nth roots of unity. But for |a| > 

|6| +  1 and |6| >  1,

|a|p - | 6|p =  ((|a| -  |6| +  |6|)p -  |6|p

>  ( H - l f t i r + p d o l - H r ' I f t l

>  1 + p .

Hence |<fr„(a,6)| >  (1 + p ) * n) and L(np) >  (1 +  p)*(">.

(b) Since p does not divide n,

< W a>b) =  I I  <M a’ 6e) ‘
l P =  l^C
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So L(np) >  L(n)p 1.

(c) We have

>  \qP\ -  \bP\ =  x ” -  yp 
~  |a +  6| x  +  y

where x  =  |a|, y =  |ò|. Thus x >  y +  1 and

(xp -  yp) ( l  +  2y) =  ar(l +  y)(xp~l — (1 +  y)p_1) +  y{xp — (1 +  y)p) 

+ yp(x -  (1 +  y ))  +  (x +  y)(( 1 +  y)p -  yp)

>  {x +  y ) (( l  +  y )p -  y” )-

I*pM)I =
V

a — b

Hence

xp — yp 
x  +  y

> (1 + y ) p - y p 
1 +  2 y

But y =  |ò| >  1, so

(1 +  y)p — 2P =  ^ 2  (  j )  (V* ~  1) >  VP ~  1 
*=0

and
p(1 +  y)p -2py =  (f ) (y ' “  y) - yP - y -

i=0
Therefore

3(1 +  y )p — 2P(1 +  2y) =  ((1 +  y )p -  2P) +  2((1 +  y)p -  2py)3yp

>  (2P — 1)(1 +  2y)

>  yp — 1 +  2(yp — y) — 3yp — (1 +  2y).

Hence 3(1 +  y)p -  3yp >  (2P -  1)(1 +  2y) and

(1 + y ) p - y p >  2P — 1 
1 + 2 y ~ 3
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Hence L(p) > and for p >  5, L(p) > 2p.

(d) Follows from (b) and the identity 4>2P{a , b) =  </>p(a, —b). □

L em m a 1.2.4 Let <i>n(x ,y ) =  4>n{x / y ) , where 4> is the Euler function

and <t>n is the nth cyclotomie polynomial. Let

L(n) =  in f  |$„(a, &)|>

where a,b run through all complex numbers fo r  which |a| >  |6| +1  and |6| >  1. 

Then L(n) > Y\P\nP’ w^ere P runs through all prime divisors of n, except 

when n =  1, 2,3 or 6 .

Proof. We shall prove the result by induction on n. If n is divisible by the 

square of a prime p, then L(n) > L(n/p) by Lemma 1.2.3(a). The assertion 

then follows by induction unless n/p is 1,2,3 or 6. Since p divides n/p, the 

only possibilités are n =  4,9,12 or 18. But by the second assertion of (a), 

¿ (4 )  >  3, ¿ (9 ) >  16, ¿(12) >  9 and ¿(18) >  16. So we may assume that n 

is square-free. Let p be the greatest prime divisor of n and write n =  pm. By 

hypothesis, p >  5. If m =  1, the assertion follows from Lemma 1.2.3(c); if 

rn =  2, it follows from Lemma 1.2.3(d). If m =  3,n =  3p and L(n) >  4p2 >  6p 

by Lemma 1.2.3(b) and (c).Similarly if m =  6, L(n) >  ¿(2p 2) > 4p2 >  6p 

by Lemma 1.2.3(b) and (d). For other values of m, L(m) >  by t'h6
inductive hypothesis. Thus L(m) >  3, because m cannot be a power of 2 

since m is square-free. Hence L(m )p_1 >  pL(m) and it follows that L(n) >  

¿ (m )p_1 > pL(m) >  n ,|„9 by Lemma 1.2.3(b). The proof is complete. □

T h eorem  1.2.5 Let a, n be integers greater than 1. Then except in the cases 

n =  2, a =  26 — 1 and n =  6, a =  2, there is a prime q with the following 

properties.
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(a) q divides a" — 1.

(b) q does not divide a* — 1 whenever 0 < i <  n.

(c) q does not divide n.

In particular, n is the order of a modulo q.

Proof. Suppose that for each prime divisor q of an — 1, there exists i such 

that 0 <  i <  n and q divides a’ — 1. since a* — 1 =  EL,, M a ) ,  it follows 

in particular that for each prime divisor q o f ), there exists d < n such 

that q divides (f>d(a). Let /  be the order of a modulo q. Since ie ,(0n(a)) >  0 

and wq(<t>d(a)) >  0, it follows from Lemma 1.2.1 that if q >  2, n =  fq k and 

d =  fq>, where 0 < j  < k. Thus q divides n. Furthermore, wq(<t>n(a)) =  1 by 

Lemma 1.2.1. If iu2(</>n(a)) > 0, we see from Lemma 1.2.2 that n =  2* and, 

if n >  2, W2 (<f>n{a)) =  1. It follows that if n > 2,

q q\n

By Lemma 1.2.4, however

|0„(a)| =  |<Ma> 1)1 >  I I 9’
</l"

except when n =  1,2, 3 or 6. Further, 03(a) =  a2 +  a +  1 >  3 for all a >  1, 

and 06(a) =  a2 -  a +  1 >  6 for all a >  3. Thus only the cases n =  2 and 

a =  2, n =  6 remain. If the assertion is false for n =  2, each prime divisor 

of a2 -  1 divides a -  1. It follows at once that 2 is the only prime divisor 

of a +  1, since (a +  l ,a  -  1) < 2 ;  thus a =  26 -  1. Apart from the stated 

exceptions, then, there is always a prime q such that q divides a" — 1 and 

q does not divide a' -  1 for 0 < i <  n. Thus n is the order of a modulo q. 

Hence n divides q — 1 and q does not divide n. □
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1.3 Symplectic spaces

In this section we shall establish some well-known facts about symplectic 

spaces, which can be found in Huppert [2, pages 215-219].

Let V  be a finite dimensional vector space over a field K . Then an alternating 

bilinear form /  on V  is a map

/  :V  x V  -> K

with the following properties :

f (k iu  +  k2v ,w ) =  k if (u ,w ) +  k2f { v ,w )  

f{u ,k\V  +  k2w) =  k if (u ,v )  +  k2f (u ,w )  

f (u ,u )  =  0

for all u ,v ,w  e  V  and kt 6 K . Clearly f (v ,w )  =  —f ( w , v ) for all v, w £ V, 

because

0 =  f ( v  +  w ,v  +  w) =  f ( v , v )  +  f (v ,w )  +  f { w , v ) + f ( w , w )

=  f ( v ,w )  +  f (w ,v ) .

A symplectic space is a composite object consisting of a finite dimensional 

vector space V  and an alternating form /  on V. Suppose that V and W  are 

two symplectic spaces with alternating bilinear forms /  and g. Then we call 

a bijective linear map 7 from V  to W  with

f (v i ,v  2) =  g( 7(ih), 7M )

for all Vi € V  an isometry. We say that V ' and W  are isometric, if an isometry 

from V  to W  exists. The group of isometries from V into itself is called the 

symplectic group on V  and is denoted by Sp(V).
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Let K  be a field of characteristic 2. Let f  : V x  V  —> i f  be a bilinear form, 

and let q : V  —> K  be a map satisfying

q(au  +  bv) =  a2q(u) +  b2q(v) +  abf(u, v)

for all a,b 6 K  and u,v  € V. Such a map is called a quadratic form  on 

V. On setting a =  b — 1 and u — v we obtain f (u , u) =  0 for all u G V, 

and so /  is a symplectic form on V. If this form /  is non-degenerate, we 

say that the quadratic form q is non-degenerate. The group of non-singular 

maps a : V  -> V  which satisfy

q{a(v)) =  q(v)

for all v € V  is called the orthogonal group on V  and is denoted by 0 (V ).  

Clearly 0 {V ) C Sp(V ).

Let U be a subspace o f V . Then the orthogonal complement o f U in V  is the 

subspace

U± =  {u € V : f (u  , v) =  0 for all u € U}.

In particular, the radical o f V  is the subspace

R (V) =  V 1 =  { « e l ' :  f { u ,v )  =  0 for all u € V }.

We say that V  is non-degenerate, if R (V ) =  0.

Lemma 1.3.1 Let U be a subspace of the symplectic space V . Then 

Dim U1 >  Dim V  — Dim U.

Furthermore, if U is non-degenerate, then V =  U -L U
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Proof. Let { u i , . . . ,  u*} be a basis of U. Then U1- is the solution space of 

the k linear equations /(tq  , x) =  0 and

Dim UL >  Dim V — k =  Dim V  — Dim U.

If U is non-degenerate, then U D U1 =  R(U) =  0 and

Dim (U +  U± ) - Dim U +  Dim U'L >  Dim V.

Thus V =  ( / l [ / i . □

If Vi and are elements of V  with f (v i , V2 ) =  1, then we call the set { «i ,  «2} 

a hyperbolic pair and the two dimensional symplectic space generated by a 

hyperbolic pair is called a hyperbolic plane. Clearly a hyperbolic plane is 

non-degenerate.

Theorem 1.3.2 Let V be a symplectic space of dimension n over with Dim R {V) 

r. Then

V =  Hi ±  ••• A. Hm -L R (V ),

where the Hi are hyperbolic planes, and V is uniquely determined up to iso­

morphism by the numbers n and r. In particular, n — r — 2m is even.

Proof. If V  =  R (V), then there is nothing to prove. If hi € V — R (V), 

then there is an element /i2 o f V  with (hi, hi) =  1 and Hi =  < hi, hi >  is a 

hyperbolic plane. So

V  =  Hi ±  H i  and R (V ) =  R(H i) _L R (H l)  =  R (H l),

by Lemma 1.3.1. The result follows by induction on n. □
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Lemma 1.3.3 Let V be a non-degenerate sympletic space and { x i , . . .  , xr} 

be a linearly independent set of V with (X i,X j) =  0 for i /  j . Then there 

exists a linearly independent set { j / i , . . . ,  yT} o f V  such that Hi =  < Xi,yt > 

is a hyperbolic plane and

V =  Hi 1  ■ ■ ■ ±  Hr ±  V',

for  some subspace V' of V .

Proof. Let * be the linear map from V  to its dual V * such that

* : v —► v*,

where v*(w) =  f (v ,w )  for all w € V. Then v* =  0 if and only if v 6 R(V)- 

So * is a bijective linear map from V  to V*, because R(V) =  0 and Dim V =  

Dim V*. Hence, there exists an element y\ of V  with

x\(V\) =  f(x i ,V i)  = 1  and

z,*(i/i) =  f (x i ,y i )  =  0 for i 6 { 2, . . . , r } .

So Hi =  < xi, yi >  is a hyperbolic plane and by Lemma 1.3.1 V  =  H\ L H^. 

Furthermore, xt S H^ for i € { 2 , . . . ,  r }  and Hf- is non- degenerate, because

0 =  fl(V0 =  R (H X) ±  R (H f-).

The result follows by induction on r. □

Lemma 1.3.4 Let V be a non-degenerate symplectic space. Let U\ and Ui 

be subspaces of V and let 7 be an isometry from U\ to U2 . Then there is an 

isometry T from V  to itself with F =  7 on U\.
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Proof. By Theorem 1.3.2, there exist hyperbolic planes H i, . . . ,  Hm such that 

Ui =  Hi ±  • • • ±  Hm J_ R(Ui).

Furthermore, R(U2) =  ^{RiJJi)) and if we let H[ =  7 (Hi), then 

U2 =  H[ ±  ■ ■ ■ ±  H'm X R(U2).

So H = Hi _L • • • _L Hm and H' =  H[ ±  • • • X H'm are non-degenerate. Let 

L =  H L and L' =  H'L. Then, by Lemma 1.3.1,

V  =  H ± L  =  H ' ± L '

and R(L) =  R(L') =  0, because

0 =  R {V) =  R (H ) ±  R(L) =  R (H ') ±  R(L').

Clearly R{Ui) C //-*- =  L and R(U2) C H ,J- =  L'. So if we choose a basis 

{ x i , . . . , i r}  for R(Ui), then f (x i ,X j )  =  0 for all i , j  € { 1 , . . . , r }  and, by 

Lemma 1.3.3,

L = Si ±  • • • -L Sr ±  M, 

where Si =  <  , j/< >  and f ( x { , j/j) =  1. Similarly

V  =  5 ; X • • • -L s ;  X  M ',

where S,' =  <  7 (xj) ,j/' > and (7(xi),y[)  =  1. Thus

= Hi 1  ■ • • 1 Hm ±  Si 1  • • • 1  Sr -L M 

= _L • • • X H'm ±  S[ ±  ■ • • ±  S'r X M'.

V  — H  L L
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Now R(M ) C R(L) -  0 and R(M') C R(L') = 0 .  So M  and M ' are non­

degenerate symplectic spaces of equal dimension. Hence M  is isomorphic to 

M', by Theorem 1.3.2, and there is an isometry 6 from M  to M ' . Therefore 

the linear map T defined by

r(h ) = 7(/i) for all h & Hi ±  JL Hm

r  (xi) = 7 (xì) (1 <  i <  r),

r  (tti) = 7 (vi) (1 <  i <  r),

r  (m) = 6(m) for all m € M.

is an isometry of V  to itself with T =  7 on U\. □

Suppose that U is a subspace of a symplectic space V. Then U is called 

isotropic, if (u , u') — 0 for all u, u' € U.

T heorem  1.3.5 Let V be a non-degenerate sympletic space o f dimension 

2n. If U is an isotropic subspace of V, then Dim U <  n and U is contained 

in an isotropic subspace of dimension n of V.

Proof. Let { u i , . . .  , ur} be a basis for U. By Lemma 1.3.3,

V = Hi JL • • • X HT _L V

with hyperbolic planes Hi =  < Ui, Vi > . So 2r <  Dim V  =  2n. By Theo­

rem 1.3.2,

V = VIX • • • ±  vn

with hyperbolic planes Vi =  < xt ,yi > . The linear map 7 with 7 (iq) =  x t for 

(1 <  i < r) is an isometry from U onto < X\,. . . ,  x r > . Let T be the isometry
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of V, whose existence is guaranteed by Lemma 1.3.4, which restricts to 7 . 

Then

r (t /)  = 7 (U) =  < x u . . . , x r >  C <  x i , . . . , x n >  

and U lies in the isotropic subspace r-1(< 27, . . . ,  x„  > ). □

1.4 Special p-groups

In this section we shall prove some well-known facts about extra-special p- 

groups, and some additional facts that will prove useful later.

Let G be a non-abelian p-group. If Z (G ) =  G' =  4>(G) is elementary abelian, 

then G is called special. If G is a special p-group and the centre of G  has 

order p, then G  is called extra-special.

T h eorem  1.4.1 Let G be an extra-special p-group. Then the following state­

ments hold.

(a) I f  G' =  <  c > , then G/Z(G ) can be viewed as a non-degenerate sym- 

plectic space over G F(p) with alternating bilinear form  f  defined by

f  {9 1 , 9 2 ) =  a,

where gx =  gxZ{G ), g2 =  g2Z{G ) and [pi ,</2] =  c“ ;

(b) G/Z(G ) has order p2m;

(c) G is a central product o f non-abelian groups of order p3 with amalgamted 

centres;
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(d) Every maximal abelian normal subgroup o f G has order pm+1.

Proof. Huppert [2, Satz 13.7 pages 353-355]. (a) Clearly /  is well-defined 

and since G  has class 2,

[9i92,93] =  [9i,93][g2,93] and [pi , 9 2 9 3 } =  [<7i, P2 ] [ Pi ,£3]

for all <7* € G. Thus G/Z(G) can be viewed as a symplectic space over G F(p ), 

because [5 , g\ =  1 for all g G G. Furthermore, the symplectic space G/Z(G) 

is non-degenerate, because [ <7, h] =  1 for all h € G  if and only if g € Z(G).

(b) By Theorem 1.3.2,

Dim G/Z(G) =  2m

and G /Z(G ) has order p2m.

(c) By Theorem 1.3.2, G/Z(G) has a basis { x i , . . .  ,x m, j / i , . . . ,  ym} such that

=  1 and f{x i,X i) =  /( j/i , j/i) =  0

for all i and

f(xi,Sj)  =  /(¿/i, yj) =  f (x i ,y j )  =  0

for i ^  j .

Let Xi =  XiZ(G) and j/j =  yjZ (G ). Then G  is a central product of the non- 

abelian groups Gt = <  Xi, yi, Z (G ) >  o f order p3 with amalgamated centres.

(d) If M  is a maximal abelian normal subgroup of G, then Z(G ) C M  and 

M/Z(G) is a subspace of G/Z{G) with

/(m i ,m 2) =  0
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for all m i , m 2 € M/Z(G). So M/Z(G) is a maximal isotropie subspace of

T h eorem  1.4.2 Let G be an extra-special 2-group of order 22m+1. Then one 

of the following two cases arises :

(i) G is a central product of m dihedral groups of order 8 with amalgamated

Proof. Huppert [2, Satz 13.8, pages 355-356]. By Theorem 1.4.1, G  is a 

central product of non-abelian groups of order 8. So in order to prove that 

one of the two cases arises we need only show that a central product of two 

quarternion groups with amalgamated centres can be regarded as a central 

product of two dihedral groups with amalgamated centres.

Let G be the central product of Q\ and with amalgamated centres, where

G/Z(G) and, by Theorem 1.3.5, M  has order pm+1. □

centres.

(ii) G is a central product of m — 1 dihedral groups o f order 8 and a quar- 

temion group of order 8 with amalgamated centres.

In case (i) G has maximal abelian normal subgroups o f type (4, and
m — 1

type ( ; in case (ii) every maximal abelian normal subgroup of G is
m+1

m— 1

Q\ =<  9i , 92 |9? =  92 = !. 9Î* =  9i ‘ ,9? = qI >

and

Q i = <  93, 94 I 93 =  94 =  1,9.3* =  93 \  93 =  94 >  •
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Then G  can be regarded as a central product of D\ = <  dx, d2 >  and D2 = <  

d3,d4 >  with amalgamated centres, where

Note that d4, d2 and d3, d4 of D\ and D2 respectively are not the conventional 

generators of the dihedral group. In particular, d? =  1 for i 6 {1 ,2 ,3 ,4} .

To complete the proof we begin by showing that every extra special 2-group G

non-abelian, there is an element a of G o f order 4. Furthermore, < a > <G, 

since G' =  < a2 > . Let U be a maximal abelian normal subgroup of G 

containing a. Then |I/| =  2m+1 by Theorem 1.4.1 and U is an abelian normal

G/Z(G) is 2.

Let G be a central product o f dihedral groups D i , . . .  ,D m o f order 8 with 

amalgamated centres, where Di =  < a*, 6; >  with a2 =  1 for i € { 1, . . . ,  m }. 

Then clearly <  Z (G ), a j , .. , , a m > is a maximal abelian normal subgroup of

Let G be a central product o f dihedral groups D\,. . . ,  £?m- i  of order 8 and 

a quarternion group Q of order 8 with amalgamated centres. Let U be a 

maximal abelian normal subgroup G. Then every element a of U can be 

written a =  ai<i2 with at € D\. . .  £)m_j and a2 € Q\ where a\ and a2 

are uniquely determined upto factors of Z (G ). We define Ui(i =  1, 2) as 

the subgroup generated by all the a,. Then U\ and U2 are abelian normal

d i  —  <7i <?4 i d2 — 9294 , d3 —  919293 , d4 =  q\q2q3q4.

of order 22m+1 has an abelian normal subgroup of type (4, . Since G is
m—1

subgroup of G  o f type (4, , because o(a) =  4 and the exponent of
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subgroups of D\.. .  £>m_i and Q respectively. Since U C UiU2 and

u1nu2 = Z(G)

it follows with help from Theorem 1.4.1 that

2m+1 =  \U\ C C -  2m+1.

So U =  U\JJ2 and U2 is a maximal abelian normal subgroup of Q. So U2 is 

cyclic of order 4 and the exponent o f U is 4. □

T h eorem  1.4.3 Let G be an extra-special 2-group of order 22m+1 and let 

Z(G) =  < c > . Let q be the function from G /Z(G ), regarded as a vector 

space over G F (2), into G F (2) defined by

Q(g) =  a,

where g =  gZ(G ) € G/Z(G) and g2 =  ca. Then q is a quadratic form on 

G/Z(G) satisfying the following statements.

(a) If G is a central product of dihedral groups D\,. . .  ,D m of order 8 , 

then G/Z(G ) has a basis { d j , . . . ,  am, by, . . . ,  6m} satisfying the follow­

ing conditions :

q(a.i) =  q(bi) =  0 and f(a i,b j) =  Stj for all i , j

(b) If G is a central product of dihedral groups D \ ,. . . ,D m-\ of order 8 
and a quartemion group of order 8 then G/Z(G) has a basis

{ d j , . . . ,  arn—i , 6j , . . . ,  6m_ i . .r. //}
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satisfying the following conditions :

q{ai) =  q(bi) =  /(a*, x) =  f(a.i, y ) =  f{b i} x) =  f{b u y) =  0,

f(ai,bj)  =  Sij for  all i , j  and 

q(x) =  q(y) =  f ( x ,y )  =  1.

Proof. Huppert [2, Satz 13.8(c) and Bemerkungen 13.9, pages 355- 357] The 

function q is clearly well-defined on G /Z(G ). Since (gh) =  g2h2[h,g] for all 

g, h e G, it follows that

q(x, y) =  q(x) +  q(y) +  f (y , x),

where /  is the alternating bilinear form o f Theorem 1.4.1. So q is a quadratic 

form and the result follows from Theorem 1.4.2 and the systems of generators 

and relations given above for a quarternion and dihedral group. □

T h eorem  1.4.4 Let G be an extra-special 2-group of order 22m+1. Let A =  

Aut(G ) and let I  =  Inn(G). Then

(a) A/1 is isomorphic to a subgroup of 0 (q ), the orthogonal group for the 

quadratic form q associated with G.

(b) If G is a central product of dihedral groups D \,. . . ,  Dm of order 8 with 

amalgamated centres, then

\A/I\ |2(2m(2m- 2)/‘,)+ '(2m -  l ) n ^ ' ( 2 2i -  1) ;
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(c) If G  is a central product of dihedral groups D \,. . . ,  £*m_i of order 8 and 

Q is a quartemion group of order 8 with amalgamated centres, then

\A/I\ |2<2m(2m_2)/4)+i (2m +  l)n™71(22i -  1) ;

(d) If G  is a central product of dihedral groups D\, D?, D3 o f order 8 with 

amalgamated centres, then A/1 is isomorphic to a subgroup of S».

Proof, (a) Doerk and Hawkes [5, (20.8) Theorem, page 81] Let a  6 Aut(G) 

and let a  be the automorphism induced by a  on G/Z(G). Then a  € 0(q) 

and the map a —> a  defines a homomorphism from Aut(G) to 0 (q ), since a  

centralizes Z(G). So in order to show that A/1 is isomorphic to a subgroup 

of 0 (q ),  we need to prove that

CAuUG)(G/Z(G)) =  Inn(G).

Let Z  denote the centre of G, and let {x\Z , . . . ,  x2mZ }  be a basis for G/Z(G). 

If a  € CAut(G)(G/ Z (G ) ) , then a(xiZ ) =  x ,Z  and so a(arj) =  XiZi for some 

Zi 6  Z  : furthermore, a  is uniquely determined by the sequence (21, ,  22m) 

because G = <  X \ ,...,X 2m >■ Therefore the number of distinct a ’s in 

CAut(G)(G/Z(G )) is bounded above by 22m, the number of such sequences. 

However, CAut{G)(G/Z (G)) obviously contains every inner automorphism of 

G and the result follows.

(b) , (c) and (d) now follow from Theorem 1.4.3 and Kleidman and Liebeck [4, 

Proposition 2.5.5 and Proposition 2.9.1, Pages 29 and 43]. □

T h e o re m  1.4.5 Let G be an extra-special p-group of order p2m+1, Then G 

has the following irreducible characters :
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(a) p2m linear characters

(b) p — 1 faithful irreducible characters o f degree pm, which can be described 

in the following way. Let U be a maximal abelian normal subgroup of G 

and A ^  1Z(G) be a linear character o f the Z (G ). I f p is an extension of 

A in U, then pG is an irreducible character of G. Every linear character 

A /  1 gives rise to exactly one irreducible character x  in this way 

and XZiG) =  X (!)A-

Proof. Huppert [2, Satz 16.4, pages 562-563] Since |G/G'| =  p2m, the group 

G has exactly p2m linear characters. Let A be a linear character of Z (G ) with 

A /  1 and let U be a maximal abelian normal subgroup of G. Then U has 

order pm+1, by Theorem 1.4.1, and A extends to U. Suppose that p e Irr(U ) 

is an extension of A. Then

where p°(u ) =  p(u) for u € U and p°(s) =  0 for s € G — U. If g & U, then 

x~lgx & U for all x  € G and pG{g) =  0. If g € U, then

because [g  ,x ]  € G' =  Z(G ). Since G has class 2, the map x  -¥  [ff ,x ]  is a 

homomorphism from G to G'. For g € Z(G ) we have

For g & Z (G )  with help from the orthogonality relations and remembering 

that A /  1Z(<3) we have

HGÌ9) =  T7J]^2p ( 9 [ 9 ,x ]) =
'u I -r. ' ‘ xgG

PG(9) =  ^ | G |  =  pmA(<7) =  pG(l)A(ff).

PG( g ) = P 2m^ l  £  H y) =  pmp (9 )<  A,1Z(C)> = 0 .
I ' nC. 7in\vez(G)
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where \ j  restricts to A* for all j  € { 1, . . . ,  n} and i 6 { 1, . . . ,  r — 1}, and by 

Theorem 1.4.5 every non-linear irreducible character of G will appear as a 

constituent of \h t  G with multiplicity n. The proof is complete. □

Lem m a 1.4.7 Let G be a non-abelian p-group. Suppose that <I>(G) has order 

p and Z(G ) has order pk+l. Then G — Q Z (G ), where Q is extra-special and 

Q n Z (G )  =  4>(G). Furthermore, the restriction of every irreducible character 

of G to Q is irreducible. If 0 is an irreducible character of Q, then there are 

exactly pk irreducible characters of G , whose restriction to Q equals 0.

Proof. We can view G /$ (G ) as a vector space over GF(p). Since $ (G ) C 

Z(G ), the group Z(G)/<I>(G) can be viewed as a subspace of G /$(G ). If 

Q /$(G ) is a complementary subspace of Z (G )/$ (G ) in G/i>(G), then

G =  Q Z(G ) and Q n Z ( G )  =  $ (G ).

Furthermore, Z(Q ) =  <I>(G), because Z (Q ) C Z(G ). Thus Q is non- abelian, 

because G is non-abelian, and Q' must equal $ (G ). Finally, it is not difficult 

to see that $ (Q ) must also equal $ (G ), establishing our claim that Q  is 

extra-special. Let D =  Q x Z(G) and let

Q =  { (9 ,1)  I <7 and Z (G ) =  { ( 1 ,* ) | z € Z (G )}.

Suppose that 7 is a map from D  to G defined by 7 ((q, z)) =  qz. Then

7((<7i.*i)(g2,Z2)) =  7((9 i?2,Zi22)) =  gi<72Zi22 =  q\Z\qiZ2

=  7((9 i -Zi))7((92,Z2)),

for all qi € Q and Zi e  Z(G). So 7 is an epimorphism from D  to G with 

kernel K  =  { (k ,k ~ l) \ k € Q n Z (G )} .  Furthermore, the map

r  : D/K  =  (Q K / K )(Z (G )K / K ) -► G =  Q Z(G )
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defined by F((q ,z)K ) =  7 ((g, z)) =  qz is an isomorphism with

T (Q K /K ) =  Q.

So every irreducible character of G restricts to an irreducible character of Q 

if and only if every irreducible character of D/K  restricts to an irreducible 

character of QK/K.

If x  G Irr(D /K ), then there exists a x  G Irr(D) such that ker\ 2  K  and 

X(dK) =  \(d) for all d € D. If x  G Irr(D ), then x ( ( i ,  z )) =  d{q)<p{z), where 

6 € Irr(Q ) and </> € Irr(Z (G )), for all q 6 Q and z 6 Z{G ). So

x({q, i)tf) =  x((q, i)) =  0{q)<t>(i) =  o(q)

for all q € Q. Thus the restriction o f x  to Q K /K  is irreducible, because

<  X?K/K ’ XqK/K >  =  < 0)  ̂ >  =  1- 

If 9 is an irreducible character of Q, then 9G has degree

9(l)\G : Q\ =  9 (l)pk.

But from above we know that every irreducible constituent of 9G is an exten­

sion of 6 to G. So every irreducible constituent of 0G occurs with multiplicity 

one and has degree 0(1). Thus G  has exactly pk irreducible characters, whose 

restriction to Q equals 0. n

Lem m a 1.4.8 Let G be a non-abelian special p-group and let Ad be the set 

of maximal subgroups of Z(G). Then

Irr{G ) — Irr(G /Z(G )) =  |J (Irr(G /M ) -  Ir r (G / Z {G ))).
MeM
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Furthermore if M  £ A i, then G/M is a non- abelian p-group and Q(G/M) 

has order p. Thus

Irr(G) -  Irr(G /Z(G )) =  \J { x  £ Irr(G /M)\X(1) ±  1}
MeM

Proof. Suppose that \ € Irr(G ). Then XZ(G) =  x( l )^  f°r some A € 

Irr(Z (G ))  and ker\ D Mi for some Mi € A i, since Z(G) is elementary 

abelian. So ker\ 2  M i. Suppose that ker\ 2  M2, where Mi /  M 2 £ A i. 

Then ker\ 2  Mi M2 =  Z (G ) and

Irr(G) — Irr(G /Z(G )) =  (J  (Irr(G /M ) -  Irr (G / Z (G ))).
MeM

Since M  2  G', the factor group G /M  is a non-abelian p-group. Further­

more, $ (G /M ) =  <t>(G)/M =  Z(G)/M  has order p, because M  is a maxi­

mal subgroup of the elementary abelian p-group Z(G ). So by Lemma 1.4.7 

G =  (Q/M )Z(G /M ), where Q /M  is extra-special and Q /M  fl Z(G/M ) =  

$(G / M ) and the restriction of every irreducible character of G to Q is irre­

ducible. Thus the kernel of an irreducible character of G /M  does not contain 

Z (G )  if and only if it’s restriction to Q/M  is faithful. The result follows by 

Theorem 1.4.5. ^

1.5 Frobenius groups

Let G  be a finite group and let G be a subgroup of G, with 1 <  G < G. 

Assume that C  D C 9 =  1 whenever g £ G -  G. Then G is a Frobenius 

complement in G. A group which contains a Frobenius complement is called 

a Frobenius group.
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Lem m a 1.5.1 Let G be a Frobenius group with Frobenius complement C. 

Then \C\ divides \G : C\ — 1.

Proof. Huppert [2, Satz 8.3 page 497] Since f ] geG C 9 =  1, we can view G as a 

permutation group acting on the set of right cosets of C  in G. In particular, 

we can view C  as a permutation group acting on the set of right cosets of C  

in G. Suppose that Ch ^  C  is a right coset of C  in G. Then C  fl C h =  1 is 

the stabilizer of Ch  in C  and Ch is contained in an orbit of length |C|. The 

result follows. □

Lem m a 1.5.2 Let C  be a Frobenius complement in G. Let

Then |A7| =  |G : C|. If M  <G  with M r\C  =  1, then M  C N .

Proof. Isaacs [1, (7.3) Lemma, page 100]. Since C  =  NG(C), there are |G : C\ 

distinct subgroups of the form C 9. These contain exactly |G : C\ (|C| — 1) 

non- identity elements. The remaining elements of G  constitute the set N . 

We have

\N\ =  |G| -  \G : C\ (\C\ -  1) =  |G| -  |G| +  |G : C| =  |G : C|.

If M < G with M  PI C  =  1, then M  fl C9 =  1 for all g € G and thus M  C N. 

The proof is complete. □

Lem m a 1.5.3 Let C  be a Frobenius complement in G. Let 0 be a class 

function o f C  which satisfies 0(1) =  0. Then (0G)c  =  0.
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Proof. Isaacs [1, (7.4) Lemma, page 100]. Let 1 /  c £ C .  Then

0G(c) =  T ^ ^ V O r c a r 1),
I I x€G

where 0° is defined by 0°(c) =  0(c) if c € C  and 0o(y) =  0 if y £ C. If 

0°(xcx~l ) ^  0, then 1 /  xcx~l € C  D C x 1 and x  G C. Then 9°(xcx~l) =  

0(c). We have

Since 0G(1) =  |G : i/|0(l) =  0, the proof is complete. □

T h eorem  1.5.4 Let G be a Frobenius group and let C  be a Frobenius com­

plement in G. Then N  =  ^G — |J96GC 9  ̂ l-J {1 } a n°rmal subgroup of G 

with N C  =  G and C  n N =1.

Proof. Isaacs [1, (7.2) Theorem, page 100-101]. Let 1 c  /  </> 6 Irr(C )  and 

write 0 =  ip — <p(\)\c so that 0(1) =  0. Now

(0G, 0G) =  (0, (0G)c)  =  (0, 0)

by Frobenius reciprocity and Lemma 1.5.3. Thus (0G,0 G) =  1 +  p(\)2. Now 

(0G, 1G) =  (0, l c )  =  — ¥>(1)- We may therefore write 0G =  <^*-<^(l)lc, where 

<p‘  is a class function of G, (p*, 1q) =  0, and 1 +  p ( l ) 2 =  (<p*,p*) -I- <p(l)2, 

so that (<£>*,¥>') =  1. Since 0 is a difference of characters, so is 0G and 

hence p* is a difference of characters also. Since (p*,p*) — 1, it. follows that 

±<p* £ Irr(G ). Furthermore, c € C, then

tp'(c) =  0G(c) -I- p( 1) =  0(c) +  <¿>(1) =  p(c).
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In particular, <¿>*(1) >  0 and thus p* € Irr(G). For every non-principal 

p  € Irr(C ), we have now chosen an extension, p* € Irr(G ). Let M  = 

n^e/rrtc) kerp*. If m € M n C ,  then ¡p(m) =  p*{m) =  <¿>*(1) =  <¿>(1) for all 

p  € Irr(C ) and thus m =  1. By Lemma 1.5.2, M  C N . Conversely, if g 6 G 

lies in no conjugate of C, then

¥>*(s) -  v>(i) =  0G(a) =  0

and g € kerp*. It follows that M  — N  and hence the normal subgroup M  

satisfies \M\ =  \G : C\. We have \MC\ =  \M\\C\ =  \G : C||C| =  |G| and the 

result follows. O

The normal subgroup whose existence is guaranteed by Theorem 1.5.4 is 

called the Frobenius kernel of G. If T  =  {p i , . . . ,  gj}  is a right transversal for 

C  in G, then the decomposition

G =  N  U C 9' U • • • U C9>

into subgroups of G, any two of which have trivial intersection, is called the 

Frobenius partition of G.

1.6 Characters of Frobenius groups

We shall now go on to describe the irreducible characters o f a Frobenius 

group.

Lem m a 1.6.1 Let G be a Frobenius group with Frobenius complement C  

and Frobenius Kernel N . Then C c(n )  C N for all 1 /  n € N .
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Proof. Suppose g e  G  — N  is such that n9 =  n for some 1 ^  n € TV. Then 

from the Frobenius partition of G, we see that there exixts an h 6 G with 

gh =  c for some c € C. Thus mc =  m, where m =  nh. Since m € G — C ,

m~lcm =  c £ C  D C m =  1

and g must equal the identity. In particular, g & G — N. □

Theorem 1.6.2 Let A be a group which acts on Irr(G ) and on the set of 

conjugacy classes of G. Assume that x(ff) =  x“ (i/a) for all \ € At (G ), 

a € A and g € G ; where ga is an element of C l(g)a. Then for each a & A, 

the number of fixed irreducible characters o f G is equal to the number of fixed 

classes.

Proof. Isaacs [1, (6.32) Theorem, pages 93-94], Let Xi and K¡ be the ir­

reducible characters and conjugacy classes of G for 1 <  i , j  <  k. Choose 

gj € K j  and write gf =  gj if A'“ =  Kj. Let X  =  (x¿(9j))> the character table 

of G , viewed as a matrix. For a € A, let P(a) — (pij), where py =  0 unless 

X® =  x>i in which case py =  1. Similarly, define Q (a ) =  where gy =  1 

if AT® =  K j and is zero otherwise. The (u, v) entry o f the matrix P (a )X  is

^PuiXi(9v) = XÍ(9v)
i

since only when x¿ =  XÜ *s Í  0. Similarly, the (u, v) entry of the matrix 

X Q {a )  is

^  ̂X u ( 9 j ) Q j v  =  X u ( 9  )

i

since only when gj =  <7“ 1 is q]V 0. The hypothesis of the theorem now 

implies that P (a )X  =  X Q (a). Thus Q(a) =  X ~ xP (a )X  since the or­

thogonality relations guarantee that X  is non-singular. We conclude that
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Trace(P(a)) =  Trace(Q(a)). Since Trace(P(a)) is the number of x  G Irr(G) 

which a fixes and Trace(Q(a)) is the number of a- fixed conjugacy classes, 

the proof is complete. □

Theorem 1.6.3 Let N  < G  and assume that Cg(p)  C N  for all 1 ^  n £ N. 

Then for p  £ Irr(N ), with p  ^  ljv, we have Ia{<p) =  N  and p ‘\c £ Irr(G ).

Proof. Isaacs [1, (6.34)(a) Theorem pages 94], Let p  £ Irr(N ), p  ^  1^. To 

show that p G £ Irr(N ), it suffices to show that /c(<p) =  N. Therefore by 

Theorem 1.6.2 we need to show that no element g 6 G — N  can normalize 

any non-trivial conjugacy class of N. Suppose then, g £ G — N  normalizes 

K., a class of N. Let k £ K. Then k9 £ K. and thus k9 — kn for some n £ N. 

Therefore gn~l £ C (k). Since gn~l & N  and k £ N, the hypothesis yields 

k =  1 and thus K. =  {1} .  The result follows. □

Theorem 1.6.4 Let G be a Frobenius group with Frobenius complement C  

and Frobenius Kernel N . Then G has the following irreducible characters.

(a) The lifts o f the irreducible characters of G/N C.

(b) l/rrjc ||- ' irreducible characters, o f the following form : p f G, where p  

is a non-trivial character of N . Two non-trivial irreducible charcters 

of N , induce the same irreducible character of G if and only if they are 

conjugate in G.

Proof. Isaacs [1, (6.34)(b) Theorem pages 94], Let \ £ Irr(G ) with N  % 

ker\. Then xn  has an irreducible constituent p  /  ljy. So x is a constituent 

of y>tGi by Frobenius reciprocity. But Lemma 1.6.1 and Theorem 1.6.3 state 

that <ptG is irreducible. Thus p t G=  X- Now p  has |C| conjugates in G, since
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IG(ip) =  N  by Theorem 1.6.3. So there are exactly \C\ irreducible characters 

of N, whose induced character equals The result follows. □

1.7 Fixed-point free automorphisms

Suppose that a  is an automorphism of N. Then we say that a  is fixed-point 

free, if the only element of N  left fixed by a  is the identity. A subgroup C 

of A ut(N ) is called fixed-point free, if every non-identity element o f  C  is a 

fixed-point free automorphism of N. The following results can be found in 

Huppert [2, Satz 8.5, page 497-506].

Lem m a 1.7.1 The following statements are equivalent :

(a) G is a Frobenius group with Frobenius complement C  and Frobenius 

Kernel N.

(b) G  =  N C  with C <  G and N  <G . The mapping p from C into Aut(N ) 

defined by nc“ =  c~lnc for c £ C  and n £ N  is an isomorphism from 

C  onto a fixed-point-free group of automorphisms of N .

Proof, (a) =>■ (b) : Let c £ C  and n £  N  with nc =  n. Then

n~lcn =  c € C  fl C".

If n /  1, then n 6 G -  C  and C  D C n =  1, so c =  1. If c #  1, then n € C  

and thus n =  1. The proof is complete.

(6) => (a) : Let g £ N  n  C. Then g =  g9 and g =  1, since we are assuming 

that C  acts fixed-point freely on N. So N  fl C =  1 and G =  N C  is a semi- 

direct product o f N  and C. Let Cj € C  D C 9 with g £ G — C . Then g =  cn
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with c € C  and 1 ^  n € N. So C 9 =  C n and

C! =  c£ e C  D C n

with c-i 6 C. Since N  <G, we have

c i c j1 =  [n, c j 1] 6 N  fl C  =  1,

and ci =  C2- So nc =  n and c =  1, since n ^  1. Thus C  fl C 9 =  1 and G is a 

Frobenius group with Frobenius complement C. □

Lem m a 1.7.2 Let a  be a fixed-point free automorphism o f N. The map 

p : N  N  with p(n) =  n- 1nQ is a bijection.

Proof. Suppose that ni,ri2 6 R such that

n r V  =  p {n i)  =  p(n  2) =  n^n^.

Then riin^1 =  (n in fl )a and n\ =  n2, because a  acts fixed-point freely on 

N. The result follows. □

Lem m a 1.7.3 Let C  be a fixed-point free group of automorphisms of N. 

Suppose that C  has even order. Then C has a unique element c of order 2 

and nc =  n_1 for all n £ N . Moreover, N must be abelian.

Proof. Let c € C  with 0 (c ) =  2 and p(c) be the bijective map from N  onto 

itself defined Lemma 1.7.2. Then for all n 6 N  there exists a n i n 6 JV such 

that n =  m~lmc and

nc =  (m- 1mc)c =  (m~1)cmc2 =  (mc)_1m =  ( 1 =  n~l .

If ci and C2 are involutions of C. Then c j 1̂  € C c{N )  =  1. Thus Ci =  C2- 

Finally, N  is abelian, because it admits an automorphism that maps every 

element to its inverse. Q
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L em m a  1.7.4 Let a  be a fixed-point free automorphism of N  and let R be 

a normal subgroup of N  with Ra =  R. Then a  induces a fixed-point free 

automorphism on R and N/R.

Proof. Clearly a  acts fixed-point freely on R. So by Lemma 1.7.2

R - { r _ 1r“ |r £ /?}.

Now let n e  JV and nR =  naR. Then n~lna £ R, so n~lna =  r - 1rQ for 

some r £ R. It follows that nr~l =  (n r-1)Q and n must equal r. Therefore 

a  induces a fixed-point free automorphism a  on N/R with (nR )a =  naR. □

L em m a  1.7.5 Let V  be a vector space of any dimension over a field K  and 

let C  be a finite group of linear maps o f V into itself. Let C  be fixed point 

free, in other words vc ^  v for all 1 ^  c £ C  and 0 /  v £ V . Suppose 

that \C\ =  pq, where p and q are not necessarily distinct primes. Then C  is 

cyclic.

Proof. If p =  q and C  is not cyclic, then C  has exactly p +  1 subgroups C, of 

order p. Then C =  Ci and C, D C j =  1 for i ^  j .  If p > q and C  not 

cyclic. Then C  has exactly one p-Sylow subgroup C\ and p distinct q-Sylow 

subgroups C2, . . . ,  Cp+i. Once again C  — flf=i and C< n  Cj =  1 for i ^  j . 

We shall now consider the two cases simultaneously. Let 0 /  v £ V  and 

1 ti  d  £ C. Then
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so, since C  is fixed point free, YLcecvc ~  0- We can show similarly that

S cec , vc =  Hence

and the characteristic of K  is p. Let d € C  of order p. Since the characteristic 

of K  equals p we have

Therefore there is an i with 0 <  i <  p and v (d — 1)‘ ^  0, but v (d — 1)‘+1 =  0. 

Thus w =  v (d — 1)' and wd =  w ^  0 contradicting our assumption that C

T h eorem  1.7.6 [ T h om p son ]  If N  has a fixed-point free automorphism of 

prime order, then N  is nilpotent.

L em m a 1.7.7 Let P  be a non-cyclic p-group for  some prime p >  2. Then 

P  contains an elementary abelian subgroup of order p2.

Proof. We shall prove the result by induction on the order of P. If P  is a 

non-cyclic p-group of order p2 then P  itself is elementary abelian. Assume 

P  is a non-cyclic p-group of order greater than p2 and every non-cyclic p- 

group o f order less than P  has an elementary abelian subgroup of order p2. 

Let Q  be a normal subgroup of P  of order p. Suppose that P/Q is cyclic. 

Then P  is abelian and every minimal generating set of P  has two elements. 

Thus f l i (P )  is elementary abelian of order p2. So we may assume that P/Q

0 =  v (dP — 1) =  v (d — l ) p .

acts fixed-point freely on V. □

Proof. Huppert [2, Satz 8.13, page 502], □
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is non-cyclic and as a result contains an elementary abelian subgroup T/Q of 

order p2. So T' C Q  and this fact combined with our assumption that p >  2 

ensures that

(xy)p =  xpyp[x, p](*) =  xpyp.

So the map t -> tp is a homomorphism from T  to Q, whose kernel has 

exponent p and order greater than or equal to p2. Thus every subgroup of 

the kernel of order p2 is elementary abelian. The result follows. □

T h eorem  1.7.8 Let C  be a fixed-point free group of automorphisms of N. 

Suppose that C  has odd order. Then every p-Sylow subgroup of C  is cyclic.

Proof. We can assume that C  /  1. So C  contains an element of prime order, 

which induces a fixed point free automorphism of prime order on N . So N  is 

nilpotent by Theorem 1.7.6. Let Q  be a p-Sylow subgroup of the nilpotent 

group N. Then by Lemma 1.7.4 every element of C  induces a fixed-point 

free automorphism on Q/$(Q ). So C  is isomorphic to a group of fixed- point 

free automorphisms of the elementary abelian group <3/$(Q). Since we can 

view Q/i>(Q) as a vector space over GF(p), Lemma 1.7.5 states that every 

subgroup of order pq of C  is cyclic. So every p-Sylow subgroup of C  must be 

cyclic by Lemma 1.7.7. The proof is complete. O



Chapter 2

Model subgroups

Let G be a finite group and let Irr(G )  be the set o f irreducible characters of 

G. Suppose there exists a set Ad o f monomial characters of G  satisfying

£  x = 5 >
X€/rr(G) t € M

Then we say that Ad is a model o f  length n for G, where n is the cardinality 

o f Ad.

2.1 Definition

Suppose that G  has a model o f length 1. Then a linear character A of a 

subgroup H of G exists such that

A tC= ^2 X-
xein-(G)

By Frobenius reciprocity, we have (A, 1//) =  ( A t ° ,  l c )  =  1- So A must be 

the trivial character of H. With this observation in mind, we shall call H  a

47
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model subgroup o f G if

i//tG= Y  x-
X€lrr(G)

T h e o re m  2.1.1 Let G be a finite group. Then H is a model subgroup of G 

if and only if

The result follows by Frobenius reciprocity. □

C o ro lla ry  2.1.2 Let G be a finite group. Then G is abelian if and only if 

the trivial subgroup of G is the unique model subgroup of G.

Proof. By Theorem 2.1.1 the trivial subgroup of a finite group G is a model 

subgroup if and only if every irreducible character of G is linear, which is the 

case if and only if G is abelian. Since two model subgroups of a finite group 

G  have the same index in G, it follows that the trivial subgroup must be the 

unique model subgroup if it is a model subgroup. □

£ x ( * )  =  i n

fo r  all \ € Irr(G).

Proof. Let \ € Irr(G ). Then
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2.2 Examples

So every finite abelian group has a model subgroup. However, it is not true 

that a finite group G, which has a model subgroup, is necessarily abelian. 

We shall illustrate this statement with the following examples.

Let G be the alternating group of degree 4. Then G  is generated by the 

permutations (12)(34) and (123). The order of G is 12 and the elements

(1) , (12)(34) , (123) , (132)

form a set of conjugacy class representatives of G. So G has four irreducible 

characters. Since G' = <  (12)(34), (13)(24) > and G/G' =* C3, we obtain

9i

\Ca{9i)\

(1)
12

(12)(34)

4

(123)

3

(132)

3

Xi 1 1 1 1

X2 1 1 u U)2

X3 1 1 w2 UJ

X4

where w =  e 2?1. Since the sum of the squares of the irreducible charac­

ters equals the order of G, the degree of X4 must be 3. Finally, using the
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orthogonality relations to completely determine X4i we obtain

9 i

\Ca(!k)\

(1)
12

(12)(34)

4

(123)

3

(132)

3

X i 1 1 1 1

X2 1 1 10 w 2

X3 1 1 U)2 <J)

X4 3 -1 0 0

where u> =  e2?1. Now x( ( l ) )  +  x((12)(34)) =  2 for all x  G Irr(G ). So, 

by Theorem 2.1.1, the subgroup of order two generated by the permutation 

(12)(34) is a model subgroup of G.

Let F  =  F2- and let e be a primitive generator of F. Suppose that

G =  [F+] <  e >,

the external semi-direct product of the elementary abelian group F + and the 

cyclic group <  e >  of order 2" — 1 via o, where o  is the homomorphism from 

<  e >  to A u t(F +) defined by

xa{,,) =  xel (field multiplication)

for all x  € F + and 0 <  i <  2" -  1. Then G  is a Frobenius group with 

Frobenius complement < e >  and Frobenius kernel F + by Lemma 1.7.1. So 

G  has 2" -  1 linear characters A j , . . . ,  A2»_ i and a unique non-linear character 

X of order 2" -  1 by Theorem 1.6.4. Furthermore, if p is the regular character 

o f F +, then

XF +=  p -  1F+-
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Now suppose that M  is a maximal subgroup of F +. Then

Y 1 Ai(m) = im i>
m€zM

because M  C ker A, for all i, and

Y1 x m  = X] _
mEM m£M

=  (|F+ | - 1) +  Y1 - 1

=  (2" -  1) -  (2" _1 -  1) =  2n_1 =  \M\.

Thus A/ is a model subgroup o f G by Theorem 2.1.1. When n =  2, the finite 

group G  has order 12 and is isomorphic to A4.

2.3 Epimorphic images

Lem m a 2.3.1 Let G be a finite group and let N  be a normal subgroup of 

G. Let \ G Irr(G/N) and let \ be the corresponding irreducible character of 

G/N. Suppose that H is a subgroup o f G. Then

> Xhn/n) > X«)-

Proof.

î HN/N ’ XhN/N) \HN/N\ 51>N X{Nh)

¡Si £*<**>1 1 hen

| //n  N| 
\ H \

£  x(N h) 
NheV

1 x(*) = Oh-x«}-
hen

The proof is complete. □
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T h eorem  2 .3 .2  Let G be a finite group and let N  be a normal subgroup 

of G. Suppose that H  is a model subgroup of G. Then HN/N is a model 

subgroup of G/N.

Proof. Suppose that \ € Irr{G/N ) and \ is the corresponding irreducible 

character of G/N. Then

i ĤN/N > XhN/n} ’ Xu) l

by Lemma 2.3.1, and

( !»  . X„) =  1»

because H  is a model subgroup of G. The result follows from Theorem 2.1.1.

□

C orolla ry  2 .3 .3  Let G be a finite group and let H be a model subgroup of 

G. Then H is a subgroup of G '.

Proof. By Theorem 2.3.2, we know that HG'/G1 is a model subgroup of 

G/G'. But G/G' is abelian. So HG'/G' is the trivial subgroup of G/G', by 

Corolla ry 2.1.2. Thus H must be a subgroup of G '. □

2.4 Direct Products

T h eorem  2.4.1  Suppose that H\ and H2 are model subgroups of G\ and G2 

respectively. Then

H =  Hi x H2

is a model subgroup o f G =  G\ x G2.
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Proof. Let \ € Irr(G ). Then \ =  6<t> for some 6 €E Irr(Gt ) and (¡> 6 Irr(G 2 ). 

Thus

£ * ( > » )  =  £  £
h&H /11G//1 /i2̂ 2̂

£  fl(Ai)) ( £
hi€Hi / \/i2€//2

But f /i  and H2 are model subgroups of Gi and G2 respectively. So

Y  9{hi) =  \Hi\ and 
/neffi
£  <t>{h2) =  \H2\,

/*2€//2

by Theorem 2.1.1. Hence

heH

and H  is a model subgroup of G by Theorem 2.1.1. □

T h eorem  2.4.2 Suppose that G =  G\ x x Gm. Then H is a model 

subgroup of G if and only if the following statements hold.

(a) H  =  (H  n Gi) x • • • x (H  n Gm).

(b) H  fl Gi is a model subgroup of Gi for i e  { 1, . . . ,  m} .

Proof. We may assume without loss of generality that m =  2.

Suppose that H  is a model subgroup of G. Then

H G X H 
G, H D G i
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is a model subgroup of G /G i =  G2 by Theorem 2.3.2. So G2 has a model 

subgroup of order

\ H \

\HnGi\'

We can show similarly that G i has a model subgroup of order

|g|
\HC\G2[

Thus by Theorem 2.4.1 G has a model subgroup of order

jgl „ |H| |g|2
|/ /nGi| \ H n G 2\ |i /nGj| x n G 2|'

But the order of a model subgroup is determined by the sum of the character 

degrees o f G and is thus uniquely determined. So

\m -  l"l2
1 1 | //nG !|  x | //n G 2|’

which implies that

H =  (H C \ G i)x  (HC\G2).

Let p be the isomorphism from G i to G/G2 satisfying p(gi) =  g\G2 for all 

<7i e G\. Then

Pl( H n G l) =  H G 2/G2

and H n  G i is a model subgroup of G|, since H G2/G2 is a model subgroup 

of G/Gi-  We can show similarly that H n  G2 is a model subgroup of G2.

Now suppose that II =  ( / / n G | ) x  (Hr\G2) and / /nG < is a model subgroup 

of Gj for i e  {1,2} .  Then / /  is a model subgroup of G by Theorem 2.4.1. 

The proof is complete. O
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2.5 Central Products

Lem m a 2.5.1 Let G be a finite group and let N be a normal subgroup of 

G. Suppose that G' C\ N  =  1. Then every irreducible character of G is of the 

form \X, where \ € Irr(G /N ) and X € Irr(G /G').

Proof. Since G' fl N  =  1, the normal subgroup N  C Z (G ) and

NG' =  N xG '.

Suppose that <j> 6 Irr(N ). Then ip =  <j> 1g<, is a linear character of NG' such 

that G' C kerip and =  <t>. Hence

<p € Irr{NG'/G')

and there exists a A € Irr(G /G ') such that Anq1 =  P- Thus Xn =  <t>■ So we 

can choose

Ai, • • •, A|w| € Irr(G/G')

such that (Aj)^ ^  (^j)n for i ^  j .  Now let x> 0 € Irr(G /N ). Suppose that 

\Xi =  OXj. Then

X(l)(-^*)yv =  (x K ) n =  (0Xj)N =  0(1)(Aj)jv.

Thus Aj =  A j and \ =  0- We have found \Irr(G / N)\ x |7V| distinct irreducible 

characters of G and the sum o f  the squares of the degrees of these characters 

is equal to |G|. So every irreducible character of G has the form \X, where 

X € Irr(G /N ) and A € /r r (G /G ') .  E

T h eorem  2.5.2 Let G be a finite group and let N be a normal subgroup of 

G. Suppose that G' PI N  =  1. Then G has a model subgroup if and only if 

G/N has a model subgroup.
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Proof. Suppose that G  has a model subgroup, then G/N has a model sub­

group by Theorem 2.3.2.

Suppose that G/N  has a model subgroup H/N. Let p 6 Irr(G ). Then by 

Lemma 2.5.1 p  =  for some \ € Irr(G/N) and A € Irr(G /G'). So

E  v (h) =  E  xX(h) =  E  x(/»)A(/i) =  *52 *(*)■
heHnG' heHnG' heHHG' heHnG'

Then N  C H  C G  and H  C NG' since H/N C (G/N)', by Corolla ry 2.3.3. 

Thus H  =  7VG' n / f  =  7V(G' D H).

E  x W =  E  x ( ^ )  =  l ^ l  =  |ifnG '|,
heHnG' NheH/N

by Theorem 2.1.1 and H  fl G' is a model subgroup of G. □

T h eorem  2.5.3 Let G  be a central product o f G\,. . .  ,G m. Suppose that 

G\ fl Z(G {) =  1 for all i. Then G has a model subgroup if and only if Gi has 

a model subgroup for  1 <  i < m.

Proof. Suppose that G has a model subgroup. Let

Gi =  G\.. .  Gi-\G i+\. . .  Gm.

Then the quotient group

Gi y  G
Gi n Gi Gi

has a model subgroup by Theorem 2.3.2. But

G iC G i C Z(Gi)

and thus intersects trivially with G\. Hence Gi has a model subgroup by 

Theorem 2.5.2.
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Suppose that Gi has a model subgroup for 1 <  i <  m. Let

D — G\ x • • • x Gm.

Then the map e from D  to G defined by

e : (<7l i • • • > 9m) —t 5l • • • 3m

is an epimorphism. Furthermore, D  has a model subgroup by Theorem 2.4.2. 

Hence G  has a model subgroup by Theorem 2.3.2. O

2.6 Nilpotent groups

We have already seen that non-abelian finite groups with model subgroups 

exist. However non-abelian finite nilpotent groups with model subgroups do 

not.

Lem m a 2.6.1 Let G be a finite group and let H be a model subgroup of G. 

Then H n Z {G )  =  1.

Proof. Let x  G Irr(G ). Since H is a model subgroup of G, we have 

(X ff.ltf) =  1- So (xHnz(G)i l//nZ(G)) #  0 and XhoZ(G) =  x(l)ltfnZ(G)- Thus 

H fl Z (G ) is a subgroup of the kernel o f x  and

H n Z (G )C  P l kerx  =  1.
X e lr r (G )

The proof is complete. 1=1

T h eorem  2.6.2 Let G be a finite nilpotent group. Then G has a model 

subgroup if and only if G is abelian.
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Proof. Suppose that G is minimal such that G  is non-abelian and G has a 

model subgroup, H  say. Then H Z(G)/Z(G ) is a model subgroup of G/Z(G), 

by Theorem 2.3.2. So G/Z(G) must be abelian, by the minimality of G. Thus 

G' is a subgroup of Z(G). Since H  is a subgroup of G' and H C\Z(G) =  1, by 

Corolla ry 2.3.3 and Lemma 2.6.1 we see that H  must be the trivial subgroup 

o f G. But this contradicts Corolla ry 2.1.2 and the result follows. □



Chapter 3

Frobenius groups

In the previous chapter we gave some examples of Frobenius groups possess­

ing model subgroups. We shall now derive necessary and sufficient conditions 

for a Frobenius group to admit a model subgroup.

3.1 Complements and model subgroups

In this section we shall prove that if a Frobenius group admits a model 

subgroup, then its Frobenius complement is cyclic of odd order.

T h eorem  3.1.1 Let G be a Frobenius group with Frobenius complement C  

and Frobenius kernel N. Suppose that G has a model subgroup. Then C has 

odd order.

Proof. Let \ € Irr(G) satisfying N  2  ker\. Then by Theorem 1.6.4 x  — ^G 

for some 0 € Irr(N ) and

XN =  0\ +  • ■ • +  0\c\,

59
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where 6 =  0\,. . .  ,0\c\ are the conjugates of 9 in G. Let c be the unique 

element of C  of order 2 satisfying

nc =  n-1

for all n € N, whose existence is guaranteed by Lemma 1.7.3. If AT is a 

subgroup of N, then

< 1K ,9 K >  =

So <  1K , x K > =  2m for some m >  0. Now suppose that H  is a model 

subgroup of G and K  =  H  fl N. Then

=  \ H \ ,

k£K heH

by Theorem 2.1.1 and because x  vanishes outside N . Furthermore, HN/N 

is a model subgroup o f G/N by Theorem 2.3.2 and HN/N  fl Z(G/N) =  1 

by Lemma 2.6.1. However

and the subgroup HN/N  of G/N  — C  must contain the unique element 

of G/N  o f order 2. This element is clearly contained in the centre o f G/N 

contradicting HN/N  fl Z(G/N) =  1. The proof is complete. □

Lem m a 3.1.2 Let G be a finite group. Suppose that every p-Sylow subgroup 

of G is cyclic. Then G is soluble.

i* i h
AS™ <  i K , r K >
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Proof. Huppert [2, Satz 2.8, page 420] Let P  be a p-Sylow subgroup of G, 

where p is the smallest prime dividing the order of G. Then

Ng (P ) 2  CG(P ) 2  P,

because P  is cyclic, and Ng (P)/Cg (P ) Q Aut(P). Now suppose that

1 ±  nCa(P) € Ng (P)/Cg (P )

induces the automorphism a  on P  and the non-trivial automorphism a  on

P/$(P) ~  Cp.

Then p does not divide the order of a. So 1 ^  o(a)|p — 1 and

( o (a ) ,p -  1) /  1.

But if q is a prime dividing the order of a  then q > p. Therefore Ng (P ) must 

equal Cg {P ) and consequently P  has a normal p-complement R in G. The 

result follows by induction. □

Lem m a 3.1.3 Let G be a finite group. Suppose that G'/G" and G"/G"' are 

cyclic. Then G" =  G'".

Proof. Huppert [2, Satz 2.10, page 420] Assume that G'" =  1. Then G" 

is cyclic and the group G/Cg {G"), which is isomorphic to a subgroup of 

Aut(G "), is abelian. So G' C Cc (G") and G" C Z(G'). But G'/G" is cyclic 

and thus G' must be abelian. Hence G" =  1 and the result follows. □

T h eorem  3.1.4 Let G be a Frobenius group with Frobenius complement C  

and Frobenius kernel N . Suppose that G has a model subgroup. Then C is 

cyclic o f odd order.
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Proof. If G  has a model subgroup then so must C  by Theorem 2.3.2. Fur­

thermore, we may assume that all the p-Sylow subgroups o f C  are cyclic, 

by Theorem 3.1.1 and Theorem 1.7.8. So C'/C" and C"/C"' are cyclic, and 

C " =  C'" by Lemma 3.1.3. Since C  is soluble by Lemma 3.1.2, we have 

established that C" =  1. Hence C' is a normal cyclic subgroup of C  and 

since every subgroup of a cyclic group is characteristic, every subgroup of C 1 

is a normal subgroup of C. If H  is a model subgroup of C, then H must be 

contained in C' by Corolla ry 2.3.3. Thus H  is a normal subgroup of C  and

1 h t C =

*6/rr(C/tf)

So we must have H  =  C ' =  1 and the result follows. □

3.2 A necessary arithmetic condition

We shall now prove that a Frobenius group with an abelian Frobenius kernel 

of prime power order has a model subgroup only if it satisfies a specific 

arithmetic condition.

T h eorem  3.2.1 Let G be a Frobenius group with Frobenius complement C  

and abelian Frobenius kernel N  of order r " , where r is a prime. Suppose that 

G has a model subgroup. Then C is cyclic of odd order and

\ G  = N \  =  |C| =

where d divides n.

Proof. Since G is a Frobenius group, |C| divides |JV| — 1 by Lemma 1.5.1. 

So there exists an x  such that \C\x =  r" — 1. Suppose that H  is a model
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subgroup of G. Then C  is cyclic by Theorem 3.1.4 and

\ G :H \ =  £  X(1)=|C| +  |AT|-1 =  |C|(1 +  X ),
X€/rr(G)

by Theorem 1.6.4 and our assumption that N  is abelian. So x  =  rd — 1 for 

some d <  n. Finally d must divide n, since x  divides r" — 1. □

Theorem  3.2.2 Let G be a Frobenius group with Frobenius complement C  

and Frobenius kernel N. Suppose that G has a model subgroup. Then N  has 

prime power order.

Proof. Suppose that G is a minimal counter-example. By Theorem 1.7.6, N  

is nilpotent and can be written as a direct product of its p-Sylow subgroups. 

So N  =  Pi x • • • x P j, for some j  >  1. Let

M  =  4>(Pi) x x P3 ■ ■ • x Pj.

Then G/M  has a model subgroup by Theorem 2.3.2 and G/M  is a Frobenius 

group, by Lemma 1.7.4, with Frobenius complement C/M  and Frobenius 

kernel

N/M  S'
Pi

H P )
x P2

* (p » y

contradicting the minimality of G. So we may assume that G  is a Frobenius 

group with Frobenius complement C  and abelian Frobenius kernel N  =  L x 

K, where L and K  are elementary abelian of order r" and pm respectively, r /  

p. Let H  be a model subgroup of G. Then H  C G' C N, by Theorem 3.2.1 

and Corolla ry 2.3.3. So H  D L and H C\K are the r and p Sylow subgroups 

of H. Thus

H  =  ( HHL )  X ( H C K ) .
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Now A- is a characteristic subgroup of N  and thus a normal subgroup of G. 

So G/K  is a Frobenius group with Frobenius complement C /K  ^  C  and 

Frobenius kernel N/K =  L. So H K /K  is a model subgroup of G/K  by

Theorem 2.3.2 and
rn — 1

where d is some divisor of n, by Theorem 3.2.1. Furthermore,

\H n L\ =  \H : H  n K\ =  \HK : K\ =  rn~d, 

by Theorem 3.2.1. We can show similarly that HL/L is a model subgroup

of G/L,
nm -  1

V ' W - r - i  •
where e is some divisor of m and

\H n K\ =  \H : H  n L\ =  \HL : L\ =  pm~e.

We shall derive a contradiction by evaluating the index of H  in G in two 

different ways. From above we have

\G : H\ =  \G : N\ ( i - V ) .

But Theorem 3.2.1 states that

\G:H\ =: \G : N\ +  (rnpm -  1)

= \G : Â| ( (r d — l)  pm +  pe)

= |G : N\pe ( ( r d — l)  pm~e +  l )  .

Comparing the two values for the index of H  in G, we see that m must 

equal e, which implies that C  =  1 contradicting our assumption that G was 

a Frobenius group with Frobenius complement C. D
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3.3 Kernels and model subgroups

In this section we shall prove that if a Frobenius group G  admits a model 

subgroup, then its Frobenius kernel is a minimal normal subgroup of G.

Lem m a 3.3.1 Let G be a finite group, let n be an integer greater than zero 

and 0„ be the class function on G defined by

On(g) =  \ {h eG \ h n =  g}\.

Suppose that i/n(x) ^le uniquely determined complex number

Then

On =  " "M X -
xelrr(G)

M x ) =
1 1 9€G

for all x  € Irr(G ).

Proof. Isaacs [1, (4.4) Lemma, page 49-50] By the orthogonality relations we 

have

M x )  =  ( 0 n , X )  = ^ 5 Z M 0 ) X ( S ) -
°  geG

Since 0n(g )x(g ) =  E hec :/."=9 x(^")> we have

i'n(x) = 7j 5 2 x(/in)-
U  h€G

Finally replace by h by h 1 to obtain the result. □
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Lem m a 3.3.2 Let N  < G  and let \ € Irr(G) with N  C ker\■ Let vn(.X) 

be as above and let vn{x ) be the corresponding number in G/N. Then vn{x) 

equals vn{x)-

Proof. Isaacs [1, (4.7) Lemma, page 51-52] We have

'  I c lA T i E  * « " » > " >  =  E x W >1 1 NgeG/N 1 111 geG

=  i ^ T ^ X i s " )  =  "n(x)-
' ' geG

The proof is complete. O

T heorem  3.3.3 Let \ €  Irr(G). Then i/2(x) =  1, 0 or — 1 and v2(\) #  0 

if an only if x  is real- valued.

Proof. Isaacs [1, (4.5) Theorem, pages 50-51] □

C orollary  3.3.4 Let G have exactly t involutions. Then

1 + t =  ^ 2  V2(x )x (l) .
Xelrr(G)

where o2(\) =  0 if x ¥ ^ X  an(l o2 =  ±1 if X =  X-

Proof. Isaacs [1, (4.6) Corollary, page 51] Since #2( 1) =  1 +  t, the result 

follows immediately from Theorem 3.3.3. 1=1

T h eorem  3.3.5 Let G be a non-abelian special 2-group o f rank 2n. Let A4 

be the set of maximal subgroups of the centre of G and let

M e — {M  G M  | G/M is extraspecial}.

Suppose that the order o f  the centre of G is greater than 2". Then

\Me \ =  0 mod2.
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Proof. Suppose that M  is a maximal subgroup of the centre of G. Then G/M 

is a non-abelian 2-group and $(G/M ) has order 2 by Lemma 1.4.8. Hence 

G/M =  (Q/M )Z(G/M ), where Q/M  is extra-special and Q / M n Z (G / M ) =  

<fr(G/M), by Lemma 1.4.8. If Z(G/M ) has order 22*ra+1, then G/M  has 

22" linear characters and 22*m irreducible characters of degree 2n~km. Fur­

thermore, the restriction o f every irreducible character of G/M  to Q/M  is 

irreducible. So every non-linear character of G/M  restricts to p, the unique 

non- linear character of Q/M  given by Theorem 1.4.5. Suppose that

Then for any non-linear irreducible character x  o f G/M

By Lemma 1.4.8 we have

I r r (G ) -I r r {G / Z (G ))  =  |J { *  6 Irr(G /M ) | x ( l )  /  1}.
A/eM

If A € Irr(G /Z(G )), then

Thus if G  has exactly t involutions, then

1 4- t =  22" +  2" ^ 2  v2(M )2km,
MeM
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by Corolla ry 3.3.4 and Lemma 3.3.2. Now suppose that the order of the 

centre of G is greater than 2". Then 2"+1|l +  t, because the set {g  € G : 

g2 =  1} is a union of cosets of the centre of G. Therefore

y ;  1*8(Af) =  0 mod 2,
M€_Me

where M e =  {M  € M  : \Z(G/M)\ =  2}. Clearly M  € M e if and only 

if G/M  is extraspecial. Since the non-linear irreducible character of an ex­

traspecial 2-group is real valued, ^ (M )  =  ±1  for M  6 M e by Theorem 3.3.3. 

Thus

\ M e \ =  0 mod 2

and the proof is complete. D

Theorem 3.3.6 Let G be a Frobenius group with Frobenius complement C 

and abelian Frobenius kernel N  of order rn, where r is a prime. Suppose that 

G has a model subgroup. Then N  is a minimal normal subgroup of G. In 

particular, N  is elementary abelian.

Proof. By Theorem 3.2.1 \G : N\ — where d divides n. Now suppose

that 1 M <G  and M  C N. Then M  has order rm for some 0 < m <  n and 

G/M  is a Frobenius group with Frobenius complement C/M  and abelian 

Frobenius kernel N/M. So by Theorem 3.2.1 |G : 7V| =  r r̂ _i~ where e 

divides n — m and
rn — 1 _ rn~m -  1
rd — 1 re — 1

If this identity holds, then e < d < n - m < n .  Rearranging the equation we 

obtain

r d ^ . n - m  _  r n - m - d  _  ^  _  r * _  r " - «  _  l )
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and d must equal e contradicting the inequality above. □

T h eorem  3 .3 .7  Let G be a Frobenius group with Frobenius complement C  

and Frobenius kernel N  o f prime power order. Suppose that G has a model 

subgroup. Then N  is abelian.

Proof. Suppose that G is a minimal counter-example to the claim and S 

is a minimal normal subgroup o f G  contained in N . Then by Lemma 1.7.4 

the factor group G/S is a Frobenius group with Frobenius complement C/S 

and Frobenius kernel N/S. In addition, G/S has a model subgroup by The­

orem 2.3.2. Thus N/S must be abelian, because G  is a minimal counter­

example to the claim. So N/S is a minimal normal subgroup of G/S by 

Theorem 3.3.6. Hence

S =  Z( N)  =  N'  =  $ (N )

and N  is a non-abelian special r-group. Suppose that S  is the set of maximal 

subgroups o f S. Then

Irr(N ) -  Irr(N/S) =  ( J  { *  e  Irr(N / T ) | * ( 1) /  1}, 
res

by Lemma 1.4.8. Furthermore, if T  G S, then N/T is a non-abelian r-group 

and $(N /T) has order r. Now let

{Tx.......Tj)

be a complete set of orbit representatives of S  viewed ¡us a C-set and let

<5i, . . . ,  Sj
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be the C-orbit containing TJ. Then by Lemma 1.4.7 there exists a >  0 

such that for all U £ St, the factor group N/U has r" linear characters and

(r — l)/'** irreducible characters of degree

where r" is the order o f  N/S. Let Cj =  {c  £ C  | Tf =  Ti). Then c £ Ct{ if 

and only if c acts fixed- point freely on S/TJ by Lemma 1.7.4. Thus

for some ti dividng r — 1 by Lemma 1.7.1 and Lemma 1.5.1. Let Irr(N/Si) be 

the set of non- linear irreducible characters of N, which contain an element 

of Si in their kernel. Then

Irr(N) -  Irr(N/S) = Irr{N/S,)  U  • • ■ 0  Irr{N/Sj)

by Lemma 1.4.8. Furthermore,

IMTV/SOI = |5,|(r -  l)r*‘ = | C | ^ r* ‘ ,

since the kernel of every non-linear character of N  contains one and only one 

element of M . Because G is a Frobenius group, it clearly permutes these 

characters in orbits o f length |C|.

Suppose that H  is a model subgroup of G. Then HS/S  is a model subgroup 

of G/S , a Frobenius group with Frobenius complement C/S and abelian 

Frobenius kernel N/S. Therefore Theorem 3.2.1 states that C  =  C/S is 

cyclic of odd order and

\G:N\ =  \C\ =  ^ ,
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for some d dividing n. Hence the index of HS/S in N/S is rd by Theo­

rem 1.6.4. Since C  is cyclic, H  is contained in N  by Corolla ry 2.3.3. Thus 

\H t  TV is multiplicity-free and contains exactly one irreducible character 

from each orbit of Ir r (N )  viewed as a C-set by Theorem 1.6.4.

Let T  € Si. Suppose that \ € Irr(N /T) and \ is the corresponding character 

in N/T. Then

(1 / /  T N , x )  =  (1 ht/t t  N /T , x ),

by Lemma 2.3.1. In particular, \ht/t t  N/T is multiplicity-free. If H  fl 5  g  

T, then S/T C HT/T. So

k er (lHT/T f  N/T) =  f|  (H T/T)nT D S/T
nTeN/T

and no non-linear character of Irr(N /T) can be a constituent of 1 h t  N. 

If H  n  5  c  T, then HT/T  has index rd+1 in N/T. So l ht/t t  N/T has 

degree rd+l. Since HS/S  has index rd in N/S, the sum of the degrees of the 

non-linear irreducible constituents o f l ht/t t  N/T must equal rd. Therefore

r d-\(n-ki)

non-linear characters o f Irr(N /T ) are constituents of 1 h t  N. Thus 

\{T € Si : H  n  5  C  T}| =  j  rd- ^ n~ki) =  L ^ l r l̂ + ^ ) - d.

Suppose that H  D 5  has index rx in S. Then H  fl S is contained in

rx — 1 
r — 1

elements of S  and we have

r I ~  1 _  . . . .  
r - 1  ~ h  tj
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Since the left-hand side is co-prime to r we must have

^ (n +  ki) — d =  0

for some i. Since 2d <  n, this forces n =  2d and ki =  0. So |C| =  rd -(-1 and 

r =  2, because C  has odd order. Rewriting the equation above we obtain

21 — 1 =  25*1 -I--------1- 2*k>.

Hence there must be an odd number of orbits of the set of maximal subgroups 

o f 5  viewed as a C-set with — 0. Since every orbit has length \C\ =  2d +  1, 

this implies that N  has an odd number of maximal subgroups of S with extra­

special quotients. But C  acts fixed-point freely on S by Lemma 1.7.4, so |S| > 

2d, by Lemma 1.7.1 and Lemma 1.5.1. The result follows by Theorem 3.3.5.
□

3.4 Finite fields and model subgroups

D efin ition  3.4.1 For a  € F  =  Frn, the absolute trace T rF(a) is defined by 

T rF (a) =  at +  a r +  ■•• +  ar

T h eorem  3.4.2 Let R =  Fr and F  =  Fr» . Then the trace function T rF is 

a linear transformation from F  onto R, where both F  and R are viewed as 

vector spaces over R.

Proof. Lidl and Niederreiter [3, 2.23 Theorem, page 55] For a, ft € F  we have

T rF(a +  /3) =  (a +  ¡3) +  (a + /3)r --------(a  +  fi)r

=  a  +  /3 +  a r +  ?  +  ■■• +  a r"~' +

=  T rF(a) +  T rF(/3).
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For c £ R and a  £ F  we have

T rF (ca) =  (ca) +  cra r + ------1- cr" ' a T"

=  ca  +  car +  • • • +  car"

=  cTrF(a).

Furthermore, T rr a  is an element of R for all a  € F, because it is left fixed 

by every field automorphism of F. We have proved that TrF is a linear 

transformation from F  into R, where both F  and R  are viewed as vector 

spaces over R. To prove that this mapping is onto, it suffices to show that 

the existence of an a  £ F  with T rF(a) ^  0. Now T rF(a) =  0 if and only 

if a  is a root of the polynomial x T" '+•••  +  i r +  i  in F. But since this 

polynomial can have at most r" -1 roots in F  and F  has r" elements, we are 

done. D

D efin ition  3.4.3 Let b € Fr™ and \b be the function defined by

X„(c) =  e2" iTTr (bc)lr

for all c € Frn .

T h eorem  3.4.4  Irr(Ff,',) =  {x 6 1 b £ Fr~ }.

Proof. Lidl and Niederreiter [3, 5.7 Theorem, page 190] Let b, Ci,C2 £ Fr>. 

and x b be the function defined in Definition 3.4.3. Then

X»(ci + c 2) =  Xt(c i)x t (c2),

because T rF(b(ci +  c2)) =  TrF{bc\) +  T rF(6c2) by Theorem 3.4.2. Thus X6 
is a linear character of F̂ n for all b £ Frn. Now T rF maps Frn onto Fr by
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Theorem 3.4.2. So the character is non- trivial. Therefore, if a, 6 € Fr» 

with a 7̂  b, then

Xa(c) _  Xi(ac)
=  X, ((a-&)c) ^  1

Xb(c) Xi(bc)

for suitable c € Fr» , and so \a and \b are distinct linear characters of F^„. 

Since Irr(F f„) has cardinality r", the proof is complete. □

T h eorem  3.4.5 The map \b —> b is a group isomorphism from Irr(Ff«) to 

V*n.

Proof. Theorem 3.4.4 ensures that the map \b b is a bijection from 

Irr(Ffn) onto . So we need only show that the map —> 6 is a group

homomorphism. Let a, b € Frn . Then

XaXb(c) =  X„(c)x6(c) =  x A ^ X . i b c )  =  Xi ((a +  b)c) =  Xa+t(c), 

and the result follows. 0

T h eorem  3.4.6 Let r be a prime, n € N and m be a divisor of r" — 1. Let 

C  =  («), where e is a primitive mth root of unity o /F r», and N  =  F7„ . 

Suppose that

G =  [N )C ,

the external semi-direct product o f N and C via o , where a is the homomor­

phism from C  to A ut(N ) defined by

x <T(f‘ ) =  xe' (field multiplication)

for a llx  6 N and 0 <  i <  m — 1. Then G is a Frobenius group with Frobenius 

complement C  and Frobenius kernel N. In addition, i / 0 / n 6  Frn and \a
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is the corresponding element of Irr(N ), then the distinct characters

Xo X„,0 1 1 "  t XQ(m- I

are the conjugates of x„ in S. Thus for a,b € Fr», x. and Xb are conjugate 

in S if and only if  am =  hm.

Proof. Since cr{C) is a fixed-point free subgroup of Aut(N ), G is a Frobenius 

group with Frobenius complement C  and Frobenius kernel N  by Lemma 1.7.1. 

Suppose that a ^  0 and x„ G Irr(N). Then

X‘‘ (*) =  x„(*f~‘ )

=  X aC M «"'))

=  x „ ( ^ _<)

=  Xa,-((*)

for all x  e N  and i e  {0.......m - 1 } .  Since a ^  0, we have /  X„,-j if

i ^  j .  So the conjugates of \a in S are the distinct characters

Xo Xae0 * ' * ' * Xa(m — 1

and

(ae')m =  am(e‘ )m =  am

for all i € { 0 , . . . ,  m -  1}. Since bm =  am if and only if 6 is a root o f x m -  am, 

which has at most m roots in Frn, the result follows for a ^  0. If a =  0 then 

X„ is the trivial character of N, which is invariant in S. Since bm =  0 if and 

only if b =  0, the proof is complete. a
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D efin ition  3.4.7 Suppose that a  g  F  =  Fr» and K  =  Frd, where d is some 

divisor o f n. Then the norm NF/k (oi) of a over K  is defined by

NF/K(a) =  a rV 2' a rWd)d _  a (r "-1)/(r<'-l)

T h eorem  3.4.8 Let F  =  Frn and K  =  Frd, where d is some divisor of n. 

Then the norm function NF/k  satisfies the following properties :

(a) N F/K(a/3) =  NF/K(a )NF/* (/? ) for all a, (3 € F ;

(b) N F/k maps F  onto K  and F * onto K *;

(c) N F/k {o)  =  an/d for all a € K ;

(d) N F/K(a rd) =  N F/K(a) for all a  € F.

Proof. Lidl and Niederreiter [3, 2.28 Theorem, page 57] (a) Follows imme­

diately from the definition of the norm.

(b) An element of F  is contained in K  if and only if it is left fixed by all field 

automorphisms of F  of the form

a —> a rd‘ i € { 1, . . . ,  n/d}.

Hence N F/K(a) 6 K  for all a  € F  and NF/K maps F  into K . Furthermore, 

since N F/K(a) =  0 if and only if a  =  0, NF/K is a group homomorphism from 

F* to K ' . Since the elements of the kernel of NF/k  are exactly the roots of 

the polynomial -  1 in F, the order of the kernel is less than or

equal to (rn -  1 )/(rd -  1). So the image of NF/K has order greater than or 

equal to rd — 1. Therefore, NF/F maps F* onto K * and F  onto K .
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(c) If a € K , then ard' =  a for i € {1 , . . . ,n / d }  and NF/K(a) =  anl<t as 

claimed.

(d) NF/K(ard) =  N F/K(a )rd by (a) and NF/K(a )rd =  NF/K(at), because

NF/K(a) e K .  □

T h eorem  3.4.9 Let r be a prime, n € N, d be a divisor of n and m =

(rn — 1 )/(rd — 1). Let F  =  Frn and K  =  Frd. Let C  =  (e), where e is a 

primitive mth root of unity of F , and N =  F + . Let

G =  [N]C,

the external semi-direct product of N and C via a, where o  is the homomor­

phism from C to A ut(N ) defined by

=  xt' (field multiplication)

for all x  e F?n and 0 <  i <  m - 1. Then G has a model subgroup if and only if 

F  has an additive abelian subgroup HF of order rd satisfying NF/k (H f ) =  K .

Proof. Suppose that G has a model subgroup H . Then H  C G1 C N  by 

Corolla ry 2.3.3. Since N  is abelian,

i ! =  E  *
X£/rr(JV/tf)

and Irr{N / H) is a subgroup of the group Irr(N ). But G is a Frobenius group 

with Frobenius complement C  and Frobenius kernel N  by Theorem 3.4.6 

and H  is a model subgroup of G. So no two elements of Irr(N/H) can 

be conjugate in G  and Irr(N/H ) must have order rd by Theorem 1.6.4. 

Furthermore, Theorem 3.4.4 states that

Irr(N ) =  { x j & €  Frn},
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so there exist elements do =  0, O j,. . . ,  ard_1 of F  such that the subgroup

Irr(N /H) =  {x<.0- • • •»Xa,,,., }•

Let Hf denote {a 0 =  0 ,a i , . . .  ,a r<i-i}. Then H F is a subgroup of F + by 

Theorem 3.4.5 and a "  /  a™ for i ±  j  by Theorem 3.4.6. But N k/F(cl) =  am 

for all a € F r" and Nk/F maps F  onto K  by Theorem 3.4.8. So Nk/F(Hf ) =  

K , because K  has order rd.

Now suppose that F  has an additive abelian subgroup 

HF — {do =  0 , 0 1 , ,  arrf_j}

satisfying NF/k (H )  =  K , then there exists a subgroup H  of N  such that 

Irr(N/H) =  { x 00. • • •. X o ^ ,,}

by Theorem 3.4.5. Since K  has order rd and N k/F(o) =  am for all a 6 F r" , 

no two elements o f  Irr(N/H) can be conjugate in G  by Theorem 3.4.6. But 

G is a Frobenius group with Frobenius complement C  and Frobenius kernel 

N  by Theorem 3.4.6. So H  is a model subgroup by Theorem 1.6.4. □

Lem m a 3.4.10 Suppose that a and n are natural numbers and d <  n is a 

divisor of n . Then (a" — l ) /(a d — 1) divides a" — 1, but does not divide a' — 1 

whenever 0 <  i <  n.

Proof. By Theorem 1.2.5 except in the cases n =  2, a =  2b — 1 and n =  6, 

a =  2, there is a prime q such that q divides a" — 1 but q does not divide 

o' — 1 whenever 0 < i < n. If such a q exists, then



3. Frobenius groups 79

but q does not divide ad — 1. Thus

and the result follows. If n =  2 and a =  26 — 1, we need only consider the 

case when d =  1. Since

a2 -  1-------— =  a +  1 > a — 1,
o —l

the result holds. Finally, if n =  6 and a =  2, we need to consider the cases 

d -  1,2,3.

= 6 3 , 2 1 ,9  (fo r ) d =  1,2,3

and it is routine to check that these numbers satisfy the hypothesis. □

T h eorem  3 .4.11  Let G  be a Frobenius group with an elementary abelian 

Frobenius kernel of order rn and a cyclic Frobenius complement of order 

(r" — 1 )/(rd — 1), for some d dividing n. Then G has a model subgroup if 

and only if the finite field F  =  Fr» has an additive abelian subgroup Hp of 

order rd satisfying Np/p(Hp) =  K , where K  =  Frd.

Proof. Suppose that C  =  (c) is the cyclic Frobenius complement of G  o f order 

m  =  (r" — 1 )/(rd — 1) and N  is the elementary abelian Frobenius kernel of 

G  o f order r". Then N  can be viewed as an Fr [C]-module via the C-action

i c*XC =  X ,

for all x  6 ./V and i € { 1 , . . .  ,m }. Since each element of C  acts fixed-point 

freely on N  via conjugation by Lemma 1.7.1, the C-action is faithful and we 

can apply Theorem 1.1.1 to an irreducible submodule M  of N. Thus there
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exists a primitive mth root of unity e of Frn, by Lemma 3.4.10, such that M  

is isomorphic to Frn viewed as an Fr [C]-module via the C -action

xc' =  xe' (field multiplication)

for all x  G Frn and 0 <  i < m — 1. Since M  is isomorphic to Frn viewed as 

an Fr [C]-module, M  must equal N  and thus G is isomorphic to

S = [ K n ] ( e ) ,

the external semi-direct product of F „̂ and (e) via a, where o  is the homo­

morphism from («) to >lui(F^„) defined by

x a<f''> =  xe' (field multiplication)

for all x  € F „̂ and 0 < t < m — 1. S o G  has a model subgroup if and only if 

S has a model subgroup. The result follows by Theorem 3.4.9. □

3.5 Conclusion

T h eorem  3.5.1 Let G be a Frobenius group with Frobenius complement C  

and Frobenius kernel N. Then G has a model subgroup if and only if the 

following conditions are satisfied.

(a) N is elementary abelian of order r".

(b) C is cyclic of order (rn -  1 ) / ( r d -  1), for some d dividing n.

(c) The finite field F  =  Frn has an additive abelian subgroup HF o f order 

rd satisfying Nf/k (H f ) =  where K  =  Fr<(.
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Proof. Suppose that G has a model subgroup. Then the Frobenius kernel 

N  of G, is elementary abelian of prime power order, by Theorem 3.2.2, The­

orem 3.3.6 and Theorem 3.3.7. Furthermore, if N  has order r” , then C  is 

cyclic of order (rn — 1 )/(rd — 1), for some d dividing n, by Theorem 3.2.1. 

The result follows by Theorem 3.4.11. □

T h eorem  3.5.2 Let G be a Frobenius group with Frobenius complement C  

and Frobenius kernel N . Suppose that N  is elementary abelian of order r" 

and C  is cyclic of order (r" — l ) / ( r d — 1), for some d dividing n. Then the 

following statements hold.

(a) If (n/d, rd — 1) =  1, then G has a model subgroup.

(b) If (n/d, r — 1 )^ 1 ,  then G does not have a model subgroup.

Proof, (a) Let F  =  Frn and K  =  Frj . Then the map a —> Nf/K(a) is 

a homomorphism from the cyclic group K *  of order rd — 1 into itself, by 

Theorem 3.4.8. Furthermore,

a —> Nf/i<(a) — an d̂,

for all a e K * . So if (n/d,rd -  1) =  1, the map a —► NF/K(a) is an 

automorphism of K * . Hence the additive abelian subgroup K  o f order rd of 

F  has the property that

NF/k (K )  =  K,

since NF/k (0) =  0. The result follows by Theorem 3.4.11.

(b) Let F  — Frn and K  =  Frd . Let P  be the prime subfield of F. Since the 

map a —t Nf/k (u) *s a homomorphism from the cyclic group F*  into itself
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by Theorem 3.4.8 and P* is a characteristic subgroup of F x , the map

P -> NF/K(p)

is a homomorphism from the cyclic group P  o f order r — 1 into itself. But 

P x is also a subgroup of K x . Hence

Nf/k (p ) = P n,d

for all p € P x by Theorem 3.4.8. So if (n/d,r — 1) ^  1, there exists a 

non-identity element q of P x satisfying NF/k (q) — 1- Suppose that HF 

is an additive abelian subgroup of F  o f order rd and 0 /  li 6 HF. Then 

h ±  qh € HF and

NK/F(<]h) =  NK/F(q)NK/F(h) =  N K/F{h).

So Nk/f {H f ) <  K . The result follows by Theorem 3.4.11. □

C oro lla ry  3 .5 .3  Let G be a Frobenius group with Frobenius complement C 

and Frobenius kernel N . Suppose that N  is elementary abelian of order r" 

and C  is cyclic of order (rn — l ) / ( r  — 1), then G has a model subgroup if and 

only if (n, r — 1) =  1.

C oro lla ry  3 .5 .4  Let G be a Frobenius group with Frobenius complement C 

and Frobenius kernel N . Suppose that N is elementary abelian of order r2 d 

for any a,d  6 N and C  is cyclic of order (r2°d — l ) / ( r d — 1), then G has a 

model subgroup if and only if r =  2.

Lem m a 3.5.5  Let r be a prime, let n be a natural number and let d be a 

divisor o f n. Then x \ (n/d, rd — 1) if and only if x  \ ((rn — 1 )/(rd — 1), rd — 1).
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Proof. Suppose that x  \ (n/d, rd — 1). Then ax =  rd — 1 and bx =  n/d for 

some a, 6 € N. Thus

So x  | (r" -  l ) / ( r d -  1), rd -  1), since (6jr) =  bx.

Now suppose that i|  ((rn — 1 )/{rd — 1 ) ,r d — 1). Then ax =  rd — 1 and 

cx =  (rn — 1 ) / ( r  — 1) for some a, c € N. Thus

So x  | (n/d, rd — 1), since (n(d) =  n/d. The proof is complete. □

C orollary  3 .5 .6  Let G be a Frobenius group with Frobenius complement C  

and Frobenius kernel N . Suppose that N  is elementary abelian of order rn 

and C is cyclic of order (r" -  1 )/(rd -  1), for some d dividing n. Then the 

following statements hold.

(a) If ((r” -  1 )/(rd -  l ) , r d -  1) =  1, then G has a model subgroup.

(b) / / ( ( r n —l ) / ( r d —l ) , r —1) /  1, thenG  does not have a model subgroup.

rn — 1 
a x —-.---- - ((rd -  1) +  l)n/d -  1

(ax +  l )61 -  1

acx‘.2 ((rd -  1) +  l ) " /d -  1

(ax +  l)"^d — 1



Chapter 4

^-groups

In this chapter we will begin by introducing a new class of finite soluble 

groups and determine when a group contained in the class admits a model 

subgroup. We shall then go on to classify those finite soluble groups not 

contained in the class but whose other epimorphic images are.

4.1 Definition

Let G be a finite soluble group. Suppose that G is abelian or G has subgroups 

G i , . . . ,  Gm and A  satisfying the following statements :

(X .l) G =  G l . . . G mA-

(X.2) [Gj, Gj] =  1 for t /  j ;

(X.3) [Git A] =  1 for 1 <  i <  m;

(X.4) Gi is not nilpotent for 1 <  i <  m;

84
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(X.5) G ' is a minimal normal subgroup of G* for 1 < i <  m;

(X .6) A  is abelian.

Then we call G a A’-group.

We begin our analysis by establishing some elementary facts about T-groups.

Lem m a 4.1.1 Let G be a finite soluble group. Suppose that G has subgroups 

G i , . . .  ,G m and A satisfying the statements (X .l)  - (X.6) above. Then

(a) G is a central product of the subgroups o f G j, . . . ,  Gm and A;

(b) Z (G ) =  Z (G \). . .  Z{G m)A\

(c) G ' n  Z(Gi) =  1 for 1 < i <  m;

(d) G ' =  G\ x ■ • • x G'm is abelian;

(e) G 'n Z (G )  =  1;

(f) G 'n fc (G ) =  1;

Proof, (a) and (b) follow immediately from (X .l)  , (X.2) , (X.3) and (X .6)

(c) G ' is a minimal normal subgroup of G* for all i, by (X.5). So G[r\Z(Gi) is 
either equal to G' or 1. Suppose that G Jn Z(G j) =  Gj. Then Z(Gi) contains 

G' contradicting (X.4), which states that Gj is not nilpotent. Hence G' and 

Z(Gi) intersect trivially.

(d) follows from (a) , (X.6) and (c).

(e) For 1 <  i < m, let

G' =  G\ x • • • x G '_, X Gi+1 X  • • • X G'm.
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Then G '/G ' is a minimal normal subgroup of G/GJ for all i and
m

n s -1
t=i

Suppose that Z (G ) fl G' ^  1. Then there exists a j  such that Z(G ) D G' is

is nilpotent contradicting (X.4). The proof is complete.

(f) Can be proved in the same fashion as (e), remembering that a finite group

L em m a 4 .1 .2  Let G be a finite soluble group. Suppose that G is not nilpo­

tent and G' is minimal. Then G' is complemented in G. Furthermore, if C  

is a complement of G' in G then Z(G ) =  C c(G ') and G/Z(G) is a Frobenius 

group with Frobenius complement C/Z(G) and elementary abelian Frobenius 

kernel G 'Z (G )/Z(G ).

Proof. By the minimality of G', we have 4>(G) flG ' =  1 or G'. If $ (G )  flG ' =  

G', then G' C 4>(G) contradicting our assumption that G is not nilpotent. 

So the elementary abelian normal subgroup G ' is complemented in G, by C  

say, and

not contained in G'y So

and G /G ' is nilpotent. Furthermore,

G is nilpotent if and only if G' C ^»(G). □

G =  G'G,
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where G' n  C  =  1. Since C  is abelian, M  =  Cc(G') is a subgroup of Z(G) 

and is consequently normal. If Cc(G ') =  C, then G' C Z(G ) contradicting 

our assumption that G is not nilpotent. So M  /  C. Clearly

G/M =  (G'M/M)(C/M)

and G'M/M n  C/M =  1.

Now suppose 1 ^  g'M € Cg'm/m (cM ) for some cM  6 C/M. Then

[c,g'] € G ' n M  =  1

and g' € C c (c )  < G. By the minimality of G\ we have C c'(c) =  G' and 

c 6 Cc (G') D C  =  M . Hence C G' m /m { c M ) =  1 for all 1 ^  cM  e  C/M. 

Suppose that

ci e C/M n (C/M)9

for some g € G/M — C/M. Then g =  ch with c € C/M and 1 ^  h € G'M/M. 

So (C/M)9 =  (C/M)h and

Cl =  c$ € (C/M) n (C/M)h

with C2 € C/M. Since G'M/M < G/M,

d c j 1 =  [/i.c j1] e C/M n G'M/M =  1

and Ci =  C2- So

h S Cg'm/m (ci)

and ci must be the identity. Thus G/M is a Frobenius group at C/M  with 

elementary abelian Frobenius kernel G'M/M. Hence Z(G/M ) =  1 and con­

sequently M  =  Z(G ). The proof is complete. □
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Lem m a 4.1.3 Let G be a non-abelian X-group. Let M  denote the set of all 

minimal normal subgroups of G contained in G'. Then

G '=  X  M
M € M

and G' is complemented in G. Let D be a complement of G' in G. For 

M  € Ad, let

D m =  D/Cd (M )

and let [M ]D m denote the external semi-direct product of M  and D M via 

aM, where om is the homomorphism from D m to Aut(M ) defined by

maMtdCo(M)) _  md

for  all m  € M  and d & D. Then

G/Z(G) =  X  [M)Dm,
M € M

and G 'n Z (G )  =  1.

Proof. Since G is a non-abelian A'-group, there exist subgroups G i , . . .  ,G m 

and A satisfying the statements (X .l)  - (X.6) above and

G' =  G\ x • • • x G'm,

by Lemma 4.1.1(d). In addition, the characteristic subgroup G' is comple­

mented in Gi, by Ci say, and

Z(G,) =  GCi(G ') < Ci
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for 1 <  i <  m, by Lemma 4.1.2. So the abelian subgroup G' is complemented 

in G  by B  =  C\. . .  CmA  and

Cb (G ') =  C x . . .  Ci_ 1C cj (G ')C i+1. . .  CmA

for 1 <  i <  m. Furthermore,
m
f | Cb (,G\) =  O c,(G [) . . .C Cm(G 'JA  =  Z (G , ) . . . Z (G M)A =  Z(G )
i=1

by Lemma 4.1.1(b) and G' fl Z(G ) =  1 by Lemma 4.1.1(e).

Let 7r =  {p i , . . .  ,p t) be the set of primes dividing the order of G' and let 

Sp, =  {t € { 1 , . . . ,  m } : |G'| =  p“ for some a >  0} 

for 1 <  s <  t. Then

{!>••• i m } =  | j  Sp,
1 <S<t

and G' =  G'pi x • • • x G'pt, where

g 'p. = X g;
jeSrs

is the pa-Sylow subgroup of G '. So G'p, is elementary abelian and can thus 

be viewed as an FPj [G]-module. Regarding G'p, in this way, we see that

G'p. = 0  G'j,
$Pa

a direct sum of irreducible Fp> [G]- submodules. Hence G'p, is completely 

reducible by Isaacs [1, Theorem 1.10, pages 5]. Furthermore, since Cg (G ') /  

Cc(G'k) for 1 <  j  <  k < m,

G'AG'p,) =  c r
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for all j  € SPa, where G'(GJ,J denotes the G'-homogeneous part o f G'Pa. It 

now follows from Isaacs [1, Lemma 1.13 page 6] that every minimal normal 

subgroup o f G contained in G' is of the form G' for some 1 < i <  m.

For 1 <  i <  m, let ¿3* =  ¿?/C B(G ') and Li be the external semi-direct 

product o f G'i and Bi via 7\, where r, is the homomorphism from Bi to 

Aut(G'i) defined by

T^bCsM)) _  b
yi yi

for all gt S G ' and b € B.

Let L =  L\ x  x  Lm and let \ib  be the map defined from B  to

Bi x  x  Bm C  L

by nB(b) =  (bCB(G [) ,. . .  ,bCB{G'm)) for all b G B. Clearly is a homo­

morphism and
m

k er»B =  f ) C B(G'i) =  Z(G).
i=i

Furthermore, nB{Ci) =  Bt for 1 <  i <  m and consequently

n b (B ) =  ¿ib (C i) . . .  |iB(Gm)/ifl(^4) =  B\ x • • • x Bm.

Let n be the map defined from G to L by

Ai(g'b) =  g'nB(b)

for all g' € G ' and b e  B. Then n is an epimorphism from G to L and 

kern{G) =  Z{G ).
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Now suppose that D  is a complement o f G' in G. For 1 < * <  m, let 

Di =  D/CoiG'i) and denote the external semi-direct product of G[

and Di via <7i, where <Ji is the homomorphism from Di to Aut(G'i) defined by

a,(dCD(C\)) _  d 
" i  iJi

for all ^  e  G'i and d € D.

Let N  be a normal subgroup of G  contained in G '. Then 

G' C Cg (N ) C G 'D  =  G'B

and

G' (Cg (N ) n D) =  Cg (N ) n G 'D  =  Cc {N ) n G'B =  G' (Ca {N ) n B ) .

In particular, |Cc(-/V)nD| =  |Cc(AT)nB|. So |Z)i| =  \Bt\ for 1 <  i <  m and

\G/Z(G)\ =  \L\ =  |[G;]A X . . .  X [G'm]D m\.

Let Ad be the map defined from D  to

Di x • • • x Dm C [G\]DX x ••• x [G'm]Dm

by AD(d) =  (dCD(G \ ),...  ,dCD{G'm)) for all d € D  and let A be the map 

defined from G  to

[G'1]D 1 x . . . x [ G 'J D m

by A(g'd) =  g'Xo(d) for all g' € G' and d e D. Then A is a homomorphism 

and
m

kerX =  f ] C D(G'i) =  C D(G') C Z(G ).
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So kerX =  Z{G) and

G /Z (G ) Si [G 'JA  x x [G'm\Dm,

because \G/kerX\ >  \G/Z(G)\ =  |[G'1]L>1 x ••• x [G 'jD m| >  \G/ker\\. The 

proof is complete. □

T h eorem  4.1.4 Let G be a non-abelian X-group. Then G' D Z (G ) =  1 and 

G admits a model subgroup if and only if G/Z(G) is isomorphic to a direct 

product of subgroups

G \ , , Gm

satisfying the following statements.

(a) G i is a Frobenius group at C, with Frobenius kernel G '.

(b) G ' is elementary abelian of order rn‘ .

(c) Ci is cyclic o f order (rn‘ — 1 )/{rdi — 1), for some dt dividing n

(d) The finite field F  =  Frn, has an additive abelian subgroup Hp o f order 

rdi satisfying Npjp(H p) =  K , where K  =  Frd,.

Proof. The result follows by Lemma 4.1.3 , Theorem 2.4.2 , Theorem 2.5.2 , 

and Theorem 3.5.1 O

4.2 Class closure properties

Lem m a 4.2.1 Let G be a X-group and let K  be a normal subgroup of G. 

Then G/K is a X-group.
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Proof. If G is abelian, then G /K  is abelian and the result follows immedi­

ately. So we may assume that G  has subgroups G\,. . . ,  Gm and A satisfying 

the following statements.

for i /  j ,

[GiK/K, G jK /K ] =  [Gu G2]K /K  =  K / K

[GiK/K, A K /K ] =  [Gi, A\K/K =  K / K

for all i and

G/K  =  (G iK / K ). . .  (GmK / K )(A K / K ).

So we need only show that the factor groups

G jK  Gj 
K  G iD K

are either abelian or not nilpotent with a minimal derived group in order to 

complete the proof.

Since GJ is a minimal normal subgroup of Gi, either G\ C K  or G[ f~l K  =  1. 

If G- C K , then G iK /K  is abelian. So we may assume that

G 'n  AT =  1.

Suppose that Zi € Zif where

¿  = »  n *>-
then [zi, <ft] e G\ n  K  =  1 for all & € Gj. Thus

* ( & / a n / o  =  | ! 2 i
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and Gi/Gi fl K  cannot be nilpotent, because Gi is not nilpotent. Finally, 

G '(G j n  K ) =  G' x (G id K ) ,

and thus (Gi/Gi fl K )' is a minimal normal subgroup of Gi/Gi PI K , if and 

only if G'i is a minimal normal subgroup of G*. The result follows. □

Lem m a 4.2.2 Let G be a finite soluble group and let K  be a normal subgroup 

of G. Suppose that G' n K  =  1. Then G is a X-group if and only if G/K is 

a X-group.

Proof. If G is a T-group then G /K  is a T-group by Lemma 4.2.1.

Suppose that G/K  is a ,Y-group. If G/K  is abelian, then G is abelian 

because G' C K  l~l G ' =  1. So we may assume that G/K  has subgroups 

G\/K,. . .  ,G m/K  and A/K  satisfying the statements (X .l) - (X .6) above. 

Thus

[Gi,Gj] C.G'C\K — l

for i ±  j ,

[Gj, A] C G' n K  =  1

for all i, and

G =  G i . . .  GmA.

Furthermore, A is abelian and the Gj cannot be nilpotent, because the Gi/K 

are not nilpotent. So we need only show that G ' is a minimal normal sub­

group of Gi for all i in order to complete the proof. But

G'iK =  G[ x K.
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So G\ is a minimal normal subgroup of G*, if and only if (G i/K )' is a minimal 

normal subgroup of Gi/K. The result follows. □

4.3 Minimal non-A’-groups

Let G be a finite soluble group. Suppose that G satisfies the following state­

ments :

(a) G is not a X -group;

(b) G/N is a A-group for all 1 ^  N  <G.

Then we call G a minimal non-A-group.

L em m a 4.3.1 Let G be a minimal non-X-group and let K  be a minimal 

normal subgroup of G. Suppose that G/K is abelian. Then

(A ) G is ap-group, G' is cyclic o f order p and is the unique minimal normal 

subgroup o f G.

Proof. Since G is a minimal non-A’-group, G is non-abelian, G' =  K  is the 

unique minimal normal subgroup o f G by Lemma 4.2.2 and G is nilpotent. 

The result follows. □

L em m a 4.3.2  Let G be a minimal non-X-group and let K  be a minimal 

normal subgroup of G. Suppose that K  C Z(G ) and G /K  is non-abelian. 

Then

(B) G =  UA, where U and A are subgroups satisfying the following



4. X-groups 96

(a) U is a central product of subgroups G 1, . . . ,  Gm with amalgamated

centres;

(b) Gi =  G'fii, where (|G'|, |Cj|) =  1, for  1 < i <  m;

(c) G\ is an extraspecial p-group for all i;

(d) Z(U ) =  Z (G i) =  Z(G'i) for all i;

(e) Gi/Z(U) is a Frobenius group at CiZ(U)/Z(U) Si C, with mini­

mal Frobenius kernel G'JZ(U) for  all i;

(f) A is a p-group and Z(U ) C  A  C  Cg(U);

(g) Either A is cyclic or A' =  Z(U ) is the unique minimal normal 

subgroup o f A.

Proof. Since K  is a central minimal normal subgroup of G, it must be cyclic 

of order p. Furthermore, K  must be the unique minimal normal subgroup of 

G  by Lemma 4.1.1(e), because the minimal normal subgroup K  is contained 

in G' fl Z(G ) by Lemma 4.2.2.

Since G /K  is non-abelian, G has subgroups H i , , Hm and B  containing K  

satisfying

G =  H i . . .  HmB,

where B /K  is abelian, [Hi, Hj] C K  for i /  j  and [Hi, B] C  K  for 1 < i <  m. 

Furthermore, Hi/K  is not nilpotent, K  C  H[, because K  is the unique 

minimal normal subgroup of G, and H'JK  is a minimal normal subgroup of 

Hi/K for all i.

Let Z/K  =  Z(G /K ). Then the normal subgroup K  C  G'Z  C  G is nilpo­

tent, because K  C  Z (G ) and G'Z/K  is abelian by Lemma 4.1.1(d). But



4. X-groups 97

Opi(G'Z) =  1, since K  is the unique minimal normal subgroup of G, and the 

nilpotence o f G'Z  ensures that G'Z  is a p-group.

Let Zi/K =  Z(Hi/K) for 1 <  i <  m. Then H[Zi is a p-group and

( IHi: H\Zi|, \H\Zi\) =  1

by Lemma 1.5.1 and Theorem 1.5.4, because Hi/Zi is a Frobenius group with 

minimal Frobenius kernel H[Zi/Zi by Lemma 4.1.2. So H[Zi is complemented 

in Hi, by Ci say. Furthermore,

H’C J K  =  H'iCi/HlCi n Z i ~  H'CiZi/Zi =  H,/Z,

by Lemma 4.1.1(c) and H[Ci/K  is a Frobenius group at C iK /K  with minimal 

Frobenius kernel Lf'/A" by Lemma 4.1.2.

Let Gi =  H[Ci =  G'iCi for 1 < i <  m and let A  =  Z\. . .  ZmB. Then

G =  G \ ... G mA.

and A /K  =  Z (G /K ) is a p-group. Furthermore, the commutators

[GuGj]QK

for i ^  j  and [Gi, A] C K  for 1 <  i < m.

Let Cj 6 Cj. Then kc> =  k for all k €  K  and g? K  =  gtK  for all gi € Gi 

and i ^  j .  Thus gc> =  ^  for all p; € Gi and i ^  j ,  because (|Cj|, |A"|) =  1. 

So C jK  C Gc (Gi) for i /  j  and since G\/K is the unique minimal normal 

subgroup o f Gi/K  this ensures that G j C G c(G i) for i /  j .  We can show 

similarly that Gj C C c(A )  for all j .  Thus G is a central product of the
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subgroups G i , , Gm and A. Furthermore, K  is the unique minimal normal 

subgroup of A and consequently A' =  K  or A  is cyclic o f prime power order.

Suppose that G[ is abelian. If G\ is elementary abelian, then it can be 

regarded as an Fp[G /C G(G')]-module. But G /G g (G ') is isomorphic to C,, 

which has order co-prime to p, so we can apply Maschke’s theorem. Thus

G'i =  K  x L,

where L =  G'JK  is an Fp[G /GG(G-)]-module, contradicting the fact that K  

is the unique minimal normal subgroup of G. If G' is not elementary abelian. 

Then $(G$) =  K . But G /G g (G ') =  G; is a p'-group of automorphisms of G ', 

which acts fixed-point freely and irreducibly on G'JK. So G' is homocyclic 

and G 'JK  and K  are G /C g (G')-isomorphic contradicting our assumption 

that K  is central. Thus G' is non-abelian, G" =  Z(G'i) =  ^(GJ) =  K  and Gj 

is extra- special.

Setting U =  Gi • • • Gm completes the proof. □

L em m a  4.3.3 Let G be a minimal non-X-group and let K  be a minimal 

normal subgroup o f G. Suppose that K  C $ (G ), but K  % Z {G ). Then G 

satisfies one of the following statements.

(C) G =  G'C and the following conditions hold :

(i) (|G'|, |C|) =  1;

(ii) $ (G ') is the unique minimal normal subgroup of G;

(iii) G /$ (G ')  is a Frobenius group at C4>(G,) /$ ( G /) with minimal 

Frobenius kernel G'/<$(G');
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(iv) G' is either homocyclic or special.

(D) G =  (G 'A)C and the following conditions hold :

(i) (\G'A\,\C\) =  1;

(ii) K  =  [G',A] is the unique minimal normal subgroup o fG ;

(iii) A/K =  Z (G /K );

(iv) G/A is a Frobenius group at CA/A with minimal Frobenius kernel 

G'A/A;

(v) G'A is an r-group.

(vi) A is elementary abelian;

(vii) G' is elementary abelian, homocyclic or special;

(viii) K  =  ${G 'A ) =  (G'Ay and K  Ç Z(G'A).

(E) G — G\G-z and the following conditions hold:

(i) G ^ G 'iC a

(ii) (|GJ|, | C j | )  =  1;

(iii) K  =  [G\,G'^\ is the unique minimal normal subgroup of G ;

(iv) G/K  Sü G\/K x G2/K;

(v) Gi/K is a Frobenius group at C {K /K  with minimal Frobenius 

kernel G 'JK;

(vi) G[ is elementary abelian;

(vii) G\G2 is special.
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Proof. Since the minimal normal subgroup K  is contained in G' fl $ (G ) 

by Lemma 4.2.2, K  must be the unique minimal normal subgroup of G by 

Lemma 4.1.1(f),

Suppose that G/K  is abelian. Then K  C  Z(G ) by Lemma 4.3.1. So we may 

assume without loss o f generality that G has subgroups H i , , Hrn and B 

containing K  satisfying

G =  H x. . .  HmB,

where B /K  is abelian, [Hi, Hf\ C  K  for i /  j  and [Hi, B] C  K  for 1 <  i <  m. 

Furthermore, Hi/K  is not nilpotent, K  C  H[, because K  is the unique 

minimal normal subgroup of G, and H[/K is a minimal normal subgroup of 

Hi/K  for all i.

Let Z /K  =  Z (G /K ). Then the normal subgroup K  C  G'Z  C  G  is nilpo­

tent, because K  C  4>(G) and G'Z/K  is abelian by Lemma 4.1.1(d). But 

Op,(G 'Z ) =  1, since K  is the unique minimal normal subgroup o f G, and the 

nilpotence of G'Z  ensures that G'Z  is a p-group.

Let Zi/K =  Z(H i/K ) for 1 < i <  m. Then H[Zi is a p-group and

(\Hi :H'iZi\,\H'Zi\) =  l

by Lemma 1.5.1 and Theorem 1.5.4, because Hi/Zi is a Frobenius group with 

minimal Frobenius kernel H'iZi/Z, by Lemma 4.1.2. So H[Zi is complemented 

in Hi, by C, say. Furthermore,

H'iCi/K =  H'iCi/H'iCi O Z i&  H'iCiZi/Zi =  H,/Z, 

by Lemma 4.1.1(c) and H'iCi/K is a Frobenius group at C iK /K  with minimal 

Frobenius kernel H[/K.
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Let Gi =  H[Ci =  G\Ci for 1 < i <  m and let A =  Z\. . .  ZmB. Then

G =  G 1. . . G mA.

and A/K  =  Z (G /K ) is a p-group. Furthermore, the commutators

[GitGj\ C K

for i ^  j  and [Gi, A )C  K  for 1 <  i <  m.

Suppose that K  C  $(.4). Then C, C  Cg (A) for all i, since C, centralises 

A/K  and |Cj| is co-prime to p. So CiK  C  C q {A), since K  is central in G'Z . 

But G'i/K is the unique minimal normal subgroup of Gi/K, so G* C  Cg (A ) 

for all i, contradicting our assumption that K  is not central. Thus we may 

assume without loss of generality that A is elementary abelian.

Suppose that K  C  < F ( G ^ )  for some j .  Then C *  C  G g ( G ' )  for all i ^  j,  since 

Ci centralises G'j/K and G, is co-prime to p. So CtK  C  Gg (G ') for all i ±  j ,  

since K  is central in G'Z . But G'JK  is the unique minimal normal subgroup 

of Gi/K  for all i, so Gi C  Gg (G' ) for all i ^  j  and

[G ',G '] =  1

for all i /  j .

If K  C  4>(G'k) for some k ^  j , then C} C  Cc{G'k), since C} centralises G'k/K  

and \Cj\ is co-prime to p. But K  C  G' P I G'k and K  is central in G'Z. So 

K  C  Z (G ), contradicting our assumption and we may assume that the G\ 

are elementary abelian for all i /  j .

If [G'i,G't\ =  K  for some i , l  /  j ,  then Cj C  Cg (G'GJ) since Cj centralises 

G'iG'e/K  and \Cj\ is co-prime to p. But K  C G'G^ n  G ' and is thus central,
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contradicting our assumption. So we may assume that

[G',G'i] =  l

for all i, £ /  j .  We can show in an identical fashion that

[G U ]  =  1

for all i 7̂  j .

So G' is elementary abelian and can be regarded as an Fp[G/CG(G')]-module. 

But G /G g (G|) has order co-prime to p, because G 'Z  C C c(G j), enabling us 

to apply Maschke’s theorem. Hence

g ; =  K  x L,

where L =  G'JK  is an Fp[G/CG(G')]-module, contradicting the fact that K  

is the unique minimal normal subgroup of G. So G =  (G'jA)Cj.

If G ' is abelian, then G' is homocyclic, because Cj is a p' group of auto­

morphisms of G'j acting irreducibly on G'j/$(G'j). If G' is non-abelian, then 

G" =  $ (G ' ) =  Z(G'j) and G' is special.

If [G'j, A] =  1 and A >  K , then G/Cg (A ) has order co-prime to p. So we can 

apply Maschke’s theorem to the elementary abelian group A  regarded as an 

Fp[G /CcM )]-m odule. Hence

A =  K  x L,

where L “  A/K  is an Fp[G /G g (-4)]- module, contradicting the fact that K  

is the unique minimal normal subgroup of G. So
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and satisfies the conditions outlined in case (a).

If [G'j,A] =  K , then (G 'A )' =  $ (G 'A ) =  K . Furthermore, K  C  Z (G 'A ) 

and

G =  (G'jA)Cj

satisfies the conditions outlined in case (b).

Now suppose that G\ is elementary abelian for all i. If [G'j, G^] — K  for some 

1 <  j  < k <  m, then

(G'jG'k)' =  =  K

and Z(G'jG'k) C K . If Z{G'jG'k) >  K , then by Lemma 4.1.3 either Z (G 'G 'fc) =  

G ' or G'k, contradicting our assumption that [G' ,G*] =  K . So Z(G 'G 'fc) 

equals K  and G' G't is special.

Using similar arguments to those given above we may assume that for i ^  j  

or k, the commutator [G',G^G'fc] =  1 and

[ G ',4  =  [G ',Gi] =  l

for all i  /  j  or k. Thus G /G g (G ') has order co-prime to p and we can 

derive a contradiction to the uniqueness of K  by applying Maschke’s theorem 

to the elementary abelian group G' regarded as an Fp[G/Gc(Gi)]-module. 

Again using arguments similar to those outlined above we can show that 

[G'j, A] =  [G'k, A] =  1, if A > K . Thus G/Cg {A ) has order co-prime to p and 

we can derive a contradiction to the uniqueness of K  by applying Maschke’s 

theorem to the elementary abelian group A  regarded as an Fp[G /G c(A )]- 

module. So

G =  G jG k
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and satisfies the conditions outlined in case (c).

If [G'j,A\ =  K  for some 1 <  j  <  m, then 4>(G'^4) =  K . So using similar 

arguments to those given above we may assume that for i ^  j ,  the commu­

tator [G-, G'jA] =  1 and [G\, G't] =  1 for all i  ±  j .  Thus G /C c (G ') has order 

co-prime to p and we can derive a contradiction to the uniqueness of K  by 

applying Maschke’s theorem to the elementary abelian group G\ regarded as 

an Fp[G/Cc(G')]-module. So

G  =  {G'jAjCj

satisfies the conditions outlined in case (b). The proof is complete. □

Lemma 4.3.4 Let G be a minimal non-X-group and let K  be a minimal 

normal subgroup of G. Suppose that 4*(G) =  1. Then G satisfies one of the 

following statements.

(F) G =  G "X  and the following conditions hold:

(i) G" D X  =  1;

(ii) G" is the unique minimal normal subgroup of G;

(iii) X  is a non-abelian X-group;

(iv) X C A u t{G " ) .

(G) There exists a group L and a monomorphism p from G into L satis­

fying the following conditions:

(i) L — Lq x • • • x Lm;

(ii) Li is a Frobenius group with minimal Frobenius kernel L\;
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(iii) n(G ') =  L'0 x  ••• x  L'm;

(iv) L =  n(G)Li for  0 <  i <  m.

Proof. By Lemma 4.3.1 and our assumption that AT is a minimal normal 

subgroup of G  not contained in 4>(G) we may assume without loss of gen­

erality that K  is complemented in G by a non-abelian <V-group, X  say. So 

X  has subgroups G i , . . . ,  Gm and A  satisfying the statements (X .l) - (X .6) 

above. Furthermore, Lemma 4.1.2 states that the derived subgroup G( of Gi 

is complemented in G< by Ci say.

Since X  is a <T-group, the minimal normal subgroup K  is contained in G' by 

Lemma 4.2.2 and (G /K )' =± X ' is abelian by Lemma 4.1.1(d). So we may 

assume without loss of generality that G" is either equal to 1 or K .

Suppose that G" =  K . Then K  is the unique minimal normal subgroup of 

G, because every epimorphic image of G is a dGgroup and consequently has 

an abelian derived subgroup. So C x{G ") =  1 and G  satisfies the conditions 

outlined in case (a).

Suppose that G" =  1. Then

G' =  K  x G\ x • • • x G'm 

and there exists a subgroup

B 5 i C l . . . C mA

complementing G' in G, since $ (G ) =  1.
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Let B0 =  B /C g(K ). Let L0 be the external semi-direct product of K  and 

B0 via <Toi where <To is the homomorphism from Bq to A ut(K ) defined by

k o(bCB (K ))  _  k b

for all k e  K  and b 6 B. Then L0 is a Frobenius group with minimal 

Frobenius kernel L'0 =  K , by Lemma 4.1.2.

For 1 < i <  m, let Bi =  B/Cg(G'i) and Li be the external semi-direct 

product of G'i and Bi via au where al is the homomorphism from Bt to 

Aut(G'i) defined by

^ ( b C B (G\)) _  gb

for all € G[ and b € B. Then Lt is a Frobenius group with minimal 

Frobenius kernel L[, by Lemma 4.1.2.

Let L =  L0 x L\ x • • • x Lm and let fig be the map defined from B  to 

B0 x f l i X ” ' X  Bm C L by

m  =  (bCg(K), b C g (G \ ) ,b C g ( G 'J )

for all b e B. Clearly ¡ig is a homomorphism and kerpg  is a normal subgroup 

of G.

If ker^g ^  1, then G/ker^g is a Af-group and ker^g f\G' =  1 contradicting 

our assumption that G is not a A’-group by Lemma 4.2.2. So we may assume 

without loss of generality that g.g is a monomorphism.

Let n be the map defined from G to L by fi(gb) =  g^g(b) for all g € G' and 

b € B. Then n is a monomorphism from G to L and

fi(G') =  L'0 x . . . x L ' m.
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Let 7Tj be the projective map from L to

Lq x  ••• x Li—i x Li+i x • • • Lm

for 0 <  î <  m. Then 7Tt(/i(G )) is a A’-group, by the minimality of G, and 

(?ri(n(G)))' = L'0 x • • • x L '_! x L i+1 x ••• x Lm.

Furthermore, (^¿(/¿(G)))' is complemented in ^¿(/¿(G)) by 7u(f*{B)) and

M m(£))1 _  id  I
| C . < W a ) ) ( i r 4 ( L $ ) ) |  '

for j  ^  i. The result follows by Lemma 4.1.3.



Chapter 5

Case Studies

In this chapter we shall consider under what circumstances a minimal non- 

A-group of derived length 3 satisfying the co-prime condition

(IG : G'\, |G ' : G"|) =  1

can possess a model subgroup.

5.1 Case B

We begin by considering minimal non-A’-groups satisfying the conditions 

outlined in Case B.

L em m a 5.1.1 Let G =  UA, where U and A are subgroups satisfying the 

following conditions.

(a) U is a central product of subgroups G i , . . . ,  Gm with amalgamated cen­

tres;

108
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(b) Gi =  G\Ci, where (|GJ|, |Ci|) =  1, for  1 < i <  m;

(c) G\ is an extraspecial r-group for all i;

(d) Z(U) =  Z (G t) =  Z(G ') for all i;

(e) Gi/Z(U) is a Frobenius group at CiZ(U)/Z(U) Ci with minimal 

Frobenius kernel G'i/Z{U) of order rn‘ for all i;

(f) A is a p-group and Z(U) C i C  Cg{U);

(g) Either A is cyclic or A' =  Z(U) is the unique minimal normal subgroup 

of A.

Then G does not admit a model subgroup.

Proof. Suppose that H  is a model subgroup of G. Then H  n  Z(U ) =  1 by 

Lemma 2.6.1 and H Z(U)/Z(U) is a model subgroup of

G/Z{U) =  Gi/Z(U) x • ■ • x Gm/Z(U) x A/Z(U),

by Theorem 2.3.2. So

H Z(U)/Z(U) =  H Z(U )/Z(U ) n G\/Z(U) x • • • x H Z(U )/Z(U ) n Gm/Z{U), 

by Theorem 2.4.2 and Corolla ry 2.1.2. Furthermore,

HZ(U)/Z{U)nGi/Z(U)

is a model subgroup of Gi/Z(U). Therefore Theorem 3.2.1 states that

Ci a  CiZ{U)/z(U)
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is cyclic of odd order and

\g<: G'i\ = lc-l = ^Hrj-

for some di dividing n* and

\HZ(U)/Z{U) n G'JZ{U )| =  rni~di 

by Theorem 1.6.4 and Corolla ry 2.3.3. So

\HZ(U)nG\\ =  r " i-di+1.

Furthermore, H Z (U ) n  G\ is elementary abelian, since H Z(U )/Z(U ) is ele­

mentary abelian andH  (~l Z(U ) =  1. Thus n* =  2di, by Theorem 1.4.1, and 

r =  2, by Corolla ry 3.5.4. Hence G\ is a central product of di dihedral groups 

of order 8 with amalgamated centres, by Theorem 1.4.2, and

|Ci| =  2di +  1.

So, by Theorem 1.2.5 and noting that

2ni — 1 =  (2di -  l)(2di + 1),

either n =  6 or there exists a prime q dividing |C{| satisfying the following 

conditions:

(a) q divides 2" ( — 1;

(b) q does not divide 2-̂ — 1 whenever 0 <  j  <  n*.

If n ^  6, then regarding Cj as a subgroup of Aut(G'i), we have

\Ci\ =  \CiInn(G\) / 1 nn(G\) \
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which divides

2 (2di (2di -2 ) /4 ) + i (2 di _  l ) n £ r i1(2 2j -  1 ) ,

by Theorem 1.4.4. But this contradicts our assumption that there exists a 

prime q dividing the order of Ci satisfying the statements above.

If n =  6, then Ci is cyclic of order 9 and G' is a central product of 3 dihedral 

groups of order 8. So Ci is isomorphic to a subgroup of

S6 2  Aut(G')//rm(G'),

by Theorem 1.4.4. But this cannot not happen, because S8 contains no 

element of order 9. The proof is complete. □

5.2 Case C

We now turn to minimal non-A'-groups o f derived length 3 satisfying the con­

ditions outlined in Case C. We begin by proving three preliminary lemmas.

Lem m a 5.2.1 Let r be a prime, let a >  1 be an integer prime to r and let 

b be the order of r modulo a. Then

a

if and only if

r>nb- 1
+ 1

for all n 6 N.
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Proof. For all n € N we have

Furthermore,

6 -  1 _  /  rnb -  1\ f rb -  1\ 
a \ r6 — 1 /  \ a /

/  rnb — 1 \ _
V r* -  1 )  ~

for all 0 < c <  6 and consequently

rnb -  1

1 mod rc

=  — 1 mod rc

if and only if
rb — 1 =  — 1 mod rc

for all 0 < c <  b. In order to complete the proof we simply note that rb does 

not divide
rb -  1

+  1>

□because a >  1.

L em m a 5.2.2 Let r be a prime and let b >  0 be an even integer. Suppose 

that a|r6 — 1 and

rb -  1r*b +  1.

Then either a =  r 26 + l  or a =  1. 

Proof. There exists a y such that 

r*by — 1 =
rb -  1

( r ^ - l )  ( r i fc +  l )

=  cd,
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Proof. For all n € N we have

Furthermore,

b - 1 _ /rnb — 1\ ( rb -  l \ 
a \ rk -  1 /  \ a )

m -
for all 0 < c < b and consequently

rnb -  1

if and only if
rb -  1

=  1 mod rc

=  — 1 mod rc

=  — 1 mod rc

for all 0 < c <  b. In order to complete the proof we simply note that rb does 

not divide
rb -  1

+

□because a > 1.

L em m a 5.2.2 Let r be a prime and let b >  0 be an even integer. Suppose 

that air6 — 1 and

rb -  1r-26 + 1.

Then either a =  ra6 + 1  or a =  1. 

Proof. There exists a y such that 

r$by  — 1 =
r" -  1

( r ì b — 1j  ( r i 6 +  1j

=  cd,
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where c\r*b — 1 and d\rib +  1.

If y =  1, then a =  r^b +  1. So we may assume without loss of generality that 

y ^  1. Re-arranging the equation above we obtain

r?b (y ~  1) +  — 1  ̂ =  cd

and

r*b {y -  1) =  cd — — 1^

=  cd — ce 

=  c (d  — e ) ,

where ce =  r^b — 1. So c\y — 1, since y  /  1 and (c, r) =  1. Furthermore,

r i b (y — 1) =  cd — — 1^

< c ( r 5 6 +  l )  -  ( r ? 6 -  l )

=  r$b(c  — 1) +  (c 4- 1).

And consequently, the following inequality holds.

(y — c) r 5* <  (c +  1) <  r?b.

So y — c must equal 1, since c\y — 1, and c =  r?b — 1. Thus y =  r*b and the 

order of a =  1. E

Lem m a 5.2.3 Let G be a non-abelian r-group. Suppose that $ {G ) has order 

r, Z (G ) has order rk+l and C  /  1 is a r'-group of automorphisms of G,
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which centralizes 3>(G) and acts fixed-point-freely on G /$(G ). Then the set 

o f  non-linear irreducible characters of G regarded as a C-set has

orbits.

Proof. Clearly, Z(G ) is a C-invariant abelian subgroup of G  and as such 

can be regarded as a direct product of C-invariant homocyclic subgroups. 

Suppose that Z(G ) is not elementary abelian. Then k > 0 and

Z{G ) =  H x E ,

where H is a C-invariant cyclic group of order r2 and E  is a C-invariant 

elementary abelian subgroup of order rt_1, since <i>(Z(G)) C $ (G ). Thus 

H/Q>(H) =  H/<b(G) and <£(//) =  4>(G) are C-isomorphic, contradicting our 

assumption that C  centralizes <I>(G) and acts fixed-point- freely on G/$(G). 

So Z(G) must be elementary abelian and consequently can be regarded as a 

GF(r)[C]-module. Hence,

Z(G ) =  $(G) x Z,

where Z is C-invariant, by Maschke’s Theorem. Now G/4>(G) can also be 

regarded as a G F (r ) [C]-module and re-applying Maschke’s Theorem we ob­

tain

G/$(G) =  g/«I>(G) x Z(G)/$(G), 

where Q/$(G ) is C-invariant and Q is extra-special. So

G =  Q x  Z,
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and

Irr(G ) =  {9X | 9 G I r r (Q ) , X G Irr (Z )}.

Furthermore,

Xc = ecxc
for all c G C. Now since Z  is abelian and Z(G)/<I>(G) and Z  are C- isomor­

phic, the fact that C  acts fixed-point-freely on G/i>(G) implies that Irr(Z) 

regarded as a C-set has

orbits. Suppose that \ =  OX is a non-linear irreducible character of G. Then 

6 must be one of the (r — 1) non-linear characters of Q, since Z  is abelian. 

So 9 vanishes outside $ (Q ) =  <b(G) by Theorem 1.4.5 and consequently C 

centralizes 9. The result follows. □

T h eorem  5.2.4 Let G be a finite group satisfying the following statements.

(i) G =  G'C;

(ii) G' is a special r-group;

(in) (|G'|, |C|) =  1;

(iv) <F(G') is the unique minimal normal subgroup of G  o f order rm;

(v) M =  Cc ( $ ( G ' ) ) n C /  1;

(vi) G /i>(G ') is a Frobenius group at C$(G')/<I>(G') with minimal Frobenius 

kernel G '/$ (G ')  o f order rn;
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Then either G does not admit a model subgroup or n =  6, r =  2, m < n and 

M  acts reducibly on G'/$(G').

Proof. Let S  be the set of maximal subgroups of <1>(G'). Then

M G ')  -  Irr(G '/*(G ')) =  (J  { *  G Irr(G '/T) | X( l)  #  1},
res

by Lemma 1.4.8. Furthermore, if T  G <S, then G'/T is a non-abelian r-group 

and $ (G '/T )  has order r. Now let

{ T i , .. .,Tj}

be a complete set o f orbit representatives of 5  viewed as a G-set and let

Si,. .. ,Sj

be the G-orbit containing Ti. Then by Lemma 1.4.7 there exists a ki >  0 

such that for all U G <S*, the factor group G'/U  has r" linear characters and

(r — l )r fci

irreducible characters of degree

r i(n-*j)

Let Irr(G'/Si) be the set of non-linear irreducible characters of G', which 

contain an element o f Si in their kernel. Then

Irr(G') - Irr(G'/<t>(G')) = Irr(G'/5,)U• • -U Irr(G'/Sj)

by Lemma 1.4.8. Furthermore,

|/rr(G7$,)| = |$|(r-l)r\



5. Case Studies 117

since the kernel o f  every non-linear character of G' contains one and only one 

element of S.

Suppose that H  is a model subgroup of G. Then H$(G')/<&(G') is a model 

subgroup o fG /* (G ') ,  a Frobenius group with Frobenius complement C $ (G ')/$ (G ')  

and abelian Frobenius kernel G '/$ (G ') . Therefore Theorem 3.2.1 states that 

C =  C $(G ')/$ (G ') is cyclic of odd order and

for some d dividing n and the index of //$ (G ')/i> (G ')  in G'/4>(G') is rd by 

Theorem 1.6.4.

By Theorem 1.1.1, C/M  acts fixed-point freely on $ (G '). So if

then Ci/M acts fixed-point freely on <1>(G') and consequently acts fixed-point- 

freely on $ (G )/T j by Lemma 1.7.4. So

by Lemma 1.7.1 and Lemma 1.5.1 But (|C|,r — 1) =  1 by Corolla ry 3.5.6 

and Ci must equal M. Thus

C{ =  {c  € C  | Ttc =  T J ,

\Ci/M\\r-l,

I <$¡1 =  \C/M\

and Irr(G'/Si) has

orbits viewed as a G-set by Lemma 5.2.3.
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Now H  is contained in G ' , by Corolla ry 2.3.3, So In  f  G ' is multiplicity-free 

and has exactly one irreducible constituent from each orbit of Irr(G ') viewed 

as a C-set.

Let T  e Si. Suppose that \ e Irr(G '/T) and x  is the corresponding char­

acter in G'/T. Then

(1//  t  G ' , x )  =  (1 ht/t t  G '/ T , X ).

by Lemma 2.3.1. In particular, 1 HT/t \ G'/T is multiplicity-free.

Let G7 =  G'/T,

Z  =  Z(G')/T =  « (G ,) /T ,

~ZX =  Zi/T =  Z(G'/T) and H =  HT/T.

If H  n $ (G ') 2  T, then Z  C  H. So

keril-ff t  G>) =  D  ^  2  Z

and no non-linear character of Irr(G '/T) can be a constituent of 1// t  G'.

Suppose that H  D i>(G') C  T  and H  D Z, has order rli, then we claim that 

H  intersects trivially with Z  and

d =  - n  +  -K, — ti.
2 2

If H  f l  Z  ^  1, then Z  C  H , because Z  is cyclic o f order r  and T  C  Z(G ') C  

HT. Hence by the Dedekind identity

Z(G') =  H T  D Z(G ') =  T (H  n Z (G ') =  T,
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a contradiction. So H  must intersect trivially with Z .

In order to establish the second half o f our claim we need to regard H  Z/Z 
as a subspace o f G'/ Z , a vector space o f dimension n over GF(r). Choose a 

basis

for H Z/Z, where

{2^1, , Z ì i ,  Q i ,  . . . , Q n —d —t i  }

{ z u . . . , z ti}

form a basis for H Z/Z n Zi/Z.

Let Qi/Z be a complementary subspace of Zi/Z in G'/Z , where Qi =  Qi/T 

and Z(G') C Qt is extra-special, with a basis of the following form

{?1  » • • ■ 1 Q n —d —l i  1 • • • t Q n —k i }  •

Then

H Z / Z  =  ( HZ/ Z  n ~Qi/Z)(HZ/Z n ~Zi/Z) 

which implies that

H  C H Z  = (H Z  n Q l)(H Z  n ~Zl).

In consequence if h € H then h =  qz for some q £ Qi, z £ Zi, where q =  hqzq 

and 2 =  hzzz, hq,h z £ H  and zq,z z €  Z. Therefore h =  hqzqhzzz =  q'hz, 

where q' £ Qi and hz £ H D Zi.

Let 7! =  H /(H  n Z l), f  =  Z (H  n Z[) and Wi =  Ql(H  n Zl)/(H  n % ). Then

from above
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and

W .^ Q l/ Q ln H n Y ,.

But Qi n Zi =  Z  and H D Z =  1. So

W i - Q l

Furthermore, H  fl Z  =  1 and

%  t

is multiplicity-free. So by Lemma 1.4.6, H Z  is a maximal abelian normal 

subgroup of Qi and H  has order r%(n~ki\ Hence

| 7 7 j =  r £ ( n - * < ) + * i

and

rd+l =  \G' : 77 | =  r ("+i)-( $(»-**)+*) =  

because H  n Z =  1. So

, 1 1 ,d =  - n + - k i -  h

as claimed.

Now if H  n <t>(G') C T, then 1 -¡j t  G' has degree rd+1 and the sum o f the 

degrees of the non- linear irreducible constituents o f I77 t  G' must equal 

(r — l )r d, since H C\ Z  =  1. Thus

(r -  1)1* - *  =  (r -
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non-linear characters of Irr(G'/T) are constituents o f \H t  G' and

\{T 6 Si : H n 9(C) C T}\ = + l)/

Suppose that J /n $ (G ')  has index r1 in $ (G '). Then Hn&(G') is contained 

in

rx -  1 
r — 1

elements o f S  and we have

rki-li

Suppose that n =  m  and ki =  0 for some i. Then n =  2d and

for all i. So r =  2 by Corolla ry 3.5.4 and

2\ki 2ki -  1

~ w r
+ 1

for all i. So by Lemma 5.2.2

\M\ =  25*‘ +  1

for all i satisfying ki >  0 and all the non-zero ki must be equal. Furthermore,

/ 2ki -  1 
V |M| =  1

for all i. So the equation

2ki -  1
\ M \

2ki-i<2X -  1 =
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reduces to

and we obtain

2> -  1 «  2" -  1/  f i

\M\
2X -  1 
2d -  r

In the case where is greater than zero for some i. This implies that 

x  =  n =  ki, since n =  2d. But n >  ki for all i. So if one of the kt equals zero 

then all the ki must equal zero contradicting Theorem 3.3.5.

So if n =  m, then we may assume that all the ki >  0. Let o =  o(r) mod \M\. 

Then o\ki and there exists an O; such that ki =  OiO for all i. Furthermore, if 

o is odd then

Oi — Oj =  0 mod 2,

because n — ki is even for all i.

Let a be the largest integer satisfying

ra r° -  1 
\M\ +  1.

Then a is less than o and o is the largest integer satisfying

ra rki -  1
i m ~

+ i

for all i, by Lemma 5.2.1. In particular, a >  kt — for all i and there exists 

a j  such that

kj — ij =  a,
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because

rx -  1 
r  —  1

is co-prime to r. Furthermore, if o, =  (oj ±  2y), then

„ 1 , 1 , 1 1 , „
t-i =  + 2n “  d =  20j0 ± V ° +  2n ~  d =  e j ± y °

and

ki — ¿i =  OiO — i j  yo =  OjO ±  2yo — ¿j =F yo =  kj — ij  ±  yo =  a ±  yo.

But 0 <  ki — £i <  a < o for a lii, so we may assume that all the ki equal kj, 

if o is odd.

If o is even, then kj — ij <  \o by Lemma 5.2.2 and consequently, if m =  n 

and all the ki >  0 , then we may assume that all the kj are equal to kj for 

some j .  So

( r n -  1 /  |C| \ ( r k> -  1 
\ r -  1 /  \M\) V |M|

r k j  —i j

and re-arranging the equation we obtain

rki~t,r^ d 1 1 = (ft> “  ! )  +  In l­

and d\x. Furthermore, d < x, because \M\ is greater than 1. Expanding out 

the left hand side o f this equation, we have

pX—d + k j—tj j ,x —2d+kj~tj  .  .  , _|_ yd+kj i j  _|_ ykj ij  _  ykj  —  J  _f_ | ^ f | .

But \M\ is greater than 1 and divides rk> — 1. So

ykj <  ykj _  l  +  <  ykj +  1
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Furthermore,

j.x — d f  hj ^  ^.x—d+kj —i j  _ |_  y.x—2d+kj t j  t _ t _ j_  :j.d +  kj / j  _|_ ^kj t j  ^  J.X — d■+ kj — t j  -T1

So x  — d +  kj — ii =  kj, forcing x  =  d +  tj. Thus

d\tj,

since d\x. Hence

d\kj,

because d\n +  kj — 21 j and d\n. So

d\kj — tj

and

-n  — -k j  =  d — kj +  tj < 0,
2 2 3 3 3 ~

contradicting the fact that n > kj.

So we may assume without loss of generality that m < n and consequently, 

by Theorem 1.2.5, either n =  6 and r =  2 or there exists a prime q dividing 

\M\ satisfying the following statements.

(a) q divides r" — 1.

(b) q does not divide r‘ — 1 whenever 0 <  i < n.

Assume that n ^  6 or r /  2. Then |M| acts irreducibly on G'/$(G') and 

consequently kj =  0 for all i, which forces n =  2d. So r must equal 2 by
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Corolla ry 3.5.4 and G'/T is an extra- special 2-group o f order 22d+1 for all 

T  € S. Furthermore, there exists a T  € S  such that

HT/Tn<i>(G')/T =  1.

So G'/T has an elementary abelian subgroup HT/T  x 4>(G')/T o f  order 

2d+1. Thus G'/T is a central product of d dihedral groups of order 8 with 

amalgamated centres by Theorem 1.4.2 and M  can be viewed as a subgroup 

of Aut(G'/T). In particular,

\M\ =  | M in n  (G'/T) /Inn(G'/T) \

divides

\Aut(G'/T)/Inn(G'/T)\,

which in turn divides

2 (2d(2d—2 ) /4 )+ l (2 d _  l ) n f - 11(2 2i -  1 ) ,

by Theorem 1.4.4. But this contradicts our assumption that there exists a 

prime q dividing the order of M  satisfying the statements above.

If n =  6, r =  2 and M  acts irreducibly on G'/$(G'). Then as above ki must 

equal 0 for all i. So d =  3,

|M| =  |C|=9,

by Theorem 1.1.1, and m — 1. Thus G' is a central product of 3 dihedral 

groups of order 8 and M  is isomorphic to a subgroup of

Aut(G')/Inn(G'),

which in turn is isomorphic to a subgroup of S». But this cannot not happen, 

because Sg contains no element of order 9. The proof is complete. □
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5.3 Example C

The following example of a finite group satisfying the conditions above can 

best be described using a construction of Higman in his paper on Suzuki 

2- groups [8]. We shall digress for a moment in order to place the example 

within context and also because we will need to visit Higman’s paper again 

in another context.

Suppose that F  =  G F (2") and 6 is an automorphism of F . We denote by 

A(n, 9) the set of all matrices of the form

( l 0 0 ^

u(a, b) = a 1 0

K b aO l )

with a, b € F. Then

u(a, b)u(a', b') =  u(a +  a',b +  b' +  a'(a0)),

and

u(a,b) 1 =  u(a,b +  a(a0)).

So A (n ,9 ) is a group of order 22" with unit element u(0 ,0). The mapping 

u(a, b) —> a is a homomorphism of A(n, 0) onto the additive group of F  with 

kernel

TZ =  {u(0, b) |6 € F ) .

Thus there is an isomorphism p of A(n, 0)/1Z onto F  such that

(u(a, b)7Z)p =  a.
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Also there is an isomorphism a  o f TZ onto F  given by

u(0, b)a =  b,

and

(u(a , b)2)a =  a(aO).

Note that K  — {1 } is the set of involutions in A (n ,9), and that A(n,6) 

is abelian if and only if 0 =  1. Note also that if A € F x , there is an 

automorphism of A(n, 0) given by

u(a, b)£\ =  u(Xa, A(A6)b).

Theorem 5.3.1 Let F  =  G F (2"), and let 0 be an automorphism of F.

(a) The mapping a -> a(aO) of F  into F  is injective if and only if 6 is of 

odd order.

(b) If 9 is of odd order, there exists A € F  such that the set o f involutions

of A(n, 9) is transitively permuted by <  > .

(c) If 9 is of even order, the set of involutions of A(n, 9) is intransitively 

permuted by the group of automorphisms of A (n ,9).

Proof. Huppert and Blackburn [7, Theorem 6.9, page 296].

a) Put a\ =  a(a9) (a S F * ). Then x  >s an endomorphism of F *. If 

ker\ ^  1, there exists a ^  1 such that a9 =  a -1 , so the order of 9 is even. If 

the order of 9 is even, the subfield of elements fixed by 92 is different from 

the subfield F\ o f elements fixed by 9. Thus there exists a € F  such that
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aO ^  a, aO2 =  a. Then a(aO) G F * , so, since |F*| is odd, there exists 

b G F\ such that b2 =  a(aO). Let c =  aft-1 ; c ^  1 since a £  Fi. Thus 

cO — (aO)(bO)~l =  (a9)b~1 =  6a“ 1, by definition of b. Hence c(? =  c-1 and 

ker x  7̂  1 •

b) Suppose that 9 is of odd order. Let w be a generator of F * . By a), there 

exists A G F  such that A(A6) =  u>. Then u{0, b)^x =  u(A0, ub), so hcis the 

stated property.

c) Suppose that 9 is of even order. By a), x  is not injective and thus not

surjective. Hence there exists a G F  such that a is not of the form b{b9) 

with b G F ; thus aa~l is an involution in A(n, 9) but is not a square. Since 

A(n, 9) is o f exponent 4, some involutions are squares. The assertion follows 

at once. 1=1

Definition 5.3.2 A Suzuki 2-group is a group G which has the following 

properties.

(a) G is a non-abelian 2-group.

(b) G has more than one involution.

(c) There exists a soluble group of automorphisms of G which permutes the 

set o f involutions in G transitively.

Theorem 5.3.3 Let G be a Suzuki 2-group.

(a) G' =  * (G ) =  Z{G ) =  {x  \x G G ,x 2 =  1}.

(b) Either (i) G — A{n, 9) for some non-identity automorphism 9 o fG F (2n) 

of odd order, or (ii) |G| =  |Z(G)|3.
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Proof. Huppert and Blackburn [7, Theorem 7.9, page 313]. □

Let F  =  G F (26), let 0 be the automorphism o f  F  of order 6 defined by

a6 =  a2

for all a € F, and F*  =  < A >. Let p =  A7 and let

G =  [A(6,0)]C

be the semi-direct product of >1(6,6), which is not a Suzuki 2-group by The­

orem 5.3.3, and C  =  <  ^  > , a cyclic group o f order 9. Let

N  =  <  u(0, A24), u(0, A3), u(0, A43), u(0, A12) >  .

Then (G/N)' =  A(6,0)/N, the Frattini subgroup $((G /N )') =  Tl/N, and 

G/N satisfies the statements in Theorem 5.2.4 with r =  2, n =  6 and m =  2. 

Furthermore, if

H  = <  u(A21,A40) ,U(A12,A20),n (A 48,A10) >, 

then HN/N  is a model subgroup of G/N.

5.4 Case E

Theorem 5.4.1 Let G = G iG2 be a finite group satisfying the following 

statements.

(a) G i^ G '.C a

(b) (|GJ|,|C,|) = 1;
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(c) G\ is elementary abelian;

(d) G\G'2 is a special r-group;

(e) K  =  [G'i, G2] is the unique minimal normal subgroup of G o f order rm;

(f) G /K  =  G J K  x  G2/K ;

(g) Gi/K is a Frobenius group at C iK /K  with minimal Frobenius kernel 

G'i/K of order rn‘ .

Then either G does not admit a model subgroup or r — 2,

\Ci\ = 2*"‘ + 1,

for i =  1, 2.

Proof. The proof follows along identical lines to that of Theorem 5.2.4 and 

consequently we shall only outline the key steps.

First note by Theorem 1.1.1, that we may assume without loss of generality 

that M  =  Cg {K ) n (Ci x C2) =  <  (c*1, c22) > , where

‘ (\Ci\,\c,\y
for i =  1,2 and Ci =  <  Ci >  and C2 =  <  c2 > Furthermore, m =  lcm (ni,n2).

Suppose that H  is a model subgroup o f G. Then H K / K  is a model subgroup 

of G / K  =  G\/K x G2/K , by Theorem 2.3.2. So

H K / K  = (H K / K  n G i/ K ) x (H K /K  n G2/K),

and H K / K  n Gi/K  is a model subgroup of Gi/K, by Theorem 2.4.2, a 

Frobenius group with Frobenius complement CiK/K  and abelian Frobenius
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kernel G'JK. Therefore Theorem 3.2.1 states that C, =  CiK/K  is cyclic of 

odd order and

Ift : Gil - |C,| -
for some di dividing n* and the index of H K /K  D Gi/K in G'JK is rd' by 

Theorem 1.6.4.

Let <S be the set of maximal subgroups of K . Let

be a complete set of orbit representatives of S viewed as a Ci x C2 set. Let

S\,... ,Sj

be the Ci x C2-orbit containing T* and let

r*‘+1 =  \Z(G[G'2/Ti) |.

Then we obtain

„ |Ci x C2|
\M\

and

dx +  d2 =  +  ~ri2 +  ifci -  Ci,

where

rli =  \HT/T n Z{G\G'2/T)\, 

for all T € Si satisfying H C\ K  C T . Furthermore,

\{T eSi -. Hr\K c  T } |  =  + * ) / rk>~li
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and if H  fi K  has index r1 in A", then

Suppose that \M\ =  1. Then m  =  nin2 and we obtain

So ¿i =  0 for some i, because (rx — 1 ) / ( r  — 1) is prime to r. But if ii =  0, 

then ki =  0, because

and we may assume without loss of generality that rq =  2dt for i =  1, 2.. 

Suppose that |M| 1 and — 0 for some i. Then n* =  2dt for ¿ = 1 ,2 .

Suppose that all the k{ > 0 and equal. Then we obtain

and it can be shown that rii — 2d; for i =  1,2. The result now follows.
□

5.5 Example E

D efin ition  5.5.1 Let G be a finite r-group and let S  be the set of maximal 

subgroups of Z (G ). Then we say that G is semi-extra-special ifG /T is extra­

special for  all T  € S.

di +  d2 <  -n i  +  -7i2,

rx -  1 
r — 1
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Lem m a 5.5.2 Let G be a semi-extra-special r-group. Then G is special and 

if the order of G/<&(G) is r", then n is even.

Proof Beisiegel [6 , Lemma 1]. □

In the case where p =  2 the next result can be regarded as a Corollary of 

Theorem 3.3.5 as has already been stated in the introduction.

T h eorem  5.5.3 If G is a semi-extra-special r-group and G/<£(G) has order 

r2n, then |$(G)| <  r".

Proof. Beisiegel [6, Satz 1], Let {zt | 1 <  i <  m } be a basis of the group 

G' =  <I>(G) regarded as a G F (r) vector space. Then
m

\gG,,h G ' } = '£ i f i(gG',h'G')zi,
i=l

where the / ,  are symplectic scalar products of G /G ' regarded as a G F (r) 

vector space. Let Ai denote the matrix of / ,  with respect to a fixed basis of 

G /G '. Since G is semi-extra-special, the scalar product.
m

X > / <
i=1

is not regular only if all the A * =  0. Thus the equation

0 = Det

has only the trivial solution. But the right side of this equation is the square 

of a homogeneous polynomial of degree n in the variables A*, 1 <  t <  m  and 

consequently has non-trivial solutions, if the number of variables is greater 

than the degree of the polynomial by Chevalley’s Theorem. The proof is 

complete. n
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D efin ition  5.5.4 If G is a semi-extra-special r-group, G/<&{G) has order 

r2n and <I>(G) has order rn, then we say that G is ultra-special.

Lem m a 5.5.5  Let r be a prime, let L be a field with r"  elements, let K  be the 

prime subfield of L and define the following multiplication on the cartesian 

product P  =  L

(a, b, c)(a', b1, c') =  (a +  a',b +  b', c +  c' +  f(a , b')), 

where f  is a K-bilinear map from L x L into L. Then

(a) P  is an r-group of class at most 2 with respect to this multiplication;

(b) P  is ultra-special if and only if

{ H a , e ) \ t e L }  =  { f ( l , a ) \ e e L }

for  all 0 ^  a € L.

Proof. Beisiegel [6, Lemma 3]. 1=1

Let F  =  G F (22n), let F x = <  A > , and let p =  A2" -1 . Suppose that P  is 

the set o f  matrices of the form

( l 0 0 N

u(a, b, c) = a 1 0

K c b l )
with o, b, c  € F. Then

u(a, b, c)u(a', b', c') =  u(a +  a!, b +  b', c +  c' +  a'b),
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and setting f(a , b') =  ab' in Lemma 5.5.5 we see that P  is an ultra- special 2 

group. Let a  be the map from P  to P  defined by

u(a, b, c)a  =  u(^a, b, /re)

and let /3 be the map from P  to P  defined by

u(a, b, c )0  =  u(a, n~lb, f.i- 1c)

for all a,b,c  e  F . Then a,/3 e  A ut(P ) and

a/3 =  /3a.

Furthermore, if C\ =  < a  >  and C2 =  < P > , then

C =  <  a, 0  > =  Ci x C2,

since Ci fl C2 =  1. Let

G =  [P](C! x C2)

be the semi-direct product of P  and Ci x C2- Let 

Pi =  {u(a, 0, c) | a, c € F } ,

and let

G , =  [Pi]C! C G.

Let

P2 =  (u (0, 6,c) 16, c 6 F } ,
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and let

G2 =  [P2]C2 C G.

Then G' =  Pi for i =  1,2 and

A' =  {u (0, 0, c ) | c e F }  =  [G'1,C ,2]

is the unique minimal normal subgroup of G. Furthermore, G =  G\G2 

satisfies the statements in Theorem 5.4.1 with r =  2,

\Ct\ =  2" +  1,

and m =  ni =  n2 =  2n. Now suppose that J =  G F (2n) and

{u(d, e, / )  | d, e, /  € J }.

Then / /  is a model subgroup of G.

5.6 Case F

We now look at minimal non-A’-groups satisfying

(|G :G '|,|G ':G "|) =  1

and the conditions outlined in Case F. Before moving onto the main result 

we will prove a well-known result o f  Burnside and then look at a restricted 

case which introduces the techniques in this section as well as highlighting a

very near miss.
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T h eorem  5.6.1 Let X  be a G -set and let t be the number of orbits of G on 

X . Suppose that

E(g) =  { x  e  X  \ xg =  x }

fo r  all g € G. Then

<|G| =  £  ™ i -
9€G

Proof. Let E =  {(x , g) € X  x G \xg =  g }. Then

\E(x,.)\ =  \Gx \and \E(.,g)\ =  |F(p)|.

Applying the counting principle

X > ( * ) l  =  £ | g»I
jGG x£X

= E E  ig*i
i= l  x E X { G

where x i , . . .  , x t are representatives of the the t orbits. But if x  6 XjG, then 

G Xi =  g~lGxg where xg — Xi, so that \GXi\ =  |GX|. Thus

£ | F ( s ) l  =
g€G i=l

=  t\G\

and the proof is complete. a

T h eorem  5.6.2 Let G be a finite soluble group satisfying the following con­

ditions.

(a) G =  G "X ;
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(b) G " n X  =  1;

(c) G" is the unique minimal normal subgroup of G;

(d) X  =  N C is a Frobenius group with cyclic Frobenius complement C  =  

<  c > of order p and minimal Frobenius kernel N  o f order p +  1, where 

p =  2m — 1 is a prime.

Then G  does not possess a model subgroup.

Proof. Let V denote G" regarded as a faithful irreducible F,[A"]-module and 

let W  be a F, [iV]-submodule of V. Then

V =  ^  W x
xex

and C N(W ) < N , because CX{V ) =  1. Furthermore, the abelian group 

N/Cn (W )  is cyclic of order 2, q is odd, the submodule W  =  F,, and wn =  

(q — l)w  for all n € iV — Cn (W ) and w e W  by Theorem 1.1.1. So Cjv(VF) =  

M , where M  is a maximal subgroup of N  and Cn (W x ) =  M x for all x  £ X . 

But W n  =  W  for all n e  N  and W c' ^  Wc> for i ±  j  €  { 0 , . . .  ,p  — 1}, since 

C  acts regularly on the set of maximal subgroups of N. So, by Clifford’s 

Theorem [1, Theorem 6.5, page 80],

p -1
V =  0  Wc\

i=0

In other words V  is the induced F,[A']-module W x  of dimension p. Further­

more, if x  e X  — N  and w € W  -  {0 }, then the set

{w ,w x , . . . ,w x p~1}
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is a basis for V  over F,. So if x  G X  — N  and w € W  — {0 }, then

C y(x )  =  <  w +  wx  + wx2 + ---- h wxv~ x >

and

\Cg»(x )\ =  |CV(x)| =  q.

If 1 /  n 6 A/, then (wc')n =  wc' if n € M c‘ and (wc*)n =  (q -  l)iuc* if 

n ^ M c' for all i € { 0 , . . .  ,p  — 1} and w € W . So, if 1 ^  n e  N , then

Cv'(n) = < xc' | n € M c' >

and

\CG-(n)\ =  |Cv(n)| = 92"” 1- 1 = q ^ ~ l)/2.

Let t denote the number of orbits of Irr(G ") viewed as an X-set. Then, 

remembering that G" is abelian, we obtain

_  qp +  pqip- ' )/2 +  {p ~  1 ) ( p +  l)g
(p + l )p

by Theorem 5.6.1 and Theorem 1.6.2.

Now since X  is a Frobenius group with cyclic Frobenius complement of order 

p and minimal Frobenius kernel of order p +  1, where p =  2m — 1 is a prime, 

a proper subgroup of X  is either cyclic of order p or is elementary abelian of 

order 2*, where £ <  m.

Let 1G" /  A i  Irr(G "). Then I x W  is a proper subgroup o f X , and is 

as a consquence either cyclic of order p or elementary abelian of order 2\
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where t  <  m. If /x (A ) is cyclic of prime order p, then A extends to I\ {A) 

by Isaacs [1, Corollary 6.20, page 86] and if Ix (A) is elementary abelian of 

order 2e, then the linear character A, whose order is q, extends to Ix (A) by 

Isaacs [1, Theorem 6.26, page 89]. So

A  t G =  X i  + ----------b  X * .

where k — |/x(A)| and Xt is irreducible of degree \X : /x(A)| for all i, by 

Isaacs [1, Theorem 6.11 and Theorem 6.17, page 82 and 85]. Let

1 g" =  Ai, A2, . .. ,  A(

be a set of orbit representatives o f Irr(G") viewed as an X-set and let 

Si =  {x  e  Irr(G ) \ <  Xg" ,K  >  #  0}, 

for i € { 1 , . . . ,  t}. Then

Ir r (G )  =  5jU • ■ ■ U<St 

by Isaacs [1, Theorem 6.2, page 79]. Now

£ X(1) = \X\=p(p+l)
XtSi

for i e  { 2, . . . ,  t} and

^ 2  x ( i)  =  2 p

by Theorem 1.6.4, because Si =  Irr(G/G") by Isaacs [1, Theorem 6.17, page 

85]. Thus

5 3  X (l)  =  2p +  p (p +  1)(< -  1)
Xelrr (G)
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and substituting in the value above for t, we obtain

X€/rr(G)
E  x d )  =

2p +  qp +  pq(p 1)/2 +  (p -  l)(p  +  1)9 -  (p +  1)P-

Now suppose that H  is a model subgroup of G. Then HG"/G" is a model 

subgroup of G/G" by Theorem 2.3.2 and

= 2p + qp +  pq(p 0/2 +  (P -  1)(P + 1)9 “  (P +  !)P-

Re-arranging the equation we obtain

2pql =  qp +  pq(p~l)/2 +  (p -  l)(p  +  l)g -  (p -  1)P- 

So either p =  q or q divides (p -  1).

If q divides (p — 1), then there exists an a >  1 such that qa divides (p -  1), 

but qa+l does not. Now

Hi

since

E  X(l) =  2 P
* € / r r ( C / G " )

by Theorem 1.6.4. So there exists an £ >  0 such that

\H\ =  2m~1qp~e

where the order of H  fi G" is qp l , and

2P9' =  E  X M
X € / i t (G )

9(p- i)/2 >  2<P-1)/2 =  2“ >  2u =  (p -  1),
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where p =  2u +  1. So (p — l ) /2  > a and consequently a must equal l. So 

2pqe =  2pqa <  2p(p — 1) < 2p2.

But

2pql >  (p -  l)(p  +  1)? -  (p -  l)p  =  P2(9 -  1) -  9 +  P >  2p2 

and we may assume without loss of generality that p =  9 .

If p =  9, then

2p<+1 =  pp 4- p(p+1)/2 +  (p -  l)(p  4- l)p  -  (p -  l)p  

=  pP 4- p(p+1)/2 4- p3 -  p -  p2 4- p 

=  pP 4- p(p+1>/2 -1- p3 — p2.

Clearly,  ̂ must be greater than or equal to p — 1. Furthermore, if p > 3, 

then the largest power of p dividing the right-hand side is 2 and consequently 

the equality cannot hold. So we may assume without loss of generality that 

p =  9 =  3.

If p =  9 =  3, then

2 x 3m  =  27 +  9 +  27 -  9 =  54

and i  must equal 2. So X  Si A4, the unique minimal normal subgroup G" 

has order 27, and the model subgroup H  has order 6. Furthermore, G has 

three linear characters Ai, A2, A3, one irreducible character p of degree 3, six 

irreducible characters .. ,66 of degree 4, two irreducible characters 4>\,<j>2 

of degree six and one irreducible character \ ° f  degree 12. In addition if J is 

any subgroup of G "N  o f order 6, then

1 j  t"G= Aj 4- A2 +  A3 +  p +  2<t>x 4- 2(fo +  2\
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or

1 j  Tg =  Ai +  A2 +  A3 +  p  4- 10i 4- 302 4- 2x

or

1 j  1'G=  Al +  A2 +  A3 +  /i +  #1 +  #2 +  #3 +  #4 + 05 +  #6 +  202 +  x-

The result now follows, because H  must be contained in G "N  by Corolla 

ry 2.3.3. D

Lem m a 5.6.3 Let G =  NC, where G is a Frobenius group with elementary 

abelian Frobenius kernel N of order rn and cyclic Frobenius complement C  

of order z. Let S be a maximal subgroup of N  and let

k{x) =  |{ c e C - . x e  Sc}|

for all x  e  N. Suppose that z =  for some d dividingn and ( z , r - l )  =  1. 

Then either n =  2d or

(r -  l )z
r2 <  k(x) <

(r +  l)z

for all 1 ^  x  € N .

Proof. Suppose that C  =  (c). Then N  can be viewed as an Fr[C]-module 

via the C-action

for all x  € N  and 0 <  i <  z — 1. Since each element of C  acts fixed-point 

freely on N  via conjugation by Lemma 1.7.1, the C-action is faithful and we



5. Case Studies 144

can apply Theorem 1.1.1 to an irreducible submodule M  o f N . Thus there 

exists a primitive zth root o f  unity e of F  =  Frn, by Lemma 3.4.10, such that 

M  is isomorphic to F  viewed as an Fr [C]-module via the C-action

xc' =  xe' (field multiplication)

for all x  € F  and 0 <  i <  z  — 1. Since M  is isomorphic to F  viewed as an 

Fr [C]-module, M  must equal N  and we can assume without loss o f generality 

that

G =  [AT]<£),

the external semi-direct product of N =  F + and (e) via <r, where a is the 

homomorphism from (e) to Aut(N ) defined by

x =  xe' (field multiplication)

for all x  € iV and 0 <  i <  z  — 1.

Let R =  Fr be the prime subfield of F  and let R* =  <  [L > . Suppose that 

G =  [ N ] ( <  e > x  <  n > ) ,

the external semi-direct product of N  and < t > x <  /z >  via r , where r  is 

the homomorphism from < € > x  < fi >  to Aut(N) defined by

•j-dcV) _  xt'n* (field multiplication)

for all x  6 N  and 0 < i < z  — 1, 0 < j  <  r — 1. Then

k(x)  =  |{t e  { 0, . . . , z  -  1} : x  € S"'}|
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for all x  € N.  For y € N,  let \y denote the linear character of N  defined by

Xv{x) =  e2*iTrr b x)/r

for all x  € N. Then by Theorem 3.4.4 there exists a 0 ^  y £ N  such that 

the kernel of the linear character Xy is Furthermore,

T rF(yn3x) =  nJT rF(yx),

for all x  € N  and all 0 <  j  <  r  — 1, by Theorem 3.4.2. So

Xy/x» • • • i Xynr~l

are the non-trivial characters of Irr(N)  whose kernels contain S. Hence

^ X y A x) - r -  1,
i =0

if x  € 5, and
r— 1
^ ' Xyyi (x) = — 1) 
j=0

if x S. Now applying Theorem 3.4.6 we see that Xy is an irreducible 

character of G,

Xy(x) =  Xye-'y> (*)
t=0 j=0

for all x e  N  and x f  vanishes outside N. Thus 

Xy(x) =
i=0 j - 0

=  (r -  l )k(x)  -  ( z -  k(x))

=  rk(x) — z,
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and

(r -  1  )zrn =  |G| = ^ 2  Xy{9)2 =  (r -  1 )222 +  W 2-
geG 0#* €JV

Suppose that there exists a. 0 ^  x  a N  such that

I X ? ( * ) I  >  “ •

Then

(r -  l)zr" >  (r -  1  )222 +  z(r -  1 ) ,

from above and because every non-zero element of N  is contained in a con- 

jugacy class o f length z(r — 1). So

r" > ( r - l ) z  +  (^)  .

But rn =  z(rd — 1) +  1, so

z(rd-  1 ) +  1  > ( r - l ) z + ( ^ )

z(rd -  1) >  ( r -  1)2 +  ( ^ )  ,

and after re-arranging the equation we obtain

r d +2 _  r 3  >  z  =  r ( i - 1 ) 4  +  r (t-a)d +  .  .  .  +  r d +  l f

where t  =  n/d. It is straightforward to show that this equality holds only if 

l  =  2. Thus if there exists a 0 /  x  € N  such that

lx?(*)l >
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then n must equal 2d. So if n ^  2d, then

|rfc(x) — z | <  —

for all 0 ^  x  6 N. Re-stating this as the two inequalities

rk(x) — z <  -  and
rz

z — rk(x) <  -
r

and solving for k(x)  we obtain the desired inequality

The proof is complete. □

Lem m a 5.6.4 Let r be a prime. Let G — G\ x ■ • • x G m, where each Gi is a 

Frobenius group with elementary abelian Frobenius kernel TV* of order r"1 and 

cyclic Frobenius complement Ci of order z,. Let S be a maximal subgroup of

N  =  Ni x  ••• x  Nm

and let

fc(x) =  | { c e C : x e 5 c}|.

for all x  €  N, where C  =  C\ x • • • x  Cm. Suppose that z{ =  for some 

di dividing n, and (Zj,r — 1) =  1 for  1 < i <  m. Suppose further that 

S fl Ni <  Ni for all 1 <  i <  m. Then either Hi =  2dt fo r  some i or

s  <!+  >>£

for all 1 ^  x  6 N, where z =
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Proof. We shall prove the result by induction on m. We have already shown 

in Lemma 5.6.3 that the result holds in the case when m =  1. So in order 

to complete the proof we need only show that the result holds for m if we 

assume that it holds for m — 1.

Let Gi =  G\ H------4 - G i-i 4- Gi+X H--------- 1- Gm and, let Nx and Cx denote the

corresponding subgroups of N  and C. Let

M x<) =  lte e C i : i i € (S n ;v i)i<}|

for all hi g N{. Then since

(5 n Ni)« =  S D Nt

for all Ci € Ci, we see that

k(xi) =  Ziki(xi)

for all Xi € N, and by our induction hypothesis either rij =  2d, for some 

j  /  i or

rzZi2 r .r£z.

for all 1 ^  Xi € N{ and

^  ^

for all 1 ^  hi € N*. So if we can show that either rij =  2d* for some i or

< *((*,.......*„)) <

for all (x \,.. . . i m )  € N  satisfying x t /  1 for all i the proof will be complete.
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As in Lemma 5.6.3 we can assume without loss of generality that there exists 

a primitive 2jth root of unity e* o f F{ =  Fr»i such that

Gi =  [F,+]<«>,

the external semi-direct product o f F *  and (e,) via a where a, is the homo­

morphism from (fj) to Aut(Ft+) defined by

x1'^  * =  Xif*' (field multiplication)

for all Xi e  F *  and 0 <  ji <  Zi — 1. Let R =  Fr and let R* =  <  [i > . 

Suppose that

G  =  [N]C

the external semi-direct product o f N  =  Fj+ x • • • x F+ and 

C  = <  ii  >  x  • • • x <  em >  x < n >  

via <7, where a is the homomorphism from C  to Aut(N)  defined by

( * ! , . .  ....=  (anej'/x*,. . .  ,x mek ttk)

for all ( i i , . . . ,  x m) € N  and 0 <  ji <  Zi — 1 and 0 <  k <  r  — 1. Then

k(x)  =  \{(jl, . . . J m) e J : x € S « ' ...

for all x  € N,  where

J  =  {O'l, • • • ,jrn) ■■ o <  ji <  Zi -  1,1 <  i <  m).

Let X(x,... xm) =  Xu •••Xxm! where Xx, denotes the linear character of Ft+

defined by

X „ (x)  =  e2" T’> (*i*>/r
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for all x  6 F *. Then as in Lemma 5.6.3 there exists a y — (yl t . . . ,  ym) € F + 

with ?/, /  0 for all i such that

X(»l,...,Vm)j X(yi/1...• • • ! X ( y U i r ~ 1,.

are the non-trivial characters of TV whose kernels contain S. Hence
r— 1
^ ' X(yi/i*,...,ym/jt)((a'l! • • • i x m ) )  r — 1) 
t =0

if ( x i , . . .  ,x m) 6 S, and

r— 1

^ ' X(}i/j*... ‘ ‘ > ■Cm)) =  —
k=0

if ( x i , . . . , x m) & 5. Furthermore, by Theorem 3.4.6, xfyi Vm) is an >rre_ 

ducible character of G ,

2 1 - 1  2m- 1 r-1
X(yi,...,ym){(xii • • • > xm)) = ^  ̂ ^ ^ " X(y1(-U#4*,...,ym£->mM*)((xi, . . . , Xm))

>1=0  >m= 0  *= 0

for all ( x i , . . . ,  x m) 6 N  and ym) vanishes outside TV. Thus

X(y,...,ym)((*l. •••.*.»)) =  ] C ‘ " £ f c x (  y.n‘ ...« ‘ ) ( ( ^ ...... X ^ ) )
¿1= 0  jm —  0 fc=0

=  (r -  l )k ( {x i ........xm)) -  ( z -  /c((x1, . . . , x m)))

=  r A ( ( x j , . . . , x m)) — z,

and

(r -  l)*nr=1r"‘ =
je c

=  S x ? ( * ) * -
z € N
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Suppose that there exists a x  =  . ,x m) e  N  such that /  0 for all i

and

Then

(r — lJzIIJljr"* >  z ( r -  1) ( ^ ) 2 ,

from above and because x  is contained in a conjugacy class of length z (r — 1). 

So

n r = i ^ > ( ; ) 2 -

But rni =  2j(rdi — 1) +  1, so

n - l2 i(rd‘ - 1 )  + 1  >  ( ; ) '

I l ^ r *  -  1 >
n ^ iz ,

r2 ’

But m >  1 and > r2di 4- rdi +  1 > rdi+l — r unless nt =  2dt. 

So if x  =  (x \, . . . ,  xm) € N  such that Xi /  0 for all i and

|X?(")I >i/ r

then rii =  2d* for some i. Therefore if n* ^  2d*, then

I r f c ( x )  —  z |  <  -  r

and solving for k(x ) we obtain the desired inequality

<  K * ) <  .

□
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Theorem 5.6.5 Let G =  K X  be a finite soluble group satisfying the follow­

ing conditions.

(a) K H X  =  1;

(b) K  =  G " is the unique minimal normal subgroup of G ;

(c) X  is a non-abelian X  -group;

(d) X  C Aut(G ").

(e) (|X'|, \X : X'|) =  1.

Then either G does not possess a model subgroup or G possesses a normal 

subgroup N  such that G/N is a Frobenius group with elementary abelian 

Frobenius kernel of order 22n and cyclic Frobenius kernel of order 2" +  1.

Proof. Since X  is a X-group, X  =  X i ■ • • X mA, where A is abelian, [Xi, Xj] =  

1 for i ±  j  and [A'*, A] =  1 for all i. Furthermore, Ni =  X[ is complemented in 

Xi for all i, and if C, is a complement of Nt in X,, then Z, =  Z(Xi) =  Cc,(X,) 

and Xi/Zi is a Frobenius group with cyclic Frobenius complement C ;/Z j and 

elementary abelian Frobenius kernel NiZi/Zi of order r"\

Suppose that H  is a model subgroup of G. Then Ci/Zi has order

r?' -  1
Zi =
‘ ~ r f  — 1 ’

for some di dividing nt and (Zi, r< — 1) =  1, by Theorem 2.5.2, Theorem 2.5.3 

and Corolla ry 3.5.6. Let x, =  rn‘ and y, =  rdi.

Furthemore, if we let x  =  let y =  and let z =  Yl”LlZi, then

£  x ( l )  — \G \ H\ =
X €lrr(G )

Id
\HK/K\\HnK\

cyzq
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where qh =  \K\/\H fl K\ and c =  \Z(X)\, by Theorem 2.3.2, Theorem 2.4.2, 

Lemma 2.6.1.

Let 7r =  { p i , . . .  , p(} be the set of primes dividing the order of 

N  =  X ' =  Ni x • ■ • x Nm,

and let

Sp. =  { i € { l , . . . ,m } - \ N i \ = P a. }

for 1 <  s <  t. Then

{!>•••> m} =  | j Sp,.
1 <3<t

and X  =  X Pl . . .  X PtA , where

Xp. =  Y X j.
i e sP.

Let Np, and CPs denote the corresponding subgroups of x * .  Now since 

(|AT|, \X : A'|) =  1, the subgroup NPa is the ps-Sylow subgroup o f N Z (X )  

and

N Z {X ) =  NPI x • • • x Np, x Z (X ).

Let V  denote Irr(K ) regarded as a faithful irreducible F,[A]-module and let 

IT be a F,[ArZ(AT)]- submodule o f V. Then

V  =  J 2 W x
xex

and CNi[W ) < Ni for all i and CZ(X ){W ) =  1> because CX {V ) =  1. Further­

more, the abelian group N Z (X )/ C NZ{x ) (W ) is cyclic of order pi x • • • xp , x c 

and the submodule W  has dimension qb, where

b =  o(q) mod p\ x. ■ ■ • x p( x c



5. Case Studies 154

by Theorem 1.1.1. So M  =  Cnz(X ){W ) =  MPI x ■■■ x MP(, where MPt is a 

maximal subgroup of NPi satisfying MPj n Nj <  Nj for all j  € SPa.

Let X  =  X/N Z  and C { =  C{N Z {X )/ N Z (X ). Then Suppose that M E =  

M c =  Cnz(X)(W c) is equal to M  for some

1 ^ C £ X  = C\ X • • • X Cm-

Then there exists an i such that c =  cict, where 1 ^  c* € C\ and 

€  C i x • • • x C i-i  x C i+i x  • • • x C m.

Thus

(A/ n N ,)*  =  (M  n  =  (M n  ATO5 =  M c n  N{ =  M  n  N(.

So Ci acts fixed-point freely on Ni/(M  fl Nt) by Lemma 1.7.4, since it acts 

fixed-point-freely on Nt and o(c,) must divide r — 1 by Lemma 1.7.1 and 

Lemma 1.5.1. But (Zi,r — 1) =  1, so M c =  M  if and only if c € N Z (X ). 

Hence W c =  W d  if and only if o' =  cnz for n G N  and z € Z (X ). and by 

Clifford’s Theorem [1, Theorem 6.5, page 80],

v  =  0  we,
leL

where L is a transversal for N Z (X )  in X . In other words V  is the induced 

F,[X]-module W x  o f dimension zb.

Suppose that x  € X  — N Z (X )  and o (x N Z (X ))  =  u. Let . . . ,  W j be a 

set of orbit representatives of the <  x  >  -set

{we : £ e L}
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and let the set { 10*1, . . . ,  wib} be a basis o f W* for 1 <  i <  f .  Then the set

{■Wll,Wi\X, IDul” “ 1, . . . , Wf 6, WfbX, Wfbx u~1}

is a basis for V  over F, and thus

|CV(z)| <  q^-

In particular, |C*-(x)| <  gT , since Zj has odd order for all i.

Let n e  N Z (X ), let £ e  L, and let U be an irreducible F? [< n >]-submodule 

of W£. Suppose that u =  and that bn =  o(q) mod u. Then, by

Theorem 1.1.1, £7 is either the trivial F ,[<  n >]-module or there exists a uth 

root o f unity e of F  =  Fqb„ , by Lemma 3.4.10, such that U is isomorphic to 

F  viewed as an F7[< n >]-module via the <  n >-action

xn* =  xe' (field multiplication)

for all x  € F  and 0 <  i <  o(n) — 1. Furthermore, by Clifford’s Theorem [1, 

Theorem 6.5, page 80],

W c = U (B -- -< B U , ̂ ' “ 'V' ^
A

since N  is abelian. Thus n either centralizes W£ or n acts fixed-point freely 

on W e. So

|CW(»)| -  |Cv(n)| =  9*(n)t,

where k(n) =  |{f € L : n € M 1} |. If n & N, then clearly k(n) =  0, since 

M  C N. If n € N  and X  =  X / Z (X ), then
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But

x X pt,

1. So there exists a unique element

72 —— 72pi . • . 72pt .

and if we choose any one element cPa from each subgroup CPa for 1 <  s < t 

then there exists a unique £ G L such that £ =  cPl . . .  cPtnt. So n G M  if and 

only if npa G ~Mcp ‘ for 1 <  s <  t. Thus

k(n) =  fc(n) =  n ‘ =1fcp,(n p.),

where kPa(nPt) =  |{cp, G CPa : nPa G M^*}|- Finally, since X Pa is a direct 

product of Frobenius groups satisfying the conditions in Lemma 5.6.4 we see 

that

\CK(n)\ <

X  =  X PI x •

where X PI =  N PaCPa and N Pa n C'Pa =  

nPa G NPa for 1 <  s <  t such that

for 1 ^  n G N .

Let Ai =  1/ c , . . . ,  A( be a set of orbit representatives of Irr(K ) regarded as 

an A--set. Then

Irr(G) =  Irr(G\\i)L) ■ ■ • Ù/rr(G|At),

where Irr(G|A<) = { x  € Irr(G) : < Xk , K  > /  0}. Furthermore,

^  = Y
X€/rr(G|Ai)
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where ax ^  0 for all \ € /rr(G|A,). So

\ X \ ( t - l )  =  ^ X ? ( l ) >  Y 1  x(i)
•=2 xe/rr(G)-/rr(C|lK)

and |X|(< — 1) +  yzc  > yzcqh, since

y z c =  Y 1  x(i)-
X€/rr(G|/K)

Re-arranging the inequality we obtain

|AT|t -  yzcqh -  (x — y)zc  > 0.

Now suppose that Xii • • •, Xt are elements of Irr(G\\i) , . . . ,  /rr(G|At) respec­

tively. Then, by Clifford’s Theorem [1, Theorem 6.5, page 80], X«(l) *s greater 

than or equal to the length of the orbit of I r r (K ) containing A* for all i. So

pzb <  x<(i) -  x ( i ) = yzcqh K y zqh+b'
t=l *e/rr(G)

since \Irr(K)\ =  \K\ =  qzb and c|g6 -  1, and consequently q ^ -x'>b~h < y z -  1. 

Suppose that h <  ™  +  1. Then

2 ^ -1  <  2 ^ - *  <  q ^ - 1 <  q ^ -1)b- h < y z < z 2 

and applying the substitution z =  8(w -I- 1) +  8 we obtain

2W <  64w2 +  144w +  256.

So w must be less than 14 and z must be less than 128, if h <  y  +  1.

Let P(q) =  Y .x e x C K ^ ) ~  llzcQh ~  (x -  y)zc, a polynomial of degree zb in 

q. Then

P(l) = xzc — yzc — xzc + yzc  = 0.
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and consequently there exists a polynomial Q(q) of degree zb — 1 such that

p (q) =  (p - 1 )Q (q)-

Suppose that P(q) =  azi,qzb H-----+ a^q 4- oo and

Q(q) =  l>zb-iqzb~1 ■+-------1- h q  + &o-

Then an = &„_! -  6„ for 1 < n < 2& -  1 and 60 = -oo- So
n 26

bn =  - j 2 ai =  Y 1 a*’
¿=0 i=n+l

for 0 < n < 26 — 1 , since a* = 0*

Now C'x(K) =  1 and consequently 6Z(,_i =  a2t, =  1. Furthermore, if we 
assume that 2 > 121 then h >  ™  +  1 and

Q>zb— 1 r ^zb—2 ~  ' * * — ^/l+l 0,

a/, = — j/2c and

Ofc-l =  ah-2 =  • ■ ■ =  a/,-2-(zb-h) = 0,

since h — 2 — (zb — h) >  ^  and

CK (x ) <  q*?

for all i £ X .  So if R(x) = b^3-(zb-h)qh~3~(zb' h) +  • • • + M  + bo, then

Q(fl) = 9rt" 1 +  • • • +  qh -  (yzc -  1 )qh- ' ---------(yzc -  1 + R(x).

Now if C is the smallest prime dividing 2, then
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since

C K{x) <  qT

for all x € X  — N Z ( X ) .  So using this observation and the fact that 6j_i > 

for all i < h — 1 we obtain

R (x) <  b0q^  <  (x -  y)zcqT ,

since b0 =  -a 0 =  (x -  y)zc -  |{x e  X  : |Ck-(x)| =  1 }|, and consequently

R (x) <  yz2cq'*.

Furthermore,

(yzc -  l)qh~2~(zb~h) >  (yzc -  1 )gIt4+1_2_^ +1 =  (yzc -  I ) ? 3«6 >  yzcq1̂ . 

Suppose that (yzc  — i)qh~2~(zb hi <  R (x). Then

2zb zb
q 3 <  zq* ,

and applying the substitution 2 =  3ie we obtain

2“  <  3w.

Thus w < 4 and 2 < 12 contradicting our assumption that z >  128. Com­

bining this inequality with the inequalities

9i6- ‘ <  ( y z c - l ) q h- i

for 1 <  i <  l +  ( z b -h )  we see that Q(q) <  0 if q is a prime and thus P(q)  < 0 

if q is a prime. But

P(q)  =  ^ 2  C K(x) -  yzcqh -  (x  -  y)zc =  \X\t -  yzcqh -  (x -  y)zc >  0, 
z€X
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by Theorem 5.6.1, and we obtain the desired contradiction. 

If z <  128 and m  =  1, then

n Tl! d\ Zl
2 3 1 7

3 3 1 13

2 4 1 15

2 6 2 21

2 5 1 31

5 3 1 31

7 3 1 57

2 6 1 63

2 9 3 73

2 8 2 85

3 6 2 91

9 3 1 91

3 5 1 121

2 7 1 127

So if z < 128, then m < 3 and if m =  2 then

n ri! d\ Zl r-i n2 ¿2 Zl z

2 3 1 7 2 3 l 7 49

2 3 1 7 3 3 l 13 91

2 3 1 7 2 4 l 15 105
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In all these cases it can be shown using similar methods to those outlined 

in this proof and those in Theorem 5.6.2 that G does not possess a model 

subgroup. a



Chapter 6

Main Theorem

In this chapter we shall prove the main results of this thesis. In doing so we 

shall establish under what circumstances a minimal non-A-group of derived 

length 3 satisfying the conditions in Case D possesses a model subgroup. 

We will go on to formulate two conjectures and give examples of metabelian 

minimal non- A-groups satisfying the conditions outlined in Cases D  and G 

in order to shed light on some of the problems still to be overcome.

6.1 Metabelian Groups

T h eorem  6.1.1 Suppose that G is a metabelian finite soluble group satisfy­

ing

(|G'|,|G:G'|) =  1

and that G possesses a model subgroup. Then there exists a group L =  

L, x ••• x Lm where Li is a Frobenius group with minimal Frobenius kernel

162
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Ni and abelian Frobenius complement Ci, and a homomorphism

Pg '■ G L.

such that kerp fl G' =  1. In particular, G is a X-group if pa is an epimor- 

phism.

Proof. Since (|G'|, \G : G'|) =  1, the derived group G ' is complemented in G 

by an abelian group, B  say. Let

n  =  { p i , . . . , pt }

be the set of primes dividing the order of G' and let G'Pt be the p^-Sylow 

subgroup of G'. Then

G' =  G'pi x  • ■ • x G'pt.

Suppose that C b {G'Pm) =  B for some j .  Then

g  =  g ; . x g ' ,

where

G'P. =  (G'PI x ••• x G ;. . ,  x . . .  x G'pg+l x • • • x G'pt) B , 

and consequently

G' =  G'p„

contradicting the fact that G'Pi C G'. So B /C fl(G pJ is a non-trivial p'-group 

of automorphisms o f G'Pt for 1 <  s <  t and thus

G„ — A ji x x X 8mt,
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where X Sj is homocyclic and X SJ/$(XSJ) is an irreducible B / C  B(G'Pa)-gxo\i\> 

for 1 <  j  <  ms. Furthermore, using a similar argument to one above we can 

show that C s{X ,j)  /  B  for 1 <  s <  t and 1 <  j  <  ms. Let

X sj - X si X ••• X X 3(j— X X s(j+l) X • • • X X sma

and let

K,j =  ( g 'vi x  • • • x GPt l x X sj x Gpa+l x • • • x GptJ Cb (X3J). 

Clearly, K,j is a normal subgroup of G and

G / K g j  S i  [ X . j ) B . j t

a Frobenius group with homocyclic Frobenius kernel X Sj and Frobenius com­

plement BSj =  B /C B{X aj)- But if i f  is a model subgroup of G then by 

Theorem 2.3.2 H K / K  is a model subgroup of G/K, so by Theorem 3.3.6 we 

see that X ,j  must be minimal for 1 <  s <  t and 1 < j  <  ms. Let

L Ln  x • • • x Ltmt *

where Lsj =  [.X , j ] B aj , and let be the map defined from B  to B u  x • • • x 

Btmt C L by

Ha(b) =  (bCB(X n ) , . . . ,b C B(M tmt))

for all b € B. Then hb is clearly a homomorphism. Furthermore, if hg is 

the map defined from G to L by iidg'b ) =  g'fiB(b) for all g' € G' and b € B, 

then no is a homomorphism and

H c ^ G ' )  =  X n  x ••• x X t m i .

The result now follows by Lemma 4.2.2. □
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6.2 Soluble Groups

We are ready to prove our main result.

T h eorem  6.2.1 Let G be a non-abelian finite soluble group and let G  =  

G/G". Suppose that G possesses a model subgroup,

(\G'\,\G:G'\) =  1,

and that the homomorphism /x<y defined in the proof o f Theorem 6.1.1 is onto. 

Then one o f the following three conditions is satisfied :

(a) G is metabelian.

(b) G possesses a normal subgroup N  such that G/N is a Frobenius group 

with elementary abelian Frobenius kernel of order 22n and cyclic Frobe­

nius complement of order 2" +  1.

(c) G possesses a normal subgroup N  such that G/N is a Frobenius group 

with elementary abelian Frobenius kernel of order 26 and cyclic Frobe­

nius complement of order (26 — l ) / ( 2 2 — 1).

Proof. Let G  be a minimal counter-example to our claim. Then K  =  G" is 

a minimal normal subgroup of G  and G/K  is a A’-group by Theorem 6.1.1. 

Suppose that N  is a minimal normal subgroup of G  satisfying K  D N  =  1. 

Then (G/N)" =  KN /N  and G /K N  is a A’-group by Lemma 4.2.1 contradict­

ing the minimality of G. So we may assume without loss of generality that K  

is the unique minimal normal subgroup of G  and re-applying Lemma 4.2.1 

we see that G  is a minimal non-A'-group of derived length 3. The result
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now follows by Lemma 4.3.2, Lemma 4.3.3, Lemma 4.3.4, Lemma 5.1.1 , 

Theorem 5.2.4 , Theorem 5.4.1 and Theorem 5.6.2. □

The primary function of the two conditions set out in Theorem 6.2.1 is to limit 

the number of potential counter-examples that have to be considered. For 

instance, in the Case studies considered we only use the co-prime condition 

in Theorem 5.6.2 and this does not appear to have a crucial impact upon its 

proof. In order to illustrate this point further we return to Case D.

6.3 Case D

In this section we determine a necessary condition for a minimal non-^t- 

group of derived length 3 satisfying the conditions outlined in Case D to pos­

sess a model subgroup. The key observation can be viewed as a generalization 

of a result which plays an important role in the Higman’s classification of 

Suzuki 2-groups [8, Lemma 4 and Theorem 3].

T h eorem  6.3.1 Let G — RC, where R is a special r-group and C is cyclic 

of order

rn -  1 
rd — 1

for some d\n. Suppose that R/R' and R' regarded as G F  (r)[C]-modules are 

faithful and irreducible. Then R/R' and R cannot be GF(r)[C]-isomorphic 

unless r =  2 and n =  2d.

Proof. Let M  denote the faithful irreducible G F (r ) [C]-module R/R'. Then 

there exists a primitive (r" — 1 )/(rd — l)-st root o f unity A such that

K  =  GF(r)[A] =  G F (rn)
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by Theorem 1.1.1 and the A^CJ-module M  <g> K  has a basis

Uoj . . . »  U n — l

such that

UiC  =  X r 'u i

for i e  { 0 , . . . ,  n — 1}. Let N  denote the faithful irreducible G F(r)[C ]- module 

R1. Then the A'[C]-module N  ® K  is spanned by the set of elements

{[uj, u,] 10 <  i <  j  <  n  -  1}

and

[ui,u3] c -  Ar‘+rJ [ut, Uj}.

Suppose that M  and N  are GF(r ) [C]-isomorphic. Then

A =  Ar‘+rJ

for some pair { i , j }  satisfying 0 < i <  j  <  n — 1, by an argument outlined 

by Higman [8, Lemma 4 and Theorem 3]. In other words

, r "  -  1
r* +  r3 — 1 =  0 mod —---- - .r“ — 1

But i <  j  <  n — 1 and consequently there exists a y <  r d — 1 such that 

r ' +  r* — 1 = y x (r n~d H—  • +  r d +  1)

for some pair { i , j }  such that 0 < i < j < n  — 1.

If * <  j  <  d, then r' +  r j  -  1 < rd, a contradiction.
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If d <  i < j ,  then

r* +  r* — 1 =  y x rd x (rn~2d + ------b rd +  1) 4- y

and

r' +  — (y +  1) =  y x rd x (rn~2d +  • ■ • rd + 1).

So (y +  1) must be congruent to 0 mod rd contradicting our assertion that 

y <  rd — 1.

If i < d and d < j ,  then

r’ — 1 — y =  y x rd x ( rn~2d H--------h rd +  1) -  rd(rj ~d)

and

r* — 1 — y =  0 mod rd,

which implies that r* — 1 must equal y. So

ri +  rj - l  =  (r* — l ) ( r n~d H--------b rd +  1)

=  r‘+n_d +  • • • +  ri+d +  r* -  rn~d ---------- rd -  1

and

r i  —  r * + " - d  ^ _________|_ r d+ '  —  r n ~ d —  . . .  —  r d

=  rd(ri+n- ‘2d +  • • • +  r* -  rn~2d---------- rd -  1),

a contradiction.

If i < j  =  d, then n =  2d, r =  2 and i =  1. The proof is complete. □
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The following example illustrates that if n =  2d and r =  2, then groups do 

exist satisfying the conditions above.

Let F  =  G F (26), let 0 be the automorphism of F  of order 3 defined by

a9 =  a4

for all o 6 f ,  and F x = <  A >. Let /x =  A7 and let

G =  [A{6,0)]C

be the semi-direct product of ¿1(6,0) and C  = <  ^  > , a cyclic group of order

26 -  1 
23 —  1 ’

where ¿1(6,0) and ^  are as defined in Section 5.3. Then ¿1(6,0) is a Suzuki 

2-group by Theorem 5.3.3,

¿1(6,0)' =  72

where V, is as defined in Section 5.3, and ¿l(6,0)/72 and V, regarded as 

GF(2)[C]-modules are faithful and irreducible. Furthermore, ¿1(6,0)/72 and 

72. are isomorphic regarded as GF(2)[G]-modules. It can be shown that this 

group does not possess a model subgroup.

T h eorem  6.3.2 Let G =  (G'A)C be a finite group satisfying the following 

conditions :

(i) (|G'i4|, |C|) =  1;

(ii) K  =  [G', ¿1] is the unique minimal normal subgroup of G;

(iii) A/K =  Z (G/K ) ;
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(iv) G/A is a Frobenius group at CA/A with minimal Frobenius kernel 

G'A/A;

(v) G'A is an r-group;

(vi) A is an elementary abelian r-group;

(vii) G' is a special r-group;

(viii) K  =  $ (G M ) =  {G'A)' and K  C Z {G 'A ).

Then either G does not possess a model subgroup or G/A is a Frobenius group 

with elementary abelian Frobenius kernel o f order 22" and cyclic Frobenius 

kernel of order 2" +  1.

Proof. Suppose that G has a model subgroup H. Then HA/A is a model 

subgroup of G/A by Theorem 2.3.2 and consequently by Theorem 3.2.1

for some d dividing n.

Let a e A — K . Then the map <j>a from G'/K  to K  defined by

<Kig'K) =  W, a]

for all g'K  is well-defined and is a homomorphism, since K  C Z(G'A). Fur­

thermore, if B =  <  a > K  <G , then

A C Cq {B)  < G ,

and consequently Cg {B ) either equals A  or contains G'A, since G'A/A is the 

unique minimal normal subgroup of G/A.
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Suppose that Cg (B)  is indeed contained in G'A. Then G/Cg (B ) has order 

co-prime to p. So we can apply Maschke’s theorem to the elementary abelian 

group B  regarded as an Fp[G/Cc(B)]-m odule. Hence

B =  K  x L ,

where L B/K  is an Fp[G/CG(B)]-module, contradicting the fact that K  

is the unique minimal normal subgroup of G.

So we may assume without loss of generality that Cg {B)  =  A  and conse­

quently the homomorphism <j>a is a monomorphism. Furthermore, since K  

is an irreducible C-module and G'/K  is a faithful irreducible C-module, the 

order o f K  must be less than or equal to that of G '/K, by Theorem 1.1.1. 

So 4>a is an isomorphism. Finally, we observe that

M ( g ' K ) c) =  [g'c,a } =  [g',a]c =  +at f K ) et 

since a € Z(G/K)  and K  C Z(G'A).  So G'/K  and K  are Fp[C]-isomorphic. 

The result now follows by Theorem 6.3.2. n

6.4 Nilpotent-by-Abelian Groups

T h eorem  6.4.1 Let G be a nilpotent-by-abelian group and let G  =  G/G" be 

a X-group. Then G possesses a model subgroup only if one of the following 

three conditions is satisfied :

(a) G  is metabelian.

(b) G  possesses a normal subgroup N  such that G/N is a Frobenius group 

with elementary abelian Frobenius kernel of order 22" and cyclic Frobe­

nius complement of order 2n +  1.
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(c) G possesses a normal subgroup N  such that G/N is a Frobenius group 

with elementary abelian Frobenius kernel of order 26 and cyclic Frobe­

nius complement of order (26 — l ) /(2 2 — 1).

Proof. Let G  be a minimal counter-example to our claim. Then K  =  G" is a 

minimal normal subgroup of G  and G/K  is a ^f-group. Suppose that N  is a 

minimal normal subgroup of G  satisfying KC\N =  1. Then (G/N)" =  KN/N  

and G/KN  is a A’-group by Lemma 4.2.1 contradicting the minimality o f G. 

So we may assume without loss of generality that K  is the unique minimal 

normal subgroup of G  and re-applying Lemma 4.2.1 we see that G is a mini­

mal non-A-group of derived length 3. The result now follows by Lemma 4.3.2, 

Lemma 4.3.3, Lemma 4.3.4, Lemma 5.1.1 , Theorem 5.2.4 , Theorem 5.4.1 

and Theorem 6.3.2. LI

6.5 Conjecture

Given all that we have seen to date and noting that the group in Example C 

is not a Frobenius group with elementary abelian Frobenius kernel of order 

26 and cyclic Frobenius complement of order (26 — l ) / ( 2 2 — 1) we make the 

following conjecture

C on jectu re  If a finite soluble group G possesses a model subgroup, then 

G satisfies one of the following two statements :

(a) G is metabelian.

(b) G possesses a normal subgroup N  such that G/N  is a Frobenius group
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with elementary abelian Frobenius kernel of order 22n and cyclic Frobe- 

nius complement of order 2" +  1.

And finally in order to illustrate some o f difficulties that lie ahead in trying 

to prove the conjecture we give the following two examples of metabelian 

minimal non- A’-groups satisfying the conditions outlined in Cases D  and G 

possessing a model subgroup.

6.6 Example Case D (Metabelian)

Let F  =  Frr. and let F x = <  A >  and let M  be any maximal subgroup of 

F + . Let

C = (  | ‘ ^  | ) C GL(2,F)

and let

Z =  j ( 1 X j : a: 6 A/ )  C GL(2,F) .

■)
Let S =  C Z  =  C  x Z  and let V  be the natural Fr2- [5]- module. Then

G =  [V]S,

the external semi-direct product of V  and S possesses a model subgroup.

6.7 Example Case G (Metabelian)

Let Ft =  F2< for ¿ =  1,2. Let F* = <  A* >  for i =  1,2. Let

St =  [F,+)(*i)>
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the external semi-direct product of Ft+ and (A,) via cr,, where a* is the ho­

momorphism from (Aj) to Aut(F*)  defined by

=  Xi\{ (field multiplication)

for all X{ € Ft+ and 0 <  j  <  14. Let

D  — S\ x $2.

Let

C  =  ((A®, 1), (Aj, Aj), (1, A*)) C D,

and let

N  =  F *  x F2+ C D.

Then

G  =  N C

possesses a model subgroup.
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