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Abstract

In this thesis, entropy is used to characterize intrinsic ageing properties of

the human brain. Analysis of fMRI data from a large dataset of individuals, using

resting state BOLD signals, demonstrated that a functional connectivity entropy

associated with brain activity increases with age. During an average lifespan, the

entropy, which was calculated from a population of individuals, increased by ap-

proximately 0.1 bits, due to correlations in BOLD activity becoming more widely

distributed. This is attributed to the number of excitatory neurons and the ex-

citatory conductance decreasing with age. Incorporating these properties into a

computational model leads to quantitatively similar results to the fMRI data. The

dataset involved males and females and significant differences were found between

them. The entropy of males at birth was lower than that of females. However, the

entropies of the two sexes increase at different rates, and intersect at approximately

50 years; after this age, males have a larger entropy.

In addition, the connectivity between different brain areas provides evidence

about normal function and dysfunction. Changes are described in the distribution

of these connectional strengths in schizophrenia using a large sample of resting-state

fMRI data. The functional connectivity entropy, which measures the dispersion of

the functional connectivity distribution, was lower in patients with schizophrenia

than in controls, reflecting a reduction in both strong positive and negative correla-

tions between brain regions. The decrease in the functional connectivity entropy was

strongly associated with an increase in the positive, negative, and general symptoms.

Using an integrate-and-fire simulation model based on anatomical connectivity, it is

x



shown that a reduction in the efficacy of the NMDA mediated excitatory synaptic

inputs can reduce the functional connectivity entropy to resemble the pattern seen

in schizophrenia.

Spatial variation in connectivity is an integral aspect of the brain’s architec-

ture. In the absence of this variability, the brain may act as a single homogenous

entity without regional specialization. In this thesis, We investigate the variability

in functional links categorized on the basis of the presence of direct structural paths

(primary) or indirect paths mediated by one (secondary) or more (tertiary) brain

regions ascertained by diffusion tensor imaging. We quantified the variability in

functional connectivity using an unbiased estimate of unpredictability (functional

connectivity entropy) in a neuropsychiatric disorder where structure-function rela-

tionship is considered to be abnormal. 34 patients and 32 healthy controls underwent

DTI and resting state functional MRI scans. Less than one-third (27.4% in patients,

27.85% in controls) of functional links between brain regions were regarded as direct

primary links on the basis of DTI tractography, while the rest were secondary or ter-

tiary. The most significant changes in the distribution of functional connectivity in

schizophrenia occur in indirect tertiary paths with no direct axonal linkage in both

early (p=0.0002, d=1.46) and late (p=1×10−17, d=4.66) stages of schizophrenia,

and are not altered by the severity of symptoms, suggesting that this is an invariant

feature of this illness. Unlike those with early stage illness, patients with chronic ill-

ness show some additional reduction in the distribution of connectivity among func-

tional links that have direct structural paths (p=0.08, d=0.44). Our findings address

a critical gap in the literature linking structure and function in schizophrenia, and

demonstrate for the first time that the abnormal state of functional connectivity

preferentially affects structurally unconstrained links in schizophrenia. It also raises

the question of a continuum of dysconnectivity ranging from less direct (structurally

unconstrained) to more direct (structurally constrained) brain pathways underlying

the clinical severity and persistence of schizophrenia.

Keywords Schizophrenia Functional MRI Diffusion Tensor Imaging
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Chapter 1

Introduction

1.1 MRI, functional MRI and Diffusion MRI

1.1.1 Magnetic resonance imaging

Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology

to image the anatomy and the physiological processes of the body in both health

and disease. The basic principle of MRI scanners is using strong magnetic fields,

radio waves, and field gradients to form images of the body [Edelman and Warach,

1993].

All hydrogen atoms have nuclear spins, which are associated with a magnetic

dipole moment (analogous to a compass needle) and detectable by MRI, as shown

in Figure 1.1. The human body is roughly 70-percent water with full of hydrogen

atoms, and most MRI scans essentially measure the spatial distribution of water in

the object being imaged. MRI is widely used in hospitals and clinics for medical

diagnosis, staging of disease and follow-up without exposing the body to ionizing

radiation [Brown et al., 2014].

It should be emphasized that Reflecting the fundamental importance and

applicability of MRI in medicine, Dr. Paul Lauterbur of the University of Illinois

at Urbana-Champaign and Sir Peter Mansfield of the University of Nottingham

were awarded the 2003 Nobel Prize in Physiology or Medicine for their ‘discoveries

concerning magnetic resonance imagin’.

In all kinds of MRI medical applications, MRI of the nervous system is

the most interesting one, which uses magnetic fields and radio waves to produce

high quality two- or three-dimensional images of nervous system structures [Dousset

et al., 1999]. After the first MR images of a human brain were obtained in 1978 by

two groups of researchers at EMI Laboratories led by Dr. Ian Robert Young and

1



Figure 1.1: Nuclear spins of hydrogen atoms

Figure 1.2: Different types of MRI imaging modes
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Dr. Hugh Clow [Clow and Young, 1978], a number of different imaging modes can

be used with imaging the nervous system: T1, T2, Flair (fluid attenuated inversion

recovery), fMRI and Diffusion MRI [Edelman and Warach, 1993][Johansen-Berg and

Behrens, 2013][Brown et al., 2014], as shown in Figure 1.2:

T1: It is useful and common for visualizing normal anatomy. Cerebrospinal fluid

area is dark.

T2: It is useful and common for visualizing pathology. Cerebrospinal fluid area is

light, while white matter is darker than that with T1.

FLAIR: It is useful for evaluation of white matter plaques near the ventricles and

identifying demyelination.

fMRI: Functional magnetic resonance imaging is to measure brain activity, which

will be described in detail in Section 1.1.2.

Diffusion MRI: It allows the mapping of the diffusion process of water molecules,

in vivo and non-invasively, which will be described in detail in Section 1.1.3.

1.1.2 Functional Magnetic resonance imaging

Functional magnetic resonance imaging (fMRI) is a functional neuroimaging pro-

cedure using MRI technology that measures brain activity by detecting changes

associated with blood flow [Huettel et al., 2004]. The primary form of fMRI uses

the blood-oxygen-level dependent (BOLD) contrast, discovered by Dr. Seiji Ogawa

[Ogawa et al., 1990]. This is a type of specialized brain and body scan used to map

neural activity in the brain by imaging the change in blood flow (hemodynamic

response) related to energy use by brain cells [Huettel et al., 2004], as illustrated in

Figure 1.3.

The fMRI mainly detect the differences in magnetic properties between ar-

terial (oxygen-rich) and venous (oxygen-poor) blood [Huettel et al., 2004]. The

change in the fMRI signal from neuronal activity is called the hemodynamic re-

sponse (HDR). It lags the neuronal events triggering it by 1 to 2 seconds, since it

takes that long for the vascular system to respond to the brain’s need for glucose.

From this point it typically rises to a peak at about 5 seconds after the stimulus.

If the neurons keep firing, say from a continuous stimulus, the peak spreads to a

flat plateau while the neurons stay active. After activity stops, the BOLD signal

falls below the original level, the baseline, a phenomenon called the undershoot.

Over time the signal recovers to the baseline [Huettel et al., 2004][Ogawa et al.,

1990][Ogawa and Sung, 2007].

There are mainly two types of fMRI scanning, task fMRI and resting state

fMRI (rsfMRI) [Ogawa and Sung, 2007]. Task fMRI lets the subject do one or

3



Figure 1.3: Blood-oxygen-level dependent (BOLD) demonstration

several specific and explicit tasks during MRI acquisition, while resting state fMRI

just asks the subject to be at rest. In this thesis,we only use resting state fMRI

data. Resting state fMRI is a method of functional brain imaging that can be used

to evaluate regional interactions [Biswal, 2012].

Functional connectivity is the connectivity between brain regions that share

functional properties. More specifically, it can be defined as the temporal correlation

between two resting state BOLD signals [Biswal et al., 1997].

1.1.3 Diffusion MRI

Diffusion MRI is MRI method which allows the mapping of the diffusion process of

water molecules in biological tissues like human beings, in vivo and non-invasively

[Johansen-Berg and Behrens, 2013]. Molecular diffusion in tissues is not free, but

reflects interactions with many obstacles like fibers [Hagmann et al., 2006]. That’s

why Diffusion MRI could reflect anatomical structures of brain.

There are lots of different types of diffusion MRI including Diffusion Tensor

Imaging (DTI) [Le Bihan et al., 2001], High angular resolution diffusion imaging

(HARDI) [Tuch et al., 2002] and Diffusion spectrum magnetic resonance imaging

(DSI) [Wedeen et al., 2008]. In this thesis,we mainly use DTI data to do analysis.

DTI is a magnetic resonance imaging technique that enables the measurement of

the restricted diffusion of water in tissue in order to produce neural tract images

[Johansen-Berg and Behrens, 2013]. After a list of processing, tractography results

could be extracted for every subject [Basser et al., 2000], as shown in Figure 1.4.
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Figure 1.4: Diffusion MRI (Diffusion Tensor Imaging) tractography demonstration

1.2 Schizophrenia Brief Introduction

Schizophrenia is a mental disorder characterized by abnormal social behavior and

failure to recognize what is real [Gottesman, 1991]. Common symptoms include

false beliefs, unclear or confused thinking, hearing voices, reduced social engagement

and emotional expression, and a lack of motivation [Kay et al., 1987]. Symptoms

typically come on gradually, begin in young adulthood, and last a long time [First,

1994]. In this thesis,we tried to do some analysis on the schizophrenia effects on the

brain.

Schizophrenia affects around 0.3% ∼ 0.7% of people at some point in their

life [van den Heuvel et al., 2009]. The incidence is comparatively quite high and

schizophrenia does affect our society. For example, the winner of the 1994 Nobel

Prize for Economics and one of the best mathematician in our history, John Nash

got schizophrenia and fight against it for around half a century.

A number of attempts have been made to explain the link between altered

brain function and schizophrenia [Gottesman, 1991]. Studies using neuropsycholog-

ical tests and brain imaging technologies to examine functional differences in brain

activity have shown that differences seem to most commonly occur in the frontal

lobes, hippocampus and temporal lobes [Kircher and Thienel, 2005]. Unfortunately,
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the authentic understanding of schizophrenia is still in mystery [Andreasen et al.,

2012].

1.3 Schizophrenia Effects on Brain

Optimal function of the human brain relies on the cooperation of constituent brain

regions. The degree of cooperative activity between two brain regions at rest, mea-

sured using functional connectivity [Friston, 1994], varies greatly across the brain.

A complete lack of spatial variability in functional connectivity indicates that the

entire brain is either acting as a single homogenous unit without regional special-

ization, or the constituent brain regions are entirely asynchronous, without inte-

gration. In contrast, optimum spatial variability in connectional strength reflects

simultaneous integration and segregation across distributed brain regions. This di-

versity forms the core of the overall topology of the complex functional architecture

of human brain [Bullmore and Sporns, 2009][Tononi et al., 1994] altered in neu-

ropsychiatric disorders such as schizophrenia [Alexander-Bloch et al., 2010][Fornito

et al., 2012][Rubinov and Bullmore, 2013][van den Heuvel et al., 2013].

In healthy controls, presence of structural connectivity (putative axonal link-

age assessed using diffusion tensor imaging) strongly predicts the strength of func-

tional connectivity [Damoiseaux and Greicius, 2009][Honey et al., 2009][Skudlarski

et al., 2010][van den Heuvel et al., 2009]. Nevertheless, most of the pairwise func-

tional connections exist in the absence of a direct axonal linkage between two regions

[Adachi et al., 2012][Damoiseaux and Greicius, 2009][Honey et al., 2009]. In general,

functional links that have a structural basis are stronger and involve anatomically

more proximal regions [Honey et al., 2009]. In contrast, functional links between

regions that do not share direct axonal linkage appear to be weaker, and involve

spatially distant regions [Adachi et al., 2012][Honey et al., 2009]. Functional links

in the absence of one-to-one axonal connections may emerge from directed polysy-

naptic connections or shared inputs/outputs involving a third region [Adachi et al.,

2012]. Such indirect, weaker functional links may represent a connectional archi-

tecture that is physiologically distinct from the links with a more direct structural

basis.

Several studies observe a reduction in overall strength of functional con-

nectivity in schizophrenia [Argyelan et al., 2014][Bassett et al., 2012][Lynall et al.,

2010], while both increased [Skudlarski et al., 2010][Whitfield-Gabrieli et al., 2009]

and decreased [Bluhm et al., 2007][Liang et al., 2006] connectivity involving dif-

ferent regional connections are noted across the brain [Karbasforoushan and Wood-
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ward, 2012][Pettersson-Yeo et al., 2011][Rubinov and Bullmore, 2013]. The presence

of both hyper- and hypoconnectivity involving different regional connections [Guo

et al., 2014][Skudlarski et al., 2010][Venkataraman et al., 2012][Woodward et al.,

2012] indicates a large diversity in the distribution of connectivity across the func-

tional links in schizophrenia. If such a diversification lies at the core of the dynamic

pathophysiological process defining the presence of schizophrenia in an individual,

then for a randomly chosen pair of brain regions, the connectional strength is likely

to be less predictable in a patient compared to a healthy control.

Moreover, schizophrenia is characterized by the co-occurrence of positive,

negative and cognitive symptoms [Rolls and Deco, 2010] which appear to be related

to altered glutamatergic and GABAergic synaptic connectivity in several cortical

areas [Coyle, 2006][Rolls, 2012][Rolls et al., 2008][Stan and Lewis, 2012]. Over the

last two decades, much neuroimaging evidence for structural and functional deficits

in the brain has strengthened the notion of dysconnectivity in schizophrenia [Friston

and Frith, 1995][Frith, 1995]. The bulk of evidence for pathological dysconnectiv-

ity in schizophrenia comes from functional Magnetic Resonance Imaging (fMRI)

studies [Bluhm et al., 2007][Meyer-Lindenberg et al., 2005][Whitfield-Gabrieli et al.,

2009][Zhou et al., 2007]. These numerous small to medium-sized studies have in-

dicated that schizophrenia is unlikely to be a disorder of a single or small-set of

functional connections. Instead, the emerging picture is suggestive of a widespread

change in the brain’s network architecture, affecting the diversity (or complexity)

that is characteristic of normal brain functions [Bassett et al., 2013][Lynall et al.,

2010].

1.4 Functional Connectivity Entropy (FCE)

1.4.1 Functional Connectivity Entropy Origin

There is now a consensus that ageing is multifactorial; it is the joint outcome of

genetics, the accumulation of random accidents and irreparable losses in molecular

fidelity [Hayflick, 2007]. There is ample evidence that the genetic component alone

plays a critical role in longevity determination [Christensen et al., 2006]. This is

shown in regulatory and structural changes that occur with age in miRNA [Lanceta

et al., 2010], mRNA [Rea and Johnson, 2003], ncRNA [Bates et al., 2009], protein

expression [Morrow et al., 2004] and functional MRI [Zuo et al., 2010] in many

species. Intuitively, these changes could be expected to correspond to changes in the

functioning of the brain. But in what precise sense? This is the question we address

in this work. The answer involves an explicitly quantitative way of characterizing
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the intrinsic ageing process of the human brain.

We used entropy to quantify the functioning of the brain in individuals of

different ages. Accordingly, we shall describe this as the functional connectivity

entropy (FCE).

To motivate the definition of functional connectivity entropy, let us consider

the following example of an analysis.

We parcellated the whole brain of three individuals into 90 regions, based on

the AAL atlas [Tzourio-Mazoyer et al., 2002]. These were healthy males aged 24, 49

and 69 years, which we describe as ‘young’, ‘middle-aged’ and ‘elderly’. For these,

we calculated the correlation coefficient between the BOLD signal of the thalamus

in the right hemisphere and each of 45 brain regions in the left hemisphere (Table

2.2). These signals are represented in the left-hand of panels (a), (b) and (c) of

Figure 1.5. Differences between the three individuals show up which are found in

more extensive analyses.

The distribution of the correlation coefficients of the elderly male (red his-

togram in Figure 1.5d) is more widely spread than that of the young male (blue

histogram) and middle-aged male (white histogram). This leads to the elderly male

having a larger functional connectivity entropy than that of the middle aged male,

who has a yet larger functional connectivity entropy than that of the young male

(see Figure 1.5d). This implies that the dispersion of correlations, between the right

thalamus and a region of the brain in the left hemisphere, is typically an increasing

function of age. This conclusion is found to hold in a full analysis, where a pairwise

comparison of all regions in the brain is used, rather than just comparing regions in

the left hemisphere with the right hemispheric thalamus.

Entropy characterizes the degree of underlying randomness of a random vari-

able. Random variables with small entropies have a high level of predictability and

hence a low level of randomness. By contrast, large entropies correspond to low

levels of predictability and high levels of randomness [Vaseghi, 2008].

As outlined in Section 2.5, we view the brain as being divided (parcellated)

into a number of distinct regions. For each pair of distinct brain regions, we cal-

culated the correlation coefficient of their neuronal activity; this characterizes the

functional coupling of the two brain regions. The resulting set of correlation coef-

ficients generates a frequency distribution. The correlation coefficient of a distinct

pair of brain regions, that have been randomly selected, can be regarded as a random

variable that follows this frequency distribution. we use the dispersion or variability

of this random variable as a measure of the functional connectivity entropy (c.f.,

complexity) of the neuronal dynamics of the brain.
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Figure 1.5: The Origin of the Functional Connectivity Entropy
This figure presents time series from BOLD signals. The left-hand sides of panels
(a), (b) and (c) contain 45 time series from brain regions of the left hemisphere.
The vertical location of a time series, from a given brain region, is given by value of
the correlation coefficient of that region with the right thalamus. Panel (a) is from
a healthy young male (age 24 years), panel (b) is from a healthy middle-aged male
(age 49 years) and panel (c) is from a healthy elderly male (age 69 years). The two
horizontal red lines in panels (a), (b) and (c) give, separately, the mean over either
positive or negative correlation coefficients. Thus the separation of these lines is
a measure of the width of the distribution. In the right halves of panels (a), (b)
and (c), the time series of the right thalamus is plotted (using a different vertical
scale). Panel (d) gives a histogram of the correlation coefficients of the young male
(in blue), the middle-aged male (in white) and the elderly male (in red).
This figure is reproduced from Yao et al. [2014].

9



The functional connectivity entropy effectively measures the dispersion (or

spread) of functional connectivities that exist within the brain. we initiated this

research under the assumption that the dispersion of functional connectivities is

related to the age of the brain.

We collected fMRI data from 1248 individuals, ranging from 6 to 76 years of

age. This provided a unique opportunity to characterize the ageing process of the

human brain.

In the analysis of the fMRI dataset of differently aged individuals, we found

that, at the population level, the functional connectivity entropy of the human brain

has a definite tendency to increase over time. This can be viewed as there being a

higher level of randomness in the way different brain-regions functionally interact

with one another.

This section is modified from Yao et al. [2014].

1.4.2 Functional Connectivity Entropy in Schizophrenia

Most functional imaging studies in schizophrenia have predominantly focused on

how the strength or magnitude of correlations between brain regions is affected in

patients when compared to controls. Considering the overall variability in the con-

nectional strength within the brain can capture significant amount of information

on normal and abnormal brain function. we have shown that the information ob-

tained using a measure of entropy predicts age-related changes to the connectional

architecture of the brain [Yao et al., 2014]. Similarly, measuring the entropy of

the functional connectivity dispersion can provide a systems neuroscience perspec-

tive to the neurobiological basis of schizophrenia. Furthermore, most studies of

large-scale networks in psychiatry have investigated abnormalities pertaining exclu-

sively to connections surviving a specified correlation threshold, thus ignoring the

weaker links. The shortcoming of such approaches was recently highlighted by Bas-

sett et al. [2013], who showed that in a relatively small sample of 29 subjects with

schizophrenia, the region-specific diversity of connectional strength and the state of

organization of weak (rather than strong) connections were the crucial factors to

discriminate patients with schizophrenia from controls.

The unpredictability of bivariate functional connectivity across the entire

brain can be quantified using an index of entropy based on the principles of infor-

mation theory (Shannon). Functional Connectivity Entropy (FCE) is a measure of

randomness of the strength of functional connectivity, across all possible pairwise

interregional connections in the brain [Yao et al., 2014]. This is different from the

unpredictability or complexity across time that has been investigated previously in
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schizophrenia [Bassett et al., 2012][Fernndez et al., 2013]. Higher FCE represents the

presence of increased variability in connectional strength and has been observed in

association with healthy ageing [Yao et al., 2014]. On the basis of a computational

model, altered FCE has been attributed to a reduction in the pool of excitatory

neurons [Yao et al., 2014], an observation that is highly relevant to the study of

schizophrenia [Anticevic et al., 2013].

1.5 Hypothesis

Recent observations also suggest that weak (rather than strong) [Bassett et al., 2012]

and long-distance (rather than short distance) functional links [Guo et al., 2014] are

crucial to discriminate patients with schizophrenia from controls. This raises the

possibility that the connectional architecture involving functional links that have no

direct structural connectivity may be preferentially affected in schizophrenia.

In this thesis, we firstly showed the meanings of Functional Connectivity En-

tropy (FCE). Afterwards, we represented the FCE property in schizophrenia. Then,

we tested the hypothesis that the randomness of functional connectivity (measured

using FCE) is abnormal in schizophrenia, and this abnormality is specific to func-

tional links with no direct structural connectivity. we also investigated the rela-

tionship between FCE and symptom burden in patients. Given its onset around

adolescence, various dynamic changes coinciding with brain maturation take place

in the initial few years in the course of schizophrenia, giving rise to several unstable

and inconsistent neurobiological patterns that stabilized during the later stage of

the illness [Pantelis et al., 2009]. In particular, the architecture of functional connec-

tivity in patients is significantly affected by duration of illness. Patients with longer

duration of illness show reduced segregation and integration [Liu et al., 2008], and

reduced connectivity among core brain hubs [Collin et al., 2014]. In light of these

observations, we expected a moderating effect of illness duration on FCE.

The key story of this thesis has already been published on Yao et al. [2015].
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Chapter 2

Research Methodology

The information in Section 2.1, 2.2 and 2.11 have been also demonstrated in Yao

et al. [2015], while those in Section 2.5.1, 2.7.1 and 2.8 have been mentioned in Yao

et al. [2014].

2.1 Participants

This sample has been previously reported in a published article [Palaniyappan et al.,

2013]. Thirty-four patients satisfying DSM-IV (Diagnostic and Statistical Manual

of Mental Disorders) criteria for schizophrenia (n = 28) or schizoaffective disorder

(n = 6) and thirty-two age, gender and parental socio-economic status [Rose and

Pevalin, 2003] matched healthy controls were included. Patients were recruited

from the community-based mental health teams (including Early Intervention in

Psychosis teams) in Nottinghamshire and Leicestershire, UK. The diagnosis was

made in a clinical consensus meeting in accordance with the procedure of Leckman

et al. [1982], using all available information including a review of case files and a

standardized clinical interview (SSPI) [Liddle et al., 2002]. All patients were in

a stable phase of illness (defined as a change of no more than ten points in their

Global Assessment of Function [GAF] score, assessed 6 weeks prior and immediately

prior to study participation). The study was given ethical approval by the National

Research Ethics Committee, Derbyshire, UK. All volunteers gave written informed

consent. Clinical and demographic characteristics of this sample are presented in

Table 2.1.

Patients were interviewed on the same day as the scan by a research psy-

chiatrist and clinical severity of psychosis over the previous week was assessed on

the basis of total SSPI scores. Duration of illness was estimated from the time of
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reported onset of psychotic symptoms (Criterion A of DSM-IV schizophrenia), on

the basis of information from case notes and clinical interview. The patient sample

was divided into early-stage (<5 years duration) and later-stage (>5 years) illness,

based on the clinical notion of ‘critical period’ of psychosis during which interven-

tions can modify outcome [Crumlish et al., 2009][McGorry, 2002][Mcgorry et al.,

2008] and clinical stability is achieved [Levie, 1979]. Thirty-two out of Thirty-four

patients were receiving antipsychotic treatment at the time of scan. The chlorpro-

mazine equivalent doses were calculated using data presented by Woods [2003] and

Chong et al. [2000] (for clozapine). In addition, 25 mg risperidone depot injection

every 14 days was considered equivalent to 4 mg oral risperidone per day, in accor-

dance with the recommendation of the British National Formulary [Committee and

of Great Britain, 2012].

Table 2.1: Clinical and demographic features
NS-SEC: National Statistics Socio-economic Classification
CPZ equivalents: Chlorpromazine equivalents
This table is modified from Yao et al. [2015].

Patients (n=34) Controls (n=32) t/χ2, p

Age 34.1 ± 9.1 33.4 ± 9.1 t=0.30, p=0.76

Gender 25/9 22/10 χ2=0.18, p=0.67

Mean,parental NS-SEC (SD) 2.45 ± 1.5 2.22 ± 1.4 t=0.24, p=0.51

Handedness,(right/left) 29/5 28/4 χ2=0.07, p=0.79

SOFAS score 54.4 ± 13.2 - -

Antipsychotic,dose (CPZ equivalents) 694.5 ± 715.8 - -

Median,duration of illness in years (range) 6.0(28) - -

Total,SSPI score 11.8 ± 7.7 - -

2.1.1 Excluded subjects

The original sample consisted of 42 patients and 40 controls, but (3 patients, 5

controls) subjects were excluded due to movement artefacts in fMRI, 1 patient had

poor quality DTI due to excessive movement, 2 patients aborted scans (1 DTI, 1

fMRI), and in 2 patients and 3 controls tractography was not successful due to image

acquisition errors. There were no differences in the duration of illness (mean (SD)

in years in the excluded group=8.9(4.5), included group=9.6(8.1), p=0.8), total

SSPI score (mean (SD) in the included group=11.8(7.7), excluded group=11.6(6.2),

p=0.94) or antipsychotic dose (mean (SD) in the excluded group=694.5(716), in-

cluded group=485.7(357), p=0.46) between patients who were included or excluded

in the analysis.
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2.2 MRI Acquisition

Diffusion-weighted images were acquired using a single-shot, spin-echo, echo planar

imaging (EPI) sequence in alignment with the anterior commissure - posterior com-

missure (AC-PC) plane. The acquisition parameters were as follows: Repetition

Time (TR) = 8.63 s, Echo Time (TE) = 56.9 ms, voxel size = 2mm isotropic, 112 ×
112 matrix, Field of View (FoV) = 224 × 224 × 104, flip angle = 90o, 52 slices, 32

directions with a b-factor of 1000s/mm2, EPI Factor = 59, total scan time = 6.29

min.

For resting-state fMRI, 240 time points were acquired during the 10 minutes

resting phase wherein the subjects were instructed to keep their eyes open and to

relax, without the need to focus on any particular task. Dual-echo gradient-echo

echo-planar images (GE-EPI) were acquired to enhance sensitivity, using 8-channel

SENSE head coil (SENSE factor 2, anterior-posterior direction, TE1/TE2 25/53

ms, flip angle 85o, 255 × 255 mm field of view, in-plane resolution = 3 mm × 3 mm,

slice thickness = 4 mm, TR = 2500 ms; 40 descending axial slices, 240 time points

per acquisition). Scans were inspected immediately after each acquisition, and if

motion was detected, scans were repeated.

A magnetisation prepared rapid acquisition gradient echo image (MPRAGE

T1) with 1 mm isotropic resolution, 256 × 256 × 160 matrix, TR/TE 8.1/3.7 ms,

shot interval 3 s, flip angle 8o, SENSE factor 2 was also acquired for each participant

for image registration and to define anatomical regions for tractography.

2.3 DTI processing

For DTI images, we first used FMRIB Software Library v5.0 (http://fsl.fmrib.

ox.ac.uk/fsl) [Jenkinson et al., 2012] to remove the eddy-current and extract

the brain mask from the B0 image. Then, we used TrackVis [Wang et al., 2007]

to obtain the fiber images by the deterministic tracking method, with anatomical

regions defined using the AAL convention [Tzourio-Mazoyer et al., 2002] (Table 2.2)

on the basis of co-registered T1 image from each subject. This enabled us me to

determine the presence of streamlines connecting every pair of brain regions. All

the processes were performed using the PANDA suite [Cui et al., 2013].

If two brain regions A and B have one or more streamlines directly connecting

each other, then this link AB is regarded as a direct or primary structural path. In

contrast, if two brain regions X and Y have no direct connections, but share a direct

connection with a common third region Z, then the link XY can be regarded as
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indirect secondary structural path. If two brain regions K and L have neither direct

connections, nor a common third region, but are connected to each other indirectly

by virtue of being connected a common direct link (for example, K connects directly

to A, A connects directly to B, B connects directly to L), then the link KL can be

regarded as indirect tertiary structural path. To study the effect of the minimum

streamline threshold, we varied the minimum from one to three and repeated the

primary analysis (group comparisons). The results, shown in Section 4.5.3, indicated

that the structural paths were robust across these thresholds.

Thus, for every subject, we identified primary, secondary and tertiary paths

on the basis of the DTI fiber streamlines. An illustration of these paths is shown in

Figure 2.1.

Table 2.2: Names and abbreviations of AAL brain regions
Regions Abbr. Regions Abbr.

Amygdala AMYG Orbitofrontal cortex (middle) ORBmid

Angular gyrus ANG Orbitofrontal cortex (superior) ORBsup

Anterior cingulate gyrus ACG Pallidum PAL

Calcarine cortex CAL Paracentral lobule PCL

Caudate CAU Parahippocampal gyrus PHG

Cuneus CUN Postcentral gyrus PoCG

Fusiform gyrus FFG Posterior cingulate gyrus PCG

Heschl gyrus HES Precentral gyrus PreCG

Hippocampus HIP Precuneus PCUN

Inferior occipital gyrus IOG Putamen PUT

Inferior frontal gyrus (opercula) IFGoperc Rectus gyrus REC

Inferior frontal gyrus (triangular) IFGtriang Rolandic operculum ROL

Inferior parietal lobule IPL Superior occipital gyrus SOG

Inferior temporal gyrus ITG Superior frontal gyrus (dorsal) SFGdor

Insula INS Superior frontal gyrus (medial) SFGmed

Lingual gyrus LING Superior parietal gyrus SPG

Middle cingulate gyrus MCG Superior temporal gyrus STG

Middle occipital gyrus MOG Supplementary motor area SMA

Middle frontal gyrus MFG Supramarginal gyrus SMG

Middle temporal gyrus MTG Temporal pole (middle) TPOmid

Olfactory OLF Temporal pole (superior) TPOsup

Orbitofrontal cortex (inferior) ORBinf Thalamus THA

Orbitofrontal cortex (medial) ORBmed

2.3.1 Brain structural networks

In this thesis, we used diffusion tensor imaging (DTI), but not High angular resolu-

tion diffusion imaging (HARDI) or diffusion spectrum magnetic resonance imaging

(DSI) to detect structural connectivity. The main reason is that DTI images is eas-

ier to be acquired with simpler requirement for sequence designing in MRI machine

and shorter scanning time, compared with HARDI and DSI. Moreover, DTI scan-
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Figure 2.1: Three types of structural paths defined using diffusion tractography
(a): whole-brain fiber connection network construction by Diffusion Tensor Imag-
ing data; (b): Heschl gyrus (HES) and Insula (INS) are directly connected with
each other through white matter tracts. HES ↔ INS link is a primary structural
path (c): Heschl gyrus and Postcentral gyrus (PoCG) are indirectly linked (discon-
tinuous arrow) through white matter tracts (continuous arrows) that connect HES
and PoCG with the Insula. Though there are no direct connections between HES
and PoCG, INS acts as a common third region. HES ↔ PoCG link is termed as
a secondary structural path. (d): Heschl gyrus and Precentral gyrus (PreCG) are
indirectly linked (discontinuous arrow) through white matter tracts (continuous ar-
rows) that connect HES with INS, INS with PoCG and PoCG with PreCG. There
are no direct connections or a single common third region between HES and PreCG.
HES ↔ PreCG link is termed as a tertiary structural path.
This figure is reproduced from Yao et al. [2015].
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ning is comparatively technology with fewer noises [Johansen-Berg and Behrens,

2013] to get access to more reliable analysis. Thus, DTI images were chosen here

to extract brain structural connectivity. The preprocessings of DTI imaging have

been described in details in the last section, Section 2.3. We used streamline de-

terministic tracking method to detect structural connectivity for it is simple and

stable [Johansen-Berg and Behrens, 2013]. However, the streamline results some-

times show large variances in the same link of different subjects [Savadjiev et al.,

2008]. For some specific links, some subjects hold only several streamlines, while the

others have hundreds of or even more than one thousand of streamlines in our data

analysis. Thus, we used a binary network, but not the raw data to do analysis with

a streamline threshold. The streamline threshold is ONE in the Results sections,

which is also discussed in Section 4.5.3. We wrote a Matlab code to extract indirect

pathways including secondary and tertiary links as described in the last section,

Section 2.3, which is mainly based on matrix multiplication. Thus, we determined

all primary, secondary and tertiary pathways for all brain connecitivies. It should

be emphasized that all path calculations are based on structural (not functional)

connectivity.

2.4 fMRI processing

Weighted summation of the dual-echo images produced a single set of low-artefact

functional images [Posse et al., 1999]. Retrospective physiological correction was

then performed [Glover et al., 2015]. The first five volumes of fMRI datasets were

discarded, to allow for scanner stabilization. Further processing was then conducted

by Statistical Parametric Mapping (SPM8) (http://www.fil.ion.ucl.ac.uk/spm)

[Friston, 2007] and Data Processing Assistant for Resting-State fMRI (DPARSF)

[Yan and Zang, 2010]. After slice-timing correction and realignment to the middle

volume, the functional scans were spatially normalized using the unified segmenta-

tion approach to a standard template (Montreal Neurological Institute) and resam-

pled to 3 × 3 × 3 mm3. Data was then smoothed using a Gaussian kernel of 8 mm

full-width at half- maximum, detrended, and then passed through a band-pass filter

(0.01-0.08 Hz) to reduce low-frequency drift and high-frequency physiological noise.

Nuisance covariates including head motion, global mean signals, white matter

signals and cerebrospinal signals were regressed out from the time series. Regional

time series were extracted in each of the 90 automated anatomical labelling atlas

(AAL) [Tzourio-Mazoyer et al., 2002] based brain regions by averaging the signals

of all voxels within a region. The names of the 90 brain regions are listed in Table
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2.2, along with further details of fMRI preprocessing in Section 4.5.

2.4.1 Brain functional networks

After data preprocessing, the time series were extracted in each ROI by averaging

the signals of all voxels within the region. The 90 regions were based on the AAL

Template [Tzourio-Mazoyer et al., 2002]. After that, the Pearson’s correlation coef-

ficient of every pair of regions was calculated. Since the atlas is the AAL template

with 90 ROIs, 4005 functional connectivity links were obtained connecting every

pair of regions. Thus a whole brain functional network was constructed.

2.5 Entropy Calculation

2.5.1 Functional Connectivity Entropy Meanings

We used entropy to quantify the functioning of the brain. Accordingly, we shall

describe this as the functional connectivity entropy (FCE).

As outlined below, the brain was viewed as being divided (parcellated) into

a number of distinct regions. For each pair of distinct brain regions, we calculated

the correlation coefficient of their neuronal activity; this characterizes the functional

coupling of the two brain regions. The resulting set of correlation coefficients gener-

ates a frequency distribution. The correlation coefficient of a distinct pair of brain

regions, that have been randomly selected, can be regarded as a random variable

that follows this frequency distribution. we use the dispersion or variability (mea-

sured using Shannon’s entropy, see below) of this random variable as a measure of

the FCE (c.f., complexity) of the neuronal dynamics of the brain. we investigated,

in this work, how this measure of the FCE changes with age and in Figure 2.2, we

illustrated the behaviours of the brain’s dynamics that it captures.

Figure 2.2 (top row) shows the situation where every brain region fluctuates

over time, but is totally correlated with all other regions. In such a case, the FCE

of correlation coefficients is zero; all correlation coefficients are unity, and hence

their distribution exhibits no randomness, just predictability. A case of non-zero

FCE occurs when a range of different correlation coefficients are found between

different pairs of brain regions. An example of this case is given by the second row

in Figure 2.2. In the opposite case of completely independent or incoherent activity

in all regions, the correlation coefficients will all be zero and their dispersion (FCE)

will again be zero. This means the entropy measure is sensitive to co-ordinated

activity that is most interesting, namely activity that is intermediate between fully
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Figure 2.2: Illustration of the Functional Connectivity Entropy of the Brain
In this figure, the brain is parcellated into a number of distinct regions. Different
levels of brain activity (as measured by BOLD signals) are illustrated by different
colors in the brain slices of the figure. we use two artificial data sets of BOLD signals
to illustrate what the functional connectivity entropy captures about brain activity.
Panels (a), (b) and (c) show brain activities of brain slices at three different times
(T1, T2, T3), when the correlation coefficients between all regions of the brain are
unity. In this case, all regions of the brain have the same color since they are be-
having synchronously. Panel (d) shows the BOLD signals in different brain regions,
for this case. Panel (e) shows the corresponding distribution of the correlation co-
efficients (a ‘spike’ located at a correlation coefficient of unity). The functional
connectivity entropy for this case is zero (the minimum possible value).
Panels (f), (g) and (h) show the brain activities at three different times (T1, T2,
T3), when all correlation coefficients are generally different (so all regions have dif-
ferent colors, indicating that all regions are behaving asynchronously. Panel (i)
shows BOLD signals in different brain regions, for this case. Panel (j) shows the
corresponding distribution of the correlation coefficients (a uniform distribution).
The functional connectivity entropy in this case is the maximum possible value.
This figure is reproduced from Yao et al. [2014].

synchronised and fully incoherent brain-region dynamics.

2.5.2 Functional Connectivity Entropy Calculation Method

After data preprocessing, the time series were extracted in each ROI by averaging

the signals of all voxels within the region. The 90 regions were based on a selected

atlas, say the AAL Template. After that, we calculated the Pearson Correlation

Coefficient of every pair of regions. Since the atlas was the AAL template, we had

4005 function links connecting every two regions. Thus we constructed a whole

brain functional network.

Given 4005 different correlation numbers, we considered the values of the

correlation coefficients as a realization of a random variable. The range of this was

[-1,1]. we then defined the brain functional connectivity entropy as the relative en-
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tropy, i.e., the KL (Kullback-Leibler) divergence from the correlation distribution

to a reference Lebesgue measure. In practice, we did not have a continuous distri-

bution of correlation coefficients, but 4005 correlations values from each individual.

we thus separated all 4005 realizations into 20 class intervals of equal width, and

determined the frequency (pi) of each class. These frequencies were used to calculate

the Shannon entropy (sum of -pi*log(pi)) of the whole brain. This can be considered

as the functional connectivity entropy (FCE).

2.6 Statistical inference

We applied linear regression model [Seber and Lee, 2012] to remove age, sex and

dose effects for patients and controls, which was applied in Figure 3.10, 3.11, 4.2

and 4.3. We used Cohen’s d [Cohen, 1992] to quantify the effect size of the mean

differences.

2.7 Computational Model

2.7.1 Computational model of brain networks

A computational model from Deco et al.’s work [Deco and Jirsa, 2012] could be used

to verify the results about functional connectivity entropy.

Neuron dynamics

The global structure of the model is illustrated in Figure 2.3. Every brain region

served as a node in a large scale network, which consists of a population of excitatory

pyramidal neurons and a population of GABAergic inhibitory neurons, which are all-

to-all connected. The communication between every two nodes is through synaptic

connections between excitatory neurons in those areas.

For each brain area, an integrate-and-fire neuron model with excitatory

(AMPA and NMDA) and inhibitory (GABA) synaptic receptors was applied. The

dynamics of the membrane potential V (t) are described by:Cm
dV (t)
dt = −gm(V (t)− VL)− Isyn(t), V (t) < Vthr,

V (t) = Vreset, V (t) ≥ Vthr.
(2.1)

The total synaptic current Isyn is given by the sum of glutamatergic AMPA

external background excitatory currents (IAMPA,EXT ), AMPA (IAMPA,REC) and
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NMDA (INMDA,REC) recurrent excitatory currents, and GABAergic recurrent in-

hibitory currents (IGABA):

Isyn = IAMPA,ext + IAMPA,rec + INMDA,rec + IGABA, (2.2)

where,



IAMPA,ext(t) = gAMPA,ext(V (t)− VE)
∑

j s
AMPA,ext
j (t),

IAMPA,rec(t) = gAMPA,rec(V (t)− VE)
∑

j ω
AMPA
j sAMPA,rec

j (t),

INMDA,rec(t) =
gNMDA,rec(V (t)−VE)

1+γe−βV (t)

∑
j ω

NMDA
j sNMDA,rec

j (t),

IGABA(t) = gGABA(V (t)− VI)
∑

j ω
GABA
j sGABAj (t),

(2.3)

The gating variables sj(t) are the fractions of open channels of neurons and

are given by:



dsAMPA,ext
j (t)

dt = − sAMPA,ext
j (t)

τAMPA
+
∑

k δ(t− tkj ),
dsAMPA,rec
j (t)

dt = − sAMPA,rec
j (t)

τAMPA
+
∑

k δ(t− tkj ),
dsNMDA,rec
j (t)

dt = − sNMDA,rec
j (t)

τNMDA,decay
+ αxNMDA,rec

j (t)(1− sNMDA,rec
j (t)),

dxNMDA,rec
j (t)

dt = − sNMDA,rec
j (t)

τNMDA,rise
+
∑

k δ(t− tkj ),
dsGABAj (t)

dt = − sGABAj (t)

τGABA
+
∑

k δ(t− tkj ),

(2.4)

The sums over the k index represent all of the spikes emitted by presynaptic

neuron j (at times tkj ). The description and value of most parameters are shown in

Table 2.3.

Each local area contains 100 excitatory neurons and 100 inhibitory neu-

rons. The connection strengths between and within the populations are determined

by dimensionless strength ω. Illustrated in Figure 2.3, there are 4 different intra-

connection strength: 1© excitation (AMPA and NMDA) within excitatory neurons

ω1; 2© excitation (AMPA and NMDA) from excitatory neuron to inhibitory neuron

ω2 = 1; 3© inhibition (GABA) from inhibitory neuron to excitatory neuron ω3 = 1;

4© inhibition (GABA) within inhibitory neurons ω4 = 1. we vary ω1 systemat-

ically to see the implications for the global functional connectivity entropy. The

inter-regional connection strength ωinter is proportional to number of fibers linking

every two regions. The neuroanatomical matrix whose element is fiber number, is

obtained by Diffusion Tensor Imaging. Here, we used averaged structural matrix
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from 46 healthy people, which is showed in Figure 2.4.

All neurons always received an external background input from Next = 800

external neurons emitting independent Poisson spike trains at a rate of 3Hz. More

specifically, for all neurons inside a given population p, the resulting global spike

train, which is still Poissonian, had a time-varying rate νpext(t), governed by,

τn
dνpext(t)

dt
= −(νpext(t)− ν0) + σ

√
2τnξ

p(t), (2.5)

where τn = 300ms, ν0 = 2.4kHz, σν = 0.2 is the standard deviation of νpext(t), and

ξp(t) is normalized Gaussian white noise.

Table 2.3: Neural and synaptic parameters
Excitatory neuron Inhibitory neuron

Membrane capacitance Cm 0.5 nF 0.2 nF Excitatory reversal potential VE 0 mV

Leak conductance gm 25 nS 20 nS Inhibitory reversal potential VI -70 mV

Resting potential VL -70 mV -70 mV Decay time τAMPA 2 ms

Threshold potential Vthr -50 mV -50 mV Rise time τNMDA,rise 2 ms

Reset potential Vreset -55 mV -55 mV Decay time τNMDA,decay 100 ms

Refractory time τref 2 ms 1 ms Decay time τGABA 10 ms

Synaptic conductance

gAMPA,ext 2.496 nS 1.944 nS α 0.5 kHz
gAMPA,rec 0.104 nS 0.081 nS β 0.062
gNMDA,rec 0.327 nS 0.258 nS γ 0.28
gGABA 2.45 nS 1.2 nS

BOLD signal

The simulation of the fMRI BOLD signal is computed by means of the Balloon-

Windkessel hemodynamic model Friston et al. [2003]. The BOLD-signal of each

region is driven by the level of neuronal activity summed over all neurons in both

populations (excitatory and inhibitory populations) in that particular region. In

all simulations, neuronal activity is given by the rate of spiking activity in a time

window of 1 ms. In brief, for the i’th region, neuronal activity zi causes an increase

in a vasodilator signal si that is subject to autoregulatory feedback. Inflow fi

responds in proportion to this signal with concomitant changes in blood volume νi

and deoxyhemoglobincontent qi. The equations relating these biophysical variables

are: 

dsi(t))
dt = εizi − kisi − γi(fi − 1),

dfi(t)
dt = si,

τi
dνi(t)
dt = fi− ν1/αi ,

τi
dqi(t)
dt = fi[1−(1−ρi)1/fi ]

ρi
− qiν

1/α
i
νi

,

(2.6)

where ρ is the resting oxygen extraction fraction. The BOLD signal is taken to
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Figure 2.3: Schematic representation of the brain network
Each brain area is comprised of excitatory neurons (red triangles) and inhibitory
interneurons (blue circles). 1© 2© 3© 4© represent the four different intra-connection
during each brain area, and 5© describes the inter-connection between different brain
area, which depends on DTI.
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Figure 2.4: Neuroanatomical connectivity matrix
Neuroanatomical connectivity matrix, obtained by DTI after averaging across 46
human subjects.
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be a static nonlinear function of volume and deoxyhemoglobin that comprises a

volume-weighted sum of extra- and intravascular signals:

yi = V0[7ρi(1− qi) + 2(1− qi
νi

) + (2ρi − 0.2)(1− νi)], (2.7)

where V0 = 0.02 is the resting blood volume fraction. The biophysical parameters

were taken as εi = 0.2, ki = 0.65, γi = 0.41, τi = 0.98, α = 0.32ρi = 0.34.

Simulation of the functional connectivity entropy

After the simulated BOLD time series were obtained, the global signal (average over

all regions) was regressed out. Figure 2.5 shows typical temporal evolution of the

simulated BOLD signal (after regression) for several brain regions. we then calcu-

lated the simulated functional connectivity by calculating the correlation matrix of

the BOLD time series. Figure 2.6 and 2.7 plot an example of stimulated functional

connectivity matrix and corresponding distribution of correlation, respectively. Us-

ing the calculation method of functional connectivity entropy, we could compare the

simulated functional connectivity entropy with that from fMRI data.

When we increase intra-excitatory connection strength ω1 with other pa-

rameters fixed, the firing rate of excitatory neurons in the whole brain increase.

(Firing-rate amplification of inhibitory neurons can be ignored compared to that of

excitatory neurons.) Based on the fact that the firing rate of one excitatory neuron,

in resting state, is about 3Hz and that the model of one neuron here could also

described the dynamics of several neurons or a neuron mass, we can calculate the

actual excitatory neuron number in each brain region by the 100 times mean firing

rate divided by 3Hz. (Here we just use the averaged firing rate of all excitatory

neurons in the whole brain, not in each brain region.) Figure 2.8 illustrates the

positive correlation between actual excitatory neuron number and intra-excitatory

connection strength. The two red dashed lines show the range of connection strength

[1.78, 1.81], which makes the corresponding entropy match the human data. Based

on the least squares line (black dashed line), the neuron number range is limited to

[888, 1130] (indicated by green text arrows).

2.7.2 Computational model in Schizophrenia

When we reduced the excitatory NMDA connection strength from the excitatory

population to the inhibitory population within each brain region with the other

parameters fixed, the firing rate of the excitatory neurons averaged across the whole

brain increased, as illustrated in Figure 2.9.
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Figure 2.5: Simulated BOLD signals
Simulated BOLD signal for thalamus (blue), Inferior temporal gyrus (red) and In-
sula(green) when intra-excitatory connection strength ω1=1.81.
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Figure 2.6: Simulated functional connectivity matrix
Simulated functional connectivity matrix when intra-excitatory connection strength
ω1=1.81.
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Figure 2.7: The distribution of correlation coefficients
The distribution of correlation coefficients when the intra-excitatory connection
strength ω1=1.81.
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Figure 2.8: Excitatory neuron number versus intra-excitatory connection strength
ω1

When we reduced the excitatory NMDA connection strength from all excita-

tory neurons (i.e. E-to-E and E-to-I, where E indicates excitatory and we indicates

inhibitory) by 8%, the firing rate of the excitatory neurons averaged across the whole

brain decreased by 50%.

2.8 Methods for Functional Connectivity Entropy Ori-

gin: Ageing Problem (Section 3.1)

2.8.1 Subjects

Our meta-analysis included 26 datasets, with a total of 1248 samples. These covered

a range of individuals from 6 to 76 years of age. Samples of poor quality were

excluded.

Note that 22 of these datasets came from the 1000 Functional Connec-

tomes Project (http://fcon_1000.projects.nitrc.org/), where data came from

all over the world including China, Britain and United States. In these 22 data

sets, there were 842 samples, with ages ranging from 18 to 73 years, with 357 of

them male. The mean age was 28.3±12.3 years. Details are listed in Table 2.4. The

fMRI scans performed by 1000 Functional Connectomes Project were carried out in

accordance with the guidelines issued by the local ethical committees of the various
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Figure 2.9: Average firing rate versus percent reduction of NMDA strength from
the excitatory to inhibitory (E-to-I) population
Here red and blue dots represent different trials for excitatory and inhibitory neu-
rons, respectively. The black and green lines are the corresponding least-squares fit.
The linear correlation between the excitatory firing rate and the connection strength
is statistically significant (10−20), while this is not the case for the inhibitory neu-
rons.
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research institutes, which can be found in their website. And informed consent was

obtained from all subjects.

Table 2.4: Detailed information of 22 databases from the FCON 1000 Project
This table is modified from Yao et al. [2014].

Database Quantity Male/Female Age (years)
Atlanta 27 12/15 29.9±8.6
Baltimore 23 8/15 29.3±5.5
Beijing Zang 193 75/118 21.2±1.8
Berlin Margulies 23 12/11 30.1±5.1
Cambridge Buckner 192 71/121 21.1±2.3
Cleveland 31 11/20 43.5±11.1
Dallas 24 12/12 42.6±20.1
ICBM 36 15/21 38.2±17.6
Leiden 2180 10 10/0 23.4±2.5
Leiden 2200 19 11/8 21.7±2.6
Leipzig 37 16/21 26.2±5.0
Milwaukee b 46 15/31 53.5±5.8
Munchen 11 6/5 66.6±3.4
NewHeaven a 18 10/8 31.6±10.3
NewHeaven b 16 8/8 26.9±6.3
Newark 18 9/9 24.3±4.0
Orangeburg 20 15/5 40.7±11.0
Oulu 22 7/15 21.3±0.6
PaloAlto 17 2/15 32.5±8.1
Pittsburgh 14 8/6 36.0±8.6
Queensland 18 11/7 26.3±3.7
Saintlouis 27 13/14 25.3±2.3
Whole Database 842 357/485 28.3±12.3

Another 2 datasets were from the ADHD-200 Consortium for the global com-

petition (http://fcon_1000.projects.nitrc.org/indi/adhd200/). One of these

was from the Phyllis Green and Randolph Cowen Institute for Pediatric Neuro-

science at the Child Study Center, New York University Langone Medical Center,

New York, New York and the Nathan Kline Institute for Psychiatric Research, Or-

angeburg, NY, USA. The other came from the Institute of Mental Health, Peking

University and the National Key Laboratory of Cognitive Neuroscience and Learn-

ing, Beijing University. Since they were both concerned about ADHD classification,

their data were ADHD patients versus controls (normal individuals). we cannot

apply the data from individuals with ADHD disorder, since their brains may be

different from normal people, and we used only the controls, namely the normal

people from the 2 datasets. In total, there were 241 samples, with 134 of them

male. Their mean age was 11.83±2.47 years, so they were teenagers/children. Since

most samples in the other dataset were more than 18 years old, we selected the two
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datasets to complete the analysis about ageing in the range of 6 years to 18 years

old. The fMRI study in Peking University was approved by the Research Ethics

Review Board of Institute of Mental Health, Peking University. Informed consent

was also obtained from the parent of each subject and all of the children agreed to

participate in the study. The fMRI scans from NYU were carried out in accordance

with the guidelines issued by the local ethical committee, and informed consent was

obtained from all subjects.

There was also one dataset of elderly people, covering 117 samples from the

Department of Psychiatry, Tongji Hospital, Tongji University School of Medicine

and Department of Biological Psychiatry, Shanghai Mental Health Centre, Shang-

hai Jiao Tong University School of Medicine. In this dataset, 73 were male. The

mean age was 70.42±3.52 years. With a designed health status checklist, we ex-

cluded individuals with: obvious cognitive decline, a diagnosis of AD, serious func-

tional decline (having difficulty with independent living), as well as individuals with

major medical or psychiatric conditions such as cancer, current chemotherapy/ra-

diation treatment, major depression, and schizophrenia. This study was approved

by the Human Research Ethics Board of Tongji Hospital in Shanghai, China and

all participants gave written informed consent before being enrolled in this part.

The last dataset was from the Department of Biomedical Imaging and Ra-

diological Sciences, National Yang-Ming University, Taipei, Taiwan and the Brain

Connectivity Laboratory, Institute of Neuroscience, National Yang-Ming University,

Taipei, Taiwan. There were 48 samples in the dataset. All were male and covered a

range of ages from 21 to 76 years. The mean age was 43.8±17.0 years and all indi-

viduals were normal and healthy. Moreover, the T1-image and DTI data of these 48

samples were also applied in this thesis. The fMRI scans from National Yang-Ming

University were carried out in accordance with the guidelines issued by the local

ethical committee, and informed consent was obtained from all subjects.

2.8.2 Data Acquisition

The various ways that data were acquired in the 22 datasets from the 1000 Functional

Connectomes project can be found in their website, http://fcon_1000.projects.

nitrc.org/. Moreover, the acquisition of the two datasets from the ADHD-200

Consortium for the global competition was in their website, http://fcon_1000.

projects.nitrc.org/indi/adhd200/.

In the dataset from Shanghai, all people underwent functional scanning using

a Siemens Trio 3T scanner at East China Normal University, Shanghai, China. Foam

padding was used to minimize head motion for all subjects. Functional images
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were acquired using a single-shot, gradient-recalled echo planar imaging sequence

(repetition time = 2000 ms, echo time = 25 ms and flip angle = 90 degrees). Thirty-

two transverse slices (field of view = 240 × 240 mm2, in-plane matrix = 64 × 64,

slice thickness = 5 mm, voxel size = 3.75 × 3.75 × 5 mm3), aligned along the

anterior commissureCposterior commissure line were acquired. For each subject, a

total of 155 volumes were acquired, resulting in a total scan time of 310s. Subjects

were instructed simply to rest with their eyes closed, not to think of anything in

particular, and not to fall asleep.

At last, in the dataset from Taiwan, all people underwent structural, func-

tional and diffusion tensor imaging scanning using a Siemens Trio 3T scanner at Na-

tional Yang-Ming University, Taiwan. Foam padding was used to minimize head mo-

tion for all subjects. Functional images were acquired using a single-shot, gradient-

recalled echo planar imaging sequence (repetition time = 2500 ms, echo time = 27

ms and flip angle = 77). Fourty-three transverse slices (field of view = 220 × 220

mm2, in-plane matrix = 64 × 64, slice thickness = 3.4 mm, voxel size = 3.44 ×
3.44 × 3.4 mm3), aligned along the anterior commissureCposterior commissure line

were acquired. For each subject, a total of 200 volumes were acquired, resulting

in a total scan time of 500s. Subjects were instructed simply to rest with their

eyes closed, not to think of anything in particular, and not to fall asleep. The dif-

fusion tensor images covering the whole brain were obtained using spin echo-based

echo planar imaging sequence, including 30 volumes with diffusion gradients applied

along 30 non-collinear directions (b = 1000 s/mm2) and three volumes without dif-

fusion weighting (b = 0 s/mm2). Each volume consisted of 63 contiguous axial slices

(repetition time = 11000 ms, echo time = 104 ms, flip angle = 90 degrees, field of

view = 100 × 100 mm2, matrix size = 128 × 128, voxel size = 2 × 2 × 2 mm3).

To improve the signal to noise ratio, the entire sequence was repeated three times.

Subsequently, high-resolution T1-weighted anatomical images were acquired in the

sagittal orientation using a magnetization-prepared rapid gradient-echo sequence

(repetition time = 3500 ms, echo time = 3.5 ms, flip angle = 7, field of view = 256

× 256 mm2, matrix size = 256 × 256, slice thickness = 1 mm, voxel size = 1 × 1 ×
1 mm3 and 192 slices)on each subject.

2.8.3 Data Preprocessing

Firstly, we dealt with the two datasets from the controls of ADHD 200 Consor-

tium. Before functional image preprocessing, the first four volumes were discarded,

to allow for scanner stabilization. Briefly, the remaining functional scans were first

corrected for within-scan acquisition time differences between slices, and are then
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realigned to the middle volume, to correct for inter-scan head motions. The func-

tional scans were then spatially normalized to a standard template [Fonov et al.,

2011] (Montreal Neurological Institute) and resampled at 4 mm 4 mm × 4 mm voxel

resolution. After normalization, the Blood Oxygenation Level Dependent (BOLD)

signal of each voxel was first detrended to remove any linear trend and then passed

through a bandpass filter (0.009 Hz < f < 0.08 Hz) to reduce low-frequency drift and

high-frequency physiological noise. Finally, nuisance covariates including head mo-

tions, global mean signals, white matter signals, and cerebrospinal fluid signals were

regressed out. An automated anatomical labeling (AAL) atlas [Tzourio-Mazoyer

et al., 2002] was used to parcellate the brain into 90 regions of interest (ROIs), with

45 in each hemisphere. The names of the ROIs and their corresponding abbrevi-

ations are listed in Table 2.2. we thank Carlton Chu, Virginia Tech’s ARC, the

ADHD-200 consortium, and the Neuro Bureau for what they have done for us.

Let us now consider all other datasets. The first 10 volumes of these datasets

were discarded, to allow for scanner stabilization and the subjects’ adaptation to

the environment. fMRI data preprocessing was then conducted by Statistical Para-

metric Mapping [Frackowiak et al., 2003] (SPM8) and a Data Processing Assistant

for Resting-State fMRI [Yan and Zang, 2010] (DPARSF). The remaining functional

scans were first corrected for within-scan acquisition time differences, between slices,

and then realigned to the middle volume, to correct for inter-scan head motions.

Subsequently, the functional scans were spatially normalized to a standard tem-

plate [Fonov et al., 2011] (Montreal Neurological Institute) and resampled to 3 ×
3 × 3 mm3. Data was then smoothed, and after normalization and smoothing,

BOLD signals of each voxel were firstly detrended, to remove any linear trend, and

then passed through a band-pass filter (0.01-0.08 Hz) to reduce low-frequency drift

and high-frequency physiological noise. Finally, nuisance covariates including head

motions, global mean signals, white matter signals and cerebrospinal signals were

regressed out from the BOLD signals. After data preprocessing, the time series

were extracted in each ROI by averaging the signals of all voxels within that region

and then linearly regressing out the influence of head motion and global signals. In

this thesis, the automated anatomical labeling atlas Tzourio-Mazoyer et al. [2002]

(AAL) was used to parcellate the brain into 90 regions of interest (ROIs) (45 per

hemisphere). The names of the ROIs and their corresponding abbreviations are

listed in Table 2.2.

On the other hand, we also applied the DTI data of the 48 samples from

Taiwan to construct the connection matrix in this neuron model. we first applied

the FSL [Jenkinson et al., 2012] to remove the eddy-current and extract the brain
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mask of B0 image. Then, we used the TrackVis [Wang et al., 2007] (http://www.

trackvis.org/) to obtain the fiber images by the deterministic tracking method.

After that, we used the T1 data to extract the native template for every person by

FSL. Thus, we could count the number of fibers connecting every two brain regions.

All the processes were performed by a pipeline named PANDA [Cui et al., 2013]

from Beijing Normal University.

2.8.4 Statistical inference

We used Pearson product-moment correlation coefficient [Rodgers and Nicewander,

1988] to describe the relationship the connection between the functional connectivity

entropy with ageing. In addition, we also used partial correlations [Rodgers and

Nicewander, 1988]. Moreover, we applied a linear regression analysis [Seber and

Lee, 2012] to determine any trends of the functional connectivity entropy of normal

people, with age.

2.9 Methods for Functional Connectivity Entropy Re-

sults in Schizophrenia (Section 3.2)

2.9.1 Subjects

This schizophrenia analysis contained three schizophrenia datasets. Two of the three

datasets had information about the symptom severity. One of these was recruited

at the National Taiwan University Hospital, and the other from the Second Xiangya

Hospital of Central South University in China. In total there were 152 patients

in these two datasets with schizophrenia (84 males / 68 females, aged 27.11 ±
9.57 years, illness duration 4.06 ± 5.43 years), identified using DSM-IV diagnostic

criteria. None of the patients had co-morbidities with other Axis-1 disorders. Two

patients were left handed and 150 right handed (Edinburgh Handedness Inventory).

Symptom severity was measured using the Positive and Negative Syndrome Scale

(PANSS) administered either one week before or after the MRI scan. However,

26 patients could not complete their PANSS assessment due to poor health. Only

22 patients were treatment naive, the remaining 130 were all taking antipsychotic

medication.

The third schizophrenia dataset also came from Second Xiangya Hospital of

Central South University in China, but had no severity information. It contained

63 patients with schizophrenia (34 males / 29 females). The patients had a mean

age of 25.00 ± 6.59 years. we wished to use the two datasets from the Second
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Xiangya Hospital to test for differences between the controls and the patients with

schizophrenia as these patients are within five years after their first onset. Thus,

we called the two datasets from the Second Xiangya Hospital the ‘Xiangya dataset’.

The two datasets with symptom severity information from the PANSS were used to

extract the relation with the brain features and the symptom severity information,

and we termed these two combined datasets the ‘PANSS dataset’.

For the controls, a total of 322 individuals were included ranging from 22

to 28 years old. These had a mean age of 24.1 ± 1.9 years old. The patients with

schizophrenia from the Second Xiangya Hospital (mean age: 24.1 ± 7.3 years) and

healthy control groups used in the main analyses were well matched by age (two-

sample t test, p = 0.95). Of the healthy controls, 142 were males. Samples with poor

data quality were excluded. 20 of these datasets came from the 1000 Functional Con-

nectomes Project (http://fcon_1000.projects.nitrc.org/), where data came

from all over the world including China, Britain and United States. In these 20

data sets, there were 312 samples, with 132 of them male. The mean age was 24.1 ±
1.9 years. Details are listed in Table 2.5. The controls also included a 21st dataset

of 10 healthy individuals from the Department of Biomedical Imaging and Radi-

ological Sciences, National Yang-Ming University, Taipei, Taiwan and the Brain

Connectivity Laboratory, Institute of Neuroscience, National Yang-Ming Univer-

sity, Taipei, Taiwan. All were male. The mean age was 24.5 ± 1.4 years. Moreover,

the T1-images and DTI data of these 10 individuals were used for the anatomical

connectivity analyses described.

Table 2.5: Detailed information of the 21 databases for the normal controls
Database Quantity

fMRI Information (TR(s) /Slices /Timepoints)
Male/Female Age (years)

(TR(s)/Slices/Timepoints)

Atlanta 15 2, 20, 205 6/9 23.0 ±2.4

Baltimore 8 2.5, 47, 123 1/7 22.0 ±2.0

Beijing Zang 69 2, 33, 225 25/44 22.0 ±1.2

Berlin Margulies 12 2.3, 34, 195 4/8 23.0 ±1.2

Cambridge Buckner 64 3, 47, 119 22/42 25.0 ±1.4

Cleveland 3 2.8, 31, 127 0/3 22.0 ±2.3

Dallas 7 2, 31, 115 3/4 27.0 ±1.7

ICBM 7 2, 23, 128 3/4 27.0 ±2.0

Leiden 2180 7 2.18, 38, 215 7/0 27.0 ±1.7

Leiden 2200 7 2.2, 38, 215 3/4 27.0 ±2.4

Leipzig 25 2.3, 34, 195 11/14 25.0 ±1.9

NewHaven a 5 1, 16, 249 4/1 23.4 ±1.1

NewHaven b 9 1.5, 22, 181 4/5 24.4 ±2.2

Newark 16 2, 32, 135 7/9 23.6 ±1.4

Orangeburg 2 2, 22, 165 2/0 25.5 ±0.7

Oulu 8 1.8, 28, 245 3/5 22.0 ±0.0

PaloAlto 6 2, 29, 235 1/5 24.2 ±1.7

Pittsburgh 5 1.5, 29, 275 5/0 26.6 ±1.5

Queensland 14 2.1, 36, 190 8/6 25.1 ±1.7

Saintlouis 23 2.5, 32, 127 13/10 25.7 ±1.8

Yang-Ming 10 2.5, 43, 200 10/0 24.5 ±1.4

Whole Database 322 N/A 142/180 24.1 ±1.9

36



Table 2.6: Detailed information for the patients
Database Quantity Male/Female Age (years) PANSS Severity Symptoms

Second XiangYa Hospital 63 34 / 29 25.00 ± 6.59 No

Second XiangYa Hospital 83 49 / 34 23.37 ± 7.83 Yes

Taiwan National Hospital 69 35 / 34 31.59 ± 9.60 Yes

2.9.2 Data Acquisition

In the dataset from the National Taiwan University Hospital, all subjects underwent

a functional MRI scan in a single session using a 3T MR system (TIM Trio, Siemens,

Germany). A 32 channel head coil was used as the RF signal receiver. Sponges

were used to fix subjects’ heads within the coil to prevent motion artifacts. All

images were acquired parallel to anterior-commissure-posterior-commissure line with

an auto-align technique. The total scan time for each subject was about 6 minutes.

The resting-state fMRI was performed with a gradient-echo echo planar sequence.

Subjects were asked to relax and think of nothing in particular and to keep their eyes

closed, although they were requested not to fall asleep. Wakefulness was assessed

throughout the recording via an intercom link to the scanner chamber. The exact

parameters were as follows: repetition time (TR) 2000 ms, echo time (TE) 24 ms,

field of view (FOV) 256 × 256 mm2, matrix 64 × 64, slice thickness 3 mm and flip

angle 90. For each participant, 34 trans-axial slices with no gap were acquired to

encompass the whole brain volume.

In the dataset from the Second Xiangya Hospital with severe symptoms, all

image data were acquired using a 1.5T Siemens MRI scanner. A total of 180 volumes

of Echo Planar Imagining (EPI) images were obtained axially (repetition time, 2000

ms; echo time, 40 ms; slices thickness, 5mm; gap, 1mm; field of view (FOV), 24

× 24 mm2; resolution, 64 × 64; flip angle, 90). On the other hand, the samples

without severe symptoms from the Second Xiangya Hospital were from a 3T Philips

MRI scanner with a total of 240 volumes of Echo Planar Imaging (EPI) images were

obtained axially (repetition time, 2000 ms; echo time, 30 ms; slices thickness, 4mm;

resolution, 64 × 64; flip angle, 90).

For the healthy controls, the data acquisition details for the 20 datasets from

the 1000 Functional Connectomes Project are provided on their website, http://

fcon_1000.projects.nitrc.org/. In the 21st young healthy control dataset, from

the National Yang-Ming University, Taiwan, all 10 people underwent structural,

functional and diffusion tensor imaging scanning using a Siemens Trio 3T scanner

at the National Yang-Ming University, Taiwan. Foam padding was used to minimize

head motion for all subjects. Functional images were acquired using a single-shot,
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gradient-recalled echo planar imaging sequence (repetition time = 2500 ms, echo

time = 27 ms and flip angle = 77). Fourty-three transverse slices (field of view = 220

× 220 mm2, in-plane matrix = 64 × 64, slice thickness = 3.4 mm, voxel size = 3.44

× s3.44 × 3.4 mm3), aligned along the anterior commissureCposterior commissure

line were acquired. For each subject, a total of 200 volumes were acquired, resulting

in a total scan time of 500s. Subjects were instructed simply to rest with their eyes

closed, not to think of anything in particular, and not to fall asleep. The diffusion

tensor images covering the whole brain were obtained using spin echo-based echo

planar imaging sequence, including 30 volumes with diffusion gradients applied along

30 non-collinear directions (b = 1000 s/mm2) and three volumes without diffusion

weighting (b = 0 s/mm2). Each volume consisted of 63 contiguous axial slices

(repetition time = 11000 ms, echo time = 104 ms, flip angle = 90 degrees, field of

view = 100 × 100 mm2, matrix size = 128 × 128, voxel size = 2 × 2 × 2 mm3).

To improve the signal to noise ratio, the entire sequence was repeated three times.

Subsequently, high-resolution T1-weighted anatomical images were acquired in the

sagittal orientation using a magnetization-prepared rapid gradient-echo sequence

(repetition time = 3500 ms, echo time = 3.5 ms, flip angle = 7, field of view = 256

× 256 mm2, matrix size = 256 × 256, slice thickness = 1 mm, voxel size = 1 × 1 ×
1 mm3 and 192 slices).

2.9.3 Data Preprocessing

Firstly, we deal with the resting-state BOLD signal. The first 10 volumes of these

datasets were discarded, to allow for scanner stabilization and the subjects’ adapta-

tion to the environment. fMRI data preprocessing was then conducted by Statistical

Parametric Mapping (SPM8) [Frackowiak et al., 2003] and a Data Processing As-

sistant for Resting-State fMRI (DPARSF) [Yan and Zang, 2010]. The remaining

functional scans were first corrected for within-scan acquisition time differences, be-

tween slices, and then realigned to the middle volume, to correct for inter-scan head

motions. Subsequently, the functional scans were spatially normalized to a standard

template (Montreal Neurological Institute) [Fonov et al., 2011] and resampled to 3

× 3 × 3 mm3. Data was then smoothed, and after normalization and smoothing,

BOLD signals of each voxel were firstly detrended, to remove any linear trend, and

then passed through a band-pass filter (0.01-0.08 Hz) to reduce low-frequency drift

and high-frequency physiological noise. Finally, nuisance covariates including head

motion, global mean signals, white matter signals and cerebrospinal signals were re-

gressed out from the BOLD signals. After data preprocessing, the time series were

extracted in each ROI by averaging the signals of all voxels within that region. In
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this theis, the automated anatomical labelling atlas (AAL) [Tzourio-Mazoyer et al.,

2002] was used to parcellate the brain into 90 regions of interest (ROIs) (45 per

hemisphere). The names of the ROIs and their corresponding abbreviations are

listed in Table 2.2.

For DTI images, we first used FSL [Jenkinson et al., 2012] to remove the eddy-

current and extract the brain mask from the B0 image. Then, we used TrackVis

[Wang et al., 2007] to obtain the fiber images by the deterministic tracking method.

After that, we used the T1 data to extract the native template for every person

by FSL. Thus, we could count the number of fibers connecting every pair of brain

regions. All the processes were performed using a pipeline named PANDA [Cui

et al., 2013] from Beijing Normal University.

2.9.4 Statistical inference

Two-sample t tests [Mendenhall et al., 2008] were used to test the differences be-

tween the groups in FCE and in the functional connectivity of every link. we also

utilized a Kolmogorov-Smirnov test to compare the differences between two distribu-

tions of the functional connectivity [Feldman and Valdez-Flores, 2009]. The relation

between the functional connectivity entropy and the different PANSS subscores was

measured with the Pearson correlation coefficient with Bonferroni correction, fol-

lowed by partial Pearson correlation [Rodgers and Nicewander, 1988] to remove age

effects. Moreover, we used permutation tests [Rédei, 2008] to clarify the robustness

of the findings.

2.10 Functional Connectivity Entropy Properties

2.10.1 Entropy will grow higher with more intervals in [−1, 1]

In this thesis, we separated [−1, 1] into 20 intervals. If we separate it into more

parts, the entropy will be larger.

Proof

According to the property of Shannon entropy,

H(P11, · · · , Pm1, · · · , P1n, · · · , Pmn) = H(P11 + · · ·+ Pm1, · · · , P1n + · · ·+ Pmn)

+

n∑
i=1

(P1i + · · ·+ Pmi)H(
P1i∑m
j=1 Pji

, · · · , Pmi∑m
j=1 Pji

). (2.8)
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The left side of the last equality is the entropy with mn parts in [−1, 1],

while the first term in the right side of the equality is the entropy with m parts.

Moreover, the last term of the equality is not less than zero. Thus, the entropy with

mn parts is larger than that with n parts. In other words, if there are more parts

in [−1, 1], the entropy will be higher.

2.10.2 Entropy vs choice of atlas: Atlases with different numbers

of brain regions

In this thesis, the atlas we used was the AAL template, with 90 brain regions.

we have investigated the relationship between atlas choice, the number of brain

regions and the value of the functional connectivity entropy. we used different

atlases with various numbers of brain regions on one sample, which was from a

young healthy male, where the quality of the MRI was quite good. Figure 2.10

shows the entropy results from different atlases (red nodes) and a fit of the data

by an exponential (blue line). The relationship between entropy and the number

of brain regions, N , is Entropy= 1.64N−0.337 + 3.305. According to this equation,

the entropy asymptotically approaches a constant as the number of brain regions

tends to infinity. The limiting value of the functional connectivity entropy of this

individual is 3.305.

Note that not all samples were suited to calculations of the entropy, using

more than 2000 brain regions, because more brain regions lead to more noise. Thus,

if we want to extract an accurate entropy with more brain regions, we need high

quality MRI samples. Not all of the samples have sufficient quality, e.g., some

samples are from 1.5T MRI or are affected by some head motions.

2.10.3 Entropy vs choice of atlas: Different atlases with a fixed

number of brain regions

We further note that if we use different templates, but fix the number of brain

regions, the results are quite stable. To see this consider Figure 2.11, where we have

chosen the AAL atlas and separated it in different ways. we have considered 10

different atlases (all have 1024 brain regions) and extract the entropy of 20 normal

young individuals, based on the various atlases. we have found no significant entropy

differences for each sample, with various atlases. In Figure 2.11, different symbols

label the entropy from different brain region atlases. The difference between the

entropy from various atlases is sufficiently small that we need to amplify the scale

to distinguish them. Thus, the entropy results are quite stable.
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Figure 2.10: Entropy versus the number of brain regions
The red nodes are from an entropy calculation based on atlases with different num-
bers of brain regions. The blue line is a fit through the nodes from an exponential
function.

2.10.4 A mathematical description of Functional Connectivity En-

tropy

Let x(t) be a resting fMRI time course of the brain. This is defined on a function

space (with respect to time), Θ, which is a subspace of the Lebesgue function space

L2(T,R), where T can be either the continuous time set [0, S] or the discrete time

set {1, 2, , S}. we assume that a probability measure, P , is defined on Θ with

its σ-algebra F induced by the norm of L2(T,R). In the following, we need not

know the explicit forms of the probability distributions of the random functions,

to define the entropy. One particular fMRI time course from one of the regions of

interest, which were considered, is regarded as a state point in the probability space

{Θ,F , P}. Let x(·) and y(·) be two independent random time courses following the

same distribution. Their correlation coefficient can be regarded as a functional with

respect to Θ×Θ:

ρ(x, y) =

∫ S
0 (x(t)− x̄)(y(t)− ȳ)dt

std(x)std(y)
, (2.9)

with x̄ = 1
S

∫ S
0 x(t)dt, std(x) =

√∫ S
0 [x(t)− x̄]2dt. The functional connectivity

entropy is actually that of the random (scale) variable ρ(x, y) that is induced by
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Figure 2.11: 10 different atlases were chosen to separate the AAL atlas into more
parts
We calculated the entropy in samples from 20 normal people with ages in the range
20 to 26. There are no significant differences with various atlases.

42



the two independent random functions x(·) and y(·). Thus, we write the entropy

as H(ρ(x, y)). The entropy of a region can be regarded as the specific conditional

entropy of ρ(x, y) when y is fixed, namely H(ρ(x, y)|y = y(·)). The mean of a

region’s entropy can be regarded as the conditional entropy of ρ(x, y) with respect

to the random function y(t), and we write this entropy as H(ρ(x, y)|y).

To specify the meaning of the definition of functional connectivity entropy

given, we restrict the function space Θ to all periodic functions with the same

constant frequency, ω. Then x(t) can be written as x(t) = a× cos(ωt+ ϕ) and y(t)

can be written as y(t) = b× cos(ωt+ ψ). For sufficiently large S, the mean of both

x and y are approximately zero. Their correlation coefficient, as S →∞, becomes,

ρ(x, y) =
1
2S

∫ S
0 ab× [cos(2ωt+ ϕ+ ψ) + cos(ϕ− ψ)]dt

ab
√

1
S2

∫ S
0 [cos(ωt+ ϕ)]2dt

∫ S
0 [cos(ωt+ ψ)]2dt

→ cos(ϕ− ψ), (2.10)

Additionally, ρ(x, y) = cos(ϕ − ψ) also holds if S is an integer multiple of the

period. Thus, the correlation coefficient between two periodic oscillations with the

same period is the cosine of the phase difference. In this scenario, the function space

can be embedded in a phase space (a one dimensional torus) S1 (namely, [0, 2π]).

Let {S1,F , P} be the probability space induced by {Θ,F , P}, let ϕ and φ be two

independent random variables in it, and let z = cos(ϕ− ψ). Then, the entropy of z

is H(z), and the region’s entropy is the specific conditional entropy, H(z|ϕ = ϕ0),

and the mean regional entropy is the conditional entropy H(z|ϕ). Note that in the

definition of the entropy, the Lebesgue measure of z = cos(ϕ− ψ) is the trivial one

defined in [−1, 1], denoted by mcos(dz). The difference between the entropy of z

and its conditional entropy is clearly the mutual information between ϕ and z:

I(z, ϕ) = H(z)−H(z|ϕ). (2.11)

Let θ = |ϕ − ψ|, then, z is equivalent to Θ, considering the torus S1 with

θ ≡ 2π + θ. With a properly-defined Lebesgue measure of θ, i.e., the measure

induced by that of z, namely mcos(·), the entropy and conditional entropy of θ

then equal those of z. Pick the measures of these variables, in order to define

the (relative) entropy. That is: First, pick a joint measure of (ϕ,ψ) (denoted by

m1(dϕ,dψ) = m(dϕ)m(dψ), a joint measure of two independent and identical mea-

sures, where m(·) is determined below), and a joint measure of (ϕ,ϕ− ψ), denoted

by m2(dϕ,d(ϕ− ψ)), such that they are preserved through the transformation be-

tween them, (i.e., letting T be the transform from (ϕ,ψ) to (ϕ,ϕ − ψ), then for
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any measurable set A in the space of (ϕ,ϕ − ψ), m2(A) = m1(T
−1(A)) holds);

Second, pick the measure (ϕ, θ = |ϕ − ψ|) induced by m1(dϕ,dψ) and denoted by

m3(dϕ,dθ); Finally, m(·) is chosen to guarantee that the embedded measure of θ

equals to mcos(dz). Thus, we have,

2D(ϕ||m(·)) = D(ϕ,ψ||m1(·, ·)) = D(ϕ,ϕ− ψ||m2(·, ·))

≥ D(ϕ, θ||m3(·, ·)) = D(θ|ϕ||m3(·, ·)) +D(ϕ||m(·)). (2.12)

We conclude that D(θ|ϕ||m3(·, ·)) ≤ D(ϕ||m(·)). This implies that the mean

regional entropy is a lower-bound of the entropy of the phase random variable un-

der the measure preserving transformation. In addition, if different measures were

picked, there would be constant differences in the above inequality induced by the

expectation of the derivative of different Lebesgue measures.

In particular, if we pick the trivial measure on the torus, S1, and let f(ϕ) be

the probability density function (pdf) of ϕ, then after simple algebra, we have the

conditional pdf of θ with respect to ϕ as

p(θ|ϕ) = f(ϕ− θ) + f(ϕ+ θ), π ≥ θ ≥ 0. (2.13)

Then we have,

H(θ|ϕ) = E{log [f(ϕ− θ) + f(ϕ+ θ)]}. (2.14)

2.11 Mean, entropy and global signal

As described in the data preprocessings, the global signals were regressed out from

the BOLD signals. This has the effect of making the mean correlation in the func-

tional connectivities approximately zero, and there are both positive and negative

correlations in the functional connectivity matrix [Fox et al., 2009].

Global signal regression, as mentioned in Chen et al. [2012] work, ‘is a pre-

processing technique, is intended to eliminate undesired global noise, i.e. non-neural

noise that has a global effect on the RfMRI signal. It was hypothesized that R-fMRI

signals may cancel each other out in the global average, while the global noise may

be additive and dominate the global-averaged signal. Practically, the global signal

is obtained by averaging all brain voxel time courses.’ Moreover, as described in

Fox et al. [2009] work, the exact formula of global signal regression is:

‘Let the BOLD data be represented as the n ×m array, B, where n is number of

time points (frames) and m is the number of voxels. The global mean time course,
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g, is an n× 1 column vector, g = (1/m)B1m, where 1m is the m× 1 column vector

of all 1 s. Voxelwise regression of the BOLD data on g generates,

βg = g+B, (2.15)

where g+(a 1×n array) is the pseudoinverse of g. Thus g+ = [gT g]−1gT and gT g = 1.

Furthermore, βg is a 1×m array (image). Regressing out the global signal gives the

new volumetric times series,

B′ = B − gβg.’ (2.16)

Here, we use analysis of the data of two randomly picked individuals (one

patient (SCZD), one control, both are females aged 24) from the sample to show

the effect of global signal regression on the relationship between the correlation

coefficients and the FCE. In Figure 2.12, we represent the correlation coefficient

distributions with and without the global signals removed. As shown in Figure 2.12

a and b, the correlation distribution will move from the positive to the negative side,

which is consistent with the data of Fox et al. [2009]. In Figure 2.12 c and d, we

represent the differences between the patient and the control groups before and after

removing the global signal. It should be emphasized that the distribution of the 4005

functional connectivity correlation measures in schizophrenia is narrower than in the

controls in both situations (Entropy: SCZD vs control, 3.5 vs 3.9, without global

signal removed; 3.6 vs 3.8, with global signal removed). Thus, the entropy measure

for the patient is lower than for controls independently of whether we remove the

global signal or not. On the other hand, the mean of the functional connectivity

correlations with the global signals removed is higher in the schizophrenia group

than the controls, and it will go in the opposite direction if the global signal is

not removed. This shows how the entropy measure is useful, and is independent of

whether the global signal is removed or not.

Figure 2.12 demonstrates that the mean correlation coefficient will show op-

posite results before and after removing the global signal. However, the entropy will

show similar effects before and after removing the global signal. The entropy in the

patients is lower than in the controls. The effects of global signal removal on FCE

change in schizophrenia discussed in Section 4.5.1 in detail.
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Figure 2.12: Correlation coefficient distributions in patients and controls with global
signals removed (WGR) and without global signals removed (NGR)
The distribution of the correlation coefficients of the control (blue) and the patient
(denoted SCZD; red) with and without the global signal. The dashed lines represent
the mean correlation coefficients.
This figure is reproduced from Yao et al. [2015].
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Chapter 3

Results

The results in Section 3.1 have already been published on Yao et al. [2014], while

those in Section 3.4, 3.5 and 3.6 have been published on Yao et al. [2015].

3.1 Functional Connectivity Entropy Origin: Ageing

Problem

We have carried out a full analysis to determine the functional connectivity entropy

in all individuals in all data sets. Figure 3.1a shows the functional connectivity

entropy of the full data set as a function of age, without taking into account gender

differences. In Figure 3.1b we present a running average of the functional connectiv-

ity entropy for males and females, with an averaging window of 25 years. In Figures

3.1c and 3.1d, we give the results for the functional connectivity entropy in males

and females separately, which are different at birth (3.5336 bits in males, 3.5547

bits in females) and which have different rates of change (0.0015 bits/year in males,

0.0011 bits/year in females). The Pearson correlation between entropy and age is

strongly significant (r=0.23, N = 610, p = 5.6 × 10−9 for males and r=0.15, N=634,

p = 1.51 × 10−4 for females). These lead to the crossover that can be seen in Figure

3.1b, at an approximate age of 50 years.

3.2 Functional Connectivity Entropy Results in Schizophre-

nia

To make the results clear, the distributions of functional connectivities in patients

with schizophrenia and controls is shown first (Figure 3.2), and then the functional
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Figure 3.1: Functional connectivity entropy vs Age
Panel (a) is a plot of the functional connectivity entropy of individuals versus their
age (pooling results from males and females). A mean rate of increase of the entropy
of 0.0013 bits/year was found from the data. Panel (b) contains a plot of the running
average of the entropy, versus age, with a window of width of 25 years adopted.
There is a crossover in the male/female entropies in the vicinity of 50 years of age.
Panels (c) and (d) plot the entropy versus age of males and females. Males have a
lower initial value of the entropy than females, but a faster mean rate of increase.
The linear correlation between entropy and age is strongly significant (p = 5.6 ×
10−9 for males and p = 1.51 × 10−4 for females, r equals 0.23 for males and 0.15
for females, degree of freedom: 610 and 634, respectively.)
This figure is reproduced from Yao et al. [2014].
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Figure 3.2: Distribution of the functional connectivity correlation coefficients
Distribution of the functional connectivity correlation coefficients of resting-state
fMRI between 90 AAL brain regions for patients with schizophrenia (red, denoted
SCZD) and controls (blue).
In the figure, ‘Mean’ stands for the average and ‘Std’ stands for the standard devi-
ation of the correlation coefficients respectively.

connectivity entropy distributions are shown in Figure 3.3, as they are based on the

functional connectivities shown in Figure 3.2.

3.2.1 Frequency distribution of functional connectivities

As shown in Figure 3.2, there were more low values (both positive and negative) of

the functional connectivities in the patients with schizophrenia than in the controls.

Statistical analyses confirmed the narrow distribution of correlation coefficients in

patients when compared to controls (the standard deviation was 0.289 in patients

and 0.298 in the controls, t = 3.299, p = 0.001). The shape of the distributions was

very significantly different (Kolmogorov-Smirnov test = 0.013, p = 8.52 × 10−55).

Further, for each of the bins based on functional connectivity strength (correlation

coefficients) between r = -0.1 and r = 0.3, patients with schizophrenia differed

significantly from controls (t tests; all p values < 0.0027).

3.2.2 Functional connectivity entropy

As shown in the frequency histogram Figure 3.3, patients with schizophrenia had

significantly lower functional connectivity entropies than the controls (t = 3.12, df
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Figure 3.3: Functional connectivity entropy (FCE) for patients with schizophrenia
and controls
A histogram of the functional connectivity entropy values for the control (blue) and
schizophrenia (red) groups. The data points were the functional connectivity entropy
values calculated for all 90×90 connections for all subjects. The mean entropy of
the schizophrenia and control groups was significantly different (two-sample t test,
t = 3.12, df = 466, p = 9.64 × 10−4). The term ‘SCZD’ stands for patients with
schizophrenia.

= 466, p = 9.64 × 10−4).

3.2.3 Correlation of the functional connectivity entropy with the

clinical symptoms

To examine the relationship between FCE and clinical symptoms, we correlated the

FCE values for subjects with the positive symptom scores, the negative symptom

scores, and the general symptom scores [Kay et al., 1987]. As shown in Figure 3.4,

a decrease in the FCE is very significantly positively correlated with an increase in

the positive (r = -0.453 p = 3.02 × 10−7, df = 124), negative (r = -0.351, p = 1.72

× 10−4, df = 124), and the general psychopathology (r = -0.344, p = 2.40 × 10−4,

df = 124) scores of the PANSS (Bonferroni corrected p-values).

There were some missing values for the symptom and severity scores, and

that this is reflected in the degrees of freedom. In addition, to exclude any effects

of age, we performed a partial correlation procedure that removed any age-related

effects from the correlations, and found that the significant results described above
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Figure 3.4: Functional connectivity entropy correlated with the severity of different
symptoms in the schizophrenia group
The correlations, with the p values, are listed in black. Panel (a) with the positive
score from the PANSS, (b) with the negative score, (c) with the general score from
the PANSS.
Appendix Figure A.1 is the enlarged version of this figure.

still hold: FCE was still negatively correlated with positive symptom score (r =

-0.401, p = 1.09 × 10−5, df = 124), negative symptom score (r = -0.325, p =

6.58 × 10−4, df = 124) and general severity score (r = -0.303, p = 0.0018, df =

124). Therefore, FCE is clearly a marker significantly related to the wide variety of

symptoms seen in patients with schizophrenia.

In addition, to exclude any effects of age, we performed a partial correlation

procedure that removed any age-related effects from the correlations, and found that

the significant results described above still hold: FCE was still negatively correlated

with positive symptom score (r = -0.401, p = 1.09 × 10−5, df = 124), negative

symptom score (r = -0.325, p = 6.58 × 10−4, df = 124) and general severity score

(r = -0.303, p = 0.0018, df = 124). Therefore, FCE is clearly a marker significantly

related to the wide variety of symptoms seen in patients with schizophrenia.

3.2.4 Strength of functional connectivity

To identify the pattern of pairwise functional correlations that contributed most to

the changes in functional connectivity entropy (FCE) of the whole brain we com-

pared the functional connectivity matrix between patients with schizophrenia and

controls, as shown in Figure 3.5. Figure 3.5 left shows the connectivity in the con-

trols, Figure 3.5 middle shows the connectivity in the patients with schizophrenia,

and Figure 3.5 right the difference (patients with schizophrenia - controls). we

grouped the AAL regions into resting state networks (RSNs) based on the com-

munity structure. For the resulting 6 RSNs, we examined both within-RSN and

between-RSN connectivity patterns. Figure 3.5 left shows that the connections
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within a resting state network (RSN) tend to be larger than those between the

RSNs. The values shown in Figure 3.5 right are color coded as follows: values that

are closer to 0 in patients are shown in blue; and values that are further from 0 in

patients than controls are shown in red. (Thus weaker connections, whether they

are positive or negative, are shown in blue.) Figure 3.5 shows that the functional

connectivity values within each RSN (i.e. the boxes on the diagonal) in the patients

tend to move towards 0, from what are in general positive values normally (Figure

3.5 left). The absolute value of these within-RSN connectivities showed an average

5.4% reduction in patients (controls = 0.2648; patients = 0.2506, t = -5.44, p =

3.8 × 10−8). The within-RSN abnormalities were most significant for RSNs 1 (the

default mode network), 3 (the attention network) and 4 (the visual recognition net-

work). An 11.5% reduction was seen within RSN1 (mean connectivity in controls =

0.252, patients= 0.223, p = 4.8 × 10−9). A 9.3% reduction was seen within RSN3

(mean connectivity in controls = 0.214, patients= 0.194, p = 1.1 × 10−4). A 4.6%

reduction was seen within RSN4 (mean connectivity in controls = 0.432, patients =

0.412, p = 0.003).

The absolute values of the between-RSN connectivities showed an average

29.8% reduction in patients (controls = -0.0452; patients = -0.0317, t = 13.75, p

< 10−322). Specifically, the strength of 10 of 15 inter-RSN connectivities (between

six communities) had a significant reduction in patients with schizophrenia (lowest

p-value < 0.00001, highest p-value, 0.012).

Overall, the main result of this analysis is that in patients with schizophrenia

relative to controls, the absolute values of the inter-RSN connectivities were more

greatly reduced than were the intra-RSN connectivities. The implication is that the

long-range connections between different networks are those that become reduced

most in patients with schizophrenia relative to controls, and this implies that the

connections between different major brain systems become reduced in patients rela-

tive to controls. Thus the disconnectivity that may be found in schizophrenia is more

that between different major brain systems than within them. For the within-RSN

functional connectivities, both the default mode and the attention networks showed

relatively large decreases in functional connectivity, consistent with the roles of the

brain regions comprising these networks in the cognitive symptoms of schizophrenia

which include short-term memory and attention deficits. (For the default mode net-

work, the main brain regions include the superior frontal gyrus; and for the attention

network the areas include the middle frontal gyrus and superior parietal gyrus).
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Figure 3.5: Functional connectivity matrix
Top Left Panel: Connectivity diagram of controls between the 90 regions identified
in the AAL atlas. The regions are ordered according to the six resting state networks
identified on the basis of the community structure [Tao et al., 2013]: RSN1 (Default
Mode Network), RSN2 (Subcortical Network), RSN3 (Attention Network), RSN4
(Visual Recognition Network), RSN5 (Auditory Network) and RSN6 (Sensory-motor
Network). Top Middle Panel: Connectivity diagram of patients between the 90
regions identified in the AAL atlas.
Top Right Panel: Difference of connectivity values between patients and controls.
The values shown are coded by colours as follows: values that are closer to 0 in
patients are shown in blue; and differences that are further from 0 in patients than
controls are shown in red. (Thus weaker connections, whether they are positive or
negative, are shown in blue.)
Moreover, we also enlarge the results of RSN1 (Default Mode Network), RSN3
(Attention Network) and RSN4 (Visual Recognition Network) in the rightmost of
the figure.
Appendix Figure A.3 is the enlarged version of this figure.
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3.2.5 Summary

In this first ever study to investigate the whole brain and regional diversity of func-

tional connectivity in schizophrenia in a large sample of subjects, the section has

shown that the dispersion of the functional connectivity measured using FCE is

significantly narrower in patients with schizophrenia and the reduction in FCE is

correlated with a broad spectrum of psychopathology including positive, negative

and general PANSS scores.

3.3 Computational Model

As shown in Section 2.7.1, we have used a computational model [Deco and Jirsa,

2012] based on diffusion tensor imaging (DTI) data to investigate the origins of the

relationship between functional connectivity entropy and age. Extensive experimen-

tal data indicates that there is significant loss of neuron number with age, and this

is accompanied by the excitatory receptor number (especially NMDA) decreasing

with age [Morrison and Hof, 1997]. The computational model yields a brain entropy

that decreases when the excitatory connection strength and neuron number in each

brain region are simultaneously reduced.

This simulation offers a realistic mechanistic model, at the level of each sin-

gle brain area, which is based on spiking neurons and realistic AMPA, NMDA, and

GABA synapses. The global architecture of the model is shown in Figure 3.6a.

After obtaining the neuronal dynamics in each brain region, the fMRI BOLD signal

was simulated by means of the Balloon-Windkessel hemodynamic model [Friston

et al., 2003]. we found that the functional connectivity entropy increases with de-

creasing excitatory connection strength (AMPA and NMDA) within the excitatory

population of each brain region, shown in Figure 3.6b. To match functional con-

nectivity entropy of the human data, we determined a reliable range of connection

strengths [1.78, 1.81] (indicated by two red dashed lines in Figure 3.6b) by com-

paring the two least-square lines in Figure 1.5a and Figure 3.6b. Figures 3.6c and

3.6d illustrate the simulated BOLD signal with two different connection strengths;

the distribution of the correlation coefficients is broader for the smaller connection

strength. Specifically, Figure 3.6c, with a larger connection strength is similar to

the result for young people in Figure 1.5a, while Figure 3.6d, with a smaller con-

nection strength, is similar to that of elderly people in Figure 1.5c. Additionally,

assuming a positive correlation between excitatory neuron number and connection

strength (Section 2.7.1), we find that the excitatory neuron number in each brain

region decreases from 1130 to 888 (approximately a 20% loss). It is know from
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experiments that both the neuron number and excitatory receptors number in the

human brain reduce with age. Thus we conclude that this simplified computational

model does lead to a relationship between functional connectivity entropy and age

that is similar to that observed.

Then we found that the functional connectivity entropy decreased when the

excitatory NMDA connection strength between the neurons was decreased. The ef-

fects found when the NMDA synaptic conductivity from the excitatory population

of each brain region to the inhibitory population of each brain region was reduced

are shown in Figure 3.7c. The linear correlation between the functional connectivity

entropy and the connection strength was statistically significant (r=-0.85, p<10−10,

df=40). Figure 3.7d illustrates the distribution of correlation coefficients with two

different reductions of the NMDA connection strength; the distribution is narrower

for the smaller connection strength. Specifically, the shape of the functional con-

nectivity distribution with an 8% reduction of the NMDAR synaptic conductivity

below the starting value for the simulations is similar to that shown in Figure 3.2

for schizophrenics. In comparison, a reduction of 6% in the NMDAR synaptic con-

ductivity produces a connectivity distribution which is similar to that for controls

shown in Figure 3.2. That is, with smaller NMDAR conductivities (reduced by 8%

below the simulation baseline), the functional connectivity (correlation coefficients)

is more likely to be distributed with small absolute values, while with larger NMDA

synaptic conductivities (reduced by 6%), the functional connectivity is more likely

to be distributed with large absolute values (>0.1 or <-0.3). we show with further

results in Section 2.7.2 that this reduction of excitatory-to-inhibitory (E-to-I) con-

ductivity is associated with an increase in the mean firing rates of the excitatory

neurons.

3.4 Structural paths

Using the path definitions based on DTI, in 96% of subjects (64 out of 66), all 4005

possible structural links could be classified into primary, secondary or tertiary struc-

tural paths. In 27 subjects (14 patients and 13 controls), there were no more than

seven pairs of regions that required more than two intermediate linked structures to

form an indirect path. On average we obtained 27.8% primary, 68.9% secondary and

3.4% tertiary structural paths in controls. In patients, 27.4% primary, 69.5% sec-

ondary and 3.1% tertiary structural paths were noted, with no significant difference

between the two groups (Figure 3.8). Of the 4005 possible connections, 3774 were

in the same category (primary, secondary or tertiary) when comparing patients and
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Figure 3.6: Computational Model Demonstration
Panel (a): Schematic representation of brain network. Each brain region is com-
prised of excitatory pyramidal cells (red triangles) and inhibitory interneurons (blue
circles). Yellow and black arrows describe excitatory and inhibitory connections
between neurons in each brain region respectively, and blue arrows show excita-
tory connections between neurons in different brain regions. Panel (b): Functional
connectivity entropy versus intra-excitatory connection strength. The black dash
line represents the least-square line of blue dots (different trials), and the linear
correlation between functional connectivity entropy and connection strength is sta-
tistically significant (1 × 10−10). The two red dashed lines show a range of connec-
tion strengths, [1.78, 1.81], which make the corresponding functional connectivity
entropy match the human data. From the relationship between strength and exci-
tatory neuron number (see Section 2.7.1), the neuron number range is limited to
[888, 1130] (indicated by green arrows). Panel (c) and (d): Time series of simulated
BOLD signal. Similar to Figure 1.5, the left hand sides of panels (c) and (d) contain
45 time series arising from brain regions in the left hemisphere. The time series are
vertically located, according to their phase difference with the right thalamus. The
corresponding connection strength in (c) and (d) is 1.81 and 1.78, respectively. (c)
is similar to the result of young people and (d) is similar to that of elderly people.
This figure is reproduced from Yao et al. [2014].

56



Figure 3.7: Computational Model in Schizophrenia
Panel (a): Schematic representation of the brain network. Each brain region con-
sists of excitatory pyramidal cells (red triangles) and inhibitory interneurons (blue
circles). Yellow and black arrows describe excitatory and inhibitory connections
between neurons in each brain region respectively, and blue arrows show excitatory
connections between neurons in different brain regions. Panel (b): Neuroanatomi-
cal connectivity matrix, obtained by DTI after averaging across 10 human subjects.
Panel (c): Functional connectivity entropy versus percent reduction of NMDA con-
nection strengths from excitatory to inhibitory (E-to-I) neurons. The black dashed
line represents the least-squares fit of the different simulation runs each indicated by
a blue dot, and the linear correlation between the functional connectivity entropy
and the connection strength is statistically significant (r = -0.85, p < 1 × 10−10,
df = 40). Panel (d): The distribution of the correlation coefficients for the resting
state connectivity across the 90 brain regions when the percent reduction of E-to-I
strength is 6% and 8%, respectively.
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Figure 3.8: Distribution of the structural paths in patients and controls
This figure is reproduced from Yao et al. [2015].

controls. A substantial degree of agreement was noted across the three categories

of connections when the two groups of subjects were compared. 95.4% of primary,

91.5% of secondary and 75.6% links are classified in the same group in both patients

and controls.

We also examined the anatomical distribution of the primary, secondary

and tertiary paths using the conventional distribution of Resting State Networks

observed in previous studies. This is presented in Section 3.4.1.

3.4.1 Distribution of the structural paths

In Section 3.4, we separated primary, secondary and tertiary links based on every

individual and calculated corresponding FCE. Thus, when we calculated FCE, the

same link could be put into different groups, primary, secondary or tertiary. Figure

3.8 showed averaged calculations in patients and controls. If a link was considered

to be primary in most patients, then it was counted as a primary link. So did

secondary and tertiary links.

In total, 1100(27.4%), 2782(69.5%) and 123(3.1%) links were counted as

primary, secondary and tertiary ones in patients, while 1113(27.4%), 2757(68.9%)

and 135(3.4%) in controls. For patients, on average, links considered as primary were

primary in 81.7% subjects, secondary pathways were secondary in 79.8% of subjects

and tertiary pathways were tertiary in 68.5% of subjects, while for controls, the
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Figure 3.9: Anatomical Distribution of Direct and Indirect structural paths
Direct and Indirect structural paths ordered in accordance with the 6 Resting State
Networks in patients (right panel) and in controls (left panel). RSN1 (Default
Mode Network), RSN2 (Subcortical Network), RSN3 (Attention Network), RSN4
(Visual Recognition Network), RSN5 (Auditory Network) and RSN6 (Sensory-motor
Network).
The diagonal elements are zero and not considered in the analysis.
Appendix Figure A.2 is the enlarged version of this figure.
This figure is reproduced from Yao et al. [2015].

respective percentages were 80.8% for primary, 80.4% for secondary and 69.5% for

tertiary pathways.

Of the 4005 possible connections, 3774 were in the same category (primary,

secondary or tertiary) when comparing patients and controls. A substantial degree

of agreement was noted across the three categories of connections when the two

groups of subjects were compared. 95.4% of primary, 91.5% of secondary and 75.6%

links are classified in the same group in both patients and controls.

3.4.2 Anatomical Distribution of Structural Paths

An average correlation matrix in controls and patients, with brain regions organ-

ised on the basis of the six Resting State Networks (RSNs) [Guo et al., 2014][Tao

et al., 2013] is shown in Figure 3.9 below. Table 3.1 shows the distribution of the

primary secondary and tertiary paths among the links within each RSN (intra-RSN

links) and between the RSNs (inter-RSN links). More information about the com-

munity structure of the RSNs observed in functional connectivity studies using AAL

parcellations can be found elsewhere [Guo et al., 2014][Tao et al., 2013].

Table 3.1 shows that the RSN1 (Default Mode Network) is the major network

with primary structural paths (26%) closely followed by RSN3 (Attention Network).
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In contrast, for indirect secondary paths, RSN2 (subcortical) is the major substrate

(24%). A substantial number of tertiary paths belong to RSN5 (Auditory Network

including insula and superior temporal gyrus for >50%).

3.5 Changes in Functional Connectivity Entropy

Patients did not significantly differ in the whole brain FCE from controls when

considered as a single group (p = 0.5). But when stratified according to illness

duration, whole brain FCE was significantly higher in patients with early stage

illness (p = 0.01, d = 0.91) and lower in those with chronic illness (p = 2 × 10−6,

d = 1.69) in comparison with age and sex-matched controls.

Both patients in the early stage of schizophrenia (p = 0.0002, d = 1.46)

and chronic illness (p = 1 × 10−17, d = 4.66) showed a significant reduction in the

FCE of tertiary paths when compared to age and sex-matched controls. FCE of

secondary paths was increased in those with early stage schizophrenia (p = 0.003, d

= 1.12), but significantly reduced in patients at a more chronic stage of illness (p =

2 × 10−5, d = 1.47). FCE of primary paths showed a trend towards an increase in

patients with chronic illness (p = 0.084, d = 0.44) but not in those with early stage

illness when compared to matched controls. (Figure 3.10 panel B). Moreover, we

used a permutation test to clarify the robustness of the findings. All the p values

were still significant while they were a bit larger than those from two-sample t tests.

3.6 Functional Connectivity Entropy Versus Patient Sever-

ity Score

In the early stage of schizophrenia, higher whole brain FCE was associated with

higher symptom burden measured using the total SSPI score (r = 0.705, p = 0.034);

this was mostly driven by the increased FCE of secondary paths which was sig-

nificantly related to the symptom burden(r = 0.74, p = 0.023), while the FCE of

primary and tertiary paths did not show any significant relationships. In those with

chronic illness, lower whole brain FCE was associated with higher symptom burden

(r = -0.543, p = 0.024); this was driven by the FCE of both primary (r = -0.64,

p = 0.006) and secondary paths (r = -0.51, p = 0.036) being negatively correlated

with the symptom burden, while tertiary paths showed no significant relationship

(Figure 3.11).
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Figure 3.10: Functional connectivity entropy in different fiber pathway
(A): In patients < 5 years, the functional connectivity entropy (FCE) was slightly
increased in patients (-0.0743, p = 0.01, d = 0.91), and significantly decreased (0.135,
p = 2 × 10−6, d = 1.69) in patients ≥ 5 years comparing with controls.
(B): Left panel: In patients < 5 years, the functional connectivity (FCE) entropy was
almost unchanged (-0.00717, p = 0.605, d = 0.10) in primary pathways, significantly
increased (-0.103, p = 0.003, d = 1.12) in secondary ones and significantly decreased
(0.187, p = 0.0002, d = 1.46) in tertiary ones comparing with controls.
Right panel: In patients ≥ 5 years, the functional connectivity entropy (FCE) was
close to significantly decreased (0.03, p = 0.0843, d = 0.44) in primary pathways,
significantly decreased (0.136, p = 2 × 10−5, d = 1.47) in secondary and most
significantly decreased (0.634, p = 1 × 10−17, d = 4.66) in tertiary when compared
with controls.
All the effects of age, sex and dose have been removed.
This figure is reproduced from Yao et al. [2015].
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Figure 3.11: Functional Connectivity Entropy VS SSPI score
Panel (a) & (b): The functional connectivity entropy (FCE) held a significantly (r
= 0.705, p = 0.034) positive correlation with SSPI score in patients < 5 years (left
panel), while it displayed a significantly (r = -0.543, p = 0.024) negative correlation
in those ≥ 5 years (right panel). Panel (c) & (d): The secondary functional connec-
tivity entropy showed a significant (r = 0.737, p = 0.023) positive correlation with
SSPI score in patients < 5 years (left panel), while the primary functional connec-
tivity entropy displayed a significant (r = -0.642, p = 0.006) negative correlation in
those ≥ 5 years (right panel).
Linear effects of age, sex and dose have been removed.
This figure is reproduced from Yao et al. [2015].
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Table 3.1: Distribution of the primary, secondary and tertiary paths across the 6
Resting State Networks
In the first row, the proportion of all primary, secondary and tertiary paths that
involves at least one brain region from the RSN indicated in the column header
has been shown. Subsequent rows show the proportion of inter-RSN and intra-RSN
links. Data for controls and patients are displayed separately.
This table is modified from Yao et al. [2015].

Primary/Secondary/Tertiary
(Number of inter- and intra-RSN links expressed as a proportion of

all primary, secondary or tertiary paths within each group)
RSN1 (Percent %) RSN2 (Percent %) RSN3 (Percent %)

Total
Controls 26; 22; 13 19; 24; 16 21; 17; 10
Patients 24; 22; 13 19; 24; 14 20; 17; 12

RSN 1
Controls 7; 4; 1 5; 5; 1 5; 4; 1
Patients 7; 4; 0 5; 5; 0 5; 4; 1

RSN 2
Controls 5; 5; 1 4; 5; 1 4; 4; 1
Patients 5; 5; 0 4; 5; 0; 4; 4; 1

RSN 3
Controls 5; 4; 1 4; 4; 1 4; 3; 1
Patients 5; 4; 1 4; 4; 1 4; 3; 2

RSN 4
Controls 3; 4; 1 3; 4; 1; 3; 3; 1
Patients 3; 4; 0 3; 4; 0 3; 3; 1

RSN 5
Controls 2; 3; 10 1; 3; 12 3; 2; 6
Patients 2; 3; 12 2; 3; 12 3; 2; 7

RSN 6
Controls 2; 2; 0 2; 2; 0 2; 1; 0;
Patients 2; 2; 0 2; 2; 0 2; 2; 0

RSN4 (Percent %) RSN5 (Percent %) RSN6 (Percent %)

Total
Controls 16; 16; 8 11; 13; 51; 10; 9; 1
Patients 17; 16; 7 11; 13; 52; 10; 9; 2;

RSN 1
Controls 3; 4; 1 2; 3; 10 2; 2; 0
Patients 3; 4; 0 2; 3; 12 2; 2; 0

RSN 2
Controls 3; 4; 1; 1; 3; 12 2; 2; 0
Patients 3; 4; 0 2; 3; 12 2; 2; 0

RSN 3
Controls 3; 3; 1 3; 2; 6 2; 1; 0;
Patients 3; 3; 1 3; 2; 7 2; 2; 0

RSN 4
Controls 6; 1; 0 1; 1; 6 0; 1; 0
Patients 6; 1; 0 1; 2; 5 0; 2; 0

RSN 5
Controls 1; 1; 6 2; 1; 16 1; 1; 1
Patients 1; 2; 5 2; 1; 14 1; 1; 1

RSN 6
Controls 0; 1; 0 1; 1; 1 2; 0; 0
Patients 0; 2; 0 1; 1; 1 3; 0; 0
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Chapter 4

Discussion

4.1 Results Summary

Wntropy is used to characterize intrinsic ageing properties of the human brain.

Analysis of fMRI data from a large dataset of individuals, using resting state BOLD

signals, demonstrated that a functional connectivity entropy associated with brain

activity increases with age. During an average lifespan, the entropy, which was

calculated from a population of individuals, increased by approximately 0.1 bits,

due to correlations in BOLD activity becoming more widely distributed. This is

attributed to the number of excitatory neurons and the excitatory conductance

decreasing with age. Incorporating these properties into a computational model

leads to quantitatively similar results to the fMRI data. The dataset involved males

and females and significant differences were found between them. The entropy of

males at birth was lower than that of females. However, the entropies of the two

sexes increase at different rates, and intersect at approximately 50 years; after this

age, males have a larger entropy.

In addition, the connectivity between different brain areas provides evidence

about normal function and dysfunction. Changes are described in the distribution

of these connectional strengths in schizophrenia using a large sample of resting-state

fMRI data. The functional connectivity entropy, which measures the dispersion of

the functional connectivity distribution, was lower in patients with schizophrenia

than in controls, reflecting a reduction in both strong positive and negative correla-

tions between brain regions. The decrease in the functional connectivity entropy was

strongly associated with an increase in the positive, negative, and general symptoms.

Using an integrate-and-fire simulation model based on anatomical connectivity, it is

shown that a reduction in the efficacy of the NMDA mediated excitatory synaptic
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inputs can reduce the functional connectivity entropy to resemble the pattern seen

in schizophrenia.

When compared to healthy controls, the whole brain FCE is higher in the

early stages of schizophrenia indicating an increase in unpredictability and spatial

randomness of functional connectivity, especially in those with more severe illness. A

pronounced reduction in whole-brain FCE is seen in the later stages of schizophre-

nia, indicating that the underlying pathophysiological process may be associated

with an indistinct, non-specific mode of brain operation at rest. As hypothesized

originally, we note that the most significant changes in the randomness of functional

connectivity in schizophrenia occur in indirect paths that do not have a direct ax-

onal linkage. In particular, we note that the variability of connectivity in tertiary

paths shows a striking reduction in both early and late stages of schizophrenia, not

altered by the severity of symptoms, suggesting that this is an invariant, ‘trait-like’

feature of the illness.

Section 4.3 and 4.5 have already been published on Yao et al. [2015], while

chapter 4.6 has been published on Li et al. [2016].

4.2 Functional Connectivity Entropy in Schizophrenia

The presence of reduced FCE in patients provides important insights into the patho-

physiology of schizophrenia. Firstly, this reflects an overall reduction in the occur-

rence of strong connectivity links (both positive and negative) between brain regions

in patients with schizophrenia. The implication is that in schizophrenia, the ability

for both synchronization of some brain areas and anti-correlated activations in other

brain areas (within the fMRI time scale) are likely to be affected. This resonates with

the observations that cerebral recruitment during task performance is inefficient in

schizophrenia [Liddle et al., 2002], resulting in widespread but weak engagement of

several brain regions. In healthy controls, the strongest positive correlations exist

within large-scale networks (RSNs) while the negative correlations (anticorrelations)

exist between RSNs. Our findings suggest that the inter-network communications

are more significantly affected in schizophrenia. In this context, the changes of func-

tional connectivity we describe could affect the capacity to employ brain networks

towards functional roles that simultaneously require engagement of a selected set of

brain regions along with the disengagement of the others. we note that the reduced

functional connectivity entropy in patients with schizophrenia illustrated in Figure

3.3 reflects a decrease in the strong positive and negative functional connectivity

values as illustrated in Figure 3.2, and is consistent with a reduction in the under-
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lying synaptic connectivity, without necessarily implying that the dispersion of the

underlying synaptic connectivity is changed. This interpretation is supported by

the finding that reducing the NMDA synaptic conductance in the model reduced

the simulated FCE.

Despite the large number of neurobiological abnormalities noted in schizophre-

nia, very few relate meaningfully to the everyday symptom burden [Katsnelson,

2010]. The failure to identify biomarkers that relate to the construct of schizophre-

nia as a whole, has in part contributed to the challenges posed to the validity of

schizophrenia as a diagnostic entity. Nevertheless, epidemiological data continue

to endorse the above-chance probability of clustering of the classical symptoms of

schizophrenia and the stability of this diagnostic construct [Owen et al., 2010]. We

find that reduced FCE is correlated with the positive, negative and general psy-

chopathology seen in patients with schizophrenia. This indicates that the reduction

in brain connectivity is likely to be a cardinal neural feature that could explain

the myriad of seemingly distinct but nevertheless clustered clinical features of this

illness.

It was found that in patients with schizophrenia relative to controls, the

absolute values of the inter-RSN connectivities were more greatly reduced than the

intra-RSN connectivities (Figure 3.5). For the within-RSN functional connectivities,

both the default mode and the attention networks showed relatively large decreases

in functional connectivity.

Our approach of employing an entropy measure from information theory to

study the change in functional connectivity in schizophrenia has provided, for the

first time, a novel framework that integrates the large-scale network-level abnormal-

ities in schizophrenia with molecular synaptic models. In combination with other

approaches to study neural complexity, we anticipate that the current findings will

ultimately aid in offering a core mechanistic explanation as to why a cluster of

seemingly unrelated mental states such as hallucinations, anhedonia and cognitive

disorders co-occur in certain individuals and lead to marked functional deterioration

that characterizes the construct of schizophrenia [Rolls, 2012][Rolls et al., 2008][Rolls

and Deco, 2010]. Furthermore, by identifying disturbances in the diversity of brain

connectivity as a potential factor associated with the burden of clinical symptoms,

it raises the question as to whether treatments that enhance this diversity could

provide symptomatic relief to patients.

The dysconnectivity hypothesis of schizophrenia [Friston and Frith, 1995] is

that some connections are abnormal between brain regions, without necessarily spec-

ifying whether this is an increase or decrease of functional connectivity, with both
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being found [Pettersson-Yeo et al., 2011]. The new findings in this thesis show that

overall there is a reduced dispersion of the functional connectivity values as mea-

sured by functional connectivity entropy, and this reflects overall a reduction in the

strength of the positive and negative functional connectivity values. This reduction

was shown by the modelling to be consistent with an overall decrease in connec-

tivity such as might be produced by a reduction in NMDA receptor functionality /

glutamatergic neurotransmission. An important aspect of this investigation is that

the reduction of functional connectivity entropy was related to a wide range of the

symptoms of schizophrenia. This is consistent with the hypothesis that reductions

of glutamate transmission, including effects of this that may be mediated by reduced

drive to GABA neurons, may, when present in different brain regions, provide an

account of the different symptoms of schizophrenia [Rolls, 2012][Rolls et al., 2008].

According to this hypothesis, the cognitive symptoms (including reduced short-term

memory and attention) may be related to reductions in excitatory transmission in

the dorsolateral prefrontal cortex, the negative symptoms (including reduced affect)

to decreases in excitatory transmission in the orbitofrontal and anterior cingulate

cortex, and the positive symptoms (such as hallucinations and psychotic thoughts)

to reduced GABA in the temporal lobes [Rolls, 2012][Rolls et al., 2008].

FCE uniquely captures the uncertainty introduced by bidirectional deviations

(both increase and decrease) of connectivity strength occurring in schizophrenia. It

provides an intuitive measure of the overall randomness in the distribution of connec-

tivity, irrespective of the mean strength of the functional links, changes in which can

be nullified by the bidirectional changes across the brain. Though FCE has not been

previously employed a lot in the investigation of schizophrenia, the issue of spatial

diversity of functional connections was investigated in two previous studies. Both

Lynall et al. [2010] and Bassett et al. [2012] quantified the average of the variance

in the pairwise connections within each brain region (column-wise variance across

brain regions in the functional connectivity matrix) and reported an increase in the

dispersion of functional connectivity in schizophrenia. Unlike variance, entropy is an

index of diversification and uncertainty that does not depend on the absolute values

of the underlying metric (in this case, functional connectivity), and uses more infor-

mation about the probability distribution than variance, especially relevant in the

presence of fat-tailed distributions [Schwarz and McGonigle, 2011][Skudlarski et al.,

2010]. Higher entropy within a system suggests that the whole provides more infor-

mation than the sum of its parts [Tononi et al., 1994]. Variance does not capture the

unpredictability when the values taken by a variable are similar to each other (i.e.

narrow distribution range) [Bach and Dolan, 2012]. FCE is a more intuitive index
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of uncertainty when a subtle randomization is expected, as in schizophrenia. Our

observations suggest that FCE is a relevant measure in this context that is sensitive

to both the clinical stage and severity of schizophrenia.

4.3 Inspirations from Different Structural Path Results

FCE is reduced in tertiary paths in both groups, and across all pathways and in

the whole brain in those with chronic illness. One exception to the observation

of predominant FCE reduction is the increased FCE in secondary paths, which

annuls the effect of FCE reduction seen in tertiary links, contributing to a lack of

group difference with controls, when whole brain FCE is considered in the early

stage illness. One may speculate that the increase in FCE seen in the secondary

paths in early stages may reflect a compensatory effort against the process driving a

predominant reduction in FCE; the observation that those with more severe illness

in early stages show a higher FCE in secondary paths, supports this speculation.

Patients with chronic schizophrenia showed reduced variability in secondary

paths, with a trend towards reduced variability in primary paths as well. Both

of these changes in the primary (most significant) and secondary paths were more

pronounced in those with more severe illness. One may speculate, on this basis, that

any compensatory increase in FCE seen in secondary paths at early stages, ‘decays’

over the course of the illness as the process of FCE reduction now extends to the

secondary and primary pathways in those with a more chronic illness. On the basis of

this observation, we speculate that in the backdrop of pervasive alteration in tertiary

(highly indirect) links, the dynamic pathophysiological process that contributes to

clinical severity may progressively ‘penetrate’ the less indirect (secondary) and more

direct (primary) pathways. As this sample is not longitudinal, we are not able to

draw any firm conclusions on the progressive nature of these changes. Nevertheless,

we can infer a continuum of dysconnectivity on the axis of anatomical connectedness

associated with varied clinical severity and persistence of schizophrenia.

Unlike the indirect paths, the primary structural paths showed no significant

alteration in the early stages, and only a mild reduction in FCE reaching trend

level significance in the chronic illness. If one assumes that the pathophysiology of

schizophrenia primarily affects the functional relationship among brain regions, then

this observation suggests that the relationship among brain regions that have a direct

axonal linkage is less susceptible, at least in the early stages of the illness. In fact,

several crucial alterations in functional connectivity relevant to the pathophysiology

of schizophrenia have been noted between regions that do not have direct anatom-
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ical linkage. To consider an example, consistent functional connectivity between

insula and anterior cingulate cortex has been observed using resting state fMRI,

constituting a Salience Network [Menon and Uddin, 2010][Seeley et al., 2007][Taylor

and Seminowicz DADavis, 2009]. But to date, no consistent direct axonal linkage

has been noted between these two regions Cerliani et al. [2012][Cloutman et al.,

2012][van den Heuvel et al., 2009]. Several studies have now shown that the ab-

normalities within this ‘indirect’ functional network, is a key feature of psychosis

[Manoliu et al., 2013][Palaniyappan et al., 2013][Pu et al., 2012][White et al., 2010].

As shown in Section 3.4.2, the largest proportion of tertiary paths involved a net-

work that included the insula. Focused investigation of the anatomical distribution

of indirect functional links is warranted in future studies.

Poor spatial coherence between structural and functional connectivity has

been previously reported in schizophrenia [Skudlarski et al., 2010], implying func-

tional dysconnectivity involving anatomically unconnected regions. Indirect paths

indicate the presence of weaker links in the functional connectivity architecture [Goñi

et al., 2014]. While most previous investigations of the connectome used threshold-

ing procedures to discarded weaker links from analysis, the importance of weak links

is being increasingly appreciated in recent times [Gallos et al., 2011][Schwarz and

McGonigle, 2011]. The integrity of weaker links relate to global cognitive capacity

in healthy individuals [Santarnecchi et al., 2014]. Bassett et al. [2012] have also

shown that in schizophrenia abnormalities involving the weaker links are likely to

be more specific to the illness process and relate to both cognitive abnormalities

and symptom severity in schizophrenia. Our results also suggest that while there is

a substantial overlap in the anatomical similarity of primary and secondary paths

between patients and controls, 24.4% of all identified tertiary paths were present

only in one group of subjects, highlighting that the weaker, indirect links are more

prone to spatial redistribution, in addition to reduced variability in the strength of

connectivity.

Functional connectivity of secondary but not tertiary paths can be attributed

to connections mediated by a third region either by directed polysynaptic linkage

[Lu et al., 2011] or shared afferents [Adachi et al., 2012]. As tertiary pathways

do not share common afferent/efferent links, the observed connectivity in these

paths are likely to be related to the emergent properties of the network-level archi-

tecture [Adachi et al., 2012][Goñi et al., 2014]. Uncovering the processes beyond

physical connections that bring about functional correlation across time to ‘bind’

a distributed set of brain regions is likely to be a crucial step to understand the

pathophysiology of psychosis.
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4.4 Limitations

The novelty of this thesis includes the categorization of functional links using DTI-

based structural paths, the measurement of an unbiased estimate of unpredictability

associated with functional connectivity, and the investigation of the effect of illness

stage and severity on the structure-function relationship. Several limitations must

be considered when interpreting our observations. To study the effect of illness

duration, we used an arbitrary cut-off point of 5 years. From the multitude of neu-

roimaging studies investigating the effect of illness duration, no single period has

emerged as the time of stabilization of brain changes after the onset. Nevertheless,

existing evidence suggests that amount of dynamic (supposedly progressive) changes

are most pronounced immediately before onset and in the first five years of illness.

Moreover, we have done analysis with small changes of the illness duration (4 and 6

years). All the results are still valid with small changes of statistical test values. We

studied a medicated sample of patients; antipsychotic treatment alters functional

connectivity of brain regions in schizophrenia [Bolding et al., 2012][Stephan et al.,

2001]. Given the suspected confound, we adjusted for the current dose of prescribed

antipsychotics. we did not have information on cumulative antipsychotic exposure,

but unlike volumetric changes that become more pronounced with cumulative ex-

posure, functional dysconnectivity normalizes or returns to baseline levels on using

antipsychotics [Abbott, 1999]. As a result, functional dysconnectivity in medicated

samples are likely to be an underestimate of the true effect. In the absence of inves-

tigations focusing on the effect of antipsychotics on indirect functional links, caution

is warranted when interpreting these results. Further, when computing the spatial

variability of functional connectivity, we have assumed stationarity of the functional

architecture within the time scale of fMRI. The unpredictability introduced by non-

stationarity (dynamic ‘making and breaking’ of functional dependencies) [Messé

et al., 2014] is beyond the scope of this work.

4.5 Resting fMRI Preprocessing Discussion

4.5.1 Global Signal Correction

At present, there is no consensus in the field with regard to the removal of global sig-

nal when computing functional connectivity related metrics. Global signal removal

has been shown to reduce physiological noise from resting fMRI, thus improving its

reliability [Fox et al., 2009][Hayasaka, 2013][Yan et al., 2013], though it can increase

the frequency of pairwise negative correlation coefficients across the brain [Saad
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et al., 2012]. we employed several procedures to ensure that the results are robust

to this issue.

The major argument against the removal of global signal is the introduction

of spurious negative correlations; this problem occurs especially when the global

signal is of high magnitude and is correlated negatively with a large number of

voxels. A data-driven solution for this problem was recently proposed by Chen et al.

[2012] who advocate a metric called Global Negative Index (the proportion of all

voxels in the brain that show negative correlation with the global signal expressed as

a percentage). A GNI value of 3 or greater in a dataset indicates that the removal of

global signal using regression will induce a number of spurious negative correlations.

For values less than 3, the propensity for spurious anticorrelations will be very low

and global signal regression will indeed be advantageous in removing the non-neural

sources of the signal. Using this approach we determined the GNI for this sample.

The mean GNI was 2.79, indicating that global regression would be advantageous

in this dataset. Secondly, in line with Murphy et al. [2009], we have refrained from

interpreting negative correlation coefficients as representative of anticorrelations.

Thirdly, by definition, FCE is a measure that does not depend on the absolute value

of the functional connectivity strength. This is illustrated in Figure 4.1, on the

data obtained from a single random subject. As shown here, while the mean of

functional connectivity shifts towards zero upon the removal of global signal, the

probability density function shows no change. So, irrespective of whether global

signal is retained or removed, FCE values remain the same.

4.5.2 Head Movement Correction

In addition to the precautions taken during image acquisition, several other measures

were employed to control for movement-induced artefacts. Firstly, motion parame-

ters in three planes were assessed for each participant, and participants with >3 mm

or 3o movement were excluded from the analysis. Secondly, displaced frames (de-

fined as frames with summed displacement across all six rigid body motion parame-

ters exceeding 0.5mm or root-mean-square of volume signal intensity difference that

exceeded ±3 standard deviation of the average across all scans), along with 1 preced-

ing 2 succeeding frames were replaced using a nearest (unaffected) neighbour inter-

polation method using ArtRepair software (http://cibsr.stanford.edu/tools/

human-brain-project/artrepair-software.html). Thirdly, to remove the vari-

ance in functional connectivity spuriously introduced by head motion, we used the

head motion parameters as nuisance covariates when extracting the timeseries of

BOLD signals. Fourthly, we compared the overall framewise displacement levels
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Figure 4.1: Effect of global signal on Functional Connectivity Entropy
Correlation coefficient distribution for one subject with global signal regression (GR)
and without global signal regression (NoGR).

between the two groups to detect the possibility of systematic differences in head

motion. Finally, we correlated the proportion of displaced frames in each subject

with whole brain FCE in each group separately to study the influence of head motion

on the group differences in FCE.

No significant difference was noted in the total proportion of frames with dis-

placement (proportion of frames (SD) displaced >0.5mm in controls = 1.2%(0.6%);

patients = 6.8%(2%); p=0.13) and for the mean displacement across the 3 transla-

tion and 3 rotation axes, quantified in accordance with Power et al. [2012] (framewise

displacement (SD) in controls = 0.061 (0.29); patients = 0.077(0.54); p=0.14). No

significant correlation was noted between mean framewise displacement and FCE of

whole brain (r=0.12, p=0.51), primary (r=0.20, p=0.26) secondary (r=0.07, p=0.68)

or tertiary (r=0.13, p=0.46) paths in patients.

4.5.3 Streamline Threshold Effects

In the primary analysis, we used a minimum threshold of one streamline connecting

2 regions to define a structural path. While the streamline count is often used as a

proxy measure of connection in DTI studies, the neurobiological substrate of DTI-

based streamlines is unclear. White matter bundles with low FA may have fewer

streamlines than those in the regions with higher FA, despite being equally well

72



Figure 4.2: Results of using streamline threshold=2
This figure is reproduced from Yao et al. [2015].

connected. Nevertheless, it is possible that a low minimum threshold might have

introduced some spurious paths.

We tested the effect of varying the streamline threshold by repeating the

primary analysis with a threshold of 2 and a threshold of 3. we found that there

were no major changes in the pattern of FCE distribution across the two groups for

the different pathways; though the values of statistical significance were altered to

some extent, the direction of the results was preserved. These are shown in Figure

4.2 and 4.3, in line with the Figure 3.10 in Results.

It should be emphasized that the use of minimum thresholds is crucial to

identify tertiary paths. When a threshold of 10 or more streamlines is used, there

would be very few or no tertiary paths that could be identified in the brain. Fur-

thermore, the use of one streamline as a threshold is in line with several DTI-based

graph theory applications that generate connection matrices binarised on the ba-

sis of having at least one streamline connection between 2 regions [Batalle et al.,

2012][Tymofiyeva et al., 2013][van den Heuvel and Sporns, 2011].
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Figure 4.3: Results of using streamline threshold=3
This figure is reproduced from Yao et al. [2015].

4.6 Functional Connectivity Entropy in Cognitive Train-

ing (Further Applications)

In this thesis, we used functional connectivity entropy to do some analysis on

schizophrenia. Actually, there are a list of further applications. For example, the

entropy idea could be applied in the cognitive training project described below.

4.6.1 Summary

Background: The neural mechanisms underlying the restorative effects of cogni-

tive training on aging brains remain unclear. To address this issue, we examined

the relationship between changes in spontaneous brain activity and cognitive per-

formance that occur after cognitive training.

Methods: Participants were older adults who were part of a randomized control

trial within a larger longitudinal cognitive training study. Doctors conducted single-

domain and multi-domain cognitive training in two respective intervention groups.

Participants trained for one hour, twice a week, for 12 weeks. Cognition was assessed

in all participants and magnetic resonance images were obtained at baseline and one

year after training. To assess spontaneous fluctuations in brain activity, resting-state

fMRI data was acquired. Functional connectivity entropy was used to measure
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the effects of training. Functional connectivity entropy increases with aging, and

indicates disruptions in functional connectivity.

Results: Seventy participants completed the study: 26 in the multi-domain cog-

nitive training group (mean age: 70.38 yrs), 27 in single-domain group (mean age:

70.48 yrs), and 17 in a control group (mean age: 68.59 yrs). Functional connectivity

entropy increased significantly less in the multi-domain (p = 0.047) and single-

domain groups (p = 0.51 × 10−4) compared with the control group.

Conclusions: Cognitive training can induce plastic changes in neural functional

connectivity of healthy older people, and these changes may underlie the positive

effect of cognitive training.

4.6.2 Introduction

Normal aging of the brain is associated with memory loss and cognitive impairments.

These can interfere with daily routines [Hedden and Gabrieli, 2004] and affect the

capacity of the elderly to live independently. In addition, cognitive impairment

is associated with a higher mortality risk [van Gelder et al., 2007]. Clarifying the

mechanisms of cognitive aging and dementia may ultimately prevent the aging crisis

[Voss et al., 2010]. In the past few decades, some preventative studies in this field

have been carried out, such as cognitive training and physical exercise [Geda and

Roberts, 2012][Lautenschlager et al., 2008]. The effectiveness of cognitive training

has been verified by randomized controlled trials [Sylvie et al., 2011][Mahncke et al.,

2006][Willis and Schaie, 2009][Wolinsky et al., 2007][Yan et al., 2012][Anguera, 2013].

However, the possible neural mechanisms underlying restorative effects of cognitive

trainings on aging individuals remain unclear and are the subject of debate [Owen

et al., 2010][Katsnelson, 2010]. The essential difficulty, as pointed out in Owen et al.

[2010] work, lies in the difficulty in finding any evidence of the transfer of the effects

of cognitive trainings to untrained tasks. One promising way to fully assess the

impact of cognitive trainings on aging individuals and explore its mechanisms, which

is now possible, is by studying cortical changes or neural plasticity via neuroimaging

techniques [Willis and Schaie, 2009][Sylvie et al., 2011]. Such studies provide an

objective and quantitative way of analysing cognitive trainings.

Intrinsic brain activity that is coherent is an important feature of healthy

brain functioning. This is manifested, in resting-state functional magnetic resonance

imaging (fMRI), as temporal correlations of blood oxygenation level dependent sig-

nals (BOLD) [Fox and Raichle, 2007]. There is increasing evidence that tempo-

ral fluctuations in resting state fMRI, in particular, in low frequency components

(<0.1Hz), arise primarily from spontaneous fluctuations of the brains metabolism
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and intrinsic neuronal activity [Fox and Raichle, 2007][Yan et al., 2009]. Increas-

ingly, researchers agree that spontaneous neuronal activity plays a fundamental role

in brain function, and maintains the brains integrity and capacity to deal effectively

with future demands [Pizoli et al., 2011][Uddin et al., 2010].

To assess the effects of cognitive trainings, we have employed functional con-

nectivity entropy. The functional connectivity of fMRI data is used to characterize

the temporal coherence of the activity of distant brain areas, either during task

performance or in the resting state Bullmore and Sporns [2009]. For the present

party, we focused on resting-state functional connectivity. The notion of functional

connectivity entropy, which has been recently introduced and found to increase with

age in a population of healthy individuals [Yao et al., 2014], was employed to the

cognitive training data of the present work. Interestingly, both single and multi-

ple domain training reduced the rate at which the functional connectivity entropy

increased in the control group.

Taken together, the results indicate that cognitive training could induce plas-

ticity of the intrinsic activity in the elderly, mainly through modifications of the

resting-state functional connectivity and brain structure. These are thus likely to

be some of the neural mechanisms underlying the effects of cognitive training.

4.6.3 Methods

The study was approved by the Human Research Ethics Board of Tongji Hospital

in Shanghai, China. Informed consent was obtained from all participants before the

experiment (LL(H)-09-04).

Participants

All participants were healthy elderly adults, with normal functional capacity, that

were living independently in the community. The participants were recruited from

three community centers around Tongji Hospital in Shanghai through a dispatched

notice/broadcasting by the local institute of community service from March 2008

to April 2008. Eligibility criteria included: 65 leq age leq 75 years; educational

level geq 1 year; absence of significant hearing, vision, or communication difficulties;

absence of severe physical diseases or psychotic disorders; no obvious evidence of

cognitive decline (on the Chinese version of the Mini-Mental State Examination,

this required a score of 19 or above [Li et al., 2006]. Exclusion criteria included:

obvious cognitive decline such as AD; history or clinical evidence of neurological

diseases or psychiatric disorders such as brain cancer, major depressive disorders,
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Figure 4.4: Flowchart in the trials
‘Refused’ due to lack of interest in continuing, repeatedly missed appointments,
scheduling conflicts. ‘Died’ includes cancer, stroke, cardiac sudden death.
This figure is reproduced from Li et al. [2016].

and schizophrenia. Because the training-related changes predicted in this part have

no relation with handedness [M. et al., 2013], both right and left-handed participants

were enrolled. In the multi-domain training group, one participant, out of a total of

22, was left-handed, and in the single-domain training group, two participants were

left-handed, out of a total of 21.

Study design

In this part, we used controlled design to test the effect of cognitive trainings on

spontaneous brain activity and cognitive capacity. All subjects were selected from

three randomized groups [Yan et al., 2012]. The schematic diagram of study design

and the flowchart of trials are illustrated in Figure 4.4.

Interventions

The three groups included one control group, and two intervention groups. Either

single-domain or multi-domain cognitive trainings were conducted on the two inter-

vention groups. Participants undertook 12 weeks of training, twice a week, for 24

sessions (each session was 60 minutes). The multi-domain cognitive trainings in-
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cluded aspects of: memory, reasoning, problem-solving, visual-spatial map-reading

skills, handcraft, health and physical exercise. The single-domain cognitive trainings

focused specifically on reasoning training, including the ‘towers of Hanoi’, numeri-

cal reasoning, Raven Progressive Matrices, and verbal reasoning. The non-training

control group was used as a match for the social contact associated with cogni-

tive trainings. All participants were given a lecture about healthy living every two

months (more details in the previous study [Yan et al., 2012].

MRI acquisition

All people underwent functional scanning using a Siemens Trio 3T scanner at East

China Normal University, Shanghai, China. Foam padding was used to minimize

head motion for all subjects. Functional images were acquired using a single-shot,

gradient-recalled echo planar imaging sequence (repetition time = 2000 ms, echo

time = 25 ms and flip angle = 90 degrees). Thirty-two transverse slices (field of

view = 240 × 240 mm2, in-plane matrix = 64 × 64, slice thickness = 5 mm, voxel

size = 3.75 × 3.75 × 5 mm3), aligned along the anterior commissureCposterior

commissure line were acquired. For each subject, a total of 155 volumes were ac-

quired, resulting in a total scan time of 310s. Subjects were instructed simply to

rest with their eyes closed, not to think of anything in particular, and not to fall

asleep. Subsequently, high-resolution T1-weighted anatomical images were acquired

in the sagittal orientation using a magnetization-prepared rapid gradient-echo se-

quence (repetition time = 1900 ms, echo time = 3.43 ms, flip angle = 9, field of

view = 256 × 256 mm2, matrix size = 256 × 256, slice thickness = 1 mm, voxel size

= 0.9375 × 0.9375 × 1 mm3 and 160 slices) on each subject.

Cognitive testing

All participants were, initially, given a cognitive capacity assessment, and this was

taken as the baseline for any changes. One year after intervention another cognitive

capacity assessment was made. The assessment included the Repeatable Battery for

the Assessment of Neuropsychological Status [Randolph et al., 1998] (RBANS, Form

A) which has good reliability and validity in a sample of elderly Chinese individuals

that live in the community [Cheng et al., 2011], the Color Word Stroop test (CWST)

[van Boxtel et al., 2001], the visual reasoning test [Xiao et al., 2002] and the trail

making test (TMT) [Ashendorf et al., 2008].
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Data Preprocessing

The first 10 volumes of these datasets were discarded, to allow for scanner stabi-

lization and the subjects’ adaptation to the environment. fMRI data preprocessing

was then conducted by Statistical Parametric Mapping [Frackowiak et al., 2003]

(SPM8) and a Data Processing Assistant for Resting-State fMRI [Yan and Zang,

2010] (DPARSF). The remaining functional scans were first corrected for within-

scan acquisition time differences, between slices, and then realigned to the middle

volume, to correct for inter-scan head motions. Subsequently, the functional scans

were spatially normalized to a standard template [Fonov et al., 2011] (Montreal

Neurological Institute) and resampled to 3 × 3 × 3 mm3. Data was then smoothed,

and after normalization and smoothing, BOLD signals of each voxel were firstly

detrended, to remove any linear trend, and then passed through a band-pass fil-

ter (0.01-0.08 Hz) to reduce low-frequency drift and high-frequency physiological

noise. Finally, nuisance covariates including head motions, global mean signals,

white matter signals and cerebrospinal signals were regressed out from the BOLD

signals. After data preprocessing, the time series were extracted in each ROI by

averaging the signals of all voxels within that region and then linearly regressing

out the influence of head motion and global signals. In this thesis, the automated

anatomical labeling atlas Tzourio-Mazoyer et al. [2002] (AAL) was used to parcel-

late the brain into 90 regions of interest (ROIs) (45 per hemisphere). The names of

the ROIs and their corresponding abbreviations are listed in Table 2.2.

4.6.4 Results

Demographic information

There were 60 individuals who initially took part in fMRI scanning: 22 from the

multi-domain training group, 21 from the single-domain training group, and 17 from

the control group. One year after the intervention, 50 individuals finished the cog-

nitive assessments and fMRI scanning while 10 individuals withdrew, including 2

participants, who suffered intestinal cancer, 1 participant requiring artificial joint

replacement and 2 participants who died during the research period. A total of 5

participants rejected the scanning one year after the intervention. The flowchart of

trials through the entire data collection is illustrated in Figure 4.4. The intervention

groups were comparable with the control group with regard to age, gender and edu-

cation composition at each assessment. Characteristics of subjects are summarized

in Table 4.1.
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Table 4.1: Characteristics of the trials
A Chi-squared test was used to test gender differences, while the F test was used to
test age and education differences. No significant age, gender and education differ-
ences were found in the multi-domain cognitive trainings, single-domain cognitive
trainings and control groups.
This table is modified from Li et al. [2016].

Multi-domain
cognitive trainings

(n = 18)

Single-domain
cognitive trainings

(n =18)

Control group
(n = 14)

χ2/F P value

Age
(x( ) ± SD)

72.28 ± 3.46 71.61 ± 3.97 70.93 ± 3.63 0.527 0.594

Education
(x( ) ± SD)

11.67 ± 3.20 9.39 ± 4.22 10.71 ± 3.34 1.78 0.180

Gender
(male:female)

13:5 8:10 9:5 3.042 0.218

Cognitive capacity

The RBANS test score was found to be significantly improved (t = 2.75, p = 0.007)

in the multi-domain cognitive training group. However, the single-domain cogni-

tive training group showed no significant changes in the RBANS. In addition, the

RBANS test score was improved especially in language (t = 2.13, p = 0.024), at-

tention (t = 1.95, p = 0.034) and delayed memory (t = 2.74, p = 0.007) in the

Multi-domain cognitive training. Moreover, the CWST and TMT scores showed no

significant improvements in both groups. Lastly, the visual reasoning test score was

not significantly improved, but the result was close to significance (t = 1.61, p =

0.063) in the multi-domain training group. By contrast, the single-domain training

group exhibited a significant improvement (t = 2.32, p = 0.017).

Spontaneous brain activity

The mean rate of increase of the functional connectivity entropy was significantly

reduced in both the multi-domain cognitive trainings (t = 1.77, p = 0.047) and the

single-domain cognitive training group (t = 3.67, p = 9.51 × 10−4), as shown in

Figure 4.5.

4.6.5 Discussion

In the Results, we analyzed changes of the entropy of functional connectivity from

resting-state fMRI. The trend of the functional connectivity entropy to increase, as

observed in healthy individuals, was significantly reduced in both cognitively trained

groups, as shown in Figure 4.5.
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Figure 4.5: Entropy change rate in cognitive training groups
The entropy differences (black bars) between the predictions (blue bars) and actual
values (red bars) indicated the cognitive training effect on the entropy measures.
The functional connectivity entropy increase rate was significantly reduced in both
the multi-domain cognitive trainings (t = 1.77, p = 0.047) and the single-domain
Cognitive training groups (t = 3.67, p = 9.51 × 10−4).
Subjects are ranked according to the entropy values.
This figure is reproduced from Li et al. [2016].

The results confirm that cognitive training is transferable, thereby answering

a long-term debate in the area. Combining the analysis of the cognition data, it

could be concluded that both types of cognitive trainings could improve cognitive

capacity in elderly individuals, but the multi-domain cognitive trainings has more

advantages in the cognitive domains it affects.

Note that Owen et al. [2010] obtained negative results for the transferability

of cognitive trainings, while positive results found here. This may be related to the

longer training time in this section, where subjects were cognitively trained for a

total of 24 hours, over 6 weeks, in contrast to the total training time of 4 hours

in Owen et al. [2010] study. The present results are compatible with results in the

area of mental disorder, where schizophrenic patients have benefited from extended

periods of cognitive training (more than 50 hours).

It should be emphasized that the results are mainly based on an informa-

tional concept, namely functional connectivity entropy. To have a direct comparison

with more conventional approaches, we have analyzed the change of the functional

connectivity of the 4005 links in the different groups. we found that in the multi-

domain training group, there is one link which can survive the Bonferroni correction

(p = 7.2 × 10−6 < 0.05 / 4005) as shown in Figure 4.6. This implied the link was

significantly improved with Multi-domain training.

The results also suggest that the target of cognitive trainings should be the
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Figure 4.6: Functional Connectivity Change in training groups
Panels (A) & (C) In the Multi-domain training group, the p value of the link from
Amygdala (Right hemisphere) to Middle Orbitofrontal Cortex (Right hemisphere)
can pass the Bonferroni correction ( p = 7.2 × 10−6 < 0.05 / 4005).
Panels (B) & (D) In the single-domain training group, there are no links whose p
value can pass the Bonferroni correction.
This figure is reproduced from Li et al. [2016].
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dysfunction of cortical circuits which have been assumed to play a role in cognitive

aging [Decarli et al., 2012][Andrewshanna et al., 2007]. The logic is given below.

Extensive experimental data indicates that there is significant loss of neuron number

with age, and this is accompanied by the excitatory receptor number (especially

NMDA) decreasing with age [Morrison and Hof, 1997].

To summarise, cognitive trainings could induce the plasticity of intrinsic

activity patterns in the elderly, mainly by modifying the resting state functional

connectivity, which is thus likely to be one of the neural mechanisms underlying

the cognitive trainings effect. Multi-domain cognitive trainings demonstrated more

advantages than single-domain cognitive trainings, perhaps because multi-domain

cognitive trainings involves more regions relative to cognition. Larger sample sizes

are urgently needed to test the cognitive training-induced changes of brain activity,

cognition capacity and their relationship.
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Chapter 5

Conclusions

To conclude, we used entropy to characterize intrinsic ageing properties of the human

brain. Analysis of fMRI data from a large dataset of individuals, using resting state

BOLD signals, demonstrated that a functional connectivity entropy associated with

brain activity increases with age. During an average lifespan, the entropy, which was

calculated from a population of individuals, increased by approximately 0.1 bits, due

to correlations in BOLD activity becoming more widely distributed. In addition, the

connectivity between different brain areas provides evidence about normal function

and dysfunction. Changes are described in the distribution of these connectional

strengths in schizophrenia using a large sample of resting-state fMRI data. The

functional connectivity entropy, which measures the dispersion of the functional

connectivity distribution, was lower in patients with schizophrenia than in controls,

reflecting a reduction in both strong positive and negative correlations between

brain regions. The brain BOLD signals could be simulated by a computational

model. After brain functional connectivity network construction, the increase FCE

with age and decrease FCE in schizophrenia could be simulated.

In a healthy brain, the resting connectional architecture (system as a whole)

accommodates a higher degree of variability in functional connections (constituent

parts), but in established schizophrenia the variability of constituents that make

up this system is limited, especially when considering those with an established

illness. Our findings address a critical gap in the literature linking structure and

function in schizophrenia, and demonstrate for the first time that the abnormal state

of functional connectivity preferentially affects structurally unconstrained links in

schizophrenia. It also raises the question of a continuum of dysconnectivity rang-

ing from less direct (structurally unconstrained) to more direct (structurally con-

strained) brain pathways underlying the clinical severity of schizophrenia.
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Lastly, functional connectivity entropy idea have a lot of possible future

avenues of work. As shown in Section 4.6, we used FCE idea to show that cognitive

training can induce plastic changes in neural functional connectivity of healthy older

people, and these changes may underlie the positive effect of cognitive training. We

will apply FCE more in mental health area. Moreover, in the near future, we will

also try to do FCE analysis in neurological and neurosurgical diseases.

The key story of this thesis has already been published on Yao et al. [2015].
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Appendix A

Appendix Figures
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Figure A.1: Enlarged Version of Figure 3.9
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Figure A.2: Enlarged Version of Figure 3.5
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Figure A.3: Enlarged Version of Figure 3.5
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Appendix B

Appendix Code

B.1 Matlab Code of Functional Connectivity Entropy

% Entropy o f the whole bra in

function [ Entropy value ]= Brain Entropy ( CorrMat )

% Input i s the c o r r e l a t i o n matrix o f the r e s t i n g s t a t e BOLD

s i g n a l .

% Output i s the entropy v a l u e .

IntervalNumber =20;% I n t e r v a l number in [−1 ,1]

% Extrac t the upper t r i a n g u l a r matrix o f CorrMat

CorrMatSize=s ize ( CorrMat ) ;

CorrMatLength=CorrMatSize (1 ) ;

CorrL i s t=zeros (1 , CorrMatLength ∗( CorrMatLength−1)/2) ;%

C o r r e l a t i o n l i s t

k=0;

i =1;

while i<=CorrMatLength

j=i +1;

while j<=CorrMatLength

k=k+1;

CorrL i s t (1 , k )=CorrMat ( i , j ) ;

j=j +1;

end

i=i +1;

end
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% Entropy c a l c u l a t i o n

EntropyList=zeros ( IntervalNumber , 1 ) ;

i =1;

while i<=IntervalNumber

TempPosi1=find ( ( CorrList>−1+2/IntervalNumber ∗( i −1) )& (

CorrList<=−1+2/IntervalNumber∗ i ) ) ;

EntropyList ( i , 1 )=length ( TempPosi1 ) ;

i=i +1;

end

EntropyList=EntropyList . /sum( EntropyList ) ;

TempPosi2=find ( EntropyList ˜=0) ;

Entropy value=−sum( EntropyList ( TempPosi2 ) .∗ log ( EntropyList (

TempPosi2 ) ) ) / log (2 ) ;
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