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HADAMARD MATRICES AND 1-FACTORIZATIONS OF
COMPLETE GRAPHS

KEITH BALL, OSCAR ORTEGA-MORENO, AND MARIA PRODROMOU

ABSTRACT. We discuss 1-factorizations of complete graphs that “match”
a given Hadamard matrix. We prove the existence of these factorization-
s for two families of Hadamard matrices: Walsh matrices and certain
Paley matrices.

INTRODUCTION

A 1-factor of a graph G (of even order) is a set of independent edges span-
ning the vertices of G. A 1-factorization of G is a partition of the set of
edges of G into 1-factors.
Given a complete graph with an even number of vertices, it is not difficult
to show that there exists a 1-factorization. Let n be an even integer and
consider the complete graph Kn. To find a factorization of Kn into 1-
factors, select n−1 vertices and place them on the vertices of a n−1 regular
n − 1-gon, and place the remaining vertex at the centre of the polygon. To
get the first 1-factor, pick any vertex of the polygon and select the edge
joining it to the vertex at the centre. For the remaining vertices, select the
edges that are perpendicular to the line passing through the centre and the
vertex already joined to it. For the remaining 1-factors, just select the n− 2

clockwise rotations of the first factor (see figure 1).

FIGURE 1. 1-factorization of K6.
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However, for the factorizations that we will consider, there will be restric-
tions on which edges can be selected for each factor. These restrictions will
be defined in terms of the rows of a Hadamard matrix. A Hadamard matrix
is a matrix with orthogonal rows (and orthogonal columns) whose entries
are 1 or−1. Thus if H is a Hadamard matrix of order n, then hij ∈ {1,−1}
and

HH∗ = nIn

where In is the identity matrix of order n. It is easy to check that if n > 2

a Hadamard matrix can only exist if n is a multiple of 4. We will consider
Hadamard matrices for which the first row consists of a vector all of whose
entries are 1. Note that for any Hadamard matrix, it is always possible to
transform this matrix to a matrix with the first row as desired by multiplying
each column by the corresponding sign. We adopt this as the normalized
version of a given Hadamard matrix. Hence, we will always assume that H
is of the form

H =


1 1 · · · 1

±1 ±1 · · · ±1
...

... . . . ...
±1 ±1 · · · ±1


In order to simplify our notation, we make the convention that the indices
of the rows of a Hadamard matrix start from 0 so that the second row is
(h11, h12, . . . , h1n) and subsequently up to the n-th row (h(n−1)1, h(n−1)2,

. . . , hn−1,n):

H =


1 1 · · · 1

h11 h12 · · · h1n

...
... . . . ...

h(n−1)1 h(n−1)2 · · · h(n−1)n

 .

Given a Hadamard matrix H we want to find a 1-factorization {F1, F2, ...,

Fn−1} of Kn such that either each factor satisfies the restriction R1 below
or each factor satisfies R2:



HADAMARD MATRICES AND 1-FACTORIZATIONS OF COMPLETE GRAPHS 3

(R1) If an edge e belongs to the factor Fk, then the vertices incident to
that edge must have opposite sign in the row k:

e = {i, j} ∈ Fk =⇒ hkihkj < 0.

(R2) If an edge e belongs to the factor Fk, then the vertices incident to
that edge must have same sign in the row k:

e = {i, j} ∈ Fk =⇒ hkihkj > 0.

Let us illustrate the problem of finding a factorization satisfying restriction
(R1) for the following example,

H =


1 1 1 1

1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


We want to find a 1-factorization {F1, F2, F3} of the complete graph on 4

vertices K4 satisfying restriction (R1). For the row (1,−1, 1,−1), there
are 4 edges we could potentially select; {1, 2}, {2, 3}, {3, 4}, and {1, 4}.
However, the only factors satisfying restriction (R1) are {{1, 2}, {3, 4}}
and {{1, 4}, {2, 3}}. We do the same analysis for the third row and we see
that the only two possible factors are {{1, 3}, {2, 4}} and {{2, 4}, {1, 3}}.
Finally, for the forth row we see that the only possible choices are {{1, 3},
{2, 4}} and {{1, 2}, {3, 4}}.

Hence, from the 8 possible combinations of these pairs of edges a feasible
1-factorization of K4 satisfying the requirements is
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F1 = {{1, 4}, {2, 3}},

F2 = {{1, 3}, {2, 4}},

F3 = {{1, 2}, {3, 4}}.

F1 F2 F3

For the general case of an arbitrary Hadamard matrix the problem seems to
be far more complex than for the simple example: however we conjecture
that it is always possible to find 1-factorizations satisfying the two different
restrictions.
We can regard the problem as an integer programme. We have a variable
xk,{i,j} for each row k and pair of columns {i, j}. We want the variable to
be either one or zero according as the edge {i, j} belongs to the factor Fk.
Hence, in the (R1) case, we want to find integer values xk,{i,j} such that

(0.1) 0 ≤ xk,{i,j} ≤

0 if hki = hkj

1 if hki 6= hkj

,

and for each edge {i, j} in the complete graph Kn

(0.2)
n−1∑
k=1

xk,{i,j} = 1,

and for each k ∈ {1, . . . , n− 1} and j ∈ {1, . . . , n}

(0.3)
n∑

i 6=j

xk,{i,j} = 1.
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If instead of (0.1) we ask the variables to satisfy

(0.4) 0 ≤ xk,{i,j} ≤

0 if hki 6= hkj

1 if hki = hkj

,

then the solution to the integer programme will be equivalent to finding a
1-factorization satisfying restriction (R2).
The linear relaxation of the integer programme is easily seen to be feasible
and the Hadamard condition is just what is needed. Choose

xk,{i,j} =

 2
n

if hki 6= hkj

0 if hki = hkj

,

Since each row of H is orthogonal to the first row, for each k, i there are n/2
values of j such that the entries of the row k at the i-th and j-th columns
have opposite sign and therefore xk,{i,j} =

2
n

for exactly n/2 values of j.
Thus restriction (0.3) is satisfied.
On the other hand, each pair of columns of H is orthogonal. Hence, for
each {i, j} there are n/2 rows below the first one for which the entries in
the ith and jth columns have opposite sign and therefore again xk,{i,j} =

2
n

for exactly n/2 values of k. Thus, restriction (0.2) is satisfied.
For the same sign case (restriction (R2)), we choose

xk,{i,j} =

 1
n/2−1 if hki = hkj

0 if hki 6= hkj

.

In the 2 remaining sections of the paper we solve the 1-factorization prob-
lems for two families of Hadamard matrices: the Walsh matrices in Section
1 and certain Paley matrices in Section 2.

1. FACTORIZATIONS FOR WALSH MATRICES

The Walsh Matrices are constructed via an inductive process originally due
to Sylvester. Given a Hadamard matrix H of order n we can construct a new
Hadamard matrix of order 2n by defining the following matrix by blocks(

H H

H −H

)
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Hence, we define

H1 =

(
1 1

1 −1

)
and we define inductively

Hm =

(
Hm−1 Hm−1

Hm−1 −Hm−1

)
for each integer m > 1.

Theorem 1.1. Let m > 1 be an integer and n = 2m. There exist 1-
factorizations of Kn satisfying restrictions (R1) and (R2), respectively.

Proof. The proof is by induction. We want to show first that there are such
1-factorizations for H2 

1 1 1 1

1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

We already saw that there is a factorization satisfying restriction (R1) in our
example. On the other hand it is easy to see that there is one and only one
possible choice for a factorization satisfying restriction (R2).
Our inductive hypothesis states that there exist such factorizations satisfying
(R1) and (R2) for Hm−1. As is common in this kind of induction we need
both types of factorization for Hm−1 to obtain each factorization of Hm but
there is a strange additional issue to consider in one case.
Now

Hm =

(
Hm−1 Hm−1

Hm−1 −Hm−1

)
.

To find a factorization for Hm satisfying (R1) we decompose each of the
Hm−1 blocks in the top 2m−1 rows selecting edges of opposite sign. For
the bottom 2m−1 rows we do as follows. The 2m−1 + 1 row consists of a
block of 2m−1 positive entries and then a block of 2m−1 negative entries.
We select the edges {i, i+ 2m−1} for all i ∈ {1, . . . , 2m−1}.
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(
1 1 1 1 −1 −1 −1 −1

)

For the remaining rows, using our inductive hypothesis, we select edges
of the form {i, j + 2m−1} where the pair {i, j} appears in a factorization
of Hm−1 satisfying restriction (R2). This gives us a factorization of Hm

satisfying restriction (R1).
To find a factorization of Hm satisfying restriction (R2), we decompose
each of the Hm−1 blocks in the top 2m−1 rows selecting edges of the same
sign. For the bottom 2m−1 rows we do as follows. The 2m−1+1 row consists
of a block of 2m−1 positive entries and then a block of 2m−1 negative en-
tries. We swap this row with any of the rows above, let’s say the row 2m−1,
choosing the same edges on our new row 2m−1 that we already selected in
the old row 2m−1.


1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1


To select edges in our new 2m−1 + 1 row, we select edges of the form
{i, i + 2m−1} which have the same sign since they come from the same
entry in the matrix Hm−1.


1 1 1 1 −1 −1 −1 −1

1 −1 −1 1 1 −1 −1 1



For the remaining rows, we select edges of the form {i, j + 2m−1} where
the pair {i, j} appears in a factorization of Hm−1 satisfying restriction (R1).
This gives us a factorization of Hm satisfying restriction (R2). �
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We are grateful to the referee for pointing out that the method used in the
proof of Theorem 1.1 can easily be generalised. The proof shows that for
n ≥ 2, if there are 1-factorizations of Hn satisfying (R1) and (R2) respec-
tively then there are 1-factorizations of Hn

⊗
H1 satisfying (R1) and (R2).

A generalisation of this argument can be used to show that for any m < n,
if there are 1-factorizations of Hn and Hm satisfying (R1) and (R2) then
there are 1-factorizations of Hn

⊗
Hm satisfying (R1) and (R2).

2. FACTORIZATIONS AND THE FINITE FIELD Zp

In this section we find 1-factorizations of the complete graph with restric-
tions defined in terms of matrices constructed using finite fields Zp where
p is a prime. This construction is due to Paley and we refer the reader to
Paley’s article for a more detailed explanation of the construction [1]. We
shall use a very slight variation of the usual Paley matrices. We first set

M =

((
j − i

p

))
i,j∈Zp

where
(

k
p

)
is the Legendre symbol. When p ≡ 3 (mod 4), the Paley matrix

Hp is defined to be

Hp =

(
0 e

−eT M

)
+ I

where e = (1, 1, . . . , 1) ∈ Rp and I is the identity matrix of order p+ 1.
The main theorem of this section is the following in which a “near-primitive
root” modulo p is just the square of a primitive root.

Theorem 2.1. Let p be a prime such that p ≡ 3 (mod 4), then we can find a
1-factorization of the complete graph Kp+1 satisfying restriction (R1) with
respect to the Paley matrix of order p+ 1.
If in addition we assume that 2 is a near-primitive root modulo p, then we
can find a 1-factorization of the complete graph Kp+1 satisfying restriction
(R2).

It is natural to try to prove this theorem in the following way. Since the
rows of M are just cyclic permutations of the first row it seems reasonable
to find a 1-factor corresponding to the second row of Hp and then cycle
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it to obtain one 1-factors for the other rows just as in the example at the
start of the article. This will work provided our 1-factor contains, within
the matrix M , exactly one edge {i, j} of each possible length: i − j =

±1,±2, . . . ,±(p − 1)/2. So we are led to consider the following problem
which makes sense regardless of whether p is congruent to 1 or 3 modulo 4:

Problem 2.2. let p be any prime number, and Kp+1 the complete graph with
vertex set Zp∪{c}where c is an additional point that we will call the centre.
We adopt the convention that the length of any edge containing the centre is
infinity, that the vertex 0 is a residue and that the centre c is a non-residue.

(P1) Is there a 1-factor of Kp+1 such that each edge selected is either in-
cident to two quadratic residues or incident to two non-residues, and
such that the lengths of the edges are all different to one another?

(P2) Is there a 1-factor of Kp+1 such that each edge selected is incident
to a quadratic residue and a non-residue, and such that the lengths
of the edges are all different to one another?

There are two easy cases. The first one is when p ≡ 1 (mod 4) and we want
to join quadratic residues to quadratic residues, and non-quadratic residues
to non-quadratic residues. The second one is when p ≡ 3 (mod 4) and we
want to join residues to non-residues. These two case are done using the fol-
lowing observation: −1 is a quadratic residue if and only if p ≡ 1 (mod 4).
Hence, when p ≡ 1 (mod 4), we can select the edges of the form {r,−r}
where r ∈ {1, . . . , p−1

2
}, and by our previews observation, r and −r are

either both quadratic residues or both non-quadratic residues. The length
of the edge {r,−r} is 2r and all these lengths are clearly different to one
another for r ∈ {1, . . . , p−1

2
}. We do exactly the same selection of edges

when p ≡ 3 (mod 4) but in this case we know we join quadratic residue to
non-quadratic residues by our observation.

Hence, we have the following theorems

Theorem 2.3. Let p be a prime such that p ≡ 1 (mod 4), then there exists a
1-factor of the complete graph with vertex set Zp ∪ {c} consisting of edges
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FIGURE 4. Joining quadratic residues no quadratic residues
and non-quadratic residues to non quadratic residues for p =

13.
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c

FIGURE 5. Joining quadratic residues to non-quadratic
residues for p = 11.

of all possible lengths matching residues to residues, and non-residues to
non-residues.

Theorem 2.4. Let p be a prime such that p ≡ 3 (mod 4), then there exists a
1-factor of the complete graph with vertex set Zp ∪ {c} consisting of edges
of all possible lengths matching residues to non-residues.

We now turn to the difficult cases. First, let p be a prime such that p ≡
1 (mod 4). In this case, we want to join residues to non-residues. Let x
be a primitive root modulo p. We shall consider edges of the form ek =

{xk, xk+1} where k = 0, . . . , p − 1. Each of these edges joins a residue to
a non-residue. The length of the edge is xk+1 − xk = xk(x − 1). These
numbers are all different as k runs from 0 to p − 1 but we wish to exclude
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the possibility that the edges that we choose include an opposite pair ±y.
The edges ej and ek have opposite lengths if

xk−j = −1 = x(p−1)/2.

Our aim will be to select p−3
2

which are different from one another and
their negatives. These will join p − 3 elements of Z∗p and we wish to leave
unjoined two elements: a residue r that we shall connect to 0 and a non-
residue, n that we shall connect to the centre.
We therefore need to ensure that ±r is not one of the lengths that we have
selected. Now if r = xk then we will not use the edge {xk, xk+1} whose
length is xk(x − 1) = r(x − 1) and this will indeed be r provided x = 2.
Henceforth we assume this to be the case (which necessarily means that
p ≡ 5 (mod 8)). It then doesn’t matter which residue we choose for r so we
take r = 1 = 20 and n = −2 = 2(p+1)/2. We have used the vertex r = 1

and the length 1. We select the remaining edges to be

20

21

22

23

24

25

26
27

28

29

210

211

FIGURE 6. The figure shows the Cayley graph associated
with Z∗p for the generator 2 and the selection of edges for the
case p = 13. The edges we select for the perfect matching
are the solid lines joining quadratic residues to non-residues.
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e1 = {2, 4} = {21, 22}

e3 = {8, 16} =
{
23, 24

}
...

e p−3
2

=
{
2

p−3
2 ,−1

}
=

{
2

p−3
2 , 2

p−1
2

}
and

e p+3
2

= {−4,−8} =
{
2

p+3
2 , 2

p+5
2

}
e p+7

2
= {−16,−32} =

{
2

p+7
2 , 2

p+9
2

}
...

ep−3 =
{
2p−3, 2p−2

}
By inspection (see figure 6), we see that the lengths of the edges that we
have selected are not equal nor equal to their negatives and we have not
used the edges of length±1 which are e0 and ep−2. We are thus at liberty to
join 1 to 0.
The second difficult case is that of a prime p ≡ 3 (mod 4) and we want
to join quadratic residues to quadratic residues and non-residues to non-
residues. In this case we will assume that there a primitive root x modulo
p such that x2 = 2 (which necessarily implies that p ≡ 7 (mod 8)). Since
p ≡ 3 (mod 4) we know that −1 is not a quadratic residue.
We shall consider edges of the form e2k = {x2k, x2(k+1)} which join qua-
dratic residues and edges of the form e2k+(p−1)/2 = {−x2k,−x2(k+1)}
= {x2k+(p−1)/2, x2(k+1)+(p−1)/2} which join non-residues. The length of ek
is x2(k+1) − x2k = x2k(x2 − 1) = x2k and the length of e2k+(p−1)/2 is −x2k.
These lengths are all different as k goes from 0 to (p− 3)/2 since the neg-
ative of the length of e2k is equal to the length of e2k+(p−1)/2. The lengths
of edges joining quadratic residues to quadratic residues are all different to
one another and their negatives and the same is true for the edges joining
non-residues to non-residues.
Our aim is to select (p − 3)/2 which are different from one another and
their negatives. These will join p − 3 elements of Z∗p and we wish to leave
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two elements alone: a quadratic residue r which we shall connect to 0 and
a non-residue n which we shall connect to the center c.
We need to ensure that ±r is not one of the lengths that we have selected.
We again take r = 1 and n = −xp+3 = x2+(p−1)/2 = −2. We select the
remaining edges to be

x0

x11

x2

x13

x4

x15

x6

x17

x8

x19

x10

x21

x12

x1

x14

x3

x16

x5

x18

x7

x20

x9

FIGURE 7. This figure shows Cayley graph associated with
Z∗p for the generating set {x2, x(p−1)/2} = {2,−1} and the
selection of edges incident to either two quadratic residues
or two non-.residues, in solid blue and red lines respectively,
for the case p = 23.

e2 = {2, 4} = {x2, x4}

e6 = {8, 16} =
{
x6, x8

}
...

...
...

ep−5 =
{
xp−5, xp−3}
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and

e p−1
2

+4 =
{
−x4,−x6

}
e p−1

2
+8 =

{
−x8,−x10

}
...

...
...

e p−1
2

+p−3 =
{
−xp−3,−xp−1} .

By inspection (see figure 7), we see that the lengths of the edges that we
have selected are not equal or equal to their negatives and we have not used
the edges of length ±1 which are e0 and e p−1

2
.

To sum up, we have the following theorems.

Theorem 2.5. Let p be a prime such that p ≡ 1 (mod 4) and 2 is a primitive
root modulo p. Then there exists a 1-factor of the complete graph with
vertex set Zp ∪ {c} consisting of edges of all possible lengths matching
residues to non-residues.

Theorem 2.6. Let p be a prime such that p ≡ 3 (mod 4) and 2 is a near-
primitive root of p. Then there exists a perfect matching of the complete
graph with vertex set Zp ∪ {c} consisting of edges of all possible lengths
matching residues to residues, and non-residues to non-residues.

Even though the proofs of Theorems 2.5 and 2.6 required an additional
assumption on p, (concerning the number 2) we believe that they should be
true in general. Theorem 2.5 is stated for primes p of the form 8k + 5 for
which 2 is a primitive root modulus p. It was pointed out to us by Peter
Moree that under GRH there are infinitely many primes of this form and
that these have a natural density which is a rational multiple of the Artin
constant. This is an example of a generalisation of Artin’s conjecture asking
for the density of primes p in an arithmetic progression such that an integer
x is a primitive root modulo p. This was first found by Moree in his article
[2].
On the other hand, theorem 2.6 is stated for primes of the form 8k + 7 for
which there is a primitive root x modulo p such that x2 = 2. In this case
the question is whether there are infinitely many primes in an arithmetic
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progression for which a given integer t is a near primitive root. It was
pointed out to us by Moree that this situation has not been worked out in
the literature but that in our specific situation it would require no new ideas
to do it.
To finish we remark that Problem 2.2 has a natural generalization.

Problem 2.7. Let A∪B be a partition of the cyclic group Cn where n is odd.
Is it always possible to find a set of (n− 1)/2 edges {x, y} with x, y ∈ Cn,
whose n− 1 lengths±(x− y) include each non-zero element of Cn exactly
once and so that each edge joins either two elements of A or two of B.

We do not know of any counterexample to this problem: indeed we know
of no counterexample even if we replace Cn with any finite group of odd
order.
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