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SUMMARY

This research attempts to study, plan and develop an integrated feature based 

CAPP system that generates automated process plans for machining prismatic 

components. The CAPP system comprises a STEP compliant feature based 

commercial CAD system and the Smalltalk object oriented system. A library of 

features has been developed that is based on STEP based form feature taxonomy but 

modified to communicate the manufacturing intent and feature aggregation. The CAPP 

system has been developed to represent the product, process and resource domain 

knowledge with a number of object hierarchies, communication methods, and the user 

interface that would suit the concurrent engineering needs. In addition, suitable 

geometric and process reasoning methods have been developed in the CAPP system 

that use the feature based component design data to generate automated process plans.

The research also attempts to identify the problems in feature based process 

planning and discusses the possible solutions. A solution to the side feature interaction 

problem has been implemented in the CAPP system.

The CAPP system test results have demonstrated that the proposed approach has 

been successful and has a great potential for further improvements in terms of 

flexibility, modularity, emerging data exchange standards, and case in customising the 

CAPP system.
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1. SCOPE AND OBJECTIVES OF THE RESEARCH

1.1 Introduction

Global competition has led manufacturers to search for new ways to reduce the 

time-to-market, and product costs while improving quality. The search has led to the 

basic design, manufacturing and management concepts to be used throughout the 

product life-cycle. It has been realised, that these concepts should be reviewed, with 

manufacturers adopting a concurrent engineering strategy, as opposed to a traditional 

serial engineering approach. It is a strategy whereby all members of the product 

engineering team, from design to production and marketing, work from a common 

product master model. CAD/CAM has become the core technology in this strategy.

A key to the success of integrated product development is the free sharing of 

product data between design and manufacturing. The exchange of product model data 

between different CAD/CAM systems is rather tedious because of the differences in 

the internal geometry representation, and the ambiguous definitions of the exchange 

standards. In response to this need, major IT suppliers and users have collaborated to 

develop an industry-standard called STEP (STandard for Exchange of Product model 

data). The STEP standard is aimed at common specifications for communicating 

product information at all stages of the product life-cycle.

Process planning can be seen as an activity which integrates knowledge about 

products and resources. It refers to the product design, and decides how to 

manufacture it within the resource constraints p esenl. Recognising its importance, 

considerable research efforts have been made for the past two decades to automate 

process planning by Computer Aided Process Planning (CAPP) methods.

The research efforts have tried to use various feature methodologies as a 

medium of communication of the design representation to manufacturing. A broad 

definition of a feature in the engineering domain is given by Pratt and Wilson [66] as: 'a 

region of interest on the surface of a part'. The broad definition is necessary to
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encompass the variety of items, that engineers consider to be features of a part, at 

various stages in the design and manufacturing applications.

The same feature could have a different meaning within different applications. 

For example, a bearing support is a functional feature in the conceptual design phase 

which may express the function and not the shape. In the later design phase, the 

bearing support could be described with a geometry of a cylindrical surface. When a 

geometry of a feature is considered, it is usually called a form feature [67, 84]. Finally, 

in the process planning phase, the bearing support form is viewed as a drilled or bored 

hole which may be referred to as a manufacturing feature.

The functional features associated with textual information without any 

geometry are of little use in the automation of downstream applications, such as 

process planning and NC programming. However, form features are suitable for such 

applications. In many cases the form feature will elso be a manufacturing feature. For 

example, a cylindrical surface geometry of a form feature in the above discussion will 

also be a manufacturing feature (a hole). Thus, form features may be used as a medium 

of communication of features from design to manufacturing environment.

The design interpretation in CAPP research consisted of group technology 

principles that were used to code the components cepending upon their features. Later, 

various feature recognition techniques were used o read the component CAD model 

and convert it into a manufacturing feature representation. Most recently, feature 

based CAD modelling tools are being used.

The feature based CAD representation is desirable as it eliminates the feature 

recognition step in design interpretation. The STEP committee has recognised this and 

formulated a geometric form feature standard. The standard gained immediate support 

on major CAD/CAM systems such as Computervis ion, ProEngineer and SDRC, etc.

This thesis presents an overview of new product design techniques in the 

context of concurrent engineering and STEP. It focuses on the detailed study of STEP
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feature based CAD modelling techniques in their c urrent state. Based upon the study, 

the thesis proposes a CAPP system, formulated to demonstrate its effectiveness, along 

with various results.

1.2 Overview o f Process Planning

As mentioned above, process planning is an activity that deals with how to make 

a desired object. It is usually done by a manufacturing engineer who has the necessary 

knowledge and experience in methods engineering. The activity involves systematic 

planning to produce various features on a raw state object to achieve the desired 

finished state object. The result of this activity is a process plan, a detailed report of 

the systematic procedures about how to produce the desired object.

The desired object is the finished state. It is designed to fulfil specific functional 

requirements. The designer uses different geometric shapes, also referred to as form 

features, or smaller objects to describe the shape of the object. These features are 

positioned, oriented and blended in relation to each other, to represent an object 

shape. The designer also describes the acceptable variations, called tolerances, in 

feature shapes, sizes and their relationships. In addition the designer specifies the 

information such as material type, surface quality etc., to complete the object 

description. The total description of an object is called the object design. The overall 

product design consists of a hierarchy, of one or more assemblies, sub-assemblies or 

objects/components. The product design produces a bill of materials that describes the 

component material and the total quantity required to produce a single product 

assembly.

The product design and the bill of materials is referred to by the manufacturing 

engineer to plan how to produce a product. The basic decisions on how to produce 

depend on the economics of manufacturing.
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1.3 The Current CAPP Systems

A manual process planning approach relies on the knowledge and experience of 

a manufacturing engineer who can plan the procest or an alternative process depending 

upon the availability of resources. The manual approach can produce inconsistent 

processes, and could be slow in response to today's core technology demands in 

manufacturing. The expert knowledge disappears almost instantly if the engineer leaves 

the organisation.

Thus, the ultimate aims of a CAPP system are alternative processes, instant and 

precise manufacturing cost estimates for policy decisions, quick response to changes, 

consistency in processes and preserving the expert knowledge within the organisation. 

The CAPP system should prove to be a very effective tool in testing the product design 

for manufacturability in a concurrent engineering environment.

Considerable research efforts have been put into the development of Computer 

Aided Process Planning (CAPP) systems, and ovei 200 systems have been reported so 

far. Although few have been made commercially available, a majority of them are 

found to be prototypes in research institutions. Even commercial systems require 

investments of many man years to tailor the prccess planning system to a specific 

company.

1.4 The Success of CAPP Research

The majority of research output has gone into upgrading product engineering tools 

and reviewing standards. Initial efforts of the research community into the usage of 

Group Technology (GT) and feature recognition in CAPP, has contributed to the 

STEP form feature standard for product design.

The difficulties in representing planning knowledge representation have been 

recognised, and new methods suggested such <s artificial intelligence techniques.
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Efficient product data management tools such as Engineering Data Management have 

been recommended to promote integrated product development.

1.5 Scope for Research in CAPP

In spite of some achievements, the fact remains that CAPP has not been 

commercially successful so far. Although the core technologies available today 

provide a strong basis, for example, concurrent assembly design and feature based 

design, it has become necessary to use these tools for the development of CAPP 

systems and to assess their effectiveness.

The design by feature approach has been criticised for hindering the designer's 

creativity. A detailed study of this approach is needed.

Conventional programming languages are not found to be suitable for 

knowledge representation. Knowledge based software tools such as Object Oriented 

Programming, are regarded as more effective means in this area. New methodologies 

are needed to convert massive amounts of manufacturing information into useful 

knowledge, and to utilise this knowledge to make better decisions.

Database management techniques have been recognised as a vital tool for 

effective resource management. Relational and Object Oriented databases are the 

current tools widely used. However their effectiveness in responding to the needs of 

the planning systems needs investigation.

Computerising manufacturing planning needs vast amounts of information from 

various domains. However, typical research projects in this field tend to be very 

focused, e.g. CAPP for round components, CAPP for prismatic components, etc. 

There is a scope for experimentation with flexible and add on software tools like 

Object Oriented Programming.
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The CAPP research recognises and addresses the need for integration of 

product, process and resource technology. However, the consistent use of an 

integrated approach in CAPP development tends tc be missing.

Today's core technologies are available from different vendors. For example, 

feature based modelling systems are available from Pro/ENGINEER or 

Computervision, a knowledge based CAD system from ICAD, an Object Oriented 

Programming System from Smalltalk, a relational database management system from 

Oracle, etc. It is obvious that a single system from any vendor may not be able to 

achieve total integration. Hence, CAPP research should be pursued on the basis of 

standard information exchange between such systems, for example, a STEP standard in 

Feature Based Modelling, Materials and machinability database standard, etc.

1.6 The Objectives of the Research

The objective of this research is to study and develop a feature based Computer 

Aided Process Planning system. A metal cutting manufacturing environment for 

prismatic components is used as an application of process planning.

A concurrent engineering core technology such as CADDS5 assembly design 

and feature based design, which supports the STEP standard, is used for product 

design. A detailed study of the standard feature library and use of user defined feature 

techniques to communicate manufacturing intent have been identified to be the key 

issues of study.

A feature based model interpretation needs geometric reasoning techniques to 

identify the manufacturing view of features that is based on feature relationships, 

feature attributes and the raw material condition. A study of suitable techniques for 

geometric reasoning remains a secondary objective.

Integration of product knowledge with process and resource knowledge needs 

careful study. A relational database, Oracle, C programming language and an Objected
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Oriented Programming language, Smalltalk, have been available as computer based 

tools to develop the system. Since different systems are involved in the development, 

the information from various standards will be use! whenever possible.

This work is concentrated on the following sub-objectives:

1. A study of the STEP form feature information model, which consists of 

feature hierarchy for design representation.

2. Recognition of additional information to be associated with the standard 

features to communicate the manufacturing intent.

3. A study of various feature based modelling strategies to suggest methods so 

that the designer's creativity remains unaffected.

4. To study and suggest new methods in geometric reasoning techniques.

5. A study of various knowledge representation schemes for the development of 

CAPP system.

6. To develop communication methods tc manipulate product, process and 

resource information to generate process plans.

1.7 Justification of the Approach

The research proposes an integrated approach for CAPP by proposing product, 

process and resource knowledge representation schemes and communication 

strategies. A product design environment has been considered on the basis of current 

CAD core technology such as assembly design and feature based design, supporting 

the STEP standard.

An Object Oriented environment is recognised as an effective tool for process 

knowledge representation. Its effectiveness neecs experimentation in representing, 

manipulating, adding and modifying process knowledge.

The STEP committee has initiated a STEP tart 224 application protocol which 

deals with mechanical product definition for irocess planning using machining
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features. It is intended to specify the requirements for the representation and exchange 

of information needed to define product data necessary for manufacturing single piece 

mechanical parts. The product data is based on the existing part designs that have their 

shapes represented by form features. The details about part 224 are not available as it 

is the topic of current research. Any research initiative in this direction will be in line 

with the international research efforts.

The relational databases such as Oracle have become industry standards in 

resource management. A detailed database design approach would facilitate comparing 

database entities with objects. Therefore a study of database design and its relationship 

with objects should still keep the emphasis of research on standards.

An automated process plan should be possible for those components which are 

designed by feature based approach. The 'process modelling approach' can be 

suggested to associate the process information manually but efficiently through a 

communication interface for those components which are designed by conventional 

approach.

Because of the free data exchange of product, process and resource information, 

the approach should facilitate concurrent engineering.

1.8 The Thesis Structure

This chapter has provided the preface to the work carried out over four years of 

research. It identifies the subject background, the availability of new core technology, 

the STEP developments, the limitations of techniques used in CAPP research and 

emphasises the needs of an integrated approach and indicates the objectives of the 

research.

The second chapter provides a critical review of the various tools and techniques 

used in the development of variant, generative, and knowledge-based computer aided
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process planning systems. It also discusses in brief the STEP standard development so 

far.

The third chapter discusses the concurreni product modelling and design by 

feature concept. It also identifies the manufacturing attributes to be associated with the 

feature definitions. Case studies provide the measure of effectiveness of design by 

feature approach in practical applications.

The fourth chapter discusses the initial CAPP system plan and its shortcomings 

and a proposed new system plan.

The fifth chapter discusses the concept of an Object Oriented Programming 

environment. It presents the details of CAPP system development that consist of 

product, process and resource domain knowlecge representation; integrated user 

interface development; geometric and process reasoning techniques and process plan 

report generation.

The sixth chapter illustrates the CAPP result, with case studies.

The seventh chapter identifies the problems in feature based process planning. It 

discusses the attempts-of various researchers to solve them and also elaborates on the 

probable solutions.

The eighth chapter covers the implementation procedure for the solution to a 

side feature interaction problem and discusses the test results.

The ninth chapter reviews the work and findings of the research with 

recommendations for further work.

The tenth chapter concludes the report with t.ie main investigative findings.



2. CAPP: TOOLS AND TECHNIQUES

With rapid developments in information technology over the past two decades, 

the tools and techniques used by researchers in computerising process planning have 

changed significantly. The process planning tasks have evolved from data driven types 

of variant approaches to knowledge driven types of generative approaches [1]. The 

new developments of computer software paradigms, such as artificial intelligence (AI) 

techniques, have changed the traditional way of using computers as data storage and 

information machines.

While the new tools and techniques are being tried, it is essential to review the 

various techniques used so that the goal of the research and implementation remains on 

target.

2.1 Process Planning in Manufacturing

The purpose of process planning is to select and define systematically, in detail, 

the processes that have to be performed in order to transform raw material into a 

desired shape. The primary objective is to define feasible processes. Cost and 

throughput are secondary objectives and available resources (e.g. cutting tools, 

machine tools, labour) act as constraints [2]. Process Planning includes: interpretation 

of part design data, determination of production tolerances, selection of machining 

processes, selection of machining operations and their sequence, selection of machine 

tools, selection of cutting tools, design of jigs and fixtures, selection of cutting 

conditions, selection of inspection devices, calculation of overall times, determination 

of tool paths and NC program generation. All the decisions made at the process 

planning stage are limited to a specific part only.

Process planning in manufacturing is usually conceived with the determination of 

processes in a metal cutting environment. Very few research efforts have been made in 

computerising process planning for other environments, such as foundry, injection
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moulding etc. It may be due to the fact that these environments need their own 

production process designs to produce tools. The production process will remain the 

same throughout the life of a tool, and therefore he process can easily be associated 

with the production process design as 'process layout'.

Metal cutting environments however are different. There could be different 

alternative processes and resources to produce the same object. Significant economical 

benefits could be obtained if optimum production concepts were used.

2.2 The CAPP Approaches

Two approaches to computer aided process planning are traditionally 

recognised, the variant approach and the generative approach. Many CAPP systems do 

not exactly fit into this classification and combine both approaches, that are usually 

referred to as a semi-generative approach.

Few papers have been published on a general survey of CAPP Systems. The 

surveys were based on questionnaires [3], the state-of-the-art [4] and on the specific 

techniques, such as CAD/Feature based [5], They also classified the CAPP systems 

according to the basic approaches used.

The basic CAPP approaches can be discussed in brief as follows:

2.2.1 The Variant Approach

The variant approach is comparable to the traditional manual approach where a 

process plan for a new component is created by recalling, identifying, and retrieving an 

existing plan for a similar part and making the necessary modifications for the new 

part.

In the variant CAPP system, parts are grouped into part families, a unique code 

is generated for each family, and a standard process plan is initially developed for each 

family. Most systems use well defined Group Technology based coding and
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classification systems to develop unique codes for various part families. This type of 

process planning system was first used to develop the code for a new part, to show 

which part family it belongs to, and then for retrieving and editing the standard process 

plan to reflect the characteristics of the new part.

The first CAPP system, CAPP (actual system name) was developed by the 

variant approach in 1976 under the direction and supervision of CAM-I(Computer 

Aided Manufacturing International) [87], Another system, MIPLAN was developed by 

OIR (Organisation of Industrial Research)[39, 88], Since then many variant systems 

have been reported.

The variant approach to process planning seems more feasible when the product 

design is fairly stable, lot size is medium to high, parts size variations within a family 

are minimal, material type is the same for all the members of the family, and few 

engineering changes are normally made. The investment is less and the development 

time is shorter, and thus it is feasible for medium sized companies to establish their 

own classification system.

There are some major limitations of the var ant CAPP systems. It is difficult to 

maintain consistency in editing practice. A skilled process planner is still required to 

edit and generate new process plans. It is difficult to adequately accommodate various 

combinations of geometry, size, precision, material and quality. Significant on-line 

databases are required to accommodate stored plans and their modifications.

2.2.2 The Generative Approach

In the generative approach, the process plans are generated by means of 

decision logic, formulae, technology algorithms, and geometry based data [4].

There have been many attempts made to de\clop generative CAPP systems with 

traditional techniques [6,7,8,9,10],
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With the introduction of AI techniques, many generative CAPP systems were 

developed as expert or knowledge based process planning systems [11,12,13,14].

The main difference in traditional and AI techniques is that in the former the 

algorithms dictate a deterministic procedure to solve a problem, whereas in AI, one 

searches for a solution in a state space that describes all configurations of the relevant 

objects [5], The search is guided by rules and control strategies. If the direction of the 

search is from an initial state to the goal state, it is called forward chaining, and if it is 

from the goal state to the initial state, it is called backward chaining.

Figure 2.1: Schematic Representation of the PART System 
[Ref.: PART, Hauten, Erve, Booyert, Nauta, Kals]

It is worth mentioning the significant and continuous research efforts in

generative CAPP at the University of Twente in the Netherlands. The development
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efforts of ROUND [14], CUBIC and XPLANE [15] systems over the past decade 

have been incorporated into a new generative CAPP system, PART (Planning of 

Activities, Resources and Technology)[16, 17, 18, 19].

The PART system decomposes a B-rep solid model (Figure 2.4) of a component 

into manufacturing features by a feature recognition technique. The system has a 

modular structure. The basic technological functions of PART are grouped into six 

modules namely, MTS, J&F, MM, TS, CC and NC (Figure 2.1). The system is based 

on AI techniques. However, no expert system shell or typical AI programming 

languages are used. The knowledge based selection mechanisms are embedded in the 

procedural structure of the PART system. Interactive graphics are used to support the 

maintenance of a knowledge base. The inference engine is not fixed as in many expert 

systems, but the strategy and selection mechanisms can be specified and altered.

In order to achieve the required flexibility in sequencing the many decision steps 

according to a specific strategy, the PART system is implemented as a set of 

individually executable processes. A PART module comprises a group of processes 

called "phases". The phases communicate with each other via a common relational 

database. The PART system selects the set-ups, machining methods and their 

sequences, it calculates optimised tool paths and cutting conditions and generates NC 

programs.

The generative approach is naturally desirable as the process plans can be 

generated easily, rapidly and consistently. However, the development of a generative 

CAPP system is very complex task, and requires a long term investment. For example, 

the PART System project was sponsored by the Dutch Ministry of Economic Affairs, 

with a total budget of $3 million and twelve full time researchers working for four 

years from 1987 to 1991 [16].

14



2.23 The Semi-Generative Approach

This is a combination of generative and variant approaches. It offers several 

options, one of which is to make suitable changes to the standard process plan as in the 

variant approach. The second option is to begin with an incomplete process plan and 

complete it for a specific part. The third is to start from the beginning and completely 

create a new process plan using the various process descriptions logically stored in the 

computer as in the generative approach.

GENPLAN [20] from Lockheed is an example of such a system. Many 

commercial CAPP systems can also be classified into this category. Since it is a 

practically oriented system, the semi-generative approach may remain a popular choice 

until practical generative systems are commercially available.

2 3  Commercial CAPP Systems

A market review shows that commercial CAPP systems are being encouraged by 

the industry [21]. PC based systems such as CIMl’LAN [22] and CEEQUEL [23] are 

being used by small to medium size machining, assembly and fabrication firms. These 

are variant CAPP systems within the price range of £3000 - £5000 and claim to have a 

customer base of over 50 each.

The workstation based system such as C-PLAN from CadCentre, UK [24], can 

be classified as a semi-generative CAPP system. It supports five principle functions; 

user interactive process planning function, report generation and link to MRP, a 

variant based search function, standard data entry and system administration functions.

LOCAM from Pafec, UK [25, 26], is also a semi-generative CAPP system. It 

supports five levels of process planning functions; traditional, interactive, features, 

semi-automatic and automatic. It supports Oracle relational database and customised 

interfaces to CAD, NC and DNC.
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Figure 2.2: Sandvik COROCIM System 
[Ref.: Hargreaves, 'CIM, a Users Experience']

Sandvik, UK has successfully achieved a CIM environment by using LOCAM 

through customised interfaces [27]. The system is popularly known as COROCIM 

System (Figure 2.2). It involved the integration of Prime Medusa CAD, LOCAM 

CAPP and GNC Computer Aided NC part programming. These systems were also 

linked to the SOPHIC order processing and inventory control and PROMIS 

production control and scheduling system. The system claimed to have achieved upto
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50% reductions in lead times on typical product families. Significant benefits were 

achieved by increasing the utilisation of high-cost CNC machine tools. This was 

performed by reducing the set-up times and by using a Tool Management system, 

THOMAS, to control the preparation of tools, jigs, fixtures and gauges.

SUPERCAPES from SD-Scicon, UK [28], can be classified as a semi-generative 

CAPP system. It runs on HP9000 workstations and consists of a core module plus 

three main modules; machining, general purpose for non machining and costing.

The machining module produces process plans for all types o f metal cutting 

machines including NC.

The general purpose module consists of non machining processes such as, 

fabrication, welding, rolling, marking out, mechanical and electrical assembly fitting, 

etc. It also consists of motion sequence macros covering assembly processes. The 

Motion Sequence Macro (MSM) covers human motion activities based on MTM 

(Methods Time Measurement) or any other Predetermined Motion Time System 

(PMTS). The sets for these standard elements covering commonly occurring human 

movements and activities have been supported. Thus the planner can build up plans for 

detailed assembly/repair operations without going down to fine elemental detail.

The costing module computes cost estimates based on labour, overhead rates 

and material costs from the SUPERCAPES database.

Supplementary modules are available for archiving, MRP transfer, project 

supervision, MICLASS coding and classification, and base data. The data is held in 

structured hierarchical form.

SUPERCAPES has a user base of over 50 companies including Jaguar Cars and 

GEC Alsthom, UK; Texas Instruments, USA; and Nikon and NEC Japan.

HMS-CAPP from Houtzeel Manufacturing systems, USA [29] is a variant based 

CAPP system. It uses CIMLINK's LINKAGE product to seamlessly connect this 

manufacturing information handling system to relational databases, CAD files.
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information files and other design and manufacturing software products such as MRP, 

time standards, tool control and shop floor control. HMS also uses the LINKAGE 

product to take advantage of graphical user interface, WYSIWYG, multiple RDBMS 

interfaces, and report generation capability. It also supports an advanced Group 

Technology system which has been developed recently for the US Air Force. It 

proposes three phases of installations. Phase one of eight weeks, for installing the 

process planning system into an open system client server environment. Phase two of 

twelve weeks, for review of representative samples of customers' drawings and process 

plans to customise Group Technology Classification. Phase three is of 10 to 25 weeks, 

for analysis of families of parts using the GT analyser and the establishment of the 

manufacturing rule based system, for frequently occurring families of parts to generate 

process plans semi-automatically.

MetCAPP from the Institute of Advanced Manufacturing Sciences (IAMS), 

USA (formerly, MetCut Research) [30], represents a new generation of commercial 

CAPP systems. It is a PC based system, works under DOS 5.0 and Microsoft 

Windows 3.1 and can be implemented on a PC Network. It supports a relational 

database option to provide variant process planning capabilities. It is based on an 

industry-standard machining database. It provides planning capabilities at three levels:

1. Part level via the CUTPLAN process planning module. It consists of a GT 

module which describes the part attributes with a series of fields. These 

attributes enable a search of a particular plan.

2. Feature level via the CUTTECH 'Expert Machining' module.

3. Cut level via CUTDATA machining recommendations module.

MetCAPP supports interfaces to CAD, CAM, MRP, document management

and report writing system. An Application Program Interface (API) is also included for 

custom development.
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MetCAPP is being implemented with a CIM project at the Singapore 

Polytechnic, with technical support from Warwick Manufacturing Group, University 

Of Warwick.

The U.S. Navy logistics project RAMP (Rapid Acquisition of Manufactured 

Parts) uses the MetCAPP interface as a user defined process and resource knowledge 

and forms a complimentary component of the GPPE (Generative Process Planning 

Environment) system [31].

Conventionally programmed CAPP systems have been developed by individual 

companies for their own work planning. SISPA, SIB from Siemens, ROVA from 

Daimler Benz, are some examples [32]. However, because of coded planning logic, 

they cannot be easily updated or maintained.

A considerable amount of time has to be spent in customising commercial 

systems as the systems do not have efficient tools to implement changes. For example, 

at Rockwell International, USA, a GT based CAPP system was implemented within 

four weeks. After a while, out of the system's 36 programs, 7 were no longer 

supported, 6 were rewritten and 20 were rarely used [33].

2.4 CAPP System Development Techniques

Development of a fully functional CAPP system has been regarded as a very 

complex task. It is necessary to consider all the important issues in design, 

manufacturing planning, and resources management together, and with rapid 

developments in computer technology, new tools and techniques are always giving a 

new challenge to the research community. An overview of various techniques used in 

computerising process planning is presented below.
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2.5 Design Representation Techniques

The traditional way to communicate the design to manufacturing, is the 

engineering drawing. The designer's description of an object as a set of features 

positioned and blended together, merely becomes a geometry on the drawing sheet. It 

means that the intelligence in the design information is lost, while putting it on the 

drawing sheet. The manufacturing engineer reads the drawing and uses his 'intelligence' 

to understand the design.

The early efforts in capturing the design intelligence are quite apparent in using 

Group Technology (GT) techniques.

2.5.1 Group Technology

GT seeks to exploit the similarities between parts or products for efficiencies in 

design and manufacturing. Besides visual inspection and Production Flow Analysis 

(PFA), the most widely acceptable method for implementing GT is classification and 

coding (CC) which organises similar entities into groups (classification) and then 

assigns a symbolic code to these entities (coding) in order to facilitate information 

retrieval [37].

There are three types of CC systems based on design attributes, manufacturing 

attributes and a combination of design and manufacturing attributes. The Overall 

shape, external shape, internal shape, length/diameter ratio, surface finish, special 

features (such as thread, hole pattern, etc.), dimension tolerance and raw material type 

and shape arc some of the design attributes commonly seen. Major process, minor 

operations, operation sequence, machine tool, cutting tools, production time, batch 

size, annual production and required fixture, are some of the manufacturing attributes 

used.

The types of coding system have different structures. These are, the hierarchical 

(monocode), chain-type (polycodc) and hybrid structure (combination of hierarchical

2 0



and chain-type). In hierarchical structures, the interpretation of each succeeding 

symbol depends on the value of the proceeding symbols whereas in chain-type, the 

interpretation of each symbol in the sequence is fixed, and does not depend on the 

value of preceding symbol. Most of the commercial systems use hybrid structure [35],

Figure 23: Coding of a Round Part 
[Ref.: Opitz, 'GT and Mfg Systems']

One of the pioneering efforts in GT was from H. Opitz from University of 

Aachen in West Germany. In Opitz's system the basic code consisted of five digits and 

are referred to as a form code [40], These digits are used to describe a component 

class, external shape, internal shape, surface machining and auxiliary holes/gear teeth 

respectively. A supplementary code of four digits is used to describe diameter or length 

value, material, raw material shape and accuracy in coding digits. Figure 2.3 illustrates 

the Opitz coding method for the round component

The MICLASS (Metaalinstitute Classification) System became a commercial 

success throughout Europe and North America [34], MICLASS was commercially 

offered by TNO, the Netherlands organisation for applied scientific research [87]. The 

same system was later upgraded as Multiclass II, combining the GT and ORACLE
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Relational Data Base technology, and became part of MultiCapp II, a variant CAPP 

system from OIR, USA [39]. The MICLASS CC number can range from 12 to 30 

digits. The first 12 digits are a universal code that can be applied to any part. 18 

supplementary digits can be used to code data that are specific to the particular 

company, such as lot size, cost data, etc. The system also supports the user interactive 

mode in various languages. To classify a given part, the user responds to a series of 

questions. A survey showed, that the time taken to generate a CC number for a new 

part varied from 10 minutes to 2 hours, depending on the complexity of a part [36, 

37].

The other popular CC systems are : Brisch Bim, CODE from Manufacturing 

Data Systems, Inc. (MDSI), Michigan, USA, DCLASS from Bringham Young 

University, USA [50], CimTelligence [53], Deere Tech Services and General Electric; 

all from the USA. Custom built CC system are also being used [36].

Expert systems techniques have also been used to develop the CC system. A 

predicate logic was used to develop a CC system for round and prismatic parts at the 

Kobe University, Japan [38].

Recently, GTA (Group Technology Assistant), an intelligent, Object Oriented 

PC based system built with PDES compatible taxonomy has been developed by the 

U.S. Air Force, and is commercially available. Its main features include graphic user 

interface (GUI), classification using graphics and industry terminology, commercial 

standards from industry handbooks, and an object oriented shell, that validates 

instructions and issues design and process advice [34].

The major success of GT has been in the area of design retrieval where all 

previous drawings or models can be indexed using GT code. The designer, can select 

the existing designs as examples for making a new design, thereby eliminating the time 

for groundwork. It also contributes immensely towards design standardisation. A 

survey of 56 US companies revealed that 62% of them used GT concepts in the
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creation and retrieval of process plans [36], The current research in CAPP shows that 

various GT techniques are being pursued. It has been observed that the traditional 

process type layout of a factory no longer exist [41]. Instead, by applying the 

principles of GT, PFA, and various advances in flexible production technology such as 

FMS, industrial engineers have in many companies created a new type of 

manufacturing system layout, that effectively combines flexibility and high capacity 

utilisation and short turnaround time. Such a manufacturing layout has been named as 

the workshop oriented factory [42]. Since early 1990, the Brite-Euram project no. BE- 

3528, Manufacturing Cell Operator's Expert System (MCOES) has been involved in 

the design and implementation of a prototype level process planning system for 

workshop oriented factory.

GT coding schemes cannot be used as accurate design representation methods. It 

is difficult to describe complex parts with coding digit combinations. The CC system 

needs customising efforts to code the special type of parts. Upgrading the system 

involves significant efforts. There are cases wheie the old CC systems were totally 

scrapped before installing a new one [36, 37], Training and coding strategies become 

an important issue, which otherwise may cause proliferation of parts and 

manufacturing methods.

2.5.2 Computer Aided Design (CAD)

Using computers, the methods of design description have changed significantly 

over the past two decades. Initially, computer aided drafting was introduced. It was 

only an electronic or digital drafting board with major benefits in editing the drawings 

and improving productivity in the design department. With rapid developments in 

computer technology, it became possible to represent an object on the computer screen 

as it looks in the real world. The process of such representation is called three
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dimensional (3D) modelling. Model geometry representation methods have gone 

through significant changes, from wire frame (skeleton) to surfaces and solids.

The use of solid modelling in design and manufacturing is increasing rapidly 

because of reduced computing costs, fast computing hardware, and increased 

capabilities of solid modelling [43]. It is relatively easy to model the part by solid 

modelling techniques. The complete definition of part shape (geometry and topology) 

through solid models has been recognised as a key to integrating design and 

manufacturing functions.

There are several types of Solid data representations. The most widely used on 

commercial CAD/CAM systems are Boundary Representation (B-Rep) and 

Constructive Solid Geometry (CSG).

If information is added to the surface model, for example, concerning surface 

connectivity between surfaces (faces), and in addition the solid side of any face is 

identified, then this forms the elements of the boundary representation (B-rep) scheme 

[44]. Such information is referred to as topology (Figure 2.4).

[Ref.: T. C. Chang, 'Expert process planning']
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In practical systems the topological consistency is achieved by using a data 

structure in which faces are linked with edges, which are in turn linked to their 

bounding vertices (end points). Since on a face there may be more than one loop of 

edges, it is common to add another entity, a loop in the B-rep [45]. The B-rep models 

store information about the faces and edges of a model explicitly, in what is known as 

an evaluated form. This confers performance advantage on the method, because the 

information for certain applications can be extracted directly from the data structure. 

Such applications include hidden surfaces removed object, interactive NC part 

programming, surface area calculations, etc. A relatively large data storage space is 

required for B-rep models.

In CSG representation, the object Oi is represented by a binary tree consisting of 

geometrical primitives Pi, transformations Ti and symbols representing boolean 

operators (Figure 2.5). Leaf nodes can either l>e a primitive or a primitive with 

transformation. Intermediate nodes can either be a boolean operator or an element. 

Primitives used in CSG modeller can either be a standard primitive such as cylinder, 

sphere, box, etc. or user defined by sweeping a closed 2D profile [45].

The CSG models are compact, but may be stored in an unevaluated form in 

which the edges and faces that result from the combination of primitives have to be 

computed when required. The CSG method enables one to build the complex shapes 

quickly, but only within the limitations of the set of primitives available within the 

system. Many features found on the engineering component such as fillets, blend, draft 

to allow the component to withdraw from the mould or die, may be difficult or time 

consuming to produce [44]. The CSG model is no*, in general, a unique representation 

of an object. The model may be constructed in various ways.
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[Ref.: T.C.Chang, 'Expert process planning ]

Because of advantages and disadvantages of B-rep and CSG representations 

many practical systems offer the hybrid approach [43]. Usually a B-rep model is 

constructed using the CSG style boolean operator front end. The model is then 

evaluated into a B-rep model. The non-unique CSG models can actually be evaluated 

into unique B-rep. This may be a good reason for using a B-rep model in feature 

recognition technique [45].

Parametric solid modelling is the latest technique available on commercial 

CAD/CAM systems. Instead of describing the dimensional attributes of a modelled 

geometry by numbers, they are described by parameters/variables. The modelling 

process is recorded as a parametric history. It also captures the geometric relationship 

between entities [46]. This enables ease in model modification by changing the 

parameters defining a model and re-executing the parametric history.

The parametric solid modelling environment forms a basis for feature based 

modelling described later. The implicit form feature representation is a parametric
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description of a geometry [47], The form feature instances can represent the same 

shape with different geometric attributes/parameters. The explicit description of the 

feature instance geometry can be obtained by evaluating the model.

2.5-3 Computer Aided Manufacturing (CAM) from CAD

The use of CAD wire-frame, surface or solid geometry to generate Numerical 

Control (NC) or Computer Numerical Control (CNC) part programs, has contributed 

significant benefits in terms of quality and productivity of manufacturing parts [48]. 

The NC/CNC programming and Direct Numerical Control (DNC) functionality was 

typically referred to as CAM. DNC enables distribution of part programs through 

standard communication protocol to various NC/CNC machine tool networks on the 

shop floor.

The majority of CAD vendors provide user interactive NC programming 

functionality, and not the automated ones. This is mainly due to the fact that NC 

programming follows after the process planning function, or is done simultaneously. 

The process planning has received significant attention because it is the link between 

CAD and CAM [49, 51 ]. A high degree of automation was achieved by individual 

users through customising the NC programming environment [62].

A seamless interface between CAD, highly customised NC and DNC has 

contributed to the realisation of the Compute) Integrated Manufacturing (CIM) 

environment. NC machine tools have also cont.'ibuted to the concept of Flexible 

Manufacturing Systems (FMS) in small batch manufacturing. A typical FMS cell 

consists of tightly coupled NC machine tools with automatic material handling, tool 

handling and transport devices.

In order to develop the missing link, CAPP researchers tried to use feature 

recognition techniques on the CAD model data to lecognise manufacturing features.
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2.5.4 Feature Recognition from CAD Model

In feature recognition, a low level data structure of a CAD model is searched 

automatically or interactively for a combination of geometric elements, that 

correspond to a feature form [52].

Several methods have been used to recognise features automatically from a CAD 

model [54]. These are,

a. Syntactic pattern recognition

b. State transition diagrams and automata

c. Decomposition approach

d. CSG approach

e. Graph based approach

A Syntactic pattern recognition method is most suitable for 2D pattern 

recognition [54]. In this method, a 2D picture is represented by some semantic 

primitives, such as line segments in a particular orientation. A set of grammars define a 

particular feature pattern. A parser is then used to apply the grammar to the picture. If 

the syntax of the picture matches the grammar, then the picture can be classified as 

belonging to a particular pattern class.

STOPP, a sequential tool oriented process planning system [57, 58] used the 

Syntactic pattern recognition approach on a 3D B-rep Solid model. 2V£D machining 

features such as hole, slot, pocket and step were considered as machined surfaces. The 

3D B-rep data was converted to 2V4D edge representation. Various pattern matching 

procedures were written in PASCAL, and were then used to recognise the machining 

features. When a feature was recognised from the B-rep model, it was eliminated from 

B-rep data and stored in another feature data structure, called a machining surface file 

(MS file). XPLAN [15] and PART [16] systems have borrowed the same procedure to 

recognise features.



The state transition and automata method is very similar to the syntactic pattern 

recognition. The part geometry is described as a rotational swept volume and/or the 

union of swept volumes. The machining features are recognised by using a state 

transition diagram (automata), where instead of using grammars and primitives, the 

relationship between adjacent primitives is used. The convex adjacencies are assigned a 

value 'O' and the concave adjacencies as T .

Milacic [64] discussed the use of the automata for part family formation and 

used it in developing the system for automatic planning technology (SAPT). The 

grammars for individual parts that will comprise the family are first developed. From 

these grammars the grammar for composite parts representing the complete family of 

parts is created and is used as an automata. The feature string to be recognised is fed 

to the automata and a feature class is recognised.

The decomposition approach uses the Destructive Solid Geometry (DSG) 

concept. Taking a workpiece solid model W and component solid model S, the 

material to be removed (DSG) by machining can l>e obtained as E = W - S. E is then 

cut into several small pieces / machining features by various strategies. By using a CSG 

tree, a DSG tree can be constructed by subtractive operation only. A primitive in a 

DSG tree can be viewed as a machining feature.

In the CSG approach, the features are extracted from the CSG solid model [60]. 

The CSG model is first converted into a DSG model. Li [60] used a pattern matching 

algorithm to identify the primitives (features) in the DSG model. The main problem 

with the extraction of features from CSG models is that CSG descriptions are not 

unique and so it is possible to have a number ol different CSG strings all of which 

describe the same object. The LUMP (Loughoorough University Manufacturing 

Package) system used rules to control rewriting C SG strings from design system into 

manufacturing features. Each rule contains a f arameterised version of the CSG 

template which it tries to match with the whole CSG string. The matched features are
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then substituted for the corresponding segments of the CSG string. Multiple templates

are used if multiple possibilities exist in building a CSG model, thereby overcoming the

non unique CSG model problem to some extent.

In the graph based approach, a feature recognition logic is represented by rules.

The rules are based on certain patterns of elements and relationships until some set of

elements can be identified as a feature. For example [52],
IF

a hole entrance face exists, and
the face adjacent to the entrance is cylindrical, and
the cylindrical face is concave, and
the next adjacent face is a plane adjacent only to the cylinder 

THEN
the cylinder face, and planer face comprise a blind hole.

By using this technique, a vertex edge type feature graph can be extracted from 

the complete graph representations of the topological entities (edges, faces and 

vertices) in the B-rep solid model and used as a feature model [59].

Figure 2.6: AAG for Sample Part & AAG for Feature Instances 
[Ref.: S. Joshi (54)]
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The attributed adjacency graph based approach [54, 55, 56] for feature 

recognition uses the B-rep solid model. A B-rep model of an object can be defined as 

B = (V, E, F) where V is a set of vertices, E is a set of edges and F is a set of faces. 

The attributed adjacency graph (AAG) can be defined as G = (N, A, T) where N is a 

set of nodes, A is a set of arcs and T is a set of attributes to arcs in A. Each face of the 

part is represented as a node and each edge or face adjacency is shown as an arc. The 

attribute assigned is T' if the two adjacent faces form a convex angle, and 'O' if the 

angle is concave (Figure 2.6). The rules can then be written to recognise the feature 

graphs from the AAG of the complete graph of the model.

The ICAPP system at UM3ST used feature recognition from wire-frame models 

of 2V4D prismatic components, in IGES format [89]. The profiles at different depths 

are used to construct the hierarchy of depth levels. The space between the profile on 

the odd numbered depth level, and the profile on the even numbered depth level is the 

2D space to be machined. The cross sections at different depths containing features are 

established, and the area of each cross section is subtracted from the next higher level 

layer to produce a volume to be machined.

In the user interactive mode of feature recognition the user interacts with the 

system by digitising a set of entities of a CAD model which imply a feature [62, 63]. 

The interactive graphics programming language of a CAD system with a suitable 

interface program interprets the selected entities as a feature such as a hole, a pocket, 

etc. This method is suitable for describing simple 2V4D objects. However, one has to 

describe the object twice i.e. through CAD design and process planning stage. Any 

change to the CAD model will require another system interaction to describe the 

features.

The feature recognition techniques discusted above recognise manufacturing 

features by assuming the raw material as a billet or a solid block. The approach has 

been successful in producing a manufacturer's view, independent of the designer's
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view of a CAD model. Using feature recognition, it would be irrelevant if the model 

was constructed using design features, manufacturing features, or without using 

features at all [16].

2.5.5 Limitations of Feature Recognition Methods

When a designer starts a design process, most of the features are already known 

and in a process of creating a CAD model the feature information is lost. Feature 

recognition and extraction is a redundant effort which would be unnecessary if a 

method could be devised for retaining the design information in the CAD model data. 

The majority of feature recognition techniques are successful in a limited domain (2V4D 

objects). Feature based design on the other hand, aims to supply the designer with a 

tool that can be used, while carrying out the design work, i.e. an integration tool for 

CAD and CAPP [65, 66],

2.5.6 Design By Feature

In the design by feature approach, the designer is provided with a feature 

library, similar to the primitives of a CSG solid modeller, that can be used with a set of 

operators such as add, delete and modify to create a feature representation. The 

feature representation maintains additional information such as feature instance name 

and attributes, that are not kept in a conventional solid modeller and this eliminates the 

need for feature recognition [65].

Since the design by feature involves using a library of features, the feature 

taxonomy schemes have been suggested to help the designer to access the feature data, 

and the manufacturing engineer to generate process plans for a group of features, that 

have some common geometric, topological aid other properties. The feature 

taxonomy scheme is a way of classifying features into a hierarchy of classes and sub­
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classes, depending upon the common attributes. Since the taxonomy is of a hierarchical 

nature, the attributes of a class can be inherited by its sub-class.

Pratt and Wilson [66] classified form feature representation into two types, 

implicit and explicit features. In the explicit type, all the geometry of a feature is fully 

described. The implicit type can be defined by a se . of geometric parameters/attributes, 

but the full geometric form is evaluated when required. Features were further classified 

as simple and compound types. A compound feature is a combination of more 

elementary features.

Hummel and Brooks [63] also discussed feature taxonomy in their automated 

process planning system, XCUT and used the object oriented programming technique 

for implementation.

Gindy [68] presented a taxonomy where form features were classified as 

protrusions, depressions and surfaces. The form features were treated as volumes 

enveloped by entry/exit and depth boundaries. The feature classification is based on the 

external access direction (EAD), from which the feature volume could be machined by 

a cutting tool. A feature is 'through' if there is a pair of opposing external access 

directions (EADs). Gindy's scheme is specifically aimed at the needs of process 

planning in a machining environment for a prototype CAPP system GENPLAN [69, 

70].

Shah & Rojers [71] introduced a feature based modelling system, which 

consists of an advanced feature based modelling shell, FMDS. It classified features 

into:

a. form features (nominal geometry)

b. material features (material composition & condition)

c. precision features (tolerances)

d. technological features (design constraints etc.)
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From the above classification, three modellers were developed; form, material 

and precision. Form features are used as the fundamental representations, and the other 

types can be attached to the form features. Each modeller works in two modes, set-up 

and modelling. The set-up mode can be used for customisation by the organisation 

using it to define the features needed by their designers. The object oriented 

programming approach to representing feature descriptions leads to property lists 

stored in a database. The solid representation of form features is stored as a feature 

producing volume (CSG sub-tree) and boolean operators. Realising that the 

interpretation of feature data is application dependent, the feature mapping shell is 

provided for the purpose of extracting and reformulating product data as needed by the 

applications. The information to be extracted is classified into three types:

Type 1: the parameters/attributes which are featuie explicit. These are independent of 

other data in the model (model-invariant).

Type 2: the kind of parameters/attributes which can be calculated from those, that are 

explicit in feature data of a feature but model-invariant.

Type 3: the parameters/attributes which are dependent between two or more features.

Type 1 parameters can be obtained through simple GET functions. Type 2 and 

3 require computations and logical operations on type 1 parameters/attributes. A 

language has been built which can be used for specific extraction procedures.

Pratt and Wilson [66] also studied the data handling in geometric modeller and 

application program environments. A much more intimate relationship between the 

feature processor and the modeller was advocated by suggesting a feature model 

database for the exchange of information with the geometric model database.

Chang's Quick Turnaround Cell [45], a generative CAPP system for one off 

prismatic parts, uses a feature based design system linked to, but not dependent on, the 

TWIN B-rep based solid modeller. After a design is completed, the design data is sent 

to the process planning system as a feature file. The feature refinement module in the
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process planner analyses the design model and further classifies design features into 

manufacturing features. Only the difference opeiator is used in the design system. 

Therefore, each feature corresponds to a cavity volume to be removed by machining.

The prototype feature based design system in the domain of the investment 

casting process was proposed by Chung and Simmons [73]. It consists of the solid 

modeller (I-DEAS from SDRC) and KEE rule based reasoning system. The user 

interacts with KEE through the user interface wh.lst I-DEAS runs in the background 

to build the model. The KEE represents the feature based design in the form of frame 

and slots. Objects of the application domain are represented in a hierarchical structure. 

The same system was used in aluminium casting processes by using macro and co­

features [74], Macro features are the classes of geometric forms such as boxes, U- 

Channels, L-brackets and slabs. Co-features are attachments of design details, such as 

holes, bosses, etc.

Dixon [75] proposed an intelligent CAD system based on these applications. 

However, the feature manipulation was limited, and common feature operations such 

as subtraction were not supported. Dixon's intelligent CAD system consists of two 

parts. The first part includes a user interface, a design with feature library, an 

operations library and a monitor, which allows the user to create primary 

representations of features. The features used by the designers were available in the 

design feature library. The operation library contained add, modify and delete options. 

The monitor ensured that the operations requested and performed by the user, were 

allowable and understandable to the system. The primary representation of an object 

was produced by the first part of the system. The second part of the system was used 

for converting the primary representations of the objects into secondary 

representations needed by respective activities, such as design and manufacturing 

activities. The conversion may involve some featuic extraction to obtain more abstract



features. A knowledge based system was used to assist in the design tasks. Visual 

display was also included and further design suggestions could be given.

The IWF in Berlin has been developing a feature modelling system, which is a 

part of an integrated system for product and process modelling [76]. The project is a 

part of a large European research project IMPPACT (Integrated Modelling of 

Products and Processes using Advanced Computer Technologies) within the ESPRIT 

program [77]. A Part Design Graph Language (PDGL) has been developed to describe 

features in an object oriented manner, including their technological semantics. PDGL 

uses the syntax of the STEP data modelling language, EXPRESS. The features are 

described in textual form and are called as feature templates. These textual features are 

stored in a library. When the user alters the parameters of the feature by taking the 

actual design into account, it is referred to as a generic feature. The feature modeller 

has a bi-directional interface with hybrid solid modeller. The feature modeller and 

geometric modeller each maintain their own databases. There is no standard feature 

library, but it can be constructed when required to meet the needs of a particular 

application. PDGL allows the creation of new user defined features.

An attributed node-label-controlled graph grammar (ANLCGG) for the FEAT- 

REP (FEAture-REPresentation) language has also been developed at the German 

Research Centre for Artificial Intelligence [78] A frame-like language describes 

features firstly by their kind, such as functional, qualitative (e.g. bars, solid workpiece), 

form, and atomic (shape tolerance, surface finish); and secondly by their application 

such as design features, manufacturing features, etc.

Research by the Japan Society of Precision Engineering [79] proposed a 

concept of structural modelling. It consists of a graph structure relating features to 

describe a product; a set of simple, special and compound features; and the geometric 

primitives to describe the shape attribute of the fea .ures.
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Faux's CAM-I report summarises the design by feature methodologies with the 

dimension and tolerance models associated with feature models [80], A primitive is a 

set of one or more faces which are treated as a single indivisible unit. The primitives 

are used for tolerance definitions which are classified as shape (size and form) and 

location (position and orientation).

Attempts have been made to represent dimensions & tolerances (D&T) by 

features. Roy and Liu [81] proposed a D&T model on the feature extraction principles. 

CAM-I also attempted a dimensioning and tolerancing model through features and 

solid model representation [82], Desai & Pande [83] proposed a geometric feature 

modeller (GFM) for rotational components with D&T capability.

2.S.7 Product Modelling with Concurrent Engineering

The term concurrent engineering was coined in the US in 1989 [85], It is the 

way of working where various engineering activities in product and production 

development processes are integrated and perfonned as much as possible in parallel 

rather than in  sequence. Such a concept has been supported on a new generation of 

CAD/CAM systems such as Computervision, IBM CATIA, ProEngineer, etc. It is now 

possible to describe a product as a combination of assembly, subassembly and 

components, and develop concurrently by working as a team on a network of 

CAD/CAM systems. These systems are also supported by efficient engineering data 

management (EDM) tools.

Large scale product modelling firms, such as aerospace and automotive 

companies have been implementing concurrent engineering concepts. The systems 

have also been found to be very effective in the design modification process. They also 

bring in a cultural change in the way of function ng of an organisation, especially in 

working as a team and co-ordination of groups [8€].
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2.5.8 Knowledge Based CAD Modelling

The conventional CAD systems are considered to concentrate on providing 

means for representing the final form of a design. A design also includes a large 

amount of synthesis, analysis and decision making. Rule based systems reason with 

synthesis rules and generate proposals for solutions. A system for design analysis is 

based on constraint satisfaction. Constraint satisfaction can be performed by a truth 

maintenance system. The branch of AI for design applications, has been able to provide 

the design representation schemes to represent the above information in addition to 

CAD modelling. Such systems are known as knowledge based CAD system. They are 

aimed to assist the designer in design automation, design analysis, and to capture the 

design expertise [44].

The systems like ICAD [90] (An Intelligent Computer Aided Design System) 

fall into this category. A design can be described by the hierarchical structure in the 

form of components and their attributes (which include geometric representation), sub- 

assemblies and assemblies. The designer can use taxonomies and rules. Various 

constraints can be specified as a part of the product modelling process.

However, the ICAD system user interface is not very user friendly. This is 

mainly due to the way a design is described. The geometry is regarded as one of the 

attributes of the design and described by a number of primitive functions. To a new 

user this may appear like constructing a program. A conventional CAD user does not 

easily accept such a 'long-winded' approach. To achieve good skill level needs a 

considerable amount of training. The 'Design Expert' has to build a complete design 

domain for the end user [91].

A knowledge based CAD system could prove very effective in specific design 

domains such as tool design, design optimisation, etc. The US Navy logistics program, 

RAMP (The Rapid Acquisition of Manufacturing Parts) used features based models 

from ICAD as an input for the development of GPPE system [31].
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2.5.9 CAD/CAD Data Exchange

There are a number of CAD systems in the market supporting different 

combinations of hardware and software. The CAD data storage structure varies from 

one system to another. Each system has its own speciality in terms of price and 

performance. In today's changing business environment, subcontracting is becoming 

important to stay competitive. Hence, the usage of different systems at various levels 

of product development/manufacturing is always a possibility. Under such 

circumstances, a great deal of product design data has to be exchanged between 

various systems.

The first effort in data exchange was initiated by major US CAD vendors by 

establishing the first version of Initial Graphics Exchange Specification (IGES) in 1979 

[44]. It employed the format of an ASCII file capable of being exchanged between any 

two CAD systems. It marginally supported the exchange of 2D drawings [91].

The format chosen for IGES produced long ASCII files. The early 

implementations of IGES translators by CAD system vendors also tended to be 

unreliable in part, because of vagueness in the specification and partial implementation 

by vendors. Such difficulties prompted different standards.

The German automotive industry developed a VDA/FS standard to overcome 

the limitation of IGES in exchanging higher degree surfaces.

SET standard was developed by the members of the European Airbus 

consortium. The standard was based on a similar format to IGES, but was more 

compact.

The development of IGES continued in the US. IGES revision 2.0 included 

entities from finite element and electrical system applications. The development of the 

standard for exchange of solid modelling data resalted in the Experimental Boundary 

File (XBF), which was eventually merged into IGES Experimental Solid Proposal 

(ESP). IGES revision 4.0 included facilities for the exchange of CSG solid models.
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The transfer of B-rep models was included in IGES revision 5.0. The chronological 

details o f various data exchange standard developments, are shown in Figure 2.7.

1979
1980
1981

1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994

Organisations
NBS: National Bureau of Standards
ANS: American National Standards Institution
CAM-1: Computer Aided Manufacturing - International
VDA: Verband der Automobilindustrie (Germany)
AEROS: Aerosapitale (France)
DIN: Deutsches Institut fur Normung
ISO: International Organisation for Standardization

Standards
IGES: Initial Graphics Exchange Specification
XBF: Experimental Boundary Rie
VDA - FS: VDA Flachenschnrttstelte
SET: Standard D'Echange et de Transfert
ESP: Experimental Solids Pros posai
PODI: Product Data Definition Interface
PDES: Product Data Exchange Specifications
STEP: STandard for the Exchange of Product model data

Figure 2.7: CAD Data Exchange Standards Development 
[Ref.: Dr. G. Warnecke (150)]

In order to merge various data exchange standards and develop an agreed 

international standard, the IGES organisation initiated PDES (Product Definition 

Exchange Specifications) in 1984. The European Community also funded a large 

project under the ESPRIT programme, called Project 322 - CAD Interfaces. These 

various projects, and the associated work in the area, have been drawn together into a
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single unified standard called STandard for the Exchange of Product model data 

(STEP). Although in US the PDES acronym has been retained for various reasons it 

now stands for Product Definition Exchange using STEP [44].

2.5.10 STEP/ISO 10303

STEP is the ISO standard for the exchange of product model data [92]. The long 

term aim of STEP is to support the product data exchange requirements of many 

industry sectors.

The IGES standard was based on the syntax of the exchange representation; 

whereas the STEP standard specifies the syntax and the semantics, i.e. the precise 

meaning of all data constructs.

STEP is based around information models described by a data modelling 

language called EXPRESS. The data description in EXPRESS is mapped to the 

physical file. The physical file does not need to have a definition of how, for example, a 

point should be represented. The EXPRESS language embodies techniques adopted 

from both relational and object oriented database development.

The STEP models are divided into two main elements - application models, which 

contain information related to a particular application, such as draughting or electrical 

product modelling and resource models, which provide facilities to the application 

models, for example, the description of a raw geometry or topology. The resource 

models that are being developed include geometry, topology, solids, features, 

tolerances and materials [44].

The development of the STEP standard is being undertaken by a number of 

committees, and working groups that deal with different aspects of the standard, which 

are divided into a number of separate standard.*.. For example. Part 1 [94] is the 

overview, Part 2 [95] the EXPRESS language and Part 21 the physical file. Parts in the 

40 series, involve the resource model, and the 100 scries involves the application
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T I mcxlels. Associated with the application models are the application protocols in the

I 200 series, which describe the subset of the total STEP entities, which are relevant to

particular applications, and also the constraints on application data and ways of 

conformance testing the data transfer. For example, AP 203 is an application protocol 

for configuration controlled design; AP 204 for Solid Design; AP 214 for Automotive 

Design; AP 224 for product definitions for process planning using form features, etc. 

[96]. The standard also provides a methodology and framework for the conformance 

testing of the implementations.

The standard is not complete yet. Because of the wide scope of STEP and 

because of the large number of people involved, the standardisation process is rather 

slow.

2.5.11 EXPRESS and Object Oriented Language

EXPRESS is similar to ordinary programming languages, but with the support of 

object oriented concepts. The main descriptive elements of EXPRESS are [95]:
Schema

Type (character of data used to describe entity)
Entity (describes the object of interest)
Algorithm

Function 
P rocedu re

Rule (define constraints)

Schema is a collection of information sets used by a discipline to describe a 

product data model. Type describes the attribute characteristics of the entities. Entity is 

designed to represent a set of information (The EXPRESS entity is analogous to a 

class in an object-oriented program). Entities are designed to have attributes and 

inheritance relationships with other entities. Entity sub_types and super_types are also 

supported. Algorithm is a sequence of statements that produces some desired end 

state. The body of the algorithm follows the local declarations. Function as in C, is an 

algorithm that operates on parameters, and produces and returns a single resultant 

value of a specific data type. Procedure is an algorithm that receives parameters from
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the point of invocation and operates on them in some manner to produce the desired 

end state. Rule defines constraints on entities and attributes that must be enforced by 

the information system.

2.6 Process Knowledge Representation

Process knowledge is knowledge about the capabilities of a manufacturing 

process. In a machining environment it is concerned about producing various features 

on a raw material within,

the shape and size limits,

the surface finish and tolerance limits,

the resources (tools, machine tools and fixtures),

the constraints.

The knowledge about the machining process is a combination of shop floor experience 

and knowledge from books. Knowledge representation techniques form a major 

component of generative process planning systems Several methods have been used to 

represent process knowledge into format and structures that will facilitate program 

coding and documentation.

2.6.1 Decision Tables

The use of decision tables for process planning was pioneered in the late 1960s by the 

consortia of Norwegian industrial firms, NAAK, which resulted in a system called 

AUTOPROS (automated process planning system) [50].

A decision table is partitioned into conditions and actions. Decision rules are 

identified by columns in the entry part of the decision table. When all the conditions are 

met, the marked action is taken (Figure 2.8). Decision tables can be linked and 

sequenced to evaluate many conditions and logical actions required in process
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planning. However, the system is difficult to maintain and is not being used 

commercially.

2.6.2 Decision Tree

A process logic is represented in the form of a tree structure. Each branch 

represents a possible course of action. If the condition specified at a branch is true, it 

can be traversed to the next node, and so on, until the goal is reached.

The DCLASS CAPP system uses a decision tree processor. Its further 

development, in establishing linkage between decision table and decision tree, has been 

the focus for the US Air Force project for Group Technology Software Support 

(GTSS) [50]. The tree logic is easily visualised and the given conditions are easily 

traceable. However, the trees may become quilt large and difficult to display and 

maintain.

DECBION TABLE

_____ Ulf
P p p p 1 T J_ X X n iA  « s i i
T T T 1 F X X x ? 5 .0  < DIA < IOTI
p T p T F T X X A
p f X X F F 1 T 4 Rfl < 10 0

X X X p T T p p •\ i o n  < Bn < IS  0 N o m a i niia

ft Ro < 10.0

C . D im7 DIA < 5 .0

D i i
X X X A

5.0 < DIA <10.0X X X X
x X X X x X X A

X x X x

A ctions

Figure 28: Decision Table and Decision Tree

2.63 Conventional Programming Languages

Based on the decision tree or table, knowledge can be represented in the form of 

rules in If... Then... format of a programming language. A CAPP survey in the eighties 

showed the usage of BASIC and FORTRAN as the most frequently used programming 

languages [4].
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Conventional programming languages such as BASIC or FORTRAN, are limited 

to a sequential pre-defined programming style. The main concepts involve the use of 

algorithms, control structure and data, stored in files. There is no distinction between 

program processing and the technological oriented decision logic. This makes it very 

difficult or nearly impossible to adapt conventional programmed CAPP systems to 

specific needs [47], Customising a system is very time consuming. Implementation of 

changes could be very difficult, especially if the original programmer has left the 

organisation.

2.6.4 Artificial Intelligence (AI) Techniques

AI based techniques are designed for capturing, representing, organising, and 

utilising knowledge by means of computers. Such systems have the capability to 

understand problem-specific knowledge and use the domain knowledge intelligently to 

suggest a path of action.

AI is not intended to replace human intelligence. It is rather a marketing name 

for new programming methods to create reasoning systems [97].

Various types of knowledge representation techniques have been used in expert 

systems [98]. These are,

a. State space representation: The state space representation represents the 

structure of a problem in terms of alternatives available at each possible state of a 

problem. It was developed for problem solving and game playing. It is not particularly 

well suited for expert system applications [99].

b. Predicate logic: The description of the real world is given in terms of logical 

clauses. Each fact needs to be represented only once irrespective of repeated usage. 

Logic schemes pose difficulty in procedural representation.

c. Procedural representation: The knowledge is represented in procedures, 

small programs about how to do things. Like conventional programming, the problem
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with this scheme is the difficulty in varying and changing procedural representation if 

modification is necessary [98].

d. Production rules: This is one of the most commonly used knowledge 

representation schemes. The knowledge is represented in the form of condition-action 

pairs, called production rules, whose general form is:

IF [some combination of condition is true]

THEN [draw some conclusions or take some action]

This approach has been used by several process planning systems and TOM 

(Technostructure of Machining)[ll] was one of the earliest in metal cutting domain. 

The production rules in TOM were written in PASCAL language in the following 

format:

IF <consequent geometry >
AND < >
OR < >

THEN crecommendable machining type>
specified parameters and its values>

antecedent geometry>

The following example illustrates the production rule in TOM:

IF
AND
OR
AND
AND
AND
AND

CONDITION PART OF THE RULE.........
FORM IS CYLINDER 
HOLE IS ROUGH FINISHED 
HOLE IS FIN FINISHED 
HOLE IS THROUGH HOLE 
MAX TOL OF DIA - MIN TOL OF DIA > - 0.2 
D1A NOMINAL > 50.0 
DIA NOM1NAL/DEPTH NOMINAL > - 4 

PROCESS PART OF RULE.........
MAJORWORD
DIAMETER
DEPTH
RDEPTH
FEED
SPEED

MILL
DIA NOMINAL
DEPTH NOMINAL ♦ 0.05 • DIA NOMINAL 
DEPTH OF UPPER HOLE - 1 0 
200
50.0
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TOOL 3
TYPE : 2
......... PREVIOUS STATE OF HOLE •'

\SHAPEOFSIDE 
\DIA NOMINAL 
\MAX 
\MIN
\GROOVE
\ROUGHNESS OF SIDE 
\DEPTH NOMINAL 
\MAX 
\MIN
\FLAT BOTTOM 
VTHROUGH HOLE

NCYUNDER
\25.0
V0.5
\0
\DONT EXIST 
\ROUGH(*)
\DEPTH NOMINAL
V0.5
V0.5
\FALSE
\THRU

TOM uses a backward-chaining inference mechanism to generate the machining 

sequence; that is, the searching process starts from the finished geometry. The 

backward chaining continues until a rule specifies no antecedent geometry; that is the 

machining needs no pre-machining. The rule conflicts are resolved by a backtrack 

search, for minimum machining time.

XCUT [63] uses the object oriented programming language Flavours to 

represent features and production rules for machining prismatic components. XPLANE

[15] uses FORTRAN 77 to describe production rules. The COATS, the optimum tool 

selection for turning operations; KAPLAN [13], the optimal selection for turning 

operations; and FATA the robotic assembly and disassembly, are the various CAPP 

systems developed at the university of Pisa, Italy. All the systems use production rules 

in PROLOG language and resolve the rule conflict with weight attribute [101].

e. Frames: Frames represent knowledge by use of prototypical objects. A class 

of an object is represented as a frame which consists of a collection of attributes and its 

values, also referred to as slots and fillets respectively (Figure 2.9). In some ways the 

frame representation is analogous to the storage of data in C or PASCAL structures 

[44], The values or fillers could be associated by a particular procedure. A name of a 

frame is used for general identification of an entity or object. A particular object is 

described by an instance of the frame, in which the slot values are instantiated to those 

appropriate to a particular object. Frames generally allow the freedom to use different
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data types, such as lists or references to procedures. Furthermore, the values of slots 

may be obtained from other frames by inheritence: a particular class of a frame may 

itself be a subclass of a higher level class. For example, an End-Mill may be a subclass 

of Mill-Tools. A knowledgebase can be described as a collection of frames or entities.

N a m e  o f a  F r a m e :  M a te r ia l

Group No 1

Group Name Free M ach in ing C. Steel Wrought

Specifications 1116
Description lo w  C arbon Resulfurised
Hardness 150

Condition Code Hot Rolled or Annealed

Figure 2.9: Freme Representation

SIPP (Semi Intelligent Process Planner) uses frame based knowledge 

representation scheme [102]. In most frame-based approaches to knowledge 

representation and reasoning, the problem solving knowledge that manipulates the 

frames is stored separately in the form of production rules. In SIPP, the problem­

solving knowledge is represented not as rules, but hierarchically in the form of frames.

The following example illustrates the knowledge representation scheme from SIPP:

type(hoIe_process, process). 
relevant(hole_process, hole).
defaultvals(hole_process,[costal]). /*e.g. cost of twist_drilIV 
restrictions(hole_process, H):-.„various geometric restrictions

type(hole_improve_process, hole_process). 
de£aultvals(hole_improve_pfocess,[ 

precedence » 20,
projected_cost » 1, /*e.g. cost of twist_drill*/ 
cost -  3y*e.g. cost of rough_bore*/

])■
restrictions(hole_improve_process, H):-H7spedal_features eq none

type(bore,hole_improve _process). 
defanltvals(bore, [cost=3, precedence«22J). 
restrictions(bore,H):-...various tolerance restrictions
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type(rough_bore, bore). 
restriction(rough_bore, H):- 
H?pos_tolerance gte 0.002,
H?neg_tolerance gte 0.002. 
actioos(rough_bore, P, H):- 
copy_item(H, G),
G:diameter gets H?diameter - 0.005,
G:pos_tolerance gets 1,
G :n e g _ to le ra n c e  g ets  1,

G:straightness gets 1,
G :ro u n d n e ss  gets  1,

G:paraUelism gets 1,
G:tnie_position gets 1,
Grsurface finish gets 125, 
subgoal(P, G).

In the above example, rough_bore is a subtype of bore, which is a subtype of 

hole_improve_process, which is a subtype of hole_process. This means that 

rough_bore is applicable for creating a particular surface H, only if the restrictions for 

hole_process, hole_improve_process, bore, and rough_bore are all satisfied for H. 

SIPP uses least-cost-first-search control strategy.

A frame based part description scheme which is also discussed by Zust [100] 

who represents a part as a model of a logical unit (features) and geometrical elements 

and workpiece to form the overall frame structure. XCAPP-P [103] uses framed based 

approach (coded in PROLOG) for feature based modelling of turned components. The 

same system also uses a frame based knowledge representation for machining feature 

recognition.

The frame based knowledge representation has led to a new programming style, 

named as Object Oriented programming.

f. Semantic nets: Semantic nets attempt to describe knowledge as a collection 

of objects(nodes) and binary relations(labelled edges) [99].

According to a semantic net representation, the knowledge is a collection of 

objects and associations represented as a label directed graph. A typical semantic net is 

shown in Figure 2.10. The figure represents the facts that the hole is a feature which is 

manufactured by drilling, and drilling is an operation. The semantic net concept could 

be used to describe structured objects or frames.
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In AI based techniques, the symbol manipulation languages are preferred to 

conventional number manipulation languages. The builders of a majority of expert 

systems chose either LISP or PROLOG languages [45].

2.7 Databases

The main characteristic of process planning is the multiple input from all areas 

within a company. The design department provides the geometrical data, sales and 

purchasing give data on deliverable dates and lot sizes, and the factory itself 

incorporates information on tools, machine tools, fixtures, processes and availabilities.

Within the modem information technology strategy of a company, process 

planning is an element in a network of functions [104]. Other elements in the network 

may have their own data storage and management systems, for example, a tool 

management system. On a more general term such databases can be called resource 

databases. They are being used in the process planning environment either as a decision 

support system or a decision making system [105].

In recent years, the relational databases have been most widely used in the 

manufacturing industry. The principles of relational database models were first laid
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down by Dr. E. F. Codd [106]. A declarative knowledge can be viewed as a relational 

scheme. The identification of entity types facilitate classification of factual data into 

recognisable entities. The identification of entities, properties and associations can be 

used to represent a database.

The relational database model is perceived by its users as a collection of two 

dimensional tables which are easy to understand. The main element in relational 

databases are tables, mapping and relating the data. Each table has a unique name in 

the database. All rows are unique in the table. A column or a combination of columns, 

whose values uniquely identify the row in a table, are known as a primary key. A 

column or combination of columns whose values match that of a primary key in 

another table is known as a foreign key. The use of foreign keys allow one to relate 

information, which had no relations at the time the table was created. This feature 

represents high flexibility in the use of relational databases. The non-procedural 

English like language, SQL (Structured Query Language) is used to query the 

database. When applications must sort and search through large amounts of data, a 

query language like SQL can save hours of development time, that would otherwise be 

spent custom-programming reports [109].

The relational database however, can have difficulties in representing the 

semantic information in real-world applications [107], When a real world entity cannot 

fit into the relational model directly, an artificial decomposition becomes necessary. 

This decomposition not only decreases efficiency, but also raises the possibility of 

losing the semantics associated with the data [108].

In a modem office information system, data includes not only text and numbers, 

but also images, graphics, digital audio and video Such multimedia data are typically 

stored as sequences of bytes with variable length. The variable length data structure 

can not fit well into the relational framework, which mainly deals with fixed format 

records [108].
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The Object Oriented Databases are the new generation, with the major feature 

of being a logical single database composed of a hierarchy of objects. The real world 

entities are described as objects with attributes [110]. The object databases not only 

store data, but also the instructions for manipulating data, thereby providing a seamless 

integration between certain programming languages and the database itself. Some 

object databases provide fairly seamless integration between themselves and object- 

oriented programming languages C++, Smalltalk and Lisp [109].

Object oriented databases are considered superior to relational databases in 

structural knowledge representation, variant record structure, composite structure, 

revision control and declarative knowledge. The relational databases are better suited 

for report-intensive applications such as MRP, whereas object databases have more 

potential for CAD and CAE that are not report intensive but require high levels of 

performance [109].

Both, relational and object oriented databases represent the current trend in 

database technology.

2.8 Conclusions

The current state of techniques used in the development of CAPP systems have 

been highlighted and the state of commercial CAPP system have been reviewed.

Most commercial CAPP systems are either variant or semi-generative. These 

systems use primarily the group technology CC techniques for part design 

representation.

Solid modelling technique represent the CAD model unambiguously and 

completely, and are widely accepted to represent the part geometry. The B-rep solid 

model is preferred in downstream applications such as feature recognition and NC part 

programming, as it stores the evaluated solid geometry.



The low level data structure of a solid model cannot be used to apply reasoning 

methods in CAPP. A feature recognition technique constructs a manufacturing feature 

model of a part design. Most of the feature recognition techniques have been 

successful in a limited domain of process planning of 2 to 2Vi axis machining. They 

were also successful in providing the independent object views to the designer and 

process planner.

Most feature recognition techniques used a solid block (or a billet) as a 

workpiece. However, in practical situations, the workpiece could also be a casting or a 

forging. The features produced by a casting or a forging may or may not need further 

machining.

Since most of the features are known to the designer, the feature recognition is a 

redundant effort. Feature based modelling techniques have been suggested to 

overcome feature recognition. However, mapping of the design features to 

manufacturing is a subject of current research. Both, feature recognition and geometric 

reasoning have been considered as possible techniques for feature mapping.

The feature based modelling systems, in general, comprise a feature processor 

and a geometric solid modeller. A bi-directional associativity between feature 

processor and geometric modeller has been advocated for implementing better 

geometric reasoning techniques.

AI based production rules and frames are being most widely used for knowledge 

representation techniques in CAPP research. The frame based knowledge 

representation is very similar to the object oriented programming technique.

Most of the knowledge based CAPP systems developed so far use custom made 

part knowledge description schemes. The use of CAD data exchange standards to 

represent the part knowledge has been seldom used. The STEP implemented form 

feature information model on commercial CAD systems need experimentation in 

CAPP.
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The use of STEP form features could also be investigated for graphic 

visualisation of resources such as tool assemblies and modular fixture elements.

The majority of the CAPP research represents product knowledge as 

knowledge about an individual component. However, such consideration may be 

inadequate in a concurrent engineering environment. A structured representation of a 

product as an assembly, subassembly and components could be more effective. The 

recent product development tools such as product assembly modelling and knowledge 

based product modelling enable one to use such a representation.

The majority of CAPP research has not considered resource management as an 

independent issue. The action part of a production rule points to some resource in the 

process plan. However, the availability of the resource is rarely checked. The resource 

databases as a tool to suggest alternative resources have rarely been considered as a 

part of process planning strategy.
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3. PRODUCT DESIGN REPRESENTATION

A CADDS5 system from Computervision (CV) has been used in this research 

for the product design representation. CV provides concurrent assembly design 

functionality for product development. In order to build CAD models, it provides both 

conventional CAD and feature based CAD modelling functionality. The product model 

data can be managed efficiently by the engineering data management system. CV has 

also been actively involved in providing STEP standard support for product data 

exchange.

One of the objectives of this research is to conduct a detailed study of the feature 

based CAD modelling functionality and devise a suitable strategy to communicate the 

manufacturing intent through features. It has also been felt necessary to study the 

overall product development process in a concurrent engineering environment, and 

find out the role of the design by feature and the CAPP in that context.

A product modelling strategy in a concurrent engineering environment is 

explained at the beginning of this chapter. Later, a detailed illustration of design by 

feature techniques is presented. The various strategies that have been tried, to 

communicate the manufacturing intent are discussed. The chapter concludes by 

suggesting a feature based design representation technique that has been used to suit 

the CAPP system reasoning processes.

3.1 Concurrent Assembly Design

According to the STEP standard and the relevant research projects, product 

models are defined as the logical information structure, which can be used to represent 

the entire information about the product [76, 77], In this context the geometric models 

are only part (attributes) of such product models. Such a data modelling methodology 

is based on the object oriented data structure.
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CV has provided the above product modelling methodology through a software 

product called, Concurrent Assembly Mock-UP (CAMU). It enables not only the 

concurrent assembly design but also an electronic/digital mock-up of a product 

assembly. With CAMU it is possible to design a product structure as a logical tree of 

assemblies, sub-assemblies and components (Figure 3.1). Both, top down and bottom 

up design approaches are supported. The designer can associate model geometry to 

various components in the product structure. Several users can work concurrently on 

the same assembly across the network. The designer can manage the overall 

development of a product by having access to multiple component models 

simultaneously. One can model a component while looking at other component models 

in the assembly, and switch readily between different component models. This enables 

one to design each component or sub-assembly tn the context of the assembly. To 

build a CAD model of a component, the designer can use a wire-frame, surface, solid 

or even a feature based modelling approach [111].

In addition, it is possible to define and associate the non-graphic information as 

attributes to the assembly, sub-assembly or component nodes of a product structure. 

These attributes could be bill-of-materials information, physical properties, drawing 

notes, labour tracking data, or even special process information.

CAMU is developed using the object oriented methodology. The assemblies, 

sub-assemblies and components on a logical structure are described by object classes 

and instances (or occurrences) related to each other. Their relationships are also 

described by classes and instances. The relation class refers to the position and 

orientation of a component, sub-assembly or assembly. All the instances maintain the 

properties belonging to their class. For example (Figure 3.2), each wheel instance 

consists of one instance each, of the class disk, tyre and hub. The assemby structure is 

usually described in such a way that the leaf nodes arc the component instances. The 

relation classes and instances ensure that the position and orientation of various
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components is precisely defined and maintained. For example, if the designer decides 

to move the position of axis_2, all the child nodes attached to it will also move 

together. Thus, such model data structures could be very efficient in manipulating 

design changes.

Figure 11: CAMU Windows Showing Sample Assembly
[REF: CAMU User Guide. Computeivision)

With this approach, it is easier to conceptualise a product and represent its 

structure even before getting into any detailed design activity. Assembly design 

eliminates data redundancy, by associating a model geometry to a component on the 

logical structure. Several instances of the component can refer to the single model 

geometry.

If the various components on the assembly are associated with the solid model 

geometry, then it is possible to generate a shaded image of the entire assembly, check 

the clash detection between components and so on. The success of CAMU in the
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aerospace industry (Rolls-Royce, U.K., Shorts Brothers, U.K) for the past three years 

implies, that in future a physical mock-up may not be built at all, thereby reducing the 

product development times considerably [86].

Figure 3.2: Assembly Structure for an Assembly named Wagon
[Ref: CAMU User guide, Computervision]

3.1.1 CAMU and Engineering Data Management System (EDM)

The product model data generated by CAMU in a large company may consist 

of hundreds of thousands of files. The data is heterogeneous (graphic, textual & 

mathematical) in nature. In general the designers spend 30% of their time in searching 

all sorts of data [44]. A system to assist engineers to index and search data, may be 

termed as an Engineering Data Management System (EDM) [114].

The EDM from CV is built by using the ORACLE relational database 

management system (RDBMS). It is the application software that sits on top of the 

ORACLE RDBMS [113]. EDM Client is a nodt on the network that uses TCP/IP 

protocol to communicate to the EDM server (Figure 3.3). Each node may be 

connected to the CAD system or any other application. The EDM receives requests for
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service from clients throughout the network. A typical EDM service may include a 

request for engineering data files, set-up authority schemes in a project team, manage 

the project status, release and revision control, back-up procedures, report generation 

and system security.

Figure 3.3: The EDM Volume of Information
[Raf: EDM Training Manual. Computarvision]

The EDM Product Structure Navigator (PSN) is an add-on application 

software tool, which enables one to view and modify the CAMU product tree structure 

stored in the EDM vault. Most of the time the CAMU clients will be busy in 

creation/modification of CAD models of various components in a product design. 

PSN enables independent access of the product structure data for review without 

disturbing the clients (Figure 3.4).

EDM PSN also manages the non-graphic product information of a product 

assembly. Using EDM PSN one can display a product structure tree, the status of 

associated CAD models and files, highlight nodes according to specified attributes, 

generate reports, bills-of-materials and list instances of components with specified 

attributes, thereby enabling a simple 'what if analysis.
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Figure 3.4: Product Structure Navigator Inputs and Outputs
[Ret EDM Training Manual, Computervision]

3.1.2 CAMU and Configuration Access

Configuration Access is a graphical user interface which addresses a number of 

requirements in managing, manipulating and querying data, in a hierarchical product 

structure. The software is of significant benefit when working with EDM and CAMU. 

It provides a single interface to replace the CAMU/EDM and EDM/PSN interfaces 

[115].

EDM and CAMU are not a prerequisite in using Configuration Access. 

Configuration Access includes facilities to create and edit hierarchical structures; 

associate component CAD models, files and reference assemblies to the nodes within 

the structure; and edit class and instance attributes within the structure. Configurations 

may be saved as local product structures or as CAMU assembly trees or even in STEP 

AP203 for configuration control. Whenever the configuration data is sent to EDM, it 

may be exploded into EDM attributes so that its information is queried.

The AeroSTEP is a pilot project studying the phased use of STEP Application 

Protocol AP203 in the Aerospace industry. The Computervision STEP translator 

demonstrated the reading and writing of STEP Part 21 files (AP203) in November,
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1993 [96]. The files were comprised of product structure and configuration data for 

the product, together with geometries of the selected components (Figure 3.5).

Figure 3.5: Product Structure, CA & STEP
[Ref: Compatervision & Rolls Royce]

3.2 CAM U, EDM and CAPP

The non-graphic attribute association capability of CAMU could be used to 

assign the manufacturing process attributes of a component. This would enable the 

product design and manufacturing data integration within the EDM vault. This data 

could then be used by other applications such as MRP, CNC/DNC, etc. As explained 

above, the STEP application protocols should enable exchange of the data on any 

CAD/CAM systems, thus enabling a total integration of different CAD/CAM systems.

However, the manufacturing process attributes can only be generated by a CAPP 

system, unless assigned manually.
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Figure 3.6: Variant or Generative CAPP options

There are two possible CAPP approaches, that can be used (Figure 3.6). The 

variant CAPP systems can be used until a generative CAPP system is fully developed. 

In order to develop a generative CAPP system, a feature based CAD modelling 

approach will be used [Figure 3.7].

PC OR WORKSTATION

Figure 3.7: The Role of Configuration Access
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3.3 Feature Based Modelling

The CADDS5 parametric solid modelling environment has been provided with 

the option of form features, that are available in the library. They are referred to as 

system features. The system also provides the capability to create the user defined 

features in the user library.

The feature based modelling is not mandatory on CADDS5. However, this 

research proposes the design representation by features so that the component model 

data could be used for geometric reasoning in the CAPP system. The following 

discussion illustrates the design by feature concepts.

3.3.1 The System Form Features

The system form features are provided in a library called SYSLIB. The feature 

processor that manages the feature environment is based on object oriented 

methodology, such that each feature can be regarded as an object. The taxonomy of 

the system features is based on STEP standard. The system feature taxonomy scheme 

is illustrated in Appendix A.

There are several reasons for classifying features. The number of possible 

features being unlimited, no system can support every feature required by every user. 

Once features are classified, it becomes easier to define a new feature by the 

'something similar to' concept. A newly defined subclass automatically inherits the 

attributes of its superclass. A multiple inheritance concept of object oriented 

methodology enables one to define complex features with ease.

Each form feature in the SYSLIB comprises a definition and a geometry. The 

feature definition consists of its attributes, in addition to the attributes that would have 

been inherited from its super class. The attributes always carry the default values. The 

represention is also an attribute that corresponds 10 a parametric solid geometry of a
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form feature. The form features are also referred to as volume features, as their form is 

described by the solid geometry.

The parameters that describe the form feature geometry correspond to the 

feature attributes in the feature definition. For example, a Pocket_Rectangular form 

feature geometry can be described by a hexahedron, that has length, width and height 

parameters. These parameters correspond to the attributes in the feature definition. 

This way, each feature is able to work as a generic feature [76].

In a modelling process, the designer creates a feature by overwriting the default 

attribute values to suit his/her needs. The feature processor passes the geometry 

attributes of a feature instance to the geometric modeller to evaluate the geometric 

form of a feature. While building the CAD model of a design, the user is not concerned 

with the feature processor and geometric modeller. The underlying principle is built in 

the software.

Library of Features (e.g. SYSLIB)

Feature Class (e.g. POCKET_RECTANGULAR)

Definition Representation
G e o m e t ryIn h e rite d  A ttribu te *

Orientation
Entryface

ration (Subtract)

(A Solici Box Volume)

A ttrib u te *

Pocket LengthPocketlength
PocketWidth
PocketDepth

Figure 18: A Typical Form Feature Schema

64



The attribute values of a feature instance can be modified by digitising the 

feature instance. In a parametric modelling environment, the form features are treated 

like any other parametric entity.

3.3.2 Modelling With Features

Systematic modelling steps should be followed to build a feature based model 

such as,

1. Identification of major feature influence in the component shape such as, flange, 

bracket, casing, handle, frame, plate etc.

2. Search for the major feature in the library or create it, if it is a new one.

3. Study of the major feature relationship with other features. Feature based modelling 

environment being parametric, this step is very important to communicate the design 

intent.

4. Insert other standard or user defined features to complete the design.

Appendix B illustrates the feature based modelling steps.

3 3 3  Model as a Feature Tree

The feature based model is built by attaching features to the entry or exit faces 

of existing features of a model. If the feature is merged with more than one feature, 

proximity face/s information will have to be provided besides entry or exit faces. 

Computcrvision feature modeller allows only entry and/or exit face selection while 

modelling. This enables to establish a parent/child relationship amongst feature 

instances and therefore, a design representation as a feature tree can be captured. A 

feature report file enables one to capture the attributes of the entire set of feature 

instances in a model. The report file data can be used by other applications such as 

CAPP.

The feature tree and the feature report file are illustrated in Appendix B.
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3.3.4 Limitations of System Form Features for CAPP

The system form features are suitable mainly to represent the nominal form of a 

component design. Although their names are manufacturing implicit they may or may 

not imply the same meaning in manufacturing. For example, a Hole_Blind form feature 

in the design may imply a drilled hole or the existing hole that needs to be enlarged by 

boring. The manufacturing 'view' of the feature can only be inferred by considering the 

raw material condition from which it has to be manufactured. Most of the research in 

feature based CAPP systems have assumed the raw material to be a solid block (or a 

billet), which implies a predictable manufacturing 'view' for at least the subtractive 

types of form features. This enables automation in process planning as well as NC 

programming [45].

It is however, felt necessary to have broader raw material state assumptions. In 

conventional NC programming, a stock statement has been used to imply a raw 

material. Similarly, there should be a method to communicate the raw material stock 

on the feature.

The system form features represent the nominal solid geometry. A suitable 

tolerancing scheme is necessary to reason the form feature design representation. They 

also do not have a manufacturing attribute set, which can communicate the 

manufacturing intent, such as surface finish, clamping locations, etc.

Due to the above limitations, the system form features are unsuitable for their 

usage in CAPP system reasoning. Their definitions will have to be modified by user 

defined feature techniques with a suitable strategy.

3.3.5 User Defined Features

The user defined features can be created in the user library. Like system form 

feature, the user defined feature has a definition part and its solid geometry 

representation part. While defining a new feature the user is able to use the system
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form feature taxonomy. Usually, the user defines a new feature definition as a sub-class 

of existing feature (or features) with additional attributes that define its characterstics. 

The additional attributes are used to describe the features geometry parameters or to 

assign any other information to the feature. The object oriented methodology enables 

one to automatically inherit the attributes of a super-class.

A parametric solid geometry is constructed to represent the form (shape) of user 

defined feature. Finally, the definition attributes that describe geometry are associated 

to the solid geometry parameters.

The above procedure has to be followed to create a user defined feature, which 

then could be used as a generic feature like any other system form feature.

3.4 Form Features and Manufacturing Intent

As discussed in 3.3.4, the definition of the system form feature is inadequate to 

communicate the manufacturing intent The research review also indicates that there is 

no common agreement on communicating the manufacturing intent [52, 65, 116].

This research proposes that the user defined feature technique can be used to 

communicate the application specific manufacturing intent (e.g. machining). It explores 

various user defined feature techniques with the following objectives:

a. Convenience in user interaction while modelling

b. Ease in interpretation and modification

c. Direct interpretation of such information for CAPP

d. Preserve designer's creativity/flexibility while modelling

The following discussion illustrates the various techniques that are proposed to 

communicate the manufacturing intent for the machining of prismatic components.
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3.5 The Manufacturing Intent

In order to interpret the manufacturing intent, the design data should 

communicate the following information:

a. Tolerance

b. Surface Finish

c. Raw material condition

d. Machining intention

e. Fixturing

On a conventional CAD system, the above information is assigned by the detail 

drawing preparation methods such as, dimensioning and tolerancing commands, 

symbols, notes, and labels. It is assigned to the same model but on different layers. By 

layer manipulation, the designer and the manufacturing engineer are able to see their 

respective 'views' of a model data.

It was decided to use similar technique through user defined features to 

communicate the manufacturing intent. The information was categorised into tolerance 

and manufacturing feature types.

3.6 Tolerancing by Features

The feature tolerancing is necessary to ensure the functional obligations of the 

design, which also becomes a guideline to select a manufacturing process capability. 

The development of the dimensioning and tolerancing (D&T) model is a special 

research domain, and it was beyond the scope of this research. However, the various 

research efforts in the development of D&T model have been cited earlier[80, 81, 82, 

83]. It was observed that Faux's CAM-I report [80] and the subsequent work for 

CAM-I by Ranyak and Fridshal [82] was based on tolerance features.

An attempt was made to create the tolerance feature library based on the CAM-I 

initiative [80, 82]. The idea behind the experiment was to compare the suitability of
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tolerance feature with the traditional detailing technique on a conventional CAD 

system.

Faux [80] proposed primitives to assign tolerances. A primitive is a set of one or 

more faces which are treated as a single individual unit for the purpose of defining and 

tolerancing a feature shape (size and form) and location (position and orientation).

In this context a form feature is a set of faces of a component, structured into 

one or more primitives and subfeatures, and whose faces, primitives and subfeatures 

obey the rules of its declared generic feature class.

A primitive is said to be resolved when the shape of its surface(s) are defined 

separately from its location and orientation. Geometric tolerancing classes for the 

resolved primitives are:

a. Location (Position and Orientation)

b. Shape (Size and Form)

An unresolved primitive is a surface or a set of surfaces whose shape and 

location are toleranced by a single profile tolerance. The geometric tolerance class for 

unresolved primitives is profile, which could be surface or curve profile. The above 

tolerance classes can be represented by a suitable feature representation scheme 

(Figure 3.9). In general, these could be thought of as 'labels' assigned to various faces 

(primitives) of a feature based model. The following discussion describes the various 

tolerance classes.

3.6.1 Datum Feature

The first step in tolerancing is to decide datums. Datums are used to establish 

the relationship of geometrically toleranced features. It was defined as a subclass of a 

class primitive. It assigns Datum Name and Dalum Facc attributes to the model.

The Datum feature was classified into two subclasses, Datum_Axis and 

Datum Face.
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Figure 3.9: Geometric Tolerance Features

3.6.2 Location Tolerance Feature

The Location Tolerance Feature was defined as a primitive class which assigns 

positional or orientational tolerance values and a datum reference frame. The datum 

reference ñame determines the possible coordinate system depending on the datum 

chosen.

The Location tolerance feature was classified into four subclasses. Position, 

Symmetry, Coaxiality and Concentricity.

3.63 Shape Tolerance Feature

A primitive class assigns a size or form tolerance value. It is observed that most 

of the form features that are provided in the SYSLD3 can be modified to add size 

tolerance attributes such as, Tol_PocketLength, Tol_PocketWidth, etc. Form 

tolerances were defined into four subclasses; Straightness, Flatness, Cylindricity and 

Circularity.
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3.6.4 Profile Tolerance Feature

The Profile Tolerance Feature is a primitive class that assigns a profile tolerance 

attribute value and symbol.

3.6.5 Tolerancing the Feature Based Model

A suitable layering scheme can be used to assign tolerance features to the model 

(Figure 3.10). These layers could be blanked for design manipulations/modifications. 

Any parametric changes to the model should cause a corresponding change in 

tolerance feature symbol location.

3.7 Manufacturing Features

The definition of manufacturing features and their associated information 

(attributes) depend upon their application [78]. .\s  mentioned above for machining 

application, information such as surface finish, raw material, etc. is necessary to plan 

the machining process. A suitable manufacturing feature representation scheme is 

proposed (Figure 3.11).

3.7.1 Surface Finish

The surface finish depends mainly on the tolerance grade and thereby machining 

process and material grade. It is defined as a subclass of a class primitive with the 

attributes of a value, and a symbol.

3.7.2 Machine or Not_Machined

A form feature machining intention could be communicated through these 

features. If a raw material is a forging or a casting, some form features need not be 

machined. It is defined as a subclass of a class primitive with the attributes of a logical 

value and a symbol.
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3.73 Raw Material Stock

The Raw Material Stock is defined as a subclass of a class primitive with the 

attribute, stock. By default the stock is always 'solid'. In the case of castings or 

forgings, the attribute value is modified for the uniform stock thickness.

MANUFACTURING FEATURE CLASSES

SURFACE 'FINISH UACHINE/Ncf MACHINE RAWMaV e RIAL FIXTURE
✓ ✓ ✓ d  I--------------1-------------1

LOCATING RESTING CLAMPING

< =  O D

Figure 3.11: Manufacturing Features
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3.7.4 Fixture Feature

Three subclasses are proposed to assign the intended resting, locating and 

clamping faces and locations. Automatic fixture design is a research subject in its own 

right, however, it was thought that the manufacturing engineer should be able to 

communicate this information at the design stage.

3.7.5 Assigning Manufacturing Features

Like tolerance features, a suitable layering scheme can be used for assigning 

manufacturing features to the feature based model (Figure 3.11). The tolerance and 

manufacturing feature symbols enable to interpret the model for its manufacturing 

intent and may help to eliminate the need for detailed drawing preparation [140].

3.8 Features and Creativity

One of the major criticisms about feature based design has been that it hinders 

the creativity of a designer by providing a library of fixed forms for design [117]. A 

detailed study of feature based modelling strategy reveals that the feature based design 

could be as flexible as the conventional CAD.
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A case study [Appendix C] has revealed that the designer is free to conceptualise 

the geometric shapes as in conventional CAD [141], Such shapes could be formed by 

sweeping profiles and thereby obtaining the new primitives, sculpting the primitives by 

a curve or a surface, boolean operations and fillets, etc. All the parametric solid/surface 

modelling techniques could be used to describe a new shape. The geometric shape can 

then be described as a representation of the user defined feature. The important 

design/manufacturing parameters of a geometric shape become the attributes of the 

feature.

3.9 CADDS5 System User Limitations

Free access to the design data is the fundamental requirement to develop a 

design based application, such as CAPP. Most CAD vendors use a specific method to 

represent data. The CADDS5 system has implemented the STEP based form feature 

definitions only. The feature data retrieval as per STEP format, is not implemented 

yet. The STEP committee has been working on this aspect through an application 

protocol AP224, and the details are not available yet.

For the time being, the CADDS5 system enables the user to access the feature 

based design data in the form of a report file [Appendix B]. The report file provides 

the information about the feature instances, their attribute values and the entry/exit 

face numbers for feature attachment to other features. The detailed geometry and 

topology of the feature instances cannot be accessed. This is a major limitation to 

interpret a design as a feature tree. Recognition of a design as a feature tree is a 

fundamental requirement for the geometric reasoning that is necessary for CAPP.

The tolerance and manufacturing features have been proposed on the 

assumption that the complete design data acces:. would be possible within a short 

period of time. Because of the above limitations, Ihey cannot be used in the proposed
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CAPP system. However, the experiment was worthwhile, to foresee how future 

modellers might provide the detailing capabilities with features.

3.10 Modified Design Representation Scheme

Due to the geometry and topology access limitations, the manufacturing intent 

had to be communicated with the attributes that can be assigned to individual feature 

classes.

The shape tolerance attributes have been assigned to the form features. On a 

similar basis, the location tolerance feature attributes could also have been assigned. 

This would result in a long list of attribute selec’ions while modelling. Hence it has 

been decided to develop the process plan strategy on the basis of shape tolerance only.

Instead of using the proposed manufacturing features, it was decided to assign 

manufacturing attributes. The attributes, 'surfaceFinish', 'rawMaterialCondition' and 

'mcNotmc' have been assigned to each form feature to communicate manufacturing 

intent.

It has been decided to assign a 'childOf attribute to each form feature in the 

library. While inserting a feature instance, the user assigns a parent feature instance 

name to the 'childOf attribute. This should enable one to interpret the feature tree from 

the report file.

The modified feature based design approach would enable one to interpret the 

design data, as a feature tree where each feature consists of geometry, tolerance and 

manufacturing attributes.
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The development of a CAPP system involves the study and analysis of effective 

communication strategies, between product, process and resource domain knowledge. 

It is a complex task because of the volume of multi-domain information involved while 

planning. Ideally, it is essential to involve a team of experts in the development of such 

a system. A team should consist of the system users, the system developers and the 

domain experts. Since this research has been an individual effort, it relied on the prior 

knowledge of the individual and the current research trends described in the literature. 

The final CAPP system plan was evolved through study, planning, experiment and 

refinement process.

4.1 CAPP System Planning Considerations

One of the main criticisms about CAPP system planning has been the lack of 

consideration of global objectives in planning [1, 118]. An integrated planning system 

for all the business functions is the ultimate goal. While the complexity of 

manufacturing activities makes it impossible to achieve that goal for some time, its 

awareness would help to plan and develop the systems with broader perspectives.

In today's changing environment, a CAPP system should be adaptable, flexible 

and modular to allow addition of new applications.

Globally, the product domain represents the product knowledge; the process 

domain represents the manufacturing process knowledge; and the resource knowledge 

such as tools and machine tools, etc. is represented by the resource domain.

Different types of systems are being used in industry in the above domains, 

especially in product and resource domains.

4. CAPP SYSTEM DEVELOPMENT PLANNING
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Figure 4.1 The Global Domains in Manufacturing Planning

The global issues that are relevant to these domains should be considered while 

planning the CAPP system. For example, a component design by feature may be a local 

input to an automated CAPP system. However a global issue of the component 

relationship to the product assembly, and the management of product model data, may 

influence the system planning. The global issues may pose questions to the planner, 

such as, 'what should be the process if a component on the assembly is not designed by 

features?', 'will the CAPP system be able to upgrade to the process planning of 

tumed/round and sheet metal components?', 'is it possible to use a standard material 

and machinability database?', etc. The planning of a CAPP system should be flexible 

enough to accommodate such issues.

An application specific CAPP system will need the local representation of 

manufacturing process knowledge. In addition, it will also need the local 

representation of the product component desigr.. It should be able to generate a 

feasible process plan based on these knowledge representations. However, the 

resources suggested by the plan will have to be checked in the resource domain by 

querying the resource knowledge (database). The global to local design representation 

of a component, will have to be generated by using the data exchange standard such as 

STEP or a customised interface.

77



The CAPP system to be developed, will generate a process plan for one-off 

prismatic parts. It should use the existing system process knowledge to suggest the 

process as a set of operation sequences, with the required resources. The resources 

will be searched in the resource database for their availability. The user interactive 

interfaces will be developed to add, delete and modify the process and resource 

knowledge.

4 3  The Programming Tool

The major problem in the planning of a CAPP system is the selection of a 

programming tool. The knowledge based programming tools such as LISP, PROLOG, 

Smalltalk, KEE etc. have been recognised to have a great potential [47], Despite this, 

the majority of CAPP systems have been developed in FORTRAN and BASIC [4]. 

Individual research such as this, had to rely upon the available programming tools. The 

programming tools such as FORTRAN, BASIC, C and PASCAL are readily available 

with most of the academic and research institutions and hence, they become the 

automatic choice. It is even possible to develop an expert system application by using 

these languages with more programming efforts. One of the earliest expert CAPP 

systems, TOM was developed by using PASCAL [11].

It was apparent that the selection of a programming tool would directly affect 

the planning of a process domain. However, it was equally important to ensure that 

such a tool would be suitable for interacting with the product and resource domain. 

The CADDS5 system for the product domain and the ORACLE relational database 

management system for the resource domain, were the automatic and appropriate 

selections as per the current research trends.

The CADDS5 system runs on a workstation with the UNIX operating system. 

The C compiler is usually available on such a system. It was also passible to access the

4.2 CAPP System Objectives
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ORACLE database management system through the network on the workstation. 

Once the database is designed, it could be queried and manipulated through the C 

programming tool (Pro C). C is the most popular programming language in 

engineering applications. A study of the C programming language in AI applications 

had revealed that it can be used for expert system development [119].

With the above considerations, the C programming language was selected to 

develop the CAPP system.

4.4 The Initial System Planning

The initial planning was focused on the process domain. For the various benefits 

that were discussed in the literature review, it was decided to use a knowledge based 

approach to generate a machining process plan. The initial plan of a CAPP system was 

conceived as in figure 4.2.

Figure 4.2: The Initial CAPP System Plan
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The form feature based report file of a component model was used for local 

design representation in the CAPP system. A suitable interface program was developed 

to convert the report file into a frame like knowledge representation. This step was 

necessary due to the lack of direct access of feature, data from the CADDS5 system.

As discussed in the previous chapter, each feature in the component design 

representation consists of design and manufacturing related attributes. Based on these 

attributes, the feature appearance conditions (attributes), for example, size range, 

tolerance range, etc., can be computed. The overall attributes of the feature instance 

were represented in the CAPP system as a manufacturing feature by a frame like 

structures, e.g.:

struct MFG_FT { 
char class[30]; 
char library[20]; 
struct orientation cpI; 
struct geometry { 
struct lng lcngth[20]; 
struct dia diameter[10]; 
struct ang angle(lO); 
struct rad radius[ 10];
}geom;
struct appearance {
char raw_matl_stock_type_id;
char raw_matl_stock_type[50J;
char size_range_id;
int sizc_range[2];
char depth_rangejd;
int depth_range[2];
char tol_range_id;
double tol_range;
char sf_range_id;
double sf_range
char m cnom c;
(me;
}

The above representation enabled the mapping of design features into 

manufacturing features.
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The determination of the manufacturing process was conceived as the matching 

process between the feature appearance conditions of a manufacturing feature instance 

and the process instance in the process knowledge base [141].

The process knowledgebase was developed by proposing that each process 

could be described as a set of operations for specific feature appearance conditions. 

For example:
struct process { 
int process_id_Bum; 
char raw m atls tk sy p e ; 
char size_range; 
char depth range; 
char tol_range; 
char sf_range; 
struct opr[10];

>

A user interface was developed, to describe the process knowledge for specific 

feature appearance conditions. A knowledge saving, editing and loading scheme was 

also developed.

The inference mechanism consisted of simple matching rules to match the 

feature appearance conditions between the feature and process instances. The system 

would select a processed that matches with all the feature appearance conditions 

(attributes) of a feature instance.

The user interaction with the system is illustrated in Appendix D. The plan generation 

at this stage was limited to individual feature instances. The tool selection strategy was 

intended to be planned on the basis of the geometric attributes, and also on the 

available resources in the resource database. A detailed study of the resource 

requirements was deemed essential to develop the resource database.

4.4.1 The Resource Database

A resource database should include the information about cutting tools, machine 

tools, materials, machining parameters, fixtures and inspection gauges.
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In a business environment, the resources are usually managed by a standard 

database management system. Most of the databases that have been used today are the 

relational ones. Instead of developing a database, a standard application database from 

the market was investigated. A material and machinability database from MetCut 

research [30] was available. However, its cost could not be justified for this research. 

Hence, it was decided to study and design a database for the CAPP application.

Figure 4.3 Entity Relationships

It was recognised that a detailed function, entity and data analysis was necessary 

to decide what and how the information about the above entities should be represented 

in the database [120]. An entity is anything of significance about which the information 

is to be held. A function analysis Ls necessary to identify what activities arc done in the 

manufacturing environment, how arc they done and what will be done. The function 

analysis enables one to identify the relationship amongst entities. Entity analysis is done
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to define and understand the things of significance about which the domain needs to 

know or hold information, and the relationship between them.

The resource entity model diagram (Figure 4.3) is a starting point for the 

database design. It was ensured that it represents facts, relationships and the 

requirements without any ambiguity. Finally, a data analysis is carried out to review the 

entity analysis output in the context of known data values that can be studied. On the 

basis of the detailed system analysis, the entities in the resource domain can be 

described as follows:

a. Process: A process is considered as an external entity to the resource domain. 

A  process knowledgebase is searched to match the process that corresponds to the 

feature appearance conditions (feature instance attribute values) in a component. A 

process comprises a set of operations, which are to be carried out by a cutting tool or 

tools of a given size, with a desirable cutting and clearance height on a specific 

machine tool. The operation parameters would serve as the query input to the resource 

database.

b. Tool: Based on their operations, capability, types and holding components, 

these can be classified into a library. Cutting tools can be classified as either solid or 

insert type. Each of them can be used for machining operations by using one or more 

tool holding components such as basic holder, an intermediate, and/or an adapter.

It was observed that on a rotating tool type machine tool a basic tool shank is 

held by the machine tool spindle. Similarly, there is direct relationship between the 

cutting tool and the corresponding tool holding component (Figure 4.4).

Frequently, the similar type of cutting tools are used on number of machine 

tools. For example, a drill may be used on a drilling, jig boring, milling machine or a 

machining centre. Hence, it is possible to use the same tool assembly on different types 

o f machine tools if the basic tool holder shank taper of the tool assembly matches the 

machine tool spindle taper. Such relationships can be used to design a relational
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database, such that there will be an optimum utilisation of tooling resources, thereby 

minimising the tooling inventory.

Figure 4.4: Tool Component Relationships

The feature based modelling concept can be used to visualise the graphic 

representation of the standard resource components. It was observed that a proper 

resource database design should enable the feature based tool and tool assembly 

representation in the database. Each tool feature instance may have different attribute 

values in the database. For a given tool, an automated tool assembly generation and its 

graphic visualisation should be possible.

c. Material: A material has a relationship with a component and a cutting tool. 

Based on this relationship, a machining parameter relationship can be established. It 

was decided to use almost the same relations as described in the standard material and 

machinability data handbook of Mctcut Research Centre. This should enable easy data 

mapping if required.
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d. Machine Tool: Each machine tool uses a tool and a fixture to perform a 

machining process. It also represents the basic attributes in terms of size and accuracy.

e. Fixture: A fixture has a direct relationship with a machine tool, a component 

and a process. The importance of fixture planning is recognised, however, computer 

aided fixture planning is a special application, and it is not considered in detail in this 

research.

f. Inspection Gauges: Each inspection gauge can be related to a geometric 

tolerance between component features and operations. Not being a detailed part of the 

research like fixture, it will be represented as an independent entity.

FIXTURE INSPECTION
« ramine.» GAUGE
• ramine .ooca • OAtiae »

• OAuaroacR
,• connonarT »

Figure 4.5: Resource Entity Relationships

After a detailed study, a unique identification key and a set of attributes for each

entity were decided. A resource entity relationship diagram is illustrated in figure 4.5.
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A normalisation procedure to a third normal form was carried out. Normalisation 

is a formalised procedure for eliminating data redundancy by progressive use of 'non­

loss decomposition', which involves splitting records without losing information 

(Appendix £). It is based on the idea that an attribute may depend on another attribute 

in some way.

On the basis of the normalised entity model, the individual table designs were 

made. It involved choosing the primary keys, mapping the entities to tables, attributes 

to columns and related attributes to foreign keys.

4.4.2 Resource Database Input/Output

The user data entry and access is provided in ORACLE through SQL plus, a 

Structured Query Language. It was also possible to develop the resource database 

input/output forms by using the SQL form generator.

The SQL is a non-procedural language. That is, most statements are executed 

independently of the proceeding or following statements. The C language is a 

procedural language and based on constructs such as loops, branches and if/then pairs. 

Having specifically designed SQL to be a non-procedural language, and thus 

understanding the limitations, the originators of SQL have also explicitly designed 

SQL constructs, to be embedded in procedural programming languages such as C. The 

ProC tool provided with ORACLE, is designed to convert a C program that includes 

SQL statements into a C program that can access and manipulate data in an ORACLE 

database [121]. ProC converts the EXEC SQL statements found in its input file to 

appropriate ORACLE calls in an output file. The output file can subsequently be 

compiled, linked and executed in the normal manner for C programs.
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4.4.3 Resource Queries

As discussed earlier in this chapter, the process domain was partially developed 

to generate a process as a set of operations. The same technique was intended to be 

used to derive the tool attributes such as tool type, cutting height, tool material and 

machine tool.

Based upon the tool attributes, a typical query to the resource database should 

return the detailed requirements from the resource database. For example, a tool query 

should return the resource details of an assembly of a tool component that is suitable 

for use on a specified machine tool. Optional assemblies may also be listed. All the 

details such as gauge length, clearance length, cutting parameters, tool component 

details, tool assembly graphics etc., should be automatically reported for decision 

making in the process or product domain.

The sample tool query procedure was developed by using C and ProC. The 

results are illustrated in Appendix E.

4.5 Review O f T he Initial Plan

While using the overall CAPP system plan as discussed above, and developing 

it further, the first limitation of the system development was observed in the use of C 

as a programming tool. After developing the initial prototype of the process domain 

expert system environment, it was realised that the volume of programming effort for 

further enhancements would be enormous. It was observed that the programming 

efforts would be two fold. Firstly, to develop an expert system shell, and secondly, to 

develop the application by using it. Despite the effort required, such an expert system 

would serve the purpose of the process domain alone. The multi-domain queries such 

as process to resource or design to process, etc., would have to be developed in a 

procedural form using C. The limitations of a procedural/structural language like C in- 

such cases could be quite significant. For example, any change to the logic of a specific



procedural function/subroutine would mean debugging, compilation and linking each 

time.

The system also lacked the intelligent user interface. In order to keep the 

human expert as the key factor in the planning process, the role of intelligent user 

interface is increasing. Highly complex application programs can only be executed with 

interaction from the human planner [47]. Today, windows, frames, panes, menus, 

display control, etc. are becoming the standard features in every system. Such features 

are not part of the standard C language.

After gaining experience in design and development of entity models for 

resource domains, it was observed that it had quite a similarity with the frame based 

and object oriented knowledge representation. The same similarity was observed in the 

structured data representation in C while developing the process knowledgebase.

The process knowledge is symbolic in nature and hence, symbolic manipulation 

tools such as object oriented programming would suit better for process knowledge 

representation and reasoning [63]. It was noticed that STEP uses the object oriented 

concepts in EXPRESS [95]. The object oriented approach has also been recommended 

in CAPP research[47, 76, 122]. Hence, it was realised that the object oriented 

approach would be more appropriate and would be in tune with the current research 

trends.

4.6 The Object Oriented Programming Tool

The EXPRESS language was not available for use. A PC based object oriented 

programming tool, Smalltalk was available. With object oriented programming, the 

details about objects can be ignored while designing new objects, and structural 

properties can be assumed through property inheritance [63]. Each object is an entity 

combining both procedural and declarative knowledge associated with some particular 

concept.

88



A common notion in all object oriented languages is the uniform message 

passing between conceptual objects. Message passing is a form of indirect procedural 

call, which activates procedures associated with objects.

The message passing enables data abstraction. This principle groups together 

all the procedures that are associated with a given data type, enabling changes to the 

underlying implementation, without making changes to the calling programs. This is 

particularly important in implementing effective change mechanisms in applications 

such as concurrent engineering.

4.7 Final CAPP System Plan

It has been decided to use the same framework as the initial plan, but with the 

object oriented approach for the CAPP system knowledge representation of the 

product, process and resource domains.

The product domain is planned to be represented as an object hierarchy of 

product, subassembly, component and feature. The product, subassembly and 

component objects are planned to be defined on the basis of CADDS5 assembly design 

functionality. The form feature taxonomy is planned to be represented as per the 

CADDS5 feature library that is STEP based, but modified to communicate the 

manufacturing intent It is also planned to develop a procedure to read the CADDS5 

feature report file and transpose it into a component feature instance tree in the CAPP 

system.

The process domain is planned to be represented as an object hierarchy of 

various operations, such as drilling, boring, milling, etc. It is thought that geometric 

reasoning procedures could be developed to segregate features or features clusters into 

various machining set-ups. Based on the feature instance appearance condition, a rule 

based procedure could be implemented to suggest a machining process as a set of 

operations.
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The resource domain is planned to be represented as per the resource entity 

model. The entities would be represented as object hierarchy, as per the entity 

relationship diagram. It is thought that the set of procedures could be developed to 

search the resources while suggesting a process.

The detailed development of the CAPP system with the object oriented approach 

is discussed in the next chapter.
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5. CAPP SYSTEM DEVELOPMENT

This chapter discusses the CAPP system development by the object oriented 

language, Smalltalk. The first step in the development involved the abstract knowledge 

representation schemes for product, process and resource domains. The representation 

schemes use the definition of object hierarchies. T.ie specific knowledge can be added 

by creating an instance of similar objects. The input of specific knowledge has been 

proposed by developing a good user interface that should also be suitable for the 

concurrent engineering environment.

Based on the knowledge that is represented in the system, the development of 

geometric and process reasoning schemes have been explained. Finally, the process 

plan report generation and the concluding observations on the proposed development 

technique have been discussed.

5.1 Overview of Smalltalk

In Smalltalk terms (Figure 5.1), an object is a package of information (data) and 

its manipulation (methods) [124, 125]. A class is a description of one or more similar 

objects. The methods are the library of self-contained subroutines unique to each class 

that describe a sequence of actions to be performed upon receiving a message. An 

instance is an object that is described by a particular class.
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The object's internal variables are called instance variables. They are data 

containers and can themselves contain other objects. They are used to describe the 

object attributes. The class variables are the global variables accessible to all instances 

of a class.

Objects have the characteristics of encapsulation, that is, data inside an object is 

protected from the outside world. The only way to access an object's data is by sending 

a message to that object. Upon receiving a message, the object activates the 

corresponding method and returns the result to the sender. Objects also have the 

characteristic of inheritance. A class may have several sub-classes; a subclass may 

inherit all or part of the properties from its super-class. Different objects can respond 

uniquely to the same message. This characteristic is known as polymorphism and gives 

the advantage of not having to remember the unique vocabulary for each class.

One of the characteristics of object oriented programming is the persistent data 

to the programming environment such that the data elements exist after the program 

terminates. This is possible by making a provision to hold these data instances, 

otherwise the garbage collector would remove the data instances after the program 

termination. This results in a system with the power of object oriented programming 

and the features of databases [108].

In Smalltalk essentially everything is an object. The system provides the 

hierarchy of system classes and subclasses along with the standard methods. A typical 

application development involves the initial planning similar to the entity relationship 

diagram discussed in the previous chapter. The abstract knowledge representation is 

usually done by defining objects and/or the object taxonomies. The user interface for 

system communication is designed with windows panes and menus. The application 

can be developed in a modular fashion by implcmeiting various methods.
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5.2 Product Knowledge Representation

The product design representation, discussed in chapter three, has been used as 

the basis for product knowledge representation. The product knowledge is represented 

as the object hierarchy of product, sub-assembly, component and feature classes. The 

Product class abstraction can be described by its name. Optionally, one may wish to 

record its specifications and a group to which it belongs. The product may be a 

parentOf subassemblies and components. Based on the abstraction, a class Product is 

defined as:

Object subclass: #Product 
instance VariableNames:
'name parcntOf specifications group'

A subassembly is described as a subclass of £ product and therefore it will inherit 

all the attributes and methods from its superclass, Product. In addition, a subassembly 

could be described as childOf a product. Hence, a class SubAssembly can be defined 

as:

Product subclass: ¿SubAssembly 
instance VariableNames:
'diiidOf _

The attributes parentOf and childOf will be used to establish the relationship 

between Product and SubAssembly class instances and they will also be used to relate 

components to assemblies and features to components. The parent child relationship is 

also referred to as aggregation.

A component has been defined as a subclass of SubAssembly. In addition to the 

inherited attributes and methods, a component is described by its material, 

manufacturing process and optionally the surfaceFinish method (e.g. Heat treatment, 

Anodise, Electroplate, etc.)

SubAssembly subclass: ¿Component 
instance VariableNames:
'material process surfFinish'
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A component is described by its features. Based on CADDS5 STEP taxonomy, a 

class Feature is defined as:

Component subclass: #Feature 
instance VariableNames:
'library, datumPlane, origin, orientation, workpiece, representation, operation, application, 
rawMatlCondition, mcNotmd

As discussed in chapter three, the attributes rawMatlCondition, surfFinish and 

mcNotmc have been used to communicate the manufacturing intent.

The entire CADDS5 STEP based Feature taxonomy scheme (Appendix A) has 

been defined by the same concept as above. For example, a class HoleBlind is defined

as,

Depression subclass: #HoleDlind 
nstance VariableNames:
'diameter depth'

The object definitions described above represent the abstract knowledge of the 

product domain. The user interface has been designed to add the specific knowledge 

(product data). Windows arc designed to display the user defined product, 

subassembly and component instances. The feature classes arc displayed in a separate 

window. Specific window pane menus arc designed for the user commands (Figure 

5.2).
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In order to represent the feature based component design, two types of user 

interfaces have been developed. The local user interface, 'Add Feature', enables the 

local feature based design representation i.e. within the CAPP System. The local user 

interface can be used for system development and testing purposes. The other 

interface, 'Import Component', reads the CADDS5 feature based design report file into 

a feature based design representation in the CAPP System.

5 3  Process Knowledge Representation

The knowledge about the machining processes and their capabilities has been 

represented by a mixed approach of frames and lules which, in Smalltalk terms, are 

objects and methods respectively. The process knowledge was considered mainly at 

the universal level i.e. the knowledge available from the textbooks and handbooks. The 

knowledge was represented as an object hierarchy. The process knowledge was not 

mixed with the specific shop or the machine tools or cutting tools. That type of 

knowledge will be discussed under resource knowledge representation. The following 

discussion illustrates the process object hierarchy.

The machining process at the highest level is thought of as a set of operations 

which are performed on one or more manufacturing feature instances of a component 

within a particular set-up by using a particular fixture. The feature processMode can be 

manual or automated depending upon the method of process planning. The class 

MfgProcess can be defined as:

Object subclass: # MfgProcess
instanceVariableNames:
'processMode setUpNo opr No fixtureForOpr mfgF tin stances'

The Feature process (FtProcess) is definect as a subclass of MfgProcess and 

represents the attributes that are common to a machining operation.
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MfgProoess subclass: (YFtProcess 
instance VariablcNames:
’ftOprNo oprTypc oprName cfaildOf parentOf 
preMcState oprStock toolForOpr mcForOpr reqdPosAccy 
speed feed depthOfCut cutTime moveTime totalOprTime 
precedsOpr'
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Figure 5.3: Operations and Pre-Machining State

The ftOprNo represents the operation number. The oprType could be roughing 

or finishing. The oprName describes the operation class name, e.g. TwistDrilling, 

Reaming, EndMilling, etc. The childOf and parentOf attributes describe the operation 

relationships. They are used to capture feature process as an operation tree. A 

machining process for a feature instance has been planned to be generated from the
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finished state to the raw state. Thus, a finishing operation will always be the root node 

of the operation tree (Figure 5.3). The preMcState holds the feature stock attribute for 

the preceding operation. The oprStock indicates the stock to be removed in the 

operation. The toolForOpr describes the tool class, maximum, actual and minimum 

tool diameter, and minimum tool height. The mcForOpr describes the valid machine 

tool classes for the operation. For example, an EndMilling operation for the Pocket 

feature can be performed on a Milling machine, a CNC Milling or a Machining Centre 

but not on a Radial Drilling machine or a Jig Boring machine. The reqdPosAccy 

describes the acceptable positioning accuracy of the machine tool to perform the 

operation.

The speed, feed, depthOfCut, cutTime, moveTime and totalOprTime, describe 

the cutting parameters and various times to perform the operation. The precedsOpr 

describes the operation precedence in relation to the machining operations of the 

parent features.

The HoleMakingProcess represents the abstraction of all the hole making 

processes: .

FtProcess subclass: #HoleMakingProcess 
instanceVariableNames:
’holeRefPt positionPt approachPt plungePt dwellTime returnPt 
clear Pf
class VariableNames:
'processKnowledgeRef

The instance variables describe the tool positions in the hole machining 

operations. The class variable, processKnowledgeRef holds the hole roughing and 

finishing knowledge instances of various hole making processes. The Hole Finishing 

Knowledge can be described as:

Object subclass: IHoleFinishingKnowledge 
instanceVariableNames:
'mfgEagineer knowledgeReiNo prooessClass diaRange tolRange 
depth Range sfRange reconFinStodc*
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It describes the capability of the hole making process in terms of diameter, 

tolerance, depth, surface finish and recommended machining stock for finishing. The 

Hole Roughing Knowledge is described as a subclass of Hole Finishing Knowledge:

HoleFinishingKnowledge subclass: #HoleRoughingKnowicdge
instanceVariablcNames:"

The inherited attributes from Hole Finishing Knowledge can be used to describe 

the hole making process capability for roughing.

The HoleMakingProcess is classified into a Hole Creating and Enlarging 

Process. The HoleCreatingProcess ended up in further classification into Drilling, 

TwistDrilling, CentreDrilling, etc. Similarly, the HoleEnlargingProcess is classified into 

Boring, Reaming, CounterBoring, Countersinking, etc.

Similar concepts have been used to describe Milling and Grinding Processes. 

Figure 5.4 illustrates a typical machining process classification that has been used in 

organising the process knowledge.

The complexity in applying a particular process to produce a particular shape 

varies from process to process. For example, it is relatively easy to represent 

knowledge instances for hole making processes under which a process can be 

applicable. The shape producing capability of these processes is predictable. However, 

this may not be the case in other types of processes, such as milling. Under such
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circumstances the various methods that comprise the set of rules can be developed. 

These methods may represent both the universal and the experience based process 

knowledge to machine a particular shape. The proposed process reasoning techniques 

are discussed later in this chapter.

A user interface has been developed to display and inspect the machining process 

classes. The process window pane menu has been designed to provide the options for 

adding the process knowledge, and for generating the manual or automated process 

plans (Figure 5.5).

Figure 5.5: The Process User Interface

5.4 Resource Knowledge Representation

The resource knowledge representation comprises the knowledge about cutting 

tools, machine tools, fixtures, materials and machining parameters. The entity 

relationship diagram, discussed in chapter four has been used as the basis for resource 

object class definitions. However, multiple entities of that diagram are combined into 

one or more objects for convenience. The tool hierarchy superclass is defined as:

Object subclass: #Tool 
ins lance VariableNames:
'name loolDia shankType material toolSpec toolParamelere 
loolt-ldgeType inserts pec insertGradc holder Ref workApplicalion 
vendor cost toolQfy'
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î
The Tool subclasses are defined as per the types and characteristics of the tool, 

e.g. Bore, CounterBore, Drill, Mill, EndMill, etc.

The machine tool superclass is defined as:

Object subclass: #MachineTooI 
ins tance VariableNames:
'name type description controlSystem spindleTaper spindlePower size traverse Limit speedLimit operations 
positionAccuracy repeatability machineHourRate*

The entire machine tool class hierarchy is illustrated in Figure 5.6.

M a c h in e T o o lr~
D rillin g M c

1
B o r in g  M e

1
G rin d in g M c

1 1 
M illin g M c  M a c h in in g C e n tre

Radial DriMngMc 
VerttcaOdlHngMc

HofSortngM c
JlgBorlngM c

H orSortGnndtngMc UrwersalM iltingMc 
VerttcalM ittngM c 
CNCHorM aingM c 
CN CVerMt RingMc

Horizontal M achlrangCantre 
Vert) calM acM ntngC entro

Figure 5.6: Machine Tool Classification

Like process classes, the machine tool and cutting tool class definitions are 

based on the universal knowledge. The specific knowledge is represented by the class 

instances. The user interface has been developed to inspect, add or delete the instances 

(Figure 5.7).
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The fixture class has been defined by the same method that was discussed in 

chapter four while planning the resource entity model. The Fixture class is defined as:

Object subclass: #Fixture 
instance VariableNames:
'name description fistureRefNo usedOn'

The user interface has been designed to add, remove and inspect the feature 

instance (Figure 5.8). It was observed that the fixture links the component machining 

in a particular setup on a particular machine tool. Hence, the 'Assign Fixture' command 

has been developed to assign a fixture instance for machining the component in the set­

up on the machine tool. The usedOn attribute records the set of component, set-up and 

machine tool attributes, which are referred to by the 'Assign Resources' method.

The materials and machining parameters have been defined on the material and 

machinability database principles of Metcut Research. The class Material is defined as:

Object subclass: #Material 
instance VariableNames:
'malerialGroupNo groupName specifications description hardness 
conditionCode conditionDescr machinability mcParameters' 
class VariableNames: 'Mat Inst*

The class Material represents the work material. The tool material is represented 

as a subclass of Material:

Material subclass: #ToolMaterial 
instance VariableNames:
'coatingStatus grade1 
ClassVariable Names:
ToolM stlnsf

The user interface has been developed to represent the specific material 

knowledge and also to attach the machining parameters to the work material (Figure 

5.8). The machining parameter class is defined as:

Object subclass. # Me Parameter 
instance VariableNames:
'tool Material toolClass depth OfCut feed Unit feedvalue 
speedUnit speedValue 
class VariableNames:
'McParalnsf
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The entire resource knowledge representation is independent of product or 

process knowledge. In a concurrent engineering environment, the resources may be 

referred to by a design or manufacturing team. The process reasoning methods derive 

the valid machine or cutting tool for the operation based on the universal knowledge. 

A subsequent command, 'Assign Resources', would refine the initial plan by searching 

the available resources and selecting them if available, or generate a warning message.

The planner may then decide to define the new resources.

Figure 5.8: Material Resource User Interface

5.5 The System Communication Interface

The system user interface development is the main constituent of the CAPP 

system. The display and menu design of product, process and resource knowledge 

representation is controlled by the object class, ProductCom. It consists of various 

display panes. Each pane has been associated with the specific object class as discussed 

in section 5.2, 5.3 and 5.4. The pane display size, the corresponding menu options and 

the pane digitised cursor text have been controlled through the number of specific 

methods that arc developed for each pane. The CAPP system window is an instance of
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a class ProducCom. For example, the following command at system level will open the 

CAPP system window:
Test := ProductCom new.
Test open.

The command 'Test open' at the system level will display all the CAPP system 

panes simultaneously. This enables the CAPP system user to work with the system 

without bothering with the complexity of the system design.

5.6 Geometric Reasoning Technique

The first step in process planning is obviously to understand the component 

geometry. The term geometric reasoning has been used in CAPP research to interpret 

the geometry, which helps in deriving a suitable manufacturing process. The term is 

used to mean any reasoning process related to the component geometry: recognising 

manufacturing features, identifying feature relationships, extracting feature dimensions, 

finding feasible approach directions for machining and determining geometric 

constraints [126],

Since the design by feature approach has been used and only higher level data 

could be extracted from the model, the various feature recognition techniques that are 

discussed in the literature review, are not used. The CAPP system feature 

interpretation is based on higher level data abstraction of a feature based model. The 

manufacturing feature for the corresponding design feature could be reasoned from the 

manufacturing attributes of the design feature. The principal attribute that describes the 

manufacturing feature is the raw material condition (Figure 5.3).

The raw material condition attribute of a feature instance that can either have a 

'Solid' or Thickness' value, may be interpreted differently in terms of additive and 

subtractive features. Hence, certain assumptions were made to understand the raw 

material condition of a feature. In terms of subtractive features the raw material 

condition 'Solid' was assumed as the entire feature volume to be removed by the
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machining process. The same attribute value for the additive feature was assumed to

imply the projected stock along the Z axis upto the highest face when an additive 

parent exists (Figure 5.9).

Figure 5.9: Interpretation of the Additive Feature for 'Solid' Stock

The following rules were assumed to interpret the raw material condition of 

additive features:

General Stock definition:

Stock := #(Stock Type' 'ZStock' 'SideStock').

1. If feature is a Primitive (e.g. Plate) and raw material condition is ’Solid', then Stock at: 2 & 3 is 0. Hence, no machining is 

required.

2. If feature is a Primitive and raw material condition is Thickness' and the feature has no Protrusion child (e.g. 

Tab_Rectangular), then ZStock * Thickness'. Hence, machining will occur on the top face of the feature.

3. If feature is a Primitive and raw material condition is Thickness' and the feature has Protrusion child, then the Slock at: 2 

* Thickness', and at: 3 ■ 0. Hence, machining will occur on the top face of the feature.

4. If feature is a Protrusion and raw material condition is 'Solid', and the feature has no Protrusion child, then the SideStock 

is computed from parent child geometric attributes and the ZStock -  2 mm (assumption). Hence, the feature machining will 

occur on side faces and the top face.

5. If feature is a Protrusion and raw material condition is 'Solid', and the feature has Protrusion child, then the ZStock will be 

zero and the SideStock will be computed as per 4.

104



6 . If feature is a Protrusion and raw material condition is Thickness' and a feature has no Protrusion child, then the

SideStock is equal to Thickness' and the ZStock = 2 mm.

7. If feature is a Protrusion and raw material condition is Thickness and a feature has Protrusion child, then the SideStock

and ZStock is equal to Thickness'.

The above rules have been used to develop a method, 'getAdditiveFtStock', 

which returns the appropriate stock attributes. The process reasoning is based upon the 

stock attributes.

The component feature tree helps in reasoning the feature relationships. Various 

methods have been developed to interpret the feature relationships such as, show child 

features; show parent feature; show component to which the feature instance belongs; 

show leaf instances (a feature instance that has no child instances) of the feature; etc. 

These methods help in reasoning the set of features to be machined together. For 

example, if the Hole feature has a subtractive parent such as Counterbore or Pocket 

and the Hole needs a drilling operation, then the drilling operation should have a 

precedence over any operation that has to be performed on the subtractive parents. 

The influence of feature relationships on process reasoning is also referred to as 

geometric constraint [45].

The feature dimensions that describe its shape, shape tolerances, origin, 

orientation, etc., were automatically available as feature instance attribute values. 

Simple methods such as diameter, tolDiameter, origin, datum, etc. enabled direct 

access to the feature iastancc attribute values. Specific methods have been developed 

to enable computation of indirect attributes such as area of a pocket, etc.

The external access direction to machine the features has been derived from the 

orientation plane or the datum in which they were created. For example, the Z axis of 

the hole features will always be along its axis; for a pocket, normal to the pocket cross- 

section (along the depth); for a boss, along height, ctc.(Appcndix A). Although any
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orientation plane could be used in building a model, the most commonly used 

orientation planes are, TOP, FRONT, RIGHT, REAR, LEFT and BOTTOM. Only 

these planes are considered for process reasoning at the moment. They are referred to 

as datum planes. They also imply a unique set-up number, from one for TOP to six for 

BOTTOM respectively.

The following steps are followed for the geometric reasoning of the component 

feature tree:

1. Read all the additive feature datum planes in the component feature tree.

2. For each datum plane, read all the additive feature instances.

3. From all the additive instances in step 2, select the instance that has the highest Z 

value. Send mfgProcess message to the instance for simulteneous geometric and 

process reasoning to generate feature machining piocess.

4. Search for subtractive children of the additive feature instance in step 3. Send 

mfgProcess message to the subtractive instance for simultaneous geometric and 

process reasoning. Traverse the subtractive feature instance tree from root to leaf node 

direction so that the parent process is generated first.

5. Repeat steps 3 and 4 for the next highest Z value additive feature and so on until all 

the additive feature instances are machined.

6. Repeat step 3, 4 and 5 for all the datum planes.

The mfgProcess method comprises a technique of simulteneous geometric and 

process reasoning. The geometric reasoning part interprets the manufacturing view of 

a feature from the raw material condition (refer to Figure 5.3), and the process 

reasoning part attempts to match that view with the process knowledge. The process 

generation methods for the feature instances arc diicussed in the following section.
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5.7 Process Reasoning Technique

As discussed in section 5.3, the machining process abstract knowledge is 

organised in the form of a process object hierarchy. The real knowledge is added by 

knowledge instances for hole making processes and by rules for other processes. The 

process reasoning is based on the methods that have been developed for machining the 

feature classes. The methods are developed in a backward planning approach (Figure 

5.3).

Like conventional programming languages, there is no standard practice to 

prepare flow diagrams in object oriented programming. The SmalltalkA'286 

programming user guide illustrates the application logic by listing various methods that 

are developed with various objects [125], A similar technique has been used in this 

chapter to illustrate the CAPP system development. However, it was felt necessary to 

illustrate the process reasoning technique by using the flow diagram (Figure 5.10). It is 

worth mentioning that the process reasoning technique is not a single program. The 

process reasoning is achieved by a combination of methods that are developed with the 

feature objects and process objects.

The feature machining method sends a message to the appropriate process 

classes. The process is generated if the message returns with the process instance, 

otherwise the message returns with nil. For example:

Object: ■ HoleThrough 
Method: ■  fgMethod

(self mcNotmc at: 1) ■■ $Y
ifTrue:[HoleMakiogProcess holeThrough: self].
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Figure 5.10: Data Flow Diagram for Process Reasoning Technique

Object: HoleMaklngProcess 
Method: holeThrough: alióle

"Search for hole finishing possibility by Boring, Reaming or 
Drilling”
(proc :■ Boring genFinProcess: alióle) isNil 

ifFalse:) alióle addProcess: proc].
(proc : -  Reaming genFinProcess: alióle) isNil 

ifFalse:) alióle addProcess: proc).
(proc : -  TwislDrilling gea Fin Process: aHolc) isNil 

ifFalsc:) alióle addProcess: proc).
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"S e arch  the h o le  rough ing  po ssib ility  for the fin ish ing" 

a H o le  p rocess  d o :( :finP rocess |

(p ro c  :=  G nProcess class g en R fP ro c ess : finP rocess feature : a H o le )  isNil 

ifF alse :[f in P ro c ess  p aren tO f: proc].

The process class methods interpret the feature appearance condition from the 

feature instance and attempt to match it with the process knowledge. The process is 

recommended if the matching of knowledge occurs. For example:

Object: Boring
Method: gen Fin Process: aHole 
f e a tu re s  lo ck  :=  aH o le  h o le S to c k V a lu e  

( f e a tu re  a t :2 )  >  0

ifFalse:[Test answer: aHole name,' no stock for finish Boring'.

Anil].
(mcStock :■ Boring malchFinKnowledge: aHole) isNil

ifTrue:[Test answer: aHole name,' can not be finished by finish Boring'.
Anil].

ifFalse:["Initialise a process"
Proc := Boring new.
preMcStock at:2 pat: (featureStock at:2 ) - mcStocL 
proc initialize: aHole; 

oprType: 'Finish'; 
opiStock: mcStock; 

getFinTool: aHole; 
preMcState: preMcStock.

‘■pcocl

Object: HoleEnlargingProcess 
Method: match Fin Know ledge

"Search the HolennishingKnowledge instances for matching with the feature appearance condition. Return recommended slock or 
nil"

H o leM a k in g P ro c ess  p roc  K n o w le d g e  do :[.each  |

(aHoleFeature diameter »  (each diakange a t :l)  and:] 
aHoleFeatnre diameter <■ (each diaRange at:2)|) 

ifTnie:[(aHoleFeature to I DiaRange >■ (each tolDiaRange aril) and:]
aHoleFeature tolDiaRange <■ (each tolDiaRange at:2>]) 

ifTnie:((aHoleFeature surfFinish >■ (each sfRange ?t:l) and:] 
aHoleFeature snrfFinish < •  (each sfRange at:2)]) 

ifTnie:((aHoleFeaturc depth >■ (each depthRange at:l) and:]
aHoleFeature depth <■ (each depthRange at:2)D] 

i(Tnie:(Aeach reconFinStock]]]]]

Object: a Boring 
method: getFinTool: allole

getFinTool: aHoleFeatnre
"selects the tooltype, tool dia and minimum 
tool height for finish boring"



|toolValues minDepth| 
tool Values := OrderedCollection new. 
(minDepth := approachPt - plungePt) positive 

ifFalse:[minDepth negated]. 
toolValues add: 'Bore';

add: aHoleFeature diameter, 
add: aHoleFeature diameter; 
add: aHoleFeature diameter, 
add: minDepth.

toolForOpr := toolValues asArtay.

The class method inheritance helps in process initialisation:

Object: a HoleEnlargingProcess 
method: initialize: aHole

self reqdPosAccy: (HoleMaldngProcess getTolRange: aHole)/2. 
mcForOpr := #(TBoringMc; 'DrillingMc' 'MillingMc' 'MachiningCentre'). 
super initialize: aHole

Object: a HoieMa king Process 
method: initialize: aHole

(aHole isKindOf: Passage)
ifTnie:[self thruHoIeCycleLocs: aHole] 

ifFalse:[ self blindHoleCycieLocs: aHole] 
super initialize: aHole

Object: a FtProcess 
method: Initialize: aFeaUire

parentOf isNil
ifTnie:[pareatOf := OrderedCollection new], 

self addSetUpNo: (aFeature getSctUpNo); 
processMode: 'Auto' asSymbol;

oprName: self class.

The above technique has been used to generate a process operation sequence 

for individual features. The process generation tree is traversed from top to bottom,

i.e. the parent processes are generated first. The knowledge of parent process helps in 

deciding the operation precedence of a child process. For example, if the HoleThrough 

is a child of a Countcrborc and the Countcrborc is finished by a CounterBorc tool, then 

the Drilling or rough Boring operation for HolcThrough must have a precedence over 

the Counterboring operation.
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Object: ■ HoleMakingProcess 
Method: precedence: aHoleFeature

"Checks the parent feature instance machining process and returns the parent origin or nil" 

parent := aHoleFeature childOf.

"Add the precedence rule for the Countetbore finishing"
(parent isKindOf: Depression)

ifTnie:[parent rawMatiCondition = 'Solid’ 
ifTrue: [parent procOpr ■ Tinish' 
ifTnie:[self isKindOf: Drilling 
ifTnie:[precedsOpr := 'Parent Operation'.

"(parent origin].
(self isKindOf: HoleEnlargingProcess) and:[ 
self oprType ■ 'Rough']) 

ifTrue:[precedsOpr := 'Parent Operation'.
"(parent origin]]]].

"Add precedence rule for Pocket roughing"

((parent isKindOf: Pocket) and:[ 
parent rawMatl Condition = ’solid*]) 

ifTrue:[self isKindOf: Drilling 
ifTnie:[precedsOpr := 'Pareut Operation'.

"(parent origin]]

Similar precedence rules may be written for machining closed tolerance feature 

instances. -

The process options are also generated. For example, the hole may be 

machined by Reaming, Boring or Drilling. It should be noted that the available 

resources are not examined while generating the process or process options. Later, a 

technological process based on the universal knowledge has been used to search the 

available resources.

The process reasoning methods have been developed for HoleThrough, 

HoleBlind, CounterBore, CounterSink, Pocket, Plate, TabRectangular and 

BossCircular. Similar techniques can be applied for the other feature classes in STEP 

taxonomy such as, Slot, Notch, etc.(Appendix A).
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5.8 Manual Planning Technique

It is obvious that the generative process planning technique, discussed above, 

can only be used on the feature based component design. In a concurrent engineering 

environment, the situation may arise that the design representation of a component has 

not been done by features and still the manufacturing process plan that has been 

considered by the product engineering team needs to be assigned to the component. 

Such a process plan may be either brief or detailed.

It was observed that two different approaches could be used for such an 

application. The first would be to expand the current system to accommodate the 

variant process planning capability. The second approach would be to develop the user 

interface to enable the user to interactively assign the process attributes. The first 

approach was not in line with the objectives of current research. The second approach 

was feasible because of the technique used in the design of the CAPP system user 

interface. The simultaneous display of product, process and resource domain 

knowledge representation has enabled digitised selection of the existing objects for 

inspection, deletion or addition. The digitised object selection technique has been used 

to assign the machining process instances to the component instance (Figure 5.11). 

The user interactive mode guides the user for specific attribute selection. The typical 

methods that are developed for such applications are illustrated below:

Object: a ProductCom 
Method: InltYourProccss

(c u rP ro d u c t isM e m b e iO f: C o m p o n e n t) and:[

(rep ly S tre am  isK in d O f: M fg P ro cess)])

¡fT n ie :(p ro c .ln sU n ce  :■ re  p layS  t ream  in ilY ourP rocess.

cu rP ro d u c t add  P rocess: p ro c ln  stance].

Object: a MfgProcess 
Method: InltYourProcess

" In itia lise  m a n u a l p rocess"

p ro c ess  M o d e 'Expert* asS y m b o l "E xpert m eans m anual" 

(s e tl lp N o  :■ P ro m p te r  

p ro m p t: 'S e t-U p  N u m b e r 7  

d e f a u l t !^  p re ss  ion  : T )  isN il
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i (T n ie : [Aself].

(fixturcFoiOpr := Prompter 
prompt: 'Fixture For Operation 7  

default:") isNil 
ifTrue:[Aself].

(mfg Ft Instances := prompter 
prompt: ‘Batch Quantity 7  

defaultExpression: ’l 1) isNil 
ifTrue:[Aself].

Object: a Ft Process 
Method: InitYourProcess

(ftoprNo := Prompter 
prompt: Operation Number? 
defaultExpression: 'l^ sN il 
ifTiue:(Aself].

(mfgFtlnstances := Prompter 
prompt: Number Off? 
defaultExpiession: ,l r)isNiI 
ifTrue:[Aself].

Object: a End Milling 
Method: InitYourProcess

super initYourProcess.

toolForOpr :■ #CEndMiH' 50 'Dia' 5 'minHgf) 
(toolFoiOpr := Prompter 
prompt: EadMill Diameter? 
defaultExpression: ^ ^ N i l  
ifTnie:[Aself].

(cuttinglength :■ Prompter 
prompt: 'EadMill Minimum Tool Length ? 
defaaltExpression: *75') isNil 
ifTnie:[Asel(].

toolFoiOpr at:3 put: toolDia;
at:5 put: cuttinglength.

mcForOpr :■ #fMillingMc 'MachiningCentrc').

(oprName :■ Prompter 
prompt: 'Operation Description 7  

default: Tind Mill*) isNil 
i(Tnie:[Aself].

(totalOpiTime :■ Prompter 
prompt: 'Estimated operation time (min) 7  

dcfaultExpreasioa:' l*>»Nil 
iiTnie: [Aaelfl.
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Figure 5.11: Data Flow Diagram for Manual Process Assignment

Similar to EndMilling, the methods have been developed for other process 

classes. The inheritance characteristics of the object oriented approach helped in the 

rapid development of the manual planning technique.

The user interactive mode assigns the set of process instances to the component 

process attribute. The manual process plan can be inspected, displayed, printed or 

saved in a file. The following section discusses the CAPP system process plan report 

generation.

5.9 Process Plan Report Generation

As discussed in section 5.7, the generative pioccss reasoning technique generates 

and assigns the process instances to the process attribute o f various feature instances. 

The process plan report generation involves the systematic output of various process 

instance attribute values.
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A multipurpose text display pane was designed for displaying various types of 

system output. For example, the command 'Show Allchildren' displays all the child 

feature instances of a requested instance. The 'Generate Process' command prints 

various messages of a process reasoning scheme. These messages help in studying the 

process reasoning technique as well as bug Fixing. The same text display pane has been 

used for process plan report generation.

The text display was designed with the menu command options such as restore, 

print, save and show-it. Most of these are standard Smalltalk text pane features and 

can be incorporated with ease. The 'restore' command erases the current text display. 

The 'print' command generates the hardcopy printout of the text display. The 'save' 

command saves the text display as a text file. The 'show-it' command executes the 

Smalltalk command. It can be used as a calculator. The standard text editing 

commands such as cut, paste and copy, have also been provided to edit the process 

plan if necessary.

The process plan report generation is activated by digitising the component 

instance and selecting the command, 'Show Component Process'. Various methods 

have been developed to display the process plan for each machining set-up. This plan 

comprises the display of operation number, operation name, operation type, tool for 

operation, machine tool for operation and operation precedence. The NC machining 

cycle location output capability has also been developed. The hole processing and 

pocket cycle locations can be displayed as a process plan.

The following example illustrates the typical process plan report display:

Automated Process Plan 
Component Dame: NcwComp 
SetUp No: 1
Fixture For SetUp: MachineVice

Machining Process for HoleThroughll 
Opr No: 1; Opr Name: Rough CeatreDrilling 
Tool For Opr: (TwistDrill' 3.5 4.0 4.5 6.0)
Machine For Opr: 'BokoVerticalMachiningCentreU'
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Rough CenireDrilliog Cycle Locations...
PositionPt: (100 75 50)
ApproachPt: 53.0
PlungePt : 44.0
RetractPt : 58.0
Dwell(Sec): 1.0

The same command will also display the manual process plan.

5.10 Conclusions

One of the advantages in object oriented approach is that the object schema, 

which is a notion used to specify the desired object as a collection of entities, can be 

modified relatively easily. The modifications such as addition or removal of an attribute 

from the object definition does not affect the overall schema. This helps in following a 

'design-prototype-refine' approach in the application development.

The object oriented approach to CAPP system development was found to be 

very flexible. The entire system development could be achieved with a modular 

approach.

The detailed study of system objects and methods could significantly reduce the 

programming efforts needed for application development. Hence, the initial learning 

curve is rather steep compared with conventional programming languages.

The detailed initial system planning has helped in reducing the system 

development efforts. The study of entity relationship diagrams, discussed in chapter 

four for resource database design has helped in developing object hierarchies for 

knowledge representation.

Smalltalk/V286 docs not support multiple inheritance, whereas CADDS5 feature 

definitions can describe composite features by multiple inheritance. For example, the 

feature taxonomy (Appendix A) defines a feature, Holc_Counterborc by inheriting the 

attributes of a feature class, HoleBlind and a Counterbore. Composite features can 

speed up the design representation. The composite features will have to be 

decomposed into its constituent features before constructing the component feature
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tree. Hence, the 'Import Component' method will need appropriate modifications. The 

geometric and process reasoning technique, however should remain the same.

The development of new methods by using the existing ones with modifications 

had enabled rapid system development.

The system user interface development tools were found to be very powerful and 

efficient compared to conventional programming languages such as C.
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6. CAPP SYSTEM RESULTS

This chapter illustrates the test results that have been achieved by using the 

CAPP system. The illustrations are mainly focused on the primary research objectives 

i.e. the generation of automated process plans for feature based models. The secondary 

objectives such as geometric and process reasoning techniques, system integration with 

good user interface and manual process association, were discussed in detail whilst 

developing the system and hence will be mentioned here only briefly.

The integrated CAPP system that has been developed comprises the 

Computervision CADDS5 workstation and a Personal Computer 486 (PC 486) to run 

Smalltalk. The form feature library, based on the STEP standard and modified to add 

manufacturing attributes, has been developed to design the component as a feature 

based model. Beside the mandatory use of features, it enables the user to use all the 

standard CADDS5 commands such as view manipulations, shaded image, hidden line 

removal, detail drawing preparation, etc. At the end of the design process, the 

command, 'Verify Feature All Instances Report1, outputs a feature report text file in 

'UNIX' format. The system converts this file to 'DOS' format and then transfers it 

through the network to the PC 486. The CAPP system command, 'Import Component' 

converts the feature report text file into the corresponding feature instances and 

constructs a component feature tree. The feature tree has been used to apply geometric 

and process reasoning techniques to generate a component process plan. The following 

discussion illustrates the CAPP system capability w ith examples.

6.1 Product Design Representation

The product design is represented in the fomt of hierarchical tree structure of the 

Product, SubAsscmbiles and Components. The user describes the design by 'Add 

Product', 'Add SubAsscmbly' and 'Add Component' commands. The parent/child 

relationship (aggregation) is ensured by digitising the instance to which the new
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instance is to be added. All the instances are displayed in the Product, SubAssembily 

and Component display panes. The 'Change' and 'Remove' commands enable product 

design modification if necessary.

As discussed in chapter three, the new generation of commercial CAD systems 

describe the product design that is similar to the above concepts. This helps in 

achieving a single product data model and concurrent engineering. In future, an 

interface can be developed to read STEP product configuration data file into the CAPP 

system. The CAPP system product design representation scheme has ensured that the 

above issues have been given due consideration while developing the system.

The CAPP system represents the component design as a feature tree. The 'Add 

Feature' command enables building a component feature tree within the CAPP system. 

This helps in an understanding of basic feature based design principles as well as 

testing and developing the geometric and process reasoning schemes. The CADDS5 

feature based model of a component is represented into the CAPP system by 'Import 

Component' command. It reads the feature report file, initialises the feature instances 

and generates a feature tree (refer to Appendix F, page 216, 241 and 265). The feature 

instances and the feature tree can be inspected by 'Change' and 'Show All Children' 

commands respectively.

The 'Import Component' command is based on the text file structure of a 

CADDS5 feature report file. In the future, it can be developed using the STEP 

application protocol for CAPP so that the feature based models of different CAD 

systems arc represented within the CAPP system.

The literature review shows that various shapes of test components have been 

used by researchers to demonstrate the feature based design representation. The 

process planning program of CAM-I and their subsequent contract to Deere and 

Company to develop the first ever feature hierarchy, upon which the STEP form 

feature taxonomy is based, used the CAM-I appiovcd test component, ANC 101-M
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[127]. The test part comprises features such as HoleBlind, Pockets, U-Shaped Slots 

and a Boss. The same test component could not be used in this application because of 

the CAPP system limitations in geometric tolerancing and topological data 

representation. However, on a similar approach, three test components having similar 

features have been designed to illustrate process plan generation. These are referred to 

as TestCompl, TestComp2 and TestComp3 in Appendix F.

6.2 Process Plan Generation

As discussed in the previous chapter, the process plan generation is based on the 

proposed geometric and process reasoning techniques. The feature tree and feature 

attributes have been used to interpret the manufacturing view of a feature upon which 

the process reasoning techniques are developed. The application of a component 

feature tree has also been demonstrated for process operation precedence (refer to 5.7 

and also Appendix F, page 244- 245 and 252).

The plan generation has been developed on two types of resource knowledge, 

universal and shop specific. The universal knowledge based process plan is generated 

by digitising the component instance and issuing the command, 'Generate Process'. The 

system outputs various process reasoning based messages in the text window while 

generating a process. This enables the system planner to interpret the planning logic 

and debug the system reasoning methods if necessary. The universal knowledge based 

process plan can be displayed in the text display window by digitising the component 

instance and issuing a command, 'Show Component Process'. The process reasoning 

messages and the universal knowledge based process plans for the test components are 

illustrated in Appendix F (page 217-227, 242-248 and 266). As can be seen from the 

illustrations, the process generation does not consider the shop specific resource 

knowledge at this stage. The possible machining set-ups, the resource options such as
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machine tools and cutting tools as well as the process options to machine the 

component are displayed.

By referring to the universal knowledge based process plan, the user may decide 

to check the shop resource and allocate the fixture for the specific machining set-up 

and the machine tool by using the 'Add Fixture1 and 'Assign Fixture' commands. The 

manual fixture allocation links the machine tool from the Shop to the machining 

process. A method for Shop specific technological validation of a machine tool that is 

based on its size, power, speed and feed limits, process capability and economics of 

machining has not been developed yet.

The shop specific process can be generated by the command, 'Assign Resources' 

that enables a search of the shop specific resources for the process, such as fixture for 

set-up, machine tools and cutting tools and machining parameters. If available, the 

resources are allocated to the corresponding process attributes, otherwise the system 

prints a message in the text display window about the unavailability of various 

resources. The sample printed message for the test components is illustrated in 

Appendix F (page 228, 249 and 267).

The CAPP system has been able to demonstrate the calculations of NC 

machining cycle parameters from the form feature attributes (Appendix F page 229 - 

235). Additional methods can be developed to generate CADDS5 CVNC command 

file for automated NC tool path generation, similar to the approach used by Foong 

[62]. This way an integrated CAD/CAPP/CAM system can be demonstrated.

The universal and shop specific process plan generation capability that has been 

developed in the CAPP system is unique. The approach should enable quick 

implementation of the CAPP in various types of machine shops. The universal plan 

generation capability would provide instant process plan generation based on the 

universal knowledge. The shop specific process refinment would be possible by 

defining the shop specific resources by using the various resource definition interfaces
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that have been implemented. Special methods may also be developed to link the 

company specific resource databases. The object oriented open architechure o f the 

system should also enable the user to refine the existing methods in the CAPP system 

by referring to the existing methods and using the Copy, Cut and Paste features.

The process reasoning technique in the CAPP system assigns the process 

attributes to all the feature instances that have been considered for machining. This 

results in a repeated display of a process plan for identical but multiple feature 

instances that are present in the component. For example, four instances of similar size 

HoleThrough feature (refer to TestCompl, Appendix F, page 220-227) will display the 

process plan four times. This is overcome by the piovision of Cut and Paste commands 

with the text display window to edit the process plan if necessary. The final printout of 

the process plan for test components is illustrated in Appendix F (for TestCompl on 

page 229 - 235).

The user interactive manual process planning technique has been developed to 

assign process attributes to the component that has not been designed by features. This 

assessment has been conducted to emphasis the need for assigning the manufacturing 

intent based on standard manufacturing terminology at an early stage in the 

design(conceptual design). The technique also highlights the importance of a good user 

interface in the CAPP system.

6 3  The Resource Representation

The shop specific resource knowledge representation has been achieved by the 

provision of a good user interface. The 'Add Machine Tool', 'Add Cutting Tool', 'Add 

Fixture', 'Add Work Material', 'Add Tool Material' and 'Add Machining Parameters' 

commands have been provided with the modification options such as 'Change' and 

'Remove'.
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As discussed in chapter four, the resource knowledge representation has also 

been implemented by using the Oracle relational database system. The automated tool 

assembly generation and the use of form features for graphic display of tool assemblies 

has been demonstrated (Appendix E).

A number of organisations have been using some form of database management 

system for resource knowledge representation. The implementation of a feature based 

CAPP system like the one proposed by this research would also mean the exchange of 

resource knowledge representation between different systems. The exchange of 

resource knowledge from the Oracle resource database to the CAPP system has not 

been implemented. However, it has been identified as work for future development.

Unlike most CAPP systems this research has emphasised on a good user 

interface. The CAPP system communication interface enables simultaneous display of 

product, process and resource information. This enables the review of process plan in 

the context of design and resources or a design in the context of manufacturing 

process and the resources. Hence, the proposed CAPP system should prove to be a 

valuable tool in a Concurrent Engineering environment.

6.4 Conclusions

The functionality of CAPP system has been illustrated by using the system to 

generate process plans for sample components.

The consistent results conclude that the feature based CAD models on 

commercial CAD systems can be used to automate downstream applications such as 

CAPP.

A two tier universal and shop specific process plan generation strategy should 

help in customising the CAPP system or adding new application modules to it such as 

Shop Scheduling.
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A good user interface has been emphasised and developed. It enables 

simultaneous display of product, process and resources and should meet the 

requirements of concurrent engineering environment.

The system is by no means complete. There is scope for improvement as well as 

opportunities for further research. These issues will be discussed in detail in the next 

chapter.

The system has been developed from basic principles and is being used for the 

demonstration of feature based modelling concepts and its applications on the 

Computervision advanced parametric design training course at the University Of 

Warwick.
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7. PROBLEMS IN FEATURE BASED TECHNIQUES

This research has demonstrated that the feature based modelling technique can 

be used in implementing a CAPP system with design for manufacturing approach 

(Appendix C & F). Feature based modelling typically allows associativity between 

geometric entities, construction procedures and feature dimensions. This associativity 

is helpful in defining parts rapidly, and making design changes quickly. However, when 

the feature based database is considered for the automation of downstream 

applications such as process planning, the meaning of features becomes viewpoint 

dependent. It becomes necessary to transform them from one view point to the other.

7.1 Documented, Complementary and Undocumented features

The documented features are the ones that are pre-defined in the design feature 

library and the applications have prior knowledge of them.

The undocumented features are the ones that are user defined features but the 

applications have no prior knowledge of them.

Considering the workpiece definition, the mapping of design features to 

manufacturing features may result in unknown machining volumes. These are called as 

complementary features [52].

Sometimes, the combination of documented design features due to feature 

interaction may be viewed or mapped differently in manufacturing. For example, the 

designer may use the HoleBlind and PocketRectangular feature instances from the 

feature library (documented features) to construct the form shown in figure 7.1.

Figure 7.1: Interacting Feature Cluster Formed by Documented Features
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The current CAPP system approach can recognise interacting features as 

individual feature instances that are attached to other features, e.g., plate, pocket, etc. 

However, their proximity interaction cannot be recognised. The current geometric and 

process reasoning methods are unable to view them as anything but individual 

manufacturing features. In reality, the process planner may view feature interactions in 

many different ways. The research proposes a user defined feature creation technique 

(undocumented features) to create such features and append the process planning logic 

to the CAPP system. The technique works well but it may be difficult to control the 

proliferation of features in a large manufacturing environment. Moreover, the user 

library may change frequently making it difficult to maintain the application 

knowledge-bases. Hence, the user defined feature techniques alone may not be used as 

a general purpose, automatic and robust method for mapping design features to 

manufacturing.

Similarly, application programs would be unable to reason undocumented 

features unless the application knowledge-base is appended simultaneously. The 

production rule based process reasoning schemes that are developed in the CAPP 

system may be inadequate to determine feasible processes for undocumented features. 

A suitable strategy to deal with the undocumented features may be necessary while 

considering STEP/ISO part feature data input to the application programs. Therefore, 

it may be necessary to characterise manufacturing knowledge in fundamental terms 

based on tool and workpiece motion [52].

7.2 Feature interaction

The feature interaction is defined as the iclationship between manufacturing 

features. This relationship may exist due to proximity, overlap, geometric tolerance or 

other considerations that arc important to the manufacturing engineer. The result of
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interactions between features is not directly related to the structure of specific features 

themselves but the planning method of the whole component.

Clearly feature interaction has no topology and must be thought of as an entity 

quite different to design and manufacturing features. Feature interactions are the cause 

of some of the most serious problems in the development of generative CAPP systems 

[132].

The interaction of features within a set-up can introduce three possible geometric 

constraints which may influence machining [117], These are feature precedence, thin 

walls and machining feature overlap (stock overlap).

Figure 7.2A: Overlap, Precedence & Thin Wall Interactions

Figure 7.2B: View 'A' of the model in 7.2A showing 
stock around component 

[ Ref.: Young & Bell ]
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In a multiple set-up, two additional feature interactions may have to be 

considered; stock relative to the component, and the prospect of partial machining of a 

feature in one set-up. The stock relative to the workpiece must be defined such that the 

surfaces of the workpiece will cleanup to achieve the component dimension.

The machining feature may also interact with fixtures and datums. They also 

interact through precision constraints such as tolerances and surface texture. However, 

the current feature based modelling systems cannot store inter feature dimensions and 

tolerances.

Mill [132] also discusses various feature interactions with reference to the 

Edinburgh composite component which is a description of hypothetical component, 

meant to be used as a test piece for feature based design systems, feature recognition 

systems and advanced CAPP systems.

7.3 Feature Based Modelling Systems

As this research has shown, the feature based modelling systems like 

Computervision can be used to build domain dependent feature based models. 

However, as discussed in chapter four, the model database transformed into the CAPP 

system is incomplete in terms of geometric tolerances, feature topology and workpiece 

definition. The bi-directional associativity between the feature modeller and the CAPP 

system does not exist. Hence, precise determination of the machining stock size and 

shape is not passible while machining a complex cluster of features.

On a more general basis researchers have used feature based modelling systems 

with bi-directional associativity between a modeller and the application [71, 75, 76], 

However, there is not enough research evidence of sound methodology on 

representing feature interactions. The use of object oriented data structures and the 

mechanism of inheritance seems to be well suited for the description of feature libraries
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[142, 151]. The feature modeller limitations in specifying the feature interactions are 

quite evident in the implementation of CAPP systems in this research.

In general, the current feature based models are domain dependent and the 

component feature data structures are incomplete for their usage in applications such 

as process planning.

7.4 Workpiece selection & stock thickness

Considering a design for manufacturing approach, it may be assumed that the 

workpiece can be defined or selected by the designer. However, it may be desirable or 

more flexible if the process planner makes the choice of a workpiece with best 

practices such as near net techniques, group technology, etc. Before any mapping of 

design features to manufacturing features, it is necessary to select the workpiece from 

which a component will be manufactured. Even positioning the component model in 

the workpiece may be necessary [143],

This research has attempted to suggest a method to specify a feature raw 

material condition as a solid material or a uniform stock thickness with some 

assumptions. However, while dealing with the machining of a group of features 

together, e.g. PocketRectangular with BossCircuiar as an island, some of the stock 

may be shared by more than one feature. Therefore, stock refinement methods that are 

based on feature machining precedence will have to be considered.

7.5 Plan optimisation for features and complete part

The focus of the research objective has been to develop a feature based CAPP 

system to generate process plaas for single piece parts. Hence, the CAPP system 

results may not reflect process plan optimisation methods such as minimum set-ups, 

minimum tools, etc. Small to medium size batch production companies would benefit 

more when optimisation methods arc implemented in CAPP systems.
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Plan optimisation for feature groups or patterns does not necessarily mean the 

plan optimisation for the whole component. The component may be machined in one 

or more set-ups. Each set-up may suggest similar operations on a group with different 

tool sizes. The roughing, semi-finishing and finishing operation may contribute to 

different tool sizes, and also act as constraints depending upon the feature interactions. 

The component plan optimisation may have to be based on minimum set-up, then 

minimum tool change, and finally on minimum tools while feature interactions and 

available machine tools act as constraints.

7.6 Research approach to the problems in feature based techniques

Various research efforts have addressed the above mentioned problems in 

feature based process planning techniques. Some of the significant contributions have 

been summarised below.

7.6.1 Design to Manufacturing feature mapping

Shah's feature test bed in Arizona State University, USA, are investigating the 

feasibility of using the open set feature modeller (that allows a user to define new 

features). A methodology is being developed whereby the application programs will 

recognise design features. This is proposed by developing a system to decompose 

design features into some generic fundamental terms and compare this representation 

to the capabilities of common machining operations [52].

Figure 7.3: Major Steps in Shah's Design to Machining Feature Mapping
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The system development has been decomposed into several steps (Figure 7.3).

1. Automatic workpiece (WP) selection.

2. Classification of mapping for documented features (D).

3. Methods for finding complementary features (CF).

4. Geometric reasoning for feature classification/ mapping. It has been observed

that not all the documented design features DF(D) can be resolved into

' documented machining features MF(D). There may be unresolved documented 

1 design features DF(D(U)).

5. Reconstruction of CF tree (CFT) for machine understanding of undocumented

features.

6. Meta Knowledge Base (KB) for machining process.

7. Selection of machining sequences for undocumented features (U).

The documented feature mapping problems have been classified into generic 

classes by proposing that the mapping rules could be pre-determined for "standard" 

cases. Five classes, namely one-to-one mapping, variant parameterisation, discrete 

aggregation, discrete decomposition and conjugate mapping have been specified.

To recognise complementary features, two recognition methods have been 

developed, one for explicit features (B-rep), anc the other for procedural features 

(CSG).

The mapping of undocumented features to generate a suitable machining process 

has been discussed by matching the geometric properties with the fundamental 

characteristics of the machining process.

7.6.2 Young's feature interaction using SDSM queries

Young and Bell [117] used a library of machining features to build a spatially 

divided solid model (SDSM). The model provide.' a cell decomposition model with a 

range of basic geometric routines which provide information on specific cells in the
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model. Information on cell classification, cell position, and faces contained in a cell can 

be identified. Feature interaction queries could be developed by using this data. For 

example, queries such as, is the surface under clamp clear, is there a thin wall around 

the feature, have been successfully implemented.

7.63  Mapping machining features by recognition approach

As illustrated in figure 7.1, the combination of features may result in a new class 

of machining feature. Shah (see 7.6.1) proposed mapping rules to identify the generic 

classes. However, the possible permutations and combinations of various feature 

interactions will be very difficult to predict and control in such a way. Researchers 

have attempted to solve this problem by using feature recognition techniques.

Ferreira and Hinduja [144] have achieved good results in recognising certain 

classes of interacting pockets by using the convex hull based feature recognition 

method for 2V4D components. The method uses a component model from a B-Rep 

solid modeller (GPM). Initially, it recognises features that originate from edges within 

the convex hull of each face. Next, the features originating in inner loops of edges are 

extracted. Later, the concave edges are analysed and additional faces to those not 

included by the above steps are appended to the features already recognised. Finally, a 

gluing method is applied, in which two or more features are merged, provided they 

have certain geometric characteristics. The method has been successfully demonstrated 

on subtractive features such as slots, compound slots, closed and open pockets, 

stepped pockets, notches. The method also recognises the complementary features for 

machining protrusions from the workpiece.

Tseng and Joshi [145] have successfully demonstrated a volume decomposition 

and reconstruction approach to recognise multiple interpretations of interacting 2V4D 

pockets with complex depressions. The algorithm has been implemented by 

programming in C language on a 486-25 personal computer. It uses a B-Rep solid
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modeller (I-DEAS). The topological data of a component model is retrieved and used 

as input to the algorithms.

The method uses two stages. In stage one it decomposes the machinable volume. 

It assumes a raw material block as the smallest rectangular prism that bounds the 

component model. The total machinable volume (Delta volume) is identified by 

subtractive Boolean operations between a raw material block and the component 

model. All the bounding faces (which can only be planar faces) of the machinable 

volume are used as cutting planes that cut and slice the machinable volume into small 

blocks called Basic Removable Blocks.

The second stage reconnects and glues the Basic Removable Blocks to construct 

pocket volumes by using a recursive two block connection, coplanar connection and 

vertical connection algorithms. The algorithm terminates by listing the sets of multiple 

interpretations of recognised pockets and when all the available basic removable blocks 

are used for recognition. The recognised pocket lists have a precedence relationship 

ordered from left to right. The precedence represents the sequence in which the 

pockets are recognised, and can be considered as a precedence for machining in 

process planning.

Kulkami and Pande [146] have classified nested and interacting features as 

compound features. The features which are not physically connected but logically 

related, for example, a through slot broken down into two because of the proximity 

shape of a model, has been classified as relative features. A feature recognition method 

has been developed for a B-Rep solid model of a component by using syntactic pattern 

recognition techniques. The algorithm processes the face boundaries (loops) to derive 

boundary strings which are syntactically analysed to detect feature signatures. The 

method of signature generation includes filleted ar.d arc shaped features and therefore 

recognition of features originating from planar as well as non-planar surfaces is
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possible. The detected signatures are geometrically verified, and the position and 

dimension parameters of features are calculated.

An application based query facility has been developed, for instance, orientation 

of parent faces associated with the feature can be obtained to decide the approach 

direction of the tool for machining the feature; information such as hole groups and 

holes lying on the pitch circle diameter can be used to select CNC machining cycles; 

the abstract entities can be used to interactively identify and associate tolerance 

information.

One of the limitations of the syntactic pattern recognition technique seems to be 

that it is not data driven, like the convex hull technique of Ferreira and Hinduja, or 

volume decomposition and reconstruction approach of Tseng and Joshi. The data 

driven feature recognition techniques are able to recognise collections of features that 

are not predetermined.

7.6.4 Hybrid feature modelling system

Timo Laakko and Martti Mantyla [147] have developed a system which 

implements a hybrid of the feature based design and feature recognition approach. The 

system consists of a feature modeller that enables generic feature geometry instance 

creation in a B-Rep solid modeller. The solid model of a component at any stage of a 

design process can be used to recognise machining features by the feature recognition 

method. The feature recognition method uses a surface based attribute adjacency graph 

(SAAG) which is based on the AAG recognition technique of Joshi and Chang [54], 

Each recognisable feature type is specified by means of a feature definition language 

which facilitates the addition of new feature types into the system.

The system is based on a novel feature recognition method that provides 

incremental feature recognition. The system allows changes to a geometric model to be 

recognised as new or modified features while preserving previously recognised features
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that remain unchanged in the geometric model. The additions or changes to the 

geometric model are parsed through the recognition method, causing the feature model 

tree to update automatically. It successfully argues the case that modelling a shaft 

could be more straightforward by a rotational sweep than the design by feature 

approach. Therefore, the designer may find it useful if a component can be modelled 

using both, featureless or feature based modelling.

7.6.5 Explicit feature interaction modelling

Pedley and Ehrmann [148] classify feature interactions of a component model as 

implicit or explicit. Geometric reasoning or recognition techniques are necessary to 

evaluate implicit feature interactions whereas a data structure and modelling format 

must be developed for explicit interactions.

Dimensions and tolerances are explicitly specified by the designer. An explicit 

feature based modeller with dimensioning and tolerancing capability has been 

developed under the auspices of the Brite/Euram scheme of the EU (Project no 4539) 

[148]. The system is aimed at Feature based design, process planning and NC 

programming of components typically manufac.ured on machining centres. Only 

explicit feature based modelling with dimensioning and tolerancing capability has been 

demonstrated so far. The use of the model data for process planning decisions has not 

been implemented yet

7.6.6 Workpiece selection

A good method of workpiece selection should contribute to reductions in a 

component machining cost. In practice, the workpiece selection depends upon the 

historical data, minimum material wastage, and n minium set-ups. Shah's feature test 

bed [52] has been investigating several methods such as GT coding, silhouette 

projection, bounding box, convex hull of key points and principle machining

135



directions. Because each of these methods has limitations, a hybrid approach is being 

investigated by ranking the methods according to the complexity, and GT coding 

approach has been chosen for the first step.

7.6.7 Plan Optimisation Strategies

Any attempt in component process plan optimisation should be viewed as a 

"company" specific strategy for machining resource utilisation [69]. The shop 

scheduling information which ultimately decides the availability of machining 

resources, should be included in this decision. This is only possible if the process 

planning and scheduling systems are integrated.

However, the quality of process plan that is generated by a generative CAPP 

system can only be accessed if the system is able to provide the options for various 

strategies of plan optimisation.

As mentioned before, this research has pursued the objective of developing the 

CAPP system to generate process plans for single piece parts, i.e. the feasible plan with 

the available-resources. Such plans may be useful in machining a single piece part in a 

tool room. For batch production, economics of machining will always be applicable 

and hence, plan optimisation strategies will be necessary.

The optimisation strategy based on the use of minimum number of machine tools 

for machining a component is discussed by Gindy [69]. At feature level optimisation, 

the minimum set of resources needed to produce each component feature are 

determined. Next, at the component level optimisation, taking into account the 

clustering constraints that may exist due to feature relationships, the group of 

operations is determined which arc used for producing all component features into a 

minimum number of set-ups. Clustering is performed while observing the precedence 

relationship that may exist between component fca'.urcs.
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The PART system [17] (see figure 2.7) has implemented different optimisation 

strategies as a set of independently executable programs, called 'phases' which can be 

executed according to a user defined 'scenario'. The scenario describes the sequence in 

which the process and operation planning steps are executed. The phases communicate 

to each other via the relational database in which all information on machine tools, 

tools, fixtures, features, methods, strategies, etc. is stored.

PART selects machining methods and tools per set-up. The first step selects the 

machining operations and cutting tool characteristics (ranges for the tool attribute 

values) for the complete set of simple and compound features. Subsequently, the tool 

selection module executes the second step; the actual selection of cutting tools. During 

tool selection, sets of tool descriptions can be combined in order to minimise the 

number of tools. And finally, the third step executes the determination of the 

machining sequence.

Different modules of the PART system use the tool database. Each module has a 

different 'view' of the tool. The machining method selection module, for example, is 

primarily interested in geometric description of the cutting part of the tool. The tool 

selection module is interested in more detailed description such as, location of the 

individual tools and the possibilities to assemble the tool with the tool holder/adaptor 

for use on the machine tool. Another view could be a tool capacity planning module 

which is interested in the availability of tools during the planning period. The cutting 

conditions view needs information on complete tool assemblies to calculate tool paths 

and cutting parameters for machining, and collision detection.

Hinduja and Huang's OP-PLAN module [149] of TECHTURN CAPP system 

has used a more scientific approach in optimising operation planning. It plans the 

operation sequence by using the backward planning technique (i.c. from the finish state 

to the raw state). However, at each operational level (node of the operation tree), it 

computes the possible options, performs the detailed machining cost calculations and
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selects the one with minimum machining cost. It displays the final plan with complete 

details of estimated cost and time.

These are some of the significant results that have been achieved by the feature 

based CAPP research community.

7.7 Probable Solutions to Problems in Feature Based CAPP

Section 7.5 and 7.6 discusses the problems in the feature based process planning 

technique and the research attempts to solve them. Despite the fact that this research 

has successfully demonstrated the use of design for manufacturing approach in feature 

based process planning of a single piece part, it is appropriate to discuss the probable 

solutions to the above problems.

7.7.1 Feature Proliferation and User Interface

The feature classification scheme used in ‘he CAPP System is based on the 

STEP compatible form feature taxonomy scheme which is implemented by CADDS5 

Feature Based Modeller (refer to Appendix A). The object oriented hierarchy of 

standard features (documented features) make features inherit common properties 

from features higher up in the hierarchy. The standard features are available in a system 

feature library, called SYSLIB. User defined features (undocumented features) can 

only be created in the user defined library. While creating these feature the user is 

allowed to refer to the properties of standard feature classes. Therefore, the user 

defined features will expand the standard feature taxonomy and should be a cause for 

concern about feature proliferation. The following measures may help overcome the 

feature proliferation problem.
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7.7.1.1 Training on Standard Feature Taxonomy

The design and manufacturing engineers should be trained on the contents and 

capabilities of standard features. In addition, the fundamentals of object technology, 

e.g. object class and instances, data encapsulation, inheritance, polymorphism, etc., 

should be a part of the training. It is necessary to emphasis that a feature class has 

unique attributes. The instances always follow the property of its class. A possible 

variation of feature form should be studied thoroughly before it is defined. For 

example, a Boss_Circular could be cylindrical or tapered depending upon the 

Draft_Angle attribute value of 90 or less than 90 degrees respectively (Refer to 

Boss_Circular form attributes in Appendix A). The training would prevent users from 

creating redundant features. For example, a tapered cylindrical feature form should not 

be created as a new feature.

7.7.1.2 Graphic User Interface

The graphic user interface of a feature based modeller should support the 

functionality- such as menu customisation, select and display, etc. A menu 

customisation capability enables the user to quickly develop an icon menu with graphic 

display that implies a particular form feature. The select and display function allows the 

user to select the feature class and verify feature attributes and its graphic form, almost 

instantly.

7.7.1J  The Rover Experience

Last year, the author was involved in a coasultancy assignment to develop the 

user defined form feature library at Rover’s Swindon and Cowley plants for tool design 

applications. The Feature based modeller from Gmiputervision was used to develop 

the feature library. The project was divided into three phases. The first phase of one 

week involved everyone from design to manufacturing, to identify unique shapes that
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could be used in tool design. About seventy shapes were identified. The next phase of 

two weeks comprised of training and development of the features. There were about 

eight tool engineers and two system engineers involved in this activity. Their training, 

progress, problems and difficulties were continuously monitored by the author. In the 

first week of training and development, considerable discussions and modifications 

were necessary. The engineers appeared to be more confident in the second week and 

managed to complete the feature development task well ahead of schedule. Finally, the 

last phase of one week comprised of development of the user interface. Since the 

feature library had to be shared between Swindon and Cowley users, it was made 

available on the internet by using Netscape software. The HTML language was used to 

develop the user interface that would appear as if tne user was referring to the standard 

part catalogue on a CAD system. The library has been in use for eight months and also 

used in new car tool design projects. According to Rover engineers, the approach has 

been extremely beneficial in reducing the tool design lead time. There has been no 

report on feature proliferation as each design anc manufacturing engineer within the 

tool engineering team clearly understands the feature fundamentals and guidelines to 

create a new feature in the library.

This research proposes the above design for manufacturing approach in 

controlling the feature proliferation.

7.7.2 Feature Interaction

If a design form is described by a combination of documented features (refer to 

Figure 7.1) from the feature library, the feature mapping in the CAPP system could be 

many to many or many to one type. This may be implemented by developing rule based 

methods for proximity features and their attributes. The Feature (refer to page 94) 

class definition will have to be modified as follows:

Component subclass: #Feature
instanceVariableNames:
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'l ib ra ry , d a tu m P la n e , o rig in , orien ta tion , w o rk p iece , rep resen ta tion , operation , app lica tion , proximity Feature 
raw M atlC o n d itio n , m cN o trac1

Where, the proximityFeature attribute describes the coplanar proximity feature 

adjacency conditions. The proximityFeature attribute should have the following sub­

attributes to describe the feature adjacency:

p ro x im ity F ea tu re  :=  (in tF e a tu re  to on past in ou t righ t left to p  bo ttom  at-angle).

Each proximity feature instance should be described by its position and 

orientation attributes. The position with respect to existing feature instance local origin 

can be specified by one of the sub-attributes:

to Feature instance profile is tangent inside to the parent feature profile,

on Feature instance profile origin is on the parent feature profile,

past Feature instance profile is tangent outside to the parent feature profile, 

in Feature instance profile origin is inside the parent feature profile,

out Feature instance profile origin is outside the parent feature profile.

The to, on and past attributes can be used in the same way as the APT NC 

programming language uses them to describe the circular form of a tool with respect to 

part profile (See Figure 7.4).

The orientation of the proximity feature with respect to feature instance local 

origin should be described with respect to the sub-attributes: right, left, top, bottom 

or at angle.

It should be assumed that the proximityFeature attribute is used to describe 

coplanar feature clusters that are either additive or subtractive. Also, only basic feature 

shapes such as Hole Blind or Holc Through, Counterbore, Pocket Rectangular, 

Cutout_Circular or CutoutRectangular, SlotRectangular, BossCircular and 

Tab_Rectangular, should be allowed to describe the feature interactions. These 

assumptions will be necessary to minimise the complexity in feature mapping rules in 

the CAPP system. From the designer’s point of view, a more complex shape may be 

described easily by creating a complex user definec feature.
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Figure 7.4: Illustration of side feature interaction

Figure 7.4 illustrates some of the forms described by combining basic form

feature shapes.

7.7.3 Feature Mapping

The proximity feature attributes, as discussed above should make it possible to 

segregate feature clusters which interact. The current CAPP system method, 

generatcProcess, segregats features on the basis of their machining datum plane and Ls 

as follows:

C lan : Component
Method: generate Process

"Reason the feature instances of the component 
instance to generate a machining process"

[addDatumld parent Features addFtrsSamcDatum highest i t  |

(curProduct isMembeiOf: Component) 
ifFalsc: [self error: 'Select Component instance'].

"1. Clear previously generated Auto process" 
curProduct reselAu to Process.
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"2 . R ead  the datum  id  o f  add itive fe a tu re  instances"
a d d D a tu m ld  := S e t  n ew .
c u rP ro d u c t w ith A llC h ild ren  do: [reach |

(each  isK in d O f: A dd itivcF eatu re )
ifT ru e :[ad d D atu ra Id  ad d : each  datum ]].

"3 . S e lec t sam e d atum  add itive p ea ren tF ea tu re  instances" 
ad d F trsS am eD a tu m  :=  O rd ered C o llec tio n  new . 
a d d D a tu m ld  do: [:each D atu m  |

c u rP ro d u c t w ith A llC h ild ren  do: [:each  |
(each  isK in d O f: A d d id v eF ea tu re ) 

ifT ru e :[(e ach  datum  = each D atum )
ifT n ie :[a d d F trsS am e D atu m  add : each]]].

"4 . W h ile  add F trsS am eD atu m  is no t em pty ,
F o r  ea ch  ad d F trsS am eD atu m , gen e ra te  a p rocess” 

[a d d F trsS am eD atu m  isE m pty ] 
w h ileF alse :[

highestF t :=  ad dF trsS am eD atum  show H ighZ . 
h ighestF t addM cP rocess . 
ad d F trsS am eD a tu m  rem ove: h ighestFt.

it

Class: AddiUveFeature
Method: addMcProcess

"g en e ra tes  a m e p ro c ess  fo r a s in g le  ad d itiv e  parent 
instance. A lso  re q u es ts  a  process fo r its subtrac tive 
ch ild  feature in stances"

[subC hild ren  nex tS u b C h ild ren  allS u b C h ild ren  a D a turn datum s|
datums := #(TO P ’FRONT ’RIGHT 'BOTTOM’ ’LEFT TUGHT). 
nextSubChildren := OrderedCollection new.

d a tu m s  d o :[:aD a tu m | se lf m fgM ethod : a D a turn.
su b C h ild re n  := se lf ge tS u b C h ild ren S am eD atu m .aD atu m . 

a llS u b C h ild re n  := se lf  g etA H SubC hild renS am eD atum : aD atum .
[a llS ubC hild ren  isE m pty] 

w h ileF alse: [sub C h ild ren  d o :[:aF ea tn re  | 
a F eatu re m fgM ethod .
(a  F eatu re w ithA U C hild ren ) isE m pty  

ifF alse :[nex tS ubC hild ren  addA ll:
(a F e a tu re  g e tS u b C h ild re n S a m eD a tu m :aD a tu m )].

i
a llS u b C h ild re n  rem oveA ll: subC hild ren . 
su b C h ild re n  := nex tS ubC hild ren ]].

As illustrated above, the generateProcess which basically segregates the additive 

features, will remain the same. However, the additive feature plan generation method, 

addMcProcess, will have to be modified to segregate the additive features into single 

additive feature or additive feature clusters, based on proximityFcature attributes. 

Similarly, subtractive features or subtractive feature clusters should be segregated. 

Here, the term, ‘feature cluster’ is being referred to as a set of interacting features.

As discussed in section 7.5.1, the current machining methods (mfgMethod) are 

not valid for side interacting features. The interaciing additive and subtractive type of 

feature clusters should be machined either by pocket milling or by pocket milling with
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island. For this reason, the additive and subtractive cluster pocket milling methods 

should be developed for the EndMilling class.

The proximityFeature sub-attributes may not be able to recognise the precise 

topology of interacting feature clusters. However they would help in determining the 

overall size. Moreover, the shape of a cluster depends on the feature instance size 

attributes. From the designers viewpoint, feature based modelling is a subset of 

parametric modelling and hence the design modifications are likely to be implemented 

by changing the feature size attributes. Therefore, any feature cluster machining 

method should first check the validity of a cluster and then apply the appropriate 

machining method. It should respond to different types of machining methods, e.g., 

pocket milling, stepped pocket milling, pocket milling with island, open profile, closed 

profile, etc.

7.7.4 Operation Planning and Tool Selection

The operation planning capability that has been demonstrated in this research is 

based on machining one feature at a time. As discussed in section 5.7, the backward 

planning strategy has been used and the generic automated tool selection capability has 

been demonstrated in the CAPP system. Tool parameters are selected from the 

geometric attributes of form features. For example, the following methods explain a 

tool selection strategy for rough pocket milling and finish profile milling. The strategy 

works fine, as demonstrated in Appendix F (TestG)mpl).

Clan: KndMIll
Method: getToolRoughPocketSingle: aSubKeature

"returns tool parameters for Pocket finishing"
| getMinPara tool Mini )ia toolMaxDia toolDia tooIHgt toolValues|

aSubFeature length < aSubFeature width 
i(Tnie:[getMinPara :■ aSubFeature length] 
ifFalsc:(getMinPara :■ aSubFeature width].

"Decide tool parameters" 
toolMaxDia getMinPara - 0.2 . 
toolMaxDia >■ 50.0 

ifTnie:[ toolMaxDia 50.0].
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toolDia := getMinPara / 4.0. 
toolDia >= 50.0 

ifTrue:[toolDia := 50.0].

toolMinDia := getMinPara / 8.0. 
toolMinDia >= 50.0 

ifTrue:] toolMinDia := 50.0].

tooIHgt := aSubFeature depth + 10.0 .

tool Values := #CEndMiU' 'MinDia' T)ia' MaxDia' 'MinHgt'). 
toolValues at: 2 put: toolMinDia; 

at: 3 put: toolDia; 
at: 4 put: toolMaxDia; 
at: 5 put: tooIHgt 

toolFoiOpr :■ toolValues

Class: EndMill
method: getToolProfile: «Feature

"Selects the tool for profile milling 
based on the total side stock"

| toolValues sideStock toolDia| 
toolValues :« #CEndMiir 10 'Dia' 50 TdinHgO- 
sideStock := aFeature additiveStockValue at: 3. 
sideStock >= 100

ifTrue:[toolDia := 50].
(sideStock < 100 and:[sideStock > 50]) 

ifTrue:[toolDia := 30]. 
sideStock <=50

ifTrue:[toolDia := 25]. 
toolValues at:3 put: toolDia;

at:5 put: (aFeature height). 
toolFoiOpr := toolValues

In case of interacting feature clusters, the tool selection methods will not be as 

simple as above. It will depend on individual feature instance attributes such as 

diameter, length and width, and the decomposition of machining features, based on 

roughing and finishing operation strategy. Assuming that interacting feature clusters 

will need a pocket or profile milling operation, the machining volume removal 

capability should be considered at elementary level. In a 2Vi axis milling operation, the 

elementary area of cross-section for tool motion could be one of the following:

Figure 7.5 Elementary Tool Motion Cross-sections

The tool selection method should depend on the following rules:
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1. Assume standard range of roughing cutter diameters, e.g., 50, 25, 20. 10, etc.

2. Check individual feature geometry attributes and select the individual feature 

maximum cutter diameters and lengths.

3. A strategy should be implemented to machine features from shallow to deep.

4. Certain assumptions should be made based on factors such as percentage of 

total roughing area that the tool diameter can machine, and its machinable depth, the 

resultant pinch off area, if any, and the subsequent number of tools to machine the 

pinch off area, the total area of a pocket, etc. Powerful geometry query functions such 

as, ‘find total area of a cluster’, ‘find percentage of feature instance area within a 

cluster, etc., would have been very useful. This is where the bi-directional associativity 

between a Feature Modeller and the CAPP system would have helped. Under the 

existing system limitations, certain assumptions will be necessary to implement similar 

strategies such as, the area of a feature instance could be compared with the sum of the 

areas of all feature instances within a cluster. For example, if the area to be machined 

by the smallest tool diameter is 50% or more, then the same tool could be used for 

machining the entire cluster. These volume computations may not be accurate due to 

the lack of Boolean operators to compute the partial feature instance area in the CAPP 

system.

The optimum tool selection may also involve machining parameters selection, 

machining power computations and the availability and rigidity of machine tool and 

fixtures. This is discussed later in process plan optimisation section.

In case of additive feature clusters, the operation planning should be able to 

compute complementary machining features (Figure 7.6).

146



F l  '

m m sm m m  j  ¡ p i g

SWÿ'KiWwÿ' % « « «
S  ̂ %v% P  >,

% ' '
r  “
s - s s s - ------- t v  w «

FO, F l  - T ab_R ectuoga la r, in stances
F 2, F3  - B oss_C ircu la r
Design

C o m p lem en tary  M achin ing  F ea tu re
(A ssu m in g  R aw M ateria l co n d itio n  fo r FO a s  ’S olid*)
Machining

Figure 7.6: Illustration of Complementary Machining Feature

7.7.5 Process Plan Input to NC Programming

The CAPP system has demonstrated the capability of generating geometric data 

for NC machining such as hole machining cycle locations and pocket vertices and 

machining planes (refer to Appendix F, TestCompl, 2 & 3). If one has to extend the 

interacting feature cluster process plan input to NC programming, the cluster profile 

must be determined. Despite the fact that the feature topology is not an input to the 

CAPP system, the following approach may be implemented. The Feature class 

definition should be modified further by adding the instance variable, edgeTopology.

Component subclass: #Feature 
instance VariableNames:
'library, datumPlane, origin, orientation, workpiece, representation, operation, application, proxImltyFeature, 
edgeTopology, rawMatlCondition, mcNotmc*

The edge topology of a feature instance is not available at present from the 

CADDS5 report file. For basic features, the edge topology can be defined from the 

attributes values. Figure 7.7 illustrates the edge topology description for feature 

instances in Figure 7.4, Example 3.

Figure 7.7: Edge Topology of Interacting feature instances
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The edges Fle2 and Fle4 are totally merged within HoleBlind feature instances 

(assuming that all the features have identical depth attribute value) and therefore, will 

not be a part of interacting feature cluster. The edges, F le l and Fle3 will have to be 

trimmed to form a comer with the edges of F2 and F3. The correct topology of the 

interacting feature cluster would have been available had the appropriate Feature 

modeller been used in this research.

One of the techniques that could still be implemented to describe the edge 

contour is the APT (Automated Programming Tool) based NC programming 

approach. The grammar of CVNC part programming software from Computervision 

supports the APT based NC programming commands. The tool motion statements are 

described by using modifiers such as TO, ON and PAST. When the tool is tangential 

to the edge, its position is described by the TO modifier. The ON modifier defines the 

tool centre as lying on the edge. While the tool is moving along the edge, if it has to be 

positioned past the intersecting edge, the PAST modifier is used. In order to 

implement this approach, an edge intersection method should be developed in the 

CAPP system.

The tool motion statements for interacting feature cluster profile in Figure 7.7 

(In counter-clockwise direction, CCW) could be described by TO, ON and PAST 

modifier approach as follows:

1. MOVE XYLOC XOYO (FI origin)

2. APPROACH

3. PLUNGE (to suitable depth of cut)

4. CUT TO Flel

5. CUT TO F lc l PAST F2e2 (intersection detected)

6. CUT TO F2c2 CCW TO F2el

7. CUT TO F2el CCW PAST Fle3 (intersection detected)

8. CUT TO Fle3 PAST F3cl (intersection detected)

148



9. CUT TO F3el CCW TO F3e2

10. CUT TO F3e2 PAST Flel (intersection detected)

11. CUT TO F le l TO F2e2

12. CUT XYLOC XOYO

13. RETRACT

14. MOVE HOME

The logic in the above approach demands both the proximityFeature attributes 

and the edge intersection method. The edge, F lel along which the tool moves is 

referred to as drive edge and the intersecting edge to the drive edge becomes the check 

edge. Assuming that the edge topology of all the feature instances are to be travelled in 

a counter-clockwise direction, the drive edge intersection with the proximity feature 

edges is detected (F2e2) to find the check edge. If the intersection occurs, then that 

edge becomes the check edge for the current drive edge. For the next tool motion, the 

current check edge (F2e2), becomes the drive edge and its intersection with the 

proximity feature is detected. If no intersection occurs, then the next edge (F2el) of 

the feature instance becomes the check edge and so on.

7.7.6 Mapping of Undocumented Features

As explained in 7.5.1, the undocumented features are the ones that arc user 

defined features but the CAPP system has no prior knowledge of them. For these 

features the design for manufacturing approach has been proposed. The user interface 

has been developed in the CAPP system to add the process knowledge manually but 

efficiently (refer to section 5.8). This approach may be criticised for hindering the 

independence of design and manufacturing. It may be argued that the additional 

degrees of freedom for manufacturing experts maj help them select optimal processes 

for a designed product. In the auther’s opinion, if better computer based tools arc 

available to aid design and manufacturing processes, one must use them to gain
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competitive advantage. In order to use them efficiently, some of the existing product 

engineering methods may need changes or reorganising. In the age of information 

technology, the integration goes beyond the boundaries of a single company. There is 

an increase in companies working in co-operation and partnerships with other 

companies, vendors, subcontractors creating what is commonly termed a virtual 

enterprise [151]. In this environment, the type of information that may be exchanged 

and used efficiently could be controlled by information technology management. For 

example, instead of passing a feature based design to the CAPP system that may not 

recognise one or more features, pass it to the system that does recognise them, 

generate a process plan and NC instructions in a neutral format (e.g. CLFILE). Instead 

of design information exchange one should try manufacturing information exchange.

If one still has to suggest a solution to the undocumented features in the CAPP 

system, it has to be based on feature recognition strategy. The undocumented feature 

volume should be recognised and mapped into machining features. The B-Rep solid 

model data of a feature based model may be captured in a text file. The recognition 

method may be developed on volume decomposition and reconstruction strategy of 

Tseng and Joshi (As discussed in section 7.6.3).

7.7.7 Process Plan Optimisation

The CAPP system has demonstrated the capability of generating process plans 

for machining a single piece part. The process plan refinement strategy has been 

demonstrated to assign the available resources by using the following method:

C lan  Component
Method assIgnKesources

"Chocks the available resources &
Assigns it to the process instances"

|toolSlat workMatlInst|
"1. Assign MachineTool" 
self withAJIChildren do:( each | 

each process do:[:eachProc |
each Proc gctProcSeq do:[:proc |

proc mcFoiOpr: (self 
getMcTool: (proc setUpNo))))).
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"2. Search fol Catting tools" 
self withAllChildren do:[:each | 

each process do:[:eachProc |
eachProc getProcSeq do:[:proc |
(toolStat := proc toolSearch) isNil

ifTrue:[Test answer: (proc toolFoiOpr) printString, ’ Not available1] 
ifFaise:[proc assignNewtool: toolStat.

(w orkM atllnstM aterial getMatllnst:
(self showComponentlnst) material) isNil

ifFalse:[proc mcParameters: toolStat 
workMatl: workMatllnst]]]]]

class McProcess
method getMcTool: aSetUpNo

"Search for the fixture and return if matched with the 
aSetUpNo"

II
Fixture instances do:[:each |

(each where Used) size =  0 
ifFalse:[each whereUsed do:[:eachl | 

((eachl at: 1) = self name and:[ 
(eachl at: 2) = aSetUpNo]) 

ifTnie:[A(eachl at:3)J]]].

“nil

class McProcess
method assign Newtool: aVaiue

"assignes a new tool to the receiver"
| temporaries toolAttribj 
toolForOpr := nil.
toolAttrib := OrderedCollection new. 
toolAttrib add: (aValue at:l);

add: (aValue at:2). 
toolForOpr := toolAttrib asArray.

The method performs a search on the available resources to assign machine tools 

and cutting tools to various machining operations.

If one has to consider the process optimisation strategy, it should be viewed at 

two different levels, machining feature level and component level. The optimisation 

goal should be to minimise cutting time, set-up time and cutting cost; and the available 

machine tools, process capability (e.g. Roughing and Finishing) and operation 

precedence should act as constraints.

7.7.7.1 Feature Level Optimisation

The feature level operation planning decides what needs to be machined by what 

cutting tool and on what machine tool. Usually, machine tools are capable of mounting 

various types and sizes of cutting tools. Therefore, their selection, though important, 

may be regarded as secondary to that of cutting tools. While selecting a cutting tool, 

various factors such as roughing or finishing, tool approach direction and machining
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depth, minimum machining radius and pinch off areas, cutting parameters and 

machining power requirements, are considered to be important. These factors should 

be systematically analysed to implement the optimum tool selection strategy.

Certain type of tool selection could be straight-forward, e.g. in hole finishing 

operations the tool parameters could be determined easily from machining feature 

attributes. The suitability of a cutting tool for a given machine tool should be evaluated 

and may involve complex procedures. For finishing operations one may check the 

machine tool process capability parameters such as positioning and repeatability 

tolerance and required spindle speed. For hole roughing operations such as drilling, 

detailed power calculations may be necessary. For example, the volume of material 

removed in drilling operation can be computed as:

Vol = Vi(II x (toolDia)2 ) x N x F mm3/min.

Where, Vol = Volume of material removed in mmVmin. 

toolDia = Drill diameter.

N = Machine tool spindle RPM.

F = Cutting Feed in mm per revolution.

Therefore, HP = Vol x K

Where, HP = Horse Power required for drilling operation.

K = Specific power consumption for a given material.

The tool selection method should check the power availability on machine tools 

and append the mcForOpr attribute with the list of valid machine tools. If the machine 

tool constraint is forced, due to optimisation strategy at component level, and the 

power requirement exceeds the available machine tool horse power, the operation may 

be split into multiple drilling operations.

For machining cost calculation, the machining and set-up time calculation 

methods should tie implemented. Cost calculation capability can be demonstrated easily 

in the CAPP system for hole machining operations For non hole machining operations,
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especially for interacting feature clusters, the machining tool path length, and cutting 

time calculation methods should be developed. Provision has been made to assign 

machine hour rate attributes to the machine tool (refer to section 5.4, page 99). The 

Fixture class should be modified to assign setupTime attribute. A more detailed costing 

may need labour costing data, etc. which has not been implemented.

The problems with detailed tool selection criteria is that the information such as 

cutting parameters, specific power consumption for various materials, etc. should be 

available within the resource knowledge-base of a CAPP system. It may be that the 

most commonly used range of cutting tools and machining parameters could be pre­

defined. The system should derive the parameteis for a new tool by searching the 

knowledge-base and interpolating the higher and lower diameter tool parameters. This 

strategy could be easily implemented in the CAPP system. The cutting parameter 

interface has already been developed. The workpiece material class will have to be 

modified to add the instance variable, spPower to input specific power consumption 

attribute.

In the case of pocket and profile milling, the basic tool parameter selection may 

not be as simple as hole machining. However, certain heuristics should be used (as 

discussed in section 8.2.3) to decide the cutting tool parameters. In addition it may 

also need a strategy to minimise the number of tools to machine the entire feature 

cluster for a given machining datum. To summarise, the feature level optimum tool 

selection strategy should implement the following steps:

1. Read part level optimisation goals, e.g. cutting time, set-up time, cost, etc.

2. Read part level constraints, e.g. machine tool, fixture machining datum, etc.

3. Select tool parameters based on feature geometry attributes.

4. Check tool parameter validity against part level constraints.

5. If necessary, modify tool parameters to satisfy constraints.

6. Experienced based heuristics rules may be used whenever appropriate.
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As mentioned above in step 2, the fixture machining datum attribute should be 

useful in deciding the degree of freedom in tool approach direction. The manual fixture 

planning has been assumed in this research. The fixture class should specify the 

allowable machining datum list for a given component which would help in feature 

level plan optimisation. For example, if a fixture can be used with front or rear 

machining datums, and horizontal machining centre with indexible table is a machine 

tool constraint, then features such as through holes, cutouts, and feature clusters with 

opposite end openings may provide optimum machining plans. If the feature depth 

forbids the tool approach in one datum because of tool length/diameter ratio, and tool 

chatter, then the partial depths of the feature should be approached in complementary 

datums by indexing the machine tool table through 180 degrees.

Machining Features such as notches, and complementary types may have 

multiple approach directions normal to each other. In this case, tool collusion detection 

capability with workpiece and fixture will be necessary. The Fixture planning and 

modelling capability should be developed.

7.7.7.2 Component level plan optimisation

The feature level process plans are set-up (machining datum) dependent. The 

optimisation strategy at component level could be focused on minimising the number 

of cutting tools and therefore, reducing the tool changing time and tool inventory cost. 

For a given machining operation, the tool for operation attribute in the CAPP system 

generates the following tool parameters:

toolForOpr := (tool type, minToolDia, toolDia, maxToolDia, minCutHgt). 

where, toolDia is the optimum recommended tool diameter at feature level 

planning.

minToolDia & maxToolDia arc the minimum and maximum allowable 

tool diameters respectively.
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minCutHgt is the minimum cutting height.

Therefore, a suitable method can be developed at component level to reduce the 

number of cutting tools by parsing the minimum and maximum tool diameters, and 

minimum cutting height attributes for similar tool ypes. For optimum machining cost, 

the component batch quantity and available tool inventory should be considered. The 

component class definition should be modified to assign the batch quantity attribute. 

The minimum cost justification approach should provide further refinement of cutting 

tools by proposing special purpose multiple operation tools. This is where the author 

believes that the design for manufacturing approach should be beneficial, because 

process optimisation will need both process planning and process design capability. 

Therefore, the manual process assignment interface has been developed to assign 

special processes.

The other issue at component level plan optimisation deals with sequencing 

feature machining operations to minimise tool changing and tool approach times. In 

optimising process sequence, factors such as roughing and finishing operations, 

operation precedence in feature machining and explicit tolerances between features and 

therefore finish machining operation precedence, are considered to be important. The 

method, ‘show machining process’, generates the process sequence for a given set-up 

at feature machining level. The method is illustrated below:

class Component
method printAuto Process

"prints an auto process of a Component instance"
|setUpNums addFtrs procSctUp subChildren aUSubChildren nextSubChildren workMaillnst) 
setUpNums : - # ( l  2 3 4 5 6). 
nextSubChildren :■ OrderedCoUection new.

"1. Get all the additive features of a component" 
addFtrs :■ self showAllAddFeatures. 
addFtrs is Empty

if! rue:[ Test answer: self name, 'No additive features in the monel!') 
ifFalse:[Test answer: 'Automated Process Plan'; 

answer. 'Component Name: '.self name.

(workMalllnst:-  Material getMatllnst: (self showCompondotlnst) material) isNil 
ifFalse:[Test answer: ‘Component Material: '.workMatllnst name;

answer: 'Matl Description: '.workMalllnst description,' ','Matl Condition: '.wortMatllnst 
conditionDescr,
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answer: 'Material Specifications: '.workMatllnst spec,' '.'Material Hardness: '.workMatllnst hardness 
printString].

Test answer:
setUpNums do:[setUpNnmber] 

addF trs d o :(:ad d F tr |
(addFtr match SetUpsetUpNumber)isNil

ifFalse:[Test answer *SetUp No:', setUpNumber pnntString;
answer: Tixture For SetUp:', (self getFixture: setUpNumber); 
answer:''.

addFtr printFtProcess: setUpNumber.
subChildren := addFtr getSubChildrenSameDatum: (self getDatum: setUpNumber). 
allSubChildren := addFtr getAllSubChildrenSameDatum: (self getDatam: setUpNumber). 
[allSubChildren isEmpty]

whileFalse: [subChildren do:[:aFeature |
printFtProcess: setUpNum

"Prints the feature process/es in a setUpNo"
[option | 
option :* 1.

(self process isEmpty) 
ifTrue:[*nil]
ifFalse:[((self process at:l) setUpNo = setUpNum) 

ifFalse:[*nil]].

(self process) size > 1
ifTrue:[Test answer(self process) size printString,' '.'Options Exist to machine ’.self name, 

self process do:[:each|
Test answer'Option no: '.option printString. 
each printProcess: self, 
option :» option + 1]]

ifFalse:[Test answer: 'Machining Process for ’.self name.
(self process aril) printProcess: self]

class FlProcess
method printProcess: «Feature

"prints the process attributes on the text pane."
ii

self getProcSeq do: [:each |
Test answer: ’ ’.
Test answer: 'Opr No: '.each ftOprNo printString,'; Opr Name: '.(each oprType),' '.(each oprName) 

printString.
(each precedsOpr) is Nil 

ifFalse:[each precedsOpr * 'Parent Finish'
ifTrue:[Test answer (each oprType),' '.(each oprName) printString,' ’, 'MUST PRECEDE', 

(aFeature childOO name,' Finishing], 
each precedsOpr =Tarent Operation'

ifTrue:[Test answer (each oprType),’ '.(each oprName) printString,'', 'MUST PRECEDE ’, 
(aFeature childOO name, ’ Operation'].

i-
(each toolForOpr) isNil

ifFalse:[Test answer: Tool For Opr: '.(each toolFotOpr) printString].

(each speed) isNil
ifFadse:[Test answer: 'Recommended Cutting Speed: '.(each speed) printString,' ','Feed: '.(each feed) 

printString].
(each mcForOpr) isNil

ifFalse:[Test answer: 'Machine For Opr: '.(each mcFoiOpr) printString].

(each isKindOf: Hole Making Process)
iiTrue:[Tesl answer: (each oprType),' '.(each oprName) printString,' Cycle Locations...'; 

answer'PoaitionPt: '.(each positionPt) printString; 
answer'ApproachPt: '.(each approachPt) printSlring; 
answer'PlungePt : '.(each plungePt) pnntString; 
answer'RetractPt: '.(each return Pt) prirtString; 
answer:'Dwell(Sec): '.(each dwellTime) pnntStnng; 
answer:"].

((aFeature isKindOf: Pocket) and:[(each isKindOf: End Mi I ling)]) 
i(Tnie:[Test answer: (each oprType),’ '.(each o-xName) printString.' Cycle Locations...'; 

aaswer'PositioaPt : '.(each positionPt) printString; 
answer'Approach Plane: '.(each approach Plane) printString; 
answer:'ZWorkPlane : '.(each zWorkP ane) printString; 
answer'RetractPlane : '.(each retractPlane) printString;
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an sw e r 'C le a r  P lan e  : ',(each d e a rP la n e )  printString; 
an sw er"]] .
Test a n s w e r

The above method prints the feature machining operations for the additive 

feature and its subtractive children. On a simitar approach, component optimum 

process sequence generation methods can be developed. The following guidelines 

should be followed:

1. For a given set-up all roughing operations should precede the finishing 

operations, based on opration type attribute.

2. The machining sequence should follow from shallow to deep feature 

machining. In addition, proximity feature machining operations should be checked to 

avoid thin wall machining constraint.

3. The machine tool and fixture constraints should be checked to decide the 

degrees of freedom for feature approach. This would enable to minimising of the 

number of set-ups.

4. For each cutting tool parameter, the number of machinable features should be 

listed and the optimised path of tool approach should be determined to minimise non­

cutting time of a tool.

5. Sometimes the finishing operation sequence depends upon explicit tolerances 

between features which may be machined in the same or different set-ups. The explicit 

tolerances between different features cannot be assigned within the CAPP system. The 

roughing and finishing plan generation capability has been demonstrated on the basis of 

feature size tolerance attributes. Heuristic rules could be developed to assign the 

precedence to the finishing operations such as, facing and profile finishing first, 

followed by hole finishing. Also, the features with closed tolerance should be machined 

last.

These are some of the component level pioccss plan optimisation issues that 

should considered to implement them in the CAPP system.
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8. CAPP FOR SIDE FEATURE INTERACTION

As discussed before, feature based component model data can only be imported 

into the CAPP system as features and their attributes. The attribute information does 

not include feature geometry and topology data which is vital for developing the 

mapping methods for interacting features. A method has been proposed in section 7.2 

to define a feature geometry and topology for basic feature classes from their origin 

and size attributes. The implementation of geometry and topology classes and methods 

should be carried out in the CAPP system. This chapter discusses the implementation 

procedure and the solution to the side feature interaction problem that has been 

discussed in the previous chapter.

8.1 Side feature interaction attributes

Each feature in the feature library has been appended with side feature 

interaction attributes which are, intFeature, to, on, past, in, out, right, left, top, bottom 

and atAngle. In the object oriented approach, this kind of modification takes only few 

minutes. The modification of superclass definition would automatically modify its 

subclasses.

The designer uses one or more side feature interaction attribute when he/she 

intends to build a portion of a model form by a combination of basic features. It has 

been observed that individual feature instances within the combination may have 

different depths. The attribute intFeature, is the most important attribute to 

communicate feature interaction. While building a model, the designer types in the 

name of a parent feature instance which interacts with the feature to be inserted. The 

designer may use “Verify Feature” command to know the parent feature instance 

name.

Once the design is complete, the report file is generated to capture the model 

feature attribute data (refer to Appendix G, section 9).
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8.2 Modifications to Import Feature interface

As discussed in section 5.2, the CAPP system communication interface uses the 

“Import Component” command to convert feature report file into feature instance 

hierarchy. The import component method should accommodate side feature interaction 

attributes and therefore, needs minor modifications. These modifications are illustrated 

in Appendix G, section 2.

A component report file records the model co-ordinates (e.g. feature instance 

origin) with respect to TOP orientation plane or datum (or world co-ordinate system). 

The world co-ordinate system is the co-ordinate system such that the model co­

ordinates are recorded with respect to it. In addition, the report file records the local 

orientation planes in which the individual features were inserted in the model. The local 

orientation plane unit vectors i, j  and k, are also recorded (refer to Appendix G, 

section 9). As discussed in section 5.6, the CAPP system segregates features into 

various machining set-ups based on their orientation plane attribute. In order to 

determine feature origin locations with respect to their local orientation planes (or 

local orientation planes) such as, FRONT, RIGHT, etc., the co-ordinate 

transformation method will be necessary.

A model location vector (a, b, c) with respect to TOP orientation plane can be 

written in alternative form as:

(a, b, c) = ai + bj + ck.

where, i = (1, 0, 0); j  = (0,1, 0) and k = (0, 0,1).

Therefore, the scalar product of local orientation plane i, j  and k vector with 

feature origin co-ordinates (w.r.to TOP orientation) should transform them as per local 

orientation plane co-ordinate system. The necessary Vertex transformation methods 

have been developed and are illustrated in Appendix G, section 3.7.
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8 3  Feature topology and geometry

As discussed in section 2.5.10, the STEP standard uses EXPRESS language for 

data modelling. Its application for graphical form representation is referred to as 

EXPRESS-G [95], In order to pursue the objective of providing a neutral mechanism 

capable of describing the product data, the topology and geometry based object 

definitions for the EXPRESS language have been studied. Due to the resource 

limitations, the possibility of interfacing the EXPRESS data structure to the CAPP 

system is not viable. Hence, it has been decided to implement the geometry and 

topology class definitions on similar approach to that of EXPRESS language [95, page 

134],

Figure 8.1 : Feature edge topology

A feature topology comprises of a collection of faces. Each face is described by 

an edge loop which is an ordered collection of edges. The vertices are the end points
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of an edge. Hence, the feature topology related object classes namely, loop, edge and 

vertex have been defined. The Line and Arc class objects have been defined to 

describe the Edge geometry. The class definitions and relevant methods are illustrated 

in Appendix G, section 3.1 and 3.5.

The relationship between a feature (e.g. Plate feature), its attributes (e.g. length, 

width, height and origin (0, 0, 0)) and its edge topology is illustrated in figure 8.1.

As discussed in section 7.2.4, the feature class definition has been modified to 

accommodate the edgeTopology attribute. The edge topology assignment method has 

been developed for each feature class within the CAPP system. These methods are 

illustrated in Appendix G, section 4. The CAPP system initialises the edge topology of 

a component feature instances before executing any process plan generation methods.

8.4 Detection of Interacting Feature Cluster

The term cluster is used to describe the combination of features whose 

interaction describes a new form or shape. As discussed in the geometric reasoning 

section (section 5.6), the features are segregated into various machining set-ups, 

depending on their datum attributes (local orientations). The previous method, 

addMcProcess has been modified to detect the side interacting feature cluster (refer to 

Appendix G, section 5). It uses the intFeature attribute value to detect the interacting 

feature aggregation.

8.5 Feature Validation

According to Shah and Manly la [151], when the features are created, modified 

or deleted, their validation must be determined. The validation conditions may be 

based on size limits, location or orientations. In the author’s opinion, a feature based 

modeller should include the validation constraints. As discussed in section 7.1.3, the



designer should be fully trained in the capabilities and constraints of a feature based 

modeller.

As far as the Computervision’s CADDS5 feature based modelling system is 

concerned, the form validation constraints can be applied on individual feature classes. 

For example, if the feature is HoleCounterbore, then CboreDiameter > HoleDiameter 

and CBoreDepth < HoleDepth (Refer to Appendix A). However, if the designer uses 

the combination of feature instances to describe an interacting form, its validation 

depends entirely on the intent. The range of feature origin locations and their size 

attributes should be the responsibility of a designer. Cluster specific validation rules 

should be developed to counter-check the intent. If the interacting feature cluster 

satisfies a set of rules, then it is a valid cluster and therefore, it should be forwarded to 

process plan generation methods. Appendex G, section 5.1 illustrates a sample feature 

validation method, based on feature interaction attribute values. It checks the on, past 

or atAngle attribute values of the interacting feature. The interaction is valid if one of 

them is described by the designer. The validation rules may be custom specific and 

could include number of rules.

8.6 Feature Mapping

As discussed in the introduction section 1.1, features are regarded as application 

dependent. A method of transforming features from one application to another is 

referred to as feature mapping [151]. The feature mapping method uses the existing 

feature information and recognises the application specific features from it. For 

example, if a PocketRectangular and HoleBlind feature instances form a KeyHolc 

shape due to their interaction, then the determination of KeyHole form in the context 

of machining is a mapping method. The mapping depends on various factors. Feature 

mapping for machining applications may depend on tool selection strategy, variant 

depths of feature instances, stock attributes, etc. As discussed in section 7.6.1, Shah
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[52] has defined several mapping classes based on the feature transformation form one 

application to another. However, there is not much research evidence about the 

applications and test results on these classifications. Shah and Mantyla [151] have 

discussed the heuristic, intermediate-level structure, Cell-Based and Graph based 

mapping techniques. Most of these techniques are based on feature recognition. 

Feature recognition is a method of recognising features from a featureless model. 

Feature mapping takes place at a higher level than feature recognition and it is a topic 

of current research.

The method of feature mapping proposed here should be called as tool-feature 

interaction based mapping. The machining features are produced by machining 

operations and each operation is controlled by cutting tool selection. Therefore, the 

features should be mapped by using design feature attributes (including interaction), 

tool selection strategy and workpiece information. As discussed in section 5.2, there is 

no independent workpiece model available and therefore the feature stock attribute has 

been assumed to be ‘Solid’ by default. It means the machining features are produced 

from the solid block of workpiece.

For interacting feature clusters, the mapping method executes the following 

procedure:

1. Select the varying depths of features within a cluster, if any.

2. Rearrange depths in ascending order (machining from shallow to deep).

3. Map features as per depth.
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As illustrated in Figure 8.2, the design feature may be split into multiple 

machining features (PocketRectangular in this case) in depth based mapping. The 

depth based mapping method is illustrated in Appendix G, section 6. It may also be 

used to detect disjoint features.

4. Select cutting tools for each depth based mapped features. The depth based 

mapped features may split further depending on the tool selection strategy (Figure8.3).

Figure 8.3: Tool based Mapping

8.6.1 Tool Selection Method

The cutting tool selection method for a given same depth feature cluster would 

require the following:

a. Select tool diameter for individual features. The methods, 

getToolDiaRoundProf and getToolDiaPolygonProf have been developed and 

illustrated in Appendix G, section 6.1.

b. Sort the selected tool diameters in ascending order. The smallest diameter tool 

will always be able to machine the entire cluster.

c. Compute the approximate cluster area as the sum of the areas of individual 

features.
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d. For each tool diameter, compute the approximate percentage of machining

area.

e. The decision about selecting the number of tools should depend upon the 

diameter range and percentage of total area to be machined by a tool. Depending on 

the shop specific machining strategy, custom specific rules should be used for the tool 

selection method. For example, it is assumed that if the minimum diameter from the 

tool diameter range is 20 or more, then it should be used for machining the entire 

cluster. If the minimum tool diameter is less than 20 mm and the difference between 

minimum and maximum tool diameter is more than 20 mm, and the percentage of 

area machined by higher diameter tool is more than 25%, then the higher diameter tool 

should also be used.

f  For a pocket roughing operation, various drilling/orbital milling options should 

be considered if the hole features exist within a cluster. The pocket roughing methods 

are illustrated in Appendix G, section 7.

8.6.2 Feature profile union or subtraction

The tool-feature interaction based mapping should be supported by profile union 

or subtraction methods, usually referred to as 2D Boolean methods. As illustrated in 

Figure 8.3, the mapped feature profile computation is necessary to avoid tool non­

cutting motion as well as for NC loolpath generation.

As discussed in section 7.4.3, the edge intersection method had been proposed 

to be used along with feature interaction attributes, to, on, past, etc., to determine the 

APT based machining contour. However, the feature interaction attribute based 

contour determination method was found to involve unnecessary complications. It is 

observed that there arc a number of possible permutations and combinations to 

position and orient the feature profile within the cluster. Therefore, it has been decided
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to develop the profile geometry based union and subtraction methods to determine the 

mapped feature profile.

In order to develop the edge intersection methods, the basic curve intersection 

methods such as line to line, line to arc, and arc to arc intersection has been developed. 

Hill [152] explained the line to line and line to ate methods by using vector algebra. 

The arc to arc method has been developed by using basic geometry principles. For a 

given edge, the edge intersection method computes single or multiple intersections 

with another edge. Supplementary methods have been developed to compute the edge 

intersection with feature profile, edge inside a feature profile, intersection point nearest 

to edge start point, etc. The codes for intersection methods have been illustrated in 

Appendix G, section 3.2.

The union of feature profiles follows the following method:

1. Compute immersed edges in the union of feature profiles & remove them from 

total edges.

2. Check if the start or end points of the remaining edges are inside the other 

feature profiles. If yes, modify them to feature intersection points.

3. Generate new edges if the edge start and end points are outside a feature but 

the edge intersects it.

4. Recheck the edges for double intersection and follow step 3.

5. Step 4 completes the computation of edges for profile union. The resultant 

edges are reordered such that the preceding edge end point is followed by succeeding 

edge start point.

6. The method outputs the result as an ordered collection of edges.

The subtraction of features profiles profl from prof2 follow the following 

method:

1. Get union of profiles, profl and prof2 as prof3.
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2. Compare start and end points of profl with prof3. If they exist in both then 

the edge belongs to the subtraction profile. If either start or end point exists in both, 

then that edge is a part of subtraction profile.

3. Check if the start or end points of profl edges are inside prof2. If yes, trim 

them to intersection point and reverse the edge direction.

4. Reorder total edges from step 2 and 3. The method outputs the result as the 

ordered collection of edges.

The codes for union and subtraction methods are shown in Appendix G, section 

6.3 and 6.4 respectively.

The net result of feature mapping is the ordered collection o f absolute and 

relative depths, mapped feature profiles and the tool parameters to machine them. 

Based on the mapped feature attributes, the roughing and/or finishing operation 

attributes are assigned.

8.7 Process plan generation for cluster pockets

For each depth within a feature cluster, the mapped feature attributes are used 

to determine the finish and rough pocket milling operations. Since the raw material 

condition for the cluster is assumed to be ‘solid’, the rough pocket milling and finish 

contouring operations are assumed to be mandatory.

The finishing stock is assumed to be 0.4 mm on depth as well as on the side of 

the mapped feature. As discussed in section 5.3, the finished stock computes the pre- 

machining stock, which will be the stock for the roughing operation. The side stock is 

assumed to apply on the mapped feature profile. Therefore, the communication of side 

stock from roughing to finishing would require offsetting the mapped feature profile by 

a finished stock value. The profile offset method has not been developed because the 

NC programming systems can offset the toolpath Hence, only depth stock has been 

used to communicate stock values from finishing to roughing.
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The tool for operation and machining edge profile is assigned from the mapped 

feature attributes. Various depth planes in pocket milling such as, approach, retract, 

Zwork and clear plane, are computed from absolute and relative depths of a mapped 

feature. The cluster pocket finishing and roughing methods are illustrated in Appendix 

G, section 7.

8.7.1 Pocket corner finishing operation

While finishing a sharp cornered pocket profile, additional comer finishing 

operations may be necessary when the angle between comer edge tangents is concave, 

i.e. less than 180 degrees. A method has been developed to compute the angle between 

profile edge tangents. It computes the start and end tangents of a comer edge. A dot 

product of tangent vectors computes the angle between the tangents. In order to 

decide the concave or convex angle, the left or right turn detection method has been 

used from vector algebra [152]. If the dot product of unit vector in Z direction ( i.e. k) 

with a vector, which is a result of the cross product of comer edge tangents, i.e. k.(a x 

b) is greater than zero, then the edge turn is left, otherwise, right. Therefore, the angle 

between tangents should be 180 minus the angle between tangents or 180 plus the 

angle between tangents respectively. The relevant methods are illustrated in Appendix 

G, section 3.3 and 3.4. A tool diameter of 3.0 mm. is assumed whenever comer 

finishing is necessary.

8.8 Process plan Report Generation

The process plan report generation method remains the same as discussed 

section 5.9. However, some modifications arc necessary to output the edge profile of 

interacting features. The edge profile/s along with pocket machining plane data could 

be used for NC toolpath generation. Unfortunately, due to the limitations of graphic 

display methods in the current Smalltalk system, the mapped profile/s could not be
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displayed graphically. The modified codes for process plan report generation methods 

are illustrated in Appendix G, section 8.

8.9 Test Results

As illustrated in Appendix G, section 9, a component model has been built on 

Computervision’s CADDS5 feature based modelling system. The features report file 

has been imported into the CAPP system. The process plan report is generated by 

executing the ‘Generate Process’, ‘Assign Resources’ and ‘Show Component Process’ 

commands. Upon close inspection, it has been observed that the automated process 

plan results comply with methods that have been discussed in this chapter. One of the 

distinct features of the process plan is the interacting feature profile edge topology 

output, which could be used for NC toolpath generation.

The current version of Smalltalk system does not provide advanced graphics 

display methods and therefore, it is not possible to display the operation plan specific 

profile edge topology. Hence, the process plan for TestComp4 in Appendix G has been 

illustrated with relevant figures of profile edge topology.

The side feature interaction solution could be further experimented with the 

combination of additive and subtractive feature interactions.
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9. DISCUSSION

The feature based CAPP system study, analysis, planning, development and 

subsequent test results have demonstrated that foim feature based component models 

on commercial CAD system can be used for automated process planning applications. 

The context of today's best equipped commercial CAD systems, their use in real world 

product development and the emerging STEP standard have been considered while 

studying features. The modular development of the CAPP system has been 

demonstrated by object oriented product, process and resource knowledge 

representation and their integration. In a way, this research work presents a broad 

overview of the various issues that need to be considered for the development of a 

CAPP system. This chapter discusses the advantages and limitations of the proposed 

approach and concludes with recommendations for further work to improve and 

extend the scope of the current implementation.

9.1 The Product Design Representation

The product structure/configuration as a hierarchy of assemblies, sub-assemblies, 

components and features has been used to represent product knowledge in the CAPP 

system. The product design representation approach is in line with the modem industry 

practice for concurrent product engineering. The implementation of STEP based form 

feature definitions has made the CAPP system adaptable to use the standard product 

model data.

The work on the Object Oriented Product Modelling approach using Smalltalk 

has recently been published [130]. However, the part design is interactively described 

in the Smalltalk system and then converted into AutoSolid for visual display, whereas 

this research follows the opposite but logical approach by using a feature based CAD 

system for design and subsequently using the design data in the CAPP system. In
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addition, interactive part description within the Smalltalk system has also been 

provided for testing and development purposes.

Some work on object oriented STEP compatible part definition schema that 

consists of nominal shape, form features, shape tolerance, surface and materials 

information and its use to develop the CAPP application protocol has recently been 

published[128, 129]. However, the work appears to have addressed the product 

definition only. Its application in geometric and process reasoning has not been 

discussed. The work is being tested by developing a CAPP system. Such a protocol 

could also be tested in the CAPP system proposed by this research by developing an 

interface to convert a STEP object file into a part feature tree.

One of the fundamental issues that seems to have been overlooked by the above 

work is the interpretation of user defined features (special form features to suit 

particular needs) from the STEP file to the CAPP system. More illustration is 

necessary to elaborate the strategy in dealing with undocumented features in a CAPP 

system.

This research pre-defines an object in the CAPP system that corresponds to the 

user defined feature in the modeller. Hence, interpretation of the CADDS5 report file 

into the CAPP system as a feature tree is possible. The import component method of 

the CAPP system can be modified to automatical.y define the unknown features that 

may be present in the STEP file. While generating a process plan for the unknown 

feature, the CAPP system will issue a warning message so that the manufacturing 

engineer could assign the appropriate manufacturing method. The 'Change/Inspect' 

command can be used to study the attributes ol a new feature while developing a 

manufacturing method. If the user defined feature is a one off and unlikely to be 

repeated again then a technique similar to manual process assignment (refer to 5.8) can 

be implemented.
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The above approach illustrates the ease in customising the CAPP system which 

is essential for its implementation in different Machine shops. A recent survey on 

Integrated Design and Manufacturing in Japan has revealed that Japanese companies, 

both large and not so large, buy software and customise it to suit their own 

manufacturing style [136].

This research has been able to demonstrate the application of user defined 

features in the CAPP system. The geometry ol a feature is one of its attributes 

(representation). While representing that geometry, the designer can have complete 

freedom as in conventional CAD modelling. Hence, the feature based modelling 

approach should not be viewed as an approach that hinders the designer's creativity. A - 

paper on a case study of feature based tool design was published by the author [141] 

(refer to 3.8 and Appendix C). It is convenient to assign a manufacturing method for a 

complex user defined feature by considering all its features and their relationship to 

each other rather than developing methods for them. This is because these features 

may not repeat again, e.g. machining surfaces in die design or a special feature to suit 

the needs of a particular organisation.

The user defined feature approach can also be used while considering different 

types of workpieces, e.g. a casting or a forging (refer to TestComp3, Appendix F, 

page 254-270) and not just a billet as most research efforts seems to have considered. 

The workpiece becomes a starting point for a feature based model. The rest of the 

model can be built by using other features in the library. In some cases the workpiece 

feature may not need any machining to form its shape as it is assumed to be a casting. 

All the children features of the workpiece can be machined as per the process plan 

generated by the CAPP system. This illustration also supports the reason behind 

keeping the STEP form feature classification limited to standard machinable forms 

such as hole, slot, etc.
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One of the limitations of the user defined feature approach in a large 

manufacturing organisation could be the possibility of proliferation. Strict control on 

feature taxonomy schemes and organising application specific feature libraries may 

help in preventing it. The users should be trained adequately. The other preventive 

measure could be the provision of a GT classification and coding module for features. 

A designer should generate a GT code for the feature that he/she intends to define as a 

new feature. The feature should be defined if the code is unique. The automated GT 

classification and coding module for the entire feature based model can also be used to 

automate variant CAPP systems [131]. This should considerably narrow the gap 

between variant and generative CAPP systems.

The study on symbolic representation of tolerance and manufacturing features 

(refer to 3.6 & 3.7) could not be pursued further because of the data access problems 

from the CADDS5 system. However, the display of tolerance and manufacturing 

related attributes in the form of symbols on the model would help in addressing the 

detailed drawing related issues at the design stage. It would provide better 

interpretation of a feature based model. A paper on this approach has been published 

by the author [140],

The product definition user interface (Figure 5.2) in the CAPP system should 

have been provided with the nodal display of product structure (as in Figure 3.2) to 

enable better interpretation. At the moment, 'Show All Children' and 'Change/Inspcct' 

commands have to be used for a number of times to interpret the product structure.

9.2 Geometric Reasoning

Unlike most CAPP systems, this research has considered two types of raw 

material stock attributes, a solid (billet) and a thickness. The interpretation of the stock 

attribute is based on certain assumptions that are discussed in chapter five. The 

thickness attribute can be used on castings, forgings or prc-machined workpieces. The
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approach has made the system more versatile as demonstrated through results in 

Appendix F.

It is assumed that the raw material (workpiece) is known at the design stage 

(which is usually the case in the design for manufacturing approach). The designer 

builds a feature based model based on the raw material knowledge. The overall 

workpiece definition is implied from the primitive type feature and a raw material 

condition attribute of a feature. For example, the workpiece for TestCompl (Appendix 

F) is the primitive feature Plate; for TestComp2, a primitive feature Plate with the 

height of a protrusion feature and 2 mm machining stock added to its height; and for 

TestComp3, a primitive feature Bracket which is implied as a Casting by declaring its 

mcNotMc attribute to be 'N1, which means machining is not required to form its shape.

It is worth mentioning that the STEP based feature definition has an attribute 

workpiece that enables the selection of solid volume in which the feature is inserted 

(Appendix B, page 176). This research has not used the workpiece attribute because of 

the feature geometry access problems on the CADDS5 system. Instead, a 

rawMatlCondition attribute has been defined and used to interpret the raw material 

state of a feature.

This research accepts that there may be a one to many relationship between the 

design feature and the manufacturing feature as observed by Mills, Shah and Pratt 

[132, 52, 71, 133]. While studying the problems in feature based process planning, a 

solution to side feature interaction problem has been discussed in chapter 7. The 

solution to the problem has been implemented in the CAPP system and the test results 

in Appendix G are very promising. The CAPP report generation capability would have 

been much better had the graphic display methods lieen available in Smalltalk system.

It is realised that the proposed assumptions (refer to 5.6) that enable geometric 

reasoning of the additive feature clusters will not te  adequate. The feature recognition 

techniques that are discussed in the literature review will be essential. The geometric
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reasoning would be more effective if both the recognised manufacturing features (or 

delta volumes) as well as the component feature tree are considered. None of these 

issues could be demonstrated as the approach needs two way interaction between the 

feature based modeller and the CAPP system, as recommended by Pratt and Wilson 

[66], and the access to the underlying geometry and topology of the features and 

workpiece to compute feature extrinsic information as proposed by Shah[71, 131]. 

This observation becomes interesting in the context of STEP file product data input to 

the CAPP system. The geometry engine will have to be the integral part of the CAPP 

system to compute the feature extrinsic information that is necessary for geometric 

reasoning purposes. The geometry engine should use standard geometry data and not 

the proprietary one. Computervision has recently introduced an object oriented CAD 

tool kit called Pelorus [134]. Pelorus is STEP compliant and it will free users from 

proprietary CAD databases, even for geometry data. Systems like Pelorus should be 

considered for developing applications such as CAPP.

The component feature tree and feature attributes have been used as the basis in 

proposing systematic steps for geometric reasoning of a component (refer to 5.6). The 

approach has shown consistency in plan generation (Appendix F) and it will work 

provided the designer ensures the feature validity.

The term validation is used to imply that the designer uses form features true to 

their definition and rules [133]. For example, a HolcBlind feature is used to represent a 

blind hole and not a through hole, Pocket is used to represent a pocket and not a slot 

or a notch, etc. However, maintaining the feature validity while designing a complex 

part cannot be left alone to the designer. For example, a designer may insert a 

HolcBlind feature in the side of a Plate feature. Next he may insert a Pocket feature in 

the top face of a Plate feature. If the Pocket feature intersects a HolcBlind feature then 

the HoleBlind feature becomes invalid as it becomes a HolcThrough feature 

conforming to different class definition and mlcs. The feature validation and
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revalidation should be built into a feature based modeller. This should be supported by 

efficient user defined feature definition languages such that the features conform to a 

set of rules if used in modelling applications. The CADDS5 user defined feature 

capability enables one to enforce constraints in the feature definition, and maintain 

them in the model. However, it does not check the proximity obstructions caused by 

other feature instances.

9 3  Process Knowledge and Reasoning

The object oriented approach has made it possible to use a mixed approach for 

process specific knowledge representation. It is represented by a frame based approach 

for hole making processes and rule based approach for other types of process (for 

reason, refer to chapter 5 page 98). This enables flexibility in process knowledge 

representation.

Organising the feature machining knowledge by object oriented approach was 

found to be very convenient. Various feature machining methods have been developed 

that are relevant to the process class. For example, a Boring process 'knows' how to 

respond when the rough or finish boring search is requested; an EndMilling process 

'knows' how to respond to pocket milling, profile milling or face milling. These 

methods respond to the backward process reasoning search on the manufacturing view 

of a design feature i.e. from finished state to raw state. The relevant process reasoning 

search is assigned by the manufacturing engineer (refer to 5.3). Hence, there is no blind 

search and the search is quicker. If the search provides multiple feature machining 

options then all the options are generated and displayed (refer to Appendix F, page 

220-221). The 'Assign Resources' command refines the process plan by searching the 

shop specific resources. It was observed that there could be other issues that may 

influence the economics of machining, e.g. available resources, shop schedule, etc.
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Hence, it was decided to provide the options to the user. The user selects the 

appropriate option.

A typical expert system forward or backward chaining search tends to resolve 

the conflict (when multiple solutions exists) by assuming some form of a weight, e.g. 

minimum machining time, minimum machining cost, etc. In an object oriented 

approach the search is controlled by methods that could be simple or complex and may 

depend on one or many parameters. Hence, it was found to be more suitable for a 

process reasoning application, where decisions are based on knowledge as well as 

experience, and its relevance within the context of a particular feature.

The development of new methods in object oriented programming is also found 

to be very convenient. A typical procedure involves copying a similar method, 

introducing modifications to suit the need, and saving it under the appropriate method 

name. Like conventional programming, the program compilation and linkage is not 

necessary.

Recently, a unique work on modifying an existing generative CAPP system for 

the purpose of integration with the scheduling system has been published [135]. The 

modifications are made to the process decision model files and the machine tool files as 

the old process decision model was based on a particular machine tool. If similar 

modification were considered on the CAPP system in this research, it will not need 

process reasoning modifications, because the process generation is based on the 

universal knowledge. Moreover, the process plan per set-up is generated as a network 

of operations maintaining aggregation between operations, a technique that has been 

used by Tonshoff for scheduling techniques [122, 138]. Each operation records all the 

valid machine tool classes (Appendix F, page 219-227). The shop specific machine 

tools that belong to the valid machine tool classes for the operation can be searched to 

allocate the best possible machine tool for the machining process. A machine tool 

scheduling and rescheduling method can be developed based on the factors such as
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load, breakdown, average cycle time, machine hour rate, number of alternate machine 

tools, etc. The work involved will be 'add on' type and not the modification to the 

CAPP system.

The CAPP system process reasoning capability is applied to shape tolerance and 

surface finish attributes of a feature and not to location tolerance. It may be argued 

that the close shape tolerance can also imply closer location tolerance. However, a 

location tolerance relates different features as per the functional obligations of a 

design. Sometimes the process planner has to manipulate location tolerance when the 

related features are machined in different set-ups. Hence, lack of consideration of 

location tolerance is a limitation of the CAPP system.

The generative feature based process planning capability of the CAPP system is 

based on the assumption of machining a single piece part. It does not consider the 

batch quantity, group layout of the Shop and special-toolings such as multi-spindle 

drilling attachment, multiple bore roughing tool, drilling and counterbore tool, etc. 

However, the automated plan generation capability of the CAPP system could be used 

together with batch quantity information to develop methods for justification of 

special-toolings based refined process plans. The group layout of the shop could be 

considered while developing the shop scheduling capability. In both cases the work 

involved will be 'add on' type and not the modification to the CAPP system.

One of the important aspects that has not be;n dealt with this research is the self 

learning and teaching capability of the CAPP system. Some work has been published 

recently that compares the five step process planning methodology of process, sub­

process, feature process, methods & equipments, and operations & tools, to learning 

methods such as learning by example, observation, analogy, explanation based 

generalisation and advice taking [137], The research in this field seems to be at an 

early stage. However, its importance in the self learning capability of the CAPP system 

to make the manufacturing knowledge more mcaringful and then passing it on to the
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new generation should not be ignored. As far as the teaching ability of the CAPP 

system is concerned, elaborate comment statements have been used at the beginning of 

a specific method development so that it clearly explains the logic behind the method 

development. The 'Change/Inspect' commands have been developed to explain the 

various object definitions (refer to 5.2, 5.3 and 5.4).

The machining process classification (refer to figure 5.4) could have been 

defined as machining operation classification. Each feature machining process 

comprises one or more machining operations. Hence, the term Operation could have 

be used in place of the term Process.

The feature process operation sequence, operation precedence and set-up 

numbers are automatically generated by the CAPP system. However, in the context of 

the overall process, an operation sequence optimisation will be necessary and it should 

be linked to further research efforts in developing scheduling techniques.

9.4 Resource integration

The resources in industry are usually managed by databases (relational, object 

oriented, etc.). The CAPP system in this research has not used any database to 

represent resource knowledge. Instead, resource knowledge representation has been 

developed in Smalltalk, comprising a number of object hierarchies and suitable user 

interfaces (refer to 5.4). Object oriented databases provide seamless integration with 

object oriented programming languages [139]. Hence, object oriented approach to 

application development such as CAPP benefits from simultaneous considerations of 

database requirements and programming needs.

The resource knowledge representation is independent of process and product 

knowledge which enables modularity in its development, modification and application. 

Various methods have been developed to communicate between product, process and 

resource objects.
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The resource knowledge is Shop specific and hence it is not used as the basis for 

process generation. It is used for process refinement by developing the 'Assign 

Resources' method. This approach should help in customising the CAPP system.

One of the major problems that have been observed in customising CAPP 

systems is the utilisation of existing company specific resource databases. Suitable 

methods could be developed to connect to various databases and get the attributes that 

are relevant to a particular resource object. This concept has not been implemented 

yet. However, it has been identified as work for further research.

As discussed in 4.4.1, a resource database has also been developed by using the 

Oracle relational database system, as a part of initial CAPP system development. 

Considerable effort has been expended in developing automated tool assembly 

generation and graphic visualisation by using form features. The work is unique that 

for a given tool request from the database, an application program links the relational 

information for tool components to generate possible tool assemblies for a specific 

type of machine tool spindle (refer to Appendix E). In addition, it enables a graphic 

display of tool assemblies that is based on the tool feature attributes and also computes 

tool cutting, clearance and total length. The work should have a significant importance 

in tool management and scheduling applications. Similar situations exist in various 

industries where the existing systems capabilities and applications cannot be ignored in 

preference to the new system installations. Hence, the assessment of the interaction 

between different databases should prove to be a benchmark in investigating the 

database response times. The response time would make it possible to decide whether 

to have a single object oriented database or not. The current ESPRIT project 2165 on 

Integrated Modelling of Product and Process Using Advanced Technologies, proposes 

a single object oriented database, IBASE (IMPPAlTT database) [77].

Considering the existing resource database of the CAPP system which has about 

one hundred resource iastances, the response time for resource allocation for
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TestCompl (Appendix F, page 226) using 'Assign Resources' command has been 

observed to be about two minutes.

9.5 General

This research has been able to highlight the limitations of conventional 

programming languages for developing the CAPP system (refer to 4.5).

The need for a good user interface has been consistently emphasised while 

developing the CAPP system. The integration of product, process and resource 

domains has been successfully demonstrated by developing various intelligent menus 

for system user communication. A built-in intelligence has been provided in the menu 

design. For example, if the user selects a wrong input to execute a particular 

command, the system displays messages with necessary corrective action that is 

relevant to the command. This makes the system safe to operate and makes it easy to 

learn its functionality.

The overall CAPP system communication window has been developed by 

recognising- the needs of Concurrent Engineering where referencing and cross 

referencing relevant information between various engineering domains is a way of 

working.

The process planning function also needs graphic support for applications such 

as graphic tool assembly generation, fixture planning and display, process layout 

preparation, NC tool path simulation, etc. The Smalllalk/v286 has a graphical 

capability called bit mapped graphics or raster graphics, e.g. a line is drawn with a 

continuous vector of dots, a character is formed with a block of dots, etc.[125]. 

However, the graphic library support has been found to be inadequate and considerable 

effort will be required to develop the graphic methods that would enable the CAPP 

functionality in the above mentioned graphic applications.
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9.6 Future Research

Considering the knowledge and experience gained in this research, it is 

appropriate to propose two types of recommendations for further research, first the 

recommendations for further work to improve and extend the scope of the current 

implementation, and secondly the recommendations for global CAPP research.

9.6.1 Enhancing the Current Implementation

Further work is necessary to conduct a detailed study of STEP application 

protocols for product modelling and process planning and the development of suitable 

methods to represent CAPP system product knowledge from the STEP file.

A soulution to the side feature interaction problem has been implemented only 

for subtractive features. It could be enhanced for additive features as well as a 

combination of additive and subtractive features.

The development of automated GT coding and classification methods in the 

CAPP system by using the component feature tree could lead to the possibility of 

linkage to the commercial variant CAPP systems to automate them.

It would be possible to add further enhancements in the resource knowledge 

representation by adding Method Time Measurement (MTM) knowledge and 

implementation of methods to compute cut time, move time, set-up time and total 

cycle time for the component machining. In addition the methods in process reasoning 

that arc based on the component batch quantity and the scheduling techniques could 

also be developed.

It would be possibile to develop suitable methods to exchange resource 

information from the Oracle resource database to the CAPP system. Further 

possibilities could be investigated to use standard resource databases in the CAPP 

system such as the machinability database from Metcut Research, Sandvik tool
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management system, etc. The study of STEP application protocols for resource 

information exchange could also be carried out. The data response time could be 

investigated in case the database plug-in approach is implemented in the CAPP system.

The various types of CAPP applications such as round components, sheet metal, 

assembly planning, etc. could be implemented by using a similar approach to 

investigate the consistency and shortfalls, if any.

9.6.2 Global CAPP research

The object oriented CAD tool kits like Pelorus that are STEP compliant and 

independent of proprietary CAD databases should be used in CAPP research. They 

would automatically establish the two way link between CAD and CAPP systems 

which is essential for powerful geometric reasoning.

Considerable research efforts are necessary to enhance the feature based CAD 

systems to automatically generate the various types of workpiece models from the 

design model. It is encouraging to see the powerful commands on sophisticated CAD 

systems such as 'Generate thickness for the entire model' or Generate thickness 

excluding/including faces of a model', 'Offset face of a model', 'Offset face of a model 

with a draft angle'. More research is necessary in geometric reasoning techniques that 

arc based on feature based design and workpiece model and that use both the feature 

tree and the feature recognition techniques.

It is essential to include dimensioning and tolerancing (D&T) along with the 

above information. Suitable techniques will be necessary to display this type of 

information on the model as symbols or labels. D&T information of a feature based 

model should also be investigated in the context of automated detailed drawing 

preparation.

Further work is needed in the development of feature languages to provide the 

user defined feature techniques with constraint management that would make it
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possible to check their validation and revalidation while using them for feature based 

modelling.

Continuous and significant amount of research work is necessary in feature 

mapping. Powerful open geometry systems such as ACIS [151] should be considered 

as a standard platform for such research. Systems like ACIS with powerful geometry 

functions make it possible to focus on relevant areas of research at an early stage. 

Otherwise, a significant amount of effort is expended on developing such functions.

Now that the object oriented branch of AI has been finding wider acceptance in 

the CAPP research community, its applications in process knowledge representation 

and reasoning need further research, and knowledge based learning techniques should 

become a part of it.
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10. CONCLUSIONS

1. A detailed study has been carried out to understand the tools and techniques 

that have been used in computerising the process planning function. The relevance of 

various techniques and their limitations have been observed.

2. Component design data in terms of its constituent features is essential to 

develop a generative CAPP system. The design feature may have a different meaning 

in manufacturing. In order to interpret that meaning both geometric reasoning and 

feature recognition methods are necessary.

3. A detailed study has been carried out to understand the advanced concurrent 

product development techniques by using sophislicated CAD/CAM and Engineering 

Data Management systems. The importance of the STEP standard for free sharing of 

product data between design and manufacturing has been emphasised.

4. The STEP form feature information model that has been supported on the 

commercial CAD system has been studied in detail. It consists of form feature 

attributes that describe their nominal shape. This information has been found to be 

iasufficient for CAPP system application. In addition, the CAPP system needs 

tolerance, surface finish and raw material information. In order to overcome these 

limitations, the user defined feature capability of the CAD system has been investigated 

for its suitability to assign manufacturing related attributes while modelling with 

features.

5. The component feature report text file, the user accessible data of a feature 

based CAD model, has been investigated for its suitability as an input to the CAPP 

system. Its limitations in building feature aggregation have been observed. Without 

aggregation a component feature tree can not be built. A feature library has been 

developed that enables feature based modelling of prismatic components with the 

capability to assign manufacturing attributes and maintaining feature aggregation.
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12. The feature tree, feature geometric attributes and feature manufacturing 

attributes that also include their raw material condition, have been used for 

implementing geometric reasoning techniques. The geometric reasoning techniques 

interpret the manufacturing view of a design feature and the feature machining set-up. 

The CAPP system is capable of generating process plans for different types of raw 

material conditions.

13. The problems in feature based process planning and their possible solutions 

have been discussed. The solution to the side feature interaction problem has been 

implemented in the CAPP system.

14. Process reasoning techniques have been developed that are based on the 

geometric reasoning of features. A process reasoning system involves matching of 

process knowledge with the manufacturing view of a feature. If the matching occurs, 

the process object instance is initialised. The 'initialise' methods are based on the 

universal process knowledge.

15. Each initialised process also computes the pre-machining state of a feature 

that describes the new manufacturing view of a feature based on its machining 

operation. This backward planning approach of process instance initialisation continues 

until the manufacturing view matches with the raw material condition attribute of a 

feature.

16. The machining process of a feature is generated by initialising one or more 

process objects that describe the machining operations for the feature machining 

process. The feature machining process operation sequence is established by process 

instance aggregation.

17. The feature process machining sequence as per process instance aggregation 

may prove to be incorrect in the context of machining all the features in a given setup. 

The operation preference method has been developed that evaluates the feature 

process operations in the context of a component feature tree and highlights the
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feature operation preference that can be machined either before or after the machining 

operation of a particular feature instance.

18. The 'Assign Resources' method has been developed that refines the universal 

process plan in the context of Shop specific resources. This technique should enable 

ease in customising the CAPP system.

19. The capability of the CAPP system has been demonstrated by testing it on 

different types of test components. The success and consistency of results indicate that 

the feature based generative CAPP system can be developed to automate the process 

planning function by using commercial feature based CAD systems.

20. The object oriented approach should have a significant potential in CAPP 

research due to the analogy and convenience of representing features as objects. The 

EXPRESS language of the STEP standard also has an object oriented functionality. 

The commercial object oriented CAD/CAM systems have recently been introduced. 

CAPP systems need a powerful geometry engine to support geometric reasoning, and 

for providing the additional functionality such as graphic tool assembly generation, 

automated fixture planning and display, automated process layout preparation, NC tool 

path simulation, etc. Hence, the CAPP System should be developed by using the 

hardware and software that provides object oriented CAD/CAM tools and method 

libraries, such that CAD/CAPP/CAM becomes a single integrated system.
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TAXONOMY OF SYSTEM FEATURES

This appendix details the taxonomy of the system-defined features for use within 
the CADDS5 Parametric environment 112],

Form Features Information Model
The Form Feature Information Model, or FFIM, presents a conceptual model of 

form feature information. The FFIM is based upon a structure developed for the 
Product Data Exchange Standard, or PDES/STEP. The FFIM is intended to provide a 
good foundation for user defined features, common methodology and data exchange. 
The following section describes some key terms.

Form Feature
A portion of a shape which, for the purpose of some application, is treated as an 

entity.

Volume Feature
A form feature that is view as a volume added to or subtracted from the previous 

state of the workpiece.

Additive Feature
A volume feature whose volume is added to the previous state of the workpiece. 

The value of the static attribute Operation, inherited from class Feature, is set to Add.

Protrusion
An additive feature that extends outward from the previous state of the 

Workpiece at a single place.

Connector
An additive feature whose added volume joins the previous state of the 

Workpiece at two distinct places, the feature may connect two separate volumes. In 
other cases, both connections may be with the same volume, so that the feature creates 
a handle on the Workpiece.

Primitive

An additive feature whose added volume does not connect to the previous state 
of the Workpiece.

Subtractive Feature
A volume feature whose subtracted volume emerges from the previous state of 

the Workpiece at a single opening.
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Flat
On an axial part, a planar surface on the workpiece, usually machined, and 

nominal to the centreline.

Slot
A long, narrow linear or circular channel of square or angular cross-section.

Cutout
In sheet metal, a cut opening, regular or irregular in shape which has a 

continuous periphery (it doesn't intersect the edge of the Workpiece). A cutout is .often 
used as a view port, access way, or for weight reduction.

Charts
The following chart, Form Feature Information Model, shows the current FFIM 

classification of form features. Each box in the diagram represents a feature class and 
its corresponding attributes. The feature class boxes are divided into three sections:

1. The Class Name
2. The static or class attributes
3. The attributes, or instance attributes
Features with no new attributes may be shown without an accompanying box.
The subsequent chart, System features, spans several pages and shows the 

taxonomy of individual system feature; accompanying illustrations show how attributes 
of size relate, to their representations.
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CADDS5 Report File For a Sample Component
printing 1222 Boss_Circularl219_Il

class :
class : Boss_Circular library : SYSLIB

static attributes :
BooleanOp Operation - Add
:ibutes :
Workpiece Workpiece - 1179
Name Representation - rep
CPlane Orientation id - 6

name - TOP
i  X - 1.000000e+00

y 0.000000e+00
z - 0.000000e+00

j X - 0.000000e+00
y - 1.000000e+00
z - 0.000000e+00

k x - 0.000000e+00
y - 0.000000e+00
z - 1.000000e+00

Location Origin X - 1.000000e+02
y - 8.750000e+01
z - 5.000000e+01

ApplyType Application - Boolean
Face ExitFace - 1013
Diameter TopDiameter - 1.500000e+01 - millimeters
Length BossHeight - 1.000000e+01 - millimeters
Angle DraftAngle - 5.000000e+00 - degrees

* * * * * printing 1424 Boss_Circularl219_I2
class :

class : Boss_Circular library : SYSLIB
static attributes :

BooleanOp Operation - Add
attributes :

Workpiece Workpiece - 1179
Name Representation - rep
CPlane Orientation id - 6

name - TOP
i  X - 1.000000e+00

y - 0.000000e+00
z - 0.000000e+00

j X - 0.000000e+00
y - 1.000000e+00
z - 0.000000e+00

k x - 0.000000e + 00
y - 0.000000e+00
z - 1.000000e + 00

Location Origin X - 1.000000e+02
y - 1.250000e+01
z - 5.000000e+01

ApplyType Application - Boolean
Face ExitFace - 1013
Diameter TopDiameter - 1.500000e+01 - millimeters
Length BossHeight - 1.000000e+01 - millimeters
Angle DraftAngle - 5.000000e+00 - degrees

printing 450 Pocket_Rectangular447_I1
class :

class : Pocket_Rectangular library : SYSLIB
static attributes :

BooleanOp Operation - Subtract
attributes :

Workpiece Workpiece - 755
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Name Representation - rep
CPlane Orientation id * 6

name = TOP
i x = 1.000000e+00

y - 0.000000e+00
z - 0.000000e+00

j x - 0.000000e+00
y - 1.000000e+00
z - 0.000000e+00

k x - 0.000000e+00
y = 0.000000e+00
z - 1.000000e+00

Location Origin X - 1.000000e+02
y = 5.000000e+01
z - 5.000000e+01

ApplyType Application - Boolean
Face EntryFace = 782
Length PocketLength - 5.000000e+01 - millimeters
Length PocketWidth = 1.000000e+02 - millimeters
Length PocketDepth - 2.000000e+01 - millimeters

printing 204 Hole_CboredThru201_I1

class :
class : Hole_CboredThru library : SYSLIB

static attributes :
BooleanOp Operation - Subtract

attributes :
Workpiece Workpiece - 755
Name Representation - rep
CPlane Orientation id - 6

name TOP
i x - 1.000000e+00

y - 0.000000e+00
z - 0.000000e+00

j X - 0.000000e+00
y - 1.000000e+00
z - 0.000000e+00

k X - 0.000000e+00
y - 0.000000e+00
z - 1.000000e+00

Location Origin X - 1.750000e + 02
y — 5.000000e+01
z - 5.000000e+01

ApplyType Application - Merge
Face EntryFace - 782
Face ExitFace - 781
Diameter HoleDiameter - 1.000000e+01 - millimeters
Diameter CboreDiameter - 2.000000e+01 - millimeters
Length CboreDepth - 2.000000e+01 - millimeters

printing 943 Hole_CboredThru201_I3

class :
class : Hole_CboredThru 

static attributes :
BooleanOp Operation 

attributes :
Workpiece 
Name 
CPlane

Workpiece
Representation
Orientation

library : SYSLIB
- Subtract
- 755
- rep

id - 6 
name - TOP 
i x - 1.000000e+00 
y - 0.000000e+00 
z - 0.000000e+00 

j x - 0.000000e+00 
y - 1.000000e+00 
z - 0.000000e+00 

k x - 0.000000e-f 00
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Location Origin

ApplyType
Face
Face
Diameter
Diameter
Length

Application
EntryFace
ExitFace
HoleDiameter
CboreDiameter
CboreDepth

printing 54 Plate51_Il

class :
class : Plate 

static attributes :
BooleanOp 
Workpiece 

' ApplyType 
attributes : 

Name 
CPlane

Location

Length
-Length
Length

Operation
Workpiece
Application
Representation
Orientation

Origin

PlateLength
PlateWidth
PlateHeight

y - 0.000000e+00 
z - 1.000000e+00 
x - 2.500000e+01 
y - 5.000000e+01 
z - 5.000000e+01

= Merge
- 782
- 781
- 1.000000e+01 =
- 2.000000e+01 »
- 2.000000e+01 -

library : USERLIB
- Add
-  0
= NoApply

= rep 
id - 6 

name = TOP 
i x - 1.000000e+00 

y - 0.000000e+00 
z - 0.000000e+00 

j x = 0.000000e+00 
y - 1.000000e+00 
z - 0.000000e+00 

k x « 0.000000e+00 
y - 0.000000e+00 
z - 1.000000e+00 
x - 0.000000e+00 
y - 0.000000e+00 
z - 0.000000e+00

- 2.000000e+02
- 1.000000e+02
- 5.000000e+01

millimeters
millimeters
millimeters

millimeters
millimeters
millimeters
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This appendix illustrates the user interaction with the CAPP System that was based on 

initial CAPP System planning. The knowledge and experience gained while developing 

this system has been used to develop the object oriented CAPP System.
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The following script illustrates the user interaction with the CAPP System

WMG CAPP SYSTEM 

Main Menu:
Type ’E’ to EnterKnowledgebase

Type ’S’ to SaveKnowledgebase

Type ’L’ to LoadKnowledgebase

Type ’G ’ to Generate Process Plan

Type ’X’ to Exit 
choose one: L

Select loading option —>

Type ’A’ for loading process knowledge 
Type ’B’ for loading tooling knowledge 
Type ’C’ for loading machine tool knowledge 
Type ’D ’ for loading A, B & C

choose one: A

loading process knowledge base

WMG CAPP SYSTEM

Main Menu:
Type ’E’ to EnterKnowledgebase

Type ’S’ to SaveKnowledgebase

Type ’L’ to LoadKnowledgebase

Type ’G’ to Generate Process Plan

Type ’X’ to Exit 
choose one: G



Enter Part File Name :
/enterprise/usr5/dilip/parts/lowercase-cavity-plate.rpt 

Total features in the database are 6

W M G - C  A P  P

P R O C E S  S - P L A N
Total 4 no of features need to be machined in setup 6 
DATUM-> TOP

PROCESS TO MACHINE Hd_lowercase_cavity :
OPR 1 R. END MILL PARTING SURF
OPR 2 SEMI F. PARTING SURF
OPR 3 R. END MILL CAVITY SURF
OPR 4 SEMI F. CAVITY SURF
OPR 5 DRILL FOR CAVITY CUTOUT
OPR 6 R. & FINISH CAVITY CUTOUT
OPR 7 FINISH PARTING SURF
OPR 8 FINISH CAVITY SURF

PROCESS TO MACHINE Hole_CboredThru :
OPR 1 CENTRE DRILL
OPR 2 DRILL THRU
OPR 3 COUNTERBORE
OPR 4 CHAMFER
OPR 5 REAM HOLE THRU

PROCESS TO MACHINE Tab_Rectangular : 
OPR 1 ROUGH END MILL 
OPR 2 FINISH BORE 
OPR 3 CHAMFER

PROCESS TO MACHINE HoleJZsunkThru :
OPR 1 CENTRE DRILL
OPR 2 DRILL
OPR 3 CHAMFER
OPR 4 FINISH BORE

Total 1 no of features need to be machined in setup 15 
DATUM-> RIGHT

PROCESS TO MACHINE Hole_Through : 
OPR 1 CENTRE DRILL 
OPR 2 DRILL



Total 1 no of features need to be machined in setup 11 
DATUM-> BOTTOM

PROCESS TO MACHINE Counterbore : 
OPR 1 COUNTERBORE

END

WMG CAPP SYSTEM 

Main Menu:
Type ’E’ to EnterKnowledgebase

Type ’S’ to SaveKnowledgebase

Type ’L’ to LoadKnowledgebase

Type ’G’ to Generate Process Plan

Type ’X’ to Exit 
choose one: choose one: E

Enter Options -->

Type ’P’ to Enter Process Knowledge

I
Type ’T’ to Enter Tooling Knowledge

Type ’M’ to Enter Machine Tool Knowledge

Type ’X’ to Return to Main Menu 
choose one: P

Feature Name: Hole_Blind 
Select Raw Material Stock Type->

Type ’A’ for INTERNAL Solid Volume
Type ’B’ for INTERNAL Cast or forged or pre-machined withnax 3 mm 
Type ’C  for INTERNAL Non Uniform or Merging with other features 
Type ’D’ for EXTERNAL Cast or forged or pre-machined witlmax 3 mm 
Type ’E’ for EXTERNAL Non Uniform or Merging with other features 
choose one: A
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Select Feature Size Range—>

FOR ROUND FEATURES:

Type ’A’ for DIAMETER RANGE [0 - 10] mm 
Type ’B’ for DIAMETER RANGE [10 - 25] mm 
Type ’C’ for DIAMETER RANGE [25 - 50] mm 
Type ’D’ for DIAMETER RANGE [50 - 100] mm 
Type ’E’ for DIAMETER RANGE [100 - 250] mm 
Type ’F’ for DIAMETER RANGE [250 - 500] mm 
Type ’G’ for DIAMETER RANGE [500 & MORE] mm

FOR PRISMATIC FEATURES:•

Type ’K’ for LENGTH x WIDTH RANGE [ 10 x 10] mm 
Type ’L’ for LENGTH x WIDTH RANGE [25 x 25] mm 
Type ’M’ for LENGTH x WIDTH RANGE [50 x 50] mm 
Type ’N’ for LENGTH x WIDTH RANGE [100 x 100] mm 
Type ’P’ for LENGTH x WIDTH RANGE [250 x 250] mm 
Type ’Q’ for LENGTH x WIDTH RANGE [500 x 500] mm 
Type ’R’ for LENGTH x WIDTH RANGE [500 & MORE] mm

choose one: C

Select Feature Depth Range->

Type ’A’ for Depth Range [0 - 5] mm 
Type ’B’ for Depth Range [5 - 10} mm 
Type ’C’ for Depth Range [10 - 25] mm 
Type ’D’ for Depth Range [25 - 50] mm 
Type ’E’ for Depth Range [50 - 100] mm 
Type ’F’ for Depth Range [100- 150] mm 
Type ’G’ for Depth Range [150 - 200] mm 
Type ’H’ for Depth Range [200 &MORE] mm

choose one: D

Select achievable size tolerance range:

Type ’A’ for [+_0.001 to +- 0.01 mm] 
Type ’B’ for [+_0.011 to +- 0.05 mm] 
Type ’C  for [+_0.051 to +- 0.1 mm] 
Type ’D’ for [+_0.11 and above] 
choose one: B

Select achievable surface finish range:
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Type ’A’ for [0.025 to 0.1m_mm (Grinding)]
Type ’B’ for [0.15 to 0.63m_mm (Boring)]
Type ’C’ for [1.0 to 2.5m_mm (Reaming, Milling)]
Type ’D’ for [2.5 to 6.35m_mm (Drilling, Rough Milling)] 
Type ’E’ for [Above 6.35m_mm]

choose one: B

Select Process — »

Type ’A’ for CENTRE DRILL
Type ’B’ for DRILL
Type ’C’ for DEEP HOLE DRILL

Type ’D’ for REAM 
Type ’E’ for ROUGH BORE 
Type ’F’ for FINISH BORE 
Type ’G’ for COUNTERBORE 
Type ’H’ for TAP

Type T  for CHAMFER

Type T  for ROUGH END MILL 
Type ’K’ for FINISH END MILL 
Type ’L’ for ROUGH FACE MILL 
Type ’M’ for FINISH FACE MILL

Type ’N’ for INTERNAL GRINDING 
Type ’P’ for EXTERNAL GRINDING 
Type ’Q’ for SURFACE GRINDING

Type ’O’ for OTHER TYPE

Type ’X’ for Exit

operation no->l (choose one): A

Select Process — »

Type ’A’ for CENTRE DRILL
Type ’B’ for DRILL
Type ’C’ for DEEP HOLE DRILL

Type ’D’ for REAM 
Type ’E’ for ROUGH BORE



Type T ’ for FINISH BORE 
Type ’G’ for COUNTERBORE 
Type ’H’ for TAP

Type T  for CHAMFER

Type T  for ROUGH END MILL 
Type ’K’ for FINISH END MILL 
Type ’L’ for ROUGH FACE MILL 
Type ’M’ for FINISH FACE MILL

Type ’N’ for INTERNAL GRINDING 
Type ’P’ for EXTERNAL GRINDING 
Type ’Q’ for SURFACE GRINDING

Type ’O’ for OTHER TYPE

Type ’X’ for Exit

operation no->2 (choose one): B 

Select Process —»

Type ’A’ for CENTRE DRILL
Type ’B’ for DRILL
Type ’C’ for DEEP HOLE DRILL

Type ’D’ for REAM 
Type ’E’ for ROUGH BORE 
Type ’F’ for FINISH BORE 
Type ’G’ for COUNTERBORE 
Type ’H’ for TAP

Type T  for CHAMFER

Type T  for ROUGH END MILL 
Type ’K’ for FINISH END MILL 
Type ’L’ for ROUGH FACE MILL 
Type ’M’ for FINISH FACE MILL

Type ’N’ for INTERNAL GRINDING 
Type ’P’ for EXTERNAL GRINDING 
Type ’Q’ for SURFACE GRINDING

Type ’O ’ for OTHER TYPE
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Type ’X’ for Exit

operation no->3 (choose one): E

Select Process —»

Type ’A’ for CENTRE DRILL
Type ’B’ for DRILL
Type ’C’ for DEEP HOLE DRILL

Type ’D’ for REAM 
Type ’E’ for ROUGH BORE 
Type ’F’ for FINISH BORE 
Type ’G’ for COUNTERBORE 
Type ’H’ for TAP

Type T  for CHAMFER

Type T  for ROUGH END MILL 
Type ’K’ for FINISH END MILL 
Type ’L’ for ROUGH FACE MILL 
Type ’M’ for FINISH FACE MILL

Type ’N’ for INTERNAL GRINDING 
Type ’P’ for EXTERNAL GRINDING 
Type ’Q’ for SURFACE GRINDING

Type ’O’ for OTHER TYPE

Type ’X’ for Exit

operation no->4 (choose one): F

Select Process —»

Type ’A’ for CENTRE DRILL
Type ’B’ for DRILL
Type ’C’ for DEEP HOLE DRILL

Type ’D’ for REAM 
Type ’E’ for ROUGH BORE 
Type ’F’ for FINISH BORE 
Type ’G’ for COUNTERBORE 
Type ’H’ for TAP

Type T  for CHAMFER
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Type ’J’ for ROUGH END MILL 
Type ’K’ for FINISH END MILL 
Type ’L’ for ROUGH FACE MILL 
Type ’M’ for FINISH FACE MILL

Type ’N’ for INTERNAL GRINDING 
Type ’P’ for EXTERNAL GRINDING 
Type Q ’ for SURFACE GRINDING

Type ’O’ for OTHER TYPE

Type ’X’ for Exit

operation no->5 (choose one): X

Enter Options —>

Type ’P’ to Enter Process Knowledge

Type ’T’ to Enter Tooling Knowledge

Type ’M’ to Enter Machine Tool Knowledge

Type ’X’ to Return to Main Menu 
choose one: X

WMG CAPP SYSTEM

Main Menu:
Type ’E’ to EnterKnowledgebase

Type ’S’ to SaveKnowledgebase

Type ’L’ to LoadKnowledgebase

Type ’G’ to Generate Process Plan

Type ’X’ to Exit 
choose one: S

Select saving option -->

Type ’A ’ for saving process knowledge



Type ’B’ for saving tooling knowledge 
Type ’C’ for saving machine tool knowledge

choose one: A

saving process knowledge

WMG CAPP SYSTEM

Main Menu:
Type ’E’ to EnterKnowledgebase

Type ’S’ to SaveKnowledgebase

Type ’L’ to LoadKnowledgebase

Type ’G ’ to Generate Process Plan

Type ’X’ to Exit 
choose one: X





This appendix illustrates the Oracle Revision 7.0 Resource database design and 

development. The normalised resource entity model, as shown on the next page has been 

used to create the Oracle tables. A tool query program has been developed to query the 

resource database. The subsequent illustrations show the user interaction and the output 

of a program that generates the possible tool assemblies and the CADDS5 tool feature 

report files for graphic visualisation of tool assemblies.
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The user interaction to tool query program
crocus > tool

Connected to ORACLE 
Enter tool library name ? 
drills
Enter tool subjibrary name ? 
twist_drill
Enter tool diameter ?
9.5
Enter required tool height ?
75
Enter Machine Tool Spindle Taper ?
iso40
Enter Work material to be machined ?
ms
Level 3 assy generated 
assembly added
part name is -xlrills.twist_drill.dia9.5.1750
command file name is -xlrills.twist_drill.dia9.5.1750.cmd
gauge_lng-> 220.100000
clearance_lng-> 62.000000
crocus > exit

script done on Wed Mar 22 19:15:31 1995
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Cadds5 Command File For Tool Assembly of 9.5 Twist Drill

command File name is ->drills.twist_drill.dia9.5.1750.cmd
Select Library TOOLS
insert feature iso_shank blO 16.1 dial 17 dia2 7 D1 63.55 D2 44.45 D4 56.25 D5 72.35 gl 16 

hi 22.8 h2 25 11 68.4 13 8.2 14 32 15 3.2 18 11.1 19 19.1 VI 30 h3 18.5 Origin Loc 
[0.000000,0.000000,0.000000] Go

insert feature drill_chuck_holder h_length 60 B 19 11 30 D 60 13 15 taper 5 A 60 D1 20 Origin 
Loc [19.100000,0.000000,0.000000] Go

insert feature drill_chuck chk_length 109 B 19 11 30 D 56 D1 50 13 7.5 D2 40 14 45 15 75 16 96 
taper 1 15 taper2 15 dia 20 taper 5 Origin Loc [49.100000,0.000000,0.000000] Go

insen feature twist_drill_ps cdia 9.5 csdia 10 tip_angle 118 clng 41 ctlength 91 Origin Loc 
[129.100000,0.000000,0.000000] Go



ASSY NAM E : DRILLS.TW 1ST_DRIIL.5. 
ASSY C O M PO N EN TS :
* iso40 drill chuck holder 3 -1 6  
• 3 -16 drill chuck
* die 5 tw ist drill

TOOL ASSEMBLIES
GENERATED FROM RESOURCE DATABASE



ISO VIEW OF 
TOO L ASSEMBLIES

GENERATED FROM THE RESOURCE DATABASE
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CADDS5 Report File For TestCom pl

printing 8773 Countersink8770 II
class :

class : Countersink 
static attributes :

library : CVOBJECTS
BooleanOp Operation - Subtract
ributes :
Workpiece Workpiece - 12056
Name Representation - rep
CPlane Orientation id = 6

name - TOP
i X - 1.000000e+00

y - 0.000000e+00
z - 0.000000e+00

j * - 0.000000e+00
y - 1.0000004+00
z - 0.000000e+00

k x - 0.000000e+00
y - 0.000000e+00
z - 1.000000e+00

Location Origin X - 1.900000e+02
y - 1.000000e+01
z - 5.000000e+01

ApplyType Application - Boolean
String rawMatlCondition - Solid
Real surfFinish - 2.000000e+00
String mcNotmc - Y
Face EntryFace - 12004
String childOf =« Plate52_I1
Diameter HoleDiameter - 1.000000e+01 = millimeters
Length CsinkDepth - 1.500000e+00 - millimeters
Angle CsinkAngle - 9.000000e+01 ■* degrees
String TolHoleDiameter - 0.1 / - 0.1
String TolCsinkAngle - 0.1 / - 0.1
String TolCsinkDepth - 0.1 / - 0.1

** printing 10125 Countersink8770_I5 *****

class :
class : Countersink library : CVOBJECTS

static attributes :
BooleanOp Operation - Subtract
ributes :
Workpiece Workpiece - 13421
Name Representation =* rep
CPlane Orientation id - 11

name - BOTTOM
i X - 1.000000e+00

y - 0.000000e+00
z - 0.000000e+00

j X - 0.000000e+00
y - -1.000000e+00
z - 0.000000e + 00

k X - 0.000000e+00
y - 0.000000e+00
z - -1.000000e+00

Location Origin X - 1.000000e + 01
y - 1.400000e + 02
z - 0.000000e+00

ApplyType Application - Boolean
String rawMatlCondition - Solid
Real surfFinish - 2.000000e+00
String mcNotmc - Y
Face EntryFace - 13211
String childOf - Plate52 11
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Diameter HoleDiameter - 1.000000e+01 - millimeters
Length CsinkDepth - 1.500000e+00 - millimeters
Angle CsinkAngle - 9.000000e+01 - degrees
String TolHoleDiameter - 0.1 / - 0.1
String TolCsinkAngle - 0.1 / - 0.1
String TolCsinkDepth - 0.1 / - 0.1

***** printing 12315 Countersink8770_I9 *****

class :
class : Countersink library :: CVOBJECTS

static attributes :
BooleanOp Operation - Subtract

attributes :
Workpiece Workpiece - 12056
Name Representation = rep
CPlane Orientation id - 6

name - TOP
i X - 1.000000e+00

y - 0.000000e+00
z - 0.000000e+00

j X - 0.000000e+00
y - 1.000000e+00
z - 0.000000e+00

k x - 0.000000e+00
y - 0.000000e+00
z - 1.000000e+00

Location Origin X - 1.900000e+02
y - 1.400000e+02
z - 5.000000e+01

ApplyType Application - Boolean
String rawMatlCondition a Solid
Real surfFinish - 2.000000e+00
String mcNotmc - Y
Face EntryFace - 12004
String childOf - Plate52 11
Diameter HoleDiameter - 1.000000e+01 - millimeters
Length CsinkDepth - 1.500000e+00 - millimeters
Angle CsinkAngle - 9.000000e+01 - degrees
String TolHoleDiameter - 0.1 / - 0.1
String TolCsinkAngle - 0.1 / - 0.1
String TolCsinkDepth 0.1 / - 0.1

printing 12344 Countersink8770_I10 * * * * *

class :
class : Countersink library : CVOBJECTS

static attributes :
BooleanOp Operation - Subtract

attributes :
Workpiece Workpiece - 12056
Name Representation - rep
CPlane Orientation id - 6

name - T O P
i X a 1.000000e + 00

y a 0.000000e+00
z - 0.000000e+00

j X a 0.000000e+00
y - 1.000000e+00
z a 0.000000e+00

k X a 0.000000e+00
y a 0.000000e + 00
z a 1.000000e+00

Location Origin X - 1.000000e + 01
y a 1. 400000e+02
z - 5.000000e+01

ApplyType Application - Boolean
String rawMatlCondition Solid
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Real surfFinish - 2.000000e+00
String mcNotmc - Y
Face EntryFace - 12004
String childOf - Plate52 11
Diameter HoleDiameter - 1.000000e+01 - millimeters
Length CsinkDepth - 1.500000e+00 - millimeters
Angle CsinkAngle - 9.000000e+01 - degrees
String TolHoleDiameter - 0.1 / - 0.1
String TolCsinkAngle - 0.1 / - 0.1
String TolCsinkDepth “ 0.1 / - 0.1

***** printing .12373 Countersink8770 111 *****

class :
class : Countersink library : CVOBJECTS

static attributes :
BooleanOp Operation - Subtract

attributes :
Workpiece Workpiece - 12056
Name Representation - rep
CPlane Orientation id - 6

name - TOP
i  X - 1.000000e+00

y - 0.000000e+00
z - 0.000000e+00

j  X - 0.000000e+00
y - 1.000000e+00
z - 0.000000e+00

k x - 0.000000e+00
y - 0.000000e+00
z - 1.000000e+00

Location Origin X - 1.000000e+01
y - 1.000000e+01-
z - 5.000000e+01

ApplyType Application - Boolean
String rawMatlCondition - Solid
Real surfFinish - 2.000000e+00
String mcNotmc - Y
Face EntryFace - 12004
String childOf - Plate52 11
Diameter HoleDiameter - 1.000000e+01 - millimeters
Length CsinkDepth - 1.500000e+00 - millimeters
Angle CsinkAngle - 9.000000e+01 - degrees
String TolHoleDiameter - 0.1 / - 0.1
String TolCsinkAngle - 0.1 / - 0.1
String TolCsinkDepth - 0.1 / - 0.1

printing 13549 Counteraink8770_I12

class :
class : Countersink library : CVOBJECTS

static attributes :
BooleanOp Operation - Subtract

ributes :
Workpiece Workpiece - 13421
Name Representation - rep
CPlane Orientation i d - 11

name - BOTTOM
i  X ■ 1.000000e+00

y - 0.000000e+00
z - 0.000000e+00

j  X - 0.000000e+00
y - -1.000000e+00
z - 0.000000e+00

k x - 0.000000#+00
y - 0.000000a+00
z - -1.000000e+00

Location Origin X - 1.900000e+02
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y - 1.400000e+02
z - 0.000000e+00

ApplyType Application - Boolean
String rawMatlCondition - Solid
Real surfFinish - 2.000000e+00
String mcNotmc - Y
Face EntryFace - 13211
String childOf - Plate52 11
Diameter HoleDiameter - 1.000000e+01 - millimeters
Length CsinkDepth - 1.500000e+00 - millimeters
Angle CsinkAngle - 9.000000e+01 - degrees
String TolHoleDiameter - 0.1 / - 0.1
String TolCsinkAngle - 0.1 / - 0.1
String TolCsinkDepth - 0.1 / - 0.1

***** printing 13578 Countersink8770 113 *****

class :
class : Countersink library : CVOBJECTS

static attributes :
BooleanOp Operation - Subtract

attributes :
Workpiece Workpiece - 13421
Name Representation - rep
CPlane Orientation id - 11

name - BOTTOM
i  X - 1.000000e+00

y - 0.000000e+00
z - 0.000000e+00

j  X - 0.000000e+00
y - -1.000000e+00
z - 0.000000e+00

k  x - 0.000000e+00
y - 0.000000e+00
z - -1.000000e+00

Location Origin X - 1.900000e+02
y - 1.000000e+01
z - 0.000000e+00

ApplyType Application - Boolean
String rawMatlCondition - Solid
Real surfFinish - 2.000000e+00
String mcNotmc - Y
Face EntryFace - 13211
String childOf - Plate52 11
Diameter HoleDiameter - 1.000000e+01 - millimeters
Length CsinkDepth - 1.500000e+00 - millimeters
Angle CsinkAngle - 9.000000e+01 - degrees
String TolHoleDiameter - 0.1 / - 0.1
String TolCsinkAngle - 0.1 / - 0.1
String TolCsinkDepth - 0.1 / - 0.1

printing 13607 Countersink8770_I14
class :

class : Countersink 
static attributes :

BooleanOp Operation 
attributes :

Workpiece 
Name 
CPlane

Workpiece
Representation
Orientation

library : CVOBJECTS 
- Subtract

id
name
i x

y
z

j  X
y
z

13421
rep
11
BOTTOM
1.000000e+00 
0.000000e+00 
0.000000e+00 
0. 000000e+00 
-1.000000e+00 
0. OOOOOOe-f 00
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k x - 0 . 0 0 0 0 0 0 e + 0 0
y - 0 . 0 0 0 0 0 0 e + 0 0
z - - 1 . 0 0 0 0 0 0 e + 0 0

L o c a t i o n O r i g i n X - 1 . 0 0 0 0 0 0 e + 0 1
y - 1 . 0 0 0 0 0 0 e + 0 1
z — 0 .  0 0 0 0 0 0 e + 0 0

A p p l y T y p e A p p l i c a t i o n - B o o l e a n
S t r i n g r a w M a t l C o n d i t i o n - S o l i d
R e a l s u r f F i n i s h - 2 . 0 0 0 0 0 0 e + 0 0
S t r i n g m c N o t m c - Y
F a c e E n t r y F a c e - 1 3 2 1 1
S t r i n g c h i l d O f - P l a t e 5 2  11
D i a m e t e r H o l e D i a m e t e r - 1 . 0 0 0 0 0 0 e + 0 1
L e n g t h C s i n k D e p t h - 1 . 5 0 0 0 0 0 e + 0 0
A n g l e C s i n k A n g l e - 9 . 0 0 0 0 0 0 e + 0 1
S t r i n g T o l H o l e D i a m e t e r - 0 . 1  /  -  0 . 1
S t r i n g T o l C s i n k A n g l e - 0 . 1  /  -  0 . 1
S t r i n g T o l C s i n k D e p t h - 0 . 1  /  -  0 . 1

p r i n t i n g  8 5 6 1  H o l e _ T h r o u g h 8 5 5 8 _ I l

c l a s s  :
c l a s s  : H o l e _ T h r o u g h  l i b r a r y  : CVOBJECTS

s t a t i c  a t t r i b u t e s  :
B o o l e a n O p O p e r a t i o n - S u b t r a c t

a t t r i b u t e s  :
W o r k p i e c e W o r k p i e c e - 1 2 0 5 6
Name R e p r e s e n t a t i o n - r e p
C P l a n e O r i e n t a t i o n i d - 6

n am e - TOP
i  X - 1 . 0 0 0 0 0 0 e + 0 0

y - 0 . 0 0 0 0 0 0 e + 0 0
z - 0 . 0 0 0 0 0 0 e + 0 0

j  X - 0 . 0 0 0 0 0 0 e + 0 0
y - 1 . 0 0 0 0 0 0 e + 0 0
z - 0 . 0 0 0 0 0 0 e + 0 0

k x - 0 . 0 0 0 0 0 0 e + 0 0
y - 0 . 0 0 0 0 0 0 e + 0 0
z - 1 . 0 0 0 0 0 0 e + 0 0

L o c a t i o n O r i g i n X - 1 . 0 0 0 0 0 0 e + 0 1
y - 1 . 4 0 0 0 0 0 e + 0 2
z - 5 . 0 0 0 0 0 0 e + 0 1

A p p l y T y p e A p p l i c a t i o n - M e r g e
S t r i n g r a w M a t l C o n d i t i o n - S o l i d
R e a l s u r f F i n i s h - 2 . 0 0 0 0 0 0 e + 0 0
S t r i n g m c N o t m c - Y
F a c e E n t r y F a c e - 1 2 0 0 4
F a c e E x i t F a c e — 1 2 0 4 6
S t r i n g c h i l d O f - P l a t e 5 2  11
D i a m e t e r H o l e D i a m e t e r - 1 . 0 0 0 0 0 0 e + 0 1
S t r i n g T o l H o l e D i a m e t e r - 0 . 1  /  -  0 . 1

p r i n t i n g  1 2 1 1 3  H o l e _ T h r o u g h 8 5 5 8 _ I 5

c l a s s  :
c l a s s  : H o l e _ T h r o u g h  

s t a t i c  a t t r i b u t e s  :
B o o l e a n O p  O p e r a t i o n  

a t t r i b u t e s  :
W o r k p i e c e  
Name 
C P l a n e

W o r k p i e c e
R e p r e s e n t a t i o n
O r i e n t a t i o n

l i b r a r y  : CVOBJECTS

-  S u b t r a c t

-  1 2 0 5 6
-  r e p  

i d  -  6
n a m e  -  TOP 

i  x  -  1 . 0 0 0 0 0 0 e + 0 0  
y  -  0 . 0 0 0 0 0 0 e + 0 0  
z  -  0 . 0 0 0 0 0 0 e + 0 0  

j  x  -  0 . 0 0 0 0 0 0 e + 0 0  
y  -  1 . 0 0 0 0 0 0 e + 0 0

m i l l i m e t e r s
m i l l i m e t e r s

d e g r e e s

m i l l i m e t e r s
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z - 0 . 0 0 0 0 0 0 e + 0 0
k x - 0 . 0 0 0 0 0 0 e + 0 0

y - 0 . 0 0 0 0 0 0 e + 0 0
z 1 . 0 0 0 0 0 0 e + 0 0

L o c a t i o n O r i g i n X - 1 . 9 0 0 0 0 0 e + 0 2
y - 1 . 4 0 0 0 0 0 e + 0 2
z - 5 . 0 0 0 0 0 0 e + 0 1

A p p l y T y p e A p p l i c a t i o n - M e r g e
S t r i n g r a w M a t l C o n d i t i o n S o l i d
R e a l s u r f F i n i s h - 2 . 0 0 0 0 0 0 e + 0 0
S t r i n g m c N o t m c - Y
F a c e E n t r y F a c e - 1 2 0 0 4
F a c e E x i t F a c e » 1 2 0 4 6
S t r i n g c h i l d O f . P l a t e 5 2  11
D i a m e t e r H o l e D i a m e t e r . 1 . 0 0 0 0 0 0 e + 0 1
S t r i n g T o l H o l e D i a m e t e r - 0 . 1  /  -  0.1

p r i n t i n g  1 2 1 4 2  H o l e _ T h r o u g h 8 5 5 8 _ I 6

c l a s s  : •
c l a s s  : H o l e _ T h r o u g h  l i b r a r y  : CVOBJECTS

s t a t i c  a t t r i b u t e s  :
B o o l e a n O p O p e r a t i o n - S u b t r a c t
i b u t e s  :
W o r k p i e c e W o r k p i e c e - 1 2 0 5 6
N a m e R e p r e s e n t a t i o n r e p
C P l a n e O r i e n t a t i o n i d 6

n a m e TOP
i  X 1 . 0 0 0 0 0 0 e + 0 0

y 0 . 0 0 0 0 0 0 e + 0 0
z 0 . 0 0 0 0 0 0 e + 0 0

j  X 0 . 0 0 0 0 0 0 e + 0 0
y 1 . 0 0 0 0 0 0 e + 0 0
z 0 . 0 0 0 0 0 0 e + 0 0

k  x 0 . 0 0 0 0 0 0 e + 0 0
y 0 . 0 0 0 0 0 0 e + 0 0
z 1 . 0 0 0 0 0 0 e + 0 0

L o c a t i o n O r i g i n X 1 . 9 0 0 0 0 0 e + 0 2
y 1 . 0 0 0 0 0 0 e + 0 1
z 5 .  0 0 0 0 0 0 e + 0 1

A p p l y T y p e A p p l i c a t i o n M e r g e
S t r i n g r a w M a t l C o n d i t i o n S o l i d
R e a l s u r f F i n i s h 2 . 0 0 0 0 0 0 e + 0 0
S t r i n g m c N o t m c Y
F a c e E n t r y F a c e 1 2 0 0 4
F a c e E x i t F a c e 1 2 0 4 6
S t r i n g c h i l d O f P l a t e 5 2  11
D i a m e t e r H o l e D i a m e t e r 1 . 0 0 0 0 0 0 e + 0 1
S t r i n g T o l H o l e D i a m e t e r 0.1  /  -  0.1

p r i n t i n g  1 2 1 7 1  H o l e _ T h r o u g h 8 5 5 8 _ I 7

c l a s s  :
c l a s s  : H o l e _ T h r o u g h  

s t a t i c  a t t r i b u t e s  :
l i b r a r y  : CVOBJECTS

B o o l e a n O p O p e r a t i o n - S u b t r a c t
a t t r i b u t e s  :

W o r k p i e c e W o r k p i e c e - 1 2 0 5 6
N am e R e p r e s e n t a t i o n - r e p
C P l a n e O r i e n t a t i o n i d - 6

n a m e - TOP
i  X - 1 . 0 0 0 0 0 0 e + 0 0

y - 0 . 0 0 0 0 0 0 e + 0 0
z - 0 . 0 0 0 0 0 0 e + 0 0

j  X - 0 . 0 0 0 0 0 0 e + 0 0
y - 1 . 0 0 0 0 0 0 e + 0 0
z - 0 . 0 0 0 0 0 0 e + 0 0

k x - 0 . 0 0 0 0 0 0 e - f  00

m i l l i m e t e r s

m i l l i m e t e r s
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y - 0 . 0 0 0 0 0 0 e + 0 0
z  - 1 . 0 0 0 0 0 0 e + 0 0

L o c a t i o n O r i g i n X - 1 . 0 0 0 0 0 0 e + 0 1
y - 1 . 0 0 0 0 0 0 e + 0 1
z  - 5 . 0 0 0 0 0 0 e + 0 1

A p p l y T y p e A p p l i c a t i o n - M e r g e
K  S t r i n g r a w M a t l C o n d i t i o n - S o l i d
K  R e a l s u r f F i n i s h - 2 . 0 0 0 0 0 0 e + 0 0
K t!  S t r i n g m c N o t m c - Y
■  1 F a c e E n t r y F a c e - 1 2 0 0 4
■  1 F a c e E x i t F a c e — 1 2 0 4 6
re S t r i n g c h i l d O f - P l a t e 5 2  11
r  D i a m e t e r H o l e D i a m e t e r - 1 . 0 0 0 0 0 0 e + 0 1  - m i l l i m e t e r s
I S t r i n g T o l H o l e D i a m e t e r - 0 . 1  /  -  0 . 1

I H  * * * * *  p r i n t i n g  1 2 2 2  P o c k e t  R e c t a n g u l a r l 2 1 9  11 * * * * *

I c l a s s  :
» c l a s s  : P o c k e t  R e c t a n g u l a r l i b r a r y  :: CVOBJECTS
fer . s t a t i c  a t t r i b u t e s  :
■ 1  B o o l e a n O p O p e r a t i o n - S u b t r a c t
| i  a t t r i b u t e s  :
1 J l  W o r k p i e c e W o r k p i e c e - 1 1 8 8 0
1”  N am e R e p r e s e n t a t i o n - r e p
H  C P l a n e O r i e n t a t i o n i d  - 6

n a m e  - TOP
i  x  - 1 . 0 0 0 0 0 0 e + 0 0

y - 0 . 0 0 0 0 0 0 e + 0 0
z - 0 . 0 0 0 0 0 0 e + 0 0

j x  - 0 . 0 0 0 0 0 0 e + 0 0
y - 1 . 0 0 0 0 0 0 e + 0 0
z - 0 . 0 0 0 0 0 0 e + 0 0

k x  - 0 . 0 0 0 0 0 0 e + 0 0
y - 0 . 0 0 0 0 0 0 e + 0 0
z - 1 . 0 0 0 0 0 0 e + 0 0

I  L o c a t i o n O r i g i n X - 5 . 0 0 0 0 0 0 e + 0 1
y - 5 . 0 0 0 0 0 0 e + 0 1
z  - 7 . 5 0 0 0 0 0 e + 0 1

K A p p l y T y p e A p p l i c a t i o n - B o o l e a n
I I  S t r i n g r a w M a t l C o n d i t i o n - S o l i d
k H  R e a l s u r f F i n i s h - 2 . 0 0 0 0 0 0 e + 0 0
I  H i S t r i n g m c N o t m c - Y
| H I F a c e E n t r y F a c e - 1 1 8 3 6
|  H  S t r i n g c h i l d O f - T a b  R e c t a n g u l a r 3 9 0  I I  I
[ K  L e n g t h P o c k e t L e n g t h - 1 . 0 0 0 0 0 0 e + 0 2  - m i l l i m e t e r s  1
[ l |  L e n g t h P o c k e t W i d t h - 5 . 0 0 0 0 0 0 e + 0 1  - m i l l i m e t e r s  1

■ i L e n g t h P o c k e t D e p t h - 1 . 0 0 0 0 0 0 e + 0 1  - m i l l i m e t e r s  1
H i  S t r i n g T o l P o c k e t L e n g t h - 0 . 1  /  -  0 . 1
H I  S t r i n g T o l P o c k e t W i d t h - 0 . 1  /  -  0 . 1
1 S t r i n g T o l P o c k e t D e p t h “ 0 . 1  /  -  0 . 1

1 * * * * *  p r i n t i n g  3 9 3  T a b  R e c t a n g u l a r 3 9 0 _ I 1 * * * * *

HP c l a s s
m  | c l a s s  : T a b _ R e c t a n g u l a r l i b r a r y : CVOBJECTS
■  s t a t i c  a t t r i b u t e s  :
K  B o o l e a n O p O p e r a t i o n - A d d
1  a t t r i b u t e s  :

I M .  W o r k p i e c e W o r k p i e c e - 1 1 7 1 9
I 1  |  Name R e p r e s e n t a t i o n - r e p

■ C P l a n e O r i e n t a t i o n i d  - 6
1 H n a m e  - TOP

i  x  - 1 . 0 0 0 0 0 0 e + 0 0
1 m k y - 0 . 0 0 0 0 0 0 e + 0 0

1 I t z  - 0 . 0 0 0 0 0 0 a + 0 0
j X - 0 . 0 0 0 0 0 0 e + 0 0

1 1 y - 1 . 0 0 0 0 0 0 e + 0 0
z - 0 . 0 0 0 0 0 0 e + 0 0
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k x - 0.000000e+00
y - 0.000000e+00
z - 1.000000e+00

Location Origin X - 2.500000e+01
y = 2.500000e+01
z - 5.000000e+01

ApplyType Application “ Boolean
String rawMatlCondition = Soild
Real surfFinish - 2.000000e+00
String mcNotmc - Y
Face ExitFace = 11746
String childOf - Plate52 11
Length TabLength - 1.500000e+02
Length TabWidth = 1.000000e+02
Length TabHeight - 2.500000e+01
String TolTabLength - 0.1 / - 0.1
String TolTabWidth 0.1 / - 0.1
String TolTabHeight - 0.1 / - 0.1

printing 55 Plate52_Il

class :
class : Plate library : CVOBJECTS

static attributes :
BooleanOp Operation - Add
Workpiece Workpiece - 0
ApplyType Application - NoApply

attributes :
Name Representation - rep
CPlane Orientation id * 6

name = TOP
i  X - 1.000000e+00

y - 0.000000e+00
z = 0.000000e+00

j X - 0.000000e+00
y - 1.000000e+00
z = 0.000000e+00

k x - 0.000000e+00
y - 0.000000e+00
z - 1.000000e+00

Location Origin X - 0.000000e+00
y - 0.000000e+00
z - 0.000000e+00

String rawMatlCondition - Soild
Real surfFinish - 2.000000e+00
String mcNotmc - Y
Length PlateLength - 2.000000e+02
String TolPlateLength - 0.1 / - 0.1
Length PlateWidth - 1.500000e+02
String TolPlateWidth - 0.1 / - 0.1
Length PlateHeight - 5.000000e+01
String TolPlateHeight ” 0.1 / - 0.1

millimeters
millimeters
millimeters

millimeters
millimeters

millimeters
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Report File Representation in WMG CAPP System

Feature Instance hierarchy of TestCompl



Message in the Text Display Window:

TabRectangular390Il Profile finish by End Milling 
TabRectangular390Il rough profiling by End Milling 
TabRectangular390Il Top face finishing by End Milling 
TabRectangular390Il Top face roughing by End Milling 
PocketRectangularl219Il finish by End Milling 
PocketRectangularl219IlPocket Comer finishing byEndMilling 
PocketRectangularl219Il roughing by End Milling 
PocketRectangularl219Il Pocket comer hole drilling 
Plate52Il No Stock, Surface Grinding not required 
Plate52Il No Stock, Face Milling not required 
Plate52Il No Stock, Face EndMilling not required 
Countersink8770Il Countersinking required 
Countersink8770I9 Countersinking required 
Countersink8770I10 Countersinking required 
Countersink8770111 Countersinking required 
HoleThrough8558Il can be finished by Boring 
HoleThrough8558Il can be finished by Reaming 
HoleThrough8558Il cannot be finished byTwistDrilling 
HoleThrough8558Il Rough Boring is not required 
HoleThrough8558Il Drilling required 
HoleThrough8558Il CentreDrilling not required 
HoleThrough8558Il Rough Boring is not required 
HoleThrough855811 Drilling required 
HoleThrough8558Il CentreDrilling not required 
HoleThrough8558I5 can be finished by Boring 
HoleThrough8558I5 can be finished by Reaming 
HoleThrough8558I5 cannot be finished byTwistDrilling 
HoleThrough8558I5 Rough Boring is not required 
HoleThrough8558I5 Drilling required 
HoleThrough8558I5 CentreDrilling not required 
HoleThrough8558I5 Rough Boring is not required 
HoleThrough8558I5 Drilling required 
HoleThrough8558I5 CentrcDrilling not required 
HoleThrough8558I6 can be finished by Boring 
HoleThrough8558I6 can be finished by Reaming 
HoleThrough8558I6 cannot be finished byTwistDrilling 
HoleThrough8558I6 Rough Boring is not required 
HoleThrough8558I6 Drilling required 
HoleThrough8558I6 CentreDrilling not required 
HoleThrough8558I6 Rough Boring is not required

The CAPP System Process Plan Generation for TestCompl

The CAPP Command: Generate Process



HoleThrough8558I6 Drilling required 
HoleThrough8558I6 CentreDrilling not required 
HoleThrough8558I7 can be finished by Boring 
HoleThrough8558I7 can be finished by Reaming 
HoleThrough8558I7 cannot be finished byTwistDrilling 
HoleThrough8558I7 Rough Boring is not required 
HoleThrough8558I7 Drilling required 
HoleThrough8558I7 CentreDrilling not required 
HoleThrough8558I7 Rough Boring is not required 
HoleThrough8558I7 Drilling required 
HoleThrough8558I7 CentreDrilling not required 
Countersink8770I5 Countersinking required 
Countersink8770I12 Countersinking required 
Countersink8770I13 Countersinking required 
Countersink8770I14 Countersinking required



Automated Process Plan
Component Name: TestCompl
Component Material: Tool Steel, Wrought
Matl Description: Cold Work Matl Condition: Annealed
Material Specifications: A2 Material Hardness: (200 250)

SetUp No: 1
Fixture For SetUp: Machine Vice

Machining Process for Countersink8770Il

Opr No: 1; Opr Name: Finish Countersinking 
Tool For Opr: (CSink’ 5.0 90.0 15.0 4.5)
Machine For Opr: CBoringMc’ DrillingMc’MillingMc’MachiningCentre’) 
Finish Counters inking Cycle Locations...
PositionPt: (180.0 10.0 50.0)
ApproachPt: 53.0 
PlungePt : 48.5 
RetractPt: 58.0 
Dwell(Sec): 1.0

The universal knowledge based Process Plan for TestCompl

The CAPP Command: Show Component Process

Machining Process for Countersink8770I9

Opr No: 1; Opr Name: Finish Countersinking 
Tool For Opr: (CSink’ 5.0 90.0 15.0 4.5)
Machine For Opr: (’BoringMc’ DrillingMc’MillingMc’MachiningCentre’) 
Finish Countersinking Cycle Locations...
PositionPt: (180.0 130.0 50.0)
ApproachPt: 53.0 
PlungePt : 48.5 
RetractPt: 58.0 
Dwell(Sec): 1.0

Machining Process for Countersink8770I10

Opr No: 1; Opr Name: Finish Countersinking 
Tool For Opr: (CSink’ 5.0 90.0 15.0 4.5)
Machine For Opr: CBoringMc’ DrillingMc’MillingMc’MachiningCentre’) 
Finish Countersinking Cycle Locations...
PositionPt: (10.0 130.0 50.0)



ApproachPt: 53.0 
PlungePt : 48.5 
RetractPt: 58.0 
Dwell(Sec): 1.0

Machining Process for Countersink8770111

Opr No: 1; Opr Name: Finish Countersinking 
Tool For Opr: (CSink’ 5.0 90.0 15.0 4.5)
Machine For Opr: (’BoringMc’ DrillingMc’MillingMc’MachiningCentre’) 
Finish Countersinking Cycle Locations...
PositionPt: (10.0 10.0 50.0)
ApproachPt: 53.0 
PlungePt : 48.5 
RetractPt: 58.0 
Dwell(Sec): 1.0

2 Options Exist to machine HoleThrough8558Il 
Option no: 1

Opr No: 1; Opr Name: Rough TwistDrilling 
Tool For Opr: (TwistDrill’ 9.25 9.5 9.75 56.0)
Machine For Opr: (BoringMc’ DrillingMc’MillingMc’MachiningCentre’) 
Rough TwistDrilling Cycle Locations...
PositionPt: (10.0 130.0 50.0)
ApproachPt: 53.0 
PlungePt : -3.0 
RetractPt: 58.0 
Dwell(Sec): 0.0

Opr No: 2; Opr Name: Finish Boring 
Tool For Opr: (’Bore’ 10.010.0 10.0 54.5)
Machine For Opr: CBoringMc’ DrillingMc’MillingMc’MachiningCentre’) 
Finish Boring Cycle Locations...
PositionPt: (10.0 130.0 50.0)
ApproachPt: 53.0 
PlungePt : -1.5 
RetractPt: 58.0 
Dwell(Sec): 0.0

266



Option no: 2

Opr No: 1; Opr Name: Rough TwistDrilling 
Tool For Opr: (TwistDrill’ 9.45 9.7 9.95 56.0)
Machine For Opr: CBoringMc’ DrillingMc’MillingMc’MachiningCentre’) 
Rough TwistDrilling Cycle Locations...
PositionPt: (10.0 130.0 50.0)
ApproachPt: 53.0 
PlungePt : -3.0 
RetractPt: 58.0 
Dwell(Sec): 0.0

Opr No: 2; Opr Name: Finish Reaming 
Tool For Opr: (’Reamer’ 10.010.0 10.0 54.5)
Machine For Opr: CBoringMc’ DrillingMc’MillingMc’MachiningCentre’) 
Finish Reaming Cycle Locations...
PositionPt: (10.0 130.0 50.0)
ApproachPt: 53.0 
PlungePt : -1.5 
RetractPt: 58.0 
Dwell(Sec): 0.0

2 Options Exist to machine HoleThrough8558I5 
Option no: 1

Opr No: 1; Opr Name: Rough TwistDrilling 
Tool For Opr: (TwistDrill’ 9.25 9.5 9.75 56.0)
Machine For Opr: CBoringMc’ DrillingMc’MillingMc’MachiningCentre’) 
Rough TwistDrilling Cycle Locations...
PositionPt: (180.0 130.0 50.0)
ApproachPt: 53.0 
PlungePt : -3.0 
RetractPt: 58.0 
Dwell(Sec): 0.0

Opr No: 2; Opr Name: Finish Boring 
Tool For Opr: (’Bore’ 10.010.0 10.0 54.5)
Machine For Opr: ( ’BoringMc’ DrillingMc’MillingMc’MachiningCentre’) 
Finish Boring Cycle Locations...
PositionPt: (180.0 130.0 50.0)
ApproachPt: 53.0 
PlungePt :-1.5 
RetractPt: 58.0
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Dwell(Sec): 0.0

Option no: 2

Opr No: 1; Opr Name: Rough TwistDrilling 
Tool For Opr: (TwistDrilT 9.45 9.7 9.95 56.0)
Machine For Opr: (’BoringMc’ DrillingMc’MillingMc’MachiningCentre’) 
Rough TwistDrilling Cycle Locations...
PositionPt: (180.0 130.0 50.0)
ApproachPt: 53.0 
PlungePt : -3.0 
RetractPt: 58.0 
Dwell(Sec): 0.0

Opr No: 2; Opr Name: Finish Reaming 
Tool For Opr: ( ’Reamer’ 10.010.0 10.0 54.5)
Machine For Opr: (’BoringMc’ DrillingMc’MillingMc’MachiningCentre’) 
Finish Reaming Cycle Locations...
PositionPt: (180.0 130.0 50.0)
ApproachPt: 53.0 
PlungePt : -1.5 
RetractPt: 58.0 
Dwell(Sec): 0.0

2 Options Exist to machine HoleThrough8558I6 
Option no: 1

Opr No: 1; Opr Name: Rough TwistDrilling 
Tool For Opr: (TwistDrilF 9.25 9.5 9.75 56.0)
Machine For Opr: (’BoringMc’ DrillingMc’MillingMc’MachiningCentre’) 
Rough TwistDrilling Cycle Locations...
PositionPt: (180.0 10.0 50.0)
ApproachPt: 53.0 
PlungePt : -3.0 
RetractPt: 58.0 
Dwell(Sec): 0.0

Opr No: 2; Opr Name: Finish Boring 
Tool For Opr: ( ’Bore’ 10.010.0 10.0 54.5)
Machine For Opr: (’BoringMc’ DrillingMc’MillingMc’MachiningCentre’) 
Finish Boring Cycle Locations...
PositionPt: (180.0 10.0 50.0)



ApproachPt: 53.0 
PlungePt : -1.5 
RetractPt: 58.0 
Dwell(Sec): 0.0

Option no: 2

Opr No: 1; Opr Name: Rough TwistDrilling 
Tool For Opr: (TwistDrill’ 9.45 9.7 9.95 56.0)
Machine For Opr: CBoringMc’ DrillingMc’MillingMc’MachiningCentre’) 
Rough TwistDrilling Cycle Locations...
PositionPt: (180.0 10.0 50.0)
ApproachPt: 53.0 
PlungePt : -3.0 
RetractPt: 58.0 
Dwell(Sec): 0.0

Opr No: 2; Opr Name: Finish Reaming 
Tool For Opr: (’Reamer’ 10.010.0 10.0 54.5)
Machine For Opr: (’BoringMc’ DrillingMc’MillingMc’MachiningCentre’) 
Finish Reaming Cycle Locations...
PositionPt: (180.0 10.0 50.0)
ApproachPt: 53.0 
PlungePt : -1.5 
RetractPt: 58.0 
Dwell(Sec): 0.0

2 Options Exist to machine HoleThrough8558I7 
Option no: 1

Opr No: 1; Opr Name: Rough TwistDrilling 
Tool For Opr: (TwistDrill’ 9.25 9.5 9.75 56.0)
Machine For Opr: (’BoringMc’ DrillingMc’MillingMc’MachiningCentre’) 
Rough TwistDrilling Cycle Locations...
PositionPt: (10.0 10.0 50.0)
ApproachPt: 53.0 
PlungePt : -3.0 
RetractPt: 58.0 
Dwell(Sec): 0.0

Opr No: 2; Opr Name: Finish Boring
Tool For Opr: ( ’Bore’ 10.010.0 10.0 54.5)
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Machine For Opr: (’BoringMc’ DrillingMc’MillingMc’MachiningCentre’) 
Finish Boring Cycle Locations...
PositionPt: (10.0 10.0 50.0)
ApproachPt: 53.0 
PlungePt : -1.5 
RetractPt: 58.0 
Dwell(Sec): 0.0

Option no: 2

Opr No: 1; Opr Name: Rough TwistDrilling 
Tool For Opr: (TwistDrill’ 9.45 9.7 9.95 56.0)
Machine ForOpr: (’BoringMc’ DrillingMc’MillingMc’MachiningCentre’) 
Rough TwistDrilling Cycle Locations...
PositionPt: (10.0 10.0 50.0)
ApproachPt: 53.0 
PlungePt : -3.0 
RetractPt: 58.0 
Dwell(Sec): 0.0

Opr No: 2; Opr Name: Finish Reaming 
Tool For Opr: (’Reamer’ 10.010.0 10.0 54.5)
Machine ForOpr: CBoringMc’ DrillingMc’MillingMc’MachiningCentre’) 
Finish Reaming Cycle Locations...
PositionPt: (10.0 10.0 50.0)
ApproachPt: 53.0 
PlungePt : -1.5 
RetractPt: 58.0 
Dwell(Sec): 0.0

SetUp No: 1
Fixture For SetUp: Machine Vice

Machining Process for TabRectangular390Il

Opr No: 1; Opr Name: Rough EndMilling 
Tool For Opr: (EndMill’ 10 25 50 25.0)
Machine ForOpr: ( ’MillingMc’MachiningCentre’)

Opr No: 2; Opr Name: Finish EndMilling 
Tool For Opr: (EndMill’ 10 25 50 25.0)
Machine ForOpr: CMillingMc’MachiningCentrc’)
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Opr No: 3; Opr Name: Rough EndMilling 
Tool For Opr: (EndMill’ 12.5 25.0 50.0 15.0)
Machine For Opr: (’MillingMc’MachiningCentre’)

Opr No: 4; Opr Name: Finish EndMilling 
Tool For Opr: (EndMill’ 12.5 25.0 50.0 15.0)
Machine For Opr: (MillingMc’MachiningCentre’)

Machining Process for PocketRectangularl219Il

Opr No: 1; Opr Name: Rough TwistDrilling 
Tool For Opr: (TwistDrill’ 2.0 5.05.0 13.0)
Machine For Opr: fBoringMc’ DrillingMc’MillingMc’MachiningCentre’) 
Rough TwistDrilling Cycle Locations...
PositionPt: ((50.0 50.0 75.0) (150.0 50.0 75.0) (150.0 100.0 75.0) (50.0

100.0 75.0))
ApproachPt: 78.0 
PlungePt : 65.0 
RetractPt: 83.0 
Dwell(Sec): 1.0

Opr No: 2; Opr Name: Rough EndMilling 
Tool For Opr: (EndMill’ 6.25 12.5 49.8 20.0) 
Machine ForOpr: (’MillingMc’MachiningCentre’) 
Rough EndMilling Cycle Locations...
PositionPt : (75.0 50.0 75.0)
ApproachPlane: 95.0 
ZWorkPlane : 65.4 
RetractPlane : 95.0 
ClearPlane : 145.0

Opr No: 3; Opr Name: Finish EndMilling 
Tool For Opr: CEndMill’ 6.25 8.3333333 49.8 20.0) 
Machine ForOpr: (MillingMc’MachiningCentre’) 
Finish EndMilling Cycle Locations...
PositionPt : (75.0 50.0 75.0)
ApproachPlane: 95.0 
ZWorkPlane : 65.0 
RetractPlane : 95.0 
ClearPlane : 145.0

Opr No: 4; Opr Name: Finish EndMilling
Tool For Opr: (EndMill’ 2.0 5.05.0 20.0)



Machine For Opr: (MillingMc’MachiningCentre’) 
FinishEndMilling Cycle Locations...
PositionPt : (75.0 50.0 75.0)
ApproachPlane: 95.0 
ZWorkPlane : 65.0 
RetractPlane : 95.0 
ClearPlane : 145.0

SetUp No: 6
Fixture For SetUp: MachineVice

Machining Process for Countersink8770I5

Opr No: 1; Opr Name: Finish Countersinking 
Tool For Opr: (CSink’ 5.0 90.0 15.0 4.5)
Machine For Opr: (’BoringMc’ DrillingMc’MillingMc’MachiningCentre’) 
Finish Countersinking Cycle Locations...
PositionPt: (10.0 130.0 0.0)
ApproachPt: 3.0 
PlungePt : -1.5 
RetractPt: 8.0 
Dwell(Sec): 1.0

Machining Process for Countersink8770I12

Opr No: 1; Opr Name: Finish Countersinking 
Tool For Opr: (CSink’ 5.0 90.0 15.0 4.5)
Machine For Opr: (BoringMc’ DrillingMc’MillingMc’MachiningCentre’) 
Finish Countersinking Cycle Locations...
PositionPt: (180.0 130.0 0.0)
ApproachPt: 3.0 
PlungePt : -1.5 
RetractPt: 8.0 
Dwell(Sec): 1.0

Machining Process for Countersink8770113

Opr No: 1; Opr Name: Finish Countersinking 
Tool For Opr: (CSink’ 5.0 90.0 15.0 4.5)
Machine ForOpr: CBoringMc’ DrillingMc’MillingMc’MachiningCentre’) 
Finish Countersinking Cycle Locations...
PositionPt: (180.0 10.0 0.0)
ApproachPt: 3.0



PlungePt : -1.5 
RetractPt: 8.0 
Dwell(Sec): 1.0

Machining Process for Countersink8770I14

Opr No: 1; Opr Name: Finish Countersinking 
Tool For Opr: (CSink’ 5.0 90.0 15.0 4.5)
Machine For Opr: (’BoringMc’ DrillingMc’MillingMc’MachiningCentre’) 
Finish Countersinking Cycle Locations...
PositionPt: (10.0 10.0 0.0)
ApproachPt: 3.0 
PlungePt : -1.5 
RetractPt: 8.0 
Dwell(Sec): 1.0
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Message in the Text Display Window:

(’Bore’ 10.010.0 10.0 54.5) Not available 
(’Reamer’ 10.010.0 10.0 54.5) Not available

The Shop Specific Resource Search for TestCompl

The CAPP Command: Assign Resources



Automated Process Plan
Component Name: TestCompl
Component Material: Tool Steel, Wrought
Matl Description: Cold Work Matl Condition: Annealed
Material Specifications: A2 Material Hardness: (200 250)

SetUp No: 1
Fixture For SetUp: MachineVice

Machining Process for Countersink8770Il

Opr No: 1; Opr Name: FinishCounterSinking 
Tool For Opr: (’CSink’ 15)
Recommended Cutting Speed: (’m/min’ 20) Feed: (’mm/rev’ 0.1) 
Machine For Opr: ’BokoVerticalMachiningCentrell’ 
FinishCounterSinking Cycle Locations...
PositionPt: (180.0 10.0 50.0)
ApproachPt: 53.0 
PlungePt : 48.5 
RetractPt: 58.0 
Dwell(Sec): 1.0

The Shop Specific knowledge based Process Plan for TestCompl

The CAPP Command: Show Component Process

Machining Process for Countersink8770I9

Opr No: 1; Opr Name: FinishCounterSinking 
Tool For Opr: CCS ink’ 15)
Recommended Cutting Speed: (’m/min’ 20) Feed: (’mm/rev’ 0.1) 
Machine For Opr: ’BokoVerticalMachiningCentrell’ 
FinishCounterSinking Cycle Locations...
PositionPt: (180.0 130.0 50.0)
ApproachPt: 53.0 
PlungePt : 48.5 
RetractPt: 58.0 
Dwell(Sec): 1.0

Machining Process for Countersink8770I10

Opr No: 1; Opr Name: FinishCounterSinking
Tool For Opr: (CSink’ 15)
Recommended Cutting Speed: ( ’m/min’ 20) Feed: ( ’mm/rev’ 0.1)



Machine For Opr: ’BokoVerticalMachiningCentrell’ 
Finish Countersinking Cycle Locations...
PositionPt: (10.0 130.0 50.0)
ApproachPt: 53.0 
PlungePt : 48.5 
RetractPt: 58.0 
Dwell(Sec): 1.0

Machining Process for Countersink8770Il 1

Opr No: 1; Opr Name: Finish Countersinking 
Tool For Opr: (CSink’ 15)
Recommended Cutting Speed: (’m/min’ 20) Feed: (’mm/rev’ 0.1) 
Machine For Opr: ’BokoVerricalMachiningCentrell’
Finish Countersinking Cycle Locations...
PositionPt: (10.0 10.0 50.0)
ApproachPt: 53.0 
PlungePt : 48.5 
RetractPt: 58.0 
Dwell(Sec): 1.0

2 Options Exist to machine HoleThrough8558Il 
Option no: 2 is selected

Opr No: 1; Opr Name: Rough TwistDrilling 
Tool For Opr: (TwistDrill’ 9.7)
Recommended Cutting Speed: (’m/min’ 14) Feed: (’mm/rev’ 0.075) 
Machine For Opr: ’BokoVerticalMachiningCentrell’
Rough TwistDrilling Cycle Locations...
PositionPt: (10.0 130.0 50.0)
ApproachPt: 53.0 
PlungePt : -3.0 
RetractPt: 58.0 
Dwell(Sec): 0.0

Opr No: 2; Opr Name: Finish Reaming 
Tool For Opr: (’Reamer’ 10.0)
Recommended Cutting Speed: (’m/min’ 14) Feed: (’mm/rev’ 0.18) 
Machine For Opr: ’BokoVerticalMachiningCentrell’
Finish Reaming Cycle Locations...
PositionPt: (10.0 130.0 50.0)
ApproachPt: 53.0 
PlungcPt : -1.5



RetractPt: 58.0
Dwell(Sec): 0.0

2 Options Exist to machine HoleThrough8558I5 
Option no: 2 is selected

Opr No: 1; Opr Name: Rough TwistDrilling 
Tool For Opr: (TwistDrill’ 9.7)
Recommended Cutting Speed: (’m/min’ 14) Feed: (’mm/rev’ 0.075) 
Machine For Opr: ’BokoVerticalMachiningCentrell’
Rough TwistDrilling Cycle Locations...
PositionPt: (180.0 130.0 50.0)
ApproachPt: 53.0 
PlungePt : -3.0 
RetractPt: 58.0 
Dwell(Sec): 0.0

Opr No: 2; Opr Name: Finish Reaming 
Tool For Opr: (’Reamer’ 10.0)
Recommended Cutting Speed: (’m/min’ 14) Feed: (’mm/rev’ 0.18) 
Machine ForOpr: ’BokoVerticalMachiningCentrell’
Finish Reaming Cycle Locations...
PositionPt: (180.0 130.0 50.0)
ApproachPt: 53.0 
PlungePt : -1.5 
RetractPt: 58.0 
Dwell(Sec): 0.0

2 Options Exist to machine HoleThrough8558I6 
Option no: 2 is selected

Opr No: 1; Opr Name: Rough TwistDrilling 
Tool For Opr: (TwistDrill’ 9.7)
Recommended Cutting Speed: (’m/min’ 14) Feed: (’mm/rev’ 0.075) 
Machine ForOpr: ’BokoVerticalMachiningCentreH’
Rough TwistDrilling Cycle Locations...
PositionPt: (180.0 10.0 50.0)
ApproachPt: 53.0 
PlungePt : -3.0 
RetractPt: 58.0 
Dwell(Sec): 0.0



Opr No: 2; Opr Name: Finish Reaming 
Tool For Opr: ( ’Reamer’ 10.0)
Recommended Cutting Speed: (’m/min’ 14) Feed: (’mm/rev’ 0.18) 
Machine For Opr: ’BokoVerticalMachiningCentrell’
Finish Reaming Cycle Locations...
PositionPt: (180.0 10.0 50.0)
ApproachPt: 53.0 
PlungePt : -1.5 
RetractPt: 58.0 
Dwell(Sec): 0.0

2 Options Exist to machine HoleThrough8558I7 
Option no: 2 is selected

Opr No: 1; Opr Name: Rough TwistDrilling 
Tool For Opr: (TwistDrill’ 9.7)
Recommended Cutting Speed: (’m/min’ 14) Feed: (’mm/rev’ 0.075) 
Machine For Opr: ’BokoVerticalMachiningCentrell’
Rough TwistDrilling Cycle Locations...
PositionPt: (10.0 10.0 50.0)
ApproachPt: 53.0 
PlungePt : -3.0 
RetractPt: 58.0 
Dwell(Sec): 0.0

Opr No: 2; Opr Name: Finish Reaming 
Tool For Opr: (’Reamer’ 10.0)
Recommended Cutting Speed: (’m/min’ 14) Feed: (’mm/rev’ 0.18) 
Machine For Opr: ’BokoVerticalMachiningCentrell’
Finish Reaming Cycle Locations...
PositionPt: (10.0 10.0 50.0)
ApproachPt: 53.0 
PlungePt : -1.5 
RetractPt: 58.0 
Dwell(Sec): 0.0

Machining Process for TabRectangular39011

Opr No: 1; Opr Name: Rough EndMilling 
Tool For Opr: (EndMilP 25)
Recommended Cutting Speed: (’m/min’ 72) Feed: (’mm/tooth’ 0.075) 
Machine For Opr: ’BokoVerticalMachiningCentrell’

Opr No: 2; Opr Name: Finish EndMilling



Tool For Opr: (EndMill’ 25)
Recommended Cutting Speed: (’m/min’ 120) Feed: (’mm/tooth’ 0.1) 
Machine For Opr: ’BokoVerticalMachiningCentrell’

Opr No: 3; Opr Name: Rough EndMilling 
Tool For Opr: (EndMill’ 25)
Recommended Cutting Speed: (’m/min’ 72) Feed: (’mm/tooth’ 0.075) 
Machine For Opr: ’BokoVerticalMachiningCentrell’

Opr No: 4; Opr Name: Finish EndMilling 
Tool For Opr: (EndMill’ 25)
Recommended Cutting Speed: (’m/min’ 120) Feed: (’mm/tooth’ 0.1) 
Machine For Opr: ’BokoVerticalMachiningCentrell’

Machining Process for PocketRectangularl219Il

Opr No: 1; Opr Name: Rough TwistDrilling 
Tool For Opr: (TwistDrill’ 5.0)
Recommended Cutting Speed: (’m/min’ 14) Feed: (’mm/rev’ 0.075) 
Machine ForOpr: ’BokoVerticalMachiningCentrell’
Rough TwistDrilling Cycle Locations...
PositionPt: ((50.0 50.0 75.0) (150.0 50.0 75.0) (150.0 100.0 75.0) (50.0

100.0 75.0))
ApproachPt: 78.0 
PlungePt : 65.0 

.  RetractPt: 83.0 
Dwell(Sec): 1.0

Opr No: 2; Opr Name: Rough EndMilling 
Tool For Opr: (EndMill’ 25)
Recommended Cutting Speed: ( ’m/min’ 72) Feed: (’mm/tooth’ 0.075) 
Machine For Opr: ’BokoVerticalMachiningCentrell’
Rough EndMilling Cycle Locations...
PositionPt : (75.0 50.0 75.0)
ApproachPlane: 95.0 
ZWorkPlane : 65.4 
RetractPlane : 95.0 
ClearPlane : 145.0

Opr No: 3; Opr Name: Finish EndMilling 
Tool For Opr: (EndMill’ 25)
Recommended Cutting Speed: ( ’m/min’ 120) Feed: (’mm/tooth’ 0.1) 
Machine ForOpr: ’BokoVerticalMachiningCentrell’
Finish EndMilling Cycle Locations...



PositionPt : (75.0 50.0 75.0) 
ApproachPlane: 95.0 
ZWorkPlane : 65.0 
RetractPlane : 95.0 
ClearPlane : 145.0

Opr No: 4; Opr Name: FinishEndMilling 
Tool For Opr: (EndMill’ 5.0)
Recommended Cutting Speed: (’m/min’ 50) Feed: (’mm/tooth’ 0.08) 
Machine For Opr: ’BokoVerticalMachiningCentrell’
Finish EndMilling Cycle Locations...
PositionPt : (75.0 50.0 75.0)
ApproachPlane: 95.0 
ZWorkPlane : 65.0 
RetractPlane : 95.0 
ClearPlane : 145.0

SetUp No: 6
Fixture For SetUp: Machine Vice

Machining Process for Countersink8770I5

Opr No: 1; Opr Name: Finish Countersinking 
Tool For Opr: (CSink’ 15)
Recommended Cutting Speed: (’m/min’ 20) Feed: (’mm/rev’ 0.1) 
Machine For Opr: ’BokoVerticalMachiningCentrell’
Finish Countersinking Cycle Locations...
PositionPt: (10.0 130.0 0.0)
ApproachPt: 3.0 
PlungePt : -1.5 
RetractPt: 8.0 
Dwell(Sec): 1.0

Machining Process for Countersink8770I12

Opr No: 1; Opr Name: Finish Countersinking 
Tool For Opr: (CSink’ 15)
Recommended Cutting Speed: (’m/min’ 20) Feed: (’mm/rev’ 0.1) 
Machine For Opr: ’BokoVerticalMachiningCentrell’
Finish Countersinking Cycle Locations...
PositionPt: (180.0 130.0 0.0)
ApproachPt: 3.0 
PlungePt :-1.5



RetractPt: 8.0
Dwell(Sec): 1.0

Machining Process for Countersink8770I13

Opr No: 1; Opr Name: Finish Countersinking 
Tool For Opr: (CSink’ 15)
Recommended Cutting Speed: (’m/min’ 20) Feed: (’mm/rev’ 0.1) 
Machine For Opr: ’BokoVerticalMachiningCentrell’
Finish Countersinking Cycle Locations...
PositionPt: (180.0 10.0 0.0)
ApproachPt: 3.0 
PlungePt : -1.5 
RetractPt: 8.0 
Dwell(Sec): 1.0

Machining Process for Countersink8770I14

Opr No: 1; Opr Name: Finish Countersinking 
Tool For Opr: (CSink’ 15)
Recommended Cutting Speed: (’m/min’ 20) Feed: (’mm/rev’ 0.1) 
Machine For Opr: ’BokoVerticalMachiningCentrell’
Finish Countersinking Cycle Locations...
PositionPt: (10.0 10.0 0.0)
ApproachPt: 3.0 
PlungePt : -1.5 
RetractPt: 8.0 
Dwell(Sec): 1.0
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CADDS5 Report File For TestComp2
***** printing 585 Countersink582_I1

class :
class : Countersink library : CVOBJECTS

static attributes :
BooleanOp Operation - Subtract

:ributes :
Workpiece Workpiece - 2143
Name Representation - rep
CPlane Orientation id - 6

name - TOP
i X - 1.000000e+00

y 0.000000e+00
z - 0.000000e + 00

j X - 0.000000e+00
y - l.OOOOOOe+OO,
z - 0.000000e+00

k x - 0.000000e+00
y - 0.000000e+00
z - 1.000000e+00

Location Origin X - 1.000000e+02
y - 7.500000e+01
z - 8.000000e+01

ApplyType Application - Boolean
String rawMatlCondition - Solid
Real surfFinish - 2.000000e+00
String mcNotmc - Y
Face EntryFace - 2099
String childOf - Pocket Rectangular261_I1
Diameter HoleDiameter - 5. OOO'OOOe+Ol - millimeters
Length CsinkDepth - 2.500000e+00 - millimeters
Angle CsinkAngle - 9.000000e+01 - degrees
String TolHoleDiameter - 0.1 / - 0.1
String TolCsinkAngle - 0.1 / - 0.1

- String TolCsinkDepth - 0.1 / - 0.1
printing 946 Countersink582_I2

class :
class : Countersink library : CVOBJECTS

static attributes :
BooleanOp Operation - Subtract

attributes :
Workpiece Workpiece - 2404
Name Representation - rep
CPlane Orientation id - 11

name - BOTTOM
i X - 1.000000e+00

y - 0 . 000000e+00
z - 0.000000e+00

j X - 0.000000e+00
y - -1.000000e+00
z - 0 . 000000e+00

k X - 0 . 000000e+00
y - 0.000000e+00
z - -1 . 000000e+00

Location Origin X - 1.000000e+02
y - 7 . 500000e+01
z - 0.000000e+00

ApplyType Application - Boolean
String rawMatlCondition - Solid
Real surfFinish - 2 . 000000e+00
String mcNotmc - Y
Face EntryFace - 2 3 2 4
String childOf - Plate57 11
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Diameter
Length
Angle
String
String
String

HoleDiameter
CsinkDepth
CsinkAngle
TolHoleDiameter
TolCsinkAngle
TolCsinkDepth

printing 481 Hole_Through478_I1

class :
class : Hole_Through 

static attributes :
BooleanOp Operation 

attributes :
Workpiece 
Name 
CPlane

Workpiece
Representation
Orientation

Location Origin

ApplyType Application
String rawMatlCondition
Real surfFinish
String mcNotmc
Face EntryFace
Face ExitFace
String childOf
Diameter HoleDiameter
String TolHoleDiameter

- 5.000000e+01 - millimeters
- 2.500000e+00 ■ millimeters
- 9.000000e+01 - degrees
-  0 . 1  /  -  0 . 1  
-  0 . 1  /  -  0 . 1  
-  0 . 1  /  -  0 . 1

* * * * *

library : CVOBJECTS

- Subtract

- 2143
- rep 

id - 6
name - TOP 
i x - 1.000000e+00 
y - 0.000000e+00 
z - 0.000000e+00 

j x - 0.000000e+00 
y - 1.000000e+00 
z - 0.000000e+00 

k x - 0.000000e+00 
y - 0.000000e+00 
z - 1.000000e+00 
x - 1.000000e+02 
y - 7.500000e+01 
z - 8.000000e+01
- Merge
- Solid
- 2.000000e+00
-  Y
- 2099
- 2133
- Pocket_Rectangular261_Il
- 5.000000e+01 - millimeters
-  0 . 1  /  -  0.1

printing 264 Pocket_Rectangular261_Il

class :
class : Pocket_Rectangular 

static attributes :
library : CVOBJECTS

BooleanOp Operation - Subtract
:ibutes :
Workpiece Workpiece - 1982
Name Representation - rep
CPlane Orientation id - 6

name - TOP
i X - 1.000000e+00

y - 0.000000e+00
z - 0.000000e+00

j X - 0.000000e+00
y - 1.000000e+00
z - 0.000000e+00

k x - 0.000000e+00
y - 0.000000e+00
z - 1.000000e+00

Location Origin X - 2.500000e+01
y - 2.500000e+01
z - 1. 000000e+02

ApplyType Application - Boolean
String rawMatlCondition - Solid
Real surfFinish - 2.000000e+00
String mcNotmc - Y
Face EntryFace ■ 2009
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String childOf - Plate57 11
Length PocketLength - 1.500000e+02
Length PocketWidth - 1.000000e+02
Length PocketDepth - 2.000000e+01
String TolPocketLength ■ 0.1 / - 0.1
String TolPocketWidth - 0.1 / - 0.1
String TolPocketDepth “ 0.1 / - 0.1

printing 60 Plate57_Il

class :
class : Plate library : CVOBJECTS

static attributes :
BooleanOp Operation - Add
Workpiece Workpiece ” 0
ApplyType Application ” NoApply
ributes :
Name Representation “ rep
CPlane Orientation id - 6

name — TOP
i X - 1 .000000e+00

y - 0 . 000000e+00
z - 0 . 000000e+00

j X - 0 . 000000e+00
y - 1 . 000000e+00
z - 0. 000000e+00

k x - 0 . 000000e+00
y - 0 . 000000e+00
z - 1 . 000000e+00

Location Origin X - 0.000000e+00
y - 0.000000e+00
z - 0 . 000000e+00

String rawMatlCondition - Solid
Real surfFinish - 2 . 000000e+00
String mcNotmc - Y
Length PlateLength - 2 . 000000e+02
String TolPlateLength “ 0. 1  / - 0 . 1
Length PlateWidth - 1 . 500000e+02
String TolPlateWidth - 0. 1  / - 0 . 1
Length PlateHeight - 1 .000000e+02
String TolPlateHeight " 0. 1  / - 0 . 1

millimeters
millimeters
millimeters

millimeters

- millimeters

- millimeters
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Report File Representation in the CAPP System:

Feature Instance hierarchy of TestComp2
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The CAPP System Process Plan Generation for TestComp2

The CAPP Command : Generate Process

Message in the Text Display Window:
Plate57Il No Stock, Machining not required 
PocketRectangular261Il finish by End Milling 
PocketRectangular261IlPocket Comer finishing by EndMilling 
PocketRectangular261Il roughing by End Milling 
PocketRectangular261Il Pocket comer hole drilling 
Counterbore3356Il can be finished by CounterBoring 
Countersink3800Il Countersinking required 
HpleThrough3673Il can be finished by Boring 
HoleThrough3673Il cannot be finished by Reaming 
HoleThrough3673Il cannot be finished by TwistDrilling 
HoleThrough3673Il Rough Boring is not required 
HoleThrough3673Il Drilling required 
HoleThrough3673Il CentreDrilling required 
Plate57Il No Stock, Machining not required 
Plate57Il No Stock, Machining not required 
Plate57Il No Stock, Machining not required 
HoleBlind7278Il can be finished by Boring 
HoleBlind7278Il can be finished by Reaming 
HoleBlind7278Il can be finished by TwistDrilling 
HoleBlind7278Il CentreDrilling not required 
HoleBlind7278Il Rough Boring is not required 
HoleBlind7278Il Drilling required 
HoleBlind7278Il CentreDrilling not required 
HoleBlind7278Il Rough Boring is not required 
HoleBlind7278Il Drilling required 
HoleBlind7278Il CentreDrilling not required 
HoleBlind7278Il Rough Drilling not necessary 
HoleBlind7278I2 can be finished by Boring 
HoleBlind7278I2 can be finished by Reaming 
HoleBlind7278I2 can be finished by TwistDrilling 
HoleBlind7278I2 CentreDrilling not required 
HoleBlind7278I2 Rough Boring is not required 
HoleBlind7278I2 Drilling required 
HoleBlind7278I2 CentreDrilling not required 
HoleBlind7278I2 Rough Boring is not required 
HoleBlind7278I2 Drilling required 
HoleBlind7278I2 CentreDrilling not required 
HoleBlind7278I2 Rough Drilling not necessary 
Countersink3800I2 Countersinking required 
PlateS7Il No Stock, Machining not required 
Plate57Il No Stock, Machining not required



The universal knowledge based Process Plan for TestComp2 

The CAPP Command : Show Component Process

Automated Process Plan
Component Name: TestComp2
Component Material: Free Machining Carbon Steel
Matl Description: Medium carbon ResulfurizedMatl Condition: Hot rolled

or Cold drawn
Material Specifications: 1140 Material Hardness: (175 225)

SetUp No: 1
Fixture For SetUp: UniversalVice

Machining Process for PocketRectangular261Il

Opr No: 1; Opr Name: Rough TwistDrilling 
Tool For Opr: (’TwistDrill’ 2.0 5.0 5.0 23.0)
Machine For Opr: (’BoringMc’ ’DrillingMc’ ’MillingMc’ ’MachiningCentre’) 
Rough TwistDrilling Cycle Locations...
PositionPt: ((25.0 25.0 75.0) (175.0 25.0 75.0) (175.0 125.0 75.0) (25.0

125.0 75.0))
ApproachPt: 78.0 
PlungePt : 55.0 
RetractPt: 83.0 
Dwell(Sec): 1.0

Opr No: 2; Opr Name: Rough EndMilling 
Tool For Opr: (’EndMill’ 12.5 25.0 50.0 30.0) 
Machine For Opr: (’MillingMc’ ’MachiningCentre’) 
Rough EndMilling Cycle Locations...
PositionPt : (87.5 62.5 75.0)
ApproachPlane: 95.0 
ZWorkPlane : 55.4 
RetractPlane : 95.0 
ClearPlane : 145.0

Opr No: 3; Opr Name: Finish EndMilling 
Tool For Opr: (’EndMill’ 12.5 16.666666 50.0 30.0) 
Machine For Opr: (’MillingMc’ ’MachiningCentre’) 
Finish EndMilling Cycle Locations...
PositionPt : (87.5 62.5 75.0)
ApproachPlane: 95.0 
ZWorkPlane : 55.0
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RetractPlane : 95.0 
ClearPlane : 145.0

Opr No: 4; Opr Name: Finish EndMilling
Tool For Opr: (’EndMill’ 2.0 5.0 5.0 30.0)
Machine For Opr: ( ’MillingMc’ ’MachiningCentre’)
Finish EndMilling Cycle Locations...
PositionPt : (87.5 62.5 75.0)
ApproachPlane: 95.0
ZWorkPlane : 55.0
RetractPlane : 95.0
ClearPlane : 145.0 «

Machining Process for Counterbore3356Il

Opr No: 1; Opr Name: Finish CounterBoring 
Tool For Opr: (’CBore’ 50.0 50.0 50.0 30.0)
Machine For Opr: (’BoringMc’ ’DrillingMc’ ’MillingMc’ ’MachiningCentre’) 
Finish CounterBoring Cycle Locations...
PositionPt: (100.0 75.0 55.0)
ApproachPt: 75.0 
PlungePt : 45.0 
RetractPt: 80.0 

'  Dwell(Sec): 2.0

Machining Process for Countersink3800Il

Opr No: 1; Opr Name: Finish Countersinking 
Tool For Opr: (’CSink’ 25.0 90.0 35.0 6.0)
Machine For Opr: (’BoringMc’ ’DrillingMc’ ’MillingMc’ ’MachiningCentre’) 
Finish Countersinking Cycle Locations...
PositionPt: (100.0 75.0 45.0)
ApproachPt: 48.0 
PlungePt : 42.5 
RetractPt: 53.0 
Dwell(Sec): 1.0

Machining Process for HoleThrough3673Il 

Opr No: 1; Opr Name: Rough CentreDrilling
Rough CentreDrilling MUST PRECEDE Counterbore335611 Finishing 
Tool For Opr: (’CentreDrill’ 4.5 5.0 5.5 8.0)
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Machine For Opr: (’BoringMc’ ’DrillingMc’ ’MillingMc’ ’MachiningCentre’) 
Rough CentreDrilling Cycle Locations...
PositionPt: (100.0 75.0 55.0)
ApproachPt: 58.0 
PlungePt : 47.0 
RetractPt: 63.0 
Dwell(Sec): 1.0

Opr No: 2; Opr Name: Rough TwistDrilling
Rough TwistDrillingMUST PRECEDE Counterbore3356Il Finishing 
Tool For Opr: (’TwistDrill’ 29.25 29.5 29.75 67.0)
Machine For Opr: (’BoringMc’ ’DrillingMc’ ’MillingMc’ ’MachiningCentre’) 
Rough TwistDrilling Cycle Locations...
PositionPt: (100.0 75.0 55.0)
ApproachPt: 58.0 
PlungePt : -9.0 
RetractPt: 63.0 
Dwell(Sec): 0.0

Opr No: 3; Opr Name: Finish Boring 
Tool For Opr: (’Bore’ 30.0 30.0 30.0 49.5)
Machine For Opr: (’BoringMc’ ’DrillingMc’ ’MillingMc’ ’MachiningCentre’) 
Finish Boring Cycle Locations...
PositionPt: (100.0 75.0 45.0)
ApproachPt: 48.0 
PlungePt : -1.5 
RetractPt: 53.0 
Dwell(Sec): 0.0

SetUp No: 6
Fixture For SetUp: UniversalVice

3 Options Exist to machine HoleBlind727811 
Option no: 1

Opr No: 1; Opr Name: Rough TwistDrilling 
Tool For Opr: (’TwistDrill’ 9.25 9.5 9.75 18.0)
Machine For Opr: (’BoringMc’ ’DrillingMc’ ’MillingMc’ ’MachiningCentre’) 
Rough TwistDrilling Cycle Locations...
PositionPt: (175.0 125.0 0.0)
ApproachPt: 3.0 
PlungePt : -15.0 
RetractPt: 8.0
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Dwell(Sec): 1.0

Opr No: 2; Opr Name: Finish Boring 
Tool For Opr: (’Bore’ 10.0 10.0 10.0 18.0)
Machine For Opr: (’BoringMc’ ’DrillingMc’ ’MillingMc’ ’MachiningCentre’) 
Finish Boring Cycle Locations...
PositionPt: (175.0 125.0 0.0)
ApproachPt: 3.0 
PlungePt : -15.0 
RetractPt: 8.0 
Dwell(Sec): 1.0

Option no: 2

Opr No: 1; Opr Name: Rough TwistDrilling 
Tool For Opr: (’TwistDrill’ 9.45 9.7 9.95 18.0)
Machine For Opr: (’BoringMc’ ’DrillingMc’ ’MillingMc’ ’MachiningCentre’) 
Rough TwistDrilling Cycle Locations...
PositionPt: (175.0 125.0 0.0)
ApproachPt: 3.0 
PlungePt : -15.0 
RetractPt: 8.0 
Dwell(Sec): 1.0

Opr No: 2; Opr Name: Finish Reaming 
Tool For Opr: (’Reamer’ 10.0 10.0 10.0 18.0)
Machine For Opr: (’BoringMc’ ’DrillingMc’ ’MillingMc’ ’MachiningCentre’) 
Finish Reaming Cycle Locations...
PositionPt: (175.0 125.0 0.0)
ApproachPt: 3.0 
PlungePt : -15.0 
RetractPt: 8.0 
Dwell(Sec): 1.0

Option no: 3

Opr No: 1; Opr Name: Finish TwistDrilling 
Tool For Opr: (’TwistDrill’ 10.0 10.0 10.0 18.0)
Machine For Opr: (’BoringMc’ ’DrillingMc’ ’MillingMc’ ’MachiningCentre’) 
Finish TwistDrilling Cycle Locations...
PositionPt: (175.0 125.0 0.0)
ApproachPt: 3.0
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PlungePt : -15.0 
RetractPt: 8.0 
Dwell(Sec): 1.0

3 Options Exist to machine HoleBlind7278I2 
Option no: 1

Opr No: 1; Opr Name: Rough TwistDrilling 
Tool For Opr: (’TwistDrill’ 9.25 9.5 9.75 18.0)
Machine For Opr: (’BoringMc’ ’DrillingMc’ ’MillingMc’ ’MachiningCentre’) 
Rough TwistDrilling Cycle Locations...
PositionPt: (25.0 25.0 0.0)
ApproachPt: 3.0 
PlungePt : -15.0 
RetractPt: 8.0 
Dwell(Sec): 1.0

Opr No: 2; Opr Name: Finish Boring 
Tool For Opr: (’Bore’ 10.0 10.0 10.0 18.0)
Machine For Opr: (’BoringMc’ ’DrillingMc’ ’MillingMc’ ’MachiningCentre’) 
Finish Boring Cycle Locations...
PositionPt: (25.0 25.0 0.0)
ApproachPt: 3.0 

- PlungePt : -15.0 
RetractPt: 8.0 .
Dwell(Sec): 1.0

Option no: 2

Opr No: 1; Opr Name: Rough TwistDrilling 
Tool For Opr: (’TwistDrill’ 9.45 9.7 9.95 18.0)
Machine For Opr: (’BoringMc’ ’DrillingMc’ ’MillingMc’ ’MachiningCentre’) 
Rough TwistDrilling Cycle Locations...
PositionPt: (25.0 25.0 0.0)
ApproachPt: 3.0 
PlungePt : -15.0 
RetractPt: 8.0 
Dwell(Sec): 1.0

Opr No: 2; Opr Name: Finish Reaming 
Tool For Opr: (’Reamer’ 10.0 10.0 10.0 18.0)
Machine For Opr: (’BoringMc’ ’DrillingMc’ ’MillingMc’ ’MachiningCentre’)
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Finish Reaming Cycle Locations...
PositionPt: (25.0 25.0 0.0)
ApproachPt: 3.0
PlungePt : -15.0
RetractPt: 8.0
Dwell(Sec): 1.0

Option no: 3

Opr No: 1; Opr Name: Finish TwistDrilling 
Tool For Opr: (’TwistDriH’ 10.0 10.0 10.0 18.0)
Machine For Opr: (’BoringMc’ ’DrillingMc’ ’MillingMc’^MachiningCentre’) 
Finish TwistDrilling Cycle Locations...
PositionPt: (25.0 25.0 0.0)
ApproachPt: 3.0 
PlungePt : -15.0 
RetractPt: 8.0 
Dwell(Sec): 1.0

Machining Process for Countersink3800I2

Opr No: 1; Opr Name: Finish Countersinking 
Tool For Opr: (’CSink’ 25.0 90.0 35.0 6.0)
Machine For Opr: (’BoringMc’ ’DrillingMc’ ’MillingMc’ ’MachiningCentre’) 
Finish Countersinking Cycle Locations...
PositionPt: (100.0 75.0 0.0)
ApproachPt: 3.0 
PlungePt : -3.0 
RetractPt: 8.0 
Dwell(Sec): 1.0
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The Shop Specific Resource Search for TestComp2 

The CAPP Command: Assign Resources

Message in the Text Display Window:

(’Bore’ 10.0 10.0 10.0 18.0) Not available 
(’Reamer’ 10.0 10.0 10.0 18.0) Not available 
(’TwistDrilT 29.25 29.5 29.75 67.0) Not available 
(’Bore’ 30) HSS Tool material / grade not in the database



The Shop Specific knowledge based Process Plan for TestComp2

The CAPP Command: Show Component Process
The process plan based on specific knowledge:
The CAPP Command: Show Component Process

Automated Process Plan
Component Name: TestComp2
Component Material: Free Machining Carbon Steel
Matl Description: Medium carbon Resulfurized Matl Condition: Hot rolled or

Cold drawn
Material Specifications: 1140 Material Hardness: (175 225)

SetUp No: 1
Fixture For SetUp: UniversalVice

Machining Process for PocketRectangular261Il

Opr No: 1; Opr Name: Rough TwistDrilling 
Tool For Opr: (’TwistDrill’ 5.0)
Recommended Cutting Speed: (’m/min’ 24) Feed: (’mm/rev’ 0.08)
Machine For Opr: ’MitsuSeikiHorizontalMachiningCentreH’
Rough TwistDrilling Cycle Locations...
PositionPt: ((25.0 25.0 75.0) (175.0 25.0 75.0) (175.0 125.0 75.0) (25.0

125.0 75.0))
ApproachPt: 78.0 
PlungePt : 55.0 
RetractPt: 83.0 
Dwell(Sec): 1.0

Opr No: 2; Opr Name: Rough EndMilling 
Tool For Opr: (’EndMill’ 25)
Recommended Cutting Speed: (’m/min’ 120) Feed: (’mm/tooth’ 0.2) 
Machine For Opr: ’MitsuSeikiHorizontalMachiningCentrell’
Rough EndMilling Cycle Locations...
PositionPt : (87.5 62.5 75.0)
ApproachPlane: 95.0 
ZWorkPlane : 55.4 
RetractPlane : 95.0 
ClearPlane : 145.0

Opr No: 3; Opr Name: Finish EndMilling 
Tool For Opr: (’EndMill’ 25)
Recommended Cutting Speed: (’m/min’ 120) Feed: (’mm/tooth’ 0.2)
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Machine For Opr: ’MitsuSeikiHorizontalMachiningCentrell’ 
Finish EndMilling Cycle Locations...
PositionPt : (87.5 62.5 75.0)
ApproachPlane: 95.0 
ZWorkPlane : 55.0 
RetractPlane : 95.0 
ClearPlane : 145.0

Opr No: 4; Opr Name: Finish EndMilling 
Tool For Opr: (’EndMill’ 5.0)
Recommended Cutting Speed: (’m/min’ 160) Feed: (’mm/tooth’ 0.05) 
Machine For Opr: ’MitsuSeikiHorizontalMachiningCentrell’
Finish EndMilling Cycle Locations...
PositionPt : (87.5 62.5 75.0)
ApproachPlane: 95.0 
ZWorkPlane : 55.0 
RetractPlane : 95.0 
ClearPlane : 145.0

Machining Process for Counterbore3356Il

Opr No: 1; Opr Name: Finish CounterBoring 
Tool For Opr: (’CBore’ 50.0)
Recommended Cutting Speed: (’m/min’ 37) Feed: (’mm/rev’ 0.2) 
Machine For Opr: ’MitsuSeikiHorizontalMachiningCentrell’ 
Finish CounterBoring Cycle Locations...
PositionPt: (100.0 75.0 55.0)
ApproachPt: 75.0 
PlungePt : 45.0 
RetractPt: 80.0 
Dwell(Sec): 2.0

Machining Process for Countersink3800Il

Opr No: 1; Opr Name: Finish Countersinking 
Tool For Opr: (’CSink’ 35)
Recommended Cutting Speed: (’m/min’ 37) Feed: (’mm/rev’ 0.15) 
Machine For Opr: ’MitsuSeikiHorizontalMachiningCentrell’ 
Finish Countersinking Cycle Locations...
PositionPt: (100.0 75.0 45.0)
ApproachPt: 48.0 
PlungePt : 42.5 
RetractPt: 53.0



Dwell(Sec): 1.0

Machining Process for HoleThrough3673Il 

Opr No: 1; Opr Name: Rough CentreDrilling
Rough CentreDrilling MUST PRECEDE Counterbore3356Il Finishing 
Tool For Opr: (’CentreDrill’ 5.0)
Recommended Cutting Speed: (’m/min’ 20) Feed: ( ’m m / r e v ’ 0.07) 
Machine For Opr: ’MitsuSeikiHorizontalMachiningCentrell’
Rough CentreDrilling Cycle Locations...
PositionPt: (100.0 75.0 55.0)
ApproachPt: 58.0 
PlungePt : 47.0 
RetractPt: 63.0 
Dwell(Sec): 1.0

Opr No: 2; Opr Name: Rough TwistDrilling
Rough TwistDrillingMUST PRECEDE Counterbore3356Il Finishing 
Tool For Opr: (’TwistDrill’ 29.5)
Recommended Cutting Speed: (’m/min’ 24) Feed: (’mm/rev’ 0.55) 
Machine For Opr: ’MitsuSeikiHorizontalMachiningCentrell’
Rough TwistDrilling Cycle Locations...
PositionPt: (100.0 75.0 55.0)
ApproachPt: 58.0 
PlungePt : -9.0 
RetractPt: 63.0 
Dwell(Sec): 0.0

Opr No: 3; Opr Name: Finish Boring 
Tool For Opr: (’Bore’ 30)
Recommended Cutting Speed: (’m/min’ 150) Feed: (’mm/rev’ 0.075) 
Machine For Opr: ’MitsuSeikiHorizontalMachiningCentrell’
Finish Boring Cycle Locations...
PositionPt: (100.0 75.045.0)
ApproachPt: 48.0 
PlungePt : -1.5 
RetractPt: 53.0 
Dwell(Sec): 0.0

SetUp No: 6
Fixture For SetUp: Universal Vice 

3 Options Exist to machine HoleBlind7278U



Option no: 3 is Selected

Opr No: 1; Opr Name: Finish TwistDrilling 
Tool For Opr: (’TwistDrill’ 10)
Recommended Cutting Speed: (’m/min’ 24) Feed: (’mm/rev’ 0.11) 
Machine For Opr: ’MitsuSeikiHorizontalMachiningCentreir 
Finish TwistDrilling Cycle Locations...
PositionPt: (175.0 125.0 0.0)
ApproachPt: 3.0 
PlungePt : -15.0 
RetractPt: 8.0 
Dwell(Sec): 1.0

Machining Process for Countersink3800I2

Opr No: 1; Opr Name: Finish Countersinking 
Tool For Opr: (’CSink’ 35)
Recommended Cutting Speed: (’m/min’ 37) Feed: (’mm/rev’ 0.15) 
Machine For Opr: ’MitsuSeikiHorizontalMachiningCentrell’ 
Finish Countersinking Cycle Locations...
PositionPt: (100.0 75.0 0.0)
ApproachPt: 3.0 
PlungePt : -3.0 
RetractPt: 8.0 
Dwell(Sec): 1.0
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CADDS5 Report file for TestComp3
***** printing 13340 Countersinkl3337_I1 *****

class :
class : Countersink library : CVOBJECTS
classtype : Feature timestamp : 02-20-95 19:09

tic attributes :
BooleanOp Operation - Subtract

ributes :
Workpiece Workpiece - 21894
Name Representation =» rep
CPlane Orientation id - 6

name = TOP
i X - 1.000000e+00

y - 0.000000e+00
z * 0.000000e+00

j X - 0.000000e+00
y - 1.000000e+00
z - 0.000000e+00

k x - 0.000000e+00
y - 0.000000e+00
z - 1.000000e+00

Location Origin X - 2.950000e+01
y - 7.500000e+01
z - 2.650000e+01

ApplyType Application - Boolean
String rawMatlCondition - Solid
Real surfFinish 2.000000e+00
String mcNotmc - Y
Face EntryFace - 21864
String ChildOf = Counterbore2764_I1
Diameter HoleDiameter - 1.250000e+01 - millimeters
Length CsinkDepth - 5.000000e-01 - millimeters
Angle CsinkAngle - 9.000000e+01 » degrees
String TolHoleDiameter - 0.1 / - 0.1
String To1CsinkAngle -= 0.1 / - 0.1
String TolCsinkDepth - 0.1 / - 0.1

printing 18276 Countersinkl3337_I2
class :

class : Countersink library : CVOBJECTS
classtype : Feature timestamp : 02-20-95 19:09

static attributes :
B o o l e a n O p O p e r a t i o n - S u b t r a c t

a t t r i b u t e s  :
W o r k p i e c e W o r k p i e c e - 2 1 8 9 4
Name R e p r e s e n t a t i o n - r e p
C P l a n e O r i e n t a t i o n i d - 6

na me - TOP
i  X - 1 . 0 0 0 0 0 0 e + 0 0

y - 0 . 0 0 0 0 0 0 e + 0 0
z - 0 . 0 0 0 0 0 0 e + 0 0

j  X - 0 . 0 0 0 0 0 0 e + 0 0
y - 1 . 0 0 0 0 0 0 e + 0 0
z - 0 . 0 0 0 0 0 0 e  + 0 0

k x - 0 . 0 0 0 0 0 0 e + 0 0
y - 0 . 0 0 0 0 0 0 e + 0 0
z - 1 . 0 0 0 0 0 0 e + 0 0

L o c a t i o n O r i g i n X - 1 . 0 0 0 0 0 0 e + 0 1
y - 1 . 4 0 0 0 0 0 e + 0 2
z - 1 . 1 5 5 4  9 4 e  + 01

A p p l y T y p e A p p l i c a t i o n - B o o l e a n
S t r i n g r a w M a t l C o n d i t i o n - S o l i d
R e a l s u r f F i n i s h - 2 . 0 0 0 0 0 0 e + 0 0
S t r i n g m c N o t m c - Y
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Face EntryFace - 0
String ChildOf - Bracket54 11
Diameter HoleDiameter =• 6.000000e+00 = millimeters
Length CsinkDepth - 2.000000e+00 = millimeters
Angle CsinkAngle - 9.000000e+01 = degrees
String TolHoleDiameter =» 0.1 / - 0.1
String TolCsinkAngle - 0.1 / - 0.1
String TolCsinkDepth =■ 0.1 / - 0.1

***** printing 18489 Countersinkl3337_I3 * * * * *

class :
class : Countersink library : CVOBJECTS
classtype : Feature timestamp : 02-20-95 19:09

static attributes :
BooleanOp Operation - Subtract

attributes :
Workpiece Workpiece - 21894
Name Representation * rep
CPlane Orientation id = 6

name * TOP
i x = 1.000000e + 00

y - 0.000000e+00
z = 0.000000e+00

j X - 0.000000e+00
y - 1.000000e+00
z * 0.000000e+00

k x  - 0.000000e+00
y - 0.000000e+00
z - 1.000000e+00

Location Origin X “ 5.000000e+01
y ■ 1.400000e+02
z = 1.1554 94e+01

ApplyType Application - Boolean
String rawMatlCondition - Solid
Real surfFinish - 2.000000e+00
String mcNotmc - Y
Face EntryFace - 0
String ChildOf - Bracket54 11
Diameter HoleDiameter - 6.000000e+00 - millimeters
Length CsinkDepth - 2.000000e+00 - millimeters
Angle CsinkAngle - 9.000000e+01 = degrees
String TolHoleDiameter - 0.1 / - 0.1
String TolCsinkAngle - 0.1 / - 0.1
String TolCsinkDepth - 0.1 / - 0.1

printing 18519 Countersinkl3337_I4

class :
class : Countersink library : CVOBJECTS
classtype : Feature timestamp : 02-20-95 19:09

static attributes :
BooleanOp Operation - Subtract

attributes :
Workpiece Workpiece - 21894
Name Representation “ rep
CPlane Orientation id - 6

name - TOP
i X - 1.000000e+00

y - 0.000000e + 00
z - 0.000000e+00

j X - 0.000000e+00
y - 1.000000e+00
z - 0.000000e + 00

k x - 0.000000e+00
y - 0.000000e + 00
z - 1.000000e+00

Location Origin X - 5.000000e+01
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ApplyType Application
y -
Z “

1.000000e+01 
1.1554 94e+01 
Boolean

String rawMatlCondition = Solid
Real surfFinish - 2.000000e+00
String mcNotmc = Y
Face EntryFace - 0
String ChildOf =■ Bracket54 11
Diameter HoleDiameter ■ 6.000000e+00
Length CsinkDepth = 2.000000e+00
Angle CsinkAngle - 9.000000e+01
String TolHoleDiameter - 0.1 / - 0.1
String TolCsinkAngle - 0.1 / - 0.1
String TolCsinkDepth * 0.1 / - 0.1

printing 18549 Countersinkl3337_I5
class :

class : Countersink 
classtype : Feature 

static attributes :
library : CVOBJECTS 
timestamp : 02-20-95 19:

BooleanOp Operation - Subtract
attributes :

Workpiece Workpiece - 21894
Name Representation = rep
CPlane Orientation id = 6

name - TOP
i X - 1.000000e+00

y - 0.000000e+00
z - 0.000000e+00

j X - 0.000000e+00
y - 1.000000e+00
z - 0.000000e+00

k x 0.000000e+00
y - 0.000000e+00
z - 1.000000e+00

Location Origin X - 1.000000e+01
y - 1.000000e+01
z - 1.1554 94e+01

ApplyType Application - Boolean
String rawMatlCondition - Solid
Real surfFinish - 2.000000e+00
String mcNotmc - Y
Face EntryFace - 0
String ChildOf - Bracket54 11
Diameter HoleDiameter - 6.000000e+00
Length CsinkDepth - 2.000000e+00
Angle CsinkAngle - 9.000000e+01
String TolHoleDiameter - 0.1 / - 0.1
String TolCsinkAngle - 0.1 / - 0.1
String TolCsinkDepth - 0.1 / - 0.1

printing 13268 Hole_Throughl3265_I1

class :
class : Hole_Through 
classtype : Feature 

static attributes :
BooleanOp Operation 

attributes :
Workpiece 
Name 
CPlane

Workpiece
Representation
Orientation

library : CVOBJECTS 
timestamp : 02-20-95 19

- Subtract
. 21894
- rep

id - 6
name - TOP

i  X - 1.000000e + 00
y - 0.000000e+00
z - 0.000000e + 00

j  X - 0.000000e+00

millimeters
millimeters
degrees

09

millimeters
millimeters
degrees

: 20
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y - 1.000000e+00
z = 0.000000e+00

k x - 0.000000e+00
y - 0.000000e+00
z - 1.000000e+00

Location Origin X - 2.950000e+01
y - 7.500000e+01
z = 2.650000e+01

ApplyType Application - Merge
String rawMatlCondition = 1.25
Real surfFinish - 1.000000e+00
String mcNotmc - Y
Face EntryFace - 21864
Face ExitFace = 21782
String ChildOf - Counterbore2764 11
Diameter HoleDiameter - 1.250000e+01 - mill
String TolHoleDiameter - 0.05 / -0.05

printing 18070 Hole_Throughl3265_I2
class :

class : Hole_Through 
classtype : Feature 

static attributes :
BooleanOp 

attributes : 
Workpiece 
Name 
CPlane

Location

ApplyType
String
Real
String
Face
Face
String
Diameter
String

Operation

Workpiece
Representation
Orientation

'Origin

Application
rawMatlCondition
surfFinish
mcNotmc
EntryFace
ExitFace
ChildOf
HoleDiameter
TolHoleDiameter

library : CVOBJECTS 
timestamp : 02-20-95 19:20

= Subtract
- 2 1 8 9 4
- r e p

i d = 6
n a m e « TOP

i  X - 1 . 0 0 0 0 0 0 e + 0 0
y - 0 . 0 0 0 0 0 0 e + 0 0
z = 0 . 0 0 0 0 0 0 e + 0 0

j  X - 0 . 0 0 0 0 0 0 e + 0 0
y - 1 . 0 0 0 0 0 0 e + 0 0
z - 0 . 0 0 0 0 0 0 e + 0 0

k x - 0 . 0 0 0 0 0 0 e + 0 0
y - 0 . 0 0 0 0 0 0 e + 0 0
z - 1 . 0 0 0 0 0 0 e + 0 0
X - 1 . 0 0 0 0 0 0 e + 0 1
y - 1 . 4 0 0 0 0 0 e + 0 2
z - 1 . 1 5 5 4  9 4 e + 0 1

- M e r g e
= Solid
- 3 . 0 0 0 0 0 0 e + 0 0
- Y
- 21035
- 21123
- Bracket54_Il
- 6.000000e+00 - millimeters
-  0 . 1  / - 0. 1

18150 Hole_Throughl3265_I3
class :

class : Hole_Through 
classtype : Feature 

static attributes :
BooleanOp Operation 

attributes :
Workpiece 
Name 
CPlane

Workpiece
Representation
Orientation

library : CVOBJECTS 
timestamp : 02-20-95 19:20

- Subtract
- 21894
- r ep

id - 6
name - TOP

i  X - 1. 000000e+00
y - 0. 000 000e +00
z - 0 . 000000e+00

j  X - 0 . 000000e+00
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y - 1.000000e+00
z = 0.000000e+00

k x - 0.000000e+00
y - 0.000000e+00
z - 1.000000e+00

Location Origin X = 5.000000e+01
y - 1 . 400000e+02
z - 1.1554 94e+01

ApplyType Application - Merge
String rawMatlCondition « Solid
Real surfFinish - 3.000000e+00
String mcNotmc - Y
Face EntryFace - 21035
Face ExitFace - 21123
String ChildOf - Bracket54 11
Diameter HoleDiameter = 6.000000e+00
String TolHoleDiameter - 0.1 / - 0.1

printing 18182 Hole Throughl3265 14 » —
class :

class : Hole_Through library : CVOBJECTS
classtype : Feature timestamp : 02-20-95 19

static attributes :
BooleanOp Operation - Subtract

attributes :
Workpiece Workpiece - 21894
Name Representation - rep
CPlane Orientation id - 6

name * TOP
i  X - 1.000000e+00
y - 0.000000e+00
z - 0.000000e+00

j X - 0.000000e+00
y - 1.000000e+00
z = 0.000000e+00

k x - 0.000000e+00
y - 0.000000e+00
z - 1.000000e+00 ~

Location Origin X - 5.000000e+01
y - 1.000000e+01
z - 1.1554 94e+01

ApplyType Application - Merge
String rawMatlCondition - Solid
Real surfFinish - 3.000000e+00
String mcNotmc - Y
Face EntryFace - 21035
Face ExitFace = 21123
String ChildOf - Bracket54 11
Diameter HoleDiameter - 6.000000e+00 -
String TolHoleDiameter - 0.1 /  - 0.1

printing 18214 Hole_Throughl3265_I5
class :

class : Hole Through library : CVOBJECTS
classtype : Feature timestamp : 02-20-95 :

static attributes :
BooleanOp Operation - Subtract

attributes :
Workpiece Workpiece - 21894
Name Representation - rep
CPlane Orientation id - 6

name - TOP
i  X - 1.000000e+00

y - 0.000000e+00
z - 0.000000e+00

j  X - 0.000000e + 00

millimeters

20

millimeters

: 20
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Location Origin

ApplyType Application
String rawMatlCondition
Real surfFinish
String mcNotmc
Face EntryFace
Face ExitFace
String ChildOf
Diameter HoleDiameter
String TolHoleDiameter

y - 1.000000e+00 
z - 0.000000e+00 

k x - 0.000000e+00 
y - 0.OOCOOOe+OO 
z - 1.000000e+00 
x - 1.000000e+01 
y - 1.000000e+01 
z - 1.1554 94e+01
= Merge
- Solid
- 3.000000e+00
- Y
- 21035
- 21123
■ Bracket54_Il
- 6.000000e+00 = millimeters
-  0 . 1  /  -  0. 1

printing 2767 Counterbore2764 II
class :

class : Counterbore 
classtype : Feature 

static attributes :
library : CVOBJECTS 
timestamp : 02-20-95 19:09

BooleanOp Operation - Subtract
attributes :

Workpiece Workpiece - 21894
Name Representation - rep
CPlane Orientation id - 6

name - TOP
i X - 1.000000e+00

y - 0.000000e+00
z - 0.OOOOOOe+OO

j X - 0.000000e+00
y - 1.000000e+00
z 0.000000e+00

k x - 0.000000e+00
y - 0.000000e+00
z - 1.000000e+00

Location Origin X - 2.950000e+01
y - 7.500000e+01
z - 2.950000e+01

ApplyType Application - Boolean
String rawMatlCondition = 5
Real surfFinish - 2.000000e+00
String mcNotmc - Y
Face EntryFace - 21784
String ChildOf - Bracket54 11
Diameter CboreDiameter - 2.000000e+01
Length CboreDepth - 3.000000e+00
String TolCboreDiameter - 0.1 / - 0.1
String TolCboreDepth - 0.1 / - 0.1

millimeters
millimeters

printing 57 Bracket54__11

class :
class : Bracket 
classtype : Feature

static attribi 
BooleanOp 
Workpiece 
ApplyType 

attributes : 
Name 
CPlane

es :
Operation
Workpiece
Application

Représentât ion 
Orientation

library : CVOBJECTS 
timestamp : 02-20-95 18:48

- Add
- 0
- NoApply

■ rep
i d - 6

name - TOP
i  X - 1 . 0 0 0 0 0 0 e + 0 0

y - 0 . 0 0 0 0 0 0 e + 0 0
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z - 0.000000e+00
j x - 0.000000e+00

y - 1.000000e+00
z = 0.000000e+00

k x = 0.000000e+00
y = 0.000000e+00
z = 1.000000e+00

Location Origin X « 0.000000e+00
y - 0.000000e+00
z - 0.000000e+00

String rawMatlCondition = Solid
Real surfFinish = 2.000000e+00
String mcNotmc = N
Length BracketLength => 1.500000e+02 * millimeters
Length BracketWidth - 6.000000e+01 - millimeters
Length BracketBossHgt - 3.000000e+01 — millimeters
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Report File Representation in the CAPP System

Feature Instance hierarchy of TestComp3
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The CAPP System Process Plan Generation for TestComp3

The CAPP Command: Generate Process

Message in the Text Display Window:
Countersinking is included in CentreDrilling 
Countersinking is included in CentreDrilling 
Countersinking is included in CentreDrilling 
Countersinking is included in CentreDrilling 
HoleThrough 1326512 cannot be finished by Boring 
HoleThrough 1326512 cannot be finished by Reaming 
HoleThrough 1326512 can be finished by TwistDrilling 
HoleThrough 1326512 CentreDrilling not required 
HoleThrough 1326512 Rough Drilling not necessary 
HoleThrough 1326513 cannot be finished by Boring 
HoleThrough 1326513 cannot be finished by Reaming 
HoleThrough 1326513 can be finished by TwistDrilling 
HoleThrough 1326513 CentreDrilling not required 
HoleThrough 1326513 Rough Drilling not necessary 
HoleThrough 1326514 cannot be finished by Boring 
HoleThrough 1326514 cannot be finished by Reaming 
HoleThrough 1326514 can be finished by TwistDrilling 
HoleThrough 1326514 CentreDrilling not required 
HoleThrough 1326514 Rough Drilling not necessary 
HoleThrough 1326515 cannot be finished by Boring 
HoleThrough 1326515 cannot be finished by Reaming 
HoleThrough 1326515 can be finished by TwistDrilling 
HoleThrough 1326515 CentreDrilling not required 
HoleThrough 1326515 Rough Drilling not necessary 
Counterbore2764Il cannot be finished by CounterBoring 
Countersink 1333711 Countersinking required 
HoleThrough 1326511 can be finished by Boring 
HoleThrough 1326511 cannot be finished by Reaming 
HoleThrough 1326511 cannot be finished by TwistDrilling 
HoleThrough 1326511 Rough Boring is required



Message in the Text Display Window:

(’TwistDriir 6.0 6.0 6.0 16.35494) Not available 
(’Bore’ 12) carbide Tool material / grade not in the database 
(’Bore’ 12.5 12.5 12.5 31.0) Not available

The Shop Specific Resource Search for TestComp3

The CAPP Command: Assign Resources



Automated Process Plan 
Component Name: TestComp3 
Component Material: Aluminum Alloy
Matl Description: Die Casting Matl Condition: Solution treated and Aged 
Material Specifications: A384.0 Material Hardness: (70 125)

SetUp No: 1
Fixture For SetUp: BracketFixture

Machining Process for HoleThrough 1326512

Opr No: 1; Opr Name: Finish TwistDrilling 
Tool For Opr: (’TwistDrilF 6.0)
Recommended Cutting Speed: (’m/min’ 37) Feed: (’mm/rev’ 0.18)
Machine For Opr: ’BokoVerticalMachiningCentrell’
Finish TwistDrilling Cycle Locations...
PositionPt: (10.0 140.0 11.55494)
ApproachPt: 14.55494 
PlungePt : -1.8 
RetractPt: 19.55494 
Dwell(Sec): 0.0

The Shop Specific knowledge based Process Plan for TestComp3

The CAPP Command: Show Component Process

Machining Process for HoleThrough 1326513

Opr No: 1; Opr Name: Finish TwistDrilling 
Tool For Opr: (’TwistDrilF 6.0)
Recommended Cutting Speed: (’m/min’ 37) Feed: (’mm/rev’ 0.18) 
Machine For Opr: ’BokoVerticalMachiningCentrell’
Finish TwistDrilling Cycle Locations...
PositionPt: (50.0 140.0 11.55494)
ApproachPt: 14.55494 
PlungePt : -1.8 
RetractPt: 19.55494 
Dwell(Sec): 0.0

Machining Process for HoleThrough 1326514

Opr No: 1; Opr Name: Finish TwistDrilling 
Tool For Opr: (’TwistDrill’ 6.0)
Recommended Cutting Speed: (’m/min’ 37) Feed: (’mm/rev’ 0.18)



Machine For Opr: ’BokoVerticalMachiningCentrell’ 
Finish TwistDrilling Cycle Locations...
PositionPt: (50.0 10.0 11.55494)
ApproachPt: 14.55494 
PlungePt : -1.8 
RetractPt: 19.55494 
Dwell(Sec): 0.0

Machining Process for HoleThrough 1326515

Opr No: 1; Opr Name: Finish TwistDrilling 
Tool For Opr: (’TwistDriH’ 6.0)
Recommended Cutting Speed: (’m/min’ 37) Feed: (’mm/rev’ 0.18) 
Machine For Opr: ’BokoVerticalMachiningCentrell’
Finish TwistDrilling Cycle Locations...
PositionPt: (10.0 10.0 11.55494)
ApproachPt: 14.55494 
PlungePt : -1.8 
RetractPt: 19.55494 
Dwell(Sec): 0.0

Machining Process for Countersinkl333711

Opr No: 1; Opr Name: Finish Countersinking 
Tool For Opr: (’CSink’ 15)
Recommended Cutting Speed: (’m/min’ 120) Feed: (’mm/rev’ 0.2) 
Machine For Opr: ’BokoVerticalMachiningCentrell’
Finish Countersinking Cycle Locations...
PositionPt: (29.5 75.0 26.5)
ApproachPt: 29.5 
PlungePt : 26.0 
RetractPt: 34.5 
Dwell(Sec): 1.0

Machining Process for HoleThrough 1326511

Opr No: 1; Opr Name: Rough Boring 
Tool For Opr: (’Bore’ 12)
Recommended Cutting Speed: (’m/min’ 335) Feed: (’mm/rev’ 0.2) 
Machine For Opr: ’BokoVerticalMachiningCentrell’
Rough Boring Cycle Locations...
PositionPt: (29.5 75.0 26.5)
ApproachPt: 29.5



PlungePt : -1.5 
RetractPt: 34.5 
Dwell(Sec): 0.0

Opr No: 2; Opr Name: Finish Boring 
Tool For Opr: (’Bore’ 12.5)
Recommended Cutting Speed: (’m/min’ 410) Feed: (’mm/rev’ 0.15) 
Machine For Opr: ’BokoVerticalMachiningCentrell’
Finish Boring Cycle Locations...
PositionPt: (29.5 75.0 26.5)
ApproachPt: 29.5 
PlungePt : -1.5 
RetractPt: 34.5 
Dwell(Sec): 0.0



APPENDIX G

IMPEMENTATION OF FEATURE INTERACTION METHODS 
AND WMG CAPP SYSTEM TEST RESULTS
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1. Interaction related default attribute assignment

class: a Feature
method: initialize

"initialise proximityFeature attributes with default values."

proximityFeature := Dictionary new. 
proximityFeature at:'intFeature' 

at:'to' 
at:'on' 
at:’past' 
at:'in' 
at:'out’ 
at:'right' 
at:'left' 
at:'top' 
at:’bottom' 
at:'atAngle'

put:nil;
put:nil;
put:nil;
purinil;
put:nil;
put:nil;
put:nil;
put:nil;
put:nil;
put:nil;
put:nil.

super initialize

2. Importing Component Feature Data from CADDS5 Feature Report File

class: a P r o d u c t C o m  
method: i m p o r t C o m p o n e n t

"converts C a d d s 5  report file into a C o m p o n e n t  feature instance hierarchy"

(curProduct i s M e m b e r O f :  C o m p o n e n t )
ifFalse: [self error: 'Sorry, Select a Component']
¡(True: [curProduct importFeatures]

class: a C o m p o n e n t  
method: importFeatures

"converts C a d d s 5  report file into a C o m p o n e n t  feature instance hierarchy"

| input rcportFileName c l a s s N a m e  libraryName operation workpiece representation orientation 
vector org origin d a t u m  aString printingPattem instanceName char classPattem oprPattem 
application w o r d  line linel attribute attributcType attributcVar attributeCollection lastCollection 
filcln fcatureData |

(rcportFilcNamc := Prompter 
prompt: ' C o m p o n e n t  report file n a m e  ?' 
default: 'test') isNil 
ifTruc: [self].

input := File p a t h N a m e :  VmaltalkV.reportFileName. 
instanccNamc := ", 
classNamc := ", 
libraryNamc := ",
orientation := OrdcrcdCollection new. 
origin := OrdcrcdCollection new.
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attributeCollection := OrderedCollection new. 
featureData := Dictionary new.

(printingPattem := Pattern new: #('printing’)) 
matchBlock:[ input nextWord.

[(aString := input ne x t W o r d )  =  'class'] 
whileFalse: [instanceName := instanceName,aString], 

input n e x t Word.

[(aString := input ne x t W o r d )  =  'library'] 
whileFalse: [className := className, aString).

[(aString := input n e x t W o r d )  =  'static'] 
whileFalse: [libraryName := libraryName, aString].

[(aString := input ne x t W o r d )  =  'Operation']
whileFalse: [].
operation := input nextWord.

[(aString := input n e x t W o r d )  =  'Workpiece'] 
whileFalse: []. 
input n e x t Word.
w o r k p i e c e  := (input n e x t W o r d )  aslnteger.

[(aString := input n e x t W o r d )  =  'Representation'] 
whileFalse: [].
representation := input nextWord.

[(aString := input n e x t W o r d )  =  'id'] 
whileFalse: [].
orientation add: (input nextWord) aslnteger. 
input n e x tWord. 
d a t u m  := input nextWord. 
orientation add: datum.

[(aString := input n e x t W o r d )  =  'Location'] 
whileFalse: [[(char := input next) =  S=] 

whileFalse: []. 
oVector := (input nextLine). 
orientation add: oVector.

]•

input n e x tWord.
3 timesRepeat:[input nextWord. 

input skip: 3. 
org := (input nextLine). 
origin add: (org asFloat).

]■

[(line := input nextLine asArrayOfSubstrings) i sEmpty ] 
whileFalse: [linel := line asOrderedCollection.

(linel size >  4 and:[ (linel at:5) ~ =  '/*]) 
ifTrue: [linel remove: (linel at:3);

remove: (linel at:5)] 
ifFalse: [linel remove: (linel at:3)].

attributeCollection add: linci.



]•
Test answer: 'instanceName '.instanceName.
Test answer: 'className className.
Test answer: 'libraryName library N a m e .
Test answer: 'operation operation.
Test answer: Svorkpiece workpiece printstring.
Test answer: 'representation representation.
Test answer: 'datum id ', (orientation at:l) printstring.
Test answer: 'datum ', (orientation at:2) printstring.
Test answer: 'orientation size ', (orientation size) printstring.
3  to: orientation size do: [:index|

Test answer: (orientation ariindex) printstring].
Test answer: 'origin is '.
origin do:[:each | Test answer: each printstring]. 

attributeCollection do: [:each| Test answer: (each at:l),' '.(each at:2),' '.(each at:3)].

featureData at: 'instanceName' put: instanceName; 
at: ’className' put: className; 
at: libraryName' put: libraryName; 
at: 'workpiece' put: workpiece; 
at: 'operation' put: operation; 
at: 'representation' put: representation; 
at: 'childOf put: self; 
at: 'orientation' put: orientation; 
at: 'origin' put: origin asArray; 
at: 'attributeCollection’ put: attributeCollection.

" C h e c k  Feature Class, if exists, initialize"

((Smalltalk at: c l a s s N a m e  asSymbol) subClassOf: Feature) 
ifTrue: [className := Smalltalk at: c l a s s N a m e  asSymbol.

c l a s s N a m e  initialize: featureData] 
ifFalse: [Test answer: 'Define Feature class '.className].

instanceName := ". 
c l a s s N a m e  := 
libraryName := ",
orientation := OrderedCollection new. 
origin := OrderedCollection new. 
attributeCollection := OrderedCollection new. 
featureData := Dictionary new.

]. "end of ma t c h  block"

[input atEnd]
whileFalse: [ [(word := input n e x t W o r d )  isNil]

whileFalse: [printingPattern match: word],
]•

self sortChildren

class: a Feature 
method: transformOrigin

"The feature report file provides the origin coordinates with respect to 
T O P  cpl. Therefore, it is necessary to transform the origin w.r.to the 
feature cpl"

| transformeeOrg x y z oldLocCollection oldOrgl
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self d a t u m  -  T O P '  
ifFalse:[
x := (self origin) at:l. 
y := (self origin) at:2. 
z := (self origin) at:3.
oldLocCollection := OrderedCollcction new. 
oldLocCollection add: x;

add: y; 
a d d : z.

o l dOrg := Vertex n e w  initialise: oldLocCollection.
transformeeOrg:= oldOrg transformTopTo: (self datum), 
origin := OrderedColIection new.
origin add: transformeeOrg x;

add: transformeeOrg y;
add: transformeeOrg z]. 

origin := origin asArray

class: a Feature
method: getProximityAttributes: aFeatureData

"Assigns feature proximity attributes from aFeatureData"

(aFeatureData at: 'attributeCollection') do: [:each |
(each at: 2) =  'intFeature'

ifTrue: [proximityFeature at:'intFeature' put:((each at: 3) reject: [:c | c =  $_])]. 

(each at: 2) =  'to'
ifTrue: [proximityFeature at:'to' put: (each at: 3) ].

(each at: 2) =  'on'
ifTrue: [proximityFeature at:'on' put: (each at: 3) ].

(each at: 2) =  'past1
ifTrue: [proximityFeaturc at:'past’ put: (each at: 3) ].

(each at: 2) =  'in'
ifTrue: [proximityFeature at:'in' put: (each at: 3) ].

(each at: 2) =  'out'
ifTrue: [proximityFeature at:'out' put: (each at: 3) ].

(each at: 2) =  'right'
ifTrue: [proximityFeature ah'right' put: (each at: 3) ].

(each at: 2) =  'left'
ifTrue: [proximityFeature at:'left' put: (each at: 3) ].

(each at: 2) =  'top'
ifTrue: [proximityFeature at:'top' put: (each at: 3) ).

(each at: 2) =  'bottom'
ifTrue: [proximityFeaturc at:’bottom' put: (each at: 3) |.

(each at: 2) =  'atAngle'
¡(True: [proximityFeature atfatAngle' put: (each at: 3) ]j.
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class: a Feature
method: readData: aFeatureDala

"Assigns a feature data from aFeatureData collection"

self getinstanceName: aFeatureData
attachToComponent: aFeatureData

getChildName: aFeatureData
getlibraryName: aFeatureData
getApplication: aFeatureData
getRepresentation: aFeatureData
getOperation: aFeatureData
getWorkpiece: aFeatureData
getOrientation: aFeatureData
getOrigin: aFeatureData
getdatumPlane: aFeatureData
g e t R a w M a t l  Condition: aFeatureData
getSurfFinish: aFeatureData
g e t M c N o t M c : aFeatureData
getPro ximity Attributes aFeatureData

self transformOrigin

class: HoleBlind
method: initialize: aFeatureData

"initialize imported feature instance within the C A P P  system. Other feature classes 
will have similar m e thod"
[instance n e w N a m e |

n e w N a m e  := (aFeatureData at:'instanceName') asSymbol.
(Smalltalk includesKey: n e w N a m e )

ifTrue: [""self error: n e w N a m e , ' already exists'], 
instance := HoleBlind new. 
instance initialize.
Smalltalk at: n e w N a m e  a s S y m b o l  put: instance.

instance readData: aFeatureData;
getHoleDiameter: aFeatureData; 
getHoleDepth: aFeatureData.

Test changed: » c o m p o n e n t s

3. Development of Feature topology and geometry environment

These m e t h o d s  have been implemented to define feature geome t r y  and topology in the C A P P  system.

3.1 Topology and geometry

3.1.1 Loop

Object variableSubclass: »Loop 
instanceVariableNames: 
e L o o p '

classVariableNames: " 
poolDictionanes:"



methods for class Loop:

initialise
"Intialise edge an d  vertex loops as ordered collection”

e L o o p  := OrderedCollection new.

addEloop: edges
"adds a n  edge loop to a L o o p ” 
e L o o p  add: edges

getLoop: l o o p N u m b e r
"Returns the loop as OrderedCoollection of edges. 
l:TOP, 2 : F R O N T ,  3 : R I G H T ,  etc"

I
''(eLoop at: l o o p N u m b e r )

transform Vert: e d g e L o o p  from: a D a t u m  to: n e w  D a t u m
"transforms the edge vertices of a loop as per n e w D a t u m "

|oldEdge oldVerts n e w E d g e  newVerts vl v 2  org radius transformedLoop |

transformedLoop := OrderedCoUection new. 
e d g e L o o p  do:[:oldEdge | oldVerts := oldEdge vertices.

((oldEdge curve) isKindOf: Line)
ifTrue:[vl := (oldVerts at:l) transform: a D a t u m  to: n e w D a t u m .  

v 2  := (oldVerts at:2) transform: a D a t u m  to: n e w D a t u m .  
n e w E d g e  := E d g e  n e w  linlnitialise: v l  endPt: v2. 

transformedLoop add: n e w  Edge).
((oldEdge curve) isKindOf: Arc)
ifTrue:[vl := (oldVerts at:l) transform: a D a t u m  to: n e w D a t u m .  

v 2  := (oldVerts at:2) transform: a D a t u m  to: n e w D a t u m .  
org := ((oldEdgc curve) orgPoint) transform: a D a t u m  to: n e w D a t u m .  

radius:= (oldEdge curve) radius.
n e w E d g e  := E d g e  n e w  arclnitialisc: org radius: radius startPt: vl endPt: v2. 

transformedLoop add: newEdge]].
''transformedLoop

3.1.2 Edge

Object variableSubclass: # E d g e  
instanceVariableNames:
'startPoint endPoint curve ' 

classVariableNames: " 
poolDictionaries:"

Object variableSubclass: #Line 
i n s t a n c e V a h a b l e N a m e s :
'startPoint e n d P o i n t ' 

class Variable N a m e s :  " 
pool Dictionaries:"

Object variablcSubclass: # A r c  
ins lance V a r i a b l c N a m e s :
'origin radius startPoint e n d P o i n t ' 

classVariableNames: "
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Methods with class Line:

initialise: startPt endPt:endPt
"Initialise Line instance” 
startPoint := startPt. 
endPoint := endPt

sPoint
"returns the start point value"
"startPoint

e Point
"returns the e n d  point value"
"endPoint

Methods with class Arc

initialise: org radius: rad startPt: startPt endPt: endPt  
"Initialise Arc" 
origin := org.
radius := rad.
startPoint := startPt. 
endPoint := endPt

sPoint
"returns the start point value"|
"startPoint

ePoint
"returns the e n d  point value"
"endPoint

orgPoint
"returns the origin point value"|
'origin

radius
"returns the radius value"
"radius

poolDictionaries: "

Methods with the class Edge:

linlnitiali.se: startPt endPt: endPt 
"Initialise line type edge instance"

startPoint := startPt. 
endPoint := endPt.
curve := Line n e w  initialise: startPt endPt: endPt

arclnitialise: origin radius: rad startPt: startPt endPt: endPt 
"Initialise arc type E d g e  instance"

startPoint := startPt. 
e n d P o i n t :- endPt.
curve := A r c  n e w  initialise: origin radius: rad startPt: startPt endPt:endPt



3.2 Edge intersection methods

class: an E d g e
method: intersect: a n E d g c

"This m e t h o d  computes intersection betweeen t wo planar edges 
(for curves of line or arc types) and returns the point of 
intersection/s or nil"

|intersection|

" T h e  following is relevant for the intersection between 
t w o  lines”

(((self curve) isKindOf: Line) and:[(anEdge curve) isKindOf: Line]) 
ifTrue:[intersection := self linlntersect: anEdge.

"intersection].

" T h e  following is relevant for the intersection between 
line a nd arc”

((self curve) isKindOf: Line) 
ifTrue:[ ((anEdge curve) isKindOf: Arc)

ifTrue:[intersection := self linArcIntersect: anEdge. 
"intersection]]

ifFalse:] ((anEdge curve) isKindOf: Line)
ifTrue:[intersection := a n E d g e  linArcIntersect: self, 

"intersection]].

" T h e  following is relevant for the intersection between 
t w o  arcs" -

(((self curve) isKindOf: Arc) and:[ ((anEdge curve) isKindOf: Arc)])

ifTrue:[intersection := self arclnteisect: anEdge.
"intersection]

class: an E d g e
method: linlnterscct: a n E d g e

"This m e t h o d  comp u t e s  intersection betwceen t wo planar 
Line edges a n d  returns the point of intersection or nil"

| a b  c d tO u O  d e n o m  intType intX intY intZ intCoord intPoint int| 
intType := nil. 
a := self startPoint. 
b  := self cndPoint. 
c := a n E d g e  startPoint. 
d  := a n E d g e  endPoint. 
int := OrdercdCollection new.

" C o m p u t e  denominator of intersection equation" 
d e n o m  := ((b x - a x) * (d y - c y)) ■ ((b y • a y) * (d x-c x)). 
( d e n o m  - =  0)



ifTruc:[tO := (((c x-a x) * (d y-c y)) - ((c y-a y) • (d x-c x))) / denom. 
((d x-c x) =  0)
ifTrue:[uO := ((a y - c y) +  ((b y - a y)*tO))/(d y - c y)] 
ifFalse:[uO := ((a x-c x) + ((b x - a x)*tO)) / (d x-c x)].

(tO > =  0  and:[ tO < =  1.0]) 
ifTrue:[(uO > =  0  and:[u0 < =  1.0]) 
ifTrue:["Compute intersection point” 

intX := a x +  ((b x - a x) * tO). 
intY := a y +  ((b y - a y) * tO). 
intZ := a z. ” or b z or c z or d z ” 
intCoord := OrderedCollcction new. 
intCoord add: intX; 

add:intY; 
add:intZ.

intPoint := Vertex n e w  initialise: intCoord. 
int add:intPoint.
]]]•

int i sEmpty
ifTrue:[Anil]
ifFalse:[Aint]

class: a n  E d g e
method: linArcIntetsect: a n E d g e

"This m e t h o d  computes intersection betweeen line and arc type 
planar edges and returns the point/s of intersection or nil"

| s b c r h w a a b b c c  discrim tOl t02 d e n o m  intxl intx2 inty 1 inty2 
intZ intCoord intPoint t e m p C o o r d  intersections orgx orgy e x l  e x2 eyl ey2 
edgetO edgctl intlt int2t txO tyO txl tyl intxt intyt tO tl t validlnt 
pi p 2  finallnt|

s := self startPoint. 
b := self endPoint. 
r := ( a n E d g e  curve) radius, 
h := ( a n E d g e  curve) orgPoint. 

orgx := ((anEdge curve) orgPoint) x. 
orgy := ((anEdge curve) orgPoint) y. 
exl := a n E d g e  startPoint x. 
eyl := a n E d g e  startPoint y. 
e x2 := a n E d g e  endPoint x. 
ey2 := a n E d g e  endPoint y. 
intZ := (self curve) sPoint z. 
intersections := OrderedCollcction new. 

validlnt := OrderedCollection new. 
finallnt := OrderedCollection new.

"c =  b-s"
t e m p C o o r d  := OrderedCollection new. 
t e m p C o o r d  add: ( b x - j x ) ;  

add: (b y - s y); 
add:intZ.

c := Vertex n e w  initialise: tempCoord.

" w  =  s-h"
t e m p C o o r d  := OrderedCollection new. 
t e m p C o o r d  add: (s x - h x);
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add: (s y - h y); 
add:intZ.

w  := Vertex n e w  initialise: tempCoord.

" C o m p u t e  aa =  |c|squared " 
aa := (c x * c x) +  (c y * c y).

" C o m p u t e  b b  =  w.c"

b b  := ( w  x * c x) +  ( w  y * c y).

" C o m p u t e  cc =  |w| squared - r squared "

cc := ((w x * w  x) +  ( w  y * w  y)) - (r * r).

aa =  0
ifTrue:[Anil].

discrim := (bb * bb) - (aa * cc). 
discrim <  0  

ifTrue:[Anil].

discrim =  0
ifTrue:[ t01:=((-l)*bb)/aa.

intxl := s x  +  (c x • tOl). 
intyl := s y  +  (c y  * tOl).

t e m p C o o r d  := OrderedCollection new. 
t e m p C o o r d  add: intxl; 

add: intyl; 
add: intZ.

intersections add: (Vertex n e w  initialise: tempCoord)]. 

discrim >  0
ifTrue:[ tOl := (((-l)*bb) - discrim sqrt)/aa. 

t02 := (((-l)*bb) +  discrim sqrt)/aa.

intxl := s x +  (c x * tOl). 
intyl := s y +  (c y * tOl). 
intx2 := s x +  (c x * t02). 
inty2 := s y +  (c y * t02).

t e m p C o o r d  := OrderedCollection new. 
t e m p C o o r d  add: intxl; 

add: intyl; 
add: intZ.

intersections add: (Vertex n e w  initialise: tempCoord).

t e m p C o o r d  := OrderedCollcction new. 
t e m p C o o r d  add: intx2; 

add: inty2; 
add: intZ.

intersections add: (Vertex n e w  initialise: tempCoord)].

intersections is E m p t y  
ifTrue:[Anil]
ifFalse:["Check intersection validity"

tO := a n E d g e  getEdgcPara: (a n E d g e  startPoint).
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intersections do:[:each |
t := a n E d g e  getEdgePara: each. 
(tO < =  t and:[t < =  tl]) 
i£True:[validInt add: each]]].

t l  := anEdge getEdgePara: (anEdgc endPoint).

validlnt isEmpty 
ifTrue:[Anil]
ifFalse:["Check valid arcEdge intersections forlineEdge int.” 

validlnt do:[:each 11 := self getEdgePara: each.
(t > =  0  and:] t < =  1.0]) 
ifTrue:[finalInt add:each]]. 

finallnt isEmpty 
ifTrue:[Anil] 
ifFalse:[,'finalInt]
]

class: a n  E d g e  
method: arclntersect: a n E d g e

"This m e t h o d  compu t e s  intersection betweeen two arc type 
planar edges and returns the points of intersection or nil

x l y l  - self origin, x 2 y 2  - a n E d g e  origin, 
rl - self radius, r2 - a n E d g e  radius. 
x 3 y 3  &  x 4 y 4  - self start &  end points. 
x 5 y 5  & x 6 y 6  - a n E d g e  self start &  end points."

|x0 xO l  x 0 2  xl x 2  x3 x 4  x5 x6 y O  yOl y 02 yl y2 y3 y4 y5 y 6  zO 
rl r2 a a  b b  a b c tO tOl t02 u O  descrim y S u m  x S u m  
intX intY intZ intCoord intPoint intersections iplCoord ip2Coord 
intlt int2t txO tyO txl tyl intxt intyt tO tl t validlnt finallnt|

xl := ((self curve) orgPoint) x. 
yl := ((self curve) orgPoint) y. 
rl := (self curve) radius.

x 2  := ((anEdge curve) orgPoint) x. 
y 2  := ((anEdge curve) orgPoint) y. 
r2 := ( a n E d g e  curve) radius.

x 3  := (self curve sPoint) x. 
y 3  := (self curve sPoint) y.

x 4  := (self curve cPoint) x. 
y 4  := (self curve ePoint) y.

x 5  := ( a n E d g e  curve sPoint) x. 
y5 := ( a n E d g e  curve sPoint) y.

x 6  := ( a n E d g e  curve ePoint) x. 
y 6  := ( a n E d g e  curve ePoint) y.

z O  := (self startPoint) z. 
intersections := OrderedCollection new. 

validlnt := OrdcredCollection new. 
finallnt := OrdcrcdCollection new.



" C h e c k  if tw o  circles intersect"
(((x2-xl) squared +  (y2-yl) squared)) < =  (rl+r2) squared 
ifFalse:[Anil]. " N o  intersection"
((y2-yl)=0 and:[(x2-xl)=0]) 
ifTrue:[Anil].

" C o m p u t e  s u m  of y e n d  points, x symmetric" 
y S u m  := y3+y4-y5-y6.

" C o m p u t e  s u m  of x e n d  points, y symmetric" 
x S u m  := x5+x6-x3-x4.

y S u m  =  0  
ifTrue:[

x O  := ((x5*x6) - (x3*x4))/(x6+x5-x4-x3).
(self startPoint x - self endPoint x) >  0 
ifTrue:[yO := y l  +  (((rl * rl) - (xO-xl) squared) sqrt)] 
ifFalse:[yO := y l  - (((rl * rl) - (xO-xl) squared) sqrt)].

intCoord := OrderedCollection new. 
intCoord add: xO; 

add: yO; 
add: zO.

intPoint := Vertex n e w  initialise: intCoord. 
intersections add: intPoint]

ifFalse:] x S u m  =  0
i£True:[ y O  := ((x3*x4) +  (y3*y4) - (x5*x6) - (y5*y6))/ySum. 

x O  := xl +  (((rl * rl) - (yO-yl) squared) sqrt).

x O l  := xO. 
y O l  := yO.
x 0 2  := xl - (((rl * rl) - (yO-yl) squared) sqrt). 
y 0 2  := yO.

iplCoord := OrderedCollection new. 
iplCoord add: xOl; 

add: yOl; 
add: zO.

intersections add: (Vertex n e w  initialise: iplCoord).

ip2Coord := OrdercdCollection new. 
ip2Coord add: x02; 

add: y02; 
add: zO.

intersections add: (Vertex n e w  initialise: ip2Coord)] 

ifFalse:[

" C o m p u t e  Constants" 
aa := x S u m / y S u m .
bb := (((x3*x4)+(y3*y4)-(x5*x6))-(y5,y6))/ySum . 
a := l+ ( b b  squared), 
b := 2*((aa*bb) - (bb*xl) - yl).
c := (xl squared) +  (yl squared) +  (aasquared) - (2*aa*xl) - (rl squared), 

descrim := (b squared) - (4 • a * c).
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descrim <  0  
i£True:[Anil].

Uescrim =  0
ifTrue:[yO := (-l*b) / (2*a).

tO := ((yO-yl)/rl) arcSin *(7/22). 
x O  := xl + (rl * ((22/7) • tO) cos).

intCoord := OrderedCollection new. 
intCoord add: xO; 

add: yO; 
add: zO.

intPoint := Vertex n e w  initialise: intCoord. 
intersections add: intPoint].

descrim >  0
i£True:[ yOl := ((-l*b) /  (2*a)) - (descrim/(2*a)). 

y02 := ((-l*b) / (2*a)) + (descrim/(2*a)). 
tOl := ((y01-yl)/rl) arcSin /(2*(22/7)). 
t02 := ((y02-yl)/rl) arcSin /(2*(22/7)). 
xOl := x l + (rl * ((22/7) * tOl) cos). 
x02 := xl + (rl * ((22/7) • t02) cos).

i p l C o o r d  := OrderedCollection new. 
i p l C o o r d  add: xOl; 

add: yOl; 
add: zO.

intersections add: (Vertex n e w  initialise: iplCoord).

i p 2 C o o r d  := OrderedCollection new. 
i p 2 C o o r d  add: x02; 

add: y02; 
add: zO.

intersections add: (Vertex n e w  initialise: ip2Coord)]). 
]•

intersections isEmpty 
ifTrue:[,'nil]
ifFalse:["Check intersection validity"

tO := self getEdgcPara: (self startPoint). 
tl := self getEdgePara: (self endPoint).

intersections do:[:each |
t := self getEdgePara: each.
(tO < =  t and:[t < =  tl]) 
ifTrue:] validlnt add: each]]].

validlnt isEmpty 
ifTrue:]'!!!!]
ifFalse:]"Check int validity for a nEdge"

tO := a n E d g e  getEdgePara: ( anEdge startPoint). 
tl := a n E d g e  getEdgePara: (anEdge endPoint).

validlnt do:[:each |
t := a n E d g e  getEdgePara: each.
(tO < =  t and:[t < =  tl]) 
i(Tmc:[finalInt add: each]]].



finallnt 
isEmpty 
ifTrue:[Anil] 
ifFalse:[A finallnt]

class: a n  E d g e
method:getEdgePara: e d g e L o c

"Returns the parameter of a point o n  the edge"
|pl p 2  r org t d x  string num|

((self curve) isKindOf: Line) 
ifTrue:[pl := self startPoint. 

p 2  := self endPoint.

(p2 y - pi y) =  0
ifTrue:[t := (edgeLoc x - pi x)/(p2 x - pi x)] 
ifFalse:[t := (edgeLoc y - pi y)/(p2 y - pi y)].

(p2 x - p i  x) =  0
ifTrue:[t := (edgeLoc y - p i  y)/(p2 y - pi y)] 
ifFalse:[t := (edgeLoc x - p i  x)/(p2 x - pi x)]. 

“«]•

((self curve) isKindOf: Arc) 
ifTruc:[

pi := self curve sPoint. 
p 2  := self curve ePoint. 
org := (self curve) orgPoint. 
r := (self curve) radius, 
d x  := (edgeLoc x - org x). 

string := (dx/r) printstring, 
n u m  := string asFloat.
t := n u m  arcCos / (2*(22/7)). " B e t w e e n  0  to pi"

" C h e c k  if arc f r o m  0-180 or 180-360"
(pi x - p 2  x) >  0  
ifTrue:[(edgeLoc y - org y) <  0  

UTrue:[A(1.0-t)] 
ifFalse:[At]].

(pi x - p 2  x) <  0  
ifTrue:[(edgeLoc y - org y) >  0 

ifTrue:[At] 
i£False:[A(1.0-t)]].

]

class: an E d g e
method: featurelntersect: aFeature datum: a D a t u m  

"returns the edge feature intersection as
a n  orderedCollection of aFeature edge, int Vertcx/Vertices; or nil" 

| l o o p  int intersection | 
int := OrderedCollection new. 
loop := aFeature getEloop: a D a t u m .

" C h e c k  if self is the edge of the s a m e  loop"
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loop do:[:each | (((each curve isKindOf: Line) and:[(self curve isKindOf: Line)]) or:[ 
((each curve isKindOf: Arc) and:[(self curve isKindOf: Arc)])]) 

ifTrue:[
((each startPoint =  self startPoint) and:[
(each endPoint =  self endPoint)]) 
ifTrue:[Anil].
((each startPoint =  self endPoint) or:[
(each endPoint =  self startPoint)]) 
ifTrue:[Anil]]].

loop do:[:each | (intersection := self intersect: each) isNil 
ifFalse:[int add: each.

intersection do:[:i | int add: i]]].

int i s Empty 
ifTrue:[Anil] 
ifFaise:] Aint]

class: a n  E d g e
metbod:intNearStart: inti or: int2

"Returns the point near e d g e  start point"
|t0 tl til ti2 |
tO := self getEdgcPara: (self startPoint). 
tl := self getEdgePara: (self endPoint). 
til:» self getEdgePara: inti. 
ti2:= self getEdgePara: int2.
(til-tO) <  (ti2-t0) 
ifTrue:[Al] 
ifFaise:] A2]

class: a Feature
method: getEloop: a D a t u m

"Return the e d g e  loop of a feature by transforming its vertices to 
suit a D a t u m "

| defaultEdgeLoop selfDatumLoop|

self d a t u m  =  a D a t u m  
ifTrue:[A(edgeTopology getLoop: 1)].

class: a n  E d g e
method: insideFeature: aFeature datum: a D a t u m

"Returns 1 if the receiver is completely i m m e r s e d  
inside aFeature or nil"

| loop vl v 2  org rad p x  p y  p aVert stAng e n d A n g  status|

vl := self startPoint. 
v 2  := self endPoint. 
status := 0. "not Inside"

loop := aFeature getEloop: a D a t u m .

" C h e c k  if self is the edge of the s a m e  loop"
loop do:[:each | (((each curve isKindOf: Line) and:[(self curve isKindOf: Line)]) or:[ 

((each curve isKindOf: Arc) and:[(self curve isKindOf: Arc)])])



ifTrue:[
((each startPoint =  self starlPoint) and:[ 
(each endPoint =  self endPoint)]) 
ifTrue:[A nil].
((each startPoint = self endPoint) or:[ 
(each endPoint =  self startPoint)]) 
ifTrue:[Anil]]].

"Check if self is a L i n e  edge"
(self curve isKindOf: Line) 

ifTrue:[
(((loop at:l) curve) isKindOf: Arc)

ifTrue:[((vl insideCircularProf: loop)notNil and:[(v2 insideCircularProf: loop)notNil]) 
ifTrue:[Al] 
ifFalse:[Anil]].

(((loop at:l) curve) isKindOf: Line)
ifTrue:[(((vl insideRectangularProf: loop) notNil) and:[(v2 insideRectangularProf: loop) 

notNil])
ifTme:[l]
ifFalse:[A nil]].

]•

" C h e c k  if self is a n  Ar c  edge"
(self curve isKindOf: Arc) 

ifTrue:[
org := self curve orgPoint. 
rad := self cu r v e  radius.
"Generate points o n  the edge and test for ail points"

(vl x - org x) >  0  "First E d g e  0  - 180" 
ifTrue:[stAng := 0. 

e n d A n g : =  22/7],
(vl y - org y) > 0  
ifTrue:[stAng := 0. 

e n d A n g : =  2277].
(vl y - org y) < 0  
ifTrue:[stAng := 2277.

e n d A n g : =  (2* (2277))].
(vl x - o rg x) <  0  
ifTrue:[ s t A n g  := 2277.

e n d A n g : =  (2 • (2277))].

s t A n g  to: e n d A n g  by: ((2277) * 0.05) do:[:ang | 
px := org x + (rad * ((ang) cos)), 
p y  := org y +  (rad • ((ang) sin)), 
p := OrdcrcdCollection new. 
p add:px; 
add:py; 
add: 0.

aVert := Vertex n e w  initialise: p.

(((loop at:l) curve) isKindOf: Arc)
i(True:[(aVert insideCircularProf: loop)isNil 

ifTruc:[status := 1]]. "a point not inside ft" 
(((loop at:l) curve) isKindOf: Line)

ifTrue:[(aVcrt insideRectangularProf: loop)isNil
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ifTrue:[status :=1]]J. 
status =  1 
i£True:[ "nil] 
ifFalse:[A l]]

3.3 Angle between Edge tangents

class: an E d g e
m e t h o d : g e t A n g :  tanl e n d T a n :  tan2

"Returns the angle b e t w e e n  t w o  tangents" 
|uax uay u b x  u b y  a D o t b  ang aCrossbz | 
uax := (tanl at:l). 
uay := (tanl at:2). 
u b x  := (tan2 at:l). 
u by := (tan2 at:2). 
a D o t b  := (uax*ubx)+(uay*uby). 
a D o t b  =  -1
ifTrue:[ang:= 22.0/7.0.

"ang].

a n g  := a D o t b  arc Cos.
"Decide the turn of the edge, k =  0  0  1" 
aCrossbz := (uax*uby) - (uay*ubx). 
aCrossbz >  0  
ifTrue:[''ang] 
ifFalse:[A((22/7)+ang)]

class: an E d g e  
method: getS tartTan

"Returns the tangent at the start point of tin edge."
| x O  y O  xl yl x 2  y 2  m o d A  startTan ua ub w a  w b  aCrossbz| 
startTan := Ordered Collection new.

(self curve isKindOf: Line) 
ifTrue:[
xl := self startPoint x. 
y 1 := self startPoint y.

x 2  := self endPoint x. 
y 2  := self endPoint y.

m o d A  := ((x2-xl)squared + (y2-ylSquared)sqrt. 
startTan add: ((x2-xl)/modA); 

add: ((y2-yl)/modA).

AstartTan].

(self curve isKindOf: Arc) 
ifTrue:[

x O  := (self curve orgPoint) x. 
y O  := (self curve orgPoint) y. 
xl := self startPoint x. 
yl := self startPoint y.

m o d A  := ((xl-xO)squarcd +  (yl-yO)squared)sqrt.



ua := (xl-xO)/modA. 
ub := (yl-yO)/m<xlA. 
w a  := ub. 
w b  := (-1 * ua).

" w  must have a left turn for a  start tangent" 
aCrossbz := (ua'wb) - (ub*wa). 
aCrossbz <  0 
ifTrue:[wa := (-1 • wa). 

w b  := (-1 * wb)].

startTan add: wa; 
add: w b.

'startTan].

class: a n  E d g e  
method: g e t E n d T a n

"Returns the tangent at the e n d  point of an edge."
| x O  y O  xl yl x 2  y 2  m o d A  e n d T a n  ua ub w a  w b  aCrossbz| 
e n d T a n  := OrderedCollection n e w .

(self curve isKindOf: Line) 
ifTrue:[
xl := self startPoint x. 
yl := self startPoint y.

x 2  := self endPoint x. 
y 2  := self endPoint y.

m o d A  := ((xl-x2)squared +  (yl-y2)squared)sqrt. 
e n d T a n  add: ((xl-x2)/modA); 

add: ((yl-y2)/modA).

"endTan].

(self curve isKindOf: Arc) 
ifTrue:]

x O  := (self curve orgPoint) x. 
y O  := (self curve orgPoint) y. 
x 2  := self endPoint x. 
y 2  := self endPoint y.

m o d A  := ((x2-x0)squared +  (y2-y0)squared)sqrt. 
ua := (x2-xO)/modA. 
ub := (y2-yO)/modA. 
w a  := ub. 
w b  := (-1 * ua).

”w  m u s t  always have a right turn for an end tangent" 
aCrossbz := (ua*wb) - (ub*wa). 
aCrossbz >  0  
ifTrue:[wa := (-1 • wa). 

w b  := (-1 * wb)].

e n d T a n  add: wa; 
add: wb.

"endTan].



3.4 Detecting concave or convex angle between profile edges

class: an E d g e
me t h o d :  a n g l e C o n c a v e E d g e :  a L o o p

" A n  angle is m e a s u r e d  b etween the start and end tangents of an edge loop. 
If any of the angles is concave (i.e. < =  180 degrees), the m e t h o d  returns 1, 
otherwise nil."

| c o n c a v e E d g e  index t a n A n g  startTan e n d T a n  |

c o n c a v e E d g e  := nil. 
index := 1.

(aLo o p  size) timesRepeat:[ index =  (aLoop size)
ifTrue:[endTan := (aLo o p  at:index) getEndTan.

startTan:= ( a Loop at:l) getStartTan] 
ifFalse:[endTan := ( a Loop at:index) getEndTan. 

startTan := (aLoop at:(index+l)) getStartTan]. 
t a n A n g  := ((aLoop at:index) getAng: startTan e ndTan: endTan). 
t a n A n g  <  3.14 
ifTrue:[concaveEdge := 1],

Test answer: 'Angle >  '.tanAng pnntString. 
index := index + 1 

]•

' c o n c a v e E d g e

3.5 Vertex class and methods

Object variablcSubclass: #Vertex 
instanceVariableNames:
'x y z '

classVariableNames: " 
poolDictionaries: "

Methods with class Vertex:

initialise: aCoordinate
"Initialise n e w  vertex instance for a given coordinates, aCoordinatc”

x := aCoordinate at: 1. 
y := aCoordinate at: 2. 
z := aCoordinate at: 3

coordinates
"returns the coordinates of a vertex"

|coordinate|
coordinate := OrderedCollection new. 
coordinate at: 1 put: x. 
coordinate at: 2 put: y. 
coordinate at: 3  put: z.
"coordinate
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X
"returns x value” 
Ax

y
"returns y value” 

z
"returns z value” 
Az

3.6 A point (vertex) inside or outside of a feature profile

class: a Vertex
method: insideCircularProf: aCprofilc
"Checks if the vertex is inside a circle. Returns dotProduct if inside, or nil" 
| vl v 2  v 3  aDotb|

vl := ((aCproftle at:l) curve) sPoint. 
v 2  := ((aCproflle at:l) curve) ePoint. 
v 3  := self.

aD o t b  := ((v2 x - v 3  x) * (vl x - v3 x))+ ((v2 y - v 3  y) * (vl y - v3 y)).

a D o t b  >  0
ifTrue:[Anil]
ifFalse:[AaDotb]

class: a Vertex
method :insldeRectangularProf: aRproftle
" Checks if the vertex is inside a Rectangle. Returns 1 if inside or nil"
| v  1 v 2  v 3  |

vl := ((aRproftle at:l) curve) sPoint. 
v 2  := ((aRproftle at:2) curve) ePoint. 
v 3  := self.
((v3 x > =  vl x) and:[v3 y > =  vl y])

ifTrue:[ ((v3 x < =  v 2  x) and:[v3 y < =  v 2  y]) 
ifTrue:[A l]].

Anil

class: a Vertex
method:insideFeature: aFeature datum: a D a t u m  
"Returns 1 if the vertex is inside another feature or nil"

| loop vl v 2  org rad p x  p y  p aVert stAng e n d A n g  status|

loop := aFeature getEloop: aDatum.
" C h e c k  if the vertex belongs to the s a m e  loop”

loop do:(teach | (self =  each startPoint or:[sclf =  each endPoint]) 
ifTrue:[Anil]).

(((loop at:l) curve) isKindOf: Arc) 
ifTrue:[(self insideCircularProf: loop)notNil 

ifTrue:[A l]
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ifFalse:[Anil]].
(((loop at:l) curve) isKindOf: Line) 
i£True:[(self insideRectangularProf: loop)notNil 

ifTrue:[A l] 
ifFalse:[Anil]].

3.7 Transformation of vertices

class: a Vertex
method:transform: currentCpl to: n e w C p l  
"transforms the Vertex coordinates f r o m  current 
coordinate system to the n e w  coordinate system "
| i j k coord topCoord n e w C o o r d  top Vertex tranVertex|

i := OrderedCollection new. 
j := OrderedCollection new. 
k := OrderedCollection new. 

coord := OrderedCollection n e w  
n e w C o o r d  := OrderedCollection new.

currentCpl =  T O P '
ifTrue:[topVertex := self.

tranVertex := top Vertex transformTopTo: newCol. 
"tranVertex] 

ifFalse:[
"First convert coordinates into T O P ” 
curTentCp! =  ' F R O N T  
ifTrue:[i add:l; 

add:0; 
add:0. 

j add:0; 
add:0; 
add:-l. 

k add:0; 
add:l; 
a dd :0].

currentCpl =  ' R I G H T  
ifTrue:[i add:0; 

add:0; 
add:l. 

j add:l; 
add:0; 
add:0. 

k add:0; 
add:l; 
add:0].

currentCpl =  ' R E A R '  
ifTruc:[i add:-l; 

add:0; 
add:0. 

j add:0; 
add:0; 
add:l. 

k add:0;
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add:l;
add:0].

currentCpl =  ’L E F T  
ifTrue:[i add:0; 

add:0; 
add:-l. 

j add:-l; 
add:0; 
add:0. 

k add:0; 
add:l; 
add:0].

currentCpl =  ' B O T T O M '  
i£True:[i add:l; 

add.O; 
add:0. 

j add:0; 
add:-l; 
add:0. 

k  add:0; 
add:0; 
add:-l].

co o r d  add: (self x); 
add: (self y); 
add: (self z).

t o p C o o r d  := OrderedCollection new. 
t o p C o o r d  add: (i dot: coord); 

add: (j dot: coord); 
add: (k dot: coord).

topVertex := Vertex n e w  initialise: topCoord. 
tranVertex := topVertex transformTopTo: ne w C p I .

A tran Vertex]

class: a Vertex
m e t h o d : t r a n s f o m i T o p T o :  n e w C p l  
"transforms the Vertex from T O P  coordinate system to 
F R O N T ,  R E G H T ,  R E A R ,  L E F T  or B O T T O M  coordinate system. 
Returns the transformed Vertex."
| i j k coord n c w C o o r d  tranVertex|

i := OrderedCollection new. 
j := OrdcredCollection new. 
k := OrderedCollection new.

coo r d  := OrderedCollection new. 
n e w C o o r d  := OrdercdCollcction new.

n e w C p l  =  T O P '  
ifTrue:[: add:l; 

add:0; 
add:0. 

j add:0; 
add:l; 
add:0.
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k add:0; 
add:0; 
add:l ].

n e w C p l  =  ' F R O N T  
ifTrue:[i add:l; 

add:0; 
add:0. 

j add:0; 
add:0; 
add:l. 

k add:0; 
add:-l; 
add:0].

n c w C p l  =  ' R I G H T  
ifTrue:[i add:0; 

add:l; 
add:0. 

j add:0; 
add:0; 
add:l. 

kadd.l; 
add:0; 
add:0].

n e w C p l  =  ' R E A R '  
i£True:[i add:-l; 

add.O; 
add:0. 

j add:0; 
add:0; 
add:l. 

k add:0; 
add:l; 
add :0],

n e w C p l  =  'LEFT' 
ifTrue:[i add:0;

add:-l; 
add:0. 

j add:0; 
add:0; 
add:l. 

k add:-l; 
add:0; 
add:0].

n e w C p l  =  ' B O T T O M '  
ifTrue:[i add:l; 

add:0; 
add:0. 

j add:0; 
add:-l; 
add:0. 

k add:0; 
add:0; 
add:-l ].
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coord add: (self x); 
add: (self y); 
add: (self z).

n e w C o o r d  add: (i dot: coord);
add: (j dot: coord); 
add: (k dot: coord).

tranVertex := Vertex n e w  initialise: newCoord.
* tranVertex

4. Assignment of Edge topology attributes to Feature instances

class: a HoleBlind 
me t h o d :  initEdgeTopology
"Initialise edge topology for HoleBlind feature instance" 

| org botOrg pi p 2  p 3  p 4  
e d g e L o o p  v T o p O r g  v B o t O r g  
vl v2  v 3  v 4  
el e2 e3 e4 e5 e 6  |

org := OrderedCollection new. 
org add: (self orgX); 

add: (self orgY); 
add: (self orgZ).

botOrg := OrderedCollection new. 
pi := OrderedCollection new. 
p 2  := OrderedCollection new. 
p 3  := OrderedCollection new. 
p 4  := OrderedCollection new.

botO r g  add: (org at:l); 
add: (org at:2); 
add: (org at:3) - self depth.

pi add: ((org at:l) +  (self diameter/2)); 
add: (org at:2); 
add: (org at:3).

p 2  add: ((org at:l) - (self diameter/2)); 
add: (org at:2); 
add: (org at:3).

p 3  add: ((botOrg at:l) - (self diameter/2)); 
add: (botOrg at:2); 
add: (botOrg at:3).

p 4  add: ((botOrg at: 1) + (self diametcr/2)); 
add: (botOrg at:2); 
add: (botOrg at:3).

"Define vertices" 
vl := Vertex n e w  initialise: pi. 
v 2  := Vertex n e w  initialise: p2.



v 3  := V e rtex n e w  initialise: p3. 
v 4  := V e rtex n e w  initialise: p4. 
v T o p O r g  := Vertex n e w  initialise: org. 
v B o t O r g  := Vertex n e w  initialise: botOrg.
"Define Edge s "
el : = E d g e  n e w  arclnitialise: v T o p O r g  radius: (self diameter)/2 startPt: vl endPtrv2. 
e2 : = E d g e  n e w  arclnitialise: v T o p O r g  radius: (self diameter)/2 startPt: v 2  endPtrvl. 
e3 : = E d g e  n e w  arclnitialise: v B o t O r g  radius: (self diameter)/2 startPt: v 4  endPt:v3. 
e4 : = E d g e  n e w  arclnitialise: v B o t O r g  radius: (self diameter)/2 startPt: v 3  endPtrv4.

e5 : = E d g e  n e w  linlnitialise:vl endPt:v4. 
e6 : = E d g e  n e w  linlnitialise:v2 endPt:v3.

e d g e T o p o l o g y  := L o o p  n e w  initialise.

"Hole T o p  Face"
e d g e L o o p  := OrderedCollection new. 
e d g e L o o p  add:el; 

add:c2.
edge T o p o l o g y  addEloop: edgeLoop.

"Hole Front F a c e ”
e d g e L o o p  := OrderedCollection new. 
e d g e L o o p  add:e2; 

add:e6; 
add:e4; 
add:eS.

e d g e T o p o l o g y  addEloop: edgeLoop.

"Hole Rear Face"
e d g e L o o p  := OrderedCollection new. 
e d g e L o o p  add:el; 

add:eS; 
add:e3; 
add:e6.

e d g c T o p o l o g y  addEloop: edgeLoop.

"Hole B o t t o m  Face" 
e d g e L o o p  := OrderedCollection new. 
e d g e L o o p  add:e3; 

add:e4.
edg e T o p o l o g y  addEloop: edgeLoop.

class: a H o l e T h r o u g h
m e t h o d :  initEdgeTopology
"Initialise edge topology for HolcTh r o u g h  feature instance."

| org botOrg p i  p 2  p 3  p4 
e d g e L o o p  v T o p O r g  v B o t O r g  
vl v 2  v 3  v 4  
el c 2  e3 e4 e 5  e 6  |

org := OrderedCollection new. 
org add: (self orgX); 

add: (self orgY); 
add: (self orgZ).

botOrg := OrdcredCollection new. 
pi := OrdercdCollection new.
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p 2  := OrderedCollection new. 
p 3  := OrderedCollection new. 
p 4  := OrderedCollection new.

b o tOrg add: (org at:l); 
add: (org at:2); 
add: (org at:3) - self depth.

pi add: ((org at:l) + (self diameter/2)); 
add: (org at:2); 
add: (org at:3).

p 2  add: ((org at:l) - (self diameter/2)); 
add: (org at:2); 
add: (org at:3).

p 3  add: ((botOrg at:l) - (self diameter/2)); 
add: (botOrg at:2); 
add: (botOrg at:3).

p 4  add: ((botOrg at:l) +  (self diameter/2)); 
add: (botOrg at:2); 
add: (botOrg at:3).

"Define vertices" 
vl := Vertex n e w  initialise: pi. 
v 2  := Vertex n e w  initialise: p2. 
v 3  := Vertex n e w  initialise: p3. 
v 4  := Vertex n e w  initialise: p4. 
v T o p O r g  := Vertex n e w  initialise: org. 
v B o t O r g  := Vertex n e w  initialise: botOrg.
"Define Edges"
el :=Ed g e  n e w  arclnitialise: v T o p O r g  radius: (self diameter)/2 startPt: vl endPtrv2. 
e 2  :=Ed g e  n e w  arclnitialise: v T o p O r g  radius: (self diameter)/2 startPt: v 2  endPtrvl. 
e 3  : = E d g e  n e w  arclnitialise: v B o t O r g  radius: (self diameter)/2 startPt: v 4  endPt:v3. 
e 4  : = E d g e  n e w  arclnitialise: v B o t O r g  radius: (self diameter)/2 startPt: v 3  endPtrv4.

e5 : = E d g e  n e w  linlnitialise:vl endPt:v4. 
e 6  : = E d g e  n e w  linlnitialise:v2 cndPt:v3.

e d g c T o p o l o g y  := L o o p  n e w  initialise.

"Hole T o p  Face"
e d g e L o o p  := OrderedCollcction n e w .  
e d g c L o o p  add:el; 

add:e2.
edge T o p o l o g y  addEloop: edgeLoop.

"Hole Front Face"
e d g e L o o p  := OrderedCollcction n e w .  
e d g e L o o p  add:c2; 

add:e6; 
add:e4; 
add:e3.

edgc T o p o l o g y  addEloop: edgeLoop.

"Hole Rear Face"
edgeLoop := OrderedCollection new.



e d g e L o o p  add:el; 
add:c5; 
add:e3; 
add:e6.

e d g e T opology addEloop: edgeLoop.

"Hole B o t t o m  Face" 
e d g e L o o p  := OrderedCollection new. 
e d g e L o o p  add:e3; 

add:e4.
edg e T o p o l o g y  addEloop: edgeLoop.

class: a PocketRectangular
m e t h o d :  initEdgeTopology
"Initialise edge topology for PocketRectangular feature instance." 

| org 1 w  h p i  p 2  p 3  p 4  p5 p 6  p 7  p8 
e d g e L o o p
v l  v 2  v 3  v 4  v 5  v 6  v 7  v 8
el e2 e3 e 4  e5 e 6  e7 e8 e 9  e l O e l l  e l 2  |

org := OrderedCollection new. 
org add: (self orgX); 

add: (self orgY); 
add: (self orgZ).

1 := self length, 
w  := self width, 
h  := self depth.

pi := OrderedCollection new. 
p 2  := OrderedCollection new. 
p 3  := OrderedCollection new. 
p 4  := OrdcredCollection new. 
p 5  := OrderedCollection new. 
p 6  := OrderedCollection new. 
p 7  := OrderedCollection new. 
p 8  := OrderedCollection new.

"Calculate vertex points"
pi add: (org at:l); 

add: (org at:2); 
add: (org at:3)-h.

p2 add: (org at: 1)+1; 
add: (org at:2); 
add: (org at:3)-h.

p3 add: (p2 at:l); 
add: ((p2 at:2)+w); 
add: (p2 at:3).

p4 add: (p3 at: 1)-1; 
add: (p3 at: 2); 
add: (p3 at:3).

pS add:(org at: 1); 
add:(org at:2); 
add:(org at:3).
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p 6  add:(p5 at:l)+l; 
add:(p5 at:2); 
add:(p5 at:3).

p 7  add: ( p 6  at:l); 
add: (p6 at:2)+w; 
add: (p 6  at:3).

p 8  add: ( p7 at:l)-l; 
add: (p7 at:2); 
add: (p 7  at:3).

"Define vertices" 
vl := Vertex n e w  initialise: pi. 
v 2  := Vert e x  n e w  initialise: p2. 
v 3  := Vertex n e w  initialise: p3. 
v 4  := V e n e x  n e w  initialise: p4. 
v5 := Vertex n e w  initialise: p5. 
v 6  := Vertex n e w  initialise: p6. 
v 7  := Vertex n e w  initialise: p7. 
v 8  := Vertex n e w  initialise: p8.

"Define E d ges"
el := E d g e  n e w  linlnitialise:vl endPt:v2. 
e2 := E d g e  n e w  linlnitialise:v2 endPt:v3. 
e3 := E d g e  n e w  linlnitialise:v3 endPt:v4. 
e4 := E d g e  n e w  Uninitialised endPt:vl.

e5 := E d g e  n e w  linlnitialise:v5 endPt:v6. 
e 6  := E d g e  n e w  linlnitialise:v6 endPt:v7. 
e7 := E d g e  n e w  linlnitialise:v7 endPt:v8. 
e 8  := E d g e  n e w  linlnitialise:v8 endPt:v5.

e9 := E d g e  n e w  Uninitialised endPt:v6. 
e l O  := E d g e  n e w  Uninitialised endPt:v7. 
ell := E d g e  n e w  Uninitialised endPt:v8. 
el2 := E d g e  n e w  linlnitialise:vl endPt:v5.

c d g c T o p o l o g y  := L o o p  n e w  initialise.

"Plate T o p  F a c e ”
e d g c L o o p  := OrderedCollection new. 
c d g e L o o p  add:c5; 

add:e6; 
add:e7; 
add:e8.

c d g c T o p o l o g y  addEloop: cdgcLoop.

"Plate Front Face" 
c d g c L o o p  := OrdcredCollcction new. 
c d g c L o o p  add:el; 

add:e9; 
add:e3; 
add:el2.

e d g c T o p o l o g y  addEloop: edgeLoop.

"Plate Right Face”
cdgeLoop := OrderedCollcction new.
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e d g e L o o p  add:e2; 
add:elO; 
add:e6; 
add:e9.

e d g e T o p o l o g y  addEloop: edgeLoop.

"Plate R e a r  Face"
e d g e L o o p  := OrderedCollection new.
e d g e L o o p  add:e3; 

addrell; 
add:e7; 
addielO.

e d g e T o p o l o g y  addEloop: edgeLoop.

"Plate Left Face"
e d g e L o o p  := OrderedCollection new.
e d g e L o o p  add:el2; 

add:e8; 
add:ell; 
add:e4.

e d g e T o p o l o g y  addEloop: edgeLoop.

"Plate B o t t o m  Face"
e d g e L o o p  := OrderedCollection new.
e d g e L o o p  add:e4; 

add:e3; 
add:e2; 
add:el.

e d g e T o p o l o g y  addEloop: e d g e L o o p

class: a Plate
me t h o d :  initEdgeTopology
"Initialise e d g e  topology for Plate feature instance." 

| org 1 w  h  p i  p 2  p 3  p 4  p 5  p 6  p 7  p 8  
e d g e L o o p
vl v 2  v 3  v 4  v 5  v 6  v 7  v 8
el e2 e 3  e 4  e 5  e 6  e7 e8 e 9  e l O  e ll e l2 |

org := OrderedCollection new. 
org add: (self orgX); 

add: (self orgY); 
add: (self orgZ).

1 := self length, 
w  := self width, 
h := self height.

pi := OrderedCollection new. 
p 2  := OrderedCollection new. 
p 3  := OrderedCollection new. 
p 4  := OrderedCollection new. 
p 5  := OrdcrcdCollection new. 
p 6  := OrderedCollection new. 
p 7  := OrderedCollection new. 
p 8  := OrderedCollection new. 

"Calculate vertex points" 
pi add: (org at:l);
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add: (org at:2); 
add: (org at:3).

p 2  add: ((org at:l) +  1); 
add: (org at:2); 
add: (org at:3).

p 3  add: (p2 at:l); 
add: ((p2 at:2)+w); 
add: (p2 at:3).

p 4  add: ((p3 at:l)-l); 
add: (p3 at: 2); 
add: (p3 at:3).

p 5  add:(org at:l); 
add:(org at:2); 
add:((org at:3)+h).

p 6  add:((p5 at:l)+l); 
add:(p5 at:2); 
add:(p5 at:3).

p 7  add: (p6 at:l); 
add: ((p6 at:2)+w); 
add: (p6 at:3).

p 8  add: ((p7 at:l)-l); 
add: (p7 at:2); 
add: (p7 at:3).

"Define vertices" 
vl := Vertex n e w  initialise: pi. 
v 2  := Vertex n e w  initialise: p2. 
v 3  := Vertex n e w  initialise: p3. 
v 4  := Vertex n e w  initialise: p4. 
v 5  := Vertex n e w  initialise: p5. 
v 6  := Vertex n e w  initialise: p6. 
v 7  := Vertex n e w  initialise: p7. 
v 8  := Vertex n e w  initialise: p8.

"Define Edges"
el := E d g e  n e w  Uninitialised endPt:v2. 
e2 := E d g e  n e w  Uninitialised endPt:v3. 
e3 := E d g e  n e w  Uninitialised cndPt:v4. 
e4 := E d g e  n e w  Uninitialised endPt:vl.

e5 := E d g e  n e w  Uninitialised endPt:v6. 
e6 := E d g e  n e w  linlnitialise:v6 endPt:v7. 
e7 := E d g e  n e w  Uninitialised endPt:v8. 
e 8  := E d g e  n e w  Uninitialised cndPt:v5.

e9 := E d g e  n e w  Uninitialised cndPt:v6. 
e l O  := E d g e  n e w  Uninitialised endPt:v7. 
ell := E d g e  n e w  Uninitialised endPt:v8. 
e l 2  := E d g e  n e w  Uninitialised c n d P t d .

c d g c T o p o l o g y  := L o o p  n e w  initialise.
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"Plate T o p  Face"
e d g e L o o p  := Ordered Collection new. 
e d g e L o o p  add:e5; 

add:e6; 
add:e7; 
add:e8.

edge T o p o l o g y  addEloop: edgeLoop. 

"Plate Front Face"
e d g e L o o p  := OrderedCollection new. 
e d g e L o o p  addiel; 

add:e9; 
add:e5; 
add:el2.

edg e T o p o l o g y  addEloop: edgeLoop. 

"Plate Right Face"
e d g e L o o p  := OrderedCollection new. 
e d g e L o o p  add:e2; 

addielO; 
add:e6; 
add:e9.

e d g e T o p o l o g y  addEloop: edgeLoop. 

"Plate R e a r  Face"
e d g e L o o p  := OrderedCollection new. 
e d g e L o o p  add:c3; 

a d d x l l ;  
add:e7; 
add:elO.

edg e T o p o l o g y  addEloop: edgeLoop. 

"Plate Left Face"
e d g e L o o p  := OrderedCollection new. 
e d g e L o o p  add:el2; 

add:e8; 
a d d x l l ;  
add:e4.

edge T o p o l o g y  addEloop: edgeLoop.

"Plate B o t t o m  Face” 
e d g e L o o p  := OrderedCollection new. 
e d g e L o o p  add:e4; 

add:e3; 
add:e2; 
a d d x l .

e d g e T opology addEloop: e d g e L o o p

class: a BossCircular 
method: initEdgeTopology
"Initialise edge topology for BossCircular feature instance.” 

| org topOrg pi p 2  p 3  p 4  
e d g e L o o p  v O r g  v t o p O r g  
vl v 2  v 3  v 4  
el c2 e3 e4 e5 e 6  |

348



org := OrderedCoIlection new. 
o rg add: (self orgX); 

add: (self orgY); 
add: (self orgZ).

t o p O r g  := OrderedCollection new. 
p i  := OrderedCollection new. 
p 2  := OrderedCollection new. 
p 3  := OrderedCollection new. 
p 4  := OrderedCollection new.

topOrg add: (org at:l); 
add: (org at:2); 
add: (org at:3) +  self height.

pi add: ((topOrg at:l) +  (self diameter/2)); 
add: (topOrg at:2); 
add: (topOrg at:3).

p 2  add: ((topOrg at:l) - (self diameter/2)); 
add: (topOrg at:2); 
add: (topOrg at:3).

p 3  add: ((org at:l) - (self diameter/2)); 
add: (org at:2); 
add: (org at:3).

p 4  add: ((org al:l) +  (self diameter/2)); 
add: (org at:2); 
add: (org at:3).

"Define vertices" 
v l  := Vertex n e w  initialise: pi. 
v 2  := Vertex n e w  initialise: p2. 
v 3  := Vertex n e w  initialise: p3. 
v 4  := Vertex n e w  initialise: p4. 

v O r g  := Vertex n e w  initialise: org. 
v t o p O r g  := Vertex n e w  initialise: topOrg.

"Define E d g e s ”
el :=Edge n e w  arclnitialise: v topOrg radius: (self diametcr)/2 startPt: vl endPtrv2. 
e2 :=Edge n e w  arclnitialise: vtopOrg radius: (self diameter)/2 startPt: v 2  endPtrvl. 
e3 : = Edge n e w  arclnitialise: v O r g  radius: (self diameter)/2 startPt: v 4  endPtrv3. 
e4 : = Edge n e w  arclnitialise: v O r g  radius: (self diameter)/2 startPt: v 3  endPt:v4.

e5 : = Edge n e w  linlnitialisc:v4 cndPt:vl. 
e6 : = Edge n e w  linlnitialise:v3 endPt:v2.

c d g e T o p o l o g y  := L o o p  n e w  initialise.

" B o s s  T o p  Face"
c d g c L o o p  := OrderedCollection new. 
c d g e L o o p  add:el; 

add:e2.
e d g e T o p o l o g y  addEloop: edgcLoop.

"Boss Front Face"
cdgeLoop := OrderedCollection new.
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e d g e L o o p  add:e2; 
add:c6; 
add:c4; 
add:e5.

e d g e T o p o l o g y  addEloop: edgeLoop.

"Boss R e a r  Face”
e d g e L o o p  := OrderedCollection new.
e d g e L o o p  add:el; 

add:e5; 
add:e3; 
add:e6.

e d g e T o p o l o g y  addEloop: edgeLoop.

"Boss B o t t o m  Face”
e d g e L o o p  := OrderedCollection new.
e d g e L o o p  add:e3; 

add:e4.
e d g e T o p o l o g y  addEloop: edgeLoop.

class: a TabRectangular
method: initEdgeTopology

"Initialise edge topology for TabRectangular feature instance." 
| org 1 w  h  p i  p 2  p 3  p 4  p5 p 6  p 7  p 8  
e d g e L o o p
vl v 2  v 3  v 4  v 5  v 6  v 7  v8
el e2 e 3  e4 e5 c 6  e7 e8 e9 el O  ell el2 |

org := OrderedCollection new. 
org add: (self orgX); 

add: (self orgY); 
add: (self orgZ).

1 := self length, 
w  := self width, 
h := self height.

pi := OrderedCollection new. 
p 2  := OrderedCollection new. 
p 3  := OrderedCollection new. 
p 4  := OrderedCollection new. 
p 5  := OrderedCollection new. 
p 6  := OrderedCollection new. 
p 7  := OrderedCollection new. 
p 8  := OrderedCollection new.

"Calculate vertex points" 
pi add: (org at:l); 

add: (org at:2); 
add: (org at:3).

p 2  add: ((org at:l) + l); 
add: (org at:2); 
add: (org at:3).

p 3  add: (p2 at:l); 
add: ((p2 at:2)+w); 
add: (p2 at:3).
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p 4  add: ((p3 at:l)-l); 
add: (p3 at: 2); 
add: (p3 at:3).

p 5  add:(org at:l); 
add:(org at:2); 
add:((org at:3)+h).

p 6  add:((p5 at:l)+l); 
add:(p5 at:2); 
add:(p5 at:3).

p 7  add: (p6 at:l); 
add: ((p6 at:2)+w); 
add: (p6 at:3).

p 8  add: ((p7 at:l)-l); 
add: (p7 at:2); 
add: (p7 at:3).

"Define vertices" 
v l  := Vertex n e w  initialise: pi. 
v 2  := Vertex n e w  initialise: p2. 
v 3  := Vertex n e w  initialise: p3. 
v 4  := Vertex n e w  initialise: p4. 
v 5  := Vertex n e w  initialise: p5. 
v 6  := Vertex n e w  initialise: p6. 
v 7  := Vertex n e w  initialise: p7. 
v 8  := Vertex n e w  initialise: p8.

"Define Edges"
e l  := E d g e  n e w  linlnitialise:vl endPt:v2. 
e 2  := E d g e  n e w  linlnitialise:v2 endPt:v3. 
e 3  := E d g e  n e w  linlnitialise:v3 endPt:v4. 
e 4  := E d g e  n e w  Uninitialised endPt:vl.

e5 := E d g e  n e w  Uninitialised endPt:v6. 
e 6  := E d g e  n e w  Uninitialised endPt:v7. 
e 7  := E d g e  n e w  Uninitialised endPt:v8. 
e 8  := E d g e  n e w  Uninitialised cndPt:v5.

e 9  := E d g e  n e w  Uninitialised endPt:v6. 
e l O  := E d g e  n e w  Uninitialised endPt:v7. 
el l  := E d g e  n e w  Uninitialised endPt:v8. 
e l 2  := E d g e  n e w  Uninitialised endPt:v5.

e d g c T o p o l o g y  := L o o p  n e w  initialise.

I " T a b  T o p  Face"
c d g e L o o p  := OrderedCollection new. 
c d g e L o o p  add:e5;

. add:e6;
add:c7;
add:e8.

e d g c T o p o l o g y  addEloop: edgeLoop.

" T a b  Front Face"
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e d g e L o o p  := OrderedCollection new. 
e d g e L o o p  add:el; 

add:e9; 
add:c5; 
add:el2.

e d g e T o p o l o g y  addEloop: edgeLoop. 

" T a b  Right Face"
e d g e L o o p  := OrderedCollection new. 
e d g e L o o p  add:e2; 

addrelO; 
add:e6; 
add:e9.

e d g e T o p o l o g y  addEloop: edgeLoop. 

" T a b  R e a r  Face"
e d g e L o o p  := OrderedCollection new. 
e d g e L o o p  add:e3; 

a d d  tell; 
add:e7; 
a d d x l O .

e d g e T o p o l o g y  addEloop: edgeLoop. 

"Tab Left Face"
e d g e L o o p  := OrderedCollection new. 
e d g e L o o p  add:el2; 

add:e8; 
add:ell; 
add:e4.

e d g e T o p o l o g y  addEloop: edgeLoop.

" T a b  B o t t o m  Face" 
e d g e L o o p  := OrderedCollection new. 
e d g e L o o p  add:e4; 

add:e3; 
add:e2; 
add:el.

c d g e T o p o l o g y  addEloop: e d g e L o o p

class: a P r o d u c t C o m
method: generatcProcess

"Generate the automated machining process plan for the selected Component." 
¡ a d d D a t u m l d  parenlFeaturcs a d d F t r s S a m e D a t u m  highestFt |

(curProduct i s M e m b e r O f :  C o m p o n e n t )
ifFalse: [self error: 'Select C o m p o n e n t  instance'].

"1. Clear previously generated A u t o  process" 
curProduct resetAutoProcess.

"la. Initialise feature topology"
curProduct wit h A U C h i l d r c n  do: [:each |

((each isKindOf: Plate) or:[(cach isKindOf: TabRectangular)]) 
ifTrue:[each initEdgeTopologyj.

(each isKindOf: BossCircular) 
ifTrue:[cach initEdgeTopology].



((each isKindOf: HoleBlind) or:[(each isKindOf: HoleThrough)]) 
i£True:[each initEdgeTopology],

(each isKindOf: PocketRectangular) 
ifTrue:[each initEdgeTopology]].

"2. R e a d  the d a t u m  id of additive feature instances"
a d d D a t u m l d  := Set new.
curProduct wit h A U C h i l d r e n  do: [:each |

(each isKindOf: AdditiveFeature)
i£True:[addDatumId add: each datum]].

"3. Select s a m e  d a t u m  additive pearentFeature instances" 
a d d F t r s S a m e D a t u m  := OrderedCollection new. 
a d d D a t u m l d  do: [:eachDatum |

curProduct w i thAUChildren do: [:each |
(each isKindOf: AdditiveFeature) 

ifTrue:[(each d a t u m  =  e a c h D a t u m )
ifTrue:[addFtrsSameDatum add: each]]].

"4. W h i l e  a d d F t r s S a m e D a t u m  is not empty,
For each a d d F t r s S a m e D a t u m ,  generate a process"
[ a d d F t r s S a m e D a t u m  isEmpty] 

whileFalse:[
highestFt := a d d F t r s S a m e D a t u m  s h o w H i g h Z .  
highestFt addMcProcess. 
a d d F t r s S a m e D a t u m  remove: highestFt.
]]

5. Detecting Feature interaction

class: ’a Feature 
m e t h o d :  a d d M c P m c e s s

"generates a m e  process for a n  additive parent feature 
an d  also requests a process for its subtractive child feature instances"

IsubChildren nextSubChildren allSubChildren a D a t u m  datums 
subCluster|

d a t u m s  := # ( T O P '  ' F R O N T  ' R I G H T  ’B O T T O M ’ ’L E F T  'RIGHT').
nextSubChildren := OrderedCollection new.
subCluster := OrderedCollection new.

d a t u m s  do:[:aDatum| self m f g M e t h o d :  a D a t u m .
subChildren := self g e t S u b C h i l d r e n S a m e D a t u m : a D a t u m .  

allSubChildren := self g e t A U S u b C h i l d r e n S a m c D a t u m :  a D a t u m .
[allSubChildren isEmpty] 

whilcFalsc: [subChildrcn do:[:aFeature |
"Select a Cluster of features for side interaction"
(subCluster := aFeaturc sidelnteraction) isNil 
ifFalse:[aFcature m f g M e t h o d :  subCluster datum: a D a t u m .

subCluster do:[:eachl | nextSubChildren addAll: (eachl 
gctSubChildrenSameDatum:aDatum)]. 

subChildrcn removeAll: subCluster. 
allSubChildren removcAll: subCluster]
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i£True:[
aFeature m f g M e t h o d .
(aFeature withAllChildren) isEmpty

ifFalse:[nextSubChildren addAll: (aFeature
getSubChi Id renSar a c D a t u m  :aDatum) ]. 
subChildren remove: aFeature. 
allSubChildren remove: aFeature].

]•
subChildren is E m p t y  
i£True:[subChildren := nextSubChildren].

]]

5.1 Validation of the feature interaction

class: a Feature
method: mfgMethod: subCluster datum: a D a t u m
" Checks the validity of subtractive cluster and requests the EndMilling m a c h i n i n g  process." 

| cParent level proc autoStatus|

"Find cluster parent"
cParent := subCluster select:[:each | (each intParentFeature)notNil], 
cParent := cParent at:l.

" C h e c k  the cluster side interacting hierarchy level" 
level := self sideHrchy: subCluster.

level =  1
ifTrue:[(self clusterValidity: subCluster) notNil

ifTrue:["Generaete pocket machining process plan"

(cParent m c N o t m c  at:l) =  $ Y
ifTrue:[ proc := EndMilling dusterPocket: subCluster d a tum: a D a t u m .  

proc isNil
ifFalse: [cParent addProcess: proc]]]]

class: a Feature
method: clusterValidity: subCluster
" Checks if the interaction attributes of various features within the cluster m a k e  it a valid cluster. 
Validation m e t h o d  enables control over the combination of features. Returns 1 for valid, otherwise 
nil"

| clParent clChildren status]

cl Parent := subCluster at:l. 
clChildren := OrderedCollection new.

clChildren addAlhsubCluster. 
clChildren removelndex: 1. 
status := 1.

clChildren do:[:child | ((child on) notNil or:[(child past) notNil])
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'status

ifFalse:[(child atAngle) notNil 
ifFalse:[status := nil]]].

class: a Feature
method: intChildFeature
"Returns self if self is side interacting child feature, or nil"
| fAttribute |
fAttribute := proximityFeature at: 'intFeature'.

fAttribute =  'self 
ifTrue:[Anil].

fAttribute notNil 
ifTrue:[Aself] 
ifFalse:[Anil]

class: a Feature 
method: intParentFeature
"Returns self if self is the root side interacting parent feature, or nil" 

(proximityFeature ati'intFeature') =  'self 
ifTrue:[Asclf] 
ifFalse:[Anil]

class: a Feature
method: sideParent
"Returns the side interacting parent feature n a m e "

| s P a r e n t N a m e  |
s P a r e n t N a m e  := proximityFeature at: 'intFeature'. 
s P a r e n t N a m e  =  'self 

ifTrue:[Aself]
ifFalse:] "(Smalltalk at: (sP a r e n t N a m e  asSymbol))]

class: a Feature
method: sidelntcraction
"This m e t h o d  checks if the feature causes side interaction with neighbouring features.
Returns a  c o m p l e t e  interacting feature cluster as a n  OrderedCollection o r  nil"

| cluster parentFeature sclfDatumChildren|

cluster := OrderedCollection new.
parentFeature := self childOf.
sclfDatumChildren :» parentFeature gctAllSubChildrenSameDatum: (self datum).

"Search for cluster side parent feature" 
selfDatumChildren do:[ :each| (each intParentFeature isNil) 

ifFalsc:[clustcr add: each]].

"Search for cluster side child features"

selfDatumChildren do:[ :each| (each intChildFeature) notNil
ifTruc:[ cluster do:[ : a M e m b e r  | a M c m b e r  n a m e  =  ((each intChildFeature)

sideParent) n a m e
ilTrue:[cluster add: each]]]].

cluster i s E m p t y
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ifTrue:['nil] 
i£False:['cluster]

class: a Feature 
method: interaction
" C h e c k s  for intFeature attribute value. Returns nil, if nil" 
| fAttribute |

fAttribute := proximityFeature at: 'intFeature'.

fAttribute isNil 
ifTrue:[,'nil] 
ifFalse:[A l]

6. Feature Mapping

class: EndMilling
method: mapCIusterFeatures: subCluster datum: a D a t u m

" M a p s  the feature cluster into machining features.
For each m a c h i n i n g  feature the collection syntex is
aril absolute depth
at:2 reletive depth
at:3 tool parameters
at:4 features in a  cluster"

| ftClusterlntoMcFeatures depths d e p t h R a n g e  m i n D e p t h  a D epth index s a m e D p a r a  
proc depthFts tools m a x T o o l D i a F o r D e p t h  m a x T o o l D i a F o r L o w e r D e p t h |

ftClusterlntoMcFeatures := Dictionary new.
proc := EndMilling new. "to access instance m e t h o d  for tools"

"Collect varous depths of features"
depths := ( subCluster collect:[:fT | fT depth]) asSet.
depths := depths asOrderedCollection.

"Rearrange depths in ascending order" 
d e p t h R a n g e  := OrderedCollection new.
[depths isEmpty]
whileFalse:[minDepth := depths aril.

depths do:[ teach | each <  m i n D e p t h
ifTrue:[minDepth := each]].

d e p t h R a n g e  add: m i n Depth. 
depths remove: minDepth].

" M a p  ma c h i n i n g  features as per depth" 
index :■ 1.
d e p t h R a n g e  size timesRepeat:[ a D e p t h  := d e p t h R a n g e  at: index. 

s a m e D p a r a  := OrderedCollcction new.
depthFts :» OrderedCollection n e w .  

s a m e D p a r a  add: aDepth. "Absolute depth"
(index - 1 ) * 0
ifTrue:[sameDpara add: aDepth] "Relative depth" 
ifFalse:[sameDpara add: (aDepth - (depthRange at: (index -1)))].



subCluster do:[:each | e a c h  depth > =  a D e p t h  
ifTrue:[depthFts add: each]].

tools := proc getSameDepthToolAndFtCluster: depthFts datum: a D a t u m .

" C h e c k  higher depth features machining tool dia to that of lower depth. 
E n s u r e  that the s a m e  feature instance at different depth is m a c h i n e d  b y  the 
s a m e  tool dia"
(index -1 )  =  0
ifTrue:[ m a x T o o l D i a F o r L o w e r D e p t h  := (tools at: (tools size))at:2] 
ifFalse:[ m a x T o o l D i a F o r D e p t h  := (tools at: (tools sizc))at:2. 

m a x T o o l D i a F o r D e p t h  >  m a x T o o l D i a F o r L o w e r D e p t h  
ifTrue:[(tools at: (tools size))at:l put:maxTooIDia F o r L o w e r D e p t h .  

(tools at: (tools size))at:2 put:maxTo o l D i a F o r L o w e r D e p t h .  
m a x T o o l D i a F o r L o w e r D e p t h  := maxToolDiaForDepth]].

tools do:[:t 11 add: aDepth]. 
s a m e D p a r a  add: tools. 
s a m e D p a r a  add: depthFts.
ftClusterlntoMcFeatures at: index put: s a meDpara. 
index := index +1].

AftClusterIntoMcFeatures

6.1 Cutting tool selection method

class: an E n d M i l l i n g
method: getSameDepthToolAndFtClusten m c F t g r o u p  datum: a D a t u m

" T h e  s a m e  depth feature cluster needs to b e  grouped with a  t wo tier 
strategy. Firstly, o n  the basis of tool parameter selection. T h e  
resultant group/s m a y  then split into joint or disjoint clusters.

This m e t h o d  analyses the a b o v e  a n d  forms the cluster elements 
w h i c h  could b e  m a c h i n e d  b y  the r e c o m m e n d e d  tool parameters."

|index disJointClusters ftExclDepth cElements cElemcntParents 
toolDia m a x D i a  m i n D i a  cDia toolDiaAndParea ftArea approxArea 
t e m p D i a A r e a F t R a n g e  range diaAreaFtRange diaR a n g e  tcmpSet pocketTools 
areaFtCluster toolPara splitPercArea aCluster disjClusters pocketProGles 
a b toolStatj

" T h e  following decides the tool parameters for operation. T h e  pocket profiles 
are m a c h i n e d  b y  endmill cutters. It is a s s u m e d  that the m a x i m u m  tool diameter 
should be S O  m m .  T h e  cutter depth is decided b y  the m a x  depth of the feature 
within a cluster.”

”1. Select the range of tool diameters for individual features" 
t empSet := Set n e w .

1 to: m c F t g r o u p  size do:[:n | ((mcFtgroup atm) isKindOf: Pocket)
ifTrue:[toolDia := self getToolDiaPolygonProf: ( m c Ftgroup atm) ].

(((mcFtgroup a t m )  isKindOf: HoleBlind) or:[((mcFtgroup atm) isKindOf: 
H o l e T h  rough)])
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i£True:[toolDia := self getToolDiaRoundProf: (mcFtgroup at:n)]. 

tc m p S c t  add: toolDia.
]■

tcmpSet := t e m p S c t  asOrderedCollection.

"2. Sort out tool diameters in ascending order"

diaR a n g e  := OrderedCollection new.
[tempSet isEmpty]

whilcFalsc:[ m i n D i a  := (tempSet at:l). 
t e m p S e t  do:[:dia | dia <  m i n D i a

ifTrue:[minDia := dia]]. 
d i a R a n g e  add: minDia. 
t e m p S e t  remove: minDia.

]•

"3. C o m p u t e  approximate cluster area as the s u m  of the areas of individual features."

a p p r o x A r e a  := 0.
1 to: m c F t g r o u p  size do:[:n | ((mcFtgroup atm) isKindOf: Pocket)

ifTrue:[approxArea := approxArea+((mcFtgroup atm) length * (mcFtgroup atm) 
width)].

(((mcFtgroup atm) isKindOf: HoleBlind) or:[((mcFtgroup atm) isKindOf: 
HoleThrough)])

ifTrue:[approxArea := approxArca+(((mcFtgroup atm) diameter) squared *
(3.14/4))].

]•

"4. For each tool in diaRange, c o m p u t e  the approx, machining area &  percentage of 
ma c h i n i n g  area"

d i aAreaFtRange := OrderedCollection new.  
d i a R a n g c  do:[:dia | ftArea := 0.

areaFtCluster := OrderedCollection new.
1 to: m c F t g r o u p  size do:[:i | ((mcFtgroup at:i) isKindOf: Pocket)

ifTrue:[dia =  (self getToolDiaPolygonProf:(mcFtgroup at:i))
ifTrue:[ftArea := ftArea +  ((mcFtgroup at:i) length • (mcFtgroup 

at:i) width).
areaFtCluster add: (mc F t g r o u p  at:i)]].

(((mcFtgroup at:i) isKindOf: HoleBlind) or:[((mcFtgroup at:i) 
isKindOf: HoleThrough)])

ifTrue:[dia =  (self getToolDiaRoundProf:(mcFtgroup at:i))
ifTrue:[ftArea := ftArea +  (((mcFtgroup at:i) diameter) squared *

(3.14/4)).
areaFtCluster add: (mcF t g r o u p  at:i)]].

t e m p D i a A r e a F t R a n g e :« OrderedCollection new. 
t c m p D i a A r e a F t R a n g e  add: dia; 

add: ftArea;
add: (ftArea/approxArea); 
add: areaFtCluster.

diaAreaFtRange add: tempDiaAie a F t R a n g e .
Test answer: T o o l D i a  >  '.dia printstring.
Test a n s w e r : '% total M c A r e a >  ',(fi Area/approxArea) printstring.
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"5.T h e  decision about selecting the n u m b e r  of tools for pocket finishing will 
d e p e n d  u p o n  diaRange variation and the percentage of total area to b e  
m a c h i n e d  b y  the tool. T h e  following assumptions have b e e n  m a d e  in the 
tool selection procedure.
(a) If the m i n i m u m  tool diameter from the range is 2 0  or more, then it should be 

selected for finishing the entire cluster.
(b) If the m i n i m u m  tool diameter from the range is less than 10 and the difference, 

m i n  a n d  m a x  is m o r e  than 2 0 m m  and the percentage of area to be m a c h i n e d  b y  m i n  
tool is greater 2 5 % ,  the next higher dia tool should also b e  r e c o m m e n d e d .

(c) A t  the m o m e n t ,  the m e t h o d  r e c o m m e n d s  a m a x i m u m  of t w o  tools"

"Select tool as per the assumption (a)"

pocketTools := OrderedCollection new.

(diaAreaFtRange size =  1 or:[ ((diaAreaFtRange at:l) at:l) > =  2 0  ]) 
ifTrue:[toolStat := 1],

(((diaAreaFtRange at:l) at:l) <  1 0  and:[
(((diaAreaFtRange at:l) at:l) - ((diaAreaFtRange at:2) at:l))abs <  20]) 

ifTrue:[
((diaAreaFtRange at:2)at:3) <  0.25 
ifTrue:[toolStat := 1]].

toolStat =  1
ifTrue:[toolPara := OrdercdCollection new.

toolPara add: ((diaAreaFtRange at:l)at:l). "Tool M i n  D i a  for Pocket m/c" 
toolPara add: ((diaAreaFtRange at:l)at:l). "Tool D i a  =  M i n  D ia for Pocket m/c" 
toolPara add: m c F t g r o u p .  " M e  Features"
pocketTools add: toolPara.
]

ifFalse:["Select the first tool for case (b)" 
toolPara := OrderedCollection new. 
toolPara add: ((diaAreaFtRange at:l)at:l). 
toolPara add: ((diaAreaFtRange at:l)at:l). 
toolPara add: ((diaAreaFtRangc at:l)at:4). 
pocketTools add: toolPara.

"Tool M i n  D i a  for Pocket m/c"
"Tool D i a  =  M i n  D ia for Pocket m/c" 
" M e  Features"

"Select the second tool" 
aCluster := OrderedCollection new. 
toolPara := OrderedCollection new.
2  to: d i a A r e a F t R a n g e  size do:[:i |

aCluster addAll: ((diaAreaFtRange at: i)at:4)].

toolPara add: ((diaAreaFtRange at:l)at:l); "min dia tool" 
add: ((diaAreaFtRange at:2)at:l); "tool dia" 
add: aCluster. "Features for higner dia"
pocketTools add: toolPara].

"6. C h e c k  if the s a m e  depth feature aggrigation causes disjoint 
clusters. If yes, replace aCluster with disjoint Clusters"

pocketTools do:[:each |
disjClusters :- (self brcakCl us ter Element :(r-ach at:3)). 
each removeIndex:3.
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each add: disjClustcrs].

"Get tool machining profile"
(pocketTools size) =  1

ifTrue:[pocketProfiles := OrderedCollection new.
((pocketTools at:l)at:3) do:[:each | pocketProfiles add: (self addFtProf: each datum:

aDatum)].
(pocketTools at:l) add: pocketProfiles.

]•
(pocketTools size) =  2

ifTrue:["Only disjClusters size =  1 case is considered ai the m o m e n t "  
a := ((pocketTools at:2) at3) at:l. 
b  := ((pocketTools at:l) at:3) at:l.

pocketProfiles := OrdercdCollection new.
pocketProfiles add: (self subFtProf: a from: b datum: aDatum).
(pocketTools at:l) add: pocketProfiles.

pocketProfiles := OrderedCollection new.
pocketProfiles add:(self subFtProf: b from: a datum: aDatum).
(pocketTools at:2) add: pocketProfiles.

]•

"pocketTools 

class: a n  EndMilling
mehod: getToolDiaPolygonProf: aSubFeature

"Returns a r e c o m m e n d e d  tool diameter to m a c h i n e  a polygon 
profile (Rectangular at the moment)."
| diaPara t o o l M a x D i a  |

t o o l M a x D i a  := 50.
aSubFeature length <  aSubFeature width 

ifTrue:[diaPara := aSubFeature length] 
ifFalse:[diaPara := aSubFeature width].

(diaPara >- 3.5 and:[diaPara < =  5]) 
ifTrue:[toolMaxDia := 3].

(diaPara > =  5 and:[diaPara < =  10]) 
ifTrue:[toolMaxDia := 6].

(diaPara > =  1 0  and:[diaPara < =  15]) 
ifTrue:[toolMaxDia := 8].

(diaPara > =  15 and:[diaPara < =  20]) 
ifTrue:[toolMaxDia := 12].

(diaPara > =  2 0  and:[diaPara < =  25]) 
ifTrue:[toolMaxDia := 16],

(diaPara > =  2 5  and:[diaPara < =  40]) 
ifTrue:[toolMaxDia := 20].

(diaPara >■= 4 0  and:[diaPara < =  100]) 
ifTrue:[toolMaxDia := 25].

360



(diaPara > =  1 0 0  and:[diaPara < =  200]) 
ifTrue:[toolMaxDia := 30].

diaPara > =  2 0 0  
ifTrue:[toolMaxDia := 50].

/'toolMaxDia 

class: a n  EndMilling
m e t h o d :  ge t T o o l D i a R o u n d P r o f :  aSubFeature

"Returns a r e c o m m e n d e d  tool diameter to m a c h i n e  a circular
profile."
| diaPara t o o l M a x D i a  |

t o o l M a x D i a  := 50.
diaPara := aSubFeature diameter.

(diaPara > =  3.5 and:[diaPara < =  5]) 
ifTrue:[(toolMaxDia := 3)].

(diaPara > =  5.001 and:[diaPara < =  10]) 
ifTrue:[(toolMaxDia := 6)].

(diaPara > =  10.001 and:[diaPara < =  15]) 
ifTruc:[(toolMaxDia := 8 )].

(diaPara > =  15.001 and:[diaPara < =  20]) 
ifTrue:[(toolMaxDia := 12)].

(diaPara > =  20.001 and:[diaPara < =  25]) 
ifTrue:[(toolMaxDia := 16)].

(diaPara > =  25.001 a nd ¡[diaPara < =  40]) 
ifTrue:[(toolMaxDia := 20)].

(diaPara > =  30.001 a nd ¡[diaPara < =  100]) 
ifTrue:[(toolMaxDia := 25)].

(diaPara > =  40.001 a nd ¡[diaPara < =  200]) 
ifTrue:[(toolMaxDia := 30)].

(diaPara > =  55.001 and:[diaPara < =  500]) 
ifTrue:[(toolMaxDia := 50)].

" t o o l M a x D i a

6.2 Detecting tbe same depth tool machining profiles

class: a n  EndMilling
m e t h o d :  breakClusterElement: m c F tgroup

"This m e t h o d  analyses the s a m e  depth feature cluster a n d  forms the cluster elements 
w h i c h  m a y  be joint or disjoint"

|indcx disJointClusters ftExclDcpth c E l e m e n t s  cElementParents |



ftExclDepth := OrderedCollection new. 
disJointClusters := Dictionary new. 

index := 1.

1 to: m c F t g r o u p  size do:[:each | ftExclDepth add: (mcFtgroup at:each)].
[ftExclDepth isEmpty] 
whileFalse:[

cElements := OrderedCollection new. 
cElements add: (ftExclDepth at:l). 
ftExclDepth size > =  2  
ifTrue:[
2  to: ftExclDepth size do:[:i | (((ftExclDepth at:i) sidcParent = =  (cElements at:l))

or:[((ftExclDepth at:i) = =  (cElements at:l) sideParent)]) 
ifTrue:[cElements add:(ftExclDepth at:i)]]]. 

disJointClusters at:index put: cElements. 
index := index + 1. 
ftExclDepth rcmovcAll: cElements].

disJointClusters := disJointClusters asOrderedCollection.

"disJointClusters

6.3 Adding interacting feature profiles

class: a n  EndMilling
method: addFtProf: p E l e m e n t  datum: a D a t u m

"Returns the interacting feature proGle topology as a U n i o n  of feature profiles in a D a t u m  plane"

| clusterLoop int lostEdges all Edges doublelntStat edgeStartPt e d g e E n d P t  n e w  E d g e  n e w  Edg e s  
index sp e p  intPts ival stat slnt elnt d x  dy
toolDia m a x D i a  m i n D i a  c D i a  tlength startTan c n d T a n  tanAng toolDiaAndParea c o n c a v e E d g e  
ftArea approxArea t e m p D i a A r e a R a n g e  range diaAreaRange d i a R a n g e  tempSet pocketTools 
m c T o p o T o o l  |

lostEdges 
clusterLoop 

allEdges 
n e w  Ed g e s  

doublelntStat

:= OrderedCollection new.
:= OrderedCollection new. "for profile topology"
:= OrderedCollection new.
is OrderedCollection new. "Additional Edges d ue to multiple intersections" 
:= 0. " T o  ch e c k  if the edge has double intersection with a Feature"

p E l e m e n t  size 331
ifTrue:[ pEle m e n t  do:[:eachF | (eachF getEloop:aDatum) do:[:eachEdge |clustcrLoop add: 

(eachEdge reinitialise)]]] 
ifFalse:["Do the following"

"1. G e t  all the edges of a cluster"
p E l e m e n t  do:[:eachF | (eachF getEloop:aDatum) do:[:eachEdge (allEdges add: (eachEdge 

reinitialise)]].

"2. C o m p u t e  lost edges in the union of pElcmcnts" 
allEdges do:[: each E d g e  |

1 to: pElc m e n t  size do:[:i | stat :=■ (eachEdge insideFeature: (pElement at:i) datum: aDat u m ) .
stat isNil



ifFalse:[lostEdges add: eachEdge]]].

"3. R e m o v e  lostEdges form allEdges"
Test answer: 'Lost edges n o  >  lostEdges size printstring. 
allEdges removeAll: lostEdges.

"4. C h e c k  if the start and en d  points of remaining edges are inside other features.
If yes, modiify t h e m  to the feature intersection points.'' 
allEdges do:[:edge |

1 to: pEle m e n t  size do:[:i | ((edge startPoint) insideFeature: (pElement at:i) datum:
a D a t u m )  notNil

ifTrue:["Compute intersection &  modi f y  edge e nd point"
(int := edge featurelntersect: (pElement at:i) datum: a D a t u m )  

notNil
ifTrue:[int size =  2

ifTrue:[edge startPoint: (int at:2)]. 
int size >  2
ifTrue:[intPts := OrderedCollection new. 

int do:[:each |(each isKindOf: Ed g e )  
ifFalse:[intPts add: each]].

ival := e d g e  intNearStarl: (intPts at:l) or: 
(intPts at:2).

ival =  1
ifTrue:[edgc startPoint:(intPts at:l)] 
ifFalse:|edge startPoint:(intPts at:2)]]]].

((edge endPoint) insideFeature: (pElement at:i) datum: a D a t u m )  notNil 
ifTruc:["Computc intersection &  modify edge e n d  point"

(int := edge featurelntersect: (pElement at:i) datum: a D a t u m )  
notNil

ifTrue:[int size =  2
ifTrue:[edge endPoint: (int at:2)]. 
int size >  2
ifTrue:[intPts := OrderedCollection new. 

int do:[:each |(each isKindOf: Edg e )  
ifFalse:[intPts add: each]].

ival := e d g e  intNearStart: (intPts at:l) or: 
(intPts at:2). 

ival =  1
ifTrue:[edge endPoint:(intPts at:2)] 
ifFalse:[edge endPoint:(intPts at:l)]]]].

]]■

"5. Generate n e w  edges if edge end points are outside a feature 
but the e d g e  intersects it" 
allEdges do:[:edge |

1 to: pEle m e n t  size do:[:i |
(((edge startPoint) insideFeature: (pElement at:i) d a tum: a D a t u m )  

isNil and:[
((edge endPoint) insidcFcature: ipElemcnt at:i) datum: a D a t u m )  

isNil ])
ifTrue:[(int :« edge featurelntersect: (pElement at:i) datum: 

aDatum)notNil 
ifTrue:] int size >  2 

ifTrue:[
intPts :» OrderedCollection new. 
int do:[:each |(each isKindOf: Edge)
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ifFalse:[intPts add: each]].
ival := edge intNearStart: (intPts at:l) or: (intPts at:2). 
ival =  1
i£True:[sInt := (intPts at:l). 
elnt := (intPts at:2)] 
ifFalse:[sInt := (intPts at:2). 
elnt := (intPts at: 1)].

" D o  the following if ints and edge endpts are difF 
(((edge startPoint x =  slnt x) and:]
(edge startPoint y =  slnt y)]) or:|
((edge endPoint x =  elnt x) and:]
(edge endPoint y =  elnt y)])])

ifFalse:]
n e w  E d g e  := edge reinitialise, 
edge endPoint: slnt. 
n e w  E d g e  startPoint: elnt.
Test answert'Oldedge StartPoint»’, (edge startPoint) x  

printstring,' '.(edge startPoint) y printstring.
Test answert'Oldedge EndPoint >', (edge endPoint) x 

printstring,'', (edge endPoint) y printstring.

Test answer:'Newedge StartPoint»', ( n e w E d g e  startPoint) x 
printstring,' '.(newEdge startPoint) y printstring.

Test answert'Newedge EndPoint » ’, ( n e w E d g e  endPoint) x 
printstring,'', ( n e w E d g e  endPoint) y printstring, 

n e w  Ed g e s  add: newEdge]]]].
]]•

n e w  E d g e s  isEmpty 
ifFalse:[allEdges addAll: n e w  Edges]. 
n e w E d g e s  := Ordered Collection new.

”6. Print vertices in the cluster"
Test a n s w e r : '';

answer: 'Cluster All Edges';
answer: 'Size»»’,(allEdges size) printstring.

1 to: allEdges size do:[:i | Test answer: ’Start-',(allEdges at:i) startPoint x printstring,'', (allEdges
at:i) startPoint y printstring.

Test answer: 'End -'.(allEdges at:i) endPoint x printstring ,' ’, (allEdgcs 
at:i) endPoint y printstring].

"7. F r o m  allEdgcs check if any edge still has single or double intersection 
with a Feature" 
allEdges do:[:edge |

1 to: p E l e m e n t  size do:[:i | ((edge startPoint) insideFcature: (pElement at:i) d a t u m :
a D a t u m )  notNil

ifTruc:]"Compute intersection &  modify edge end point"
(int := edge featurelntersec': (pElement at:i) datum: a D a t u m )  

notNil
ifTnie:[int size =  2

ifTrue:[edge startPoint: (int at:2)]. 
int size »  2
ifTrue:]intPts :■ OrderedCollection new. 

int do:[:each |(each isKindOf: Edge) 
ifFalse:[intPts add: each]].
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ival := edge intNearStart: (intPts at:l) or: 
(intPts at:2).

ival =  1
i£True:[edge startPoint:(intPts at:l)] 
i£False:[edge startPoint:(intPts at:2)]]]].

((edge endPoint) insideFeature: (pElement at:i) datum: a D a t u m )  notNil 
i£True:["Compute intersection &  modify e d g e  e nd point"

(int := edge featurelntersect: (pElement at:i) d a tum: a D a t u m )  
notNil

ifTrue:[int size =  2
ifTrue:[edge endPoint: (int at:2)]. 
int size >  2
ifTrue:[intPts := OrderedCollection new. 

int do:[:each |(each isKindOf: Edg e )  
ifFalse:[intPts add: each]].

ival := edge intNearStart: (intPts at:l) or: 
(intPts at:2). 

ival =  1
ifTrue:[edge endPoint:(intPts at:2)] 
ifFalse:[edge endPoint:(intPts at:l)]]]].

(int := edge featurelnteisect: (pElement at:i) datum: aDatum)notNil 
ifTrue:[ int size >  2  

ifTrue:]
intPts := OrderedCollection new. 
int do:[:each |(each isKindOf: Edge) 
ifFalse:[intPts add: each]].

ival := edge intNearStart: (intPts at:l) or: (intPts at:2). 
ival =  1
ifTrue:[sInt := (intPts at:l).

elnt := (intPts at:2)] 
ifFalse:[sInt := (intPts at:2). 

elnt := (intPts at:l)].

" D o  the following if ints and edge endpts are diff”
(((edge startPoint x =  slnt x) and:]
(edge startPoint y =  slnt y)]) or:|
((edge endPoint x =  elnt x) and:]
(edge endPoint y =  elnt y)])])

ifFalse:] n e w E d g e  := edge reinitialise, 
edge endPoint: slnt. 
n e w E d g e  startPoint: elnt.
Test answer:'01dedge StartPoint>', (edge startPoint) x 

printstring,' '.(edge startPoint) y printstring.
Test answer:'Otdedge EndPoint >', (edge endPoint) x 

printstring,'', (edge endPoint) y printstring.

Test answer:'Newedge StartPoint>\ ( n e w E d g e  startPoint) x 
printstring,' '.(newEdge startPoint) y printstring.

Test a n s w e r ' N e w e d g e  EndPoint >', ( n e w E d g e  endPoint) x 
printstring,'', ( n e w E d g e  endPoint) y  printstring, 

n e w  Ed g e s  add: n e w E d g e .  
doublelntStat := 1]]]]].

doublelntStat =  1



ifTrue:[allEdges addAll: n e w  Edges],
Test answer: 'doublelntStat’, doublelntStat printstring.

"8. Reorder edges within the cluster"
[allEdges isEmpty] 
whileFalse:[
clusterLoop add: (allEdges at:l). 
allEdges remove: (allEdges at:l). 
index := 1.
allEdges size timesRepeat:[
allEdges do:[:edge | d x  := ((clusterLoop at: index) endPoint) x - (edge startPoint) x. 

d y  := ((clusterLoop at: index) endPoint) y - (edge startPoint) y.
((dx abs) < =  0.01 and:[(dy abs) < =  0.01]) 
i£True:[clusterLoop add: edge. 

allEdges remove: edge, 
index := index +1]]].

]•

"9. Print reordered vertices"
Test a n s w e r : '

answer: Re o r d e r e d  Edges';
answer: ’Size»',(clusterLoop size) printstring.

1 to: clusterLoop size do:[:i | Test answer: 'Start-',(clusterLoop at:i) startPoint x printstring,'
(clusterLoop at:i) startPoint y printstring.

Test answer: 'End -'.(clusterLoop at:i) endPoint x printstring ,' 
(clusterLoop at:i) endPoint y printstring.

]•
]. "For pElement >  1 end"

"clusterLoop

6.4 Subtracting interacting feature profiles 

class: an EndMilling
method: s u b F t P r o f B a k :  profFtl from: profFt2 datum: a D a t u m

"Returns the profile topology w h i c h  is a result of 
subtracting profFtl(set of features) from profFt2(set of features) 
feature topology"

Iprofl prof2 prof3 allFts lostEdges int n e w E d g e s  n e w E d g e  intEdgc 
intPts ival slnt elnt intEdges clusterLoop index d x  d y  partialEdges 
i m m e r s e d  E d g e s  t e m p  sPt ePt intPts thruEdges]

lostEdges
n e w E d g e s
i m m e r s e d  Ed g e s
clusterLoop
partialEdges
thruEdges

=  Ordered Collection new. 
=  Ordered Collection new. 
=  O  rdered Col lection new. 
=  Ordered Collection new. 
=  Set new.
=  OrderedCollection new.

"1. R e m o v e  c o m m o n  features between profFtl a nd profFt2 from profFt2" 
profFtl do:[:ftl |

profFt2 do:[:ft2 | ftl = -  ft2
ifTrue:[profFt2 remove: ft2]]].



"2. G et profiles of profFtl and profFt2"
profl := self addFtProf: profFtl d a t u m :  aD a t u m .  
prof2 := self addFtProf: profFt2 d a tum: aD a t u m .

"3. G et additive profile of profFtl profFt2." 
allFts := Set new.  
allFls addAll: profFtl; 

addAll: profFt2.
allFts := allFts asOrderedCollection.
prof3 := self addFtProf: allFts d a tum: aD a t u m .

"4. C o m p a r e  start a n d  end points of prof2 and prof3.
If both ends exist in either prof, the edge is part of subtraction topo.
If o n e  en d  exists in either prof, that edge of prof3 is a part of subtraction topo.
If the edge in prof2 and p r o D  belongs the s a m e  curve, then that edge is a part of subtraction 

topo."
prof2 do:[:edge |

1 to: prof3 size do:[:i |
((((edge startPoint) x - ((prof3 at:i) startPoint) x) abs < =  0.01 and;]
((edge startPoint) y - ((prof3 at:i) startPoint) y) abs < =  0.01])

°r:[
(((edge endPoint) x - ((prof3 at:i) endPoint) x) abs < =  0.01 and:[
((edge endPoint) y - ((prof3 at:i) endPoint) y) abs < =  0.01])]) 

ifTrue:[newEdges add: (prof3 at:i)].

((((edge curve sPoint) x  - ((prof3 at:i) curve sPoint) x) abs < =  0.01 and:[
((edge curve sPoint) y - ((prof3 at:i) curve sPoint) y) abs < =  0.01]) 
and:[
(((edge curve ePoint) x  - ((prof3 at:i) curve ePoint) x) abs < =  0.01 and:[
((edge curve ePoint) y  - ((prof3 at:i) curve ePoint) )) abs < =  0.01])]) 

ifTruc:[newEdges add: ( p r o D  at:i)].
.]]•

"5. Get completely and partially i m m e r s e d  edges of profl in profFt2.
T r i m  t h e m  a n d  reverse their direction"

profl do:[:edge |
profFt2 do:[:aFt | (((edge startPoint) insideFeature: aFt datum: a D a t u m )  notNil and:] 

((edge endPoint) insideFcature: aFt datum: a D a t u m )  notNil]) 
ifTrue:[temp := (edge startPoint). 

e d g e  startPoint:(edge endPoint). 
e d g e  endPoint: temp, 
i m m e r s e d  E d g e s  add: edge] 

ifFalse:]
((edge startPoint) insideFeature: aFt datum: a D a t u m )  notNil 
ifTrue:[new E d g e s  do:[:anEdge |

(int:= (edge intersect: anEdge)) notNil 
ifTrue:[Test answer:Tartial int detected', 

e d g e  endPoint:(edge startPoint). 
e d g e  startPoint: (int at:l)]]. 
partial Edg e s  add: edge].

((edge endPoint) insideFeature: aFt datum: a D a t u m )  notNil 
ifTrue:[newEdges do:[:anEdgc |

(int:—  (edge intersect: anEdge)) notNil 
ifTrue:[Test answer:Tartial int detected', 

e d g e  startPoint: (edge endPoint).
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edge endPoint: (int at:l)]j. 
partialEdges add: edge]].

]]•
partialEdges := partialEdges asOrderedCollection.

"6. G et i m m e r s e d  edges of profl in profFt2 a nd the ones w h o s e  start &  cndPoints 
are outside profFt2" 
profl do:[:edge |

profFt2 do:[:aFt |
(((edge startPoint) insideFeature: aFt datum: a D a t u m )  isNil and:[ 
((edge endPoint) insideFeature: aFt datum: a D a t u m )  isNil]) 
ifTruc:[

(int := e d g e  featurelntersect:aFt datum: a D a t u m )  notNil 
ifTrue:[intPts := OrderedCollection new. 

int do:[:each |(each isKindOf: Edge) 
ifFalsc:[intPts add: each]].

ival := edge intNearStart: (intPts at:l) or: (intPts at:2). 
ival =  1
ifTrue:[sPt := (intPts at:2).

ePt := (intPts at:l)] 
ifFalse:[sPt := (intPts at:l).

ePt := (intPts at:2)J. 
n e w  E d g e  := edge reinitialise. 
n e w E d g e  startPoint: sPt;

endPoint: ePt. 
thruEdges add: newEdge].

]]]•

n e w  E d g e s  addAll: i m m e r s e d  Edges, 
n e w  E d g e s  addAll: partialEdges. 
n e w  E d g e s  addAll: thruEdges.

"7. Re o r d e r  n e w E d g e s "

[ n e w E d g e s  isEmpty] 
whileFalse:[
clusterLoop add: ( n e w E d g e s  at:l). 
n e w E d g e s  remove: ( n e w E d g e s  at:l). 
index := 1.
n e w E d g e s  size timesRepeat:[
n e w E d g e s  do:[:edge | d x  := ((clusterLoop at: index) endPoint) x - (edge startPoint) x. 

d y  := ((clusterLoop at: index) endPoint) y - (edge startPoint) y.
((dx abs) < =  0.01 and:[(dy abs) < »  0.01]) 
ifTrue:[clusterLoop add: edge. 

n e w E d g e s  remove: edge, 
index :« index +1]]].

]•

"8. Print Vetiices of subtractive edges."

Test a n s w e r : '
answer: 'Subtractive edge vertices'; 
answer: 'Size»',(clusterLoop size) printstring.

1 to: clusterLoop size do:[:i | Test answer: 'Start-',(clusterLoop at:i) startPoint x printstring,'', 
(clusterLoop at:i) startPoint / printstring.

368



1 to: clusterLoop size do:[:i | Test answer: 'Start-',(clusterLoop at:i) startPoint x printstring, ' 
(clusterLoop at:i) startPoint y printstring.

Test answer: 'End (clusterLoop atri) endPoint x printstring , ' (clusterLoop 
atri) endPoint y  printstring.

]•

AclusterLoop

7. Process Plan Generation for cluster pockets

class: EndMilling
m e t h o d :  dusterPocket: subCluster datum: a D a m m

"Generates cluster pocket machining process"
| mcFeatures m c F t g r o u p  index s a m e D p r o c  aProcess finProcess |

" l . M a p  Cluster Features for machining"
mcFeatures := self mapClusterFeaturessubCluster d a tum: aDatum.

"2.For each s a m e  depth mcFeature cluster, generate a  pocket
profile Finishing Process. T h e  finishing process searches the roughing process."
index := 1.
mcFeatures size timesRepcat:[mcFtgroup := mcFeatures atrindex.

s a m e D p r o c  := (EndMilling n e w )  cPocketFinishlnitialise: m c F t g r o u p  datum: 
a Datum.

index =  1
ifTrue:[aProcess := sameDproc]. 
index >  1
ifTrue:[aProcess parentOf: s a m e D p r o c .

s a m e D p r o c  childOf: aProcess]. 
index := index +  1.
]•

'aProcess

class: a n  EndMilling
method: cPocketFinishlnitialise: mc F t g r o u p  datum: a D a t u m

"Initialises finish pocket Milling operation for the s a m e  depth m a p p e d  features"

| stockForOpr stockLeft depth aFt finStk index topologyAndTool 
aProc topology toolPara tools ftProfiles pockctProfiles c o m e r O p  
finishOp finshProc comerStatus largestToolDiaOpI

finishOp := OrderedCollection new. "to record pocket finishing operations" 
tools := m c F t g r o u p  at:3.

depth :» m c F t g r o u p  at:2. "Relative depth" 
aFt :■ ( m c F t g r o u p  at:4) aril.

stockForOpr :« aFt polygonstockValue. ” StockType(solid)' ZStock(aFt depth)' ’SideStock(solid)'" 
StockForOpr at:2 put:depth. 
finStk :- 0.4.
stockLeft :» OrderedCollection new.
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stockLeft add: 0;
add: 0; 
add: 0.

stockLeft at:l put: (stockForOpr at:l);
at:2 put: (stockForOpr at:2) - finStk; 
at:3 put: (stockForOpr at:3).

"Assign c o m m o n  attributes of a pocket operation" 
self oprType: 'Finish'; 
preMcState: stockLeft; 

oprStock: finStk. 
self assignDepthOfCut.

self initialize: aFt. "For reading a  d a t u m  to assign s e t U p N o ”

"Assign tool parameters and pocket profile/s to the operation" 
cornerstatus := 0.

1 to: tools size do:[:i |
"Initialise operation instance of self with c o m m o n  attributes, except 
tool and topology"

aP r o c  := (self reinitialise) initialize: aFt.

"Assign tool a n d  feature topology for the operation"

aP r o c  mcFeatureTopology: ((tools at:i) at:4); 
toolFromToolpara: (tools at:i); 

cPocketMillCycleLocs: m c F t g r o u p  datum: a Datum.

corners tatus =  0
ifTrue:[ Test answer: 'Profile C o n c a v e  A n g l e  Test'.

" C h e c k  finishOp profile for c o m e r  finishing operation.
For each profile check the angle be t w e e n  tangents, if the
angle is concave, a s s u m e  1 5 m m  c o m e r  rad and initialise n e w  operation."

(aProc mcFeatureTopology) do:[:each | (aProc angleConcaveEdge: each)
isNil

ifFalse:[
c o m e r O p  : » (self reinitialise) initialize: aFt. 
c o m c r O p  getComerFinishTool:(tools at:i). 
c o m e r O p  o p r N a m e :  ' C o m e r  Finishing'. 
aProc parentOf: c o m e r O p .  
c o m e r O p  childOf: aProc. 
coraerStatus :- 1.
]]•

finishOp add: aProc.
)•

" C h e c k  the highest s a m e  depth finishing tool dia from finishOp. M a k e  it 
the operation parent node"

(finishOp size) >  1
ifTrue:[largestToolDiaOp :* self getLargestToolDiaOp: finishOp. 

finishOp remove: largestToolDiaOp. 
finishOp do:[:each | e a c h  childOf: largestToolDiaOp.
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largestToolDiaOp parentOf: each]] 
i£False:[largestToolDiaOp := finishOp at:l].

" C h e c k  roughing operation requirements of a cluster in the context of 
r e c o m m e n d e d  finishing operation/s."

rProc := largestToolDiaOp cPocketRoughlnihalise: m c F t g r o u p  datum: aD a t u m .

”3. Assign roughing o p  as a child node of finishing"

largestToolDiaOp parentOf: rProc. 
rProc childOf: largestToolDiaOp.

"largestToolDiaOp

class: E n d Milling
method:cPocketRoughlnitialise: m c F t g r o u p  d a t u m :  a D a t u m

"Generates the s a m e  depth cluster roughing operation in the context of 
r e c o m m e n d e d  finishing operation.”

|rProc rStock disjointHoles dProc rTopology|

rTopology := OrderedCollection new. "Pocket R o u g h i n g  topology minus disjointHoles"

”1. C h e c k  if the roughing operation is necessary"
(self preMcState at:2) >  0
ifFalse:[Test answer: (self oprNamejprintString, '> '.'No Stock, Pocket R o u g h i n g  not 

required']

ifTrue:["2. C h e c k  if there are a ny disjoint holes in the cluster"
disjointHoles := self gctDisjHoles:(mcFtgroup at:4). " T h e  holes are also < =  3 0  m m  dia"

"3. Drill the disjoint holes" 
disjointHoles i s Empty

ifFalse:[dProc := SlotDrilling holeCluster: disjointHoles.
" U p p e n d  the plungePt of dproc"
dP r o c  plungePt: ((dProc positionPt at:l) at:3) - (mcFtgroup at:l)

+  0.4. “ Finish Stock”

" 3 A . C o m p u t e  the pocket roughing topology b y  subtracting disjointHoles" 
(((mcFtgroup at: 3) at:l) at:3) do:[:eachGroup |

rTopology add: (self subFtProf: disjointHoles from: ea c h G r o u p  
datum: aDatum)]].

"4. E n d  mill the remaining area"

disjointHoles isEmpty
ifTrue:[rProc :■ self cPocketRoughlrutialise] 
ifFalse:[rProc:» self cPocketRoughlnitialise. 

rProc mcFeatureTopology: rTopology. 
rProc parentOf: dProc. 
d P r o c  childOf: rProc].

ArProc]
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class: SlotDrilling
m e t h o d :  holeClusten holes

"Drills a flat bottom hole for a holePattem”
| proc tool toolDia m i n D i a  tempSet diaRange holeTopology a D a t u m  | 

tempSet := Set new. 
diaRange := OrderedCollection new. 

tool := OrderedCollection new. 
a D a t u m  := (holes at:l) datum.

"1. G et m i n i m u m  toolDia for slot drilling.
A s s u m e  tool dia =  m i n  Hole dia - 0.4"

holes do:[:each | te m p S e t  add: (each diameter printstring) asFloat], 
tempSet := tempSet asOrderedCollection.

[tempSet isEmpty]
whileFalse:{ m i n D i a  := (tempSet at:l). 

tempSet do:[:dia | dia <  m i n D i a
ifTruc:[minDia := dia]]. 

diaR a n g e  add: minDia. 
tempSet re m o v e :  minDia.
]■

m i n D i a  := diaR a n g e  at: 1. 
tool add: ’EndMill'; 

add: ( m i n D i a  - 0.8); 
add: ( m i n D i a  - 0.8); 
add: (m i n D i a  - 0.8); 
add: (holes at:l) depth, 

tool := tool as Array.

"2. Initialise slot drilling operation” 
proc:= SlotDrilling n e w .  
proc initialize: (holes at:l). 

proc oprType: 'Rough'; 
oprStock: ( m i n D i a  - 0.4)/2; 
toolForOpr: tool; 

drillCycleLocs: holes.
"proc

class: an EndMilling 
m e t h o d :  cPocketRoughlnitialise

"This m e t h o d  initialises the s a m e  depth cluster roughing operation in the context of 
r e c o m m e n d e d  finishing operation."
|rProc rStock |

”1. C h e c k  if the roughing operation is necessary"

(self preMcState at:2) >  0
ifFalse:[Test answer: (self oprName)printString, ’>  ','No Stock, Pocket R o u g h i n g  not 

required']
ifTrue:[”l. initialise a  roughing” 

rProc :« self reinitialise.

”2. Assign relevant roughing attributes” 
rStock :■ self preMcState at:2.
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(rProc preMcState) at:2 put: 0. 
rProc oprTypc:'Rough'; 

oprStock: rStock;
zWorkPlane: (self z W o r k P l a n e ) +  (self oprStock). 

rProc assignDepthOfCut 
"rProc].

class: a n  EndMilling 
m e t h o d :  reinitialise

"Returns the instance of self with standard attributes"
|opr |
opr := EndMilling new. 
o pr parentlnitialise.

opr oprStock: self oprStock;
processMode: self processMode;

s e t U p N o : self setUpNo;
oprType: self oprType;
o p r N a m e : self o p r N a m e ;

preMcState: self preMcState;
reqdPosAccy: self reqdPosAccy;

toolForOpr: self toolForOpr;
m c F o r O p r : self m c F o t O p r ;

depthOfCut: self depthOfCut;
m c F e a t u r e T o p o l o g y : self mcFeatureTopology;

positionPt: self positionPt;
clearPlane: self clearPlane;

approachPlane: self approachPlane;
retractPlane: self retractPlane;

refPlane: self refPlane;
z W o r k P l a n e : self zWorkPlane.

"opr

class: a n  EndMilling
m e t h o d :  getComerFinishTool: aToolpara
"returns tool parameters for Pocket c o m e r  finishing"
| tool Values toolHgt |

" F o r m a t : ( ' C o m e r E n d M i U '  'MinDia' T)ia' ’M a x D i a ’ 'MinHgt')" 
toolHgt := (aToolpara at:5) +  10. ”1 0  m m  clearance A s s u m e d "

toolValues := OrderedCollection new. 
toolValues add: ’EndMill'; 

add: 2.0; 
add: 3.0; 
add: 3.0; 
add: toolHgt.

toolForOpr :» toolValues as Array 
toolFromTootpara: aToolpara

"Assigns the tool for operation to ma c h i n e  a cluster pocket"
| toolValues toolHgt |
"Format: CEndMill' 'MinDia' 'Dia' 'MaxDia' 'MinHgt')"

toolHgt : « (aToolpara at:5)+10. " 10 m m  clearance A s s u m e d "  
toolValues :- OrderedCollection new. 
toolValues add: 'EndMill';



\

add: (aToolpara at:l); 
add: (aToolpara at:2); 
add: (aToolpara at:2); 
add: toolHgt.

toolForOpr := toolValues as Array

class: a Milling
m e t h o d :  cPocketMillCycleLocs: clusterFeatures datum: a D a t u m  
"Returns the cluster pocketMill cycle m a c h i n i n g  planes”

(aClusterParent origin at:l) -> Absolute depth of a feature from entry face 
(aClusterParent origin at:2) -> Relative depth of a feature within the cluster"

| aClusterParent faceDepth |

positionPt := nil.
"Select a feature f r o m  the cluster to decide pocketMill cycle machining planes"

aClusterParent := nil.
(clusterFeatures at:4) size =  1

ifTrue:[aClusterParent := (clusterFeatures at:4) at:l] 
ifFalse:[(clusterFeatures at:4) do:[:each |

(each intParentFeature)notNil 
ifTrue:[aQusterParent := each]]]. 

aClusterParent isNil
ifTrue:[aClusterParent := (clusterFeatures at:4) at:!].

positionPt := OrderedCollection new.
(aClusterParent isKindOf: Pocket) 

ifTrue:[
positionPt add:(aClusterParent origin at:l) +  ((aClusterParent length)/2); "pocket centre” 

add:(aClustcrParent origin at:2) + ((aClusterParent width)/2); 
add:(aClusterParent origin at:3)].

((aClusterParent isKindOf: HoleBlind) or:[(aClusterParent isKindOf: HoleThrough)]) 
ifTrue:[

positionPt add:(aClusterParent origin at:l);
add:(aClusterParcnt origin at:2); 
add:(aClusterParent origin at:3)].

positionPt as Array.
(positionPt at:3).
refPlanc - ((clusterFeatures at:l)-(clusterFcaturcs at:2)>.
:= refPlane +  20.0.
:= refPlane - ((self preMcState at:2) + (self oprStock)).
= approachPlane.
> retractPlanc +  50.0.

positionPt :=
refPlane :=
refPlane :=
approachPlane 
z W o r k P l a n e  
rctractPlane :i
clearPlane :>

374



8. Process Plan Report Generation

class: a  Product C o m  
m e t h o d :  s h o w C o m p o n e n t P r o c e s s

"Displays a C o m p o n e n t  machining process”

(curProduct isKindOf: Co m p o n e n t )  
i£True:[curProduct process isEmpty

ifTrue:[ (curProduct withAllChildren isEmpty) 
i£False:[curProduct printAutoProcess]

]

i£False:[curProduct process do: [:each |
(each i s M e m b e r O f :  MfgProcess)

ifTrue:[Test answer: curProduct n a m e , ' M a c h ining Process Plan'; 
answer: 'Batch Quantity : '.each batchQty printstring; 
answer: 'SetUp N o : ', each s e t U p N o  printstring,'; Fixture F o r  SetUp: 

'.each GxtureForOpr;
a n s w e r : '

]
i£False:[Test answer: 'Opr N o: '.each f tOprNo printstring,'; O p r  N a m e :  '.each 

o p r N a m e .
each toolForOpr isNil i£False:[
Test answer: T o o l  For Opr: '.each t o o lClassName,'; Tool Dia: '.each 

toolDiameter printstring,'; Tool M i n  Hgt: '.each 
toolMinHgt printstring].

Test answer:
]]]]

class: a C o m p o n e n t  
method: printAutoProcess

"prints a n  auto process of a C o m p o n e n t  instance"
I s e t U p N u m s  addFtrs p r o cSetUp subChildren allSubChildren nextSubChildren workMatlInst| 
s e t U p N u m s  := #(1 2  3  4  5  6). 
nextSubChildren := OrderedCollection new.

"1. G et all the additive features of a c o m ponent" 
addFtrs := self s h o w  All A d d  Features. 
addFtrs i sEmpty

ifTrue:[Test answer: self name, 'No additive features in the model!'] 
ifFalse:[Test answer: 'Automated Process Plan';

answer: ' C o m p o n e n t  N a m e :  '¿elf name.

(work M a t l l n s t :» Material getMatllnst: (self showCom p o n e n t l n s t )  material) isNil

ifFalse:[Test answer: ' C o m p o n e n t  Material: '.workMatllnst na m e ;
answer: 'Matl Description: '.workMatllnst description,' ','Matl Condition: 

'.workMatllnst conditionDescr;
answer: 'Material Specifications: '.workMatllnst spec,' '.'Material Hardness: 

'.workMatllnst hardness priritStringj.
Test a n s w e r : ''.

s e t U p N u m s  do:[:setUpNumber|
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addFtrs do:[:addFtr |
(addFtr matchSetUp:setUpNumber)isNil

ifFalse:[Test answer: 'SetUp N o : s e t U p N u m b e r  printstring; 
answer: 'Fixture For S e t U p : ( s e l f  getFixture: s e t U p N u m b e r ) ; 
an s w e r : '

addFtr printFtProcess: s e t U p N u m b e r .
subChildren := addFtr g e t S u b C h i l d r e n S a m e D a t u m :  (self g e t D a t u m :  

s e t U pNumber).
allSubChildren := addFtr getAllSubChildrenSameDatum: (self 

g e t D a t u m :  setUpNumber).
[allSubChildren isEmpty]

whileFalse: [subChildren do:[:aFeature |
aFeature printFtProcess: s e t U p N u m b e r .
(aFeature withAUChildren) isEmpty 
ifFalse:[nextSubChildren addAll: (aFeature 

getSubChildrenSameDatum:(self getDatum: setUpNumber))].
]•

allSubChildren removeAll: subChildren. 
subChildren := nextSubChildren.

]]]]]

class: a Feature
method: printFtProcess: s e t U p N u m  
"Prints the feature process/cs in a setUpNo"
|option intCluster| 

option := 1.
(self process isEmpty) 

ifTrue:[,'nil]
ifFalse:[((self process at:l) s e t U p N o  =  s e t U p N u m )  

ifFalse:["nil]].

(intCluster := self sidelnteraction) isNil "Side interacting set of features" 
ifTruc:[
(self process) size >  1

ifTrue:[Test answer:(self process) size printstring,' ’.'Options Exist to m achine '.self n a m e ,  
self process do:[:each|

Test answcr:'Option no: '.option printstring, 
each printProcess: self, 
option option +  1]]

ifFalse:[Tcst answer: 'Machining Process for '.self name.
(self process at:l) printProcess: self]]

ifFalse:[
Test answer: (intCluster collect:[:i | i n a m e ] )  as Array printstring.
Test answer: T h e  ab o v e  features form a c o m p l e x  pocket d ue to feature interaction'. 
Test answer: M a c h i n i n g  process:'.
(self process at:l) printClusterProcess:self.

]

class: a mfgProcess
method: getClusterProcScq
"returns the reordered collection of interacting feature cluster process 
operation s e q u e n c e  including self"
| o p N o  rcordcrOps roughOprs GnishOprs | 

o p N o  :« 1.
reorderOps :■ OrderedCollection new.
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roughOprs := OrderedCollection new. 
finishOprs := OrderedCollection new.

self withAllChildren do:[:each |((each o p r T y p e  =  'Finish') or:[ (each o p r N a m e  =  'Corner Finish')]) 
ifTrue:[finishOprs add:each] 
ifFalse:[roughOprs add:each]].

finishOprs addFirst: self. 
reorderOps addAll: roughOprs; 

addAll: finishOprs.

reorderOps do:[:each | each ftOprNo; o p N o .
o p N o  := o p N o  +  1].

'reorderOps

class: a M f g P r o c e s s
method: printClusterProcess: aFeature 
"prints the cluster process attributes o n  the text pane."

self getClusterProcSeq do: [:each |
Test a n s w e r : ''.
Test answer: 'Opr N o :  '.each ft O p r N o  printstring,'; O p r  N a m e :  '.(each 

oprType),' '.(each o p r N a m e )  printstring.
(each preccdsOpr) isNil 

ifFalse:[each precedsOpr =  'Parent Finish'
ifTrue:[Test answer: (each oprType),' '.(each o p r N a m e )  printstring,’', 

' M U S T  P R E C E D E ', (aFeature childOf) n a m e , ' Finishing'], 
each precedsOpr ='Parent Operation' 
ifTrue:[Test answer: (each oprType),' '.(each o p r N a m e )  printstring,'', 

' M U S T  P R E C E D E ', (aFeature childOf) n a m e , ' Operation'].
]■

(each toolForOpr) isNil
ifFalse:[Test answer: T o o l  For Opr: '.(each toolForOpr) asArray printstring], 

(each speed) isNil
ifFalse:[Test answer: ' R e c o m m e n d e d  Cutting Speed: '.(each speed) 

printstring,' ','Feed: '.(each feed) printstring].
(each m c F o r O p r )  isNil
ifFalse:[Test answer: 'Machine For Opr: '.(each m c F o r O p r )  printstring].

"Output Approach, Retract, Clear an d  Z w o r k  plane information"
Test answer:'PositionPt : '.each positionPt printstring;

answer:'ApproachPlane: '.each approachPlane printString; 
answer:'ZWorkPlane : '.each z W o r k P l a n e  printstring; 
answer:'RetractPlane : '.each retractPlane printstring; 
answer:'ClearPlane : '.each cleat Plane printstring; 
answer:".

(each mcFeatureTopology) isNil 
ifFalse:[Test a n s w e r : '

Test answer: 'Edge profile for the operation:'.
(each mcFeatureTopology) do:[:aTopo |

Test answer: (aTo p o  collect:] :edge |edge curve]) asArray
printstring.

Test answer: 'Edge profile details:’.
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Test answer: 'Edge ’,i printstring,':',
(edge curve) printstring.

Test answer: 'Start Point: '.((edge startPoint x)
printFraction:3),\ '.((edge startPoint y) 
printF action:3),', '.((edge startPoint z) 
printFraction:3).

Test answer: 'End Point: '.((edge endPoint) x
printFraction:3),', '.((edge endPoint) y 
printFraction:3),\ '.((edge endPoint) z 
printFraction J).

(edge curve isKindOf: Arc)
i£True:[Test answer: 'Arc Origin : '.((edge curve orgPoint) x 

printFraction:3),', '.((edge curve orgPoint) 
printFraction-3),', '.((edge curve orgPoint) 
printFraction:3).

Test answer: 'Arc Radius : '.((edge curve 
radius)printFraction:3)].

Test an s w e r : '']]]].

1 to: aTopo size do:| :i | edge := (aTopo at:i).

class: a M f gProcess 
method: getClusterProcSeq

"returns the reordered collection of interacting feature cluster process 
operation sequence"
| o p N o  reorderOps drillOprs roughOpts GnishOprs| 

o p N o  := 1.
reorderOps := OrderedCollection new. 
drillOprs := OrderedCollection new. 
roughOprs := OrderedCollection new.
O m s h O p r s  := OrderedCollection new.

self w i t h A U C h i l d r e n  do:[:each |((each o p r T y p e  =  'Finish') or:[ (each o p r N a m e  =  'Corner Finish')]) 
ifTrue:[finishOprs add: each]]. 

fjnishOprs addFirst: self.

self wit h A U C h i l d r e n  do:[:each | each o prType =  H o u g h '  
ifTrue:[(each isKindOf: SlotDrilling) 

ifTrue:[drillOprs add: each] 
ifFalse:[roughOprs add: each]]].

drillOprs :*= drillOprs asArray. 
r o u ghOprs := ro u g h O p r s  asAiray. 
finishOprs := finishOprs asArray.

drillOprs is E m p t y
ifFalse:[reorderOps addAll: drillOprs].

reorderOps addAll: roughOprs; 
addAll: finishOprs.

reordcrOps do:[:each | each ftOprNo: op N o .
o p N o  :« o p N o  +  1].

"reorderOps
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9.2 Feature Report file for TestComp4

★ printing 17 06 Pocket_Rectangularl7 03_Il

class :
class : Pocket Rectangular library : CVOBJECTS
classtype : Feature timestamp : 07-26-96

12:40
static attributes :

BooleanOp Operation = Subtract
attributes :

Workpiece Workpiece = 2801
Name Representation = rep
CPlane Orientation id = 15

name = RIGHT
i X = 0.000000e+00

y = 1.000000e+00
Z = 0.000000e+00

j X = 0.000000e+00
y - 0.000000e+00
Z = 1.000000e+00

k x * 1.000000e+00
y = 0.000000e+00
Z = 0.000000e+00

Location Origin X = 3.000000e+02
y = 7.500000e+01
Z = 3.500000e+01

ApplyType Application = Extend
string rawMatlCondition = Solid
Real surfFinish = 2.000000e+00
String mcNotmc = Y
String atAngle * nil
String bottom = nil
String in = nil
String intFeature - self
string left = nil
string on = nil
String out = nil
String past = nil
String right = nil
String to = nil
String top = nil
Face EntryFace = 2545
String childof = Plate53 11
Length PocketLength - 5.000000e+01

millimeters
Length PocketWidth - 3.000000e+01

millimeters
Length PocketDepth - 2.000000e+01

millimeters
String TolPocketLength - 0.1 / - 0.1
String TolPocketWidth - 0.1 / - 0.1
String TolPocketDepth - 0.1 / - 0.1

**★★★ printing 487 Hole_Blind484_Il

class x
class : Hole Blind library : CVOBJECTS
classtype : Feature timestamp : 07-26-96

12:42
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Subtractstatic attributes s
BooleanOp Operation 

attributes :
Workpiece Workpiece 
Name 
CPlane

Representation
Orientation

Location Origin

ApplyType
String
Real
String
String
string
String
String
String
String
String
String
String
String
String
Face
String
Diameter

millimeters
Length

millimeters
String
string

Application
rawMatlCondition
surfFinish
mcNotmc
atAngle
bottom
in
intFeature
left
on
out
past
right
to
top
Entryrace
childOf
HoleDiameter
Depth
TolHoleDiameter
TolDepth

printing 594 Hole_Blind484_I2

class :
class : Hole_Blind 
classtype i Feature

12:42
static attributes :

BooleanOp Operation 
attributes :

Workpiece 
Name 
CPlane

Workpiece
Representation
Orientation

= 2801 
= rep 

id = 6 
name = TOP 
i x = 1.000000e+00 

y *= 0.000000e+00 
z = 0.000000e+00 

j x « 0.000000e+00 
y = 1 .000000e+00 
z = 0.000000e+00 

k x = 0.000000e+00 
y = 0.000000e+00 
z = 1.000000e+00 
x = 1.500000e+02 
y = 1.000000e+02
z - 1.000000e+02

= Extend 
= Solid
- 2.000000e+00 
= Y
= nil 
= nil
* nil 
=■ self 
= nil
- nil 
= nil
- nil
* nil
- nil 
= nil 
= 2569
= plateS3_I1 
« 1.000000e+02 -
» 6.000000e+01 =
-  0 . 1  /  -  0 . 1  
-  0.1 /  -  0.1

library : CVOBJECTS 
timestamp : 07-26-96

- Subtract
- 2801 
- rep

id - 6 
name - TOP 
i x - 1 .000000e+00 

y - 0.000000e+00 
z - 0.OOOOOOo+OO 

j x - 0.000000e+C0 
y - 1.000000e+00 
Z - 0.000000e+00 

k x ■ 0.000000e+00 
y - 0.000000e+00
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z = 1.000000e+00
Location Origin X = 1.500000e+02

y = 1.500000e+02
z = 1.000000e+02

ApplyType Application = Extend
String rawMatlCondition = Solid
Real surfFinish = 2.000000e+00
String mcNotmc = Y
String atAngle = nil
String bottom = nil
String in = nil
String intFeature s

Hole_Blind4 84_ 11
String left = nil
String on = 1
String out = nil
String past = nil
String right = nil
String to = nil
String top = nil
Face EntryFace * 2569
String childof = Plate53 11
Diameter HoleDiameter = 5.000000e+01

millimeters
Length Depth = 2. 000000e+01

millimeters
String TolHoleDiameter = 0.1 / - 0.1
String TolDepth = 0.1 / - 0.1

printing 866 Hole_Blind484_I6
class :

class : Hole Blind library CVOBJECTS
classtype : Feature timestamp : 07-26-96

12:42
static attributes :

BooleanOp Operation ■ Subtract
attributes :

Workpiece Workpiece as 2801
Name Representation s rep
CPlane Orientation id = 6

name = TOP
i  X as 1.000 0 0 0e + 0 0

y = 0.000000e+00
z ss 0.000000e+00

j  X ss 0.000000e+00
y ss 1.000000e+00
z s 0.000000e+00

k x m 0.000000e+00
y — 0.000000e+00
z m 1.000000e+00

Location Origin X m 2.000000e+02
y m 1.000000e+02
z = 1.000000e+02

ApplyType Application XI Extend
String rawMatlCondition as Solid
Real surfFinish ss 2.000000e+00
String mcNotmc m Y
String atAngle ss nil
String bottom m nil
String in m nil
String intFeaturs m

Hols_Blind484_ 11
String left nil



String
String
String
String
String
String
Face
String
Diameter

millimeters
Length

millimeters
String
String

on
out
past
right
to
top
EntryFace
childof
HoleDiameter
Depth
TolHoleDiameter
TolDepth

= 1 
= nil 
= nil 
= nil 
= nil 
* nil 
= 2569
= Plate53_Il 
= 5.000000e+01
« 2.000000e+01
-  0.1 / -  0.1 
= 0.1 / -  0.1

***»» printing 897 Hole_Blind484_I7 *****

class :
class ! Hole_Blind library : CVOBJECTS
classtype : Feature timestamp s 07—26—96

12:42
static attributes :

BooleanOp Operation = Subtract
attributes :

Workpiece Workpiece x= 2801
Name Representation 2 rep
CPlane Orientation id = 6

name = TOP
i  X = 1.000000e+00

y = 0.000000e+00
z ss 0.000000e+00

j x « 0.000000e+00
y = 1.000000e+00
z m 0.00 000 0e+0 0

k x = 0.000000e+00
y 2 0.000000e+00

- z = 1.000000e+00
Location Origin X = 1.500000e+02

y * 5.000000e+01
z 2 1.000000e+02

ApplyType Application 2 Extend
String rawMatlCondition = Solid
Real surfFinish * 2.000000e+00
String mcNotmc 2 y
String atAngle = nil
String bottom nil
String in 2 nil
String intFeature

Hole_Blind484_ 11
String left = nil
String on 2 1
String out 2 nil
String past 2 nil
String right nil
String to 2 nil
String top nil
Face EntryFace 2 2569
String childof Plate53 11
Diameter HoleDiameter * 5.000000e+01

millimeters
Length Depth 2.000000e+01

millimeters
String TolHoleDiameter * 0.1 / - 0.1
String TolDepth 0.1 / - 0.1



printing 928 Hole_Blind484_I8

;f
class :

class : Hole_Blind library : CVOBJECTS
classtype : Feature timestamp : 07-26-96

12:42
static attributes :

BooleanOp Operation = Subtractattributes :
Workpiece Workpiece = 2801Name Representation = repCPlane Orientation id = 6

name = TOP
i  X 1.000000e+00

y 0.000000e+00
z 0.000000e+00

j x 0.000000e+00
y 1.000000e+00
z 0.000000e+00

k x 0.000000e+00
y 0.000000e+00
z 1.000000e+00Location Origin X 1.000000e+02
y 1.000000e+02
z 1.000000e+02ApplyType Application ExtendString rawMatlCondition SolidReal surfFinish 2.000000e+00String mcNotmc yString atAngle = nilString bottom nilString in nilString intFeature

Hole_Blind484_ 11
String left nilString on 1String out nil
String past nil
String right nil
String to nilString top nilFace EntryFace 2569
String childof Plate53 11
Diameter HoleDiameter 5.000000e+01millimeters
Length Depth 2.000000e+01

millimeters
String TolHoleDiameter 0.1 / - 0.1
String TolDepth 0.1 / - 0.1

printing 1834 Hole_Blind484_I9
class :

class : Hole_Blind library : CVOBJECTS
classtype ■ Feature timestamp ■ 07-26-96

12:42
static attributes :

BooleanOp 
attributes :

Operation * Subtract
Workpiece Workpiece - 2801
Name Representation - rep
CPlane Orientation id - 

name -
15
RIGHT
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i  X = 0.000000e+00
y = 1.000000e+00
z — 0.000000e+00

j x = 0.000000e+00
y = 0.000000e+00
z = 1.000000e+00

k x = 1.0000 00e+00
y * 0.000000e+00
z = 0.000000e+00

Location Origin X = 3.000000e+02
y = 1.250000e+02
z = 5.000000e+01

ApplyType Application = Extend
String rawMatlCondition = Solid
Real surfFinish = 2.000000e+00
String mcNotmc = Y
String atAngle = nil
String bottom = nil
String in = nil
String intFeature =

Pocket_Rectangularl7 03_I1
String left = nil
String on * 1
String out * nil
String past = nil
String right = nil
string to = nil
String top ■ nil
Face EntryFace = 2545
String childof = Plate53 11
Diameter HoleDiameter = 4.500000e+01

millimeters
Length Depth * 2.000000e+01

millimeters
String TolHoleDiameter as 0.1 /  - 0.1
String TolDepth = 0.1 / - 0.1

printing 1926 Hole_Blind484_I10
class i

class : HoleBlind library :: CVOBJECTS
classtype : Feature timestamp : 07-26-96

12:42
static attributes :

BooleanOp Operation = Subtract
attributes :

Workpiece Workpiece as 2801
Name Representation « rep
CPlane Orientation id = 15

name = RIGHT
i x = 0.000000e+00

y - 1.000000e+00
z - 0.000000e+00

j X  - 0.000000e+00
y - 0.000000e+00
z - 1.000000e+00

k x - 1.000000e+00
y * 0.000000e+00
z - 0.000000e+00

Location Origin X  ■ 3.000000e+02
y - 7.500000e+01
z - 5.000000e+01

ApplyType Application - Extend
String rawMatlCondition ■ Solid
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Real surfFinish * 2.000000e+00
String mcNotmc = Y
String atAngle = nil
String bottom = nil
String in = nil
String intFeature =

Pocket Rectangular1703 XI
String left = nil
String on = 1
String out = nil
String past = nil
String right = nil
String to = nil
String top = nil
Face EntryFace = 2545
String childof = Plate53 11
Diameter HoleDiameter = 4.500000e+01

millimeters
Length Depth « 2. 000000e+01

millimeters
String TolHoleDiameter = 0.1 / - 0.1
String TolDepth = 0.1 / - 0.1

printing 56 Plate53_Il

class s Plate library ! CVOBJECTS
classtype : Feature timestamp : 07—26—96

12:32
static attributes :

BooleanOp Operation = Add
Workpiece Workpiece « 0
ApplyType Application = NoApply
ributes :
Name Representation - rep
CPlane Orientation id « 6

name « TOP
i  X - 1.000000e+00

y = 0.000000e+00
z = 0.000000e+00

j  X = 0.000000e+00
y - 1.000000e+00
z = 0.000000e+00

k x - 0.000000e+00
y - 0.000000e+00
z - 1.000000e+00

Location Origin X - 0.000000e+00
y - 0 .000000e+00
z - 0.000000e+00

String rawMatlCondition - Solid
Real surfFinish - 2 .000000e+00
String mcNotmc - Y
String atAngle - nil
string bottom - nil
String in - nil
String intFeature - nil
String left - nil
String on “ nil
String out » nil
String past - nil
String right - nil
String to - nil
String top - nil
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Length
millimeters

String
Length

millimeters
String
Length

millimeters
String

PlateLength
TolPlateLength
PlateWidth
TolPlateWidth
PlateHeight
TolPlateHeight

- 3.000000e+02 =
«  0.1 / -  0.1 
= 2.000000e+02 =

-  0.1 /  -  0.1
= 1.000000e+02 -
-  0.1 /  -  0.1
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93  Process Plan For TestComp4

A u t o m a t e d  Process Plan
C o m p o n e n t  N a m e :  T e s t C o m p 4
C o m p o n e n t  Material: Free M a c h i n i n g  C a rbon Steel
Matl Description: M e d i u m  carbon Resulfurized M a t l  Condition: H o t  rolled or Cold d r a w n  
Material Specifications: 1 1 4 0  Material Hardness: (175 225)

S e t U p  No :  1
Fixture For SetUp: M a c h i n e V i c e

('HoleBlind484H' 'HoleBlind484I2' 'HoleBlind484I6' 'HoleBlmd484I7' ’HoleBlind484I8')
T h e  abo v e  features f o r m  a c o m p l e x  pocket due to feature interaction 
M a c h i n i n g  process:

O p r  N o :  1; O p r  N a m e :  R o u g h  SlotDrilling 
Tool F or Opr: ('EndMill' 49.2)
R e c o m m e n d e d  Cutting Speed: ('m/min' 100) Feed: ('mm/min' 150)
M a c h i n e  F or Opr: 'BokoVerticalMachiningCentrell'
PositionPoint : ((150.0 150.0 100.0) (200.0 100.0 100.0) (150.0 50.0 100.0) (100.0 100.0 100.0))
ApproachPoint: 103.0
PlungePoint : 80.4
R e t u r n P o i n t : 108.0
ClearPoint : 175.0

O p r  N o :  2; O p r  N a m e :  R o u g h  SlotDrilling 
Tool For Opr: CEndMill' 49.2)
R e c o m m e n d e d  Cutting Speed: ('m/min' 100) Feed: ('mm/min' 150) 
M a c h i n e  F or Opr: 'BokoVerticalMachiningCentrell'
PositionPoint : ((150.0 100.0 100.0))
ApproachPoint: 103.0 
PlungePoint : 40.4 
R e t u m P o i n t : 108.0 
ClearPoint : 175.0

O p r  N o: 3; O p r  N a m e :  R o u g h  EndMilling 
Tool F or Opr: ('EndMill’ 30.0)
R e c o m m e n d e d  Cutting Speed: ('m/min' 130) Feed: ('mm/min' 120) 
M a c h i n e  F or Opr: 'BokoVerticalMachiningCentrel T  
PositionPt : (150.0 100.0 100.0)
ApproachPlane: 120.0 
Z W o r k P l a n e  : 80.4 
RetractPlane : 120.0 
ClcarPlane : 170.0

Stock Left after operation >  0.4 m m



Edge profile for the operation:

(an A r c  a n  A r c  an A r c  a n  A r c  an A r c  an A r c  an A r c  a n  A rc an A r c  a n  A r c  an A r c  a n  Arc) 
E d g e  profile details:
E d g e  1: a n  A r c
Start Point: 125.793, 143.750, 100.000 
E n d  Point: 106.250, 124.206, 100.000 
A r c  Origin : 150.000,100.000,100.000 
A r c  Radius : 50.000

E d g e  2: a n  A r c
Start Point: 106.250, 124.206, 100.000 
E n d  Point: 125.000, 100.000,100.000 
A r c  Origin : 100.000, 100.000, 100.000 
A r c  Radius : 25.000

E d g e  3: a n  A r c
Start Point: 125.000, 100.000, 100.000 
E n d  Point: 175.000,100.000,100.000 
A r c  Origin : 150.000,100.000, 100.000 
A r c  Radi u s  : 25.000

E d g e  4: a n  A r c
Start Point: 175.000, 100.000, 100.000 
E n d  Point: 193.750, 124.206,100.000 
A r c  Origin : 200.000, 100.000, 100.000 
A r c  Radius : 25.000

E d g e  5: a n  A r c
Start Point: 193.750,124.206, 100.000 
E n d  Point: 174.206,143.750, 100.000 
A r c  Origin : 150.000, 100.000, 100.000 
A r c  Radius : 50.000

E d g e  6: a n  A r c
Start Point: 174.206,143.750, 100.000 
E n d  Point: 125.793,143.750,100.000 
A r c  Origin : 150.000, 150.000, 100.000 
A r c  Radius : 25.000

E d g e  7: a n  A r c
Start Point: 106.250, 75.793, 100.000 
E n d  Point: 125.793, 56.249,100.000 
A r c  Origin : 150.000,100.000,100.000 
A r c  Radius : 50.000

E d g e  8: a n  A r c
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Start Point: 174.206, 56.249, 100.000 
E n d  Point: 193.750, 75.793, 100.000 
A r c  Origin : 150.000,100.000, 100.000 
A r c  R a dius : 50.000

E d g e  9: a n  A r c
Start Point: 175.000, 100.000, 100.000 
E n d  Point: 125.000,100.000, 100.000 
A r c  Origin : 150.000,100.000, 100.000 
A r c  R a d i u s  : 25.000

E d g e  10: a n  A r c
Start Point: 125.000, 100.000, 100.000 
E n d  Point: 106.250, 75.793, 100.000 
A r c  Origin : 100.000, 100.000, 100.000 
A r c  R a dius : 25.000

E d g e  11: a n  A r c
Start Point: 193.750,75.793, 100.000 
E n d  Point: 175.000,100.000,100.000 
A r c  Origin : 200.000, 100.000, 100.000 
A r c  R a d i u s  : 25.000

E d g e  12: a n  A r c
Start Point: 125.793, 56.250, 100.000 
E n d  Point: 174.206, 56.250, 100.000 
A r c  Origin : 150.000, 50.000, 100.000 
A r c  Radi u s  : 25.000

O p r  N o :  4; O p r  N a m e :  R o u g h  EndMilling 
Tool F o r  Opr: ('EndMill' 30.0)
R e c o m m e n d e d  Cutting Speed: ('m/min' 130) Feed: ('mm/min' 120) 
M a c h i n e  For Opr: 'BokoVerticalMachiningCentrell’
PositionPt : (150.0 100.0 100.0)
ApproachPlane: 100.0 
Z W o r k P l a n e  : 40.4 
RetractPlane : 100.0 
ClcarPlane : 150.0

Stock Left after operation >  0.4 m m

E d g e  profile for the operation:
(an A r c  a n  A r c  a n  A r c  a n  Arc)
E d g e  profile details:

E d g e  1: a n  A r c
Start Point: 200.000,100.000, 100.000 
E n d  Point: 1 00.000,100.000,100.000 
A r c  Origin : 150.000,100.000, 100.000
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Arc Radius : 50.000

E d g e  2: an A r c
Start Point: 100.000,100.000, 100.000 
E n d  Point: 200.000, 100.000, 100.000 
A r c  Origin : 150.000, 100.000, 100.000 
A r c  Radius : 50.000

E d g e  3: an A r c
Start Point: 125.000, 100.000, 100.000 
E n d  Point: 175.000, 100.000, 100.000 
A r c  Origin : 150.000, 100.000, 100.000 
A r c  Radius : 25.000

E d g e  4: an A r c
Start Point: 175.000, 100.000, 100.000 
E n d  Point: 125.000,100.000, 100.000 
A r c  Origin : 150.000, 100.000, 100.000 
A r c  Radius : 25.000

O p r  N o :  5; O p r  N a m e :  Finish EndMilling 
T o o l  F or Opr: ('EndMill' 30.0)
R e c o m m e n d e d  Cutting Spee d :  ('m/min' 175) Feed: ('mm/min' 125)
M a c h i n e  For Opr: 'BokoVerticalMachiningCentrell'
PositionPt : (150.0100.0 100.0)
ApproachPlane: 120.0 
Z W o r k P l a n e  : 80.0 
RetractPlane : 120.0 
ClearPlane : 170.0

Stock Left after operation >  0.0 m m

E d g e  profile for the operation:
(an A r c  an A r c  a n  A r c  a n  A r c  a n  A r c  an A r c  an A r c  an A rc an A r c  a n  A r c  an A r c  an A r c  a n  A r c  an 
Arc)
E d g e  profile details:

E d g e  1: a n  A r c
Start Point: 193.750, 124.206, 100.000 
E n d  Point: 174.206,143.750, 100.000 
A r c  Origin : 150.000, 100.000,100.000 
A r c  Radius : 50.000

E d g e  2: an Ar c
Start Point: 174.206,143.750, 100.000 
E n d  Point: 175.000,150.000, 100.000 
A r c  Origin : 150.000,150.000,100.000  
A r c  Radius : 25.000
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E d g e  3: a n  A r c
Start Point: 175.000,150.000,100.000 
E n d  Point: 125.000, 150.000,100.000 
A r c  Origin : 150.000, 150.000, 100.000 
A r c  Radius : 25.000

E d g e  4: a n  A r c
Start Point: 125.000,150.000, 100.000 
E n d  Point: 125.793,143.750,100.000 
A r c  Origin : 150.000,150.000, 100.000 
A r c  Radius : 25.000

E d g e  5: a n  A r c
Start Point: 125.793, 143.750, 100.000 
E n d  Point: 106.250,124.206, 100.000 
A r c  Origin : 150.000,100.000, 100.000 
A r c  Radius : 50.000

E d g e  6: a n  A r c
Start Point: 106.250,124.206,100.000 
E n d  Point: 75.000,100.000, 100.000 
A r c  Origin : 100.000, 100.000, 100.000 
A r c  Radi u s  : 25.000

E d g e  7: a n  A r c
Start Point: 75.000,100.000, 100.000 
E n d  Point: 106.250,75.793,100.000 
A r c  Origin : 100.000,100.000, 100.000 
A r c  Radius : 25.000

E d g e  8: a n  A r c
Start Point: 106.250, 75.793, 100.000 
E n d  Point: 1 25.793,56.249,100.000 
A r c  Origin : 150.000,100.000,100.000 
A r c  Radius : 50.000

E d g e  9: a n  A r c
Start Point: 125.793, 56.250, 100.000 
E n d  Point: 125.000,50.000,100.000 
A r c  Origin : 150.000, 50.000, 100.000 
A r c  Radius : 25.000

E d g e  10: a n  A r c
Start Point: 125.000,50.000,100.000 
E n d  Point: 175.000, 50.000,100.000 
A r c  Origin : 150.000, 50.000,100.000 
A r c  Radius : 25.000

E d g e  11: a n  A r c
Start Point: 175.000,50.000,100.000 
E n d  Point: 174.206, 56.250, 100.000 
A r c  Origin : 150.000, 50.000, 100.000 
A r c  R a dius : 25.000

Edge 12: an Arc
Start Point: 174.206,56.249,100.000
End Point: 193.750,75.793,100.000



Arc Origin : 150.000,100.000,100.000
Arc Radius : 50.000

E d g e  13: a n  A r c
Start Point: 193.750, 75.793, 100.000 
E n d  Point: 225.000,100.000, 100.000 
A r c  Origin : 200.000, 100.000, 100.000 
A r c  Radius : 25.000

E d g e  14: a n  A r c
Start Point: 225.000,100.000, 100.000 
E n d  Point: 193.750,124.206, 100.000 
A r c  Origin : 200.000, 100.000, 100.000 
A r c  Radius : 25.000

O p r  N o :  6; O p r  N a m e :  Finish EndMilling 
Tool F or Opr: CEndMill' 30.0)
R e c o m m e n d e d  Cutting Speed: ('m/min' 175) Feed: ('mm/min' 125) 
M a c h i n e  For Opr: 'BokoVerticalMachiningCentrell'
PositionPt : (150.0 100.0 100.0)
ApproachPlane: 100.0 
Z W o r k P l a n e  : 40.0 
RetractPlane : 100.0 
ClearPlane : 150.0

Stock Left after operation >  0.0 m m

E d g e  profile for the operation:
(an A r c  a n  Arc)
E d g e  profile details:

E d g e  1: a n  A r c
Start Point: 200.000, 100.000, 100.000  
E n d  Point: 100.000,100.000, 100.000 
A r c  Origin : 150.000, 100.000, 100.000 
A r c  Radius : 5 0 .000

E d g e  2: a n  A r c
Start Point: 100.000, 100.000, 100.000  
E n d  Point: 200. 0 0 0 , 1 0 0 . 0 0 0 , 1 0 0 . 0 0 0  
A r c  Origin : 1 5 0 . 0 0 0,100.000,100.000  
A r c  Radius : 50.000

S e t U p  N o: 3 
Fixture For SetUp:

('PocketRectangularl703ir 'HolcBlind484I9' 'HoleBlind484110') 
T h e  abo v e  features f o r m  a c o m p l e x  pocket due to feature interaction



O p r  No: 1; O p r  N a m e :  R o u g h  SlotDrilling 
T o o l  For Opr: CEndMill' 44.2)
R e c o m m e n d e d  Cutting Speed: ('m/min' 100) Feed: ('mm/min' 150)
PositionPoint : ((125.0 50.0 300.0) (75.0 50.0 300.0))
ApproachPoint: 303.0
PlungePoint : 280.4
R e t u m P o i n t : 308.0
ClearPoint : 375.0

Machining process:

O p r  No: 2; O p r  N a m e :  R o u g h  EndMilling 
T o o l  For Opr: CEndMill' 20.0)
R e c o m m e n d e d  Cutting Speed: ('m/min' 130) Feed: ('mm/min' 120) 
PositionPt : (100.0 50.0 300.0)
ApproachPlane: 320.0 
Z W o r k P l a n e  : 280.4 
RetractPlane : 320.0 
ClearPlane : 370.0

Stock Left after operation >  0.4 m m

E d g e  profile for the operation:
(a Line a n  A r c  a n  A r c  a Line a n  A r c  an Arc)
E d g e  profile details:

E d g e  1: a  Line
Start Point: 91.770, 35.000, 300.000 
E n d  Point: 108.229, 35.000, 300.000

E d g e  2: a n  A r c
Start Point: 108.229, 35.000, 300.000 
E n d  Point: 102.500, 50.000, 300.000 
A r c  Origin : 125.000,50.000, 300.000 
A r c  Radius : 22.500

E d g e  3: an A r c
Start Point: 102.500, 50.000, 300.000 
E n d  Point: 108.229,65.000, 300.000 
A r c  Origin : 125.000, 50.000, 300.000 
A r c  Radius : 22.500

E d g e  4: a Line
Start Point: 108.229, 65.000, 300.000 
E n d  Point: 91.770,65.000, 300.000

E d g e  5: a n  A r c
Start Point: 91.770,65.000, 300.000  
E n d  Point: 97.500, 50.000, 3 00.000 
A r c  Origin : 75.000, 50.000, 300.000 
A r c  Radius : 22.500

E d g e  6: a n  A r c
Start Point: 97.500, 50.000, 300.000 
E n d  Point: 91.770, 35.000, 300.000
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Arc Origin : 75.000,50.000,300.000
Arc Radius : 22.500

O p r  N o :  3; O p r  N a m e :  Finish EndMilling 
Tool For Opr: ('EndMill' 20.0)
R e c o m m e n d e d  Cutting Speed: ('m/min' 175) Feed: ('mm/min' 125) 
PositionPt : (100.0 50.0 300.0)
ApproachPlane: 320.0 
Z W o r k P l a n e  : 280.0 
RctractPlane : 320.0 
ClearPlane : 370.0

Stock Left after operation >  0.0 m m

E d g e  profile for the operation:
(a Line a n  A r c  a n  A r c  a Line a n  A r c  a n  Arc)
E d g e  profile details:

E d g e  1: a  Line
Start Point: 91.770,35.000, 300.000 
E n d  Point: 108.229,35.000,300.000

E d g e  2: a n  A r c
Start Point: 108.229, 35.000, 300.000 
E n d  Point: 147.500,50.000,300.000 
A r c  Origin : 125.000,50.000, 300.000 
A r c  Radius : 22.500

E d g e  3: a n  A r c
Start Point: 147.500, 50.000, 300.000 
E n d  Point: 108.229, 65.000, 300.000 
A r c  Origin : 125.000,50.000, 300.000 
A r c  Radius : 22.500

E d g e  4: a Line
Start Point: 108.229,65.000, 300.000 
E n d  Point: 91.770,65.000,300.000

E d g e  5: a n  A r c
Start Point: 91.770, 65.000, 300.000 
E n d  Point: 52.500,50.000,300.000  
A r c  Origin : 75.000,50.000, 300.000 
A r c  Radius : 22.500

E d g e  6: a n  A r c
Start Point: 52.500,50.000, 300.000 
E n d  Point: 91.770,35.000,300.000  
A r c  Origin : 75.000,50.000,300.000  
A r c  Radius : 22.500
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