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Abstract

Deformation and damage processes in brittle and quasi-brittle materials, such
as rock and concrete, are strognly influenced by their heterogeneous nature, related
to their formation processes. The presence of heterogeneities leads in fact to no-
ticeable variation in material properties values: it is of extreme importance that
a numerical model which aims to realistically, reliably reproduce with low com-
putational e↵ort deformation and damage processes is able to include the e↵ect of
laminations, micro-cracks, voids and other types of heterogeneities; this is even more
important when a numerical models has to reproduce the propagation of fractures.
This thesis presents the development of a numerical framework for the simulation of
crack propagation in shale rocks and concrete which also looks at the optimisation
problem in the sense of computational e�ciency (defined as optimal computational
time needed to obtain realistic and accurate results). The numerical framework for
crack propagation developed in this thesis is a variational phase-field model based
on a finite elements smeared approach, able to automatically and realistically cap-
ture crack initiation processes for a variety of loading conditions; this numerical
framework is based on the relation between potential energy associated to body
deformation and the energy released during fracture formation. Heterogeneity is
considered in the model by means of a stochastic approach based on the assumption
that some mechanical properties of heterogeneous brittle materials (such as fracture
energy) follow a non-Gaussian Weibull distribution. To guarantee adequate con-
vergence of the results, Monte Carlo Simulation (MCS) method has been used in
combination with the developed stochastic methodology. A non-linear dimension-
ality reduction technique has been developed and incorporated in the algorithm to
reduce the computational e↵ort required for the generation of sample realisations.
The methodology has been validated using experimental results from both labo-
ratory tests on shale rocks and literature on fracture in concrete. Results show
that the developed algorithm is capable of realistically reproducing the mechanical
behaviour of the chosen case studies, showing an applicability to problems where
cracks propagate in mode-I, mode-II and mixed-mode I and II, guaranteeing a fast
generation of sampling realisations of realistic stochastic fields and convergence of
results after a maximum of 130 MCS analyses. This methodology can be applied to
materials with random spatially-distributed variations of mechanical properties and
to those showing laminar natural formations.
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Chapter 1

Introduction

1.1 Motivation

As alternative to experimental investigations and analytical solutions, numerical

modelling has become an always more important tool for engineering applications. A

numerical modelling tool must be computationally e�cient and su�ciently reliable.

Nowadays, a huge amount of commercial softwares are available, but improvements

are always needed in order to quickly produce realistic results. In fact, very often the

complexity of algorithms and numerical strategies developed for solving engineering

problems can be an obstacle to their applicability, as the computational tools avail-

able, even if in continuos growth, cannot always support the computational cost

required by them. For this reason, the computational e�ciency of algorithms must

be taken into account during the development and implementation of numerical

models whenever possible and without losing accuracy.

One of the topics in continuum mechanics which deals with complex numerical

frameworks is fracture mechanics, field which studies the propagation of cracks in

materials. It uses principles of classical continuum mechanics for the identification

of cracks and methodologies of experimental solid mechanics to characterise and

quantify the resistance of materials to cracking. Macroscopically, damage evolu-

tion is identified as gradual loss of sti↵ness in the mechanical response of materials,

while on a micro-scale, damage is described by nucleation, growth and coalescence

of micro-cracks leading to failure (Bouchard, 2005).

Understanding how a crack propagates in the materials is essential for the design and

construction of engineering structural components, such as beams and columns, and

for expensive and dangerous operations such as gas extraction from gas reservoirs.

Several approaches for the modelling of the crack propagation in homogeneous mate-
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rials have been developed and applied to classical or newer computational strategies

based on Finite Element Method (FEM) (Swedlow et al., 1966), Discrete Element

Method (DEM) (Jirásek and Bažant, 1995) and peridynamic theory (Silling et al.,

2003). For all of them, the modelling of crack advancement requires a modification

in the classical formulations of the Partial Di↵erential Equations (PDEs) describing

the equilibrium problems, due to the incorporation of material discontinuities and

the creation of new domain boundaries.

In the context of the FEM, crack propagation has been considered with several ap-

proaches, and the majority of them can be grouped in two main categories: discrete

or smeared. The discrete approach, introduced by Saouma and Ingra↵ea (1981),

identifies the new crack as localised new boundaries of the material volume, while

the smeared approach, introduced by Rashid (1968) looks at fracture by incorpo-

rating strain or displacement discontinuities into FE discretisation variables (Rena

et al., 2008). Simulating the propagation of cracks using traditional finite element

methods results however particularly challenging mainly due to the topology of

the domain, which changes continuously during the simulations (Richardson et al.,

2011).

Nevertheless, in reality, materials are disordered and crack paths are strongly in-

fluenced by material heterogeneities. A computational framework for modelling of

crack propagation must therefore be able to provide a numerical setting to include

randomness in material properties and accurately resolve realistic crack patterns

(Figure 1.1).

Multiscale modelling is a very robust and elegant approach widely used to incorpo-

Figure 1.1: Crack path from homogeneous-based numerical model (smooth solid line) and
comparison with experiments (tortuous lines) (Gasser and Holzapfel, 2006).
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rate e↵ect of heterogeneity in numerical models; nevertheless, materials with a very

high degree of heterogeneity would require a certain degree of precision in the defi-

nition of the material to be modelled; the a priori knowledge of the material micro-

and macrostructure are important especially for the correct definition of the micro-

and, consequently, macroscale parameters (Weinan et al., 2007). Furthermore, when

the problem under investigation needs knowledge of mechanical properties in space

of materials located in areas reachable with di�culty, values for mechanical proper-

ties cannot be directly measured and therefore can only be defined using probability

theory principles. Stochastic FEM (SFEM) is therefore developed, as standard FE

methods are coupled with stochastic approaches, allowing the incorporation of ma-

terial heterogeneity in standard FEM without the need of a detailed knowledge of

material heterogeneity of each point in space.

1.2 Aims and Objectives

The aim of this research is to develop a novel theoretical and computationally ef-

ficient numerical framework for modelling of crack propagation in heterogeneous

materials. Advanced SFEM models are developed to incorporate the e↵ect of the

material heterogeneity on crack paths. The framework is implemented into an ex-

isting computational codes that initially was developed for modelling of crack prop-

agation in homogeneous materials. These implementations will allow:

1. predicting reliably crack paths and real mechanical behaviour of fracturing

bodies;

2. extending the applicability of the existing code to a wider rang of engineering

materials.

Objectives to achieve the project aim are:

1. to conduct an appropriate literature review, to investigate ability of the current

approaches and software for modelling of the crack propagation in heteroge-

neous materials and identify the drawbacks of these approaches;

2. to highlight critical aspects of di↵erent approaches used to incorporate the

e↵ect of heterogeneity in numerical models;

3. to develop a novel stochastic modelling framework to include the e↵ects of

material heterogeneities on the crack paths and mechanical response;

4. to implement the modelling framework into an existing finite element code;
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5. to optimise the computational e�ciency of the developed methodologies;

6. to verify, validate the computational implementation and revise it in accor-

dance with the results of the verification and validation phase.

1.3 Thesis outline

After this introduction, the thesis is organised as follows: in the second chapter a

comprehensive review of the main methodologies for incorporation of material het-

erogeneity in numerical and computational frameworks for modelling of fractures is

presented. The third chapter provides a comparison of two computational frame-

works for modelling of crack propagation, (i) one based on a phase-field smeared-

based approach which uses a scalar field to describe damage evolution in a body until

its rupture and (ii) one based on a configurational force method which includes new

fractures as new boundaries in the domain using a discrete approach; the chapter

aims to explore and compare advantages and drawbacks of each approach and to

choose which one will be implemented by incorporating the e↵ect of materials’ het-

erogeneity. The fourth chapter summarises the concepts of statistics used in this

work to develop the stochastic methodology for modelling crack propagation in this

thesis. The stochastic methodologies developed for optimal incorporation of ma-

terial heterogeneity are detailed in chapters five and six. In the seventh chapter

the results from numerical simulations and comparison with experimental data are

presented. Concluding remarks and future works are presented in chapter eight.
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Part I

Literature Review and

Fundamental Concepts
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Chapter 2

Literature Review

2.1 Introduction

The uncertainty assessment of engineering structures and materials has progres-

sively become a significant topic of interest in engineering communities. Engineering

practice has in fact revealed that uncertainties are very often found in the loading

conditions, in the material and geometric properties of structures and components.

Modelling of propagation of cracks involves safety, reliability and integrity assess-

ment of structures; most of civil and environmental engineering materials, like con-

crete and rock, exhibit a heterogeneous nature due to their composition or natural

formation processes. Fractures tend to propagate along the paths of least resistance,

showing tortuous patterns: uncertainty in the location of the crack initiation point,

flaws and possible manufacturing defects confer a non-deterministic nature to mate-

rials mechanical behaviour. In this sense, homogeneous-based numerical frameworks

developed for modelling of crack propagation may lead to unrealistic and unreliable

results, such as smooth crack paths and unrealistic and inaccurate values of material

resistance.

Multiscale modelling method is one of the most powerful approaches used to

incorporate e↵ect of heterogeneity in computational models (due to its capability of

including in the macroscopic governing equations the e↵ect of local microstructures),

for which, however, a detailed knowledge is required to model with this technique

materials with a very high degree of heterogeneity; furthermore, when a full knowl-

edge about the spatial distributions of heterogeneities is not available, values for

mechanical properties essential to run a numerical model cannot be directly quan-

tified and, therefore, can only be defined probabilistically. Stochastic approaches
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provide numerous advantages over multi-scale approaches, as the logical quantifi-

cation of the uncertainties is conducted using probability theory. In this context,

Stochastic Finite Element Method (SFEM) is an extension of the classical FEM,

which solves problems for properties which are random (Zhou and Molinari, 2004).

Both multiscale methods and stochastic approaches have been successfully applied

to fracture mechanics problems, but, in conclusion, stochastic approaches provide

suitable and satisfactory approximations where a full knowledge at fine scales is not

available.

The aim of this chapter is to review the existing methodologies developed

for modelling crack propagation on brittle materials of heterogeneous nature. More

specifically, in the first part of this chapter the most relevant theory and literature

about fracture mechanics will be reported, followed by a detailed description and

comparison of two models for simulation the propagation of cracks in brittle materi-

als. Following, a section reporting the two most important methodologies developed

for including heterogeneity in numerical models will be presented. Finally a review

of the existing models available for modelling crack propagation in heterogeneous

materials will be produced, with a final focus on how damage in heterogeneous

rock-like materials has been modelled.

2.2 Mechanics fundamentals

The mechanical formulations needed for a full comprehension of this work are pre-

sented in this section.

2.2.1 Continuum formulation: kinematics

For a body ⌦ in the reference (undeformed) configuration, X position vector is

defined as

X = X
i

e
i

= X1e1 +X2e2 +X3e3 (2.1)

where X
i

are defined as Lagrangian coordinates and e
i

represents the vector com-

ponents directions. In the current (deformed) configuration the position vector x

takes the form

x = x
i

e
i

= x1e1 + x2e2 + x3e3 (2.2)

where x
i

are the Eulerian coordinates.

A point from the reference to the current configuration is transformed (see Figure
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2.1) using the function

x(X) = '(X) (2.3)

and the change of position of a point of ⌦ due to the application of ' is defined

using the displacement vector

u(X) = x(X)�X. (2.4)

Figure 2.1: Point in reference and current configurations.

For a di↵erential line element dx, the transformation described above is de-

fined by the deformation gradiend F

F =
@'(X)

@X
=

@x

@X
(2.5)

.

2.2.2 Strain measures

As a measure of deformation, the variation in the scalar product of two elemental

vectors dX1 and dX2 is considered. Knowing that

dx
i

= FdX
i

(2.6)
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the scalar product dx1 · dx2 is expressed via the vectors dX1 and dX2 as

dx1 · dx2 = dX1 ·CdX2 (2.7)

where C is the right Cauchy-Green deformation tensor

C = FTF. (2.8)

The variation in the scalar product (absolute elongation) can now be expressed in

terms of the vectors dX1 and dX2 as

1

2
(dx1 · dx2 � dX1 · dX2) = dX1 ·EdX2 (2.9)

where E in the Lagrangian strain tensor defined as

E =
1

2
(C� I) (2.10)

and where I is the identity tensor.

2.2.3 Equilibrium and stress measures

Let’s now consider a point in the body in its deformed configuration where is found

the real stress vector t being �p the force resultant and �a a small element of area

of the body

t(n) = lim
�a!0

�p

�a
(2.11)

where n is the direction normal to �a. In order to define what is called stress tensor

the three components of t are expresses as a function of the three directions

t(e1) = �11e1 + �21e2 + �31e3 (2.12a)

t(e2) = �12e1 + �22e2 + �32e3 (2.12b)

t(e3) = �13e1 + �23e2 + �33e3 (2.12c)

where �
ij

are the components of the Cauchy stress tensor. In Figure 2.2 the decom-

position of t(e
i

) according to �
ij

is shown on a small element. In general form, the

stress t can be written as a function of � and n as

t(n) = �n. (2.13)
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Figure 2.2: Cauchy stress components.

The body forces (per unit volume) acting on the body and surface forces (per unit

area) acting on its boundaries have to satisfy the following condition of equilibrium

Z

⌦
p d⌦ +

Z

@⌦
t d@⌦ = 0, (2.14)

which, by using Eq. 2.13 can be written as

Z

⌦
p d⌦ +

Z

@⌦
�n d@⌦ = 0. (2.15)

Using Gauss theorem, the second term of the left hand side of Eq. 2.15 can be

rewritten and has the form

Z

⌦
div(�) + p d⌦ = 0 (2.16)

which, if applied to an enclosed portion of the considered body is expresses by

div(�) + p = 0 (2.17)

known as local spatial equilibrium equation.

The stress tensor which is the energetic conjugate of the deformation gradient F is
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the first Piola-Kircho↵ stress tensor S given as

S = J�F�T (2.18)

where J = detF is the Jacobian of the deformation gradient matrix. The equilibrium

Equation 2.17 can be therefore rewritten in the form

DIV(S) + p0 = 0 (2.19)

where DIV(S) is the divergence of S with respect to the initial configuration and

p0 = Jp represents the body force per unit volume (undeformed).

2.2.4 Finite Element fundamentals and variational formulation

Eq. 2.17 represents the basic di↵erential equation describing the equilibrium of a

body subjected to a system of forces. Together with the boundary conditions, it is

the starting point for the finite element formulation, which is one of the most known

methods for solving di↵erential equations in engineering practice.

Normally, Eq. 2.17 is used to obtain the weak formulation of the problem together

with the principle of virtual work. An arbitrary virtual velocity (or perturbation)

�v from the current configuration of the body is considered, and multiplied by Eq.

2.17. This formulation if then integrated over the volume of the body to obtain the

variational formulation defined as

�W =

Z

⌦
(div(�) + p) · �v d⌦ = 0 (2.20)

which, after applying the Gauss theorem, expressing the equation terms as follows

(Bonet and Wood, 1997)

div(��v) = (div(�)) · �v + � : r�v (2.21a)

n · ��v = �v · t (2.21b)

and rewriting r�v in terms of �d, symmetric virtual rate of deformation, the spatial

virtual work equation is obtained as (Bonet and Wood, 1997)

�W =

Z

⌦
� : �d d⌦�

Z

⌦
p�v d⌦�

Z

@⌦
t · �v d@⌦ = 0. (2.22)

Eq. 2.22 is the fundamental equation describing the equilibrium state of a de-

formable body, basis for the finite element discretisation.
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The main steps for solving a problem by means of FEM can be summarised

as follows (Fish and Belytschko, 2007):

1. definition of the PDEs describing the physical problem and of the relative

mechanical properties (e.g. modulus of elasticity);

2. definition of the problem domain and boundary conditions;

3. discretisation of the domain with elements, having unknown variables (e.g.

displacements) allocated to each node with opportune degrees of freedom (e.g.

2 translational and 1 rotational in case of two-dimensional problems);

4. definition of suitable weight functions used to represent the distribution of the

unknowns of the problem on each element;

5. definition of the sti↵ness matrix for each element and final assembly for the

final linear problem and application of the boundary conditions (as values of

problem unknowns which are given and assigned to selected nodes);

6. linear problem resolution.

2.3 Fracture Mechanics

In recent years, a growing number of researchers have focused on the problem of

modelling heterogeneous materials containing discontinuities. In fact, practice re-

veals that the presence of heterogeneous structure, enclosed joints, micro-cracks,

natural discontinuities and laminations can significantly a↵ect the strength and fail-

ure mechanism of materials.

From a macroscopic standpoint, fracture is seen as the rupture separation of a

structural component into two or more parts due to the propagation of cracks. The

process involves the nucleation, increase and coalescence of micro-defects and voids

in the material. Thus, in analysing cracks in bodies ideally researches would need

to take into consideration all these aspects happening at di↵erent length scales, and

the related macroscopic e↵ects due to the loading conditions, environmental factors,

and the geometric properties of the member (Erdogan, 2000).

From the standpoint of engineering applications, the theories developed from con-

tinuum mechanics and thermodynamics principles created the formulations capable

of modelling and describe failure of materials. It is generally considered that the

material contains imperfections which may become as fracture initiation areas and
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that the body is a homogeneous continuum such that the dimension of an imperfec-

tion is large if compared to the characteristic material microstructure. The problem

is, therefore, to study the influence of the applied loads, flaw geometries, environ-

mental conditions and material behaviour on the fracture process in the solid as a

subject now known as fracture mechanics (Erdogan, 2000).

2.3.1 Brittle Fracture

Despite over-design approaches used for designing structures and components, un-

expected failures have been happening in several events recorded in the past. A

sudden failure leads furthermore to issues related to structural safety, human lives,

economical losses and services disruption. Numerous episodes of catastrophic fail-

ure can be found, such as bridge failures (e.g. Montrose suspension Bridge in 1830,

Husselt Bridge in 1938, Point Pleasant Bridge in 1967, Mississippi Bridge in 2007),

railway accidents due to cracks in wheels and rails (in UK, there has been an average

of 200 deaths per year due to railway accidents (Erdogan, 2000)) or fracture in gas

transmission lines, in which typically cracks may initiate at local defects aided by

corrosion phenomena. The common aspect of these failure episodes is that they are

encouraged by zones of high brittleness, notches, peak loads, temperature shocks

and highly corrosive environments.

The very first theories developed for fracture mechanics were based on maximum

stress principles (Wieghardt, 1907). Nevertheless, the basis of the approaches de-

veloped during the last century is the theory by Gri�th (1921). The starting point

of his theory is the concept of equilibrium as minimisation of the potential energy

of a system: the problem of the rupture of elastic bodies is solved by considering

the change in potential energy during the creation of new surfaces.

Before Gri�th, by means of the maximum stress principles Inglis (1913) analysed

the problem of a flat plate with an elliptical hole subjected to far end stress � as

shown in Figure 2.3. The stress at the tip of the major axis is calculated as (Inglis,

1913)

�1 = �

✓

1 +
2a

b

◆

. (2.23)

where a and b represent half of the length of the major and minor axis, respectively.

If b is very small as shown in Figure 2.3 and, consequently, a >> b, the stress at

the crack tip tends to 1. The mathematical di�culty of this approach can be in-
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deed observed in the case of perfectly sharp crack, where b goes to zero, leading

therefore the stress to go to infinity at the crack tip. This solution is physically

incorrect (Erdogan, 2000), because the predicted results would show that materials

have near-zero strength: the stress near crack tip would go to infinite also for small

loads, generating the rupture of the internal bonds. In his theory, Gri�th devel-

Figure 2.3: Stress distribution according to Inglis’ solution: plate with elliptical hole sub-
jected to uniform tension (McGinty, 2017).

oped a model for a cracked system in terms of a reversible thermodynamic process.

Through his experiments on glass specimens, he assumed that pre-existing defects

propagate under the influence of an applied stress due to a variation of the energy

in the system. Therefore he considered fracture in bodies as physical process that

needs energy to create or extend new crack surfaces (Gri�th, 1921).

Thereby, Gri�th’s theory is not directly concerned about crack tip processes or the

micro-mechanisms of crack advancement, but based his research on the fact that

“there is a simple energy balance consisting of a decrease in potential energy (en-

ergy accumulated during the deformation process) within the stressed body due to

crack extension and this decrease is balanced by increase in surface energy due to

increased crack surface” (Gri�th, 1921).

Calling E
G

the energy released from the propagation of the micro-crack, the stabil-

ity condition, under a loading P , is expressed by E
G

(P ) < G. G is a characteristic

of the material called fracture energy and represents the energy related to its resis-

tance against the extension of the cracks; G is calculated as the ratio between the
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energy required for the formation of a new crack and the fracture surface (Gri�th,

1921). From Gri�th’s theory, it is worth highlighting that brittle fracture can not

initiate unless defects (or any other features such as notches, sharp edges or similar)

already exist.

Starting from Inglis’ solution of Eq. 2.23, Gri�th quantified the increase in defor-

mation energy due to applied loads and boundary conditions and, from the energy

balance, he calculated the amount of stress corresponding to fracture as

� =

r

2GE⇤

⇡a
(2.24)

where E⇤ = E for plane stress and E⇤ = E/(1�⌫2) for plane strain conditions 1 and

a is the half crack length. In this way Gri�th resolved the infinite stress paradox

and proved that fracture stress depends on the flaw size.

2.3.2 Irwin’s contribution: crack tip transition zone and Linear

Elastic Fracture Mechanics (LEFM)

Gri�th’s theory, largely ignored until 1950’s, has been the basis for further contri-

butions. The most relevant to report at this stage is the theory of Irwin (1957), who

extended Gri�th’s theory studying the crack propagation phenomenon in ductile

materials and considered the role of the plastic zone created in proximity of a crack

tip, as Gri�th in his work did not account for any inelastic deformation around the

crack front. According to Irwin if the size of the plastic zone in proximity of the

crack tip is small compared to the dimension of the fracture, the energy going in

the cracked area can be thought as coming from the body deformation and, as a

consequence, its dependency on the stress state in proximity of the crack tip can

be neglected. Therefore, the stresses values in the solid won’t be in contraddiction

with a solution of a crack purely elastic (Erdogan, 2000).

In addition to his study on ductile fracture, Irwin (1957) provided a method for the

calculation of the amount of energy necessary for fracture in terms of stress field.

The definition in this context involves a parameter called Stress Intensity Factor

(SIF). SIF is defined, according to each of the three basic modes of crack deforma-

tions shown in Figure 2.4, as the stress field around the crack tip, considering crack

1Plane stress is the state of stress in which the normal stress �
z

and the shear stresses �

xz

and
�

yz

directed perpendicular to the x � y plane are assumed to be zero. Plane strain is the state
of strain in which the strain normal to the x � y plane, "

z

and the shear strain �

xz

and �

yz

are
assumed to be zero.
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length a, applied stress �
N

and a shape factor Y
i

:

K
I

= Y
I

�
I

p
a (2.25a)

K
II

= Y
II

�
II

p
a (2.25b)

K
III

= Y
III

�
III

p
a (2.25c)

For each of these modes, crack extension may only take place in the direction of the

Figure 2.4: Fracture modes: Mode I Opening (left); Mode II In-Plane Shear (middle); Mode
III Out-Of-Plane Shear (right) (Bui, 2007).

original orientation of the crack. It is very common to find a mixed-mode opening

situation, where a superposition of two (plane stress) or three modes is observed;

the individual contributions to a given stress component are in fact additive. Con-

sidering the problem of a cracked plate in plane stress condition (ignoring mode III

failure), total stress �
ij

is given by

�
ij

(r,#) =
K

Ip
2⇡r

f I

ij

(#) +
K

IIp
2⇡r

f II

ij

(#) + �0
ij

+O(
p
r) (2.26)

where r and # represent the polar coordinates of each point of the domain with

respect to the crack tip, i, j = x, y and �0
ij

indicates the finite stress at the crack

tip. f I

ij

(#) and f II

ij

(#) represent the angular variation functions for mode I and II

respectively, and are given by

f I

xx

(#) = cos (
1

2
#)

 

1� sin (
1

2
#) sin (

3

2
#)

!

(2.27a)

f I

yy

(#) = cos (
1

2
#)

 

1 + sin (
1

2
#) sin (

3

2
#)

!

(2.27b)

f I

xy

(#) = cos (
1

2
#) sin (

1

2
#) sin (

3

2
#) (2.27c)
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f II

xx

(#) = � sin (
1

2
#)

 

2 + cos (
1

2
#) cos (

3

2
#)

!

(2.27d)

f II

yy

(#) = cos (
1

2
#) sin (

1

2
#) sin (

3

2
#) (2.27e)

f II

xy

(#) = cos (
1

2
#)

 

1� sin (
1

2
#) sin (

3

2
#)

!

, (2.27f)

equations defined with the concept of linear elastic fracture mechanics (LEFM),

according to which material’s structure follows Hooke’s law, global behaviour is

linear elastic and any local small-scale crack tip plasticity is neglected. The formulas

above allow thereby the characterisation of stress fields in proximity of the crack

tip.

Let’s now consider the example of a plate with a pre-existent crack. As fracture

criteria, it is considered the stress state around the crack tip, characterised by K
I

.

Crack growth will happen when K
I

reaches its value of critical SIF or fracture

toughness K
Ic

:

K
I

= K
Ic

. (2.28)

Then, Irwin evaluated the amount of energy released from K
I

and the elastic mod-

ulus E, as

G =
K

I

E⇤ . (2.29)

Typical values of fracture toughness of some materials are shown in Table 2.1.

Table 2.1: Typical values of KIc for some common materials.

Material K
Ic

(MN/m3/2)

Mild Steel 140

Titanium alloys 55 - 120

High carbon steel 30

Nickel, copper >100

Concrete (steel reinforced) 10 - 15

Concrete (unreinforced) 0.2

Glasses, rocks 1

Ceramics (Allumina, SiC) 3 - 5

Nylon 3

Polyester 0.5

17



2.4 Smeared and discrete approaches for FE modelling

of fracture

The basic concepts of fracture mechanics provided in the previous paragraph are

the theoretical basis of all the modelling approaches developed in the last century.

Finite element (FE) frameworks for fracture analysis have been historically cat-

egorised in two groups of approaches: discrete and smeared. The first group of

methods relies on a discrete and explicit representation of a crack in a FE discreti-

sation. This approach has been introduced by Saouma and Ingra↵ea (1981) and

identifies the new crack as localised new boundaries of the body. With a discrete

crack model, in order to obtain realistic crack patterns, a method for adaptating

the discretised domain to accommodate varying crack directions and to properly

take into consideration remeshing near the crack tip must be adopted. The second

group of approaches, introduced by Rashid (1968), looks at fracture by including

displacement jumps into standard FE approximations (Rena et al., 2008). Numeri-

cal simulation of propagation of cracks via smeared FEM presents several challenges

related, for example, to the topology of the domain, which continuously changes with

the simulations (Richardson et al., 2011). If suitable strategies (such as mesh re-

finement) are not incorporated, is likely that classical smeared models exhibit mesh

sensitivity and incorrect failure modes. Even when mesh refinement techniques are

included to achieve model convergence, extreme mesh refinements at crack tip may

introduce bias for the direction of crack propagation (Bazant and Lin, 1988).

A few comparative studies between smeared and discrete approaches in FEM

have been carried out (Steinke et al., 2016; May et al., 2016; Mosler and Meschke,

2004; Latha and Garaga, 2012; Brighenti et al., 2013) for problems with loads ap-

plied in both quasi-static and dynamic conditions. These (and more) studies showed

how both approaches present their own advantages and disadvantages, and that the

choice of one method over the other mainly depends on the considered case study

(Jendele et al., 2001): discrete crack models are generally more appropriate for mod-

elling cases in which one or more crack are dominant and where the type of failure

and crack geometry are well known and predictable; smeared crack models can bet-

ter simulate the di↵use cracking patterns that appear due to the heterogeneity of

materials and the presence of reinforcements. Furthermore, if neither the initiation

mechanism nor the crack initiation point are known a priori, smeared crack mod-

els are usually more suitable for modelling the propagation of fractures (Noghabai,

1999).
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Comparisons between smeared and discrete approaches have been carried

out also for multi-physics problems (Sahimi, 2011). For example by studying hydro-

fracture phenomena, even if a problem morphology is well-known, because of the

irregularity in the solid-fluid interface in typical porous media, solving such a prob-

lem with a continuum approach can be practically and computationally unfeasible,

as the determination of solid-fluid boundaries is particularly challenging, especially

for large-scale porous media. The boundaries where one would have to solve the

systems of PDEs can be so tortuous that the problem may become mathematically

unmanageable. Discrete models are free of the limitations described above for con-

tinuum models; they seem to be more suitable for the description of phenomena at

the microscopic level and have been extended to describe a number of phenomena

at macroscopic scales. Their main disadvantage is the large computational e↵ort

required for a realistic modelling of the porous media (Sahimi, 2011). In fact, (and

this aspect does not apply to multi-physics problems only), experience showed that

discrete models are usually more computationally demanding, mainly because of the

adaptive re-meshing techniques required to account for progressive failure.

A number of authors coupled smeared and discrete FEM approaches in order

to combine the advantages from both approaches. A combined smeared-discrete ap-

proach has been used by Einsfeld et al. (1997) to study concrete structures, where the

transition from smeared to discrete approaches is achieved in locations where strains

localisation is observed. Gui et al. (2016) implemented a cohesive smeared-discrete

FE framework for dynamic fracturing in rocks able to reproduce well compression,

tension and shear failure behaviours. de Borst et al. (2004) showed how di↵erent

advantages between smeared and discrete approaches can be summed up together

by mean of ”cohesive segments” method. In fact, the location of cohesive surfaces

of finite size at random positions and in random directions in smeared finite element

discretisation allows the modelling of di↵use crack paths. These cohesive segments

can be extended, and a single and continuous crack can also be represented, allow-

ing the simulation of the initiation and growth of a dominant crack. In this sense,

the cohesive segments method can be seen as a connection between discrete and

smeared crack models used in concrete fracture.

Nevertheless, since cohesive elements can only be located at the element boundaries,

by using cohesive elements an a priori knowledge about the location of crack path

is needed, or however cohesive surfaces must be provided between all internal con-

tinuum element borders: these aspects lead not only to an excessive increase of the
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degrees of freedom but also to a severe decrease of the structure sti↵ness (Kaliske

et al., 2012).

In addition to classic Finite Element (smeared and discrete) methods, other

methodologies of embedding strong discontinuities have been developed. One of the

most well-known, introduced by Dolbow and Belytschko (1999), is the eXtended

FE method (XFEM), in which discontinuities are included in a classical FE model

by enriching the displacement field of the nodes on the basis of local partition of

unity concept (Richardson et al., 2011): in this method the FE mesh is created

independently from any possible crack topology, as the discretised domain doesn’t

have to be remeshed as the crack propagates.

Peridynamic theory is another method developed for modelling propagation of cracks

(Madenci et al., 2016; Dipasquale et al., 2016). This mathematical theory extends

classical continuum mechanics to incorporate discrete particles; propagation of crack

is modelled considering the distance between particles to define the transition from

continuous damage to fracture.

Other more recently methods developed for increasing computational e�ciency and

accuracy of results used also to describe fracture problems are meshless methods

(Cai et al., 2016; Nguyen et al., 2016a; Belytschko et al., 1996). However, in this

study, attention is focused only to classical FE methods (smeared and discrete)

where the e↵ect of heterogeneity will be included.

In the next two paragraphs, the focus will be on two numerical models, a

smeared phase field approach based on a variational formulation for brittle failure

(Del Piero et al., 2007) and a discrete fracture model based on the configurational-

force method (Kaczmarczyk et al., 2014); both methods are representative of their

respective class, and on their capability of reproducing realistic crack patterns and

values of material resistance. Both methods are described: however, the incorpora-

tion of material heterogeneity will be executed on the phase field model (more details

about this decision are provided in Chapter 3) and, therefore, the description of the

configurational force method will be condensed to highlight its main features and

formulations.

2.4.1 Phase field smeared approach: variational energy formulation

The core of the variational approach to fracture mechanics, based on the work

described in Francfort and Marigo (1998), relies on association of a potential energy

consisting of stored elastic energy, the work of external forces working in opposition
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to potential’s force field, and the energy released through fracture to any crack

and deformation configuration. It is considered a reference configuration ⌦ ⇢ RN ,

N = 2, of a homogeneous elastic body containing a generic crack as shown in Figure

2.5. The total energy of the body is defined as

Figure 2.5: Cracked solid configuration and boundary conditions

E(f ,K) =

Z

⌦/K

W (F(x)) dx+GHN�1(K) (2.30)

where f is the body deformation, K ⇢ ⌦ is the fractured zone, W : RNxN ! R is

the stored energy function, F is the deformation gradient, G is the fracture energy

and HN�1(K) is the Hausdro↵ measure of K which provides the measure of the

length of the crack for su�ciently regular fractured zone.

In mathematics, Hausdro↵ measure is used to generalise lengths and areas, as it

allows to measure a certain subset of RN . For the specific purpose of this thesis,

N�dimensional Hausdro↵ measure and N�dimensional Lebesgue measure agree on

RN (Evans and Gariepy, 1992).

The first and the second terms on the right hand side of the Equation 2.30 represent

bulk and surface energy of the body, respectively. Deformation of the elastic body

under load increases the bulk energy. When this value reaches to a critical value

in a given zone, it is energetically favourable for the system to release its energy.

Therefore, crack growth is traced by consequent minimisation of energy function

(i.e., Eq. 2.30) at fixed time steps.

The minimisation of the Eq. 2.30 with respect to any kinematically admissible

displacement and any set of crack paths introduces a high level of complexity for

21



the solution of the discontinuity problems, particularly due to the presence of the

non-smooth values of the K parameter. Following the methodology proposed by

Ambrosio and Tortorelli (1990), it is introduced K as a set of discontinuity points

S
f

of the function f , and set the problem in a space of discontinuous functions. The

formulation of the energy, by replacing the term K with a set of jump points, S
f

of

deformation in a Sobolev space SBV (⌦;RN ), is therefore given by

E(f) =
Z

⌦/K

W (5f) dx+GHN�1(S
f

). (2.31)

The presence of the term HN�1 (S
f

) creates di�culties in the finite element dis-

cretisation of the function. To overcome such challenges, Eq. 2.31 is approximated,

in the sense of �-convergence (Bourdin et al., 2000), using a family of numerically

more tractable functionals defined over a Generalized Sobolev Space (GSBV).

Approximation via �-convergence

With the term Sobolev Space (SBV) is defined a vector space with functions having

norm which is a combination of their Lq-norms (an Lq is the space of functions

having integrable qth power of the absolute value) and their derivatives.

Based on the regularised formulation of the energy function for brittle fracture

problems presented in Bourdin et al. (2000) and Ambrosio and Tortorelli (1990), an

auxiliary variable s, which is called damage parameter, is introduced. The parameter

s is a regularised representation of the fractured zone defining the jump set in

Equation 2.31. Therefore, a metric space X is considered, and its elements are pairs

of (f , s). Then function F : X ! [0,+1] is used, which is defined by

F(f , s) =

8

<

:

E(f) if f 2 D, s ⌘ 1,

+1 otherwise
(2.32)

where D is the domain of the functions belonging to GSBV. The problem of min-

imising {F(f ,s):(f ,s) 2 X} to calculate the damage parameter is considered. The

damage parameter provides a picture of the damage state of the body; for an undam-

aged and intact body, s is equal to 1 everywhere, while it goes to zero in proximity

of the jump set S
f

. Following Bourdin et al. (2000) the functional formulation for a

generic ` > 1 is expressed in the form provided by Ambrosio and Tortorelli (1990)
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as

F
"

(f , s) =

Z

⌦
(s2(x0) + k

"

)W (F (x)) dx

+G

Z

⌦0

"`�1

`
|5 s(x)|` + c

"`0
(1� s(x))` dx

(2.33)

where ` is the `th power of the norm of the function defined in the Sobolev space,

`0 = `/(`-1), c = (2
R 1
0 (1� t)`/`

0
dt)�`

0
is the normalisation constant, k

"

is a positive

regularisation parameter and " is related to the material length scale. Bulk and

surface terms are two integrations over two di↵erent domains ⌦ and ⌦0, physical

domain and logical domain, respectively. ⌦0 is defined as open set such that

⌦ ⇢ ⌦0, @2⌦ ⇢ @⌦0, int(@1⌦) \ @⌦0 = ?

where @1⌦ and @2⌦ are two disjoint parts of the boundary of ⌦, and int(@1⌦) the

interior of @1⌦ relative to @⌦. The choice of the size of the logical domain is made

on the consideration that it has to be big enough to avoid underestimation of the

fracture energy when the crack reaches the boundary @1⌦.

For two-dimensional problem where ` = 2, the total energy formulation for the body

can be represented as:

F(f , s) =

Z

⌦0

(s2 + k
"

)W (50f) dx0 +
G

2

Z

⌦0
0

("|50 s|2 + 1

"
(1� s)2) dx0 (2.34)

where ⌦0 and ⌦0
0 represent initial unfractured and stress-free configuration of the

body in the physical and logical domain, respectively, x0 represents a physical point

of the physical domain ⌦0 and 50 represents the gradient with respect to x0.

Stored Energy formulation

Following Del Piero et al. (2007) an isotropic, compressible neo-Hookean type stored

energy model is used and is defined as

W (F) =
µ

2
(trC� 3) +  (J) (2.35)

where µ is the Lame second parameter, C is the right Cauchy-Green tensor and

J = detF is the Jacobian of the deformation gradient.

In the above equation, the first term represents the classical formulation of an in-

compressible neo-Hookean material and the second term is a convex function that
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is defined as (Del Piero et al., 2007)

 (J) =

8

<

:

�

2 (ln J)
2 � µ ln J 0  J  j

�

2 (ln J)
2 � µ ln J + (� ln J � µ)

⇣

J�j
J

⌘

J � j
(2.36)

where � is the Lame first parameter and j = e(�+µ)/�. The Eq. 2.36 is directly

related to surface deformation, as it is function of the Jacobian of the deformation

gradient. As J goes to zero the stored energy function goes to infinity, penalising

the extreme compression.

Numerical solution strategy

An approximation solution of minimisation of the Eq. 2.34 is achieved using an

iterative procedure, shown in algorithm 1, which consists of imposing a stationary

condition alternatively to one of the deformation and damage variables, while keep-

ing the other variable fixed. For all v 2 W 1,`(⌦,Rn), w 2 W 1,`(⌦0), the aim is to

find a deformation that satisfy the stationarity condition of

�F
"

(f
n

, s
n�1)[v, 0] =

Z

⌦0

(s2
n�1(x0) + k

"

)S(50fn(x0))50 v(x0) dx0 = 0 (2.37)

and then for the scalar filed s stationary condition of

�F
"

(f
n

, s
n

)[0, w] =

Z

⌦0

2W (O0fn)snw dx0+G

Z

⌦0
0

✓

" M s
n

� 1� s
n

"

◆

w dx0 (2.38)

where S(F) = @

@FW (F) is the first Piola-Kirchho↵ stress tensor.

By taking the Updated Lagrangian formulation of Eq. 2.37 and linearisation of it

the following is obtained (Del Piero et al., 2007)

Z

⌦
n�1

(s2
n�1 + k

"

)
⇣

(detF)�1(I⇥ F)[S(F)]+

+(detF)�1(I⇥ F)
@S(F)

@F
(I⇥ F)T [5ū

n

]
⌘

·5v dx = 0

(2.39)

where ⇥ represents the conjugation product (defined, for two matrices ⇤1 and ⇤2

as ⇤3(i1, i2, i3, i4) = ⇤1(i1, i3)⇤2(i2, i4)) (Del Piero et al., 2007), and using Eq. 2.36

S(F) =

8

<

:

µF+ (� ln J � µ)F�T 0  J  j

µF+ �e�(�+µ)/�F�T J � j .
(2.40)
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Applying the integration by parts, the final weak form of Eq. 2.38 is obtained

Z

⌦0

2W (O0fn)snw dx0 �G

Z

⌦0
0

✓

" M0 sn � 1� s
n

"

◆

w dx0 = 0. (2.41)

MATLAB Partial Di↵erential Equation Toolbox together with the Newton-Raphson

iteration scheme is used to solve the above equations. The iteration stops when two

consecutive pairs of solution (f
n�1, sn�1) and (f

n

, s
n

) are close enough according

to an identified convergence condition. In order to avoid the healing of the cracks,

an approximation method was used to consider irreversibility condition for damage

evolution. The methodology proposed by Del Piero et al. (2007) is followed. Based

on that, irreversibility condition of s
n

(x) = s
n�1(x) if s

n

(x) > s
n�1(x) is set, and

the value of damage parameter associated to each point in the body cannot exceed

the one calculated at the previous time step.

Algorithm 1: Numerical solution procedure

Data: Model parameters, problem geometry and boundary conditions.

1 Initialization: set (f0
n

, s0
n

) = (f
n�1, sn�1);

2 while ksj
n

� sj�1
n

k
L

1(⌦0) > s
max

do

3 for a given (f j�1
n

, sj�1
n

)

4 compute an approximate solution f j

n

for fixed s

5 compute sj
n

for fixed f

6 end

7 Irreversibility condition: set sj
n

(x0) = s0
n

(x0) at all nodal points at

which s0
n

(x0) becomes smaller than a given š > 0

Furthermore, an adaptive h-refinement strategy is used to automatically re-

fine the elements with values of s lower that given thresholds. At new nodes gener-

ated through the remeshing strategy, values of displacement and damage are calcu-

lated by linear interpolation from the existing nodes.

Matrix formulation for the FE discretisation

The two Equations 2.39 and 2.41 are solved by means of standard FEM and can be

therefore written following in the basic PDE formulation

�r(bru) + du = g (2.42)

in a domain ⌦ as the classical strong form (with applied boundary conditions) of

the problem (Fish and Belytschko, 2007). The Matlab ”pdetoolbox” package can
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solve PDE systems and assembling them directly for the coe�cients b, d and g in

the equations

K(e)
i,j

=

Z

⌦
e

bO�
j

O�
i

dx, (2.43a)

M (e)
i,j

=

Z

⌦
e

d�
j

�
i

dx, (2.43b)

F (e)
i

=

Z

⌦
e

g�
i

dx, (2.43c)

into the global system
n

X

e=1

(K(e) +M(e))u(e) = F(e). (2.44)

where n is the number of elements of the FE mesh, b, d and g represent the sti↵ness,

mass and force coe�cients respectively, � are the linear weight functions used for

the FE discretisation, K(e)
i,j

, M (e)
i,j

and F (e)
i

represent each component of the sti↵ness,

mass matrices and force vector for a element ⌦
e

, respectively.

In order to obtain the matrix components of the linearised problem for fixed

s Eq. 2.39 is considered; the section representing the constitutive model of the

matrix is expressed as follows:

k = (detF)�1(I⇥ F)[S(F)] + (detF)�1(I⇥ F)
@S(F)

@F
(I⇥ F)T (2.45)

From Eq. 2.45 two parts can be obtained, representing the Cauchy stress tensor, c,

and the material elasticity tensor, E:

c(F) = (detF)�1(I⇥ F)[S(F)] (2.46)

E(F) = (detF)�1(I⇥ F)
@S

@F
(I⇥ F)T (2.47)

Using Eq. 2.40 the Piola-Kirchho↵ stress tensor can be explicitly included into Eqs.

2.46 and 2.47 which can therefore take the form

c(F) = µJ�1FF�T + J�1(� log J � µ)I (2.48)

E(F) = J�1�I⌦ I+ (µ� � log J(I⇥ I+ (I⇥ I)T )) (2.49)
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In matrix form, the sti↵ness matrix for each element is defined as follows:

Î⌦ c = C =

2

6

6

6

6

4

a a a a

0 0 0 0

0 0 0 0

a a a a

3

7

7

7

7

5

+

2

6

6

6

6

4

b 0 0 b

0 0 0 0

0 0 0 0

b 0 0 b

3

7

7

7

7

5

=

2

6

6

6

6

4

a+ b a a a+ b

0 0 0 0

0 0 0 0

a+ b a a a+ b

3

7

7

7

7

5

E =

2

6

6

6

6

4

c 0 0 0

0 c 0 0

0 0 c 0

0 0 0 c

3

7

7

7

7

5

+

2

6

6

6

6

4

d 0 0 d

0 0 0 0

0 0 0 0

d 0 0 d

3

7

7

7

7

5

+

2

6

6

6

6

4

d 0 0 0

0 0 d 0

0 d 0 0

0 0 0 d

3

7

7

7

7

5

=

2

6

6

6

6

4

c+ 2d 0 0 d

0 c d 0

0 d c 0

d 0 0 c+ 2d

3

7

7

7

7

5

where

Î =

2

6

6

6

6

4

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

3

7

7

7

7

5

a = µJ�1FF�T

b = �d = J�1(� log J � µ)

c = �J�1.

The final assembled sti↵ness matrix takes therefore the form

k = C + E =

2

6

6

6

6

4

a� b+ c a a a

0 c �b 0

0 �b c 0

a a a a� b+ c

3

7

7

7

7

5

.

where each component of k is used, in combination with the softening term (s2+k
"

)

as value for b in Eq. 2.43a (rearranged in order to meet the computational require-

ments of the sti↵ness matrix in the MATLAB subroutine). The second FE problem

to be solved has the damage field as unknown and fixed f . The formulation is more

straightforward as it does not require any linearisation, being the problem already

linear itself, and the values for coe�cients b, d and g are given by

b = �" (2.50a)
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d =
2W

G
+ "�1 (2.50b)

g = "�1. (2.50c)

2.4.2 Discrete approach: the configurational-force method

The discrete based approach considered in this study is the one proposed by Kacz-

marczyk et al. (2014). This approach restricts the path of a crack to element faces,

and is based on the principle of maximal energy dispassion, together with config-

urational forces concept. In this way forces at crack front at material and spatial

equilibrium define the direction of crack propagation.

Thermodynamical equilibrium

Let’s consider the thermodynamic system formed by a solid elastic body with a

crack, assigned boundary conditions and applied forces which can do work on the

system and develop energy in the volume. The reference material domain is related

to both spatial and material domains by means of di↵erentiable mappings, showed

in Fig. 2.6 , employed to study both the deformation of material (in the physical

space) and the crack evolution (in the material space). The spatial domain consists

Figure 2.6: Deformation and topological change of a body with a crack.

of a set of coordinates z related to the position of the finite element nodes in the

medium, while the set of coordinates Z corresponds to the position of the material

points. These sets are then employed for the calculation of spatial and material

displacement fields (w and W) relative to the reference domain �:

w = z� � (2.51)
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W = Z� �, (2.52)

and the physical displacements are then calculated as

y = w �W. (2.53)

From the energetic point of view, the crack front is considered to be the only area

where there is exchange of energy between crack surface and the exterior. The power

of external work on the body is expressed as

P :=

Z

@B
t

ẏ · t dS =

Z

@B
t

{ẇ · t� Ẇ · FTt} dS (2.54)

where B
t

represents the material space and @B
t

its boundary, ẏ is the velocity of a

material point X, t is the external traction vector, ẇ and Ẇ are the spatial and

material velocity fileds and F is the deformation gradient.

The amount of variation of internal energy of the system can be considered as the

sum of two contributions:

U̇ = U̇� + U̇B
t

(2.55)

where the first term of the right hand side of the equation represents the change

of internal crack energy (� represents the crack surface) and the second represents

the change of internal body energy. The former is expresses as (Kaczmarczyk et al.,

2014)

U̇� :=
d

dt
U� = �Ȧ� = �

Z

@�
A

@� · Ẇ dL (2.56)

where � is the surface energy, @� in the crack surface boundary and Ȧ� represents

the change in the crack surface area. The second term of 2.55 is expressed as

(Kaczmarczyk et al., 2014)

U̇B
t

=

Z

B
t

{SD : rZẇ +⌃D : rZẆ} dV (2.57)

where SD is the first Piola-Kirchho↵ stress tensor and ⌃D is the Eshelby stress

tensor, defined, for a specific free energy function ⌥ as

SD =
@⌥(F)

@F
(2.58)

⌃D = ⌥(F)I� FTSD (2.59)
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In this way the first law of thermodynamics can be expressed as

P =

Z

B
t

{SD : rZẇ +⌃ : rZẆ} dV + �

Z

@�
A

@� · Ẇ dL. (2.60)

The free energy of the body can be converted into work at the crack front, but any

mechanical work of the body can be created from energy stored on the crack surface:

C := �Ẇ ·A
@� � 0 (2.61)

beign C the energy dissipation per unit length of the crack front. The entity de-

scribed in 2.61 is equivalent to the change of the crack surface internal energy. It can

be physically described as a positive growth in the crack surface, excluding other

phenomena such as healing.

Material resistance

Based on Gri�th’s work, crack advancement happens for

G
@� ·A

@� > g
c

/2 (2.62)

being g
c

the critical limit of energy release per unit area of the crack surface � and

being G
@� the configurational force at front of the fracture.

The principle of maximum dissipation allows to determine, by means of configura-

tional force, the crack propagation direction. Representing ̇ a length measure of

the kinematic state variable for a point on the crack front, which can identify as

Ȧ
@� ⌘

Z

@�
̇ dL � 0 (2.63)

which is consistent with 2.61. It is worth noting that for the purpose of this work

the force is applied quasi-statically, condition that allows to have stable crack prop-

agation. Algorithm 2 provides the full numerical solution strategy.

Spatial and material discretisation

The domain is discretised by means of tetrahedral finite elements; this approxima-

tion is applied to both material and physical domains. Higher-order basis functions

are applied for displacements in the spatial configuration, while for displacements

in material space linear approximation is used.
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Mesh quality control

Mesh quality may deteriorate due to the adaption of the mesh when resolving the

propagating crack. The quality of the finite elements has to be controlled to assure

good matrix conditioning where iterative solvers are needed for solving large prob-

lems. A measure for the quality of the elements is then introduced to achieve mesh

improvement by adding to r
m

a term which considers a pseudo-stress at level of

each element as a counterpart to the first Piola-Kircho↵ stress. This term has im-

pact only on the stability of the solution and not on the crack propagation criterion

(Kaczmarczyk et al., 2014).

Algorithm 2: Numerical solution procedure (Kaczmarczyk et al., 2014)

Data: Model parameters, problem geometry and boundary conditions.

1 Initialization: load step n;

2 while body not fully cracked do

3 for nodes at crack front do

4 if crack propagation criterion is met then

5 Crack direction determination;

6 Faces alignment according to direction of crack;

7 Crack front extension by splitting element faces;

8 end

9 end

10 initialisation iteration i;

11 reference configuration update;

12 while convergence not achieved do

13 residuals computation and problem solution

14 end

15 save data at load step n;

16 load step n n+ 1;

17 end

2.5 Material heterogeneity: multi scale modelling and

stochastic approach

The methods mainly employed to consider material heterogeneity can be categorised

in two main groups (Pindra et al., 2010): multiscale modelling and stochastic ap-

proaches.
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In the following section a description of both methods is provided. It is worth men-

tioning that, despite both of them present some intrinsic drawbacks, both of them

provide results very satisfactory when compared to experimental measurements (Liu

et al., 2004).

2.5.1 Multiscale modelling

In computational modelling, multiscale modelling (or multiscale mathematics) solves

problems which have important and relevant features at multiple scales of time

and/or space. Generally speaking, two length scales can be identified in hetero-

geneous materials: macro-scale (of dimension l
M

) and micro-scale (of dimension

l
m

<< l
M

). The principle of separation of scales states that micro- and macro-

scales are distinguished when the dimension of the first (l
m

) is much smaller than

the dimension of the second (l
M

) (Geers et al., 2010). It is important to distinguish

between scales, because it has been proved that phenomena visible at a macro-scale

are linked to mechanisms of a related microstructure (Nguyen et al., 2011b); in the

non-linear range of large strains this influence of micro-e↵ects on the macroscopic

response is even more evident, as can be seen in Fig. 2.7 (Miehe and Bayreuther,

2007).

Babuška (1976) originally introduced the homogenisation concept in material sci-

Figure 2.7: E↵ect of microheterogeneity on the Load-CMSD (crack mouth sliding displace-
ment) curve of a beam subjected to bending: in the elastic range, the di↵erences between
numerical and experimental results are negligible, while in the post-peak area the responses
vary significantly (Yang and Xu, 2008).
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ences (Matouš et al., 2017). The main idea of this method, showed in Figure 2.8,

is defined by Nguyen et al. (2011b) as a method used to “determine the apparent

or overall properties of a heterogeneous material thereby allowing one to substitute

this material with an equivalent homogeneous material”.

A material, in comparison with the macrostructure, can be therefore seen as the

Figure 2.8: Homogenization procedure (Nguyen et al., 2011b)

repetition of periodic microstructures. An equivalent continuum is so defined, in a

way that has the same average mechanical response as the heterogeneous material

but, locally, it has fluctuations, which influence the mechanical response. The small

microscopic cell in homogenisation theory in called Representative Volume Element

(RVE), material volume with known mechanical properties representative of the

surrounding material. The size of a RVE depends on sought for e↵ective properties,

loading conditions, boundary conditions and whether strain localizations occur.

Computational homogenisation can be summarised as follows (Geers et al., 2010):

1. Macro-to-Micro transition (or downscaling) in which the macroscopic strain

vector ✏
M

is transferred to the RVE as boundary condition:

✏
M

(x
M

, t) =
1

|⌦
m

|
Z

⌦
m

✏
m

(x
m

, t) d⌦; (2.64)

where ⌦
m

is the RVE surface (2D) or volume (3D) and ✏
m

is the microscopic

strain tensor. This is called strain averaging theorem, as at any point of the

solid the strain is defined as the average volume of the microscopic strain ✏
m

over the RVE related to that point.
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2. The Boundary Value Problem (BVP) of each RVE is solved, in order to capture

the e↵ect of the surrounding medium;

3. Micro-to-Macro transition (or upscaling) in which the microscopic stresses �
m

are upscaled to the macroscale: the macroscopic stresses �
M

is thus obtained.

This passage is achieved according to the Hill-Mandel principle: the macro-

scopic stress power must be equal to the average volume of the microscopic

stress power over the RVE. At any state of the RVE characterised by a stress

field �
m

in equilibrium, the equation

�
M

: ✏̇
M

=
1

|⌦
m

|
Z

⌦
m

�
m

: ✏̇
m

d⌦; (2.65)

must be hold for any ✏̇
m

which is the derivative of ✏
m

with respect to the

time of x). By substituting a specific boundary condition fulfilling the strain

averaging theorem 2.64,

�
M

(x
M

, t) =
1

|⌦
m

|
Z

⌦
m

�
m

(x
m

, t) d⌦; (2.66)

is obtained. Equation 2.66 states that the macroscopic stress tensor is the

average volume of the microscopic stress tensor.

As main drawback of this methodology, which has been widely proved to work

e�ciently, it is worth highlighting that it requires a precise definition of local material

properties. In relation to the case to model, it is not always possible such a precise

definition for example when, studying progressive failure in heterogeneous soil slope,

the simulation of the parameters defines a rock placed in deep unattainable sites

(Pathak et al., 2008). In this case, a wide range of the research community that

deals with the inclusion of heterogeneity in numerical models employes statistical

tools for uncertainty quantification to overcome this di�culty.

2.5.2 Stochastic approach: uncertainty quantification

Uncertainty quantification (UQ) is that field of science that aims to describe, quan-

tify and possibly reduce the uncertainties involved in real world and numerical prob-

lems (Stefanou, 2009). With the term uncertainty is called any kind of property

defined in a non-deterministic way. In the majority of UQ methods, uncertainties

are treated by means of probability theory and statistics which, if implemented in

standard FE methods, lead to the creation of SFEM, one of the most used and

powerful tools to solve systems of stochastic partial di↵erential equations (such as,

34



the equation describing the equilibrium of a body subjected to a system of forces).

Has always been recognised that the biggest drawback of SFEM is its computational

e↵ort (Falsone and Impollonia, 2002); however, the growth of power of computa-

tional tools and the implementations of optimisation algorithms rendered possible

a good e�ciency of such problems. Nevertheless, continuous improvements for the

optimisation of stochastic algorithms are still needed.

Figure 2.9 summarises the general procedure followed by SFEM combined

with Monte Carlo Simulation (MCS) method:

1. the first step concerns the realistic representation of the input system, in which

the mechanical problem (geometry, FE discretisation, boundary conditions)

and the stochastic inputs describing mechanical properties with random na-

ture (e.g. modulus of elasticity, fracture energy) are defined and used for the

generation of opportune probability distributions;

2. in the second step, probability distributions are used for the generation of

di↵erent sample realisations for the mechanical properties showing random

nature (the necessity of generating a certain number of samples is related to

the impossibility of having accurate information about mechanical properties

at each point of a domain (Shinozuka, 1972));

3. each sample realisation is used as input for the PDE describing the physical

problem to be resolved, and numerical solution is obtained (following MCS

principle, analyses are conducted until an acceptable convergence of the results

is reached);

4. numerical solutions from each simulation are then used for the calculation of

the final output in terms of mean value and standard deviations of the outputs

(Stefanou, 2009).

Representation of stochastic process and field

The first step in the analysis of systems with uncertainties is the representation

of the input of the system itself, usually related to variability of mechanical and

geometric properties (elastic modulus, fracture toughness, section dimensions) and

to the load applied. The way most widely employed to model these uncertainties is

the implementation of stochastic processes together with their correlation structures

and probability distributions, usually defined via experimental data. Nevertheless,

35



Figure 2.9: SFEM procedure

due to possible limited availability of these experimental measurements, assump-

tions and approximations are made with regards to uncertainty quantification.

Two main categories of stochastic processes can be defined based on probabilistic

distribution used for their representation: Gaussian and non-Gaussian. The former

is often used because of its simplicity and in case of lack of satisfactory experimental

data. Nevertheless, non-Gaussian random fields appear to provide more suitable de-

scription of random fields of heterogeneous brittle materials (Stefanou, 2009). The

Weibull distribution is one of the most widely employed distributions for brittle

materials, as it describes experimental data most accurately than Gaussian distri-

butions. (Gorjan and Ambrožič, 2012). Espinosa and Zavattieri (2003a) proved,

both experimentally and numerically, that Gaussian distribution is more suitable

for describing the behaviour of ductile materials.

Gaussian stochastic processes

For the simulation of Gaussian fields, the two main methods employed in applica-

tions are the spectral representation method and the Karhunen-Loeve expansion.
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The spectral representation method (Shinozuka and Deodatis, 1991) expands

the stochastic field f(x) as the sum of trigonometric functions with randomly dis-

tributed amplitudes and phase angles. In most application the only random pa-

rameter is the angle phase. The fluctuating part of a random field is expressed

as

f̂ (i)(x) =
N�1
X

n=0

A
n

cos (
n

x+ &(i)
n

) (2.67)

where A
n

=
p

2S
ff

(
n

�), with 
n

= n�,� = 
u

/N and n = 0, 1, 2, ..., N � 1

and

- N is the number of intervals used to divide the wave number axes;

- A
n

is the oscillation amplitude;

- S
ff

is the spectral density function (SDF) of the stochastic field;

- 
u

is a cut-o↵ number defining the active region of S
ff

;

- &(i)
n

are independent random phase angles between 0 and 2⇡.

Since this method is based on the generation of sample functions of Gaussian fields

for variables which have physical constrains (elastic modulus, for example, cannot

assume negative values), there is non-zero probability that a violation of these condi-

tions might occur in an actual MC simulation. The violation of the physical limits is

due to large negative realisations of the stochastic fields, with subsequent possibility

of having non-positive definite sti↵ness matrices (Stefanou and Papadrakakis, 2004).

The K-L expansion method considers orthogonal functions given by the eigen-

functions of a Fredholm integral equation with kernel autocovariance function.

With the K-L expansion method, the stochastic field is expressed as:

f̂(x) = f̄(x) +
N

X

n=1

p
�
n

⇠
n

�
n

(x) (2.68)
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(x2), (2.69)

where

- f̄(x) is the mean of the stochastic field, which usually is equal to zero;

- C
ff

(x1, x2) is the autocovariance function;

- �
n

represent the eigenvaules of C
ff

(x1, x2);

- �
n

(x) are the eigenfunctions of C
ff

(x1, x2);

- ⇠
n

is a set of uncorrelated random variables;

- N is the number of K-L terms.
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This method results to be particularly suitable in case of highly correlated stochas-

tic fields. The biggest drawback of this method is related to the resolution of the

Fredholm integral, especially is the covariance function assumes trivial formulations.

The two above mentioned methods are able to adequately represent a stochastic field,

but the second seems to be more powerful in case of strongly correlated stochas-

tic fields with smooth autocovariance function. In particular, a lower number of N

terms are needed to capture most of the random nature of the field (Stefanou, 2009).

In addition to these two methods, some other methods for representing Gaus-

sian stochastic fields have been proposed. Here we briefly mention the most popular:

• Turning Bands Method (TBM): can be used for simulating random fields in

more than one dimension by using one dimensional fields represented as linear-

based functions going through the domain. This method provides good results

only if a large number of lines are employed, making this method computa-

tionally expensive (Fenton, 1994).

• Optimal Linear Estimation method (OLE): is based on the optimal linear

estimation theory. This method uses optimal shape functions depending on

the prescribed correlation function, in a way that the error variance is minimal.

Its expansion, called Expansion Optimal Linear Estimation method (EOLE)

employes a spectral representation of the vector of nodal variables (Li and

Der Kiureghian, 1993).

Sudret and Der Kiureghian (2000) compared the method mentioned above. Ac-

cording to their research, despite the K-L maximal error is not always less than,

for example, the EOLE error, the K-L expansion method provides the lowest mean

error over the domain.

Non-Gaussian stochastic processes

The task of simulating non-Gaussian stochastic fields has more and more grown in

importance, as quite a few quantities in engineering practice present non-Gaussian

probabilistic nature. Methods for generation non-Gaussian stochastic fields can be

more challenging compared to those which use Gaussian stochastic fields: however,

research has showed that this group of methods can be preferred over the Gaussian

methods, mainly due to their non-uniqueness of the probability distribution in cor-

respondence of their tails. In fact, di↵erent marginal probability distributions with

38



almost identical mean and variance, but di↵erent tails, will bring to big di↵erences

between di↵erent realisations (Popescu et al., 1998).

In the second group of methods, the most widely used is the translation field method

(or correlation distortion method), which aims to generate a zero-mean homogeneous

non-Gaussian field via transformation of an underlying zero-mean Gaussian field:

g(x) = G�1 · �[h(x)] (2.70)

where � is the standard Gaussian cumulative distribution function and G is the

non-Gaussian CDF of g(x). The choice of the correlation structure, in this case, is

strongly related to the choice of g(x).

As further reading, more comprehensive reviews of the representation of stochastic

processes and fields can be found in Stefanou (2009) and Elishako↵ and Ren (2003).

The Stochastic Finite Element Method (SFEM)

Usually, SFEM is combined with MCS method in order to achieve convergence of

results by solving a problem a large number of times, until a preset convergence

criteria is achieved, and calculating the response variability by mean of simple rela-

tionships of statistics.

The first step of SFEM is the discretisation of the stochastic field, which means re-

placing the continuous stochastic field (defined with the methodologies shown in the

previous paragraph or similar) by a number of random variables. The final random

variables are then assigned to specific points of the domain (i.e. finite elements,

nodes, integration points). Due to this, another important issue for sample reali-

sations is the choice of the stochastic mesh employed for discretising the stochastic

field (Yang and Xu, 2008). Its size is related to the correlation length, parameter

connected to the variability of the random field, and can be di↵erent from the size

of the FE mesh. In case of strongly correlated fields, in fact, the stochastic mesh

has usually a bigger size compared to the size of the FE mesh, leading, furthermore,

to a reduction of the dimension of the stochastic problem. Der Kiureghian and Ke

(1988) and, later, Allaix and Carbone (2009) accurately studied what should be the

optimal size of the stochastic mesh. They suggested a size for the stochastic mesh

between a quarter and a half of the correlation length; furthermore, they concluded

that the accuracy of the discretisation doesn’t improve significantly if the size of the

stochastic mesh is smaller than this range.

Once the stochastic field has been defined, the stochastic sti↵ness matrix has to be
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determined. The formulation of the stochastic matrix of one element takes the form

k(e) = k(e)0 + �k(e) (2.71)

where k(e)0 and �k(e) represent the deterministic (based on the mean value) and

fluctuating parts of the stochastic finite element matrix. As consequence, the global

stochastic matrix of the system takes the form

K =
Ne

X

e=1

k(e) = K0 + �K (2.72)

where N
e

is the number of finite elements.

2.6 Fracture propagation on heterogeneous materials

Experiments performed on heterogeneous ceramics shows how the microscopic de-

fects significantly influence both the strength and failure mode of the material (Zhou

and Molinari, 2004). Computer simulations cannot reproduce this behaviour unless

micro-structure information and defects are supplied by the user; nevertheless ma-

terials such as concrete and rocks present a distribution of heterogeneity which is

usually unknown a priori because of the complex and inherently random microstruc-

ture of the material. Therefore, an approach to predict the accumulating damage

process accurately accounting for all uncertainties involved is essential. In this way,

realistic crack patterns and reliable values of material strength can be obtained from

computational simulations.

One very valid way used to obtain information about the material hetero-

geneity of samples is the use of experimental tools and techniques such as X-ray

tomographic projections (Nguyen et al., 2016d,c; Li et al., 2014) or image-based

methods (Sun and Li, 2015; Vemaganti and Oden, 2001). However, these methods

are limited to applications where a suitable number of laboratory-scaled samples

can be collected and analysed to extract the information needed and where suitable

(and sometimes expensive) tools are available.

As already stated, In computational mechanics both multi-scale and stochas-

tic approaches have been successfully applied to fracture mechanics problems. One

of the first work that applied a multi-scale approach to a damage problem is the

one by Fish and Yu (2001), who applied a two-scale model to reproduce damage
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phenomena in ceramic composite materials. After this work, multi-scale methods

have been successively implemented and applied (to FEM and other methods such

as DEM and cohesive elements methods) by a high number of authors (Liang et al.,

2004; Rong et al., 2006; Nguyen et al., 2011a; Prechtel et al., 2011; Nguyen et al.,

2012b; Lloberas-Valls et al., 2012; Nguyen et al., 2012a; Karamnejad et al., 2013;

Rinaldi, 2013; Sparks and Oskay, 2016; Fu et al., 2017; Putar et al., 2017). From

all these works, it is worth mentioning Liang et al. (2004), who applied a multi-

scale method to study the progressive damage of rock-like materials, and concluded

that incorporation of heterogeneity in numerical models can reproduce non-linear

deformability of materials even when a purely linear elastic and brittle constitutive

law is used; a similar conclusion has been obtained by Nguyen et al. (2012a) and

Patinet et al. (2013).

Despite multi-scale method has been widely used and showed to provide very good

results also when applied to fracture mechanics problems, its application is limited

to those cases where a detailed knowledge of the material is available. For this

reason, the power of the computational tools available has grown together with the

number of works where stochastic approach are applied to reproduce materials het-

erogeneity in fracture mechanics problems.

From a review conducted on a wide number of researches where stochastic

approaches were implemented to numerical methods for reproducing the evolution

of damage and cracks, it can be observed that the majority of these works adopted

linear elastic fracture mechanics principles. These works can be divided between

those that applied Gaussian (Dimas et al., 2014; Pawar, 2011; Berthelot et al.,

2008) and non-Gaussian (Dimas et al., 2016; Li and Salah, 2014; Khasin, 2014;

Berthelot and Fatmi, 2004; Wang et al., 2012; Guy et al., 2012) processes to de-

scribe heterogeneity’s distribution. Despite both provide good results, the use of

non-Gaussian distributions is still preferred by most of the more recent literature

because of its capability of better representing the mechanical response of hetero-

geneous materials and avoiding negative and physically meaningless sampled values.

By modelling material properties as probabilistic random fields, Most (2005)

and Yang and Xu (2008) employed MCS method to asses the structural reliability.

This method has however the drawback of the computational cost associated with

generating a large number of finite element meshes, and the use of a method for

sampling that leads to a quicker convergence is therefore a primary concern.
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One of the first studies using a stochastic approach to model material het-

erogeneity is the one carried out by Carmeliet and Hens (1994). They combined

nonlocal continuum damage mechanics, MCS method and random field theory to

model stochastic damage behaviour of a strain-softening material with random field

properties, introducing two di↵erent parameters in their cohesive model: the char-

acteristic length of the nonlocal damage model and the correlation distance for the

random field. To obtain the probabilistic formulation of the damage evolution, the

authors considered as random parameter the initial damage threshold and the ulti-

mate strain of the material. Despite the questionable choice of a uniform correlation

coe�cient function and the employment of a linear-elastic linear-softening behaviour

at a local scale, a non-linear response for the probabilistic nonlocal damage model

is observed, which is consistent with experimental observation.

Gutiérrez and de Borst (1999) performed deterministic and stochastic anal-

yses considering material strength as random variable. With their method, the

authors have been able to evaluate probability of failure, but also to identify the

most critical configurations leading to failure, studying the so-called size e↵ect and

its influence on material failure. Their results show how damage evolution is depen-

dent on both size e↵ect and random nature of material, comparing numerical results

from a notched specimen and a traction test with experimental observations.

Further studies on the size e↵ect combined with e↵ect of heterogeneity have

been also carried by Vořechovskỳ (2007). He performed numerical simulations of the

random response of tensile tests with dog-bone samples; randomness is considered

here via material strength. He highlighted how the bigger the specimen is, the lower

the material strength is and the higher is the influence of heterogeneity in material

failure process. Size e↵ect is clearly observable for both deterministic and stochastic

analyses, but the incorporation of heterogeneity leads to numerical results which are

closer to experimental data.

A three-dimensional micro-cracking cohesive model with statistical distri-

bution of internal defects has been developed by Zhou and Molinari (2004). The

brittle structures are considered as bodies containing initial defects modelled as the

facets shared by two neighbouring ordinary cohesive elements. Each of these facets

has a specified strength assigned on the basis of a Weibull distribution. Authors

demonstrated that the failure strength of the analysed specimens increases with the

Weibull modulus of the microscopic strength, that is the case of a more homoge-
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neous material.

A micro mechanical cohesive FE model within explicit resolution of arbi-

trary crack paths and morphologies has been proposed by Tomar and Zhou (2005).

They observed that micro structural morphology is strongly related to the changes

in fracture response when material properties have stochastic nature. The method

proposed involves the superposition of a perturbation analysis together with a co-

hesive FEM. While the deterministic analysis explicitly shows crack propagation,

the perturbation analysis focuses on the statistical distribution material properties

(both bulk properties and interfacial properties). The e↵ect of property variations

on the variation of crack length, energy dispersion and damage is provided, and

is shown that a microstructure less prone to fracture displays higher variations in

fracture response when compared to the one which gives least resistance to fracture

advancement.

Multiple cracking phenomena in plain and reinforced concrete structures have

been studied by Most (2005), who showed how that this phenomenon is highly in-

fluenced also by the e↵ect of material heterogeneity. Meshless methods have been

employed to describe the propagation of crack surfaces. The cracking process of con-

crete has been modelled using a cohesive crack model able to reproduce the failure

mechanisms under di↵erent crack opening modes. This crack growth algorithm was

implemented with the aim of representing the fluctuations of the concrete properties

by expanding the one-parameter random field concept for multiple material prop-

erties with cross-correlation. The random field concept was used in order to model

the fluctuations of Young’s modulus, tensile strength and Mode-I fracture energy.

Two methodologies for the sampling phase of random values have been adopted.

First, a log-normally distributed random filed with exponential correlation has been

used, where the stochastic analyses have been carried out by analysing the mate-

rial response curves of 10000 MCS of 30 random variables. Successively, analyses

was performed by using Latin Hypercube Sampling method (LHS2) with di↵erent

numbers of samples. Results obtained with only 70 LHS samples are in excellent

agreement with the MCS curves. This result shows that LHS method can be applied

to crack propagation problems to obtain the statistical properties of the structural

response with a small number of samples.

Furthermore, in one of the examples presented in his work, the author proved that

2In LHS method the variables are ’stratified’ in di↵erent classes. This methods relies on the use
of uniform and normal distributions.
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the numerical crack pattern is in good agreement with the experimental patterns,

but the detailed crack path with branches observed in the experiment and, accord-

ing to the author, developed by the local inhomogeneity, is not represented in the

numerical model.

A cohesive model for the study of microcrack initiation and evolution in brit-

tle specimens of allumina has been proposed by Espinosa and Zavattieri (2003a,b). A

RVE of a microstructure subjected to multi-axial loads has been considered, and an

elastic-anisotropic model of the grains, incorporating grain anisotropy by randomly

generating principal material directions, is included. Furthermore, for accounting of

material heterogeneity, SiC particles and glass pockets have been modelled and in-

troduced in the interfaces between RVEs of allumina, as it is believed to lead to the

consideration of a statistical variation in the interfacial strength dependent on the

grain disorientation. Furthermore, the cohesive strength between interfaces of ele-

ments and fracture toughness have been described by a Weibull distribution applied

to describe the distribution of fracture toughness and local material strength. Fol-

lowing these assumptions for their numerical analyses, the authors concluded that

fracture toughness influences damage evolution more than local material strength,

and that initial defects introduced in the model only a↵ect the cases for which the

interface strength is higher the applied stress.

Another important issue when modelling materials failure using FEM is the

mesh sensitivity. In fact, performing simulations considering a homogeneous dis-

tribution of material properties, very often provides incorrect and unrealistic crack

patterns are observed together with load-displacement curves wrongly obtained due

to strong mesh-dependance. Carmeliet and Hens (1994) showed that heteroge-

neous models are capable of predicting realistic and complex fracture processes

with a smaller mesh dependance. In their work possible fractures are included by

pre-including cohesive elements with constitutive laws with softening, modelled by

means of Weibull distributions.

Furthermore, Zhou and Molinari (2004) proved in their work that brittleness of het-

erogeneous materials tends to degrade the mesh dependence of the problem. More

recent developments in the field, however, have found suitable ways to overcome

mesh sensitivity issues, by allowing the FE mesh to realign the element facets ac-

cording to the direction of the force on the crack tip (Kaczmarczyk et al., 2014).

It is worth mentioning that both multiscale and stochastic approached have
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been successfully applied to the Discrete Element Method (Pisarenko and Gland,

2001; Fu et al., 2017; Groh et al., 2011), XFEM (Patil et al., 2017), meshless methods

(Zhou and Bi, 2016; Zhou et al., 2015; Douillet-Grellier et al., 2016) and IsoGeo-

metrical Analysis (IGA) method (Bhardwaj et al., 2015).

Furthermore, di↵erent problems studied by means of either stochastic or multi-

scale approaches include crack propagation on ductile materials (Lauschmann, 1987;

Bieler et al., 2009) and dynamic fracture problems (Sun and Li, 2015).

Advantages of multi-scale and stochastic approach have been also coupled

together: as an example, an adaptive stochastic multi-scale method is developed

by Sencu et al. (2016)for cohesive fracture modelling of quasi-brittle heterogeneous

materials under uniaxial tension. The methodology developed by the authors is

able to predict crack paths and material strength with results very close to those

obtained using a multiscale methodology; however these results highly depend on

the distribution of the volume fractions, unknown a priori and therefore to be prop-

erly determined.

A number of works, on the other hand, tried to reproduce the heterogeneous

nature of materials with methods which cannot be strictly categorised as either

multi-scale modelling approaches or stochastic approaches.

For example, Alkhateb et al. (2009) studied the behaviour of heterogeneous materials

by means of the spring network method introducing inclusions randomly distributed

in a homogeneous domain. Similar approach has been followed by Schicker and Pfu↵

(2006), who developed a weak-link law applied to the interface between the homoge-

neous material matrix and the randomly-orientated fibres contained in the material.

2.7 Shale gas reservoir rocks: anisotropy and natural

beddings

In the last years, interest of research has massively moved in direction of shale

rock characterisation. This is due to the fact that gas extraction procedures from

shale rock reservoirs are extremely expensive, and therefore accurate prediction of

induced-fractures propagation is indispensable.

Considerable e↵ort has been put in analysing results from laboratory tests, for shale

mechanic and physical characterization (Bobko and Ulm, 2008; Veytskin et al.,

2017). These tests are crucial to understand the e↵ect of material composition
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and local heterogeneities on the mechanical response of rocks, which, because of

their natural genesis, significantly di↵er the one from the other. Hou et al. (2016),

in fact, recently compared the behaviour of shale, coal and sandstone specimens

subjected to high-pressure fluid-driven fracturing, and observed how the di↵erent

microscopic composition of these materials leads to important di↵erences in the

measured values of mechanical properties, strains and crack patterns. Kim et al.

(2012) also performed a comparative study between shale, gneiss and schist rocks

samples, analysing, for each of them, the influence of their composition and direc-

tion of bedding planes on their thermo-mechanical properties.

Angle between directions of bedding plane and maximum stresses applied

can be considered to be a noticeable source of influence on crack morphologies,

failure mode and material strength. Tests conducted on Brazilian discs specimens

(traditionally used to indirectly calculate rock’s tensile strength) showed the high

influence of laminations inclination on materials mechanical response (Wang et al.,

2016; Mokhtari and Tutuncu, 2016). Zhong et al. (2015) also studied the e↵ect of

damage at micro-scale on the macroscopic overall response of shale samples sub-

jected to triaxial compression, and highlighted that the e↵ect of both bedding incli-

nations and di↵erent confining pressures induce highly-varying values of compressive

strength and elastic modulus and considerably a↵ect crack morphology and opening

mode. Holt et al. (2015) also studied the e↵ect of local heterogeneities on material

response and rock brittleness, while Mahanta et al. (2016) studied the importance of

understanding the e↵ect of the load applied on shale specimens and how, for varying

strain rate, fracture toughness and, consequently, the energy required for fracturing

the material changes.

Observations from experimental studies highlight a general anisotropic re-

sponse for shale: this means that numerical frameworks (usually used where labo-

ratory or site tests result in a prohibitive cost), to realistically reproduce the me-

chanical response of the rock, cannot just consider an isotropic and homogeneous

model. Duan and Kwok (2015) and Zhou et al. (2016) modelled the Brazilian disc

problem and a fluid-driven fracture problem, respectively, in shale using the Dis-

crete Element Method (DEM). However, the main issue with DEM model is the

computational cost, which becomes prohibitive if lagrer-scale problems need to be

analysed. Classic Finite Element Method (FEM) (Dokhani et al., 2016; Zeng and

Wei, 2017) and eXtended FEM (Sun et al., 2016) have been successfully applied

to fracture propagation and fracking simulations on shale rocks. Anisotropy has
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been included in all above numerical models by decreasing the values of mechanical

properties, such as elastic modulus, cohesion coe�cients or fracture toughness, in

precise locations in the domain in order to create weak layers which a↵ect fracture

extents and shapes. However, only the introduction of weak bands may not be

able to entirely reproduce the real composition of shale rocks as they are composed

by laminations, but also local heterogeneities, inclusions (i.e. quartz, calcite and

dolomite (Chen et al., 2016)), voids and micro-fractures, which, in order to be cap-

tured, require an in-depth knowledge and more sophisticated and comprehensive

numerical implementations (Nguyen et al., 2016b).

An attempt to use stochastic approaches for modelling layered materials has

been proposed by Bossi et al. (2016), in which the authors modelled a simplified slope

made up by clay with horizontal gravel layers. A probabilistic technique has been

used to assign the same deterministic value of gravel’s cohesion and friction angle

to randomly selected elements forming the domain. This inclusions influence the re-

sults of the analyses, but mechanical properties have been deterministically defined,

which may lead to an unrealistic representation of the problem. Borghi et al. (2015)

also used a stochastic approach for modelling layering e↵ect on fracture propagation

problems: also in this study the stochastic approach is not applied for the creation

of a stochastic set of input data describing mechanical properties, but is used to

randomly introduce in the model fractures with random dimensions and locations

to reproduce possible orientations of geological structures. A noteworthy approach

has been recently outlined by Li et al. (2016b) where material heterogeneity has

been considered through a combined stochastic methodology accounting for di↵er-

ent type of natural materials on a soil profile. Although this approach looks very

promising, it does not account for material microstructures, which is well known to

appreciably a↵ect the macroscopic behaviour (Bobko and Ulm, 2008).

More recently Na et al. (2017) reported an experimental and numerical

study (using a phase field approach, FEM) on the e↵ect of the heterogeneous and

anisotropic nature of Mancos Shale specimens in Brazilian tests. They tested a

set of layered specimens, varying the relative angle between loading and bedding

direction. From experimental investigations, they confirmed findings from previ-

ous investigations (Li and Wong, 2013) where the role of maximum strains for the

failure in Brazilian disc tests is revealed to be crucial, leading to material failure

starting not from the centre of the disc, but from a point located in vicinity of the

loading point. Furthermore, the numerical investigations highlighted that the best
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results are achieved in the problem is simulated using an anisotropic constitutive

model combined with an alternation of soft and sti↵ layers; if only the soft - sti↵

alternation is used with an isotropic model, results are still satisfying, while the use

of the only anisotropic constitutive model leads to too smooth crack patterns.

He and Afolagboye (2017) executed both experimental and numerical investi-

gations. The experimental investigations showed that the material strength is lower

for vertical layers and higher for horizontal layering, and crack patterns are di↵erent

as well as the inclination changes. The authors used the Discrete Element Method

to simulate the problem, and studied how the variation of the inter-granular bond-

ing force between particles influences both material resistance and crack path, more

significantly when the bonding force between particles is lower.

Figueiredo et al. (2017) performed numerical investigations in order to un-

derstand the e↵ect on fractures induced by hydraulic pressure of several factors.

The authors checked the e�ciency of using a continuum model to reproduce the

propagation of cracks considering the influence of complex geological settings and

the changes in pore pressure and permeability produced by the interaction between

fractures and geological configurations. The hydraulic fracture problem has been

also studied by Haddad et al. (2015) by means of the XFEM combined with cohesive

elements approach.

Crawford et al. (2014) investigated the potential for considering shales as bil-

aminate materials and used a FE model with variably inclined layers to reproduce

results from laboratory testing. Resultant strength anisotropy exhibits many of the

features observed from laboratory testing of orientated shale samples and suggests

that strength reduction due to the activation of weak bedding laminations should

be expectable from information on the bulk trans-laminar strength without the use

of time-consuming laboratory testing.

2.8 Conclusions

From the review conducted above, the following conclusions can be drawn:

- a wide number of techniques and methodologies for modelling of crack propa-

gation have been proposed and implemented; however the majority of them have

been developed considering mainly fully linear and brittle models. Literature has
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shown that heterogeneous materials show strong non-linear behaviour that, there-

fore, needs to be carefully reproduced numerically;

- stochastic approaches provide a significant contribution to the inclusion of het-

erogeneity in numerical and computational models and a number of advantages

over multi-scale modelling techniques. However, the most noticeable drawback of

stochastic approaches is the computational cost, due to the generation of sample

realisations and to the number of analyses needed to achieve an acceptable conver-

gence of the mechanical response results; for this reason a suitable technique able

to reduce the computational cost related to the implementation of such stochastic

approaches is essential;

- the interest of research in studying shale-gas rocks is in continuous growth. Both

the mechanical characterisation of materials through lab tests and full field simu-

lations. Shale rocks are heterogeneous and layered materials, and their mechanical

response is highly dependent on the orientation of the bedding. The anisotropic

nature of shales has been modelled using only a few methodologies, and further

research is needed in this direction.
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Chapter 3

Smeared and discrete crack

approaches: a preliminary

comparison

3.1 Introduction

In this chapter, the numerical results of three cases study analysed using the two

numerical models, one based on a smeared representation of cracks (Del Piero et al.,

2007) and the other on a discrete approach (Kaczmarczyk et al., 2014), described

in the previous chapter are presented. In particular, the aim of this chapter is to

understand how the two models capture the initiation and propagation of cracks and

the damage evolution in quasi-brittle materials. The capability of the two models

in automatically capturing di↵erent crack-opening modes is analysed. Furthermore,

the mesh convergence techniques adopted for these two approaches, that is on the

mesh refinement procedure for smeared and mesh adaptivity for discrete approach,

are also studied.

3.2 Application of the models to fracture on quasi-brittle

materials

The behaviour of three types of concrete specimens using the two aforementioned

models is studied in order to evaluate their relative performance against several

di↵erent specimen geometries and load conditions. Numerical results are then com-

pared with the relative experimental tests results.
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For the discrete approach, all problems are discretised using tetrahedral elements.

An adaptive mesh refinement strategy, including both h- and p- refinement, is

adopted. For the solution approach for this method open-sources libraries have been

employed. A mesh-oriented database (MOAB) (Tautges et al., 2004) is used to store

input and output processes and information regarding mesh topology. For resolving

linear systems of equations, algebraic operations and parallel matrix and vector cal-

culation the Portable, Extensible Toolkit for Scientific Computing (PETSc) (Balay

et al., 2012) is employed.

On the other hand, the two-dimensional numerical code based on the smeared ap-

proach incorporates a mesh refinement technique, which automatically splits those

elements where the values of damage parameter s become smaller than a given

threshold. Simple linear interpolation is used to obtain values of damage and dis-

placements for the new nodes.

It has to be highlighted that, in order for the results to be comparable, it is necessary

to run 2-dimensional (or equivalent) simulations also with the 3-dimensional code

based on a discrete crack approach. For di↵erent reasons, 2-dimensional simulations

have been run using 3-dimensional based codes in past works (Brunet et al., 1998;

Pardo et al., 2008). Brunet et al. (1998) performed numerical analyses using a com-

bined 2D and 3D based FEM computational framework to study the roll-forming

procedures of metal sheets. In terms of finite element approximation, this study

allowed to include a purely 2D mesh with linear shape functions and two degrees

of freedom on each node, and analyses have been performed in plane strain condi-

tions (due to the third dimension of the metal sheet being much higher that the

two others). The 3D smeared crack based numerical framework employed here does

not allow this approximation, as domain discretisation needs to be performed using

three-dimensional tetrahedral elements (Kaczmarczyk et al., 2014). For this rea-

son, the three problems analysed in the next three sections have been first modelled

using a three-dimensional domain, keeping the third dimension (in the direction of

the thickness of the specimens) much smaller compared to the other two (1 and 2

mm). However, this approximation has lead to numerical instabilities which made

the numerical framework not capable of predicting any crack pattern. Therefore,

the thickness of each specimen has been increased to a dimension able to avoid

any numerical instabilities, but still significantly smaller compared to the two other

dimensions. The first two examples analysed in the next three sections have been

therefore modelled with a thickness of 20 mm, while the third example has been

modelled considering a thickness of 5 mm.

This simplification is similar to those that, mainly for computational e�ciency pur-
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poses, execute numerical analyses only on portions of larger domains by imposing

opportune additional boundary and symmetry conditions (Kaczmarczyk et al., 2014;

Duan et al., 2009; Areias and Belytschko, 2005; Gasser and Holzapfel, 2005). How-

ever, additional analyses (but not reported in this thesis) on the specimens inclusive

of the real thickness have been performed to check the correctness of the results

obtained with the reduced-thickness domains.

3.3 Case study 1: Single-Edge Nothced Shear Beam

The first example used in this study is the four-point single-edge notched shear

beam (SENS) studied experimentally by Arrea (1982). This benchmark is one of

the most widely used to validate numerical models for simulating mixed-mode crack

propagation in concrete. Specimen geometry, boundary conditions and material

properties about this benchmark are shown in Figure 3.1 and Table 3.1. Load is

applied in quasi-static regime and in displacements-controlled mode.

Figure 3.1: Experimental set up for the SENS concrete specimen (units: mm)

Table 3.1: Material characterisation for the SENS specimen

Parameters

Modulus of elasticity 24.8 GPa

Poisson ratio 0.18

Fracture Energy 0.15 N/mm

Figure 3.2 shows the discretised problem for the two di↵erent approaches.

Table 3.2 summarises the information about the two di↵erent discretisations and

about the computational e↵ort needed for obtaining a full crack path. For the
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smeared approach, a mesh composed of 690 nodes, 1256 3-nodes linear triangles has

been generated. A value of " = 8 mm is selected, while the size of the mesh is chosen

to be equal to 5 mm. The value for " is chosen, following the considerations listed in

Lancioni and Royer-Carfagni (2009), on the basis of the average size of the material

constituents: in particular " is typically 2-3 times the characteristic material length

scale. As concrete is formed by constituents of di↵erent sizes, an average dimension

of 4-5 mm is here considered and, consequently, the value of 8 mm for " is selected.

The discretisation used for the discrete approach consists of 4660 nodes and 19784

tetrahedrons. In proximity of the crack front, the spatial node positions are discre-

tised using higher-order approximations. (Kaczmarczyk et al., 2014). For zones far

from crack patter mesh size is bigger compared to the area where the crack is likely

to propagate, in order to reduce the computational e↵ort and, at the same time,

keep the accuracy of the model.

Figure 3.2: Finite Element discretisation: smeared (left) and discrete (right) approach.

Table 3.2: Models characterisation for the SENS specimen.

Smeared Discrete

1256 Number of elements 19784

690 Number of nodes 4660

12 hours CPU time 34 hours

The results in terms of damage distribution obtained using the smeared ap-

proach are shown in Figure 3.3. As can be observed, the damage is localised in

proximity of the supports. This result is not correct if compared with both the ex-

perimental investigations (Arrea, 1982) and numerical results (Yang and Xu, 2008).

In fact, damage is expected to begin at the tip of the notch, where the crack will

initiate to propagate then in the direction of the main loading point. This results

suggest that this numerical framework is not capable of predicting mixed-mode crack

opening conditions.
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Figure 3.3: Damage distribution obtained with the smeared approach model: the damage
doesn’t start from the initial notch, as it would be expected, but is localised in the supports.

In order to make the model capable of capturing the correct crack pat-

tern, an implementation able to di↵erentiate the mechanical response between ele-

ments in tension and compression has been introduced: to account for this tension-

compression asymmetry of damage behaviour of material, a methodology similar to

the one proposed by Li et al. (2016a) is included, and the energy function is decom-

posed into two parts, a positive part which is considered to contribute to damage,

and a negative part that resists to damage:

W (F ) = W+ +W� (3.1)

where

W+ = (s2 + k
"

)W |
J>1 (3.2)

W� = (1 + k
"

)W |
J<1 (3.3)

In the above equations, it can be noticed that the damage parameter appears only

in the positive part of the energy function, the part associated to the elements that

increase in surface (i.e., in the elements with J > 1), the value for damage in the

elements is kept as calculated. The elements that decrease in surface (i.e., the ele-

ments with J < 1), do not contribute in damage. In this way, di↵erent behaviours

for tension and compression are explicitly taken into account.
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Figure 3.4 shows and compares the crack patterns obtained with the discrete and the

implemented smeared- based models: cracks are predicted in both cases, especially

for the area next to the crack initiation point. As the analysis proceeds the crack

paths obtained using the smeared approach deviates from the experimental scatter.

The evolution showed in Figure 3.5 highlights this aspect for the smeared approach,

showing how the accuracy decreases for the last steps of the simulation. On the

other hand, the crack path obtained using a discrete approach is perfectly predicted

and included within the experimental scatter. The capability of the methodology

based on the configurational forces approach is therefore fully capable of automati-

cally identifying the crack opening mode on the basis of the direction of maximum

energy dissipation.

Analysing the load-displacement curve shown in Figure 3.6, it can be observed how

in both cases realistic results are obtained. Nevertheless, the variational approach

seems to provide a peak load for larger displacements compared to the configura-

tional force method. However, the discrete approach provides a load-deflection curve

close to the experimental one especially in the post-peak range.

Figure 3.4: Crack patterns obtained with smeared (top left) and discrete (top right) models;
comparison with experimental scatter (bottom).
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Figure 3.5: Damage evolution for model solved with the smeared approach.

Figure 3.6: Load-Displacement plot for the SENS beam specimen: comparison of smeared
and discrete approach results with experimental data from Yang and Xu (2008).

3.4 Case study 2: L-Shaped fibre reinforced concrete

The second example contemplated in this study is the L-Shaped specimen test per-

formed in a quasi-static loading regime and displacement-controlled conditions. This

case study has been investigated experimentally in Winkler (2001) to study and ex-

amine curved crack patterns. The size of the specimen and the set up of the panel
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are shown in Figure 3.7. The characterisation of concrete is provided in Table 3.3.

Figure 3.7: Experimental set up for the L-Shaped fibre-reinforced concrete specimen (units:
mm).

Table 3.3: Material characterisation for the L-Shaped specimen.

Parameters

Modulus of elasticity 26 GPa
Poisson ratio 0.18

Fracture Energy 90 N/m

Figure 3.8 shows the problem discretised for the two di↵erent approaches.

Table 3.4 provides the information on the two di↵erent discretisations, also including

the duration needed to complete a whole simulation and obtain a full crack path.

For smeared approach, a mesh formed by 386 nodes and 697 3-nodes linear triangles

is used. The mesh size was chosen based on the average size of the aggregates

and following the considerations listed for the previous example. The discretisation

mesh used for the discrete approach consists of 2524 nodes and 9881 tetrahedrons.

As in the previous example, locally the mesh is automatically refined during the

propagation of the crack. For further details about the type of approximation it

is suggested Kaczmarczyk et al. (2014) for further reading. In order to reduce the

computational e↵ort and, at the same time, keep the accuracy of the model, initial

mesh size is smaller in the area where the crack will propagate and of a bigger size

elsewhere.
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Figure 3.8: Models employed for analysing the problem with smeared (left) and discrete
(right) approach.

Table 3.4: Models characterisation for the L-Shaped specimen.

Smeared Discrete

697 Number of elements 9881

386 Number of nodes 2524

6 hours CPU time 31 hours

Figure 3.9 shows the numerical results in terms of crack paths. The crack

pattern is predicted by both methods. However, the smeared approach shows some

discrepancies when compared to the experimental results. In fact, besides the zone

next to the crack initiation point, crack path curves downwards, overstepping the

experimental limit (probably due to the heterogeneous nature of material, which

for this example can therefore be an essential feature that needs to be considered),

while the crack path obtained using a discrete approach is in a better agreement

with the experimental results, as it is fully included in the experimental crack range.

Figure 3.10 shows the evolution of damage with the smeared model. For the first

steps of analysis, damage localisation and crack path are clearly identified, but for

further steps of the analysis, the damage is spread over a wider area. From this point

of view and for problems in which a single crack path is usually identified, discrete

model seems to be more suitable. This aspect is congruent with the conclusions in

de Borst et al. (2004).
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Figure 3.9: Crack patterns obtained with smeared (top left) and discrete (top right) models;
comparison with experimental scatter (bottom).

Figure 3.10: Damage evolution for model solved with the smeared approach.

Analysing the computational cost required for each analysis, it is clearly

observed that, in accordance with other comparative studies, the smeared model

requires much less e↵ort than the discrete model: the computational framework

based on the discrete approach is definitely more demanding, due to the number
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of nodes and elements and, above all, to the type of implementations included to

guarantee mesh convergence: in fact, while for the smeared approach, mesh con-

vergence is guaranteed by just splitting the elements until the desired new mesh

size is obtained, for the discrete approach the mesh convergence criteria involves

a realignment of the FE nodes, in a 3D setting, according to the direction of the

configurational force, procedure more computationally demanding.

Analysing the load-displacement curve shown in Figure 3.11, it can be noticed how

the two models provide similar results within the pre-peak range, with a slight over-

estimation in the value of the peak load for the discrete approach. Furthermore

a discordance in the post-peak behaviour can be observed in the results for both

methodologies: the reason can be attributed (i) to the non-consideration of hetero-

geneities in the numerical frameworks and (ii) to the fact that both models have

been developed for fully brittle materials, materials which have no residual load

after the peak load.

Figure 3.11: Load-Displacement plot for the L-Shaped specimen: comparison between
smeared and discrete approach and comparison with experimental data.

3.5 Dog-Bone specimen

The third configuration studied here is the test on a Dog Bone shaped concrete

specimen subjected to traction performed in a quasi-static loading regime. This

case study has been experimentally investigated inVan Vliet (2000). The descrip-

tion of the specimen is shown in in Figure 3.12. The characterisation of the concrete

is provided in Table 3.5.

Figure 3.13 shows the problem discretised for the two di↵erent approaches, in Table

3.6 the information about the two di↵erent discretisations are reported. For the
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smeared-based approach, the problem is discretised with 240 nodes and 421 ele-

ments. For the discrete approach the domain has been discretised using 2432 nodes

and 11392 elements.

Figure 3.12: Geometry description for the Dog Bone specimen, with D = 50 mm and r =
36.35 mm.

Table 3.5: Material characterization for the Dog Bone specimen

Parameters

Modulus of elasticity 26 GPa

Poisson ratio 0.18

Fracture Energy 90 N/m

Figure 3.13: Models employed for a analysing the problem with smeared (left) and discrete
(right) approach.
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Table 3.6: Models characterization for the Dog Bone specimen.

Smeared Discrete

421 Number of elements 11392

240 Number of nodes 2432

3 hours CPU time 13 hours

Vořechovskỳ (2007) proved that for this example a single crack path is hardly

identified. In fact, mainly due to the size e↵ect and e↵ect of material heterogeneity,

damage in the real specimen and crack initiation points can be detected in di↵erent

areas. Figure 3.14 shows the crack patterns obtained from the two models. With

the discrete approach an initial defect needs to be manually identified, from which a

single crack starts to propagate. The smeared approach allows the identification of

the initiation area when the specimen is progressively damaging. For a homogeneous

model, crack path is then created in the same location of the model studied with

the discrete approach. In fact, in absence of other factors, damage is localised where

the cross-section area is minimum, therefore in the middle of the specimen. Figure

3.15 clearly shows how damage starts spreading all over the specimen, concentrating

then in the middle due to its geometry.

From the load-deflection curves plotted in Figure 3.16, it can observed how both

models are capable of capturing the linear behaviour and predicting an appropriate

peak load, but, similarly for what observed is the previous example, the post-failure

behaviour is totally missing due to the crack modelling methodologies, developed to

reproduce the behaviour of brittle materials.

Figure 3.14: Crack patterns obtained with smeared (left) and discrete (right) models.
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Figure 3.15: Damage state evolution with smeared model.

Figure 3.16: Load-Displacement plot for the Dog Bone specimen: comparison between
smeared and discrete approach and comparison with experimental data.

To further validate the capability of the smeared approach to predict crack

initiation point as a function of both geometrical and material properties, as shown

in Figure 3.17 a layer with lower resistance (lower elastic modulus and fracture

energy both decreased of 30%) is introduced in a random location. Where the e↵ect

of spatially varying material properties is analysed in terms of damage localisation,

local damage and crack initiation point vary according to the material properties

distribution (Vořechovskỳ, 2007). A weak zone is more likely to be the zone where

damage is going to localise and a crack is going to propagate or, however, its presence

is going to influence the extend and the direction of a crack. Figure 3.18 shows how

the damage spreads within the specimen and can be clearly observed how e↵ectively

the presence of the weak layer influences the damage evolution. In fact, damage

starts in proximity of both the middle of the specimen, where the area of the section

is minimum, and in the weak zone. Damage localises in the upper part of the
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specimen and then crack is formed there.

Looking at the computational cost required for each analysis, also for this example,

the considerable di↵erence between the two methods is noted, due to the di↵erences

in the methodologies used for guaranteeing mesh convergence.

Figure 3.17: Dog Bone specimen with weak layer.

Figure 3.18: Damage state evolution with smeared model with weak layer.

3.6 Error estimators and results quality

In order to check the capabilities of the numerical codes to provide accurate results,

error estimators and convergence criteria for the two numerical frameworks are de-

scribed.

For the numerical framework based on the configurational force method residuals

are provided at each iteration for all the nodes belonging to the crack front. One

of the main focuses of the work from Kaczmarczyk et al. (2014) is on the improve-
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ment of the quality and the stability of numerical solutions; in the calculation of the

material force residuals, in fact, additional consideration has been put to take into

account the quality of the elements at the crack front, as they change their shape

as crack propagates due to the mesh alignment technique incorporated. Also, it

should be reminded that an adaptive hp-refinement strategy is included, which also

contributes to provide more accurate numerical solutions. For all the three examples

analysed in this chapter, 95% of the residuals calculated are in the order of 10�5,

and the maximum value observed for the residual is in the order of 10�2. Further-

more, these values for residuals are considered in the calculation of convergence of

the Newton-Raphson, as the iterative procedure continues until the residuals have

norms smaller than a given tolerance (Kaczmarczyk et al., 2014).

For the numerical framework based on the smeared approach, the resolution of the

numerical problem described by the two di↵erent PDEs is directly solved by means

of the function ”assempde” which does not explicitly provide values for residuals

of the FE discretisation and problem resolution. However, the mesh h-refinement

strategy adopted (Del Piero et al., 2007) aims to minimise the error fro those ele-

ments where damage develops; furthermore it is still possible to check the accuracy

of results in terms or Newton-Raphson convergence. In fact, an iterative procedure

able to give accurate results is incorporated in the model, and lets the iterative

procedure continue until the norm of the di↵erence between two consecutive iter-

ations doesn’t become less that a fixed value (Del Piero et al., 2007), that for all

simulations has been selected to be equal to 0.01.

3.7 Conclusions

In this chapter two distinct crack modelling approaches for brittle materials are

compared. In one approach, the focus is on a discrete model that represents cracks

by predicting the direction and extend of fractures on the basis of the principle of

energy minimisation together with a node-based Gri�th-like crack criterion. The

second methodology is the variational model that studies fracture within a contin-

uous framework, in which energy minimisation of a functional considering bulk and

fracture energy leads to equilibrium configuration of bodies.

In order to compare the two methodologies, three examples have been selected: the

SNES beam, the L-Shaped specimen and the Dog Bone specimen. These examples

have been selected as they have di↵erent failure modes and, therefore, they have the

capability to highlight di↵erent aspects of failure in quasi-brittle materials.
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For the first example, both models provide results in good agreement in terms of

both material resistance and crack pattern, with results from the discrete-based ap-

proach closer to experimental investigations.

For the second example, it is observed that both models can localise the crack path,

but, as observed also in the previous example, by using a discrete approach crack

is more precisely identified and closer to experimental results. In fact, the discrete

approach appears more suitable when a single crack is dominant. Furthermore, this

model is capable of predicting true crack pattern without the need to define the

crack opening mode, thanks to the configurational forces acting on the crack front

and of the remeshing technique.

On the other hand, by studying the Dog Bone specimen, the smeared model is

capable of capturing the progressive damage over the specimen itself. Damage is

localised in the middle of the specimen because of the cross section area of the

specimen in that location is smaller compared to the rest of the sample; if other

factors were included in the model (e.g. heterogeneity) damage localisation would

have happened in other locations of the specimen (for example, in zones with lower

value of fracture energy). The discrete approach is capable of defining a realistic

crack path, but its localisation is more of all related to the location of an initial

notch, manually introduced in the sample modelled numerically.

On the basis of the considerations shown above, it is decided that the method-

ology for heterogeneity that will be shown in Chapters 5 and 6 will be applied to

the numerical framework developed using a smeared approach. The main reasons

are:

1. the capability of the smeared-based framework to capture both crack initiation

and propagation of material without the need of introducing initial notches;

2. the computational cost required for each analysis, as the methodology (ex-

plained in Chapter 5) includes the employment of Monte Carlo method, which

itself increases significantly the overall computational e↵ort;

3. the not-full capability of the smeared-based methodology to reproduce a fully-

realistic crack pattern, especially for mixed-mode crack opening conditions,

compared to the results obtained by using the discrete-based methodology

which, without the inclusion of heterogeneity, is able to provide crack patterns

in excellent agreement with experimental results;

4. the possibility of observing di↵erential damage distributions in the specimens

when the e↵ect of heterogeneity is incorporated in the numerical framework;

66



5. for the discrete model, the need of a extremely sophisticated algorithm able to

accurately compute the (eventual) new values of random mechanical properties

assigned to those nodes which change their position.
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Chapter 4

Probability theory

4.1 Introduction

Probability theory involves the development of mathematical frameworks able to

treat random phenomena. A random phenomenon is defined as a repeated exper-

iment with a set of possible results. If the experiment is performed several times,

with all conditions maintained as identical and precise as possible, and the measured

results are also identical, then the item which is measured is said to be deterministic.

Otherwise, the item is said to be random.

A real number, connected to each of the results in the second scenario, is defined

probability of the event. It seems reasonable that: (i) the probability is related to

the expected frequency of occurrence of the event in a long series of experiments,

(ii) it should lie between 0 and 1, and (iii) the sum of probabilities of all possible

events in an experiment should be equal to unity (Kleiber and Hien, 1992).

The aim of this chapter is to provide an overview of the main concepts of probability

and the probability distributions used in this thesis.

4.2 Probability

An experiment can be defined random when its outcome can not be predicted with

certainty. If this random experiment is repeated, it would be likely that the out-

come would change. These changes can be due to di↵erent factors, such as errors in

measurements and readings, di↵erences in the geometric properties of the object or

local variations in mechanical properties of materials. A statistical model, in order

to be defined e�cient, must be able to model and analyse these possible scenarios.

In practice, some examples of experiments with random nature are:
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- the CPU time needed to execute a computational analyses, which may vary ac-

cording to the amount of processors available in the machine at a specific moment;

- the material resistance of concrete (heterogeneous material) tested for the same

mixture on di↵erent specimens, depending on the internal distribution of aggregates,

sand, water and cement.

To represent the outcomes from random experiments, an uppercase variable,

such as X is usually used. X is called random variable. Its value depends on the

intrinsic uncertainty nature of the experiment, and can take di↵erent values, based

on its probability distribution. The observed value of the random variable X is

denoted by a lowercase x. (Martinez and Martinez, 2007)

Random variables are divided into two main categories: discrete and continuous. A

discrete random variable can take on values from a countable set of numbers. A

continuous random variable gets its values from an interval of real numbers (Mar-

tinez and Martinez, 2007).

A subset of outcomes in the sample space is called event. If two events can not occur

simultaneously of jointly they are called mutually exclusive events. This definition

can be extended to any number of events by considering all pairs of events. Every

pair of events must be mutually exclusive for all of them to be mutually exclusive

(Martinez and Martinez, 2007).

Probability can be defined as the measure of the likelihood at which certain

events will happen. It is also a way to estimate the likelihood that an observed

random variable will have on values within a specified range of values. Probabilities

are always included between 0 and 1. A probability distribution of a random variable

defines the probabilities connected to every value of the variable.

The most common way to find the desired probability that an event occurs is to

use a probability density function (PDF) when continuous random variables (or a

probability mass function in the case of discrete random variables) are given. In

this thesis, p(x) is used to represent the probability density function for continuous

random variables.

To find the probability that a continuous random variable falls in a particular interval

of real numbers, the area under the curve of p(x) has to be considered. The integral

of p(x) over the interval of random variables corresponding to the event of interest

has to be therefore evaluated. This is represented by (Martinez and Martinez, 2007)

P (a  X  b) =

Z

b

a

p(x) dx. (4.1)
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Figure 4.1: The area under the curve of p(x) between a and b is the same as the probability
that an observed value of the random variable will assume a value in the same interval.

The area under the curve of p(x) between a and b represents the probability that an

observed value of the random variable X will assume a value between a and b. This

concept is illustrated in Figure 4.1 where the shaded area represents the desired

probability.

The cumulative distribution function (CDF) P (x) is defined as the probability

that the random variable X assumes a value less than or equal to a given x. This is

calculated from the probability density function, as follows (Martinez and Martinez,

2007)

P (x) = Pr(X  x) =

Z

x

�1
p(t) dt. (4.2)

It is trivial that the cumulative distribution function takes on values between 0

and 1, so 0  P (x)  1. A probability density function, along with its associated

cumulative distribution function are illustrated in Figure 4.2.

For a discrete random variable X, that can take on values x1, x2, ... , the

probability mass function is given by

p(x
i

) = Pr(X = x
i

); i = 1, 2, ... (4.3)

and the cumulative distribution function is

P (a) =
X

x

i

a

p(x
i

); i = 1, 2, .... (4.4)
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Figure 4.2: This shows the probability density function on the left with the associated cu-
mulative distribution function on the right. Notice that the cumulative distribution function
takes on values between 0 and 1.
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4.3 Axioms of probability

Probabilities follow certain axioms that can be useful in computational statistics. S

represent the sample space of an experiment and Ev represent some event that is a

subset of S (Martinez and Martinez, 2007).

”AXIOM 1

The probability of event Ev must be between 0 and 1:

0  Pr(Ev)  1.

AXIOM 2

An outcome from one experiment must occur, and the probability that the outcome

is in the sample space is 1:

Pr(S) = 1.

AXIOM 3

For mutually exclusive events, Ev1, Ev2, ..., Ev
k

Pr(Ev1 [ Ev2 [ ... [ Ev
i

) =
k

X

i=1

Pr(Ev
i

)00.

4.4 Expectations: mean value and variance

Mean (or expected) values and variances are fundamental concepts in statistics.

They are employed to describe distributions, to evaluate the performance of estima-

tors, to obtain test statistics in hypothesis testing, and in many other applications.

The mean value of a random variable is defined using the PDF and gives a measure

of central tendency of the distribution. If several values of the random variable are

observed and the average of them in taken, that value is expected to be close to the

mean. The mean value is defined below for the discrete case:

µ = E[X] =
1
X

i=1

x
i

p(x
i

). (4.5)

The expected value is a sum of all possible values of the random variable where each

one is multiplied by the probability that X will take on that value.
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The variance of a discrete random variable is given, for µ < 1 by the following

definition:

�2 = V (X) = E[(X � µ)2] =
1
X

i=1

(x
i

� µ)2p(x
i

). (4.6)

From Eq. 4.6, can be seen that the variance is the addition of the squared distances,

each calibrated by the probability that X = x
i

. Variance measures the dispersion in

the probability distribution. When the variance of a random variable is large, then

is more probable that each value of the variable is far from µ. The square root of

the variance is defined as standard deviation �.

The mean and variance for continuous random variables are similarly described,

with the sum being substituted by an integral. The mean of a (continuous) random

variable is given as (Martinez and Martinez, 2007):

µ = E[X] =

Z +1

�1
xp(x) dx. (4.7)

The variance of a continuous random variable is given below for µ <1:

�2 = V (X) = E[(X � µ)2] =

Z +1

�1
(x� µ)2p(x) dx. (4.8)

Eq. 4.8 can be also written as

V (X) = E[X2]� µ2 = E[X2]� (E[X])2. (4.9)

4.5 Sampling

In this section, the main concepts related to random sampling and the sampling

distribution of statistics are covered and some of the most used methods for deriving

estimators, such as the maximum likelihood estimation method, will be described.

4.5.1 Sampling concepts

An experiment is performed to collect data needed to provide information about the

phenomena of interest. These data are used to generalise from that specific experi-

ment to the class of all similar experiment. This concept is the basis of inferential

statistics: the degree of uncertainty in the results can be estimated and managed.

Inferential statistics is an assortment of techniques and tools able to use the infor-

mation obtained from experiments to make statements about the entire population

of objects of interest (Martinez and Martinez, 2007).
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The target population is defined as the whole collection of objects about which it is

needed to get information. It must be well defined in terms of which characteristics

the user wants to be measured. Realistically speaking, most of the times it is not

feasible to observe the entire population; so only one part of the target population,

called sample is considered. If inferences about the population are made using the

information obtained from a sample, then it is important that the sample be repre-

sentative of the population. This can usually be accomplished by selecting a simple

random sample, where all possible samples are equally likely to be selected.

A sample of size n is called independent and identically distributed (iid) when the

random variables X1, X2, ..., Xn

each have a common PDF p(x). Additionally, when

they are both iid, the joint PDF is given by

p(x1, ..., xn) = p(x1)x...xp(xn),

which is the product of the individual densities evaluated at each sample point.

Inferential statistics can employ the sample to estimate population parameters. It

is needed to remember that a parameter is a quantitative measure for a population

or a distribution of random variables. Clear examples of such parameters are the

mean (µ), the standard deviation (�) and correlation parameters. (Martinez and

Martinez, 2007)

4.5.2 Statistics

A statistic is a function of the observed variables from a random sample and has no

unknown population parameters. Often it is employed for the following cases:

- as a point estimate for a population parameter;

- to obtain a confidence interval estimate;

- as a test statistic in hypothesis testing.

In most cases, it is assumed that a random sample, X1, ..., Xn

is representative of

iid random variables.

A familiar statistic is the sample mean given by

X̄ =
1

n

n

X

i=1

X
i

. (4.10)
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Another statistic that will be needed is the sample variance, calculated from

�̄2 =
1

n� 1

n

X

i=1

(X
i

� X̂)2 =
1

n(n� 1)

 

n
n

X

i=1

X2
i

�
 

n

X

i=1

X
i

!2!

(4.11)

4.5.3 Sampling distributions

Considering that most of the times sample are employed instead of an entire popula-

tion, errors in the estimate can be easily incorporated. In order to control the error

in the estimate, the sampling distribution for the statistic needs to be available.

The sampling distributions for many common statistics are available and well-

known. For example, when a random variable is obtained from a Gaussian distribu-

tion, then it is known how the mean is distributed. Once the sampling distribution

of the statistic is known, statistical hypothesis tests can be done and confidence

intervals estimated. If the distribution of a statistic is not known, then Monte Carlo

simulation techniques or bootstrap methods should be employed to estimate the

needed distribution (Martinez and Martinez, 2007).

To illustrate the concept of a distribution, the sampling distribution for X that fol-

lows a distribution given by p(x) is analysed. The distribution for the sample mean

can be obtained using the Central Limit Theorem (Martinez and Martinez, 2007).

CENTRAL LIMIT THEOREM

”Let p(x) represent a probability density with finite variance �2 and mean µ. Also,

let X be the sample mean for a random sample of size n drawn from this distribu-

tion. For large n, the distribution of X is approximately normally distributed with

mean µ and variance given by �

2

n

” (Martinez and Martinez, 2007).

The Central Limit Theorem says that as the sample size gets bigger, the distri-

bution of the mean gets closer to the normal distribution independently on how

X is distributed. However, if a normal population is used for sampling, then the

distribution of the sample mean is exactly normally distributed with mean µ and

variance �

2

n

.

4.5.4 Parameter estimation

One of the first tasks a statistician undertakes when facing some data is to try to

summarise or describe quantitatively them. Some of the statistics can be used as

quantitative description for a sample. In this section, one of the methods to derive

and to evaluate estimates of population parameters is described.
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There are several methods available in literature for obtaining parameter estimates,

but in this thesis the maximum likelihood estimation (MLE) method is used, specif-

ically for calculating shape and scale parameter of the Weibull distribution (which

will be described in detail in the next section) from the corresponding normal dis-

tribution.

A MLE is that value of the parameter (or parameters) that maximises the likelihood

function of the sample. The likelihood function of a random sample of size n from

density function p(x; ✓) is the joint probability density function, denoted by

L(✓;x1, ..., xn) = p(x1, ..., xn; ✓). (4.12)

Equation 4.12 gives the likelihood that the random variables take on a particu-

lar value x1, ..., xn. Given a random sample (iid random variables), the likelihood

function can be expressed as (Bhattacharya, 2011)

L(✓) = L(✓;x1, ..., xn) = p(x1; ✓)x...xp(xn; ✓) =
n

Y

i=1

p
x

i

(x
i

; ✓). (4.13)

which is the product of the individual density functions evaluated at each x
i

or sam-

ple point. In most cases, to find the value ✓̂ that maximises the likelihood function,

the derivative of L is taken, set it equal to 0 and solved for ✓ (Bhattacharya, 2011):

d

d✓
L(✓) = 0. (4.14)

It can be shown that the likelihood function, L(✓) , and logarithm of the likelihood

function, lnL(✓), have their maximum values at the same value of ✓. Many times

can be easier to find the maximum of logL(✓), when, for example, exponential func-

tion are involved. However, it is needed to keep in mind that a solution to the above

problem might also be a minimum. It is therefore essential that the user is sure he

found a maximum and not a minimum.

If a distribution has two or more parameters, the likelihood function depends on the

parameters related to the distribution. If this is the case, the MLEs are calculated

by considering the partial derivatives of L or log (L), equaling them to zero, and

calculating the results of the system of equations. Results are defined as joint MLEs.
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4.6 Probability distributions

In this section, a review of some useful probability distributions is provided and

some applications to modelling data are very briefly described. Most of these dis-

tributions are used in later in this thesis, so it is opportune to define them and to

fix notations.

There are many distributions available, used according to the specific application.

The most important and common discrete distributions are the binomial and the

Poisson distributions. These are followed by several continuous distributions, i.e.

the uniform, the normal, the exponential, the gamma, the chi- square, the Weibull,

the beta and the multivariate normal.

In the next section the focus will be only on some on the continuous distributions

that will be used it this thesis: the normal, lognormal, Weibull and multivariate.

4.6.1 Normal distribution

One of the most employed and known distribution in statistics is the normal (or

Gaussian) distribution. Its PDF is formulated as (Martinez and Martinez, 2007)

p
norm

(x;µ,�2) =
1

�
p
2⇡

exp{�(x� µ)2

2�2
}, (4.15)

where �1 < x <1;�1 < µ <1;�2 > 0. This distribution is completely defined

by its parameters µ and �2, which, furthermore, are the expected value and variance

for a normal random variable. The notation X v N (µ,�2) is used to indicate that

a random variable X is normally distributed with mean µ and variance �2. Several

normal distributions with di↵erent parameters are shown in Figure 4.3.

The special case of a standard normal random variable is one whose mean is zero

(µ = 0) and variance is equal to unity (�2 = 1). If X is normally distributed, then

Z =
X � µ

�
(4.16)

is a standard normal random variable.

The CDF of a standard normal random variable is denoted by

�(z) =
1p
2⇡

Z

z

�1
{�y2

2
} dy. (4.17)
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Figure 4.3: Examples of probability density functions for normally distributed random vari-
ables. Note that as the variance increases, the height of the probability density function at
the mean decreases..

In statistics, the error function erf(x) is defined as the probability of a random

variable with normal distribution of mean 0 and variance 0.5 to fall in the range

[�x, x]:
erf x =

1p
⇡

Z

x

�x

e�t

2
dx. (4.18)

Equations 4.17 and 4.18 are closely related, namely

�(x) =
1

2

"

1 + erf
xp
2

#

(4.19)

and therefore the CDF takes the final form of

P
norm

(x) = �
⇣x� µ

�

⌘

=
1

2

"

1 + erf
x� µ

�
p
2

#

. (4.20)

4.6.2 Log-Normal Distribution

The Log-Normal distribution is another type of continuous probability distribution

largely employed in numerous fields. A random variable X which follows a log-

normal distribution has its logarithm normally distributed: if X is log-normally

distributed, consequently lnX is normally distributed. An extremely important

property of this distribution, especially if related to engineering applications, is that

a random variable which is log-normally distributed takes only positive real values.
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Figure 4.4: Examples of probability density functions for log-normally distributed random
variables. Note that as the variance increases, the height of the probability density function
at the mean decreases.

The probability density distribution for this case takes the form

p
logn

(lnx, µ,�2) =
1

�
p
2⇡

exp

 

�(lnx� µ)2

2�2

!

, (4.21)

where �1 < x <1;�1 < µ <1;�2 > 0. As for the normal distribution, also the

log-normal distribution is fully defined by its parameters µ and �2. The notation

lnX v N (µ,�2) indicates that when lnX follows a normal distribution, then X

follows a log-normal distribution with mean µ and variance �2. Several log-normal

distributions with di↵erent values for µ and �2 are shown in Figure 4.4.

The CDF of a lognormally distributed random variable is given by

Z

x

0
lnN (x;µ,�) d⇠ =

1

2

"

1 + erf
lnx� µ

�
p
2

#

= �

 

lnx� µ

�

!

(4.22)

where � is the CDF for the standard normal distribution.

4.6.3 Weibull distribution

In engineering practice, the Weibull distribution is one of the most widely used,

in particular in reliability analyses. The probability density function of a random
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variable from Weibull distribution is given by (Martinez and Martinez, 2007)

p
Weib

(⇣;m, ⇣0) =

8

<

:

m

⇣0

⇣

⇣

⇣0

⌘

m�1
e�(⇣/⇣0)m ⇣ � 0,

0 ⇣ < 0,
(4.23)

where m > 0 is the shape parameter and ⇣0 > 0 is the scale parameter. The shape

of the density function is strongly a↵ected by the value of its parameters as can be

noted in Fig. 4.5. If 0 < m < 1, the density function tends to 1 as ⇣ approaches

zero from above and is strictly decreasing. For values of m equal to unity, the

probability density function goes to 1/⇣0. For m > 1, the density function tends to

zero as ⇣ approaches zero from above, increases until its mode and decreases after

it. The cumulative density function takes the form

P
weib

(⇣;m, ⇣0) = 1� e�(⇣/⇣0)m . (4.24)

The mean and the variance of a Weibull random variable can be expressed as

E(X) = ⇣0�

 

1 +
1

m

!

(4.25)

and

�2(X) = �2

"

�

 

1 +
2

m

!

�
 

�

 

1 +
1

m

!!2#

(4.26)

In order to apply the MLE described in section 4.5.4 to estimate shape and

scale parameters for Weibull distribution, Equation 4.23 can be put into 4.13 and

apply 4.14 (Bhattacharya, 2011). Detailed calculations on this method will be pro-

vided in Chapter 5.

4.6.4 Multivariate normal distribution

Until this point, univariate distributions for continuous variables have been de-

scribed. In this section the multivariate normal distribution is described. Given (at

least) two random variables X
i

, i = 2, ...1 defined on a probability space, the joint

probability distribution is the probability distribution that gives the probability that

each of X
i

falls in any particular range.

In case of d-variate normal distribution, the univariate normal distribution becomes
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Figure 4.5: Examples of probability density functions for random variables distributed ac-
cording Weibull distributions. Note that as the variance increases, the height of the proba-
bility density function at the mean decreases.

(Martinez and Martinez, 2007)

p
MVN

(x) =
1

(2⇡)d/2|⌃|0.5 exp�
1

2
(x� µ)T⌃�1(x� µ) (4.27)

where random variables are related to each other by ⌃, called covariance matrix.

In case of bivariate probability function random variables are two with X1 and

X2 being the two random variables with their own mean values µ(X1), µ(X2) and

variances V ar(X1), V ar(X2). The covariance of X1 and X2 is defined to be

Cov(X1, X2) := E[X1, X2]� E[X1]E[X2] (4.28)

and the correlation of X1 and X2 is then defined to be

Corr(X1, X2) = ⇢(X1, X2) =
Cov(X1, X2)

p

V ar(X1)V ar(X1)
(4.29)

The quantity ⇢, called correlation coe�cient, measures the strength and the rela-

tionship between two variables. The value of ⇢ is such that �1  ⇢  1:

- if the two variables have a strong positive linear correlation, ⇢ is close to +1. Posi-

tive values indicate a relationship such that as values for X1 increase, values for X2

also increase;

- if the two variables have a strong negative linear correlation, ⇢ is close to -1. Neg-
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ative values indicate a relationship where if values for X1 increase, values for X2

decrease;

- if there is no linear correlation, ⇢ is equal to 0.

Given the value for ⇢, is then possible to generate ⌃.

The (i, j)th element of ⌃ is given by ⌃
i,j

= Cov(X
i

, X
j

). In the case of two corre-

lated random variables, the covariance matrix takes the form

⌃ =

"

V ar2(X1) ⇢V ar(X1)V ar(X2)

⇢V ar(X1)V ar(X2) V ar2(X1)

#

(4.30)

This covariance matrix:

- is symmetric;

- has the diagonal elements that satisfy ⌃
i,j

� 0;

- it is positive semi-definite1.

Such a correlation structure, allows to create a Multivariate Probabilistic Distribu-

tion for sampling correlated random values for the mechanical properties of interest.

In this work the aim is to study the behaviour for three di↵erent probabilistic dis-

tributions described above.

Once the covariance matrix has been defined, the problem is the generation

a vector X = (X1, ..., Xn

) where X follows the multivariate normal distribution.

Suppose Z
i

v N(0, 1), iid for i = 1, ..., n. Then

c1Z1 + ...+ c
n

Z
n

v N(0,�2)

where �2 = c21 + ... + c2
n

. The linear combination of normal random variables is

normal itself.

More generally, let C be a (nxm) matrix and let Z= (Z1Z2...ZN

)T . Then

CTZ v MN(0,CTC)

so the problem clearly reduces to finding C such that

CTC = ⌃

It is possible to calculate the Cholesky decomposition of a symmetric positive-

definite matrix in MatLab using the chol command.

Let C be the Cholesky decomposition of the covariance matrix. If X v MN(0,⌃)

1Given a non-zero column vector v, a matrix M is defined positive semi-definite if the scalar
vTMv in non-negative.
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Figure 4.6: Bivariate normal density from two normal distributions with µ1 = 1.5, µ2 = 1,
�1 = 0.5, �2 = 1.2.

then random samples of X can be generated as follows:

>> Input : CorrMat

>> C = chol(CorrMat)

>> Z = randn(s
1

, s
2

)

>> X = C

T ⇤ Z
where randn is the Matlab built-in function for the generation of normally distributed

s1 random vectors of dimension s2.

For the generation of lognormal correlated random variables the procedure to fol-

low is the same showed for normal random variables. The only di↵erence is in the

generation of the random vector Z to be multiplied by CT .

4.7 Conclusions

Notions and theory introduced in this chapter are the theoretical basis for a full

understanding of the concepts showed and the methodologies developed in the next

chapter, used to implement the smeared-based numerical framework for modelling

of crack propagation using stochastic approaches.
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Part II

Methodology
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Chapter 5

The stochastic finite element

method: continuum damage

model implementation

5.1 Introduction

In Part I, the numerical frameworks considered in this work have been described

and, on the basis of the comparative study reported in Chapter 3 on three di↵erent

examples, the model considered and implemented is finally chosen. Implementations

for modelling material heterogeneity have been done on the continuum damage

mechanics model (based, therefore, on a smeared approach).

The process for solving stochastic problems using SFEM can be divided in two parts:

1. quantitative description of the stochastic fields of a heterogeneous system (by

means of probability theory);

2. application of the uncertainty in properties of the system to be analysed and

estimation of its stochastic response.

With regards to the first point, uncertainties can be included in a system by defin-

ing mechanical properties (i.e. modulus of elasticity, fracture toughness, ultimate

strength) as spatially-distributed random variables, geometric properties (i.e. speci-

men cross section, defects, voids) or load (Stefanou, 2009). Probability distributions

and correlation structures used for sampling1 procedures (described and compared

in chapters 2 and 4) result to be therefore the most convenient way to describe

1In statistics, the term sampling refers to the selection of a series of data, from a given population,
which is fully representative of the characheristics of the population itself.
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heterogeneities, mainly because of possible lack of data for comprehensive systems

characterisation (Stefanou, 2009).

With regards to the second point, it must be specified that SFEM includes three

main steps: (i) discretisation and representation of the stochastic field, (ii) stochas-

tic matrices formulation and assembly, (iii) calculation of the response variability.

This chapter aims to describe the incorporation of heterogeneity into the varia-

tional approach method, in order to study its e↵ect on the response of the system

(i.e. crack patterns and material resistance to failure).

Heterogeneity has been modelled by using non-Gaussian Weibull distribution: the

possibility of using non-Gaussian stochastic processes has received an increasing at-

tention in the scientific community because (i) they provide only positive values,

while Gaussian field may lead to negative (and therefore physically meaningless)

values of mechanical properties, and (ii) several common quantities in engineering

practice show non-Gaussian probabilistic characteristics (Stefanou, 2009; Gorjan

and Ambrožič, 2012). The methodology proposed in this work generates samples

compatible to probabilistic information (mean value, standard deviation, correla-

tions) obtained from either literature or experimental data.

The results obtained using a non-Gaussian Weibull process is then compared to those

obtained using a Gaussian process, the Karhunen-Loeve (K-L) expansion method

described in Chapter 2. This method is one of the most widely used for the represen-

tation of stochastic fields: however its implementation in numerical models is often

di�cult especially for complex geometries and correlation structures. More details

with regards to this point will be accurately described in the following paragraphs.

The problem of sampling one and two correlated random variables is also presented

and described. While for the K-L expansion method this problem has been already

faced by several authors, in case of bivariate Weibull distribution this problem be-

comes more challenging: in this thesis an optimal algorithm for the generation of

two-dimensional samples from bi-variate Weibull distribution has been developed

and implemented, and details about the code can be found in Appendix A. It is

worth mentioning that only few bivariate Weibull distributions have been proposed

in the literature and applied to engineering problems, but none of them has been

explicitly applied to fracture mechanics problems.

For the calculation of the response variability, Monte Carlo Simulation (MCS)

method is chosen. With this method, a N
sim

number of simulation analyses are

performed until an acceptable convergence of the results is achieved (i.e. when the

variation between the results is less than 10%). Despite this method provides re-

alistic results in agreement with experimental observations, the computational cost
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increases noticeably.

In fact, one of the key aspects to be taken into account in this context is the compu-

tational cost required for generating samples of random values of the selected me-

chanical property, which can be prohibitive if the size of the sample vector (which is

the vector, where each element stores the value for the mechanical property for each

element of the discretised domain) is extremely high. This issue will be solved in

the next chapter, where a novel methodology for reducing the size of the stochastic

problem and saving a considerable amount of computational time will be presented.

5.2 Variational model implementation

For analysis with only one random variable, fracture energy is the mechanical pa-

rameter showing heterogeneous nature, while in case of two random variables both

fracture energy and modulus of elasticity are the mechanical parameters where het-

erogeneity is considered.

Let’s recall the regularised formulation of the total energy expressed as per Eq. 2.34

in Chapter 2:

F(f , s) =

Z

⌦0

(s2(x0) + k
"

)W (50f(x0)) dx0

+
G

2

Z

⌦0
0

("|50 s(x0)|2 + 1

"
(1� s(x0))

2) dx0.
(5.1)

As shown in the Literature Review of Chapter 2, Eq. 2.34 is minimised according

to the two variables f , representing the deformation of a body, and s, representing

the damage state of the same body. The two minimised equations are then solved

by means of standard FEM and, therefore, can be expressed in the basic PDE

formulation

�r(bru) + du = g. (5.2)

5.2.1 Fracture energy as random process

If fracture energy is considered as the mechanical parameter where heterogeneity is

considered it can be expressed as G(x, ✓) (where ✓ defines the random nature of the

variable), and the functional of Eq. 5.1 can be therefore rewritten as

F(f , s) =

Z

⌦0

(s2(x0) + k
"

)W (50f(x0)) dx0

+
G(x, ✓)

2

Z

⌦0
0

("|50 s(x0)|2 + 1

"
(1� s(x0))

2) dx0.
(5.3)
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It should be observed that, when Eq. 5.3 is minimised with respect to the variable

f , deformation of the domain, the second term of the RHS of the equation, and

therefore also G(x, ✓) vanishes; however, the e↵ect of the heterogeneous nature of

the fracture energy is still taken into account by the model by reintroducing in the

model at each time-step the output values for s obtained as result of the minimisation

of the energy functional according to the damage variable (keeping the stationarity

condition for fixed f). In fact, when Eq. 5.3 is minimised with respect to s, the

coe�cients b, d and g are expressed as

b = �" (5.4)

d =
2W |

J>1

G(x, ✓)
+ "�1 (5.5)

g = "�1. (5.6)

where ", W and J are as per Chapter 2. The heterogeneous nature of the material

is therefore considered to influence both the damage distribution in the body and

the mechanical response of the material (in terms of deformation).

5.2.2 Modulus of elasticity as random process

The formulation of coe�cients b, d and g of Eq. 5.2 is provided below, where

the spatial variability of the material is incorporated considering the modulus of

elasticity E(x, ✓) as heterogeneous mechanical parameter:

b = f(J, s(J), k
"

, �̂(x, ✓), µ̂(x, ✓)) (5.7a)

d = 0 (5.7b)

g = f(x, x0) (5.7c)

where �̂(x, ✓) and µ̂(x, ✓) are the random Lame coe�cients calculated from random

E(x, ✓)

�̂(x, ✓) =
⌫E(x, ✓)

(1 + ⌫)(1� 2⌫)
= ↵E(x, ✓) (5.8a)

µ̂(x, ✓) =
E(x, ✓)

2(1 + ⌫)
= �E(x, ✓) (5.8b)

with ⌫ being the Poisson’s coe�cient and

↵ =
⌫

(1 + ⌫)(1� 2⌫)
(5.9a)
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� =
1

2(1 + ⌫)
. (5.9b)

The Cauchy stress tensor c and material elasticity tensor E defined in Part I can be

finally rewritten as function of the random Lame coe�cients as

c = µ̂J�1FF�T + J�1(�̂ log J � µ̂) (5.10)

E(F) = J�1�̂I⌦ I+ (µ̂� �̂ log J(I⇥ I+ (I⇥ I)T )). (5.11)

For the damage problem (stationarity condition for fixed f), the coe�cients b, d and

g of Eq. 5.1 take the form

b = �" (5.12)

d =
2W (F, ✓)|

J>1

G
+ "�1 (5.13)

g = "�1 (5.14)

where

W (F, ✓)|
J>1 =

µ̂

2
(trC� 3) +

�̂

2
(log J+)2 � µ̂ log J+. (5.15)

is called stochastic stored energy function.

Therefore, the functional of the Eq. 5.1 can be rewritten as

F(f , s) =

Z

⌦0

(s2(x0) + k
"

)W (50f(x0), ✓) dx0

+
G

2

Z

⌦0
0

("|50 s(x0)|2 + 1

"
(1� s(x0))

2) dx0.
(5.16)

5.2.3 Fracture energy and modulus of elasticity as random process

When the heterogeneous nature of the material is considered by incorporating spa-

tially variability in both fracture energy and modulus of elasticity, in the energy

functional 5.1 both W and G are function of ✓:

F(f , s) =

Z

⌦0

(s2(x0) + k
"

)W (50f(x0), ✓) dx0

+
G(x, ✓)

2

Z

⌦0
0

("|50 s(x0)|2 + 1

"
(1� s(x0))

2) dx0.
(5.17)

Values of b, d and g, for the deformation problem, take the form

b = f(J, s(J), k
"

, �̂, µ̂) (5.18)
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d = 0 (5.19)

g = f(x, x0) (5.20)

while for the damage problem take the form

b = �" (5.21)

d =
2W (x, ✓)|

J>1

G(x, ✓)
+ "�1 (5.22)

g = "�1. (5.23)

5.3 Spatial autocorrelation function

For both Gaussian and non-Gaussian processes that will be described later in this

chapter, the same spatial autocorrelation function will be considered. Let consider

a FE mesh with np nodes and nt triangular elements, used to discretise the prob-

lem. Let X(x, ✓) be a random field with zero mean and specified variance, chosen

according to the degree of heterogeneity of a material. The correlation function for

a random field is chosen as

⇢(x1,x2) = exp



�⇡|x1 � x2|
l
c

2

�

(5.24)

where l
c

is the correlation length. It is generally used to indicate the characteristic

length of a heterogeneous medium.

In the computational framework developed for modelling of crack propagation, ma-

terial properties are assigned at each element (for the case of domain discretised

using FE models). The correlation function is created for each of this element,

forming a symmetric and definite positive correlation matrix with nt rows and nt

columns. This matrix relates each FE element to each other. All the elements in

the main diagonal have unit value as they refer to the correlation between the value

of mechanical properties in the same elements:

C
ff

= �2

2

6

6

6

6

4

1 ⇢1,2 . . . ⇢1,nt

1 . . . ⇢2,nt

Sym
...

. . .
...

. . . 1

3

7

7

7

7

5

(5.25)

where � represents the standard deviation of the stochastic field.
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5.4 Gaussian process: the Karhunen-Loeve expansion

5.4.1 Monovariate Gaussian process

The K-L expansion can be considered as a variant of the orthogonal series expansion.

In this method, the orthogonal function are the eigenfunctions of the Fredholm in-

tegral equation with the spatial autocorrelation function as kernel (Stefanou, 2009):

f̂ = f̄(x) +
N

X

n=1

p
�
n

⇠
n

�
n

(x) (5.26)

Z

D

C
ff

(x1, x2)�n(x1) dx1 = �
n

�
n

(x2) (5.27)

where the parameters of Eq. 5.26 and 5.27 are defined as per Eq. 2.68 and 2.69.

The use and implementation of K-L expansion method can be often di�cult be-

cause of the complexities related to the resolution of the Fredholm integral of Eq.

5.27 (Stefanou, 2009). In fact, analytical solutions for this equation are available

for simple geometries and simple covariance functions. For more complex problems

and covariance functions, special numerical treatments are necessary. The level of

accuracy in the calculation of �
n

and �
n

a↵ects significantly the performance of the

K-L expansion.

In this study, C
ff

(x1, x2) will follow the formulation of Eq. 5.25. For this formu-

lation, the analytical solution has been studied and developed by Oliveira (2012),

and it provides the exact eigenvalues and eigenfunction associated with C
ff

as

�
n

=
2�l

c

l2
c

◆2
i

+ 1
(5.28)

�
n

=
l
c

◆
i

cos(◆
i

x) + sin(◆
i

x)
q

(l2
c

◆2
i

+ 1)/2 + l
c

(5.29)

where ◆1, ◆2, ... are solutions of the equation

(l2
c

◆2 � 1) sin(◆) = 2l
c

◆ cos(◆). (5.30)

Fracture energy decomposed by means of the K-L expansion can be written as

G(x, ✓) = Ḡ(x) +
1
X

i=1

p
�
i

⇠
i

(✓)�
i

(x). (5.31)
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where Ḡ represents the mean value of G.

Modulus of elasticity decomposed by means of the K-L expansion can be written as

E(x, ✓) = Ē(x) +
1
X

i=1

p
�
i

⇠
i

(✓)�
i

(x). (5.32)

where Ē represents the mean value of E.

5.4.2 Bivariate Gaussian process

Let’s now consider the case in which two random variables are introduced in the

system. Let X(x, ✓) = (X1, X2, ..., Xd) be a vector containing d stochastic processes

(if, for example, only one variable of the system has random nature, d = 1); in

this study, a maximum of two stochastic processes will be considered and, therefore

d
max

= 2.

The multivariate K-L expansion can be expressed as (Wang, 2008):

X(x, ✓) =

2

6

6

6

6

4

X1

X2

...

Xd

3

7

7

7

7

5

=
N

X

i=1

p
�
i

�
i

⇠
i

=
X

i�1

p
�
i

2

6

6

6

6

4

�(1)
i

�(2)
i

...

�(d)
i

3

7

7

7

7

5

⇠
i

(5.33)

where ⇠
i

is a two-dimensional vector sampled from a bivariate normal distribution,

�
i

, �(1)
i

and �(2)
i

are obtained from the Fredholm integral of Eq. 5.27.

For the case of bivariate gaussian distribution, the KL expansion takes the form

"

X1

X2

#

=
N

X

i=1

p
�
i

�
i

⇠
i

=
X

i�1

p
�
i

"

�(1)
i

�(2)
i

#

⇠
i

. (5.34)

5.5 Non-Gaussian process: Weibull distribution

The main method used in this study to sample random values of fracture energy and

modulus of elasticity considers heterogeneity using a non-Gaussian Weibull process.

The non-Gaussian Weibull distribution used in sampling phase has been chosen due

to its capability in realistically describing the mechanical properties of brittle mate-

rials such as ceramics and rocks (Gorjan and Ambrožič, 2012; Stefanou, 2009; Yang

and Xu, 2008). Similarly to what has been described for the K-L expansion method

in the previous paragraph, in this section the descriptions of both monovariate and

bivariate Weibull distribution are provided.
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5.5.1 Monovariate Weibull process

For the simulation with only one random field , Cumulative Density Function (CDF),

denoted by P (.), and Probability Density Function (PDF), denoted by p(.), for

Weibull distribution, take the form of

P (⇣) = 1� exp
⇣

�
⇣ ⇣

⇣0

⌘

m

⌘

(5.35)

p
s

(⇣) =
dP (⇣)

d⇣
=

m

⇣0

⇣ ⇣

⇣0

⌘

m�1
exp

⇣

�
⇣ ⇣

⇣0

⌘

m

⌘

(5.36)

where ⇣ is the random parameter following the Weibull distribution, m is shape

parameter and ⇣0 is scale parameter.

Maximum Likelihood Estimator (MLE), briefly described in the previous chapter,

is used to define both the shape and the scale parameters. Let ⇣1, ⇣2, ..., ⇣n be a set

of hypothetical data which is randomly generated. It is plausible to fit a Weibull

distribution to this hypothetical data (Devroye, 1986). In other words, it is assumed

that ⇣1, ⇣2, ..., ⇣n constitute a sample of size n taken from a Weibull distribution with

PDF given in Eq. 5.36 where the p
⇣

i

(⇣
i

,m, ⇣0) and m are unknown parameters.

These parameters can be estimated using the MLE method. For the hypothetical

sample ⇣1, ⇣2, ..., ⇣n taken from p
⇣

i

(⇣|m, ⇣0), the likelihood function L(⇣0,m, ⇣1, ..., ⇣n)

which is the joint density function of the n random variables is defined as

L(⇣0,m, ⇣1, ..., ⇣n) = p(⇣1, ⇣2, ..., ⇣n|⇣0,m) =
n

Y

i=1

p
⇣

i

(⇣
i

|⇣0,m). (5.37)

where
Q

n

i=1 represents the product of a series of n terms. The MLEs of (⇣0,m) are

derived by maximising the likelihood function L given in Eq. 5.37 with respect to

(⇣0,m). This can be done by simultaneously solving the following equations:

dLog(L)

dm
= 0;

dLog(L)

d⇣0
= 0. (5.38)

In order to obtain the MLEs of the Weibull parameters, Eq. 5.36 is substituted into

Eq. 5.37 and then Eq. 5.38 is solved to achieve the following system of equations:

P

n

i=1 ln (⇣i)⇣
m

i

P

n

i=1 ⇣
m

i

� 1

n

n

X

i=1

ln (⇣
i

)� 1

m
= 0 (5.39a)

⇣0 =

 

P

n

i=1 ⇣
m

i

n

!

. (5.39b)
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Unfortunately, this system of equations cannot be analytically evaluated and an

iterative numerical algorithm should be used to solve it. Newton-Raphson algorithm

is first applied on Eq. 5.39a to present m in terms of ⇣0, the details of Newton-

Raphson algorithm to obtain the estimation of m are as follows:

m
n+1 = m

n

� f(m
n

)

f 0(m
n

)
(5.40)

where

f(m
n

) =

P

n

i=1 ⇣
m

i

ln ⇣
i

P

n

i=1 ⇣
m

i

� 1
m

� 1
n

P

n

i=1 ln ⇣i
(5.41)

f 0(m
n

) =
n

X

i=1

⇣m
i

(ln ⇣
i

)2 � 1

m2

n

X

i=1

⇣m
i

(m ln ⇣
i

� 1)�
⇣ 1

n

n

X

i=1

ln ⇣
i

⌘⇣ 1

n

n

X

i=1

⇣m
i

ln ⇣
i

⌘

.

(5.42)

The estimated value of m, denoted by m̂, is then substituted into Eq. 5.39b to

obtain the estimation of scale parameter ⇣0 denoted by ⇣̂0 and finally define the

Weibull distribution function. Given the estimated parameters (m̂, ⇣̂0) uncorrelated

random realisations can be generated from the Weibull distribution over the simu-

lation domain using the inverse method (Devroye, 1986). In this method, a sample

u1, u2, ..., un is drawn from a uniform distribution defined over (0, 1), and the cor-

responding sample taken from Weibull distribution can be then obtained by solving

the following equation

⇣
i

= P�1(u
i

)� ⇣̂0
m̂

p

ln(1� u
i

), i = 1, ..., n. (5.43)

5.6 Inclusion of spatial autocorrelation function into

the monovariate Weibull distribution

In order to include the spatial autocorrelation matrix 5.25, the following algorithm

has been implemented:

1. Generate a hypothetical data set according to probabilistic characteristics of

the heterogeneous material (mean value, standard deviation and correlation

function)

2. Given the hypothetical data spatially distributed according the autocorrelation

matrix, the parameters of the monovariate Weibull distribution are estimated

using the ML method, denoted by (m̂, ⇣̂)
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3. The values distributed according the Weibull distribution can be obtained

transforming the values sampled in point 2 using the formulation (Villanueva

et al., 2013; Faraz et al., 2015)

⇣
i

=

"

� log

 

1� erf(xNp
2
)

2

!#

m

�1

(5.44)

being x
N

the variable representing the vector sampled in point 2 of the algorithm.

5.6.1 Bivariate Weibull process

For the generation of a two-dimensional random field, the use of a multivariate

Weibull PDF and CDF is needed. The approach used in this work, known as

Normal-to-anything (NORTA), is to obtain the multivariate Weibull PDF from the

multivariate Standard Normal PDF applying the change of variable. The details

of formulation of the bivariate Weibull distribution considered is developed on the

basis of Villanueva et al. (2013) and the transformation function between Gaussian

to any other non-Gaussian is also explicitly expressed by Faraz et al. (2015). Here

it is presented the methodology to generate correlated samples from the bivariate

Weibull distribution derived from its relationship to the bivariate Standard Normal

distribution. The Bivariate standard normal PDF i given as

f(x1N , x2N |⇢) = 1

2⇡
p

1� ⇢2
exp

 

� 1

2(1� ⇢2)
(x21N + x22N � 2⇢x1Nx2N )

!

(5.45)

where ⇢ is the correlation coe�cient between hypothetical random variables gener-

ated by the normal distribution (Villanueva et al., 2013) and is calculated by the

exponential correlation function proposed by Yang and Xu (2008).

The bivariate Weibull distribution can be then obtained from the following equation

p
w

(⇣1W , ⇣2W |⇣01, ⇣02,m1,m2, ⇢) = f(x1N , x2N |⇢)
�

�

�

�

�

@⇣1W
@x1N

@⇣1W
@x2N

@⇣2W
@x1N

@⇣2W
@x2N

�

�

�

�

�

�1

. (5.46)

By substituting Eq. 5.45 into Eq. 5.46 the bivariate Weibull distribution depending

on five parameters (2 shape parameters, 2 scale parameters and the correlation
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coe�cient ⇢) takes the following form

p
w

(⇣1W , ⇣2W |⇣01, ⇣02,m1,m2, ⇢) =

1

4
p

1� ⇢2
e

⇣

� 1
2(1�⇢

2)
(x2

1N+x

2
2N�2⇢x1Nx2N )

⌘

�

�

�

�

�

Q2
i=1

⇣0i
m

i

e

(�
x

2
iN

2 )

1�erf
x

iNp
2

 

� log
⇣

�

1�erf(
x

ip
2
)
�

2

⌘

!

m

�1
i

�1�
�

�

�

�

. (5.47)

Eq. 5.47 can be then fully represented in terms of (⇣1W , ⇣2W ) using the relation-

ship between normally-distributed variables and the Weibull distributed ones as

expressed by Villanueva et al. (2013) and Faraz et al. (2015) and given below

x
iN

=

p
2

erf 1� 2 exp (�( ⇣iW
⇣0i

)mi)
. (5.48)

The inverse of the Eq. 5.48 used to generate samples from bivariate Weibull distri-

bution in terms of the samples taken from the bivariate standard normal distribution

is given in the formulation below:

⇣
iW

= ⇣0i =

"

� log

 

1� erf
�

x

iNp
2

�

2

!#

m

�1
i

. (5.49)

Algorithms for the generation a random set of variables sampled from bivariate

lognormal distributions have been developed by some authors (Thomopoulos, 2012),

but to the best knowledge of the authors no explicit algorithms have been provided

for bivariate Weibull distribution. The algorithm for generating realisations from a

bivariate Weibull-distributed random field is therefore expressed as follows:

1. Generate a hypothetical data according to probabilistic characteristics of the

heterogeneous material

2. Given the hypothetical data, the parameters of the bivariate Weibull distribu-

tion are estimated using ML method, denoted by (m̂1, m̂2, ⇣̂01, ⇣̂02, ⇢)

3. A sample of desired size can be easily drawn from a bivariate standard normal

distribution with the estimated correlation coe�cient ⇢̂. This bivariate sample

is illustrated as
n

�

x(i)1N , x(i)2N

�

, i = 1, 2, ..., n
o

4. By replacing the sample generated in Step 3 into Eq. 5.49 a bivariate sam-

ple
n

�

x(i)1W , x(i)2W

�

, i = 1, 2, ..., n
o

can be generated from the bivariate Weibull

distribution with the estimated parameters m̂1, m̂2, ⇣̂01, ⇣̂02, ⇢.
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Figure 5.1 shows three di↵erent bivariate Weibull distributions with three di↵erent

coe�cients of correlation. It is interesting to notice that for a low value of correlation

the shape of the PDF has a more scattered nature, while for an increasing value

of correlation, it is observed a higher correspondence leads to a stronger relation

between values sampled for two random fields. Figures 5.2 shows an example of three

samples (normalised according to their mean value) generated using the algorithm

shown above and considering three di↵erent values of cross correlation representative

of null, partial and total cross-correlation. Figure 5.3 shows the same scenario of

Figure 5.2, for di↵erent values of correlation coe�cient ⇢, but using the bivariate

normal distribution.

The most interesting facts to highlight between Figures 5.2 and 5.3 are related to

the applicability of the two distributions used for the generation of the three samples

to engineering problems where values of mechanical properties generated have to be

realistic and physically meaningful:

1. both Figures 5.2 and 5.3 show the realistic sensitivity of the results for di↵erent

values of ⇢: for samples generated using null correlation, with both methods it

can be seen that there is no observed correspondence between values sampled

for the same Finite Element; the correspondence between values increases as

the correlation between variables increases, until a complete correspondence

between values is found when full correlation between the two random fields

is taken into account;

2. in both Figures 5.2 and 5.3 two di↵erent standard deviations for the generation

of the samples is considered: it can be noted that the two samples generated

using the novel bivariate Weibull distribution are capable to keep the same dif-

ference observed in the samples generated using the classical bivariate normal

distribution;

3. all the samples of Figure 5.3, generated therefore using a bivariate normal

distribution, have positive and negative values, while all the samples presented

in Figure 5.2 have only positive values.
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Figure 5.1: Bivariate Weibull distributions with null correlation (top); partial correlation
(middle); full correlation (bottom).
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Figure 5.2: Bivariate Weibull distributions with null correlation (top); partial correlation
(middle); full correlation (bottom). In this work, the term ’sample size’ refers to the number
of Finite Elements discretising the domain, which is equal to the size of the sample vector.
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Figure 5.3: Correlated normally distributed random samples with null correlation (top);
partial correlation (middle); full correlation (bottom). In this work, the term ’sample size’
refers to the number of Finite Elements discretising the domain, which is equal to the size
of the sample vector.
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5.7 Model verification

5.7.1 Spatial autocorrelation application

The spatial correlation function aims to define the spatial variation of the mechanical

properties in a domain and depends on the material length scale l
c

: a low value of l
c

denotes a more scattered distribution of the heterogeneity, while a higher value of l
c

denotes a more homogeneously-distributed random field (Georgioudakis et al., 2014).

Figure 5.4 shows how the methodology described above is capable to reproduce this

behaviour on a simple rectangular domain and compares the result obtained with

results achieved with a spectral method used by Georgioudakis et al. (2014).

Figure 5.4: Rectangular domain: realisations of a Weibull field for fixed standard deviation
and lc = 1.2 (top left) and lc = 120 (top right) and comparison with the results obtained
by Georgioudakis et al. (2014) with the spectral method for lc = 1.2 (top left) and lc = 120
(top right). Similar trends are obtained between the two methods.
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It can be observed in both figures that the e↵ect of the variation of l
c

is taken

into account properly: for a low value of l
c

, the spatial distribution of heterogeneity

is appears to be more scattered, while for a higher value of l
c

the values of the

random field sampled have a distribution more homogeneously distributed in the

domain.

5.7.2 Weibull and lognormal distributions

This paragraph aims to show that the method proposed in this chapter is capable to

generate the PDF of a Weibull distribution which is similar to the relative log The

mean value µ
LN

and standard deviation �
LN

of a lognormal random variable are

functions of the Gaussian mean value µ and standard deviation �. These quantities

can be calculated with the Matlab lognstat function, and mathematically they are

expressed as:

µ
LN

= µ
LN

exp

✓

�2
LN

2

◆

(5.50)

�2
LN

= exp
�

2µ+ �2
�

(exp(�2
LN

)� 1) (5.51)

respectively. For the Weibull distribution, shape and scale parameters needs to

be estimated in order to create the desired sample of random values. Using MLE

method described above in this chapter, and given a vector containing a set of

random values (x1, ..., xN ), the formulation for m and s is obtained using the Matlab

function mle.

Afterwards, a vector containing random values following Weibull distribution can

be computed. Let’s assume a system with two correlated parameters with a random

nature (e.g. fracture energy and modulus of elasticity) with given normal mean

values and standard deviations. Lognormal mean value and standard deviation

and shape and scale parameters for Weibull distribution are calculated as described

above in this paragraph and are summarised for two Random Fields (RF) in Table

5.1.

Table 5.1: Parameters estimation for Normal, Lognormal and Weibull distributions using
the Maximum Likelihood Method

Normal Lognormal Weibull

Random Field 1
Mean Value 0 1.03 Shape 15.4

Std Deviation 0.25 0.07 Scale 2.91

Random Field 2
Mean Value 0 1.13 Shape 2.99

Std Deviation 0.5 0.36 Scale 3.48
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Figure 5.5 shows the correspondence between lognormal distribution and

Weibull distribution with shape and scale parameters obtained from MLE method.

Two lognormal and two Weibull distributions are generated using two normal dis-

tribution with same mean value (equal to 0) and two di↵erent standard deviations

(one equal to 0.25, the other equal to 0.5). It can be observed that the method pro-

posed for the generation of the Weibull distribution provides a result very close to

the lognormal distribution generated from the correspondent Gaussian distribution,

but some small di↵erences can be noticed. Despite these di↵erences looks small,

they significantly influence the generation of a sample. In order to prove this, re-

sult from studies that analysed what is the best probabilistic distribution aimed to

reproduce the behaviour of brittle materials is reported.

Figure 5.5: Comparison between LogNormal and its correspondent Weibull distribution

The first study is the one conducted by Gorjan and Ambrožič (2012). In their

work, the authors evaluated the statistical distribution that better describes the re-

sponse of 5100 experimental values of material bend strength of alumina specimens.

The authors compared four di↵erent distributions, including the normal, lognormal

and Weibull distributions. Comparisons between experimental observations and the

probability distribution for each of the function considered have been conducted

using the ’Q-Q’ plots shown in Figure 5.6. Using a Q-Q plot, each experimental

value �
i

corresponds to the coordinate on the vertical axis and the theoretically

expected strength �
i,th

corresponds to the coordinate on the horizontal axis. The

closer the points are to the oblique line of the function y = x, the better is the agree-
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ment between the experimental data and the theoretical distribution. From a visual

analysis of the three plots, can be seen that the data points fit best to a straight

line in the case of a Weibull distribution. Furthermore, the authors calculated for

each distribution, a coe�cient called Q2, used to calculate analytically how close

the points are to the line of y = x:

Q2 = 1�
P

N

i=1(�i � �
i,th

)2
P

N

i=1(�i � h�ii)2
(5.52)

where h·i represent the mean value. If the Value for Q2 is equal to 1, the sample fits

perfectly, but in general the closer the value for Q2 is to 1, the better is the fit.

For the normal, lognormal and Weibull distribution the three calculated values for

Q2 are equal to 0.98, 0.94 and 0.99, which proves that Weibull distribution is the

best function to describe the mechanical response of the materials.

Figure 5.6: Q-Q plots of comparisons between experimental measurements on 5100 alumina
specimens and theoretical values from probability distributions: comparison with normal
(top left), lognormal (top right) and Weibull (bottom) distributions (Gorjan and Ambrožič,
2012)

.
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Weibull distribution theory has been used to study the failure initiation pro-

cess by Guy et al. (2012). More specifically, this study provides a Weibull model

capable of introducing uncertainty in the crack initiation threshold for crack opening

mode fractures. This model provides good results and shows how, for accurately

selected material length scales and crack lengths, the scale parameter ⇣0 can be ap-

proximated by the value of the material length scale itself. For the propagation of

the crack, on the other hand, a method purely based on the principles of fracture

mechanics is adopted.

Another work is the one recently published by Gironacci et al. (2017). In their

work, authors developed a novel numerical strategy able to predict damage evolu-

tion direction in heterogeneous materials by combining nonlocal mechanics, random

field and continuum damage theories. The novelty of the proposed strategy relies

on its capability to use Gaussian-distributed statistical information of crack initia-

tion angle (generated using a spectral representation approach), defined by studying

the distribution of the damage around the so-called fracture process zone developed

around a crack tip, for the generation of probabilistic distributions describing the

fracture toughness and fracture energy for brittle materials. The most interesting

aspect of this method is its capability, by using Gaussian-related statistical infor-

mation, to capture the non-Gaussian nature of the statistical distribution of the

fracture toughness and fracture energy for brittle materials. Figure 5.7 shows the

PDF of fracture toughness generated for one of the examples studied in the work

by Gironacci et al. (2017).

Figure 5.7: PDF obtained with the method proposed by Gironacci et al. (2017). The
histogram showing the distribution of KIc is in very good agreement with the PDF of a
Weibull distribution.
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Chapter 6

Model Order Reduction

6.1 Introduction

In the previous chapter the methodology used for sampling random values of me-

chanical properties has been described.

In this chapter the focus will be on the assignment of these values to the FE mesh

which is used to represent the desired problem domain and on the choice of the opti-

mal dimension of the elements forming the so-called random field (RF) mesh. When

FE and RF meshes do not coincide, it is said that a dual mesh approach is used

(Shang and Yun, 2013). The size of the elements of the FE and RF meshes needs to

be chosen following di↵erent criteria; the size of the elements of the FE mesh should

take into account mesh convergence criteria related to the numerical model (to avoid

for example numerical errors), while the size of the elements for RF mesh should

be selected to adequately capture the essential features of the stochastic spatially

variable properties (eg. material length scale) during the sampling phase. The size

of the RF mesh element, therefore, should not be too large to cause underestima-

tion of the spatial variability and should not be too small to prevent the numerical

instability problems related to the necessity of dealing with a unfeasibly high com-

putational cost (Li et al., 2016a). Relationships for the optimal ratio between mesh

size and correlation length of random properties as a measure of heterogeneity are

provided in several works (Yang and Xu, 2008). In these studies it is suggested that

the size of the elements should be less than the half of the correlation length, and,

more specifically, for optimal results it should be between one quarter and one half

of the correlation length.

For this study the dual mesh approach introduced above is employed, and there-

fore two di↵erent meshes are identified: a RF mesh, containing all the information
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related to the material heterogeneity, and a FE one for numerical solving partial

di↵erential equations describing the fracture problem. The material length scale is

used to define the size of the initial stochastic mesh. A nonlinear technique has been

developed and used to reduce the dimensionality of the RF mesh. This simplifies

and accelerates materials stochastic analysis process through constructing isometric

low-dimensional representations of material formation variations. With the term

isometric it is defined any technique that is able to preserve geometrical properties

and features at all scales (Zhang et al., 2015).

6.2 Model Order Reduction

The growing demand for reliable simulations of complex systems creates big chal-

lenges for researchers working in the area of computational mechanics. Realistic

simulations should in fact show only very small errors of the computational models,

and a wide number of aspects must always be considered for the replication of real-

istic behaviours (Schilders, 2008).

The increase in computational power allowed the possibility of the creation of com-

plex algorithms, which, nevertheless, always need to look at their e�ciency. Not

always is possible to simplify a priori a model realistically describing the material

properties and the mechanical response of a material. In such cases, a procedure for

the automatic identification of the possible approximations and simplifications able

to further increase the computational e�ciency and realistically describe material

properties must be identified. Developing such algorithms is the aim of model order

reduction (MOR) techniques (Schilders, 2008).

In fact, MOR tries to quickly and realistically capture the essential characteristics

of a domain. The input consists of a physical domain, represented via RF mesh,

where its size is decided taking into account the microstructure of the material. To

reduce the computational cost related to the sample realisation vectors containing

values of G and E for each element, the size of each RF element is increased and,

consequently, the size of the sample vector reduces. At a certain moment, which is

defined by the achievement of given convergence requirements, the process of reduc-

tion is stopped. At that point, all necessary properties of the original model can be

captured with su�cient precision.

Despite MOR is now employed in several fields of research (e.g. vision,

speech, motor control and data compression), its development started within the

field of systems and control theory, to analyse properties of dynamical systems in
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application for the reduction of their complexity, while preserving their input-output

features as much as possible (Schilders, 2008).

Figure 6.1 schematically illustrates the concept of the MOR, demonstrating that,

despite a high number of details provide an accurate description of the features of

a model, less information can be enough to to describe the same model accurately

enough. This example with pictures of the Stanford Bunny shows that, even only

with a few facets, the rabbit of Figure 6.1 can still be identified.

Figure 6.1: Model Order Reduction graphical illustration: the Stanford Bunny. (Schilders,
2008)

Applied to this study, MOR can be therefore seen as the task of reducing

the dimension of the sampling space-dependent vector, while reserving the nature of

the input-output relations. In order to provide a good approximation of the original

input-output system, a number of conditions should be satisfied:

- the approximation error from original to reduced-order input is small;

- the properties of the original system are preserved;

- the reduction procedure must be computationally e�cient.

6.3 Linear and non-linear MOR techniques

The fundamentals of MOR techniques started during the eighties with Moore (1981),

Glover (1984) and Sirovich (1987). However, all these methods were applied to the

field of systems and control theory, and only in the latter years MOR started to be

applied to other fields of research.

All methods for dimensionality reduction can be grouped into two main categories:

linear and non-linear methods. Linear methods, such as Principal Component Anal-

ysis (PCA), are used when the information passing through di↵erent elements of a
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problem are connected sequentially, and therefore the direct, or euclidean distances

can be considered during the dimensionality reduction process. Non-linear methods,

such as IsoMap, are normally used when data elements are attached and dependent

to several other data elements, in such a way that the information stored in one

element is influenced by its whole surrounding (Zhang et al., 2015).

PCA is able to obtain linear structures and relations between data points in a low-

dimensional space (lower compared to the size of the initial stochastic domain), in

a way that the most important features characterising the RF mesh are preserved.

However, this method fails to in the reconstruction of non-linear features as it bases

its algorithm in the euclidean distances between nodes. PCA has however the ad-

vantages of being simply implementable and e�ciently computable (Zhang et al.,

2015).

One more e�cient way of obtaining the optimal dimension able to realistically de-

scribe the RF domain is using geodesic distances instead of euclidean distances

(Tenenbaum et al., 2000), which are able to catch the non-linear features of the

domain that would remain hidden if euclidean distances were used, as can be seen

in Figure 6.2.

Figure 6.2: The ”Swiss roll” data set, showing how IsoMap uses geodesic paths for non-
linear dimensionality reduction. For two points on a domain, their Euclidean distance in the
input space, represented by the length of dashed line, not necessarily reflects their intrinsic
similarity, as measured by geodesic distance shown by the solid curve (Tenenbaum et al.,
2000).

Table 6.1 shows the main advantages and disadvantages of the two most

popular methods for dimensionality reduction. Both methods are able to provide a

reduced-dimension representation of the RF, however the overestimation of the di-

mension of the RF domain using PCA makes the use of a non-linear MOR technique

more suitable for this study.

109



Table 6.1: Comparison between PCA and ISOMAP (Zhang et al., 2015).

PCA (Linear method) IsoMap (Non-Linear method)
-Simple to implement -Correct dimensionality detection
-E�ciently computable -Recover the intrinsic geometric

structure
-Discover a realistic structure of the

input space
-It cannot be extended to
multi-component materials

-Computationally slightly more
expensive than PCA

-It constructs the closest linear
subspace of the high-dimensional

input space
-It tends to overestimate the actual

dimensionality of the space

6.4 Modified IsoMap applied to SFEM

This section aims to develop the stochastic computational strategy used in this thesis

by combining a stochastic damage theory with isometric mapping (IsoMap) theory

in order to obtain a description of the RF mesh with an optimal and computation-

ally e�cient algorithm.

IsoMap theory was originally proposed by Tenenbaum et al. (2000) for dimensional-

ity reduction of non-linear data sets. In this theory, every data element is connected

to several other data elements using tree and graph concepts in a way to repre-

sent their inner non-linear relationships. This theory overcomes the shortcomings of

traditional dimensionality reduction techniques such as PCA in preserving realistic

features of realisations which are not arranged linearly in a sequential structure, as

shown in Figure 6.2.

The dimension of the initial RF is set equal to D. Each realisation with D elements

is considered as a point in D-dimensional space. The plan is to map each realisation

to a d
r

-dimensional space (d
r

<< D) while the intrinsic characteristics in the reali-

sation will be well maintained. All the geodesic distances between all pairs of data

points are computed. The geodesic distance can be understood to be the shortest

distance between the sample points in the high-dimensional space and is computed

by constructing a neighbourhood graph G in which every point is connected with its

k
r

nearest neighbours. After choosing the size of the neighbourhood, the distances

between all pairs of elements (distances are calculated between elements barycen-

tre) is calculated and the distance between elements as d
E

(i, j) is defined. Then,
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a line between each two neighbouring points is drawn if their distance is included

within the neighbourhood size. By repeating this process for all the elements the

so-called neighbourhood graph is obtained. The shortest pattern between points is

calculated. The shortest path between two points in the graph forms an estimate of

the geodesic distance between these two points, and can be computed by means of

Floyd’s algorithm (Floyd, 1962), schematically shown in Figure 6.3.

Geodesic distance d
M

between two points for IsoMap is measured by summing all the

distances between points within the two nodes under consideration. The distances

between points are initialised to d
M

= d
E

if two points are directly connected and,

to d
M

= 1 otherwise. For each couple of points, the shortest path is then defined

as

d
M

(i, j) = min{d
M

(i, j), d
M

(i, k) + d
M

(k, j)} (6.1)

which is known as Floyd’s algorithm (Floyd, 1962).

The matrix of shortest path distances is defined as DM = (d
M

(i, j))2 . In the next

step it is shown how to compute the matrix

C(DM) = �HDMH/2 (6.2)

where H is the centering matrix defined by Tenenbaum et al. (2000) as H
ij

=

(�
ij

� 1/D), with �
ij

being the Kronecker delta defined as

�
ij

=

8

<

:

0 if i 6= j,

1 if i = j.
(6.3)

The eigenvalues �
d

of the matrix C(DM) are calculated and sorted in decreasing

order. The new dimension d
r

is specified by estimating a value called cumulative

residual variance, a measure of the di↵erence in the distribution of heterogeneity

between the initial and the reduced spatial configuration, given by the eigenvalues

�
d

. The new dimension d
r

is defined as the dimension for which the convergence

criteria for cumulative variance is reached. Figure 6.3 shows the procedure followed

for getting the reduced order stochastic model.
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Figure 6.3: Algorithm for IsoMap
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The new dimension d
r

is directly connected to the size of the neighbour-

hood considered to obtain the new RF mesh dimension. Table 6.2 summarises how

d changes for a change of k
r

for a sample of stochastic realisation on a circular

domain. From the table can be seen that for and increase of k
r

, the values of d
r

increase and, therefore, a finer RF mesh is obtained. However, the choice for the op-

timal value of k
r

has to be done considering also the computational e↵ort required

during the sampling phase. In fact, in Figure 6.4 can be observed how the time

needed for generating a sample is decreasing when the size of the stochastic mesh

increases. However, the slope of the graph visibly decreases after the size of the ele-

ment becomes bigger that 2 mm. The generation of a sample for a RF discretisation

with mesh size equal to 1 mm required 55.4 seconds, while already for a mesh size

equal to 2 mm, the CPU dropped drastically to 4.9 seconds and to 3.6 seconds for a

mesh size equal to 2.5. All the analyses are computed using MATLAB installed on

a MacBook Pro equipped with a 2.5 GHz Intel Core i5 processor and 8GB RAM.

In conclusion, for this example the optimal values of k
r

and d
r

are equal to 9 and

307 respectively.

Table 6.2: Dimension and mesh size for optimal cumulative variance trend for di↵erent sizes
of neighbourhood kr

Cumulative Variance 0.95 Cumulative Variance 0.90
k
r

d
r

Mesh size d
r

Mesh size
(mm) (mm)

3 71 5.7 65 6.1
4 103 4.6 94 4.8
5 140 3.9 127 4
6 180 3.3 164 3.5
7 246 2.8 223 2.9
8 290 2.6 264 2.75
9 307 2.5 279 2.7
10 342 2.4 310 2.5
11 375 2.3 341 2.35
12 424 2.25 383 2.3
13 460 2.2 412 2.25
14 488 2.2 432 2.25
15 551 2 473 2.2
16 551 2 508 2.1
17 551 2 551 2
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Figure 6.4: Sample generation: CPU evolution for di↵erent stochastic element sizes on the
same problem. An increase in the size of the mesh leads to a reduction of the CPU time
needed for the process. However, an excessive increase for the mesh size doesn’t lead to any
significant improvement

6.5 Mapping from RF to FE mesh

After generating the reduced order mesh, a mapping procedure for transferring

values of random parameter from the stochastic mesh to the finite element mesh is

implemented. This mapping is necessary, in order to maintain the same (or very

similar) distribution of material properties from RF to FE mesh.

The mapping is based on a graphical method which refers to the distance between

elements and based on the midpoint method. Each element of the finer mesh has a

di↵erent value of fracture energy. The elements from the coarser mesh are projected,

as shown in Figure 6.5, on those of the finer mesh. To assign a value of fracture

energy the mapping employed here considers the values of fracture energy of those

elements of the fine mesh in proximity of the single element of the coarse mesh. This

procedure can be attributed to the spatial averaging method, which assigns a value

obtained as an average of stochastic field values over another finite element domain

(Haldar and Mahadevan, 2000). Essentially, for mapping the values of fracture

energy between the two meshes, both values of fracture energy and distance between

elements barycentre, representing the distance between the elements, are considered.

The final value of fracture energy is assigned using

G
FE

=
nr

X

i=1

G
i

d
i

(6.4)
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where nr represents the number of element for which the relative distance between

the reduced and the original barycentre is less than a given threshold which, for this

work, is considered to be the size of the new mesh. In fact, as shown in Figure 6.5,

the higher the distance between the elements is, the lower will be the influence of

that element to the calculation of random parameter for the FE element.

If during the analysis an element is refined, the new value of fracture energy will

be assigned considering the same procedure in order to keep the same local hetero-

geneity distribution during the whole analysis.

Figure 6.5: Mapping procedure from RF to FE mesh: projection of one mesh on the other
(left) and calculation of the distances between barycentre (right). The new value of the
random properties for the original finite element mesh is given by an average of the elements
included within the projection, averaged according to the relative position between the
elements’ barycentres.

6.6 Conclusions

In this chapter a methodology for reducing the size of the RF mesh to reduce the

computational time during sampling procedures and, at the same time, to keep a

realistic distribution of mechanical properties with random nature. A version of non-

linear dimensionality reduction technique adapted to FE problems has been used,

as it is able to better capture all the essential heterogeneous features. Furthermore,

a mapping procedure able to transfer the values of random mechanical properties

from RF to FE mesh has been developed, and its application will be shown in the

next chapter.
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Part III

Results and discussion
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Chapter 7

Numerical analyses on shale gas

rocks

7.1 Introduction

The first case study investigated in this project is presented. The attention will

be first on the geo-mechanical characterisation of layered heterogeneous shale gas

rocks, on their anisotropic behaviour and the e↵ects of random orientation of shale

layers on the failure mechanisms. Experimental data have been collected from five

specimens, using the indirect tension Brazilian disc test. Laboratory measurements

on the mechanical properties of core samples of shale-gas reservoir rocks have been

used. Samples have been collected from the Dove’s Nest site on the east coast of

North Yorkshire in England. Data on the general mechanical behaviour of these

rocks are calculated to delineate the basic parameters that control propagation of

cracks in rocks: elastic modulus and fracture toughness of shale samples with dif-

ferent microstructural formations and layering orientations are calculated.

Furthermore, numerical results are also presented and compared to the experimen-

tal measurements: the specimens are modelled considering models of homogeneous

nature, with layered configuration and with randomly-distributed values of fracture

energy G and modulus of elasticity E.

Afterwards, two di↵erent cases study will be also considered: one which considers

material failure driven by a pure traction test (mode I failure) and the second in

which cracks form and propagate due to mixed-mode failure (mode I and II) in con-

crete samples. The capabilities of the implemented numerical code will be verified by

comparisons with experimental results. For these last two examples, heterogeneity

is modelled only using the Weibull distribution.
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7.2 Experimental investigations on shale rock samples

7.2.1 Experimental setup: the Brazilian test

The Brazilian tests were conducted to measure the tensile strength of cylindrical

samples collected from the shale gas reservoirs in the Dove’s Nest site on the east

coast of North Yorkshire. Tests have been conducted in the School of Earth and

Environment of the University of Leeds, and results from these tests have been

recently published by Mousavi Nezhad et al. (2018). These results have the main

purpose of verification of the methodology proposed in the previous chapter, together

with an initial study on the e↵ect of modelling of layered materials presented in the

next paragraphs of this chapter. Figure 7.1 shows the experimental setup used to

test the specimens: the equipment consists of a high-speed camera to take pictures

of the fracture propagation, a strain gauge and a loading rig.

Figure 7.1: Photograph of the Brazilian test setup used in the School of Earth and Envi-
ronment, University of Leeds.

For the Brazilian test, loading conditions influence significantly damage and

stress distribution inside a specimen. The load can be applied to the specimens

using either flat platens or curved jaws (Figure 7.2). It is worth noting that failure

always initiates in an area located under loading points if flat steel plates are used,

while the crack initiation point gets closer to the centre of the specimen if curved

jaws are employed (see Figure 7.6) (Hobbs, 1964; Hudson et al., 1972).

118



Figure 7.2: Brazilian disc experimental configurations: with flat plates (left); with curved
jaws (right).

7.2.2 Experimental method and measurements

The fracture tests were carried out on samples showing di↵erent types of heterogene-

ity: despite in some of them the presence of randomly-distributed inclusions can be

observed, all the specimens show a layered nature (in some of them more evident),

and for each test angles between loading direction and bedding plane orientations

varied. The mechanical strength was determined by crushing the cylinder samples

between steel platens. Load, axial displacements and time data are recorded from

transducers attached to the loading frame. Scenarios of the experimental sets that

have been carried out to measure fracture properties of shale rock and investigate

the e↵ects of bedding orientation, are presented in Tables 7.1 and 7.2.

Table 7.1: Scenarios of experimental sets using flat steel plates

R t P
max

P
min

�
t

E K
Ic

G

(mm) (mm) (KN) (KN) (MPa) (GPa) (N/mm
3
2 ) (N/mm)

A 18.29 19.76 6.86 2.00 6.36 29.6 12.02 0.4 x 10�2

B 18.30 20.69 9.46 4.22 8.04 18.5 22.77 2.6 x 10�2

Table 7.2: Scenarios of experimental sets using flat curved jaws.

R t P
max

P
min

�
t

E K
Ic

G

(mm) (mm) (KN) (KN) (MPa) (GPa) (N/mm
3
2 ) (N/mm)

C 23.70 21.87 11.90 4.85 7.30 26.6 18.97 1.5 x 10�2

D 27.30 22.28 22.28 5.59 10.40 20.3 22.14 2.2 x 10�2

E 30.81 27.26 29.25 14.29 11.20 24.0 43.64 7.5 x 10�2

For each specimen (all of them are intact), fracture toughness K
Ic

is initially
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calculated using the method proposed in Guo et al. (1993). This method relies on

the value of the post residual load being maintained by each fractured disc P
min

.

The modulus of elasticity E was determined by cementing an electrical resistance

strain gauge at the centre of a disc to measure the lateral strain until failure.

All the tested samples are shown in Figure 7.3. All the discs were tested in the

air-dried state. In this figure it can be observed that specimens A and E show a

well-defined layered structure, even if in specimen E the presence of small inclusions

is visible; also specimen B shows a layered structure, but less defined. On the other

hand, specimens C and D show a structure more randomly distributed through the

domain.

Figure 7.3: Tested shale samples: samples A (top left) and B (top right) tested using flat
plates and samples C (left bottom), D (middle bottom) and E (right bottom)

The indirect tensile strength �
t

of the cylindrical samples under compression

on the vertical diameter of the specimen were obtained using (ISRM, 1978; Li and

Wong, 2013):

�
t

=
P
max

⇡Rt
(7.1)

where P
max

is the maximum load applied to sample before failure, R the radius of the

specimen and t its thickness. The tensile stress-strain curves for all the experimental

sets described above are plotted in Figure 7.4. For the case of experiments conducted

with flat plates, it can be observed that specimen B shows a lower sti↵ness, but a

higher value of ultimate tensile strength and a wider post-elastic behaviour. For

experiments conducted with curved jaws, it is observed that the higher value of
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resistance is obtained for the sample with a clear-layered structure and horizontal

direction of layers. It should be observed that graphs of Samples B and C show some

scattered behaviours in their plots, most probably related to the sudden movement

of the strain gauges during the formation of cracks.

Figure 7.4: Stress-strain plots for the 5 sets of experiments performed on shale rocks: results
from the specimens tested using flat plates (top) and curved jaws (bottom).

Figure 7.5 shows all crack patterns obtained from the specimens described

above. Crack pattern obtained for specimen A doesn’t have a very noticeable tor-

tuous nature, probably due to the low degree of visible heterogeneity. Furthermore,

specimens with a clear layered nature show a well-defined and unique crack pattern

which is more curved if compared to the one in specimen A, while specimens with

a less-defined layered and more scattered heterogeneous nature show multiple and

more tortuous cracks.
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Figure 7.5: Tested shale samples: crack patterns obtained from samples A (top left), B (top
right), C (left bottom), D (middle bottom) and E (right bottom)

7.3 Fracture toughness calculation for intact samples

7.3.1 Novel approach for intact specimens

As mentioned in the previous paragraph, for all the specimens presented above, K
Ic

is calculated using the method proposed in Guo et al. (1993). However, as can be

observed for specimen A, it might be necessary to use alternative methodologies

to calculate fracture toughness. In fact for this specimen fracture toughness was

calculated using a di↵erent methodology, because the value of P
min

seems to be

significantly low to be used for calculating an opportune value of fracture toughness

with this method. Therefore, for calculating K
Ic

for this specimen the generalised

maximum tensile stress (GMTS), which describes the elastic tangential stress field

distribution around the crack tip in the two-dimensional polar coordinates as a linear

function of the mode-I and mode-II stress intensity factors, is considered:

�
✓✓

=
1p
2⇡r

cos
#

2

"

K
I

cos2
#

2
� 3

2
K

II

sin#

#

+ T sin2 #+O(
p
r) (7.2)

where K
I

and K
II

are the mode I and II Stress Intensity Factors (SIF), T is the

T-stress, constant and non-singular term defining the stress parallel to the crack

and independent of r; the higher order term O(
p
r) can be neglected in proximity
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of the crack tip and r and # are the crack tip polar coordinates.

Assuming pure Mode I failure for the Brazilian test (and therefore # = 0), fracture

toughness can be calculated as

K
Ic

= �
p
2⇡r

c

. (7.3)

According to the GMTS criterion (Aliha et al., 2010) a crack initiates when along

the direction #0 of maximum tangential stress �
✓✓

and at a critical distance from

the crack tip, r
c

when �
✓✓

reaches its critical value.

According to Hobbs (1964), on intact specimens tested using the Brazilian test, a

crack initiates in the location of maximum tensile strain point. This point corre-

sponds to the location of the transition zone between the local shear damage zone

in proximity of the loading points and tensile failure point (Figure 7.6) . Figure

7.7 shows the location of this damaged zone in the shale specimen employed in

the experiment A. This local damage has spread over a distance of about 2.9 mm,

which corresponds to R
c

/R ⇡ 0.84, being R
c

the distance of the point from the disc

centre. This is in agreement with the finding of Hudson et al. (1972) who, using

experimental observation and theoretically calculations, proved the crack initiation

point (i.e., maximum radial and transversal strains) are located at a point between

0.85 > R
c

/R > 0.95.

After calculation of fracture toughness K
Ic

, fracture energy G can be calculated

Figure 7.6: Brazilian disc test failure modes according to Hobbs (1964): transition between
shear and tensile fracture zone
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Figure 7.7: Local damage zone under loading point: damage in the specimen and distance
from the centre of the disc

using (Knott and Elliott, 1979):

G =
K2

Ic

E⇤ (7.4)

where, E⇤ is the modulus of elasticity in either plane strain or stress conditions, ⌫

is Poisson ratio and K
Ic

is the fracture toughness shown in Tables 7.1 and 7.2.

7.3.2 Fracture toughness values summary

The method presented in the previous paragraph used to calculate fracture tough-

ness from intact Brazilian specimens is applied to all the specimens.

Specimens A and B have been both tested using flat plates. It must be recalled

that, on the basis of the conclusions from Hudson et al. (1972) and Hobbs (1964), it

is assumed that a crack will start at a point located between 0.85 > R
c

/R > 0.95.

These two values are therefore used as minimum and maximum thresholds to cal-

culate a range of possible values for K
Ic

. In Table 7.3 the calculated values of K
Ic

and G are reported and compared to the values obtained by Guo et al. (1993). Val-

ues for K
Ic

are calculated using Eq. 7.3, while the corresponding values for G are

calculated using Eq. 7.4. It is worth mentioning that these ranges of values will be

considered in the section where statistical analyses will be performed, in order to

estimate the di↵erent values of mean value and standard deviation for the definition

of the needed PDFs.

For the specimen A it has been already discussed that this methodology has been

considered because the method of Guo et al. (1993) provide a unrealistic and ex-
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tremely low value for K
Ic

. For specimen B, it can be observed that the value

calculated with the two methodologies are consistent: the value calculated by Guo

et al. (1993) falls within the range of values provided by the methodology proposed

in this study.

Table 7.3: Values for KIc calculated with the method proposed in this study and comparison
with the values calculated using the method proposed by Guo et al. (1993) for specimens
loaded using flat plates.

Sample A Sample B

Guo et al. (1993)

K
Ic

12.02 22.77
(N/mm3/2)

G
0.4 · 10�2 2.6 · 10�2

(N/mm)

Irwin & Hobbs (1964)

K
Icmin

15.18 18.97
(N/mm3/2)

G
min

0.7 · 10�2 1.8 · 10�2

(N/mm)

K
Icmax

26.24 33.20
(N/mm3/2)

G
max

2.5 · 10�2 5.6 · 10�2

(N/mm)

Table 7.4 summarises the values of K
Ic

calculated with the two di↵erent

methodologies for the specimens tested using curved jaws. It can be observed that,

except for sample E, the minimum and the maximum values of K
Ic

calculated for

samples C and D are not consistent with the value calculated using the methodology

of Guo et al. (1993). In fact, the assumption of finding the crack initiation point

below the loading point is valid only when flat plates are used to load a specimen.

With curved jaws, crack initiation point is in fact usually found at a point closer to

the centre to the disc.
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Table 7.4: Values for KIc calculated with the method proposed in this study and comparison
with the values calculated using the method proposed by Guo et al. (1993) for specimens
loaded using curved jaws.

Sample C Sample D Sample E

Guo et al. (1993)

K
Ic

18.97 22.13 43.64
(N/mm3/2)

G
1.5 · 10�2 2.2 · 10�2 7.5 · 10�2

(N/mm)

Irwin & Hobbs (1964)

K
Icmin

19.6 30.35 34.78
(N/mm3/2)

G
min

1.3 · 10�2 4.2 · 10�2 4.7 · 10�2

(N/mm)

K
Icmax

35.10 52.49 60.08
(N/mm3/2)

G
max

4.1 · 10�2 1.2 · 10�1 1.4 · 10�1

(N/mm)

7.4 Preliminary numerical simulations: homogeneous

vs layered models

In this section the first numerical investigations on the 5 specimens tested exper-

imentally are presented. For all the five specimens two types of simulations are

performed:

- one simulation where the simulation domain is assumed to be homogeneous;

- one simulation which aims to reproduce the layered nature of the specimens: for

each layer, a di↵erent value of G will be considered.

Comparisons in terms of damage distribution, crack patterns and stress-strain curves

will be discussed in order to show how the e↵ect of spatially-variable mechanical

properties changes the mechanical response of the material.

The values for G for each layer have been selected considering a variation between

di↵erent layers included in a range of 10-20% with respect to the mean value. Fur-

thermore, for samples D and E zones containing small inclusions are numerically

modelled. Inclusions in shale-gas rocks are usually made of calcite and dolomite,

which are the principal constituents of marble rocks. (Shushakova et al., 2013).

Experimental observations showed that the range of values for fracture energy of

materials forming small inclusions can vary within a wide range of values, from a

minimum of 0.2·10�2 to a maximum of 4.5·10�2 N/mm (Jeong et al., 2017). Further
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experimental studies, reporting values for fracture energy G for di↵erent types of

rocks, showed how values for G for shale rocks are lower compared to values for G for

rocks made of calcite and dolomite (Chandler et al., 2016). After considering these

ranges of values, for samples D and E values of fracture energy for small inclusions

are carefully chosen and details can be found in the following sections.

7.4.1 Models input

For each sample a di↵erent model is created. For homogeneous models, values for

radius of specimens, fracture energy G, modulus of elasticity E are all reported in

Tables 7.1 and 7.2, while Poisson’s ratio is considered equal to 0.25 for all models.

Based on the International Society of Rock Mechanics’s guidelines, the experimen-

tal set up for a Brazilian test is usually designed with a 5 to 15 degrees contact

arc between specimen and loading jaws (depending on the type of loading system

employed). Accordingly, in order to reproduce a realistic simulation for sample A

for example, the length of the section where load is applied should be between 1.5

and 3.2 mm. Therefore, a distributed displacement with a rate of 0.0005 mm/step

is applied over length equal to 2 mm (always for sample A) at above and below of

the disc. For samples B, C, D and E these lengths, taking into account the size

of the samples and the use of either flat plates of curved jaws, the contact length

between samples and loading devices are equal to 2, 4.3, 5 and 5.5 mm respectively.

Figure 7.8 shows all the samples with highlighted the layered conformation consid-

ered for the numerical simulations together with the di↵erent values of G assigned to

each layer. For samples D and E, it is worth highlighting the presence of small inclu-

sions with a higher value of G (assigned following the considerations of (Shushakova

et al., 2013), (Jeong et al., 2017) and (Chandler et al., 2016)) compared to those

assigned to the surrounding layers. More details about the values assigned to these

inclusions can be found in Figure 7.8.

7.4.2 Damage distribution, crack patterns and material strength

In this section, the results in terms of distribution of the damage parameter s are

discussed for homogeneous and layered models. These results can be observed in

Figure 7.9: in the homogeneous specimens, damage is symmetric and homogeneously

distributed, with a higher damage in the centre of the specimen: it is worth noting

that the biggest damage is found approximately at the same point where crack is as-

sumed to begin. For the specimen with layered configuration it can be observed that

the distribution of the damage follows the orientation of the layers, and in particu-
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lar damage tends to spread quicker through the layers with lower value of fracture

energy; this is a trivial result, but it is important to highlight as it shows that the

numerical model can sensibly and realistically capture the e↵ect of variations of me-

chanical properties in the domain . For samples D and E, the damage parameter gets

lower values in those areas with lower G, as in the previous examples; however, the

presence of harder inclusions introduces areas where the damage gets closer to unity.

Figure 7.8: Samples simplified layered structure, with specified values of G for each subdo-
main.
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Figure 7.9: Damage distribution over the homogeneous (left) and layered (right) models of
samples A (top), B, C, D and E (bottom).

129



These di↵erent distributions of damage through the domains influence the

shape of the crack patterns obtained in the homogeneous and layered models. Figure

7.10 shows all the crack paths obtained for all the five samples modelled with both

configurations. With the only exception of sample A, where the two crack patterns

obtained with the two di↵erent models are very similar, in all the other samples a

clear di↵erence between patterns can be observed. Cracks obtained with the layered

models are more tortuous, multiple crack are present and, especially for samples

B and E, a more evident similarity with the experimental results. In addition, it

must be highlighted that in samples D and E the biggest deviation it is observed

in correspondence of the zones where small hard inclusions are modelled (as cracks

try to spread in the area with lower G but at the sime time can not go through the

inclusions themselves), proving that both layered nature of material and spatially-

variable heterogeneities are factors that influence the direction and extent of cracks.

Figure 7.10: Crack paths for the homogeneous (top) and layered (middle) numerical models
and comparison with the experimental (bottom) crack pattern of all the five samples.

Stress - Strain plot for sample A can be found in Figure 7.11: it can be

observed that the homogeneous model can predict with good approximation the

final value of material resistance but the ultimate strain is underestimated and it

shows a sti↵ness significantly higher that the experimental measurements: the curve

obtained with the layered model provides a higher value of material resistance and
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overestimates the ultimate strain, but is shows a sti↵ness significantly closer to the

one showed by the experimental data. Stress - Strain plots for sample B are shown

in Figure 7.12: both the homogeneous and the layered models show a higher sti↵ness

compared to the experimental results, even if the final value of material resistance

gets closer when the layered model is considered. Therefore for this example a nei-

ther the homogeneous nor the layered models are capable of estimating the correct

material sti↵ness. For sample C, interesting is the trend obtained in the Stress -

Strain plot shown in Figure 7.13: while, in comparison with the experimental curve,

the plot obtained from the homogeneous model show an overestimation of the final

material resistance and sti↵ness, the curve obtained with the layered model shows

a value of maximum tensile strength closer to the experimental one and a gradual

decrease of the sti↵ness, leading the numerical curve closer to the experimental one.

Figure 7.14 shows the Stress - Strain plots for sample D. In this case, the layered

model provides a curve closer to the experimental results than the one obtained

with the homogeneous model, in particular in terms of sti↵ness. For sample E, de-

spite the layered model provides a crack pattern closer to the experimental results

if compared to the crack path from the homogeneous model, the Stress - Strain

plot of Figure 7.15 shows that the layered model cannot realistically reproduce the

experimental trend, which is however better captured by the homogeneous one.

The results presented in Figures 7.11 to 7.15 are obtained by simply assigning dif-

ferent values of G to each layer; this scenario is still not quite close to the real one,

but it shows how the model can capture the e↵ect of variations in the values of G.

Figure 7.11: Stress - strain plots of the homogeneous and layered models and results obtained
from experimental investigations on sample A.
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Figure 7.12: Stress - strain plots of the homogeneous and layered models and results obtained
from experimental investigations on sample B.

Figure 7.13: Stress - strain plots of the homogeneous and layered models and results obtained
from experimental investigations on sample C.
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Figure 7.14: Stress - strain plots of the homogeneous and layered models and results obtained
from experimental investigations on sample D.

Figure 7.15: Stress - strain plots of the homogeneous and layered models and results obtained
from experimental investigations on sample E.

7.5 Numerical simulations of heterogeneous shale rocks:

stochastic approach applied to sample A

In the previous paragraph all the 5 samples have been numerically studied, consid-

ering both homogeneous and layered configurations by assigning di↵erent values of
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fracture energy G to each of the modelled domains. It has been observed that the

way a problem is modelled significantly a↵ects the results in terms of distribution of

damage, crack pattern, material strength prediction and material sti↵ness. Further-

more, it has been observed that capturing the exact distribution of heterogeneity is

not an easy task, as it would require very sophisticated analyses, such as chemical

investigations or imaging processing techniques (Sun and Li, 2015).For this reason,

in the following paragraph the probabilistic approach described in the methodology

section is applied to the sample A.

The geometry, boundary and loading conditions of sample A are shown in Figure

7.16. The sample is discretised using triangular elements. The finite element mesh

with size 2 mm consists of 1189 triangular elements and 551 nodes that is also shown

in Figure 7.16. Initially, the same mesh is used for the finite element and stochastic

discretisation. Thickness of the damage zone and morphology of cracks are signifi-

Figure 7.16: Geometry, boundary and loading conditions of the rock sample and two-
dimensional finite element mesh discretisation.

cantly influenced by the value of the ". A better approximation for crack patterns

would be achieved with the smaller value of the epsilon. However, this would lead

to a smaller mesh size and high computational costs (Amor et al., 2009; Bourdin

et al., 2014). For identifying the value of the " recommendations of Lancioni and

Royer-Carfagni (2009) and Bazant and Planas (1997) are followed. Based on the

experimental observations, the value of " should be approximately 2 to 3 times the

size of constituent grains, and for this case-study it is selected a value of " of 2 mm:

shale rocks are made of constituents with di↵erent scales, and an average size of

constituents in the range 0.2 - 1mm is considered (Na et al., 2017)

In this study, a displacement-controlled condition was implemented. A distributed

displacement with a rate of 0.0005 mm/step over length equal to 2 mm at above

and below of the disc is applied. The residual sti↵ness k
"

is set equal to 0.01, to be
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one order of magnitude smaller than the finite element mesh size after refinement.

Fracture energy is initially selected to be that property, with mean value of 2.5 ·10�2

N/mm and standard deviation equal to 0.1 · 10�3, 0.5 · 10�3 and 1 · 10�3. This value

for fracture energy has been calculated from experiments following basic principles

of fracture mechanics, given the geometry, the loading conditions and the modulus

of elasticity. The three di↵erent standard deviations have been selected in order to

study the e↵ect of the degree of heterogeneity on the material response.

7.5.1 Numerical results

Spatial variation of fracture energy G is described by both Gaussian (KL expansion)

and non-Gaussian (Weibull) distributions. Figure 7.17 shows a realisation of this

property sampled according to the Weibull distribution and randomly distributed

over the spatial domain. The crack path obtained for a model with this specific

realisation of the fracture energy is shown in Figure 7.18 and is compared with

the crack path obtained from the homogeneous model and with the crack obtained

experimentally. It is observed that crack path obtained from the model considering

a heterogeneous material property shows a more tortuous pattern, as crack tends

to propagate towards zones of less resistance but, for this example, cracks obtained

with both homogeneous and one of the heterogeneous models realistically reproduce

the experimental pattern.

Figure 7.17: A realisation of the randomly distributed fracture energy in the cylindrical
disc.
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Figure 7.18: Comparison between crack paths achieved with homogeneous, one of the het-
erogeneous models and experiment.

Figure 7.19 shows a quick comparison for this case study highlighting the

importance of calculating a suitable reduced order model reproducing the spatially-

distributed heterogeneity. In fact, with a reduced-order stochastic mesh a crack

path almost identical to the one obtained with the initial stochastic mesh is ob-

tained, which is not the case if a too coarse stochastic mesh is used.

The first row of Figure 7.19 shows three di↵erent RF meshes: the original RF mesh

(left), the correct reduced-order RF mesh (middle) and a too big RF mesh (right).

The second row of Figure 7.19 shows the same distribution of G on the three RF

meshes with three di↵erent sizes. The distribution of the optimal RF mesh must be

capable to capture with su�cient accuracy the distribution of G showed in the orig-

inal RF mesh. The last two rows of Figure 7.19 show the e↵ect of the three di↵erent

RF meshes on a FE mesh of constant size: despite small di↵erences between some of

the element for the first two meshes, the final crack paths are identical, with only a

very small di↵erence next to the loading points, while the crack path obtained with

the coarse RF mesh provides a crack path of a completely di↵erent shape.

In Figure 7.20 the evolution of the damage state of the body for both homogeneous

and heterogeneous models can be observed. It shows that heterogeneity causes a

random distribution of local damage zones in the domain, which significantly a↵ects

the mechanical performance of the body. Especially during the last steps of the sim-

ulation, it is clear how heterogeneity creates zones of weakness (low values of s) that

will introduce that tortuous patterns observed in the crack path. These zones of

weakness are not visible for the homogeneous model, where damage is concentrated

only in correspondence of the loading points. Stochastic response of the fracturing

sample is computed using MC simulations.

In Figures 7.21 and 7.22, the mean value and standard deviation of the tensile

strength of a set of specimens modelled using a Weibull distribution are plotted as
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a function of the number of MC simulations, which show that the statistical con-

vergence is achieved after only 65 simulations.

Figure 7.19: Comparison between original stochastic mesh (left column), reduced-order
stochastic mesh with correct size (central column) and excessive dimension (right column).
The dimension of the reduced-order stochastic mesh is related to the size of its neighbour-
hood. With a very small neighbourhood size, the size of the mesh increases, leading to a
loss of information of the stochastic field. This causes the predicted crack path to be signif-
icantly di↵erent from the original one. With an adequate dimension of the neighbourhood,
crack path is still very close to the initial one.

In Figure 7.23 all the stress-strain curves resulted from MC simulations asso-

ciated to di↵erent random realisations of fracture energy sampled using the Weibull

distribution together with their mean curve are plotted. The tensile strength is

considered as the maximum value of stress, which occur at the centre of the disc,

obtained through experiment and numerical simulations.
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Figure 7.20: Evolution of damage state in the disc for homogeneous (left) and one of the
heterogeneous models with unit standard deviation (right).
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Figure 7.21: Brazilian disc test: Convergence of calculated mean value of tensile strength
from simulations and comparison with tensile strength obtained from experiment for unit
standard deviation.

Figure 7.22: Brazilian disc test: E↵ect of the number of MC simulation samples on the
standard deviation of the tensile strength for unit standard deviation. Standard deviation’s
trend gets stable after about 65 simulations.
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Figure 7.23: Brazilian disc test: stress-strain curves for 100 simulations and mean Stress-
Strain curve.

Figure 7.24 compares stress-strain curves obtained from experimental test

and numerical modelling considering simulations with both homogeneous and het-

erogeneous models. It is noticeable that the maximum tensile strength calculated

from the stochastic based modelling is not very di↵erent from the one calculated by

the homogeneous based modelling. The stochastic based modelling result shows a

notably better agreement with experimental measurements, in particular in terms

of ultimate strain reached before material failure. The physical interpretation of

the di↵erence between strains at failure is related to the increase of deformability

for heterogeneous models, due to the higher roughness and tortuousness of cracks

compared to those obtained with the homogeneous model. Furthermore, it can be

observed how the local damages described above lead to a piecewise linear behaviour,

in which material sti↵ness progressively decreases before failure, which still has brit-

tle nature. The homogeneous model is not capable of reproducing this aspect of the

sample behaviour until brittle failure occurs.

Figure 7.25 shows the stress-strain curve for the three degrees of standard deviation

considered in this study with values of fracture energy modelled by means of Weibull

distribution and KL expansion method. Despite the di↵erent values of standard de-

viation, it can be observed, for both cases and especially for the first phases of the

simulations, that the simulated behaviours are very close, and di↵er only in the last

phase, closer to failure. A higher standard deviation, i.e., index of a higher degree of

heterogeneity, leads to a curve closer to the experimental plot. In both figures can
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be seen that for higher standard deviation the stress-strain plot gets closer to the

experimental results but, overall, the results obtained with the Weibull distribution

are closer to those obtained with the KL expansion.

Figure 7.24: Brazilian disc test: Stress-Strain curves, comparison between experimental
data and numerical results from homogeneous and heterogeneous models for unit standard
deviation.

In order to study the e↵ect of cross-correlation between random parameters

on the behaviour of fracturing body, both fracture energy and modulus of elasticity

are selected as random variables. A mean value of 29.1 GPa and standard deviation

of 0.5 was selected for the modulus of elasticity. Three di↵erent degrees of cross-

correlation are analysed, for correlation coe�cient equal to 1, 0.5 and 0, representing

full, partial and absence of correlation, respectively.

Figures 7.26 and 7.27 shows the stress - strain curve for the three di↵erent scenarios

and the mean curve obtained from the 100 Monte Carlo simulations with values

of fracture energy modelled by means of Weibull distribution and KL expansion

method. Figure 7.28 compares the three mean curves with the curve obtained ex-

perimentally and with the homogeneous model, from where it can be seen that a

full correlation moves the curve from the experimental plot, while a lower degree of

correlation leads to more realistic results in terms of material strength. Figure 7.29

shows how convergence of the results is achieved after 60 analyses using both meth-

ods; however, it is worth noticing how, when a satisfactory convergence is reached,

the mean values and standard deviations have values slightly closer to the experi-
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mental results when the Weibull distribution is used for modelling of heterogeneity

in comparison to the KL expansion method.

Figure 7.25: Brazilian disc test: stress-strain curves, comparison between experimental data
and numerical results from homogeneous and heterogeneous models with di↵erent standard
deviations. Values of fracture energy have been sampled by means of the Weibull distribution
(top) and the KL expansion method (bottom).
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Figure 7.26: Brazilian disc test: stress - strain plots obtained from MC simulation for three
di↵erent degrees of correlation. No correlation (top), partial correlation (middle) and full
correlation (bottom) between fracture energy and modulus of elasticity modelled by means
of the Weibull distribution.
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Figure 7.27: Brazilian disc test: stress - strain plots obtained from MC simulation for three
di↵erent degrees of correlation. No correlation (top), partial correlation (middle) and full
correlation (bottom) between fracture energy and modulus of elasticity modelled by means
of the KL expansion method.
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Figure 7.28: Brazilian disc test: Comparison between the stress - strain curves obtained
from MC simulation for three di↵erent degrees of correlation. Values of fracture energy and
modulus of elasticity sampled by means of the Weibull distribution (top) and KL expansion
method (bottom).
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Figure 7.29: Brazilian disc test: convergence of the mean value and standard deviation
obtained from simulations with (top) full, (middle) partial and (bottom) no correlation,
between fracture energy and modulus of elasticity sampled with Weibull distribution (left)
and KL expansion method (right).
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It is worth highlighting the e↵ect of dimensionality reduction and the overall

time saved. Table 7.5 provides all the required information to appreciate the overall

reduction in the time needed for sampling and, therefore, for the whole analysis. For

a RF mesh of size 1mm the CPU needed for the generation of 1 sample is of 55.4

seconds, while for a reduced RF mesh of size 2.5 mm the CPU drops to 3.6 seconds.

Considering that has been observed that convergence of results has been achieved

after an average of 60 simulations, the overall reduction in terms of computational

cost can be estimated to be approximately 52 minutes.

Table 7.5: Reduction of computational time needed for sampling due to the application of
MOR technique.

RF RF MOR MOR FE FE Sampling Sampling

n. el mesh size n. el mesh size n. el mesh size time RF time MOR

3452 1 mm 768 2.5 mm 582 3 mm 55.4 s 3.6 s

7.6 Influence of bedding direction of shale rocks

7.6.1 Layers with fixed values of modulus of elasticity and fracture

energy

Investigating the influence of the rock bedding orientation on propagation of frac-

tures allows the determination of the optimal angle at which cracks will grow in a

desired length and direction. In fact, as shown in paragraph 7.4, the anisotropic

nature of the shale rock creates huge di↵erences in results when di↵erent bedding

plane directions are considered (Morgan et al., 2014).

In this section, sample A is modelled considering di↵erent orientations of the layers.

Figure 7.30 shows four distinct models labelled a-d that di↵er by the angle between

the direction of loading and the orientation of the bedding planes, which is at 0, 30,

60, and 90 degrees from the vertical axis. Di↵erent values of material properties are

assigned to each layer and they are all summarised in Table 7.6. These values have

been chosen in a way that their calculated mean value is equal to the single value

obtained by the experimental measurements. While in pargraph 7.4 only G varied

in each layer, here each domain of the models created here has di↵erent values of

E, ⌫ and G.
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Figure 7.30: Bedding directions for Brazilian disc: bedding at (left to right, top to bottom)
90, 60, 30 and 0 degrees.

Table 7.6: Input mechanical properties for layered material models.

Layer E (GPa) ⌫ (-) G (N/mm)

A 25.1 0.22 3.0 · 10�2

B 28.1 0.24 2.7 · 10�2

C 31.1 0.26 2.4 · 10�2

D 34.1 0.28 2.1 · 10�2

Crack paths for each layered model and comparison with damage state over

the specimen are shown in Figure 7.31. Crack paths are influenced in accordance

to direction of bedding layers. The values for damage parameter are di↵erent in

di↵erent layers, and bedding direction influences this damage localisation. In fact,

variability of mechanical properties and damage state, which is not uniformly dis-

tributed over the specimen, influence the pattern of the cracks.

Figure 7.32 shows how e↵ectively tensile strength is the function of bedding an-

gle, and the ’u-shape’ graph is in agreement with conclusions in Morgan et al.

(2014), where the minimum value of tensile strength is found for bedding inclina-

tions between 30 and 60 degrees. However, it is quite uncommon, for specimens with

comparable geometrical and mechanical properties, to find a higher value of tensile

strength for a specimen with vertical orientation of layers: Abbas et al. (2015), for

example, reported result of indirect tensile tests on cap rock shale samples. Tests
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are conducted for load direction both perpendicular and parallel with bedding. For

specimens with same geometry, density and collected from sites with same depths,

some of the sample in which loading is applied in parallel direction with respect to

the bedding. However, this seems to be one of the very few cases in literature where

this phenomenon happens.

Figure 7.33, taken from Chong et al. (2017), shows what should be the expected vari-

ation of tensile strength for di↵erent anisotropy angles: the highest value is expected

for horizontal layers, and decreases as the angle increases. The minimum is expected

to be found for specimens loaded in the same direction of the bedding planes, unless

shear e↵ect between layers is found, which makes the specimens weaker for angles

between 20-30 and 50-60 degrees.

Results reported in Figures 7.31 and 7.32 don’t reproduce fully the typical behaviour

reported in Figure 7.33, especially in terms of tensile strength, as they are relative

to only one possible combination of values of E, ⌫ and G for each bedding orienta-

tion. In order to further verify the capability of the model to capture the e↵ect of

the anisotropic nature of shale, further analyses have been performed for di↵erent

bedding orientations and di↵erent values of mechanical properties for each layer.

Tables 7.7, 7.8 and 7.9 summarise three new scenarios considered for new simula-

tions, where to each layer a new combination of values for E, ⌫ and G are considered.

Figure 7.34 reports all the crack patterns obtained with the three di↵erent scenarios

for all the bedding directions considered in this work, while Figure 7.35 summarises

all the values of tensile strength for all the scenarios (including also the one shown in

Figure 7.32) together with their mean curve. The average maximum tensile strength

is observed for loading perpendicular to the bedding direction, and it decreases with

the bedding direction angle, consistently with the observation of Chong et al. (2017).

It must be however mentioned that the values of the curve of Figure 7.35 are cal-

culated as the mean value obtained from each scenario. For a bedding angle of

60 degree the scatter of values is noticeably big; this highlights how this imple-

mentation needs to be improved and that, for example, the inclusion of the e↵ect

of shear strength can improve the quality of the results and overcome this drawback.
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Figure 7.31: Crack paths and damage state for layered materials: bedding at (top to bottom)
90, 60, 30 and 0 degrees.
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Figure 7.32: Tensile strength variation as function of bedding directions.

Figure 7.33: Typical behaviour observed in layered rocks tested using the Brazilian disc test
(Chong et al., 2017): the final value of tensile strength and the shape of the crack path vary
according to the anisotropy angle and the shear strength.
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Table 7.7: Input mechanical properties for layered material models for Scenario 1.

Layer E (GPa) ⌫ (-) G (N/mm)

A 30.1 0.26 2.6 · 10�2

B 28.1 0.24 2.4 · 10�2

C 26.1 0.22 2.2 · 10�2

D 32.1 0.28 3.0 · 10�2

Table 7.8: Input mechanical properties for layered material models for Scenario 2.

Layer E (GPa) ⌫ (-) G (N/mm)

A 30.1 0.26 2.6 · 10�2

B 32.1 0.28 3.0 · 10�2

C 26.1 0.22 2.2 · 10�2

D 28.1 0.24 2.4 · 10�2

Table 7.9: Input mechanical properties for layered material models for Scenario 3.

Layer E (GPa) ⌫ (-) G (N/mm)

A 31.1 0.26 2.4 · 10�2

B 34.1 0.28 2.1 · 10�2

C 25.1 0.22 3.0 · 10�2

D 28.1 0.24 2.7 · 10�2

Figure 7.34: Crack patterns obtained for the new three sets of simulations performed on the
simplified layered models.
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Figure 7.35: Values of tensile strength obtained, for each scenario, for varying values of
bedding angle.

7.6.2 Preliminary results of layered specimens with spatial vari-

ability approach

In this paragraph the heterogeneity of the specimen is considered in a way, which

can be seen as the combination of the two methods described above. In order to

consider the layered nature of the material, the stochastic approach explained in the

previous paragraph is applied considering correlation length related to the thickness

of each layer. This criterion has been applied as the correlation length defines how

much the variability is spatially distributed and, therefore, if properly applied for

the case of layered materials, can provide a realistic picture of the layers forming

the samples. For this example the results obtained considering a correlation length

of about 10 mm and standard deviation of 10 % are presented.

Figure 7.36 shows the crack paths achieved through numerical simulation performed

to demonstrate the e↵ects of bedding directions on the direction of crack propaga-

tion. In these models fracture energy changes across the layers, resembling a het-

erogeneous layered formation. Figure 7.37 compares the experimental crack pattern

from specimen A with the numerical crack pattern obtained for a numerical model

with bedding inclination similar to specimen A. The same shape of the crack pat-

terns can be observed. Stress-Strain curves of numerical results compared with the

experimental measurement plotted in Figure 7.38 show a good agreement of the re-

sults. However, the nonlinear nature on the material (in terms of gradual reduction

of the slope of the curve) is not as well captured as when heterogeneity is included
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by considering pure spatial variability as in section 7.4.

Figure 7.36: Numerical crack patterns obtained with simulations of layered materials with
di↵erent layers inclinations with respect to horizontal: 0 degrees (top left), 30 degrees (top
right), 45 degrees (middle left), 60 degrees (middle right), 70 degrees (bottom left), 90
degrees (bottom right).

Figure 7.37: Numerical crack path obtained with simulation of layered material (67 degrees)
and comparison with the experimental crack pattern.
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Figure 7.38: Stress-strain cures of experimental data and numerical simulation with layers
inclined of 67 degrees.

7.7 Pure mode I fracture: the Dog-Bone experiment

The second case study analysed in this chapter is the case study of the dog bone

specimen analysed in the chapter 3. This example has been studied experimen-

tally by Van Vliet (2000). Information about the specimen geometry and the FE

discretisation are provided in section 3.5. The problem is analysed under plane

strain conditions, as the thickness (z-direction) of the problem is predominant on

the other two directions The spatial fluctuation of the random parameters is de-

scribed by Weibull distribution; furthermore the dimensionality reduction and the

dual mesh technique are both employed for this case study.

A value of 0.4 was selected for the length scale " for this case-study. The mean value

for fracture energy, selected from literature (Van Vliet, 2000), is equal to 0.95 · 10�1

N/mm, and four di↵erent values for the standard deviation, including 0.1 · 10�2,

0.5 · 10�2, 1 · 10�2 and 5 · 10�2, are considered.Two di↵erent values of correlation

length (l
c

= 1.2 and 15 mm) are used, corresponding to stochastic field of low and

strong spatial autocorrelation.

In order to guarantee mesh convergence, the mesh refinement procedure for those

elements subjected to high damage is incorporated for this example as well. The

ratio between the correlation length of the random field and " is kept in the range

suggested by previous contributions (Yang and Xu, 2008; Vu and Stewart, 2005).

The size of the refined finite element mesh is between one half and one quarter of
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the minimum correlation length selected for discretising the random fields (Yang

and Xu, 2008).

The dimensionality reduction technique described in Chapter 6 and applied to the

first case study, is also applied to this example. Figure 7.39 shows how, for a Weibull

distributed stochastic field with standard deviation 0.5 · 10�2 and correlation length

of 1.2 mm, the original and reduced order RF meshes provide two spatial distribu-

tions of G that, when mapped into the FE mesh, are almost identical.

Figure 7.39: Dog bone specimen: application of the dimensionality reduction technique for
the generation of a sample having standard deviation 0.5 ·10�2 and correlation length of 1.2
mm: the size of the RF mesh has been increased from 3 mm to 5.4 mm (with a reduction
in the number of elements from 898 to 473), leading to a considerable reduction in the
computational cost needed for the generation of the desired sample.

Sample functions of a Weibull distributed stochastic field for standard devi-

ation 5 · 10�2 and l
c

equal to 1.2 and 15 mm are shown in Figure 7.40. It is clear

how a higher degree of heterogeneity is given not only by a higher standard devi-

ation in input, but also by a lower correlation length, as observed in the study of

Georgioudakis et al. (2014).
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Figure 7.40: Dog bone specimen: randomly selected realisations for standard deviation
5 · 10�2 and correlation length of 1.2 (left) and 15 (rigth) mm.

Figure 7.41 shows the crack patterns obtained for four realisations with two

di↵erent degrees of standard deviation (0.1 · 10�2 and 5 · 10�2) and two di↵erent

correlation lengths (1.2 and 15 mm). It is worth noticing that in the case with

higher spatial variability the crack paths show an extremely tortuous and deviated

pattern compared to the others. Together with the final crack patterns, in Figure

7.42 also contour plots for damage parameter for di↵erent realisations are shown for

the time step immediately before the failure.

Figure 7.41: Dog bone specimen: crack paths for randomly selected realization and for
di↵erent values of correlation length and standard deviation. (top left) lc = 1.2, Std Dev
0.1 · 10�2 ; (top right) lc = 15, Std Dev 0.1 · 10�2; (bottom left) lc = 1.2, Std Dev 5 · 10�2;
(bottom right) lc = 15, Std Dev 5 · 10�2.
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Figure 7.42: Dog bone specimen: damage distribution over the specimen for randomly
selected realisation and for di↵erent values of correlation length and standard deviation.
(top left) lc = 1.2, Std Dev 0.1 · 10�2; (top right) lc = 15, Std Dev 0.1 · 10�2; (bottom left)
lc = 1.2, Std Dev 5 · 10�2; (bottom right) lc = 15, Std Dev 5 · 10�2.

The response variability is computed using MC simulation with sample size

equal to 100. The statistical convergence achieved within this number for simula-

tions with l
c

= 1.2 mm and the standard deviation equal to 5 · 10�2, is shown in

Figure 7.43.

Mean Load-Displacement curves obtained from the MC method corresponding to

four di↵erent combined values of correlation length (lc = 1.2 and 15 mm) and stan-

dard deviation (0.1 · 10�2 and 5 · 10�2) are plotted in Figure 7.44. Comparison of

the results shows that, compared to the mean curve obtained for analyses with high

correlation length and low standard deviation, either the increase of standard devi-

ation of the reduction of correlation length does not lead to a significant variation

in the response of the material. However, for both low values of correlation length

and high values of standard deviation (which represents the scenario of a highly

heterogeneous material) a di↵erent mean curve is obtained, especially regarding the

value of ultimate deformation on the elastic range.

Figure 7.45 shows di↵erent plots for the same value of correlation length (l
c

= 1.2

mm) and the four di↵erent values of standard deviation. Again, di↵erences in the

responses of di↵erent realisations are appreciable only for high standard deviations

despite the low correlation length.

Figure 7.46 shows realisation for the same simulation of both fracture energy and
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modulus of elasticity when di↵erent degrees of cross correlation between variables

are considered (0.95, 0.5 and 0). The amount of variation for the fracture energy

and modulus of elasticity is the same for the case with full correlation, while they

vary randomly when cross correlation is equal to zero. Crack patterns are shown in

Figure 7.47 together with the mesh topology after refinement.

Figure 7.43: Dog bone specimen: convergence for mean (top) and standard deviation (bot-
tom) of the peak load (stochastic fracture energy with standard deviation 5 · 10�2 and lc =
1.2).

The statistical convergence achieved within 100 MC simulations is illustrated

for the three di↵erent values of cross correlation in Figure 7.48 where the mean value

and standard deviation of the peak load are plotted. Convergence is achieved quicker

when partial correlation between variables is considered.

Figure 7.49 shows the load - displacement curves obtained for di↵erent simulations

with variable fracture energy and modulus of elasticity. Comparison with experi-
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mental results is provided. For each case, a small di↵erent behaviour for the post

peak part of the curve is observed. However, always for an intermediate value of

cross correlation the results are slightly closer to the experimental measurements.

This conclusion is consistent with the results obtained by Carmeliet and Hens (1994).

Figure 7.44: Dog bone specimen: load - displacements curves for di↵erent values of corre-
lation length and standard deviation. (model a) lc = 1.2, Std Dev 0.1 · 10�2; (model b) lc
= 15, Std Dev 0.1 · 10�2; (model c) lc = 1.2, Std Dev 5 · 10�2; (model d) lc = 15, Std Dev
5 · 10�2.

Figure 7.45: Dog bone specimen: load - displacements curves for lc = 1.2 and di↵erent
values of standard deviation: (model a) Std Dev 0.5 · 10�2; (model b) Std Dev 1 · 10�2;
(model c) Std Dev 5 · 10�2.
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Figure 7.46: Dog bone specimen: randomly selected realisations for fracture energy and
modulus of elasticity in case of full correlation (top) and no correlation (bottom) between
variables.

Figure 7.47: Dog bone specimen: crack paths for randomly selected realisation and for
di↵erent values of cross correlation between fracture energy and modulus of elasticity. (left)
Fully correlated variables; (right) uncorrelated variables.
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Figure 7.48: Dog bone specimen: convergence for mean (left) and standard deviation (right)
of the peak load for di↵erent degrees of cross correlation. (top) Fully correlated, (middle)
partially correlated and (bottom) uncorrelated variables.

Figure 7.49: Load - displacements plot for the dog bone specimen for realisation with
di↵erent values of cross-correlation.
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Also for this example a summative table (Table 7.10) showing the e↵ect of the

dimensionality reduction on the computational cost needed for sampling has been

provided. If for the shale specimen the reduction in computational cost has been

significative, for this example the di↵erence is still appreciable but not as e↵ective

as in the previous example. In fact, considering that the reduction in computational

time reduces from 5.2 to 2.0 seconds for the generation of one single sample, if

it is considered that convergence of results is achieved approximately within 70

simulations, the overall reduction in computational cost is 225 seconds, almost 4

minutes. This lower e↵ectiveness of this MOR technique for this example may show

that this method works better for materials which have finer constituents such as

shale rocks.

Table 7.10: Reduction of computational time needed for sampling due to the application of
MOR technique to the DogBone example.

RF RF MOR MOR FE FE Sampling Sampling

n. el mesh size n. el mesh size n. el mesh size time RF time MOR

1116 3 mm 346 5.4 mm 194 7.5 mm 5.2 s 2.0 s

7.8 Mixed mode I-II fracture: the Four-Point bending

beam and the e↵ect of correlation length

The third case study considered in this chapter is another of the examples analysed

in the chapter where smeared and discrete approaches for modelling the propaga-

tion of cracks have been compared. The example is the Four-Point Bending SENS

Beam. For this example, Yang and Xu (2008) implemented a stochastic approach to

include heterogeneity in a numerical framework which considers cohesive elements

for modelling of crack propagation. This case study has been chosen because the

implementation introduced to realistically reproduce mixed-mode crack opening by

di↵erentiating the mechanical response in tension and compression and the imple-

mentation used to consider the e↵ect of heterogeneity can be both considered in one

example.

In this case study, standard deviation for fracture energy G in input is kept con-

stant, while the e↵ect of di↵erent correlation lengths on mechanical response and

crack path is analysed. Information about specimen geometry and finite element

discretisation are shown in detail in section 3.3. The mean value for fracture en-

ergy, selected from Yang and Xu (2008), is equal to 1.5 · 10�1 N/mm, its standard

deviation is equal to 5%, and two di↵erent values of correlation length l
c

equal to

163



1.2 and 120 mm are considered (Georgioudakis et al., 2014).

In order to guarantee mesh objectivity, the mesh refinement procedure for those

elements subjected to high damage (low values for s) is incorporated.

An example of the spatial distribution of two stochastic fields sampled with the two

di↵erent correlation lengths is provided in Figure 7.50. Also for this example, the

e↵ect of the correlation length on the spatial distribution of the random fracture en-

ergy is noticeable. For l
c

= 1.2 the values for G are more scattered, while values for

G in case of l
c

= 120 are more homogeneously distributed. It has to be mentioned

that these represent a range of minimum and maximum values that can be used to

clearly show the e↵ect of variation of values for l
c

, but in reality values of 120 mm

are not usually considered for concrete.

Figure 7.51 shows the crack pattern obtained with the homogeneous model. This

crack pattern is used as reference to compare crack patterns obtained with the mod-

els in which heterogeneity has been included. In fact, the crack pattern of Figure

7.51 is very smooth and without sharp deviations, which is what is expected to find

in fractured concrete.

Figure 7.50: Fracture energy distribution over the model: low (left) and high (right) corre-
lation length.

Figure 7.51: Damage zone obtained with analysis performed with the homogeneous model.
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Figure 7.52 shows the crack paths obtained from 6 of the models in which

l
c

=120. The crack patterns obtained di↵er the one from the other and are slightly

more tortuous if compared to the crack path of Figure 7.51, but with small appre-

ciable di↵erences in terms of shape and extent. Fig. 7.53, on the other hand, shows

four eight di↵erent crack patterns obtained from 8 of the 150 simulations run for

the case with l
c

= 1.2. The crack patterns obtained have more tortuous nature if

compared to the one shown in Figures 7.51 and 7.52. Fractures obtained vary in

shape, inclination and curvature.

A comparison between crack patterns obtained with the homogeneous model, one

of the heterogeneous with lower correlation length and the range of cracks obtained

experimentally is provided on the left of Figure 7.54. Here is evident how the e↵ect

of heterogeneity for this case study provides a more realistic picture in terms of

direction and extent of cracks. Furthermore, on the right of Figure 7.54 a small

branch (for some of the crack patterns obtained) when low correlation length is con-

sidered can be observed. This is an interesting phenomenon to highlight. In fact, in

literature crack branching is recognised to happen for problems in which a dynamic

load is applied to the system, while in the simulations carried in this study load

is applied in quasi-static conditions. It is in fact well recognised that the classical

Gri�th theory does not include the possibility of crack branching for problems with

load applied in quasi-static conditions, but it is also known that the application

of �-Convergence theory to approximate fractures by means of scalar fields makes

the variational model capable of reproducing crack branching phenomena (Nguyen

et al., 2015). This, in combination with the inclusion of heterogeneity in the model,

generates two branches. The phenomenon can be indeed attributed to the possibil-

ity that crack advancement criterion can be satisfied at the same step of analysis

at two di↵erent points (due to the presence of weak local zones). For small lengths,

therefore, crack may advance in two di↵erent paths, but the final crack obtained

has no branches.

In Figure 7.55 the load - CMSD (Crack Mouth Slide Displacements) curve for homo-

geneous and heterogeneous models are plotted and compared to the experimental

results. The curve with the highest value of force recorded is the one calculated

from the homogeneous model. For the two curves obtained with the MCS method

it can be observed that for both of them a lower value of peak load is recorded and,

despite the di↵erent values of l
c

, the overall average peak load is approximately the

same. This behaviour is in accordance with what has been reported by Yang et al.

(2009), where for the same standard deviation and di↵erent values of l
c

haven’t been

recorded significant di↵erences in terms of peak load.
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Figure 7.52: Damage zone obtained with 6 of the heterogeneous models with a high corre-
lation length.

Figure 7.53: Damage zone obtained with 8 of the heterogeneous models with a low correla-
tion length.
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Figure 7.54: Comparison between crack paths obtained with homogeneous and one of the
heterogeneous models and final comparison with the experimental scatter (left). Crack
pattern obtained for one of the heterogeneous models with low correlation length: crack
branching phenomena are recorded, due to the high heterogeneity of the specimen (right).

However, as for the previous case study, it is worth noting that the model

seems to be more capable of realistically reproducing the behaviour recorded by

the experimental measurements in the elastic region of the plot; further discussions

about the mechanical response in peak and post-peak phase are needed after more

analyses with di↵erent values of standard deviation and correlation length.

For the homogeneous model, it can be observed that the peak value is realistically

estimated, but the maximum elastic strains are overestimated. This behaviour is

slightly improved for l
c

= 1.2 mm, while is significantly improved for l
c

= 120 mm.

For what the post-peak behaviour is concerned, none of the three curves are capable

of fully reproduce this section. As for the previous example, this is related to the fact

that the variational model employed in this work and the formulation of the stored

energy function W are able to reproduce the behaviour of fully brittle materials,

while concrete is usually considered and quasi-brittle material. However, a slight

improvement can be observed is the curve obtained with l
c

= 1.2 mm.
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Figure 7.55: Load-CMSD curves: comparison with the experimental measurements between
curves obtained from the homogeneous model and the mean curve obtained from the MCS
analyses of the two heterogeneous models.

Also for this case convergence of the results has been studied and analysed

for the mean value of the peak load, as shown in Figure 7.56. It can be noted

that for l
c

= 120 acceptable convergence is achieved after 60 to 65 simulations.

Furthermore, for smaller correlation lengths (l
c

= 1.2 mm) in order to achieve an

acceptable convergence more simulations are required. The mean value of the peak

load stabilises after approximately 120 simulations. Again, this behaviour is the

same recorded by Yang et al. (2009): the authors showed that for the same standard

deviation and di↵erent l
c

, convergence of results is achieved faster for higher values

of l
c

.

In Figure 7.57 convergence of results in terms of variance of the peak load is reported.

It can be observed that, as expected, convergence is achieved faster for l
c

= 120 mm.

This response makes the methodology employed in this study capable to capture

the real mechanical behaviour of concrete. Again, this behaviour is consistent with

the results reported by Yang et al. (2009), where convergence is achieved faster for

higher values of l
c

.

For this example, convergence in terms of variance of the displacements recorded at

the loading point at the peak load is calculated and reported in Figure 7.58.

It can be observed that for both low and high values of l
c

convergence is achieved,

but for the case with l
c

= 120 convergence is achieved quicker, after approximately

20 simulations.
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Figure 7.56: Convergence of the mean value of the peak load for the heterogeneous models
with: (top) lc = 1.2 mm and lc = 120 mm (bottom).
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Figure 7.57: Convergence of the variance of the peak load for the heterogeneous models
with lc = 1.2 (top) and lc = 120 (bottom).
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Figure 7.58: Convergence of the variance value of the displacements at the loading point for
the heterogeneous models with lc = 1.2 (top) and lc = 120 (bottom) correlation.

Finally, also for this case study a summative table (Table 7.11) proving the

e↵ect of the dimensionality reduction on the computational cost needed for sam-

pling has been included. If for the shale specimen the reduction in computational

cost has been significative and for the dogbone specimen less important, for this

example the di↵erence is appreciable and e↵ective, but the overall absolute time

needed for dimensionality reduction is still high. The reduction in computational

time reduces from 921.3 to 393.1 seconds for the generation of one single sample,

which considering that convergence of results is achieved after 120 simulations, the

overall reduction in computational cost is approximately 17 hours. This result is a

significant improvement, but it should be noted that, however, for the reduced order
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RF mesh the total time needed for generation of 120 samples is of approximately

13 hours. This shows that the technique needs further improvements.

Table 7.11: Reduction of computational time needed for sampling due to the application of
MOR technique to the Four-Point bending shear beam example.

RF RF MOR MOR FE FE Sampling Sampling

n. el mesh size n. el mesh size n. el mesh size time RF time MOR

62288 3 mm 26834 5.8 mm 1256 40 mm 921.3 s 383.1 s
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Chapter 8

Conclusions and future work

8.1 Discussion of the results

The research conducted and discussed in this thesis aimed to develop novel numerical

and computational methodologies for modelling of crack propagation of heteroge-

neous materials. The main focus of this research has been in the development of

a computationally e�cient and reliable methodology able to realistically reproduce

the failure of spatially varying (concrete) and layered (shale rocks) quasi-brittle ma-

terials.

The first part of this work was dedicated to the study and comparison of di↵erent

methodologies for modelling of crack propagation. Two di↵erent numerical models

have been analysed and compared: the first, which employes a phase field model for

a smeared representation of fractures, and the second, which uses a discrete repre-

sentation of cracks. Using three di↵erent examples, selected in order to highlight the

capability of each of the two model in reproducing di↵erent failure modes, has been

observed that both frameworks provided good results in terms of both prediction of

crack paths and material resistance. Nevertheless, in order to make the model based

on the smeared approach fully capable of reproducing mixed-mode crack opening

conditions, a first implementation able to distinguish the mechanical responses be-

tween elements with positive and negative Jacobian, has been introduced. Thanks to

this first implementation, to the computational cost and due to the capability of the

method based on the smeared approach of automatically capturing the crack initia-

tion point, it has been decided to execute the incorporation of heterogeneity on this

numerical framework. However, it must be highlighted that this implementation, as

the results showed, needs further improvements, as the main crack is identified, but

some di↵erences between experimental and numerical results are found.
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After a review of the two most widely used approaches used for numerical mod-

elling of heterogeneities (multiscale modelling and stochastic approach), it has been

decided to develop a stochastic approach to estimate the values of mechanical prop-

erties able to incorporate the e↵ect of material heterogeneity in the phase field model

using probability functions. It has been also decided to develop a methodology based

on a non-Gaussian Weibull distribution, as it has been proved to be the distribu-

tion that most accurately describes the heterogeneities of brittle and quasi-brittle

materials. Both monovariate and bivariate distributions have been considered for

this study: fracture energy G has been selected as the mechanical property with

heterogeneous nature for the monovariate case, and modulus of elasticity E is also

considered for the bivariate. The e↵ect of correlation lengths has also been included

in order to consider the material length scale. Monte Carlo Simulation method has

been also used for the sample realisation and post-processing phases.

In order to reduce the computational e↵ort related to the generation of samples for

G and E, a non-linear Model Order Reduction technique has been also developed

and applied. This methodology, which takes into account the heterogeneity spatial

distribution, is capable of reproducing with very good accuracy an equivalent and

dimensionally reduced representation of the original random field, improving there-

fore the computational e�ciency of the overall algorithm.

The proposed methodologies have been applied to reproduce numerically the me-

chanical response of samples made of two di↵erent materials: shale rock and con-

crete. Also, di↵erent loading conditions have been tested. For shale rock, highly

heterogeneous and anisotropic material, before applying the developed methodol-

ogy, preliminary numerical analyses have been performed on five specimens tested

experimentally with Brazilian disc tests. These analyses tried to reproduce the ef-

fect of di↵erent bedding directions and materials inclusion on the values of material

resistance and on the crack patterns, by assigning di↵erent values of G to di↵erent

layered subdomains modelled numerically.

The stochastic methodology has been then applied to one of the five samples avail-

able experimentally: the numerical results, obtained including a sensitivity analysis

and therefore considering di↵erent values of standard deviation in input, showed an

excellent agreement with the experimental measurements, and, after a comparison

with results obtained using a Gaussian K-L approach for samples realisations, has

been proved that Weibull distribution allows a relatively quick convergence of results.

Furthermore, the dimensionality reduction technique allowed to reduce drastically

the computational e↵ort needed in sampling phase.

Two further strategies have been used to include more explicitly the material lami-

174



nar nature: (i) di↵erent values for mechanical properties have been assigned to each

layer of the numerical model and (ii) mechanical properties have been defined as

random fields with a correlation length equal to the thickness of the layers of the

numerical model. For the verification analysis di↵erent values of E, Poisson’s ratio ⌫

and G were given to each layer, and di↵erent bedding directions were also. Damage

has been found to localise between the interface of di↵erent layers and crack pat-

terns have shown tendency to move through the layers with lower toughness. The

maximum value of resistance was obtained for horizontal layers, while the minimum

was obtained for inclinations between 30 and 60 degrees.

The second and third examples are case studies which study the failure behaviour

of concrete in mode-I failure and mixed-mode failure. For both cases, can be again

observed that the application of the methodology developed in this research provides

reliable and realistic results. The e↵ect of di↵erent standard deviations and di↵er-

ent correlations lengths has also been analysed and has been proved that for higher

values of correlation length, convergence is achieved more quickly. Also, the dimen-

sionality reduction technique allowed for these case studies to reduce the overall

computational e↵ort. However, it should be noticed that the reduction in compu-

tational cost seems to be more e↵ective for materials with very fine constituents

(shale rocks), while for materials such as concrete with larger size constituents this

methodology would need to be further developed.

Some of the limitations highlighted in this thesis (especially in chapter 3) and re-

called in this chapter can find their resolution and extension (which create potential

development for possible future works) in methods such as XFEM and IGA. XFEM

can be used in order not to restrict damage evolution and propagation only to the

elements used to discretise the domain and to alleviate those issues related to insuf-

ficient mesh refinement. In fact, despite the mesh refinement technique included in

this work works e�ciently, the representation of crack can be improved. Observing

the shape of the fracture obtained for the homogeneous model, in fact, it seems that,

despite quite smooth, the crack pattern shows some mesh dependence that could

potentially find its resolution with the use of XFEM. IGA can be useful in sense

of accurateness of results and error minimisation: in fact, the use of k-refinement

in addition to the classical h- and p- refinements, would provide results with lower

values for error estimators. But in order to asses this aspect, it would be necessary

to have values for residuals available pre- and post-application of B-splines shape

functions typical of IGA.

The results discussed above have been obtained using a 2-dimensional numerical

framework. However, in order to be able to extrapolate these findings in a three-
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dimensional configuration a series of aspects should be considered:

- in terms of numerical modelling of crack propagation, it should be noted that, gen-

erally speaking, an increase in terms of computational cost would be recorded due

to obvious reasons such as higher dimension of sti↵ness matrices and higher number

of elements to be processed and refined when the crack propagation is identified;

- larger covariance matrix and sample vectors would also be identified, leading to a

further increase in computational cost for both sampling phase and dimensionality-

reduction phase;

- especially for examples similar to the last two, it must be identified an alternative

method for dimensionality reduction in order to optimise its use and don’t make it

unfeasible from the computational point of view;

- the layered nature of materials should be properly taken into account by observing

how bedding direction varies along the three principal directions.

8.2 Future work

The research conduced and reported in this thesis provides also a series of possible

future work. The following work is therefore recommended.

1. The developed methodology can be applied for modelling of heterogeneities in

the numerical framework for crack propagation based on the configurational

force method; however, it must be considered that the configurational force

method involves the motion of nodes forming the FE domain and, therefore, a

strategy for the estimation of the random mechanical properties of each node

with new positions must be included to keep the accuracy of the description

of the random fields.

2. Interface element zones can be introduced to include the e↵ect of thin and

weak planes on shale rocks. However, this implementation requires either

direct reduction for values of G and E for weak layers, or more sophisticated

models, like the one developed by He and Afolagboye (2017), where more

parameters can be considered to model accurately the real behaviour of weak

layers.

3. The constitutive model of the phase field approach could be extended to in-

clude the anisotropic behaviour of transversely isotropic materials suck as

shale rocks. This modification can be conducted on the deterministic nu-

merical framework first and, successively, on the model implemented by the
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stochastic approach.

4. The existing implemented framework for crack propagation on heterogeneous

materials can be extended to multi-physics problems (e.g. hyrdofracture and

thermofracture) to apply the developed methodology to a wider range of case

studies such as fracking.
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Appendix A

Codes

In this appendix the most important section of the code developed and implemented

are provided with the support of additional comments.

A.1 Smeared approach: alternate problem resolution

In the next to subsections the main subroutines used for the resolution of the de-

formation and damage problems are provided. Please note that have been included

those subroutines where the di↵erentiation between tension and compression (de-

scribed numerically in Chapter 3) has been implemented.

A.1.1 Deformation problem

1 % mu, lambda : lame ’ moduli

2 % k eps : r e g u l a r i s a t i o n parameter

3 % boundary : boundary cond i t i on s

4 % p1 : i n i t i a l p o s i t i o n FE nodes

5 % pFE: cur rent p o s i t i o n FE nodes

6 % edges : edges ID o f FE domain

7 % tr i an : f i n i t e element ID

8 % def0 : i n i t i a l p o s i t i o n FE nodes

9 % damage : va lue s f o r damage parameter s

10

11 num point=s i z e (pFE, 2 ) ;

12 f o r c e 0=p1+def0 ;

13 J index=0; num el=s i z e ( t r i an , 2 ) ;

14 s t i f ma t=ze ro s (16 , num el ) ;
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15 a mat = ze ro s (2 , 1 ) ; f v e c = ze ro s (2 , 1 ) ;

16 B l e f t=ze ro s (3 , 3 , num el ) ;

17 i d e n t i t y=ze ro s (3 , 3 ) ;

18 Jacob=ze ro s (1 , num el ) ;

19 Ident i ty mat=ze ro s (3 , 3 , num el ) ;

20 s t e l=ze ro s ( 2 , 2 , 2 , 2 , num el ) ;

21 i d e n t i t y (1 , 1 ) =1; i d e n t i t y (2 , 2 ) =1; i d e n t i t y (3 , 3 ) =1;

22 f o r e l =1: num el

23 Ident i ty mat ( : , : , e l )=i d e n t i t y ;

24 end

25 f c o l =[ f o r c e 0 ( 1 , : ) ’ ; f o r c e 0 ( 2 , : ) ’ ] ;

26 [ defFx , defFy ]=pdegrad (p1 , t r i an , f c o l ) ;

27 F mat=ze ro s (3 , 3 , num el ) ;

28 F mat ( 1 , 1 , : )=defFx ( 1 , : ) ; F mat ( 2 , 1 , : )=defFx ( 2 , : ) ;

29 F mat ( 1 , 2 , : )=defFy ( 1 , : ) ; F mat ( 2 , 2 , : )=defFy ( 2 , : ) ;

30 F mat ( 3 , 3 , : ) =1;

31 Jacob ( : )=F mat ( 1 , 1 , : ) .⇤F mat ( 2 , 2 , : )�F mat ( 2 , 1 , : ) .⇤F mat

( 1 , 2 , : ) ;

32 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

33 % thens ion�compress ion implementation %

34 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

35 J index=f i nd ( Jacob<1) ;

36 damage Jacob=damage ; damage Jacob ( J index )=1;

37 damage coe f f=damage Jacob .ˆ2+ k eps ;

38 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

39 f o r e l =1: num el

40 B l e f t ( : , : , e l )=F mat ( : , : , e l ) ⇤F mat ( : , : , e l ) ’ ;

41 end

42 %th i s i s where a l l the t en so r s are c a l c u l a t ed

43 [ C s t i f f , TTens]= e l a s t t e n s o r (mu, lambda , t r i an , B l e f t , Jacob ,

Ident i ty mat ) ;

44 f o r i =1: num el

45 s t e l ( : , : , : , : , i )=damage coe f f (1 , i ) .⇤ C s t i f f ( : , : , : , : , i ) ;

46 end

47 s t i f ma t = s t i f f n e s s a r r ang emen t ( s t e l ) ;

48 % globa l s t i f f n e s s matrix assembly
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49 [K,M,FFE,Q,G,H,R]=assempde ( boundary , pFE, edges , t r i an , s t i f mat

, a mat , f v e c ) ;

50 Tcauchy2=ze ro s (4 , s i z e ( t r i an , 2 ) ) ;

51 f o r i =1: num el

52 TCauchy ( : , : , i )=damage coe f f (1 , i ) . ⇤ ( TTens ( : , : , i ) ) ;
53 end

54 Tcauchy2=vector rear rangement1 (TCauchy) ;

55 FFE=ze ro s (2 , s i z e (pFE, 2 ) ) ;

56 f o r n e l =1: s i z e ( t r i an , 2 )

57 f o r ip =1:3

58 px ( ip )=pFE(1 , t r i a n ( ip , n e l ) ) ;

59 py ( ip )=pFE(2 , t r i a n ( ip , n e l ) ) ;

60 pt=[px ; py ] ;

61 end

62 Jdet=(�pt (1 , 1 )+pt (1 , 2 ) )⇤(�pt (2 , 1 )+pt (2 , 3 ) )�(�pt (1 , 1 )+pt

(1 , 3 ) )⇤(�pt (2 , 1 )+pt (2 , 2 ) ) ;

63 Mat1=ze ro s ( 4 , 2 , 3 ) ;

64 f o r ip =1:3

65 Mat1 (1 , 1 , ip )=pt (2 ,mod( ip , 3 ) +1)�pt (2 ,mod( ip +1 ,3)+1) ;

66 Mat1 (2 , 1 , ip )=pt (1 ,mod( ip +1 ,3)+1)�pt (1 ,mod( ip , 3 ) +1) ;

67 Mat1 (3 , 2 , ip )=Mat1 (1 , 1 , ip ) ;

68 Mat1 (4 , 2 , ip )=Mat1 (2 , 1 , ip ) ;

69 end

70 Mat1=Mat1 .⇤ Jdet ˆ(�1) ;
71 f o r ip =1:3

72 f m ( : , ip )=(Mat1 ( : , : , ip ) ’⇤Tcauchy2 ( : , n e l ) ) ⇤( Jdet ) /2 ;
73 end

74 f o r ip =1:3

75 f o r a=1:2

76 FFE(a , t r i a n ( ip , n e l ) )=FFE(a , t r i a n ( ip , n e l ) )+f m (

a , ip ) ;

77 end

78 end

79 end

80 FFE=�[FFE( 1 , : ) ,FFE( 2 , : ) ] ’ ;

81 de l t a=assempde (K,M,FFE,Q,G,H,R) ;
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82 de l t a =[ de l t a ( 1 : num point , 1 ) ’ ; d e l t a ( ( num point+1) :2⇤ num point

, 1 ) ’ ] ;

83 f s o l u t i o n=def0+de l t a ; % di sp lacements

84 pFE=pFE+de l t a ; % mesh pos update

A.1.2 Damage problem

1 % bcBoundary s : bc f o r damage problem

2 % mu, lambda : lame ’ moduli

3 % gamma: f r a c t u r e energy

4 % eps : e p s i l o n ( mate r i a l l ength s c a l e )

5 % node : FE nodes

6 % edg : FE edges ID

7 % tr i ang : f i n i t e e lements ID

8 % ux , uy : cur rent d i sp lacements in x and y d i r

9

10 num el=s i z e ( t r iang , 2 ) ;

11 d i s p l =[ux ; uy ] ;

12 column disp=[ d i s p l ( 1 , : ) ’ ; d i s p l ( 2 , : ) ’ ] ;

13 [Ux ,Uy]=pdegrad ( node , t r iang , column disp ) ;

14 I d en t i t y=ze ro s (3 , 3 , num el ) ;

15 F=ze ro s (3 , 3 , num el ) ;

16 Ud mat=ze ro s (3 , 3 , num el ) ;

17 Ud mat ( 1 , 1 , : )=Ux( 1 , : ) ; Ud mat ( 2 , 1 , : )=Ux( 2 , : ) ;

18 Ud mat ( 1 , 2 , : )=Uy( 1 , : ) ; Ud mat ( 2 , 2 , : )=Uy( 2 , : ) ;

19 f o r t r =1:num el

20 I d en t i t y ( : , : , t r )=eye (3 , 3 ) ;

21 end

22 F=Iden t i t y+Ud mat ;

23 Jac=ze ro s (1 , num el ) ;

24 Jac ( : )=F( 1 , 1 , : ) .⇤F( 2 , 2 , : )�F( 2 , 1 , : ) .⇤F( 1 , 2 , : ) ;

25

26 C r ight=ze ro s (3 , 3 , num el ) ;

27 Inv c=ze ro s (1 , num el ) ;

28 f o r tc =1:num el

29 C r ight ( : , : , t c )=F ( : , : , t c ) ’⇤F ( : , : , t c ) ;

30 Inv c ( tc )=t ra c e ( C r ight ( : , : , t c ) ) ;

31 end
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32 W1p=(0.5) ⇤mu. ⇤ ( Inv c �3) ; W1m=W1p;

33 W2p=(0.5) ⇤ lambda .⇤ l og ( Jac ) .ˆ2�mu.⇤ l og ( Jac ) ; W2m=W2;

34 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

35 % thens ion�compress ion implementation %

36 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

37 Jacob m=f ind ( Jac<1) ; Jacom p=f i nd ( Jac>=1) ;

38 W2p( Jacob m )=0;

39 W1p( Jacob m )=0;

40 W2m( Jacom p )=0;

41 W1m( Jacom p )=0;

42 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

43 Wp=W1p+W2p; Wm=W1m+W2m;

44 a mat=2⇤(Wp) . /gamma + eps .ˆ(�1) ;
45 c mat=ones (1 , num el ) .⇤ eps ;
46 f v e c=ones (1 , num el ) . / ( eps ) ;

47 s damage=assempde ( bcBoundary s , node , edg , t r iang , c mat , a mat ,

f v e c ) ;

A.2 Material heterogeneity

In this section the main subroutines for modelling of heterogeneity by means of the

Weibull distribution have been included, as well as the programme used for the RF

mesh generation, dimensionality reduction and mapping from RF to FE mesh.

A.2.1 Non-Gaussian process: Weibull distribution

1 % p , t : FE nodes and elements ID and i n f o

2 % nt : number o f t r i a n g l e s / e lements

3

4 cas3 = 1 ; %%% 1 = Monovariate 2 = Biva r i a t e

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 i f cas3 == 1

7 mean (1 , 1 ) = 0 ;

8 V(1 , 1 ) = 0 . 5 ;

9 %Step1

10 f o r i = 1 : nt

11 rand valn ( : , i ) = random( ’ logn ’ ,mean ,V) ;

12 end
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13 %Step2

14 f o r i =1: nt

15 f o r j =1: nt

16 x1 i=p (1 , t (1 , i ) ) ; x2 i=p (1 , t (2 , i ) ) ; x3 i=p (1 , t (3 , i ) ) ;

17 y1 i=p (2 , t (1 , i ) ) ; y2 i=p (2 , t (2 , i ) ) ; y3 i=p (2 , t (3 , i ) ) ;

18 cx i=(x1 i+x2 i+x3 i ) /3 ; cy i=(y1 i+y2 i+y3 i ) /3 ;

19 x1j=p (1 , t (1 , j ) ) ; x2 j=p (1 , t (2 , j ) ) ; x3 j=p (1 , t (3 , j ) ) ;

20 y1j=p (2 , t (1 , j ) ) ; y2 j=p (2 , t (2 , j ) ) ; y3 j=p (2 , t (3 , j ) ) ;

21 cx j=(x1j+x2j+x3j ) /3 ; cy j=(y1j+y2j+y3j ) /3 ;

22 Cff ( i , j )=(Sigma ) ˆ2⇤ exp (�(3.14⇤ s q r t ( ( cxi�cx j ) ˆ2+ . . .

23 ( cyi�cy j ) ˆ2) ) /( c l ength ˆ2) ) ;

24 end

25 end

26 C = cho l ( Cf f ) ;

27 %Step3

28 n = C’⇤ rand valn ;

29 %Step4

30 param ( 1 , : ) = mle (n ( 1 , : ) , ’ d i s t r i b u t i o n ’ , ’ Weibull ’ ) ;

31 s c a l e 1 = param (1 , 1 ) ;

32 shape1 = param (1 , 2 ) ;

33 %Step5

34 a r g l o g1 = 0 .5 .⇤ (1� e r f (n ( 1 , : ) / sq r t (2 ) ) ) ;

35 y out ( 1 , : ) = s c a l e 1 .⇤ (� l og ( a r g l o g1 ) ) . ˆ ( 1/ shape1 ) ;

36

37 e l s e i f case3 == 2

38 %Step1

39 M(1 ,1 ) = 0 ; V(1 , 1 ) = 0 . 5 ;

40 M(2 ,1 ) = 0 ; V(2 , 1 ) = 0 . 2 5 ;

41 f o r i =1: nt

42 f o r j =1: nt

43 x1 i=p (1 , t (1 , i ) ) ; x2 i=p (1 , t (2 , i ) ) ; x3 i=p (1 , t (3 , i ) ) ;

44 y1 i=p (2 , t (1 , i ) ) ; y2 i=p (2 , t (2 , i ) ) ; y3 i=p (2 , t (3 , i ) ) ;

45 cx i=(x1 i+x2 i+x3 i ) /3 ; cy i=(y1 i+y2 i+y3 i ) /3 ;

46 x1j=p (1 , t (1 , j ) ) ; x2 j=p (1 , t (2 , j ) ) ; x3 j=p (1 , t (3 , j ) ) ;

47 y1j=p (2 , t (1 , j ) ) ; y2 j=p (2 , t (2 , j ) ) ; y3 j=p (2 , t (3 , j ) ) ;

48 cx j=(x1j+x2j+x3j ) /3 ; cy j=(y1j+y2j+y3j ) /3 ;

49 Cff ( i , j )=(Sigma ) ˆ2⇤ exp (�(3.14⇤ s q r t ( ( cxi�cx j ) ˆ2+ . . .
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50 ( cyi�cy j ) ˆ2) ) /( c l ength ˆ2) ) ;

51 end

52 end

53 C = cho l ( Cf f ) ;

54 f o r i = 1 : nt

55 rand valn ( : , i ) = random( ’norm ’ ,M,V) ;

56 end

57 n = C’⇤ rand valn ;

58 % de f i n e the 5 parame f o r Weibull B i va r i a t e

59 param ( 1 , : ) = mle ( rand valn ( 1 , : ) , ’ d i s t r i b u t i o n ’ , ’ Weibull ’

) ;

60 param ( 2 , : ) = mle ( rand valn ( 2 , : ) , ’ d i s t r i b u t i o n ’ , ’ Weibull ’

) ;

61 s c a l e 1 = param (1 , 1 ) ;

62 s c a l e 2 = param (2 , 1 ) ;

63 shape1 = param (1 , 2 ) ;

64 shape2 = param (2 , 2 ) ;

65 rho = 0 . 5 ;

66 CorrMat = [ sigma (1 , 1 ) ˆ2 rho⇤ sigma (1 , 1 ) ⇤ sigma (2 , 1 ) ;

67 rho⇤ sigma (2 , 1 ) ⇤ sigma (1 , 1 ) sigma (2 , 1 ) ˆ 2 ] ;

68 f o r i = 1 : nt

69 norm biv ( : , i ) = mvnrnd(M, CorrMat ) ;

70 end

71 % tras form to Weibull

72 a r g l o g1 = 0 .5 .⇤ (1� e r f ( norm biv ( 1 , : ) / sq r t (2 ) ) ) ;

73 a r g l o g2 = 0 .5 .⇤ (1� e r f ( norm biv ( 2 , : ) / sq r t (2 ) ) ) ;

74 y out ( 1 , : ) = s c a l e 1 .⇤ (� l og ( a r g l o g1 ) ) . ˆ ( 1/ shape1 ) ;

75 y out ( 2 , : ) = s c a l e 2 .⇤ (� l og ( a r g l o g2 ) ) . ˆ ( 1/ shape2 ) ;

A.2.2 Model Order Reduction

1 % Generation RF mesh and MOR dimension

2 c l e a r a l l

3

4 mesh s i ze1 = 2 ;

5 c o r r e l a t i o n l e n g t h = 10 ;

6

7 k random save1 = [ ] ; k random save2 = [ ] ;
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8 mu random save1 = [ ] ; mu random save2 = [ ] ;

9 lambda random save1 = [ ] ; lambda random save2 = [ ] ;

10 E random save1 = [ ] ; E random save2 = [ ] ;

11 CorrMat1 = [ ] ; CorrMat2 = [ ] ;

12

13 [ geom1 dual , ms1 dual ]= geometry c rea t i on ( mesh s i ze1 ) ;

14 [ p1 dual , e1 dual , t 1 dua l ]= in i tmesh ( geom1 dual , ’Hmax ’ ,

ms1 dual ) ;

15

16 E=24.8; n i =0.18;

17 lambda vett (1 )=E⇤ ni /((1+ ni ) ⇤(1�2⇤ ni ) ) ;
18 mu vett (1 )=E/(2⇤(1+ ni ) ) ;

19 k f r a t t v e t t (1 ) =2.5⇤10ˆ(�5) ; % KN/mm

20 ep s v e t t (1 ) =1⇤10ˆ(�1) ;
21 acont=1;

22 num tri1=s i z e ( t1 dual , 2 ) ;

23 %num tri2=s i z e ( t2 dual , 2 ) ;

24 di sp ( ’ Creat ion o f the random f i l e d mesh . . . ’ ) ;

25 [ k random save1 , mu random save1 , lambda random save1 ,

E random save1 , CorrMat1]=problem dual ( . . .

26 mu vett , lambda vett , k f r a t t v e t t , eps ve t t , p1 dual , e1 dual

, t1 dual , acont , CorrMat1 , . . .

27 k random save1 , mu random save1 , lambda random save1 ,

E random save1 , num tri1 , c o r r e l a t i o n l e n g t h ) ;

28 di sp ( ’RANDOM FILED MESH CREATED’ ) ;

29 %ISOMAP

30 % Distance Matrix

31 pos = [ p1 dual ( 1 , : ) ; p1 dual ( 2 , : ) ] ;

32 IPisomap = pos ’ ⇤ pos ;

33 DistMat = sq r t ( bsxfun (@plus , d iag ( IPisomap ) , d iag ( IPisomap )

’ ) � 2 ⇤ IPisomap ) ;

34 k va l = 3 ;

35 fun n = ’ k va l ’ ;

36 n dimmen = 7 ;

37 opt ions . dims = 1 : 5 0 ;

38 [ isoY , isoR , isoE ] = Isomap sub (DistMat , fun n , n dimmen ,

opt i ons ) ;

185



A.2.3 Mapping RF-FE mesh

1 nt1=s i z e ( t1 , 2 ) ;

2 nt2=s i z e ( t2 , 2 ) ;

3 cent1 = [ ] ; cent2 = [ ] ;

4 f o r i =1: nt1

5 x1 i=p1 (1 , t1 (1 , i ) ) ; x2 i=p1 (1 , t1 (2 , i ) ) ; x3 i=p1 (1 , t1 (3 , i ) ) ;

6 y1 i=p1 (2 , t1 (1 , i ) ) ; y2 i=p1 (2 , t1 (2 , i ) ) ; y3 i=p1 (2 , t1 (3 , i ) ) ;

7 cent1 (1 , i )=(x1 i+x2 i+x3 i ) /3 ; cent1 (2 , i )=(y1 i+y2 i+y3 i ) /3 ;

8 end

9 f o r j =1: nt2

10 x1j=p2 (1 , t2 (1 , j ) ) ; x2 j=p2 (1 , t2 (2 , j ) ) ; x3 j=p2 (1 , t2 (3 , j ) ) ;

11 y1j=p2 (2 , t2 (1 , j ) ) ; y2 j=p2 (2 , t2 (2 , j ) ) ; y3 j=p2 (2 , t2 (3 , j ) ) ;

12 cent2 (1 , j )=(x1j+x2j+x3j ) /3 ; cent2 (2 , j )=(y1j+y2j+y3j ) /3 ;

13 end

14 f o r j =1: nt2

15 dist sum=0;

16 k sum=0;

17 f o r i =1: nt1

18 d i s t = sq r t ( ( cent1 (1 , i )�cent2 (1 , j ) ) ˆ2+( cent1 (2 , i )�
cent2 (2 , j ) ) ˆ2) ;

19 i f d i s t<ms

20 dist sum = dist sum + (1/ d i s t ) ;

21 k sum = k sum + ks (1 , i ) ⇤(1/ d i s t ) ;

22 end

23 end

24 map rand (1 , j ) = k sum/dist sum ;

25 end

186



Bibliography

M. Abbas, B. Bohloli, N. Mondol, and L. Grande. Brazilian tensile strength test-

post-failure behavior of jurassic and cretaceous shales from svalbard. In 77th

EAGE Conference and Exhibition 2015, 2015.

M. Aliha, M. Ayatollahi, D. Smith, and M. Pavier. Geometry and size e↵ects on

fracture trajectory in a limestone rock under mixed mode loading. Engineering

Fracture Mechanics, 77(11):2200–2212, 2010.

H. Alkhateb, A. Al-Ostaz, and K. I. Alzebdeh. Developing a stochastic model to

predict the strength and crack path of random composites. Composites Part B:

Engineering, 40(1):7–16, 2009.

D. L. Allaix and V. I. Carbone. Discretization of 2d random fields: A genetic

algorithm approach. Engineering Structures, 31(5):1111–1119, 2009.

L. Ambrosio and V. M. Tortorelli. On the approximation of free discontinuity prob-

lems. Scuola Normale Superiore, 1990.

H. Amor, J.-J. Marigo, and C. Maurini. Regularized formulation of the variational

brittle fracture with unilateral contact: Numerical experiments. Journal of the

Mechanics and Physics of Solids, 57(8):1209–1229, 2009.

P. Areias and T. Belytschko. Analysis of three-dimensional crack initiation and

propagation using the extended finite element method. International Journal for

Numerical Methods in Engineering, 63(5):760–788, 2005.

M. Arrea. Mixed-mode crack propagation in mortar and concrete. Cornell University,

Jan., 1982.
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L. Gorjan and M. Ambrožič. Bend strength of alumina ceramics: A comparison of

weibull statistics with other statistics based on very large experimental data set.

Journal of the European Ceramic Society, 32(6):1221–1227, 2012.

A. A. Gri�th. The phenomena of rupture and flow in solids. Philosophical transac-

tions of the royal society of london. Series A, containing papers of a mathematical

or physical character, 221:163–198, 1921.

U. Groh, H. Konietzky, K. Walter, and M. Herbst. Damage simulation of brittle

heterogeneous materials at the grain size level. Theoretical and Applied Fracture

Mechanics, 55(1):31–38, 2011.

Y.-L. Gui, H. H. Bui, J. Kodikara, Q.-B. Zhang, J. Zhao, and T. Rabczuk. Modelling

the dynamic failure of brittle rocks using a hybrid continuum-discrete element

method with a mixed-mode cohesive fracture model. International Journal of

Impact Engineering, 87:146–155, 2016.

H. Guo, N. Aziz, and L. Schmidt. Rock fracture-toughness determination by the

brazilian test. Engineering Geology, 33(3):177–188, 1993.

M. Gutiérrez and R. de Borst. Deterministic and stochastic analysis of size e↵ects

and damage evolution in quasi-brittle materials. Archive of Applied Mechanics,

69(9-10):655–676, 1999.

N. Guy, D. M. Seyedi, and F. Hild. A probabilistic nonlocal model for crack initiation

and propagation in heterogeneous brittle materials. International Journal for

Numerical Methods in Engineering, 90(8):1053–1072, 2012.

M. Haddad, K. Sepehrnoori, et al. Xfem-based czm for the simulation of 3d multiple-

stage hydraulic fracturing in quasi-brittle shale formations. In 49th US Rock Me-

chanics/Geomechanics Symposium. American Rock Mechanics Association, 2015.

193



A. Haldar and S. Mahadevan. Probability, reliability, and statistical methods in

engineering design. John Wiley, 2000.

J. He and L. O. Afolagboye. Influence of layer orientation and interlayer bonding

force on the mechanical behavior of shale under brazilian test conditions. Acta

Mechanica Sinica, pages 1–10, 2017.

D. Hobbs. The tensile strength of rocks. In International Journal of Rock Me-

chanics and Mining Sciences &amp; Geomechanics Abstracts, volume 1, pages

385IN17389–388IN18396. Elsevier, 1964.

R. M. Holt, E. Fjær, J. F. Stenebr̊aten, and O.-M. Nes. Brittleness of shales:

Relevance to borehole collapse and hydraulic fracturing. Journal of Petroleum

Science and Engineering, 131:200–209, 2015.

P. Hou, F. Gao, Y. Ju, X. Liang, Z. Zhang, H. Cheng, and Y. Gao. Experimental in-

vestigation on the failure and acoustic emission characteristics of shale, sandstone

and coal under gas fracturing. Journal of Natural Gas Science and Engineering,

35:211–223, 2016.

J. Hudson, E. Brown, and F. Rummel. The controlled failure of rock discs and rings

loaded in diametral compression. In International Journal of Rock Mechanics and

Mining Sciences &amp; Geomechanics Abstracts, volume 9, pages 241IN1245–

244IN4248. Elsevier, 1972.

C. E. Inglis. Stresses in a plate due to the presence of cracks and sharp corners.

Transactions of the institute of naval architects, 55(219-241):193–198, 1913.

G. R. Irwin. Analysis of stresses and strains near the end of a crack traversing a

plate. J. appl. Mech., 1957.

ISRM. Suggested methods for determining tensile strength of rock ma-

terials. International Journal of Rock Mechanics and Mining Sci-

ences amp; Geomechanics Abstracts, 15(3):99 – 103, 1978. ISSN

0148-9062. doi: https://doi.org/10.1016/0148-9062(78)90003-7. URL

http://www.sciencedirect.com/science/article/pii/0148906278900037.

L. Jendele, J. Cervenka, V. Saouma, and R. Pukl. On the choice between discrete

or smeared approach in practical structural fe analyses of concrete structures.

In Fourth International Conference on Analysis of Discontinuous Deformation

Glasgow, Scotland UK, 2001.

194



S. Jeong, K. Nakamura, S. Yoshioka, Y. Obara, and M. Kataoka. Fracture toughness

of granite measured using micro to macro scale specimens. Procedia engineering,

191(5):761–767, 2017.
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