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Summary. — After three decades of mobile phone diffusion, thousands of mobile-phone-based health projects worldwide (‘‘mHealth”),
and hundreds of thousands of smartphone health applications, fundamental questions about the effect of phone diffusion on people’s
healthcare behavior continue to remain unanswered. This study investigated whether, in the absence of specific mHealth interventions,
people make different healthcare decisions if they use mobile phones during an illness. Following mainstream narratives, we hypothesized
that phone use during an illness (a) increases and (b) accelerates healthcare access.
Our study was based on original survey data from 800 respondents in rural Rajasthan (India) and Gansu (China), sampled from the
general adult population in 2014 in a three-stage stratified cluster random sampling design. We analyzed single- and multi-level logistic,
Poisson, and negative binomial regression models with cluster-robust standard errors. Contrary to other research at the intersection of
mobile phones and healthcare, we captured actual health-related mobile phone use during people’s illnesses irrespective of whether they
own a phone.
Our analysis produced the first quantitative micro-evidence that patients’ personal mobile phone use is correlated with their healthcare
decisions. Despite a positive association between phone use and healthcare access, health-related phone use was also linked to delayed
access to public doctors and nurses. We considered theoretical explanations for the observed patterns by augmenting transaction cost
and information deficit arguments with the prevailing health system configuration and with notions of heuristic decision-making during
the healthcare-seeking process.
Our study was a first step toward understanding the implications of mobile technology diffusion on health behavior in low- and middle-
income countries in the absence of specific mHealth interventions. Future research will have to explore the causal relationships under-
lying these statistical associations. Such a link could potentially mean that development interventions aimed at improving access to
healthcare continue to require conventional solutions to sustain healthcare equity.
� 2017TheAuthors. Published byElsevier Ltd.This is an open access article under the CCBY license (http://creativecommons.org/licenses/
by/4.0/).
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1. INTRODUCTION

The world has undergone a rapid mobile connectivity tran-
sition during the past decade: Up to 630 million new subscrip-
tions per year were added in low- and middle-income countries
(LMICs; 40% of this growth was occurred in India and
China), and these countries now account for three in four
mobile phone subscriptions worldwide (ITU, 2015a, 2015b).
As mobile technology diffuses, hopes arise that previously
stubborn development challenges can be overcome with their
help (Duncombe, 2012: p. 2; Dı́az Andrade & Urquhart,
2012: p. 289; Flor, 2015; Heeks, 2014: p. 2; Unwin, 2009: p. 1).
Public health actors have responded to this trend with 1,123

ongoing and planned ‘‘mHealth” projects worldwide (accord-
ing to the mobile industry organization Groupe Speciale
Mobile Association as of January 5, 2016; GSMA, 2016).
mHealth interventions use mobile phones to improve health
systems and health service delivery. LMICs dominate the
mHealth landscape, representing eight of the top-ten countries
by project count (GSMA, 2016, 2015). In addition to such
specific interventions, Apple’s iTunes smartphone application
(‘‘app”) store alone contains 101,672 health-related apps
across the categories ‘‘Health & Fitness” and ‘‘Medical”
(our count as of January 5, 2016), and the global health app
market is expected to soar from a volume of $2.4 billion in
2013 to $26 billion by 2017 (Apple Inc., 2016;
286
research2guidance, 2014: p. 7). For comparison, the world-
wide program expenditures of the Bill and Melinda Gates
Foundation in 2014 amounted to $4.8 billion (Bill &
Melinda Gates Foundation, 2015: p. 14).
The excitement, enthusiasm, and activity surrounding

mHealth reflect common narratives that mobile technology
offers near-limitless public health ‘‘potential” and ‘‘tremen-
dous opportunities” that should not go unharnessed
(Agarwal & Labrique, 2014: p. 230; Philbrick, 2012: p. 6;
Qiang, Yamamichi, Hausman, Miller, & Altman, 2012: p.
15; Rodin, 2010: p. 6; WHO, 2011: p. 1). Moreover, the
emphasis on LMICs follows aspirations to deliver health ser-
vices and information more efficiently, effectively, and equita-
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bly—especially for otherwise disadvantaged groups (Anglada-
Martinez et al., 2015: p. 28; Kwan, Mechael, & Kaonga, 2013:
p. 27; van Heerden, Tomlinson, & Swartz, 2012: p. 394).
Despite the enthusiasm, fundamental questions about the

healthcare implications of mobile phone use have remained
unanswered. Based on our knowledge of the social implica-
tions of technology diffusion in high-, middle-, and low-
income contexts (e.g. technological change influencing social
roles and relationships), we should expect mobile phone diffu-
sion to affect health and healthcare because it also influences
other dimensions of development like political participation
or economic activity. Yet the research on the healthcare con-
sequences of mobile phone use among patients (which is the
focus of this paper) remains surprisingly limited. A better
understanding of positive as well as negative consequences
of mobile phone use on people’s health-seeking behavior is
therefore important for the branch of mHealth that delivers
interventions through this platform to patients.
As part of the broader study of the social implications of

technology diffusion, this paper investigated the effect of
mobile phones on people’s healthcare-seeking behavior in
two rural low- and middle-income contexts. We focused
specifically on the health-related use of mobile phones regard-
less of whether somebody actually owns a phone (thus includ-
ing uses by a third party for the patient) and on contexts where
mHealth interventions are yet underdeveloped (as this would
confound specific health interventions with more general pro-
cesses of technological change). The overarching research
question for this paper therefore was, ‘‘In the absence of speci-
fic mHealth interventions, do people make different healthcare
decisions if they use a mobile phone during an illness?” To
answer this question, we tested two hypotheses on the implica-
tions of phone-aided healthcare-seeking behavior, using novel
survey data from rural Rajasthan (India) and rural Gansu
(China):

H1. Compared to illness episodes that do not involve a mobile
phone, phone-aided healthcare-seeking increases access to
healthcare.
H2. Compared to illness episodes that do not involve a mobile
phone, phone-aided healthcare-seeking leads to faster access
to care.

Our analysis produced the first quantitative micro-evidence
that patients’ mobile phone use is correlated with decisions in
their healthcare-seeking process. An implication of our study
is that future patient-focused mHealth projects potentially
compete with people’s existing (non-mHealth) mobile-phone-
based solutions, and mHealth interventions may have to com-
bat adverse behaviors created by the mobile phone platform
itself.
2. RELATED LITERATURE AND HYPOTHESES

This paper speaks to the technology diffusion literature, in
particular to the social implications of technological change.
Previous social sciences research has revealed that technology
diffusion affects societal behavior and economic practices, on
the basis of which we could expect mobile phones to have sim-
ilar implications. While such research has been carried out
with a focus on economic activity, political participation,
and social interaction, the impact of phone diffusion on
healthcare as an important dimension of human development
has been neglected. In response to this gap, we carried out the
first quantitative study to explore the influence of mobile
phone use on people’s healthcare-seeking behavior in the
absence of a specific intervention. Drawing on conventional
transaction cost and information deficit arguments, we
hypothesized that mobile phone diffusion increases and accel-
erates healthcare access.

(a) The social implications of technology and mobile phone
diffusion

Our study started from the assumption that mobile phone
use has health-specific implications that relate to the broader
body of literature on the social implications of technology dif-
fusion. According to this literature, a technological innovation
evolves and interacts with society during the process of its dif-
fusion (Brown, 1981: p. 174; Ling, 2012: pp. 4–50; Pedersen &
Bunkenborg, 2012: p. 565). This process can lead to emerging
and unexpected uses of the technology (as exemplified by
Bijker (1995: p. 270), Cresswell (2002: pp. 182–185) and von
Hippel (2010: pp. 414–415)), but it is also widely understood
to have social, economic, and political implications.
Development-related outcomes often ensue where technical

change interacts with social change, but there is no guarantee
that technological change processes are advantageous from a
development perspective (Murdock, Hartmann, & Gray,
1994: p. 148; Pfaffenberger, 1992: pp. 511–512). Anthropolog-
ical, sociological, and economic studies have provided some
first insights that the diffusion of mobile phones as informa-
tion and communication technologies (ICTs) interacts with
social change (for a selection of recent reviews, see e.g. Aker
& Blumenstock, 2015; Aker & Mbiti, 2010; Duncombe,
2011; Jensen, 2010; Martin, 2014; May & Diga, 2015;
Nakasone, Torero, & Minten, 2014; Porter, 2012; Walsham,
2010). Research in this area considers especially the economic
consequences of mobile phone diffusion and LMIC-focused
studies typically investigate the impacts on poverty levels of
the general population and the market activities of farmers
and entrepreneurs (Aker & Mbiti, 2010: pp. 213–214; Jensen,
2007: p. 896). Less research attention—mostly from high-
income contexts—has been devoted to changes in social inter-
actions and relationships emanating from phone diffusion
(Miritello et al., 2013; Roberts & Dunbar, 2011; Saramäki
et al., 2014). In addition, despite the rapid growth of phone-
based interventions (e.g. information services) under the head-
ing of ‘‘information and communication technologies for
development” or ‘‘ICT4D” (Duncombe, 2012: p. 2; Dı́az
Andrade & Urquhart, 2012: p. 289; Flor, 2015; Heeks, 2014:
p. 2; Unwin, 2009: p. 1), we do not yet understand sufficiently
the behavior of mobile phones as platforms for mobile-phone-
based development initiatives like mHealth (Aker & Mbiti,
2010: pp. 225–227).
Despite the limited evidence on the social implications of

mobile phone diffusion, the growing body of anthropological,
sociological, and economic research should lead us to expect
that mobile phone diffusion entails social change. The domain
of health—arguably an important dimension of develop-
ment—is probably no exception.

(b) Mobile phones in healthcare

Research interest at the intersection of mobile technologies
and healthcare in high-, middle-, and low-income countries
has grown rapidly over the last decade. With at least 60 sys-
tematic reviews and reviews of reviews, the vast majority of
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this literature focuses on the design and experimental evalua-
tion of phone-based health interventions, or mHealth, and
their enabling conditions. Many low-cost mHealth technolo-
gies are being developed against the backdrop of LMICs’
healthcare challenges (Beratarrechea et al., 2014: p. 79;
Clifford, Blaya, Hall-Clifford, & Fraser, 2008: p. 5). For exam-
ple, LMIC country health systems are routinely described to
suffer from inadequate health service provision, insufficient
health financing, low demand for formal healthcare, and prob-
lematic population health behaviors including unhealthy levels
of alcohol and tobacco consumption (Das, Hammer, &
Leonard, 2008: p. 102; Dow, Gertler, Schoeni, Strauss, &
Thomas, 1997: pp. 19–22; Dupas, 2011: pp. 426–429;
Kremer & Glennerster, 2011: pp. 273–276; WHO, 2013b: pp.
39, 144–153). mHealth is a response to the persistent health-
care challenges and inequities, covering a broad spectrum of
services that involve end users as well as providers of health-
care services (Free et al., 2013: p. 2). Patient-centered solutions
include for example remote disease management, public health
information provision, or diagnosis services (for a selection of
recent reviews focusing on patient end-users and with refer-
ence to LMICs, see e.g. Al Dahdah, Desgrées Du Lou, &
Méadel, 2015; Beratarrechea et al., 2014; Bloomfield et al.,
2014; Cole-Lewis, 2013; Hall, Cole-Lewis, & Bernhardt,
2015; Hall, Fottrell, Wilkinson, & Byass, 2014; Mbuagbaw
et al., 2015; Noordam, Kuepper, Stekelenburg, & Milen,
2011; Steinhubl, Muse, & Topol, 2015; Tamrat &
Kachnowski, 2012). 1

Surprisingly little research at the interface of health and
mobile technology concerns the healthcare-seeking behavior
implications of people’s general mobile phone use (outside
of specific phone-based interventions). Qualitative studies
have documented locally emerging health-related uses of
mobile phones before the term mHealth became popular
(Burrell, 2010; Horst & Miller, 2006; Mechael, 2008). Com-
monly described activities are, for example, calling family
members to talk about illnesses and accessing health informa-
tion via mobile broadband, both of which could affect people’s
healthcare-seeking behaviors (Doron, 2012; Fernández-Ardè
vol, 2013; Muessig et al., 2015; Oreglia, 2013; Tenhunen,
2008). Recent quantitative studies have confirmed that these
activities emerge on a larger scale, and typically draw the con-
clusion that such emerging phone-aided behaviors create a
favorable environment for further mHealth solutions while
improving people’s health behavior and healthcare access
(Hampshire et al., 2015; Khatun et al., 2014; Labrique et al.,
2012).
Although people have been shown to incorporate mobile

technology into their health-related behaviors even without
specific health interventions, we do not know much about
the healthcare implications of these emergent behaviors. A
better understanding of emerging health-related phone use
and its consequences is important because it relates to health
as a dimension of human development, and because it may
affect the way mHealth is viewed. If the healthcare effects of
phones were positive, some mHealth interventions could be
considered redundant because the phone itself would fulfill
the purpose of mHealth already. If mobile phones were over-
whelmingly detrimental to healthcare, questions could arise
whether it is sensible to propose mobile-phone-based interven-
tions to improve healthcare and equalize access.

(c) Research hypotheses

Given the widespread research on the social implications of
mobile phones, the dearth of evidence on their healthcare
implications in low- and middle-income countries is rather
puzzling. In the absence of this empirical evidence, the existing
theoretical arguments on the effect on mobile phones on health
behavior are limited to transaction cost and information defi-
cit models.
In the area of patient health, transaction costs refer to the

direct and indirect costs incurred in accessing and utilizing
health products, services, or information. Information deficit
arguments pertain to the perceived lack of information and
knowledge among the target groups that mobile phones as
ICTs could ameliorate. Both arguments are closely related.
For example, Micevska (2005: p. 58) argues in terms of infor-
mation deficits and states that ‘‘the costs of [health] informa-
tion acquisition will fall and individual health will
presumably improve [through mobile technologies]” when
compared to alternative means such as postal networks or
face-to-face interaction. In a similar vein, Dammert, Galdo,
and Galdo (2014: p. 158) focus on transaction costs and claim
that ‘‘mobile phone service[s] could facilitate the diffusion of
knowledge and best practices, reduce transaction costs, and
improve the delivery of public services.” Despite their limita-
tions, we will use the transaction cost and information deficit
arguments as a basis to formulate our hypotheses, given their
widespread implicit use in the area of mobile phone and
mHealth research (Higgs et al., 2014: p. 184).
In light of the literature’s heavy reliance on phone-based

interventions, our research is interested in the role of the
mobile phone in influencing healthcare behavior in the absence
of any such interventions. In order to explore the relationship
between mobile phone use and healthcare-seeking behavior in
a non-intervention setting, our two research hypotheses will
cover the utilization of and delays to healthcare as important
outcome indicators of healthcare seeking:

H1. Compared to illness episodes that do not involve a mobile
phone, phone-aided healthcare seeking increases access to
healthcare.
H2. Compared to illness episodes that do not involve a mobile
phone, phone-aided healthcare seeking leads to faster access to
care.

Development studies research is ultimately interested in the
health and well-being of disadvantaged populations. Access is
evidently only one among many determinants of health
(Wagstaff, 2002). By focusing on the narrow concept of health-
care access, we have taken a small yet necessary first step
toward a better understanding of the relationship between
mobile phone diffusion and population health behavior. Our
research therefore did not consider whether health-related
mobile phone use is linked to the utilization of better quality
providers, or whether phone use leads to better clinical out-
comes for patients. This should be subject of future studies
building on the basis of our research.
3. MATERIALS AND METHODS

(a) Field sites and data

We explored our hypotheses quantitatively, using original
survey data from rural Rajasthan (India) and rural Gansu
(China). The analysis was based on a survey sample of 800
adults, involving 400 60-min face-to-face interviews each in
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field site (note that by ‘‘field sites” we mean the rural areas of
the selected districts with Rajasthan and Gansu). We chose
Rajasthan and Gansu because, by the time of survey design,
they had exhibited rapid mobile phone diffusion (both states
with 74 mobile subscriptions per 100 persons, Table 1) despite
being among the poorest states in their respective countries. In
addition, both states maintained only basic mHealth services
in the shape of hotlines and text-message information services
and continue to face challenges in delivering healthcare to
their large yet dispersed rural populations (Planning
Commission, 2011: p. 149; WHO, 2012; Whyte, 2010: pp.
14, 20; Yip et al., 2012: p. 839). Such conditions resonate with
mainstream narratives that call for mHealth interventions and
therefore make rural Rajasthan and Gansu suitable for a study
of health-related mobile phone use in the absence of (or prior
to) widespread mHealth deployment. Table 1 summarizes
basic socioeconomic statistics of the field sites at the time of
survey design.
Following qualitative research in the field sites in 2013 (not

reported here), survey data was collected from August to
October 2014, using a three-stage stratified random sampling
approach (see Table 2 for an overview; the survey implemen-
tation is described in more detail in Haenssgen, 2015c). Our
survey sampled adult respondents randomly from the general
rural population of Rajasthan and Gansu, irrespective of
whether they own a mobile phone or whether they had a
recent illness. Sample weights were calculated using district-
level census data in both sites (All descriptive statistics in
sub-Section 4(a) are population weighted in order to provide
a better representation of rural population patterns in
Rajasthan and Gansu. Statistical analyses in the subsequent
Sections 4(b) and 4(c) are unweighted but include sampling
weights as a robustness check). 2 Our data set included infor-
mation on self-reported mild and severe acute illness episodes
in the year preceding the survey. An important feature of these
episodes was that we recorded up to seven distinct steps in the
healthcare-seeking process (i.e. the illness episode). Each step
contained information about the type, duration, and location
of the healthcare activity (e.g. self-care at home, treatment
from private doctor); and any kinds of health-related mobile
phone use that occurred during that particular activity. We
also elicited the self-described symptoms for the illness epi-
sode, and each illness episode was completed with its symp-
toms having disappeared (as described in the next section,
we refrain from judgements as to whether this was actually
due to the treatment that the patients received). Illness epi-
sodes in this paper typically lasted less than two weeks but
could extend to several months. In each country, the question-
naires were translated independently by two translators, and
were tested and piloted extensively.
Table 1. Comparison of field s

Population
(million)

Mobile
subscriptions/100 Pop.

Life expectancy
at birth (years)

Rajasthan 68.6 (2011) 0.74 (2012) 65.2 (2010)
India 1,247.4 (2011) 0.70 (2012) 66.5 (2010)
Gansu 25.6 (2011) 0.74 (2013) 75.7 (2010)
China 1,344.1 (2011) 0.89 (2013) 75.1 (2010)

Sources: Compiled from China Marketing Research (2014), Datanet India (2
Markets (2012), ISI Emerging Markets (2013), ITU (2015b), NBS (2011), NBS
World Bank (2015).
Notes. Data on state/province level. Data year in parentheses. Country-level da
direct comparison.
(b) Analysis

We have established elsewhere that personal mobile phone
ownership is only a weak proxy of actual health-related mobile
phone use (Haenssgen, 2015a). Our analysis therefore exam-
ined people’s actual health-related mobile phone use during
an illness. We focused specifically on healthcare decisions
rather than on clinical outcomes (which would require comple-
mentary facility assessments, and which introduce yet more
complexity into the relationship between technology diffusion
and health). We analyzed single- and multi-level regression
models, given that the unit of analysis was the illness episode
as nested within individuals and villages (Rabe-Hesketh &
Skrondal, 2012a: pp. 875–876, 886; Rabe-Hesketh &
Skrondal, 2012b: pp. 1–5). While multilevel models are prefer-
able in theory given the nested nature of the data, they might
not be more efficient in practice if observations within a cluster
are not closely correlated. We used X2 variance component
tests to decide between single- and multi-level model specifica-
tions (whose results pointed in the same general direction), the
test being specified as Prob. > 1/4 * X2(0) + 1/2 * X2(1)
+ ¼ * X2(2) (Rabe-Hesketh & Skrondal, 2012a, 2012b). On
the basis of this test, this paper reports single-level models
for healthcare access (H1) and delays to access (discrete steps)
(H2); and multi-level models for delays to access (elapsed
days) (H2). In order to account for potential village-level clus-
tering in single-level models, we estimated bootstrap standard
errors with village-level clustering and carried out robustness
checks with analyses sensitive to the complex survey design.
All reported models in this paper were statistically significant
at the 1% level, which is why we refrained from reporting p-
values for model tests in the results. We explain our models
below.
For Hypothesis 1, we analyzed people’s likelihood of access-

ing specific types of healthcare providers, including public, pri-
vate, informal, and no healthcare providers at all (considering
the latter as a potentially problematic group that might be ‘‘ex-
cluded” from healthcare). Based on our fieldwork experiences
in Rajasthan and Gansu, we distinguished these types of pro-
viders because they may respond differently to mobile phone
use (e.g. public doctors in community hospitals might be
bound to their post, while local private doctors could carry
out home visits more easily), and patients may utilize different
providers for different conditions (e.g. visiting a faith healer in
Rajasthan because of a paralyzed limb while going to a hospi-
tal because of an accident). The main independent variable of
interest was whether there was any health-related mobile
phone use during the illness episode. We considered personal
mobile phone use by the patient and phone use through other
persons on behalf of the patient. Because of the binary ‘‘yes/
ite indicators (state level)

Literacy
rate 15+

Hospital
beds/1,000 Pop.

Doctors/1,000
Pop.

Per capita
GDP (USD)

67% (2011) 0.5 (2011) 0.1 (2011) $885 (2011)
69% (2011) 0.7 (2011) 0.7 (2011) $1,461 (2011)
90% (2011) 3.3 (2011) 0.8 (2012) $3,130 (2011)
95% (2010) 3.8 (2011) 1.9 (2012) $5,634 (2011)

014), Government of India (2011: pp. 1, 34), IMF (2013), ISI Emerging
(2013), WHO (2013a), WHO and Ministry of Health P.R. China (2013:31),

ta year was matched to state-level data year as closely as possible to permit



Table 2. Survey design overview

Rajasthan Gansu

Sampling 3-Stage stratified cluster sampling
1. Random village selection, proportional to population size,
stratified by distance to sub-district headquarter
2. Random household selection based on household listing
3. Random household member selection based on age-order
tables

3-Stage stratified cluster sampling
1. Random village selection, stratified by distance to near-
est township
2. Random household selection based on complete village
mapping
3. Random household member selection based on age-or-
der tables

Geographical scope Districts of Rajsamand and Udaipur Sub-districts:
1. Rajsamand (Rajsamand)
2. Bhim (Rajsamand)
3. Girwa (Udaipur)
4. Jhadol (Udaipur)
5. Kherwara (Udaipur)
6. Kotra (Udaipur)
7. Mavli (Udaipur)
8. Salumber (Udaipur)

Districts of Baiyin, Dingxi, Lanzhou Sub-districts:
1. Baiyin (Baiyin)
2. Huining (Baiyin)
3. Lintao (Dingxi)
4. Tongwei (Dingxi)
5. Zhangxian (Dingxi)
6. Gaolan (Lanzhou)
7. Qilihe (Lanzhou)
8. Yuzhong (Lanzhou)

Sample size 400 rural dwellers in 16 villages 400 rural dwellers in 16 villagesa

aGansu data based on 398 observations. Two questionnaires were invalid and were dropped from the sample.
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no” nature of the healthcare access variable, we estimated our
models through logistic regression analysis (Greene, 2008: pp.
400–401, 770). We chose separate logistic regression models
rather than one multinomial model because (a) of simplicity
of presentation, (b) patients do not necessarily choose one
healthcare option versus another but often combine different
providers during one illness episode, and because (c) of the
computational requirements of estimating three-level multino-
mial logistic regression models. The basic single-level logistic
regression model with a matrix of covariates xi (see end of this
section for the specification of the covariates), and a vector of
parameters b takes the form

logit½Pðy ¼ 1jxiÞ� ¼ bxi; ð1Þ
where the probability of success P(y = 1) is the natural log of
the odds of achieving a positive result, conditional on xi
(Hilbe, 2009: pp. 23–24). In a three-level random intercept
logistic regression model framework, one random intercept
term each is assigned to the second and third level of the model
(e.g. to individuals j and villages k in the current case):

logit Pðy ¼ 1jxijk; f
ð2Þ
jk ; f

ð3Þ
k Þ

h i
¼ fð2Þjk þ fð3Þk

� �
þ bxijk ð2Þ

In our model, fjk
(2) was the level-2 random intercept for indi-

viduals, and fk
(3) was the level-3 random intercept for villages

(Rabe-Hesketh & Skrondal, 2012a: 876).
For Hypothesis 2, we assessed the ‘‘speed” with which peo-

ple accessed healthcare providers, using two measures: the
number of ‘‘steps” of discrete healthcare activities until a
health provider was first accessed, and the time in days that
had elapsed until that point (note that this approach is differ-
ent from assessing the total length of the healthcare-seeking
process, which would pose severe endogeneity problems; see
Section 5(a) for further discussion). We matched mobile phone
use so that we only included those health-related uses that
took place before or while the patient received healthcare, dis-
regarding whatever occurred after the provider in question
was accessed (e.g. if we are interested in access to a central hos-
pital, we would consider phone calls with private doctors if
they occurred beforehand, but not if they took place after
the hospital access). Because the distribution of the count data
was non-normal and the time data were additionally over-
dispersed, we used Poisson regression analysis for the step
data and negative binomial regression models for the time
data (Wooldridge, 2010: p. 736). (However, because multilevel
Poisson models did not converge, robustness checks in a mul-
tilevel framework relied on ordinary least squares estimations
as reported in the Supplementary data).
The Poisson model with a matrix of covariates xi, and a vec-

tor of parameters b takes the form

PðyijxiÞ ¼ ðe�lilyi
i Þ=ðyi!Þ; ð3Þ

where P(yi|xi) is the conditional expectation of the event yi, yi!
is yi factorial, and ln(li) = bxi is the natural log of the mean
(Cameron & Trivedi, 1998: p. 61; Rabe-Hesketh & Skrondal,
2012a: 376). In this model, yi conditional on the covariates
has a Poisson distribution with mean li (Berk &
MacDonald, 2008: p. 277; Rabe-Hesketh & Skrondal, 2012a:
376). In a three-level framework, this model would be
expressed as

Pðyijkjxijk; f
ð2Þ
jk ; f

ð3Þ
k Þ ¼ ðe�lijklyijk

ijk Þ=ðyijk!Þ; ð4Þ
with ln(lijk) = (fjk

(2) + fk
(3)) + bxijk being the natural log of

the mean.
The single-level negative binomial model is expressed as

Pðyijxi; aÞ ¼ ð½Cðyi þ a�1Þ�=½Cðyi þ 1Þcða�1Þ�Þ
� ½a�1=ða�1 þ liÞ�a�1½li=ða�1 þ liÞ�yi; ð5Þ

where C(�) is the gamma function, a is the dispersion parame-
ter, and ln(li) = bxi (Cameron & Trivedi, 1998: pp. 63, 71,
374–375). In the case of time data, the multi-level negative
multinomial model exhibited a better goodness-of-fit than
the single-level model. The three-level negative binomial
model takes the form

Pðyijkjxijk; a; f
ð2Þ
jk ; f

ð3Þ
k Þ

¼ ð½Cðyijk þ a�1Þ�=½Cðyijk þ 1ÞCða�1Þ�Þ
� ½a�1=ða�1 þ lijkÞ�a�1½lijk=ða�1 þ lijkÞ�yijk; ð6Þ

with ln(lijk) = (fjk
(2) + fk

(3)) + bxijk for the two-level random
intercept specification, where the random intercept terms
fjk

(2) and fk
(3) are gamma distributed (Rabe-Hesketh &

Skrondal, 2012a: 708–711; StataCorp, 2013a:125–127, 184).



Table 3. Model specifications for hypotheses 1 and 2

Variables for Respective Hypotheses Description

H1 H2

Dependent variables Healthcare access Separate binary variables; [1] if access to public/private/
informal/no care

Access time Days elapsed until public/private/informal/any care
Access steps Number of distinct activities until public/private/informal/

any care

Independent variables
of Interest

Any health-related
phone use

[1] if any health-related phone by patient or third party
(see Figure 3 for types), irrespective of phone ownership

Health-related phone use
before/during access

[1] if any health-related phone by patient or third party
prior or during access to respective healthcare provider
(see Figure 3 for types), irrespective of phone ownership

SITE-PHONE interaction Interaction: health-related phone use X country dummy
(reported in Supplementary data)

Other control variables Country dummy [1] if Gansu, to account for site-fixed effects
Self-reported severity of illness [1] if illness is reported as ‘‘severe;” ‘‘mild” otherwise
Sex [1] if female, as observed by investigator
Literacy [1] if able to read mother tongue
Education Highest completed grade
Age group [1] 18–24, [2] 25–34, [3] 35–44, [4] 45–59, [5] 60+
Household size Number of members, having shared kitchen and residence

for more than six months
Sex of household head [1] if female, as reported by respondent
Education of household head Highest completed grade
Household mobility [1] if parent/spouse/sibling/child lives outside village
Self-rated health status [1] ‘‘very good,” [2] ‘‘good,” [3] ‘‘moderate,” [4] ‘‘bad,” [5]

‘‘very bad”
Activities of daily living Average score of seven activities, each: [1] ‘‘no difficulty /

no assistance,” [2] ‘‘mild diff. / no assist.,” [3] ‘‘moderate
diff. / a bit of assist.,” [4] ‘‘severe diff. / a lot of assist.,” [5]
‘‘extreme diff. / cannot do”

Knowledge about emergency hotline [1] if partial or full knowledge of local ambulance hotline
Knowledge about public health hotline [1] if partial or full knowledge of local public health hotline
Perceived ambulance response time Controlling for remoteness and ambulance response; [1]

‘‘<10 min,” [2] ‘‘10–29 min,” [3] ‘‘30–59 min,” [4] ‘‘60–
119 min,” [5] ‘‘>2 h,” [6] ‘‘would not come”

Wealth quintile 5 quintiles, separately for each country based on principal
component analysis of 19 household assets / amenities

Patient considers various options for treatment (health
provider preferences)

Separate binary variables of health provider preferences;
[1] if patient considers for treatment: village clinics / health
centers / community hospitals / private doctors /
pharmacies / shops selling medicine / traditional healers /
alternative medicine / web resources / other sources

Distance to nearest healthcare provider [1] ‘‘<10 min,” [2] ‘‘10–29 min,” [3] ‘‘30–59 min,” [4] ‘‘60–
119 min,” [5] ‘‘>2 h”

Household owns ICT assets [1] if household owns radio/TV/PC/phone
Household owns any kind of vehicle [1] if household owns bike/motorcycle/tractor/car
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Table 3 below specifies and explains the dependent variables,
independent variables of interest, and other control variables in
bx in the regression models (Table 4 summarizes the data). For
all models, we controlled for 28 other potentially confounding
variables including, among others, country-fixed effects, self-
reported severity of the illness, socioeconomic characteristics
of the patient (sex, age, wealth, etc.), health provider prefer-
ences, and the distance to the nearest formal health provider.
Detailed results are reported in the Supplementary material
together with robustness checks. Our robustness checks
included single- and multi-level model fitting (single-level with
bootstrap standard errors, based on 5,000 iterations and
village-level resampling clusters), multicollinearity checks, esti-
mation with sample weights, nested models, different func-
tional forms (ordinary least squares and probit regression for
logistic regression models, and ordinary least squares for the
Poisson and negative binomial regression models), dropping
illnesses that lasted more than twelve months, dropping the
least reliable survey responses as assessed by the field investiga-
tors in the post-interview part of the survey questionnaire (11
responses were rated with ‘‘low” trustworthiness), and estimat-
ing results for self-reported ‘‘mild” illnesses only. In addition,
although all models in this paper are presented without interac-
tion term for Rajasthan and Gansu (owing to better model effi-
ciency and for consistent presentation throughout the paper),
the Supplementary data includes interacted models for all
robustness checks. The analysis was carried out using Stata
13 (StataCorp, 2013b).



Table 4. Sample data summary (unweighted)

Total Rajasthan Gansu

n Mean SD n Mean SD n Mean SD

Accessed public provider (1 = yes) 669 0.57 (0.50) 313 0.55 (0.50) 356 0.58 (0.49)
Steps until public healthcare access 380 1.93 (0.76) 173 2.36 (0.74) 207 1.57 (0.56)
Days until public healthcare access 380 8.21 (26.90) 173 11.86 (30.05) 207 5.16 (23.59)
Accessed private provider (1 = yes) 669 0.39 (0.49) 313 0.69 (0.46) 356 0.14 (0.35)
Steps until private healthcare access 264 2.30 (0.79) 215 2.45 (0.76) 49 1.65 (0.56)
Days until private healthcare access 264 11.20 (33.70) 215 13.38 (37.01) 49 1.65 (2.24)
Accessed informal provider / family (1 = yes) 669 0.12 (0.33) 313 0.11 (0.31) 356 0.13 (0.34)
Steps until informal / family access 81 2.05 (0.91) 33 2.67 (0.92) 48 1.63 (0.61)
Days until informal / family access 81 23.10 (71.32) 33 43.79 (103.92) 48 8.88 (28.25)
Accessed no health provider at all (1 = no access) 669 0.12 (0.32) 313 0.03 (0.18) 356 0.19 (0.39)
Steps until any healthcare access 592 1.82 (0.55) 303 2.09 (0.44) 289 1.55 (0.51)
Days until any healthcare access 592 5.03 (15.81) 303 5.75 (10.57) 289 4.28 (19.86)
Any health-related phone use during illness (1 = yes) 669 0.12 (0.33) 313 0.06 (0.23) 356 0.18 (0.39)
Site dummy (1 = Gansu) 669 0.53 (0.50) 313 0.00 (0.00) 356 1.00 (0.00)
Self-rated severity (0 = ‘‘mild,” 1 = ‘‘severe”) 669 0.09 (0.28) 313 0.03 (0.18) 356 0.13 (0.34)
Sex (1 = Female) 669 0.58 (0.49) 313 0.55 (0.50) 356 0.61 (0.49)
Literacy (1 = can read) 669 0.46 (0.50) 313 0.38 (0.49) 356 0.54 (0.50)
Highest completed grade 669 3.59 (4.25) 313 3.04 (4.30) 356 4.06 (4.16)
Age groupa 669 3.58 (1.29) 313 3.16 (1.31) 356 3.95 (1.16)
Household size 669 4.19 (2.20) 313 5.28 (2.23) 356 3.24 (1.67)
Sex of household head (1 = female) 669 0.09 (0.29) 313 0.06 (0.24) 356 0.11 (0.32)
Highest grade of household head 669 4.32 (4.02) 313 3.25 (4.11) 356 5.26 (3.69)
Any family member living outside of village (1 = yes) 669 0.55 (0.50) 313 0.14 (0.35) 356 0.91 (0.29)
Self-rated health statusb 669 2.32 (1.12) 313 1.88 (0.85) 356 2.71 (1.18)
Activities of daily living scorec 669 1.31 (0.55) 313 1.22 (0.48) 356 1.40 (0.59)
Knowledge of ambulance (1 = partial/full) 669 0.52 (0.50) 313 0.55 (0.50) 356 0.50 (0.50)
Knowledge of health hotline (1 = partial/full) 669 0.05 (0.2) 313 0.11 (0.31) 356 0.01 (0.09)
Perceived ambulance response timed 669 4.51 (1.72) 313 4.18 (1.78) 356 4.80 (1.62)
Wealth quintile (per country) 669 2.71 (1.37) 313 2.80 (1.39) 356 2.64 (1.35)
Considers local clinic for treatment (1 = yes) 669 0.64 (0.48) 313 0.69 (0.46) 356 0.60 (0.49)
Considers health centers for treatment (1 = yes) 669 0.40 (0.49) 313 0.27 (0.44) 356 0.51 (0.50)
Considers larger hospitals for treatment (1 = yes) 669 0.76 (0.43) 313 0.77 (0.42) 356 0.74 (0.44)
Considers private doctors for treatment (1 = yes) 669 0.63 (0.48) 313 0.89 (0.32) 356 0.40 (0.49)
Considers pharmacies for treatment (1 = yes) 669 0.19 (0.39) 313 0.01 (0.11) 356 0.35 (0.48)
Considers shops selling drugs for treatment (1 = yes) 669 0.16 (0.37) 313 0.06 (0.24) 356 0.25 (0.43)
Considers traditional healers for treatment (1 = yes) 669 0.19 (0.39) 313 0.40 (0.49) 356 0.00 (0.05)
Considers alternative medicine for treatment (1 = yes) 669 0.01 (0.08) 313 0.01 (0.10) 356 0.00 (0.05)
Considers web resources for treatment (1 = yes) 669 0.01 (0.12) 313 0.00 (0.00) 356 0.03 (0.17)
Considers other sources for treatment (1 = yes) 669 0.03 (0.17) 313 0.05 (0.23) 356 0.01 (0.09)
Distance to nearest healthcare providere 669 1.87 (0.87) 313 1.87 (0.73) 356 1.87 (0.97)
Household owns ICT assets (1 = yes) 669 0.63 (0.48) 313 0.22 (0.42) 356 0.99 (0.09)
Household owns any kind of vehicle (1 = yes) 669 0.61 (0.49) 313 0.39 (0.49) 356 0.81 (0.39)

Note. SD is standard deviation.
a 1 = ‘‘18–24 years,” 2 = ‘‘25–34 years,” 3 = ‘‘35–44 years,” 4 = ‘‘45–59 years,” 5 = ‘‘60+ years.”
b 1 = ‘‘very good,” 2 = ‘‘good,” 3 = ‘‘moderate,” 4 = ‘‘bad,” 5 = ‘‘very bad.”
cAverage score of seven activities, each: 1 = ‘‘no difficulty/no assistance,” 2 = ‘‘mild diff./no assist.”, 3 = ‘‘moderate diff./a bit of assist.,” 4 = ‘‘severe diff./a lot of assist.,” 5 = ‘‘extreme diff./cannot
do”.
d 1 = ‘‘<10 min,” 2 = ‘‘10–29 min,” 3 = ‘‘30–59 min,” 4 = ‘‘60–119 min,” 5 = ‘‘>2 h,” 6 = ‘‘would not come.”
e 1 = ‘‘<10 min,” 2 = ‘‘10–29 min,” 3 = ‘‘30–59 min,” 4 = ‘‘60–119 min,” 5 = ‘‘>2 h.”
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(c) Ethics

The research was approved by the Oxford Department of
International Development’s Departmental Research Ethics
Committee in accordance with the procedures laid down by
the University of Oxford for ethical approval of all research
involving human participants (CUREC1A/ODID C1A 14-
031). Local ethics approval was obtained from the Gansu Pro-
vince Department of Statistics (2014/8), and the internal ethics
commission of the Indian Institute of Health Management
Research, Jaipur.
4. RESULTS

(a) Descriptive statistics

Although both field sites were relatively poor within their
countries, had similar degrees of mobile phone penetration
when the survey was designed, and faced comparable health-
care challenges, the household survey data highlighted differ-
ences on the micro level in terms of age structure of the
population, education, class composition, and physical house-
hold wealth (See Table 4 for the sample description and
Table 5 for illness- and phone-related descriptive statistics.
All descriptive statistics in this sub-section were population
weighted in order to provide a better representation of rural
population patterns in Rajasthan and Gansu. Statistical anal-
yses presented in the subsequent sections were unweighted but
included sampling weights as a robustness check). For exam-
ple, 56% of the field site population in Rajasthan used very
basic phones and less than one-quarter owned or shared an
Internet-enabled feature or smartphone. The pattern was
inverted in Gansu, where 56% of the adults owned or shared
Table 5. Descriptive illness- and phone-relate

Illness episodes Any mild or severe illness: % reported
Mild illness: % reported
Mild illness: average No. of steps 2
Mild illness: average duration 2
Severe illness: % reported
Severe illness: average No. of steps
Severe illness: average duration 1

Phone access in last 12 months % Own mobile phone
% Shared mobile phone
% Borrowed/rented mobile phone
% Third-party access
% No Phone access at all

Owned/shared phone type % Basic mobile phone
% Feature phone
% Smartphone
% Don’t know (shared mobile phone)

Mobile phone usage % Made call in last 12 months
% Received call in last 12 months
% Sent SMS in last 12 months
% Received SMS in last 12 months
% Used Mobile Data in last 12 months

Notes. Standard deviation in parentheses. Statistics are population weighted a
adult population in field site, except for durations and steps of illness episodes
indicated in parentheses.
an Internet-enabled phone and only one-quarter used very
basic mobile phones.
Overall, 76% of the sample in Rajasthan and 80% in Gansu

reported a mild or severe illness in the past twelve months. The
five most common conditions and symptom categories in each
field site are presented in Figure 1, dominated by fevers, pain,
and the common cold. On the population level, 20% of the
adults in Gansu used mobile phones personally or by a third
party during an illness; in rural Rajasthan, it was 7.5%.
Health-related uses of the phone involved third parties in
40% of these cases (acting on behalf of the patient), and only
30% of the health-related phone uses in the illness episodes
involved the direct interaction with healthcare providers
(others involved e.g. calling a taxi to a hospital or conversing
with peers). Most health-related phone use occurred early dur-
ing an illness, as 83% of all phone use took place in the first
two steps of the healthcare-seeking process.
As Figure 2 indicates, healthcare access varied with health-

related mobile phone use. Healthcare access to private provi-
ders in Rajasthan and to public providers in Gansu was
slightly higher among people who reported that they used a
mobile phone for a health-related purpose during their illness.
People with health-related mobile phone use were also less
likely to report no healthcare access at all. In addition,
patients accessing public doctors in Rajasthan were less likely
to report health-related mobile phone use.
Among the phone-aided healthcare-seeking activities, the

most common tasks in Rajasthan were exchanging advice,
calling a medical practitioner for home treatment, and making
appointments; in Gansu, they were home calls, conversations
about illnesses, and reassuring peers during the course of an
illness (Figure 3). Conventional voice calls were the dominant
mode of communication (rather than text messaging or mobile
data use), and none of the activities described in Figure 3 were
d survey statistics (population weighted)

Rajasthan (n = 400) Gansu (n = 398)

Mean Standard deviation Mean Standard deviation

0.76 (0.03) 0.80 (0.03)
0.74 (0.03) 0.75 (0.04)

.52 (n = 303) (0.82) 2.29 (n = 309) (0.79)
6.50 (n = 303) (56.22) 9.68 (n = 309) (34.05)

0.03 (0.01) 0.13 (0.03)
2.40 (n = 10) (1.28) 2.43 (n = 47) (0.84)
14.00 (n = 10) (133.02) 97.94 (n = 47) (102.48)

0.47 (0.03) 0.77 (0.03)
0.93 (0.02) 0.28 (0.03)
0.08 (0.02) 0.02 (0.01)
0.88 (0.02) 0.27 (0.04)
0.04 (0.01) 0.13 (0.03)

0.56 (0.03) 0.29 (0.03)
0.20 (0.03) 0.16 (0.02)
0.03 (0.01) 0.39 (0.04)
0.18 (0.03) 0.00 (0.00)

0.94 (0.01) 0.81 (0.03)
0.93 (0.01) 0.76 (0.03)
0.21 (0.03) 0.43 (0.03)
0.09 (0.02) 0.33 (0.03)
0.03 (0.01) 0.32 (0.04)

cross the field site districts using census data. Proportion as share of total
, which were sub-sets of patients reporting an illness with sample sizes as
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Figure 2. Healthcare utilization during illness across field sites, by self-rated severity and illness-related phone use (population weighted). Notes. Underlying

statistics were population weighted. Proportions as share of all reported illness episodes in field sites. Multiple answers per episode possible. Respondents could

report one self-described ‘‘mild” and one ‘‘severe” acute illness.
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specific to more advanced phone functions like Internet use
(e.g. home visits in Rajasthan were typically arranged by call-
ing a private doctor). Every person who used a phone for a
health-related purpose made at least one call (personally or
via a third party). In Rajasthan, virtually no other mode
was employed. Gansu respondents showed a slightly wider
spectrum of modes, where 11% of the phone users also indi-
cated the use of mobile broadband and 3% used text messages.
It is also noteworthy that the use of ambulance hotlines and
other dedicated phone-based (mHealth) services was virtually
non-existent: Only 3% of the population in each field site actu-
ally contacted ambulances, and no other mHealth service use
was reported (e.g. public health information messaging, health
advice hotlines, or treatment reminders).



Table 7. Predicted relative and absolute change in healthcare access for
phone-aided healthcare seeking (unweighted)

Access to private providers

Rajasthan +33.4% (+19.4 p.p.)
Gansu +114.3% (+12.3 p.p.)

Notes. Absolute changes in percentage points in parentheses. Based on
logistic regression Model 2 reported in Table 6. Unweighted predictions at
constant sample means (only varying phone use and country dummy).
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Figure 3. Purposes of health-related phone use during illness episodes across field sites (population weighted). Notes. Underlying statistics were population

weighted. Proportions as share of total adult population in field sites. Multiple answers per respondent possible.
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(b) Healthcare access

We explored our first hypothesis by regressing different
types of healthcare access against health-related mobile phone
use during any stage of the healthcare-seeking process.
Although the access patterns for mobile phone users and
non-users differ across the field sites (see Figure 2 in the previ-
ous section), interactions between mobile phone use and the
country dummy tended to be statistically insignificant and
were omitted from the reporting in this paper. However, the
Supplementary material presents interaction models that indi-
cate site-specific effects in some instances.
The main results of the regression analysis are shown in

Table 6 (control variables are reported in detail in the Supple-
mentary material). The reporting relies on single-level logistic
regression results with bootstrap standard errors because
multi-level models were in most cases inferior to single-level
models (e.g. the individual-level intra-cluster correlation ran-
ged from 0% to 16%. Controlling for health provider prefer-
ences and other drivers of healthcare access, a statistically
significant positive link at the 5% level emerges between
mobile phone use during an illness and access to private
healthcare providers (Model 2). Model 2 indicates that the
relationship between health-related phone use and private
healthcare access is positive in Gansu and Rajasthan.
Logged coefficients in logistic regression models are difficult

to interpret. We therefore make predictions at sample means
(only varying country dummy and phone use) for models with
a significant statistical relationship between phone use and
healthcare access at least at the 10% level (i.e. access to private
providers). The results of this exercise indicate that mobile
phone users are 19.4 percentage points more likely to access
Table 6. Main results: effects of phone use on healthcare

Access to public
providers

A

(Model number) (1)

Phone use �0.10 (0.28)
Site dummy (Gansu = 1) �0.18 (0.35)

(28 contro

Number of observations (illness episodes) 669
Number of clusters (villages) 32

Notes. Coefficients reported. Bootstrap standard errors in parentheses. Ana
estimation (5,000 replications) and adjusted for clustering at village level.
*p < 0.1, **p < 0.05, ***p < 0.01.
a Excludes family and friends.
private healthcare in Rajasthan, and 12.3 percentage points
more likely in Gansu. The predicted absolute and relative
changes are shown in Table 7.

(c) Delays in healthcare seeking

In this section, we examine healthcare-seeking delays in
terms of the steps and time elapsed until a provider was
reached. We considered access to public, private, and informal
and untrained providers (e.g. family, faith healers), and
whether any formal or informal provider was involved during
the illness episode. The main results of the analysis are shown
in Table 8 containing the Poisson regression results for the
step variables and Table 9 containing the negative binomial
regression results for the delay variables (single-level models
were more efficient for the Poisson regressions; multi-level
models for the negative binomial regressions). It is worth not-
ing that the sample sizes differ across the models because we
can only compare the delays of phone users and non-users
who actually accessed the respective providers (e.g. 380 illness
access (single-level logistic regression, unweighted)

Dependent variable

ccess to private
providers

Access to informal
providers, family, friends

No access to
any providera

(2) (3) (4)

0.91** (0.41) 0.12 (0.55) �0.52 (1.29)
�2.44** (0.68) �0.35 (0.99) 2.39 (3.13)

l variables and constant term omitted from reporting)

669 669 669
32 32 32

lysis at illness episode level. Standard errors calculated with bootstrap



Table 8. Main results: association of phone use with steps to access (single-level poisson regression, unweighted)

Dependent variable

Step # of
public care

Step # of
private care

Step # of informal
care and family & friends

Step # of
any care

(Model number) (1) (2) (3) (4)

Phone use 0.12* (0.06) 0.02 (0.07) 0.14 (0.24) 0.06 (0.04)
Site dummy (Gansu = 1) �0.49*** (0.11) �0.42*** (0.12) �0.44 (0.43) �0.27*** (0.06)

(28 control variables and constant term omitted from reporting)

Number of observations (illness episodes) 380 264 81 592
Number of clusters (villages) 32 29 25 32

Notes. Coefficients reported. Bootstrap standard errors in parentheses. Analysis at illness episode level. Standard errors calculated with bootstrap
estimation (5,000 replications) and adjusted for clustering at village level.
*p < 0.1, **p < 0.05, ***p < 0.01.

Table 9. Main results: association of phone use with time to access (multi-level negative binomial regression, unweighted)

Dependent variable

Delay until
public care

Delay until
private care

Delay until informal care
and family & friendsa

Delay until
any care

(Model number) (1) (2) (3) (4)

Phone use 0.74*** (0.29) 0.53* (0.30) 0.50) (0.79) 0.35* (0.21)
Site dummy (Gansu = 1) �2.29** (0.49) �1.71** (0.49) �4.77** (1.45) �1.29** (0.37)

(28 control variables and constant term omitted from reporting)

Number of level 1 observations (illness episodes) 380 264 81 592
Number of level 2 observations (individuals) 360 261 N/Aa 565
Number of level 3 observations (villages) 32 29 25 32
Variance component test <0.01 <0.01 1.00 <0.01

Notes. Coefficients reported. Standard errors in parentheses. Analysis at illness episode level.
*p < 0.1, **p < 0.05, ***p < 0.01.
a Two-level model estimated because one illness episode per individual.

Table 10. Predicted relative and absolute change in delays to healthcare access for phone-aided health action (unweighted)

Access to public providers Access to private providers Access to any healthcare providerb

Process steps Delays in daysa Delay in daysa Delay in daysa

Rajasthan +12.6% +110.5% +69.4% +41.7%
(+0.30 steps) (+8.32 days) (+3.16 days) (+1.50 days)

Gansu +12.6% +110.5% +69.4% +41.7%
(+0.19 steps) (+0.85 days) (+0.57 days) (+0.41 days)

Notes. Absolute changes in parentheses. Based on regression Model 1 in Table 8 and Models 1, 2, and 4 in Table 9. Unweighted predictions at constant
sample means (only varying phone use and country dummy).
a Conservative prediction, based on fixed part of multi-level model only.
b Excludes family and friends.
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episodes involve public doctors and nurses). Positive coeffi-
cients in these tables correspond to longer delays in terms of
steps and days until healthcare access, or, in other words, less
speedy healthcare-seeking processes.
The Poisson regression models yielded statistically signifi-

cant positive results for the step at which patients accessed
public healthcare providers (Table 8, Model 1). The negative
binomial regression model indicated a statistically significant
positive relationship between health-related phone use and
public healthcare access at the 1% level (Table 9, Model 1)
and with private providers and any kind of healthcare at the
10% level (Table 9, Models 2 and 4). The principal insight of
these tables is that health-related mobile phone use is associ-
ated with delays to accessing healthcare in terms of discrete
healthcare activities (public healthcare) and days elapsed since
the onset of a discomfort (public, private, and overall access).
Contrary to expectations, none of the results indicate a link
between health-related mobile phone use and faster healthcare
access. (Site-specific effects reported in the Supplementary
material indicate that access to informal healthcare in
Rajasthan may be an exception.)
Table 10 contains the predicted absolute and relative

changes in delays where people used mobile phones for an
illness-related purpose (calculated for steps and days; absolute
changes in parentheses). The table indicates more pronounced
delays to public healthcare access where patients use mobile
phones. For example, phone use in the healthcare-seeking pro-
cess was associated with a 0.85-day additional delay in public
healthcare access in Gansu and 8.32 days in Rajasthan, hold-
ing other variables constant at the sample means. The number
of discrete activities carried out before accessing public doc-
tors and nurses was 12.6% higher among phone users. Fur-
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thermore, health-related mobile phone use was associated with
a 69.4% longer delay to the first contact with private doctors,
and overall access to formal or informal healthcare providers
was 41.7% slower among mobile phone users.
5. DISCUSSION

This paper set out to test two hypotheses in order to exam-
ine whether mobile phone use leads people to make different
healthcare decisions (compared to people who do not use a
mobile phone for a health-related purpose during their illness).
The hypotheses focused on two facets of healthcare utilization,
suggesting that phone-aided healthcare seeking increases
access to healthcare (H1) and leads to faster access to health-
care (H2). Our analysis of original cross-sectional survey data
from rural Rajasthan and Gansu revealed significant statistical
associations in support of H1 and opposed to H2. The causal
direction underlying these associations could be explored in
future studies using longitudinal experimental or quasi-
experimental research designs. This section discusses the limi-
tations of our cross-sectional study, the interpretation of our
analysis in light of the research hypotheses, the theoretical
explanation of the observed patterns within and beyond trans-
action cost arguments, and the policy implications if our inter-
pretation of the results can be established more firmly in future
research.

(a) Limitations

It is worth pointing out some of the main limitations of this
study, how we addressed them through our analysis, and what
sources of bias remain. The aspects we focus on below include
confounding effects and reverse causation, interview and recall
biases, reporting and salience biases, and the external validity
of the results.
Our study dealt with confounding effects and reverse causa-

tion in four ways: First, we controlled in our regression models
for a broad range of factors such as household wealth and
health provider preferences. Second, the impact of wealth as
a confounder was further mitigated because the analysis did
not focus solely on those people who own mobile phones,
but it also included individuals who had a third party operate
the phone on their behalf. Third, the extensive involvement of
third parties made it also less probable (though not impossi-
ble) that other personal characteristics of patients confounded
phone use. Fourth, only a minority of mobile communication
patterns involved the direct correspondence between patient
and healthcare provider, which reduced the risk of reverse cau-
sation as patients could also use phones to facilitate access to
healthcare providers who would otherwise be unresponsive to
direct interaction (e.g. by calling a taxi). While endogeneity
issues cannot be ruled out conclusively in a cross-sectional
study like ours, the findings suggested at least a significant
association between phone use and health behavior that war-
rants further research.
Recall and social desirability biases are another common

problem in research involving retrospective health questions
(Ann & Cornelius, 2006; Coughlin, 1990). Consensus in epi-
demiological studies is that long recall periods can influence
and bias reporting, for example along educational strata
(Das, Hammer, & Sánchez-Paramo, 2012; Feikin et al.,
2010; Kroeger, 1983). The customary recall period in epidemi-
ological and health research is between 14 and 30 days in low-
and middle-income countries (Ahmed, Adams, Chowdhury, &
Bhuiya, 2000; Asenso-Okyere & Dzator, 1997; Gotsadze,
Bennett, Ranson, & Gzirishvili, 2005). For the purposes of
the present study, which sampled respondents from the gen-
eral adult population, such short recall periods would have
led to infeasibly small samples, and it would have been insen-
sitive to the fact that illness episodes often extend beyond a
fortnight and occasionally up to one year. At the same time,
it is important to reiterate that ours was not an epidemiolog-
ical study that aimed to ascertain the precise prevalence rate of
a particular health condition, but a health behavior study that
aimed to understand whether and how mobile phone use
might influence the processes which patients undergo.
We therefore chose to include illness episodes that were

remembered by the respondent and that ended within the last
year in order to capture a wider range of healthcare behaviors.
Our previous qualitative research eliciting patients’ illness epi-
sodes in Rajasthan and Gansu (not reported here) showed that
patients were comfortable recalling and describing those epi-
sodes in detail, including how mobile phones were being used
(Haenssgen, 2015b). In order to mitigate the risk of reporting
and recall biases in our research, the use of mobile phones
was elicited explicitly for each step in a particular illness epi-
sode in line with our qualitative data collection, and its speci-
ficities had to be justified subsequently (however, the finer
grain of the questions relative to simple ownership questions
may have inadvertently led to lower reported levels of phone
use where respondents were unsure). For instance, if a phone
was used, the respondent had to explain how it was used,
who used it, for which purpose, and who was contacted (if
applicable). The survey fieldworkers were trained in this proce-
dure intensively over five days plus a one-day pilot study. We
further excluded chronic, long-term, and recurrent illnesses
from the group comparison to limit the recall period (consider-
ing that chronic disease management is often a target of
mHealth programs (Free et al., 2013), future research may
investigate behaviors associated to chronic illness in particu-
lar).
All this does not rule out recall biases conclusively, and

there remains a residual risk that socio-economic control vari-
ables are not fully able to capture potential biases in recall
between poorer and more affluent as well as between more
and less educated people. It is, however, unclear whether
any recall bias would alter systematically the conclusions
drawn from the analysis, given that neither respondent’s edu-
cation (measured by completed grades and literacy) nor their
household wealth (as measured by a wealth index and wealth
quintiles) were correlated with their reporting of a ‘‘mild” or
‘‘severe” illness (correlation coefficients in Rajasthan and
China ranged from �0.098 to +0.059).
Lastly, the nature of the study does not permit the findings

to be extrapolated to other contexts. It may very well be that
our field sites are the only two examples where we can observe
the patterns illustrated above. The interpretation of the results
therefore has to pertain specifically to the field sites, rather
than rural low- and middle-income contexts more generally.
However, in the absence of other quantitative evidence, our
findings can be understood as the first step and a methodolog-
ical starting point toward a knowledge base on the relation-
ship between mobile technology diffusion and healthcare
behavior in LMICs in the absence of specific mHealth inter-
ventions.

(b) Hypotheses

In light of the cross-sectional study design, we cannot estab-
lish causal claims about the relationship between mobile
phone use and healthcare behavior. The statistical findings
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of our analysis nevertheless helped us to inform our two
research hypotheses.
Hypothesis 1 stated that health-related mobile phone use

increases access to healthcare providers. Our findings from
rural Rajasthan and Gansu showed a positive association of
such phone use with access to private healthcare providers.
This association is largely consistent with H1: although we
cannot conclusively state at this stage that mobile phone use
increases access, the positive link to healthcare utilization sug-
gests that this is indeed a possibility in rural Rajasthan and
Gansu. (Robustness checks with interaction models reported
in the Supplementary material indicate that site-specific pat-
terns may be more complicated yet largely consistent with this
conclusion.)
Hypothesis 2 stated that health-related mobile phone use

leads to faster access to healthcare. In order to inform this
hypothesis, we explored the association between health-
related mobile phone use and the time and steps until the first
healthcare provider is reached during an illness. Contrary to
expectations, the regression results indicated that mobile
phone use is associated with slower (or at least not accelerated)
healthcare access. A possible interpretation of this pattern is
that mobile phones simply enable the complex trajectories that
health seekers desire, or that longer and more tedious pro-
cesses lead people to resort to mobile phones, but the charac-
teristics of our healthcare-seeking data (83% of all phone use
taking place in the first two steps of an illness episode) suggest
that this is improbable. In addition, should complicated and
severe symptoms prompt individuals to use mobile phones,
we would continue to expect that access to the first point of
care is faster with a phone than without, which is not borne
out by the data. We could consider marginal scenarios where
individuals have ‘‘optimal” delays to public healthcare (e.g.
because they called a friend who advised only to access a
health center when the illness actually requires it), but we
interpret the results in sum as opposed to Hypothesis 2.

(c) Theoretical research directions beyond transaction costs and
information deficits

If the interpretation of our findings in light of the research
hypotheses holds—and further experimental and quasi-
experimental research is necessary to establish the causal
link—then we would have to reconsider the appropriateness
of transaction cost and information deficit arguments to
explain that mobile phone diffusion affects people’s health
behavior in rural India and China by (a) increasing but also
(b) complicating access. We argue in this section that transac-
tion costs and information deficits can help to explain such
patterns if they are considered in connection with uncertainty
in human decision-making and within the prevailing health
systems configuration.
Arguments based on information deficits and transaction

costs would suggest that mobile phones help patients to gather
more information about healthcare providers and solutions,
and to act on this information more efficiently because mobile
communication is faster and cheaper than alternative means
(Aker & Blumenstock, 2015; Aker & Mbiti, 2010; Dammert
et al., 2014). An improvement in healthcare access would fol-
low in terms of uptake and speed, provided that people have
complete information about which course of action is effective
and advisable given their symptoms and available healthcare
resources, and provided that they make ‘‘perfectly rational”
healthcare decisions based on this information (note that devi-
ations from the theoretical construct of ‘‘rationality” should
not necessarily be deemed ‘‘irrational” or ‘‘random” behav-
ior). Such a ‘‘rational” decision model could respect other fac-
tors including patient preferences and cultural norms
(Andersen, 1995: p. 6; Dupas, 2011:431; Luoto, Levine, &
Albert, 2011: pp. 2–4; Oster & Thornton, 2012: p. 1291;
Rhee et al., 2005: p. 8). Were we only to consider healthcare
utilization as in Hypothesis 1, the positive association between
health-related phone use and access to private doctors would
be consistent with this argument, although it would suggest
that people have preferences for private over public healthcare
that cannot be satisfied sufficiently without mobile phones.
However, the inconsistency between our findings and Hypoth-
esis 2 suggests that this explanation may be incomplete.
Theories from the behavioral and information economics

literature can help to reconcile the otherwise conflicting obser-
vations, and to consider possible implications of mobile phone
diffusion on healthcare-seeking behavior more broadly.
Behavioral economists have long argued that humans have
difficulty assessing the health risks and costs of activities such
as smoking (Cawley & Ruhm, 2011: pp. 137–139). The same
difficulty applies during illnesses because patients do not know
with certainty whether a particular form of treatment from a
particular provider is going to succeed (Arrow, 1963: pp.
948–952; Balsa, Seiler, McGuire, & Bloche, 2003: pp. 203–
205; Blomqvist, 1991: pp. 411–412; Scott, 2000: p. 1178).
Absence of dependable, affordable, and accessible diagnosis
mechanisms (assuming such exist) aggravates the uncertainty
because patients can often only venture an educated guess
about the nature of their illness based on their own or their
peers’ experiences. Treatment decisions resulting from such
self-diagnosis can be unsatisfactory. This is illustrated by
Cohen, Dupas, and Schaner (2012: p. 57): 68.5% of their Ken-
yan household sample reported that they had a case of malaria
in the past month. The households often decided to purchase
antimalarial medication at kiosks, but a diagnostic test
showed that only one-third of adults using such medication
actually had malaria (Cohen et al., 2012: p. 9; Dupas, 2011:
p. 427).
Patients therefore experience uncertainty regarding both the

nature of their illness and the efficacy of treatment choices.
They also face numerous competing demands like earning an
income or rearing children, which can make immediate access
to healthcare difficult. For instance, a recent study on health
system utilization in Western Kenya argued that ‘‘competing
priorities in a poor community, such as gathering water and
firewood, limit how much time people have for clinic visits”
(Bigogo et al., 2010: p. 971).
In light of uncertainty and constraint, it is possible that

patients’ decision-making does not reflect the theoretical and
simplifying notion of perfect rationality under full informa-
tion, but rather heuristic ‘‘rules-of-thumb” in order to simplify
the decision (Tversky & Kahneman, 1974: p. 1124; one could
extend the argument to third parties acting together with
patients or on their behalf). Healthcare decisions based on
simplifying rules about the effectiveness of treatment options
may be influenced by user fees that signal quality; conspicuous
practices and procedures that suggest expertise of the health-
care provider; or personal relationships with the provider that
promise availability (Leventhal, Weinman, Leventhal, &
Phillips, 2008: pp. 487–489). In addition, a patient’s self-
diagnosis may be shaped by his or her illness history, by com-
mon illnesses in the same community (e.g. malaria), or by the
duration and intensity of the symptoms (Leventhal et al., 2008:
pp. 485–486; Reynolds & McKee, 2011: p. 466).
We emphasize here heuristics and decision-making under

constraint because we argue that mobile phones influence
health behaviors through this channel. Which exact decision-
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making rules govern the behavior of phone users is not known
and requires more research (e.g. field experiments). We may
nevertheless hypothesize that mobile phones lower the barriers
for diagnosis and treatment with unforeseen results if the
underlying healthcare decisions are based on necessarily sim-
plifying rules about diagnosis and the effectiveness of treat-
ment. If all else is equal, a healthcare-seeking process
involving mobile phones may enable people to contact a pro-
vider easily where costs (or other barriers) would otherwise
have been prohibitive, to explore seemingly more promising
healthcare options in order to avoid a little-trusted local doc-
tor, or to speak to a relative and receive their view about what
should be done. However, if the facilitated behaviors are dri-
ven by heuristic rules-of-thumb rather than fully informed
decisions about the present and future costs and benefits of
all available treatment options, there is no guarantee that they
automatically lead to desirable courses of action from a med-
ical perspective. It is instead more probable that mobile
phones facilitate a spectrum of behaviors that includes adverse
and unexpected as well as effective health action. This can
potentially lead to more rather than less complex healthcare
itineraries, which is consistent with the patterns observed in
our data and in contrast to our simplistic transaction-cost-
based Hypothesis 2 that phone use necessarily leads to faster
access to healthcare.
In addition, some providers may be more responsive to

mobile phone interaction because of physical accessibility,
job descriptions involving visits to local residents, personal
relationships, or profit interests (Mechael, 2006: pp. 169–
170). Phone-aided options may lower patients’ thresholds for
diagnosis and treatment for some providers but not others,
biasing the ensuing behavior toward ‘‘responsive” actors.
Clearly not all forms of phone use during an illness involve
direct correspondence (in our study, it is 30% of health-
related phone use), but the heterogeneous associations
between mobile phone use and access to public and private
healthcare access in our data lend support to this argument.
The positive association between phone use and private
healthcare access in Gansu and Rajasthan may therefore be
explained by their higher responsiveness to patients’ phone
use.
It is too early for a theory of phone-aided health behavior

and this section only discussed starting points for further
empirical and theoretical work at the interface of mobile
phone diffusion and health behavior. Yet, if we acknowledge
that healthcare seeking resembles heuristic decision-making
under constraint, we are able to reconcile our quantitative
findings and theory. On the one hand, by reducing the barriers
(or ‘‘transaction costs”) for diagnosis and treatment, mobile
phones invite increased utilization of the health system. How-
ever, this could also lead to inefficient over-utilization of scarce
healthcare resources, and more access need not mean faster
access if people delay healthcare decisions because of an
increased sense of safety and security that is often reported
to emanate from mobile phone usage (e.g. de Silva &
Zainudeen, 2007: p. 11; Gagliardone, 2015: p. 10; Ling,
2012: pp. 115–118; Souter et al., 2005: p. 79). On the other
hand, phone-aided behavior is biased toward those providers
who are more responsive to phone use. It is thus possible that
the mobile phone diffusion process leads to improved behav-
iors where the health system is transparent, regulated effec-
tively, and where well-qualified first-level providers are
encouraged to engage with patients on the phone. However,
it is questionable whether the somewhat obscure and frag-
mented healthcare landscapes of rural Rajasthan and Gansu
meet these conditions.
(d) Implications for digital development and mHealth

Policy implications in the ICTD and mHealth literature
commonly focus on how to exploit the positive potential of
mobile phone diffusion (Andersson & Hatakka, 2013: p. 293;
Dodson, Sterling, & Bennett, 2012; Heeks, 2014: p. 12;
Khatun et al., 2014: p. 9; Roztocki & Weistroffer, 2014: p.
351). Although multiple interpretations of our study results
are possible, 3 and although the causal direction of our find-
ings will have to be established in future research, we focus
our discussion on the potential negative implications of mobile
phone diffusion in order to complement existing mHealth posi-
tions.
One possible interpretation of our cross-sectional findings is

that mobile phone use during an illness increases access to
healthcare. This can mean that phone users have an advantage
over non-users in accessing healthcare, and this advantage
might be rooted in pre-existing social, economic, and spatial
divisions (as has been shown elsewhere, e.g. in Burrell, 2010;
Wyche, Simiyu, & Othieno, 2016). However, increased access
can also lead to inefficient health system over-utilization by
phone users, which could crowd out more vulnerable groups.
Additional complexity of phone-aided behaviors as suggested
by delayed access to healthcare can come at a cost, too—not
just in terms of direct and indirect health expenditure for the
patient, but also delays that could make an emergency condi-
tion life threatening. 4

What would have to be done if the interplay of ungoverned
technology diffusion and health behavior adaptation does
indeed yield such unintended side effects? It appears imprudent
to restrict and regulate population access to mobile technology
in such a scenario, but advocating for an mHealth intervention
to boost more equitable access to healthcare may be equally
insensitive if its own platform reinforces inefficient healthcare
resource allocation.
On the demand side of health-related mobile phone use,

some authors have advocated that users be educated about
the (health-related) engagement with mobile technology, for
example through primary and secondary school curricula
(Bailin, Milanaik, & Adesman, 2014: p. 616; Buhi, Daley,
Fuhrmann, & Smith, 2009: p. 110; Day, 2014: p. 187;
Hampshire et al., 2015: p. 98). Education about proper phone
use could be a means to reduce adverse behaviors and the
potential crowding out of non-users. However, such activities
may also reproduce healthcare inequities between users and
non-users of mobile phones, provided that the users now
achieve more effective healthcare access while other, poten-
tially more marginalized, groups remain excluded from some
or all phone use. In order to promote equitable access to
healthcare, it may be more effective to focus educational activ-
ities on health problems and health behavior more generally
(rather than only phone-aided behaviors). Another problem
is that such activities would not reach individuals outside of
the education system, such as adults. Educational activities
aiming to limit health system over-utilization could therefore
target phone users when they interact with the health system,
for example by doctors pointing out appropriate channels of
communication to patients who call them.
Regulatory intervention on the healthcare supply side could

be another way to rectify problems related to inefficient health
system over-use. Where inequitable healthcare access is a con-
cern, patients would require functioning and efficient routes to
the health system that do not depend on mobile phone use,
for instance through public transport or regular and depend-
able drop-in clinics at health centers (see e.g. Healy & McKee,
2004: pp. 352–353). Such supply-side responses to increasing
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phone-aided health action are an issue yet to be resolved, but
further health systems research in this area may gradually
help to develop a knowledge base on effective policy
responses.
Since the practice of mHealth interventions is likely to con-

tinue in the future, there are at least two further points that
patient-centered mHealth developers, implementers, and
health policy makers could take away from our study. On
the one hand, considering the breadth of health-related phone
uses that have emerged in our field sites in the absence of
extensive mHealth intervention, user acceptance issues may
arise if people’s existing local solutions compete with a new
intervention. Vassilev et al. (2015: p. 23) advise that telehealth
initiatives be ‘‘integrated into everyday life and healthcare rou-
tines.” Our research suggests that, beyond harmonization with
everyday ‘‘routines,” also people’s existing conventional and
phone-aided healthcare behaviors deserve attention. Common
concerns about epidemiological priorities like cardiovascular
diseases should not be neglected, but it may be worthwhile
for designers and implementers of mHealth solutions to start
with questions like, ‘‘How does my target group behave, which
solutions do they already have available, and how can I guide
and improve their behaviour?” Such a person-centered
approach could avoid potentially redundant interventions that
risk undermining user acceptance.
On the other hand, the sustainability of patient-centered

mHealth solutions may be in doubt where the mobile phone
platform undermines those outcomes that the mHealth inter-
vention means to improve. For example, if mobile phones pro-
mote the inefficient use of scarce healthcare resources, we may
ask whether a healthcare intervention ought to be mobile-
phone-based, potentially creating a situation where the tech-
nological intervention would only undo the harm that the plat-
form inflicts (e.g. in the case of mobile-phone supported
referral; Mehl et al., 2015: p. 255). However, given the research
gap in this area, we need a broader knowledge base on how
mobile phone use affects health action in order to identify
instances where mHealth interventions are warranted and
where not.
6. CONCLUSION

We set out to investigate whether, in the absence of targeted
interventions, people make different healthcare decisions if
they use mobile phones during an illness. To this end, we car-
ried out an exploratory study using a novel, cross-sectional
data set of healthcare behavior among the general adult pop-
ulation in rural Rajasthan (India) and Gansu (China)—irre-
spective of whether the respondent owned a phone.
To the best of our knowledge, this is the first study that

identified a statistical association between mobile phone use
and healthcare access behavior among the rural adult popula-
tion in LMICs in the absence of a specific phone-based health-
care intervention. Our research findings indicated that mobile
phone use in rural Rajasthan and Gansu is associated with
higher access to healthcare, but also with more complex and
time-consuming behaviors. A causal link underlying this rela-
tionship needs to be established in future studies, but our
exploratory study and theoretical discussion suggested that
such a relationship between phone diffusion and healthcare
access might have mixed consequences for healthcare as an
important facet of international development. For example,
it could be regarded a positive outcome if the spread of mobile
phones means that now digitally included groups are able to
better navigate fragmented healthcare systems and to coordi-
nate transportation to previously inaccessible health provi-
ders. However, increased access for phone users (be they
owners or not) may come at the expense of groups who are
excluded systematically from digital diffusion processes
because of pre-existing patterns of economic, social, or spatial
marginalization. More access to healthcare encouraged by
mobile phone use could also be detrimental for the patient if
it means increased out-of-pocket expenditures for unnecessary
treatment.
If the statistical associations detected in our study do indeed

hint at a causal link between phone diffusion and population
health behavior, then it would also have a bearing on the
introduction of specific phone-based health interventions
(mHealth) that are targeted at patients as end users. As we
observed that people use mobile phones for health-related pur-
poses even before mHealth is introduced, new interventions
might inadvertently have to compete with people’s existing
phone-based healthcare solutions. This could manifest itself
for example in the form of low ‘‘user acceptance,” even if an
mHealth solution is more desirable from a clinical perspective
than prevailing healthcare-seeking practices. In addition, if
future research links mobile phone use to problematic patterns
of health behavior and healthcare access (e.g. delays in access,
inefficient overuse of scarce resources), then we may have to
reconsider whether a patient-centered healthcare intervention
ought to be mobile-phone-based (e.g. mobile-phone supported
referral; Mehl et al., 2015: p. 255). In such a context, an
mHealth intervention could potentially create a situation
where the technological solution only undoes the harm that
the mobile platform inflicts. Non-mHealth solutions for
healthcare access and behavior change may be preferred in
such circumstances.
At present, these causal claims are merely hypotheses that

emerged from this study and that require future research.
For example, research designs using natural experiments could
explore whether mobile phone diffusion makes personal
healthcare access more efficient and ‘‘appropriate” depending
on people’s symptoms, and whether it intensifies competition
for scarce healthcare resources between users and non-users
of mobile phones. Field experiments may help to understand
whether and which heuristic decision-making routines underlie
phone-aided health behavior. This paper offered theoretical
starting points to formulate such hypotheses, and method-
ological ones to study the influence of phones on healthcare-
seeking behavior in depth.
It is important to understand our conclusions in the context

of exploratory research in two comparatively poor field sites
where mobile phones have diffused fast and where healthcare
access remains an issue. Cultural, social, technological, infras-
tructural, and health system differences are likely to influence
the relationship between mobile phone diffusion and health-
care access in these and other contexts. At the same time,
the two culturally and socio-economically distinct sites pro-
duced findings that reveal a consistent association between
phone diffusion and healthcare access, thereby extending the
recently emerging literature that has started to examine mobile
phone use in the context of challenging healthcare access
(Hampshire et al., 2015; Khatun et al., 2014; Tran et al.,
2015; Zurovac et al., 2013). This makes rural Gansu and
Rajasthan at least two noteworthy cases on a research agenda
that calls for more social sciences research to build a compre-
hensive knowledge base on the healthcare implications of
mobile phone diffusion around the globe. The tools and tech-
niques suggested in our paper may help along the way.
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1. A substantial portion of the literature also investigates the direct
health effects of mobile phone use, such as mobile phone radiation,
exploding batteries, electrical shocks, distraction during the operation of
road vehicles, or mobile phones as bacterial repositories (Ben et al., 2009;
Brady et al., 2011; Jeffrey & Doron, 2013: pp. 212–213; Karabagli, Köse,
& Çetin, 2006; Karger, 2005; Mechael, 2006: p. 144; Patrick, Griswold,
Raab, & Intille, 2008: p. 178; Visvanathan, Gibb, & Brady, 2011; Wang
et al., 2012: p. 212; Wilson & Stimpson, 2010).

2. The surveys were intended to be representative on the district level, but
a fundamental problem in face-to-face rural surveys is that the daytime
population in the village is different from the registered population. We
calculated sample weights using census data in both field sites to adjust the
results of the descriptive statistical analysis to be representative on the
district level (Heeringa, West, & Berglund, 2010: p. 38). The underlying
census data stem from 2010 (Gansu) and 2011 (Rajasthan) (Government
of India, 2011: p. 1; NBS, 2011). However, sample weights for the
descriptive statistical analysis do not entirely rule out that the underlying
sample has atypical characteristics when compared to people who
commute to work outside the village (Fowler, 2009: pp. 62–67).

3. More research is needed to establish which interpretation applies in
which context and for which groups. For example, it is plausible that
phone users think of a given illness as less severe if they are able to access
advice that helps them understand its nature and find relief. In this
particular case, mobile phone use would directly contribute to improved
subjective well-being. We thank an anonymous reviewer for raising this
point.

4. Additional qualitative and quantitative exploratory analyses [not
reported here] pointed at interactions between disease severity and phone
use, according to which phone users may be more likely to use health
services for mild health conditions. Future research may investigate this
link further.
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