Low-cost Injection Moulding Strategies for the Fabrication of Organ on a Chip Devices

B. J. Middleton¹, K. Couling¹, R. Dallmann², V. Goodship¹, J. Charmet¹

¹ Warwick Manufacturing Group (WMG), University of Warwick; ² Warwick Medical School, University of Warwick

Introduction

Polydimethylsiloxane (PDMS) based devices are commonly used for Organ on a Chip applications, however they possess serious material property limitations [1,2]. In addition, the soft-lithography approach [3,4] used to fabricate such devices limits their potential translational impact.

Results

To evaluate the pattern replication achieved using this process, SEM images and surface profiles of injection moulded parts and PDMS inlays were measured using a Bruker Contour GT Interferometer, and then compared (Figs 6 to 9).

WARWICK

THE UNIVERSITY OF WARWICK

Injection moulding, which is compatible with a wide range of polymers, addresses these issues. However, the **high cost** associated with microfabricated moulds is currently hindering the use of injection moulding as a manufacturing option for microfluidics research applications [5].

Here we describe a method, combining **3D printing, micro-milling** and **soft-lithography**, to develop a flexible approach suitable for **low-cost prototyping** of Organ on a Chip devices (Fig 2).

Methodology

The injection moulder was fitted with a **steel bolster tool** machined with a cavity to accommodate a **3D printed tool insert**. A 3D printed tool insert was manufactured to include the (injection) moulding cavity and, depending on the device feature size, a space to accommodate the **patterned inlay**. Micro-patterned inlays fit into Figure 2: Concept diagram. Three key features of a required Organ on a Chip device determine an appropriate flexible, low-cost injection moulding prototyping strategy.

Materials

Three **desirable material properties** were selected, based on candidate device applications. These were:

- Optical **transparency** (High & Low)
- Solvent Resistance (High)
- Oxygen Permeability (High & Low)

Fig 3 shows the plastic materials suitable for **each property combination**. Materials in **green** have the added benefit of **chemically compatibility**.

Above, Figure 6: SEM micrograph of

injection-moulded devices (PP) based

Right, Figure 7: 3D surface profiles of

PDMS inlays before moulding over

(TOP), after moulding over (BOTTOM),

and the corresponding PP injection

Below, Figure 8: Surface profile cross

section of the radial feature shown in

moulded device (CENTRE).

on PDMS inlay.

Figs 6 & 7.

brought to you by

5.250 7.000 m/t

the 3D printed insert, so that the patterned surface can be injection moulded over.

At low cost and with a fast turnaround, **different** patterned **inlays** can be fitted into the 3D printed **inserts** and different 3D inserts can be manufactured to mould different sized parts using both standard and micro injection moulding (Fig 1).

Pattern **replication** and **lifetime** of the inserts/inlays were studied in relation to process parameters.

would facilitate low-cost tooling recommendations to be made based on Organ

Figure 3: A range of injection moulding thermoplastics covering combinations of the three selected desirable material properties.

A shortlist of polymers were investigated for their low gas permeability (PET), transparency (PS, COC), opacity (PA6) and solvent resistance (PP).

Fabrication

In trials so far, **PDMS inlays** (feature size: $25 \ \mu\text{m} - 100 \ \mu\text{m}$) were manufactured using a **standard soft lithography** process and fitted into 3D printed inserts. In addition, devices (feature size: 0.5 mm – 1.0 mm) were successfully injection moulded using **3D printed insert tooling**.

Figure 4: 3D Printed tool insert with injection mould and inlay cavities.

3D printed inserts (Fig 4) were designed with a fan

Figure 9: Mean profile dimensions of the radial feature shown in Figs 6 & 7.

Conclusions

Using standard process parameters, features with 100 μ m width and 50 μ m depth were successfully replicated by injection moulding over PDMS micro patterned inlays in 3D printed inserts. Further process optimisation is required to achieve replication of features of 25 μ m or below.

3D printed insert tooling was also used to injection mould devices with **0.5 mm – 1.0 mm** feature sizes.

gates and side injection points and fabricated using a proprietary **UV curing acrylic** on a Stratasys J750 Polyjet printer.

Battenfeld 50 Microsystem (Fig 5) was used to injection mould devices in **polypropylene (PP)**.

Figure 5: Micro injection moulder.

Next Steps

Next steps are to:

- **Optimise process parameters** for better feature resolution
- Determine maximum lifetimes for different tooling options
- Trial smaller features sizes, and
- Injection mould with **different materials**.

References

on a Chip device requirements.

Moore, T.A., Brodersen, P., Young, E.W.K., Anal. Chem. 2017; 89, 11391
M.W. Toepke, D.J. Beebe, Lab Chip 2006; 6, 1484.
Y. Xia, G.M. Whitesides. Annu. Rev. Mater. Sci. 1998; 28, 153–184

P.K. Challa, T. Kartanas, J. Charmet, T.P.J. Knowles, Biomicrofluidics 2017; 11, 014113
H. Becker, C. Gärtner, Anal. Bioanal. Chem. 2008; 390, 89

We acknowledge funding from the Research Development Fund of the University of Warwick

