A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/110749

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

Spectral and Distributional Problems for Homogeneous Extensions of Dynamical Systems And the Rate of Mixing of Two-Dimensional Markov Shifts

Mohd. Salmi Md. Noorani'

```
Thesis sulmuitted for the Degree
    of Doctor of Philosoply
    at the University of Warwick
        Jamuигу 1993
```

[^0]Untuk ugama ku dan untuk Mardiana

Acknowledgements

This thesis owes a lot to the kind assistance, patience and encouragements of my supprvisor, Bill Parry. It is a plemure to thank him for the never eading help, that he has given to me throughout the preparation of this thesis and indeed, for the knowledge received ever since my M.Sc. years.

It is also a pleasure to thank Authony Quas, Rirlard Sharp, Simon Waddington and John Corkerton for helpful discussions during the course of this work. Thanks also to Thomas Mielke for helping me with the $L A T_{E} X$ page umberiug!! I would alno like to take this opportunity to thank Dr. Anthouy Mauning, who was my undergraduate tutor, for hix guidauce duriug those early years.

I have made a lot of friends at Warwick. I thank them all for making my stay here enjoyable.

Finslly. I arknowledge J.P.A/U.K.M for the finaurial support and Fakulti Stims Matematik dan Komputer, Universiti Kehaugsand Malaysia for granting me study leave.

Declaration

Thu material in this thesis is original as far as I am aware except when stated otherwise. Chapter 1 is joint work with Bill Parry aud Las already appeared in the Boletim Da Sociedade Brastleira De Matemática, Vol. 29. Ns. 1.2. 197-151, 1998.

Brief Summary

This thesis ronsists of four chapters. Chapters 1 and 2 are somewhat related in the seuse that they deal with similar dynamical systems. Each chapter comes complete with its own references and notations.

For the eonvenieuce of the reader, we provide an introdnction and indeed an elongated smumary to the whole thesis in Chapter 0.

In Chapter 1. we study bow closed orbits of a subshift of fiwite type lifts to a finite homogenerous extension. In particular, we obtain an asymptotic formula for the number of closed orbits according to how they lift to the exteusion space. We apply our findiugs to the case of finite extensions and also to automorphism exteusions of hyperbolic toral automorphisms.

Chapter 2 defls with lifting ergodic properties of an arbitrary measurepreserving transformation T to homogeneons extensions of T. One results extrull well known theorems already obtained for the case of compact group extensions of metasite preserving transformations. We also give simplified results to the sperial rase when the base transformation is a Markov shift aud the skewing function depends on a finite number of coordinates.

In Chapter 3, we look at the rate of mixing of rectangle sets of two dimensional Markov shifts with respect to the natural shift artions. We show that if one of the matrix defining the Markov meanure is aperiodic then this rate is exponentially fast. We provide an example to illustrate what rould happen in general.

Contents

Chapter 0: Introduction $0-1-0-9$
Chapiter 1:
A Chebotarev Theorem
For Finite Homogenerous
Extonsions of Shifts,
0. Introxhuction 1-1

1. Basic farts aud Definitions 1-2
2. The Homogeneous Extension 1-6
3. Application I: Finite Extensions of shifts of finite typer 1-9
4. Application II: Automorphism Extensions of shifts of finite typre 1-11
Referpures 1-16
Chapter 2:
Lifting Ergodic Properties
To Homogeueous Extensions And Applirations To Markov Shifts
5. Introduction 2-1
6. Preliminaries 2-2
7. Lifting to Compact Group Exteusions 2-6
8. Lifting to Honuggeneros Extensions 212
9. Applications to Markov Shifts 2-18
References; 2-25
C'hapter 3:
A Note on the Rate ofMixing of Two Dimensional Markov shifts
10. Introduction 3-1
11. Definitions and Rexulte 3-2
References 3-11

Chapter 0 Introduction

One of the basic constructions in ergodic theory is the no called skew product of wersure preserving transformations. These mathematical objects are measure preserving transformations of the form $T: X \times Y \rightarrow X \times Y$ which in given by $T(x, y)=\left(T_{1}(x), S_{s}(y)\right)$ where $T_{1}: X \rightarrow X$ is a measure premerving trawsformation on some probability space (X, B, m) and $\left\{S_{x}\right.$: $x \in X\}$ is a family of measure-preserving transformation on some other probability space (Y, \mathcal{A}, μ). Here T in equipped with the product σ-algebra $B \times \mathcal{A}$ and product measure $m \times \mu$. A thorough discussion on skew products ran be found in Chapter 10 of Cornfeld et al [2].

A special form of skew-product is when T is given by $T: X \times G / H \rightarrow$ $X \times G / H$ and $T(x, g H)=\left(T_{1} x, \alpha(x) g H\right)$, i.e., the space Y is taken to be the Lomogeveonis space G / H for some compact group G, some sulbgroup H (uot nevensarily normal) of G and the family $\left\{S_{x}: x \in X\right\}$ is replared by some measuralile map $\alpha: X \rightarrow G$. In this situation, the space G / H is eudowed with the Burel a algebra together with the restricted Haar measure. This form of akew product is more generally known (for obvious reasoun) as a bomogenerus extension of T_{1}. The main part of thin thesis (i.e. Chapters 1 fund 2) will then be dealing with mome problems relating to these extensions and the nonociated factor system. In fart, the problems we consider are of two typer: distributional problem (see Chapter 1) and spectral problem (see Chapere 2). We remark that when clealing with the distributional problem, then we shall maiuly be interested in topological akew products.

Obererve that given a homogrueous exteusion T, there always exists a group extemaion $T^{\prime}: X \times G \rightarrow X \times G$ given by $T^{\prime}(x, g)=\left(T_{1}(x), \propto(x) g\right)$ which in an extension of both T and T_{1}. Thin crucial abservation will be used on a number of orcasions to help us with our work. It will be helfful to have the fullowing pirture in mind:

The maps $\pi_{i}, \pi_{i} / H$ and π in the above picture are the obvious projection maps.

Distribution Of Closed Orbita

The first problem considered (which is joint work with Bill Parry) and in fart the coutent of Chapter 1 , is to do with counting rlosed orbits of the bose transformation acrording to how they lift to the extension space. More precisely, in this situation, the base trausformation $\sigma: X \rightarrow X$ is a sulshift of finite type, G is a finite group and the nikewing-function α is a coutinuous maj, from X to G. Note that, this meaun a is a function of a finite number of conoclinates. Given a sulgroup H of G, we have the homogeneous extensiou $T: X \times G / H \rightarrow X \times G / H$ which is given by $T(x, g H)=(\sigma x, \sigma(x) g H)$. Then, the main theorem of the first chapter is the dynamical analogue of the Chebotarev Theorem of classical number theory for finite homogeneous extensions of sulbaiftn of finite type. Roughly speaking, the number theoretiral result giver us an anymptotic formula for the number of primes acrording to how they lift to a finite exteunion field (see Heilbronn's article in Cassels nud Froblich [1]). We neress that the proxf of our theorem relies heavily on the analogous reswlt for group) pxtensious of sulbshift of fiwite type (i.e. when $H=[r\}$, the trivial subgroup] which was obtained earlier hy Parry and Pollicott [6] .

Working analogously with the uumber theoretical reault, we first need to dhasify the a closed orbite nccording to how they lift to the spare $X \times G / H$. Fur group exteusious, this waf done vin the notion of Frobenius classes, which nee just ronjugary clannes of G. In fact, it is with respect to theme Frobonius clanses that the anymptotic formulas of Parry and Pollicott applios [0]. We remark that for group exteunions, the chosed orbits covering a givet σ rlowerd orhit all have equal length. Uufortuuately, in our case, this way of rlassifying the a closed orbits is no longer possible. Juxt an well, since for a general homogeumous exteuniou the atatement about the cloaed orhita
covering a given a-closed orbit all have equal length is no longer valid.
Now, given a σ-losed orhit T and $\bar{\tau}_{1}, \ldots, \bar{\tau}_{n}$ are the T-closed orbits that cover t. then the mombers

$$
\frac{\lambda\left(\tau_{1}\right)}{\lambda(\tau)}, \ldots, \frac{\lambda\left(\bar{\tau}_{m}\right)}{\lambda(\tau)}
$$

forms a partition of the integer $|G / H|$. (Here, $\lambda()$ denotes the length of the correspouding closed orbits.) The various partitions of the integer $|G / H|$ being induced by the σ-closed orbits will then be our way of classifying these closed orlits. Note that the existence of T-closed orbits covering a given a - closed orbit is a consequence of the finiteness of G.

The next step in getting to the main result is to understand how these equivaleuce classers of a-closed orbits arises. First olbserve that by lifting σ-closed orbits to the associated group extension, we can assign to each σ closed orlit τ, its Frobeuius class $|\tau|$. It is shown that, given an equivalence class A_{f} of a-rlosed orbits (with respect to the homogeneousextension) corresponding to some partition I, say, of the integer $|G / H|$, then A_{l} is a disjoint union of a closed orbits corresponding to some distinct Frobenius classes. In fart. the a closed orbits that make up this disjoint uwion are exartly the ones with Froljenius classes $C\left(g_{1}\right) \ldots, C\left(g_{n}\right)$, such that the artion of the cyrlic group generated by $g_{1},<q_{1}>$, on the coset space G / H also induces the partition t, for each $:=1, \ldots, n$. By this we mean the 'sizes' of the distinct orbits of the action of $\left\langle g_{1}\right\rangle$ on G / H also forms the partition l. This being the rase, then our majn theorem, which is an asymptotic formula for the number of σ-rlosed orbits in a given class A_{i} with length $\leq x$, as $r \rightarrow \infty$, is just a simple application of the Chebotarev Theorem for group extensions of Parry and Pollicott. That in, we just add up the asymptotic formulas corresponding to the various Frobenius classes that make up A_{1} (see Theorem 2.3 of Chapter 1).

After extal,lishing the main result, we then apply our findings to specific extmples. The first example considered is the so-called finite extensions of sulbshifts of finite type. These take the form $T: X \times F \rightarrow X \times F$, $T(x, i)=(\sigma x, \alpha(x)(i))$, where F is some fiuite set $\{1,2, \ldots, k\}$ say, and α is a coutinutus map from X to S_{k}, the symmetric group on k-symbols. Siuce F in a homogenerous spare with respect to the group action, then it is eany to ser that we cau identify F with the roset npace S_{k} / S_{k-1}. Thus we rall rewriteT in the 'lomogeneons extension form' $T: X \times S_{k} / S_{k-1} \rightarrow X \times S_{k} / S_{k-1}$ where
$T\left(x, g S_{k-1}\right)=\left(\sigma r, \sigma(x) g S_{k-1}\right)$. It is interesting to note that in this example, given an rquivalence class A_{1} of σ-closed orlits, arising from some partition 1. there exists a unique conjugacy class $C_{\underline{1}}$ surh that $A_{\underline{1}}$ is precisely those σ closed orbits τ with Frobenius class $[\tau]$ equals C_{l}. This in turn implies that the asymptotion for the homogeneous and the group extension are the shme (see $\$ 3$ of Chapter 1 for details).

We are almo able to npply our main theorem to a no-called automorphism extension of the shift. These are skew products of the form $T: X \times G \rightarrow$ $X \times G, T(x, g)=(\sigma r . \beta(x) \gamma(g))$ where $\gamma: G \rightarrow G$ is an nutomorphism of the (fixite) group G and H is a continuous map from X to G. Then T is also a homogenerous extemsiou. To see this, first note that since G is finite, then there exists a least n surh that $\gamma^{\prime \prime}=$ id. Now, let $G^{\prime}=\mathbf{z}_{n} x_{7} G$ be the semi direct product group of G by \mathbf{Z}_{n}. Moreover, let H be the subgroup $Z_{n} \times\{e\}(e=$ identity of $G)$ of G^{\prime}. Then we can identify T with the map $T: X \times G^{\prime} / H \rightarrow X \times G^{\prime} / H$ where now

$$
T(x,(0, g) H)=\left(\sigma_{x},(0, \beta(x) \gamma(g)) H\right)
$$

for all $(x,(0, g) H) \in X \times G^{\prime} / H$ (see $\S 4$ of Chapter 1 for details). In particular, our waiu theorem also applise to this extension of the shift.
ln fart, wir ghen our step further with thene antonnorplism extensious. For thin, bet A be a hyperbolic antomorplisen of a tinite dimensional torus T. Let G be the set of all points in T with order m, way. Then G acts on T aud in relation to \bar{A} this artion satisfies

$$
\bar{A}(r+g)=\bar{A}(r)+\bar{A}(g) \quad r \in \mathrm{~T}, g \in G .
$$

Moreover, A indures an artion A on the G-orbit njace T / G such that $A: T / G \rightarrow T / G$ is alsas a byperbolic toral natomorphism. By using similar idpan to the one contained in pg. 137 of Parry and Pollicott [6], one can show that the autnuorphisim extension of the shift rousidered earlier actually is the 'symbolic model' for our hyperbolic toral autoworphisms. More importantly, aince the rounting function for the shift and the toral automorphinm are anymptotic (see Parry and Pollicott [7]), we gather that any esymptotic formula which is crue for the automorphism extenaion of shifts. in alsu) true for 'automorphinmextension' of byperbolir toral autonorphimins. Iu particular. our main result alno holdin for thin later kind of dyuamiral nystem (nere \$is of Cbapter 1 for detaila). Thin concluden the wain considerations
of Chapter 1.

Lifting of Ergodic Properties

Chapter 2 of this thesis is concerned with the spectral properties of bomogeuerous extenions of arbitrary measure-preserving tramsformations. More precisely, the problem considered here is to do with lifting ergodir properties of the base transformation to the homogeneous extebsion. The ergodic properties that interext us are ergodicity, weak-mixing, being a K autoworphisin and being a Bernoulli shift. Suppose we know that the base transfonmation satisfies some ergodic property then, in general, it is not true that the corresponding homogeneous extension also satisfies the same ergodie property. Thus, the proble'm is to find conditions for the homogeveous extension to satisfy the same ergudic property as the base transformation.

For (comph't) gronp extensious of measure- preserving transformations, therse conditions har well kuown. Indeed, these well-known conditions for heing ergodic, werkly mixing, of K atomorphism and a Bernoulli shift are all uecensary and sufficient. These rewults are due to Kipynes \& Newton [4], Parry \& Pollicott [6], Thomas [11] and Rudolph [9] respectively. We have iucluded these results and some of their proofs for completeness in $\S 2$ of Chapter 2. In fact, all the conditions supplied by them can be written in the form of a certain functional equation. As a sample of these conditions, we quote the result, due to Keynes \& Newton [4], which gives a necessary and sutficient coudition for the ergodicity of the group extension knowing that the base transformation T_{1} is ergodir (see $\S 2$ of Chapter 2). First, recall that a is the skewing function of the group extension T^{\prime}.

Theorem A Let T_{1} be ergodic. Then the group extension $T^{\prime \prime}$ is ergodic if and only if for any non-trivial unitary representation R of G (of degree d, say). the equation

$$
F\left(T_{1}(x)\right)=R(a(x)) F(x) \quad \text { a.e. } x
$$

has no non trivial measurable solutions $F: X \rightarrow C^{d}$.

This motivatex us to find analogun criteria for homogedeous extensious of mpasure preserving transformations. Indeed, we abow that neremary and nufficinnt conditions also pxist for homogeneous exteusious to bave the rame
ergolic properties as the base transformations. As a romparison with Theorem A, we quote our result for the ergodicity of the homogereous extension knowing that the hase transformation T_{1} is ergodic (see Theorem 5 of Chapter 2).

Theorem B Let T_{1} be ergodic. Then the homogeneous extension T in ergodic if and only of for any non trivial irreducible unstary representation R of G (of degrec d, say, satisfying $b R(h)=b$ $\forall h \in H$. for some non-zero $b \in \mathbf{C}^{d}$, the equation

$$
F\left(T_{1}(x)\right)=R(a(x)) F(x) \text { a.e. } x
$$

has no non trivial measurable solutions $F: X \rightarrow C^{d}$.
Notr that, in contrast to Theorem A, the group representatious involved in the alouve theorem are, roughly sppaking, of the type that 'aumihilates' H. Iudeed, this is true for abelian G since in this case we are interested in representations (or more precisely, characters) x such that $\chi(h)=1, \forall h \in H$ We alno ohtniued a similar condition to Theorem B for the case of a wealdy mixing T_{1} (see Theorem 6 of Chapter 2). As one would expert, the proof of Theorem B and also for the woak mixing case follows similar arguments used in the crase of group exteusious.

In the case of a Bernoulli lase, the result we provide (see Corollary 2 of Chapter 2) is jnst a simple rewording of a theorem of Rudolph [9]. Our result кays that if the lase transformation T_{1} is a Beruoulli shift then the homogenerous exteysion T is also Beruoulli provided T is weak-mixing. Unfortunately, in the case where the base transformation is a \boldsymbol{K}^{\prime}-automorphism, we are ouly alle to acolve the problem for the apecial case of a finite G. This result of ours, whirh says that T is a K - automorphism if it is weak - mixing, follows from a result of Thomas [11]. Nevertherless, we comjecture that the aforementioned rewult also holds for arbitrary rompact groups G. Work is in progress iu thes direction

In the fiunal section of Cbapter 2, we specialize our considerations to the caue where the base trausformation in a Markov shift and the skewing function a in a furction of a finite number of coordinates. Note that, by using a staudard recoding argument (aee, for e.g., Denker et al [3]) we can alwayn ansume the function on to depeud on only two coordiuates. Recall that the urcennary nud sufficirut courlitions for homogeneaun exteuxions aud
inderel for group extensions to satisfy some ergodic property involven a certaju functioual equation (c.f. Theorems \mathbf{A} and B). Our objective uow ix to oltain a simplification relating to the solutions of these functional rquations. In fart, in this situation, the results olstained by us implit's that molutions F to the functional equation, in general, depends on one less coordinate than that of ther skewing function $\boldsymbol{\pi}$. In particular, when a depends ou two coordinates then the solution F to the functional equation depends on only one coordinate. Hence we can apply this finding to Theorem B, any, to obtain:

$$
\begin{aligned}
& \text { Theorem } C \text { Let } T_{1} \text { be an ergodic Markov shift. Suppose the } \\
& \text { Aicwing function a depends on twa coordinates. Then the homo- } \\
& \text { geneous extension } T \text { is ergodsc of and only if for any non-trivial } \\
& \text { irreducible unitary representation } R \text { of } G \text { (of degree } d \text {, say) satis- } \\
& \text { fying } b R(h)=b, \forall h \in H \text {, for some non-zero } b \in C^{d} \text {, the equation } \\
& \qquad F\left(T_{1}(x)\right)=R(\alpha(x)) F(x) \text { a.e. } x \\
& \text { has no non trivial measurable solutions } F: X \rightarrow C^{d} \text { depending on } \\
& \text { only one coordinate, i.e. } F(x)=F\left(x_{0}\right) .
\end{aligned}
$$

We remark that for abelian G, this kind of simplification was proven earlier by Pariy [5] (sep also Pariy \& Tuncel [8]). In fact, the main result of this sertion (85, Prop. 4), was shown to us by Bill Parry, for whirh we are grateful. The alowe nomewhat nummarises the main coutent of Chapter 2.

Higher-Dimensional Markov shifte

Unlike the therify of oue dimeusional Markov shifte, the theory of higherdimeunioual Markov shifts in filled with anomalies and difficulties (ser Schmidt [10] for a hrief survey). In the final chapter of this thesis (Chapter 3), we make a very small contribution towards a better understanding of these higherdimeneional Markov shifts.

The proslen that interent us in thio short chapter is with regard to the rate of mixing rectangle seta in a (wo climensional Markov shift. More precimely, let Y be the fiwite set $\{1,2, \ldots, k\}$ and Y^{2} be the mpace of all functious $r: \mathbf{Z}^{2} \rightarrow Y$ endowerl with the product σ - agebra B. Let P and Q be two comwnting $k \times k$ stochastic matrices nurh that there exista a probability vertor p with $p P^{\prime}=p Q=p$. Moreover, askume that $P^{0} Q^{0}$ is alsu a zero-ome matrix null that $P^{0} Q^{0}=Q^{0} P^{0}$. (Here P^{0}, Q^{0} denotes the zero one matricen which
are compatible to P and Q respectively.) Thes $P . Q$ defines a probalility meavire m on ($\boldsymbol{Y}^{-Z^{2}}, B$). The probability spare $\left(Y^{\boldsymbol{Z}^{i}}, B, m\right)$ together with the untural shift metions σ (horizontal shift) and T (vertical shift) then defines our two dimensioual Markov shift. We, remark that this definition is not empty siuce the correspouding subshift of finite type (defiusd by P^{0} and Q^{0}) is nou mmpty.

Now, giveu two rectangle sets A aud B in B, the problem is to look at the rate of ronvergence of the sequence

$$
\left(m\left(A \cap \sigma^{-m} r^{-m} B\right)-m(A) m(B)\right)_{m n \geq 0}
$$

to zero, the $m, n \rightarrow \infty$. For one dimensional Markov shifts, it is by now well known that when the matrix defining the Markov measure is aperiodic then the nualogons sequeuce in this case converges to zero at an exponential rate. We show that, for two dimensional Markov shifts, the aforementioned sequpuce also converges to zero at an exponential rate provided P or Q is apprioulic. The proof of this resilt is pretty much the same as in the one climeusiousl rase. In particular, we show that the nequence of matrix entries $p^{\prime n} q^{\prime \prime}(i, j)$ ronverges to $p(j)$ at an exponential rate as $m, n \rightarrow \infty$, for all $i . j=1,2 \ldots, k$ when either P or Q is aperiodic.

It is interesting to note that our original cunjecture for thin kind of convergence to hold is that $P^{\prime} Q^{\prime}>0$ for some integets $A, t>0$. We give an example of a pair of matricer P, Q satisfying the above properties to illustrate what could happen to the above result if we relax the aperindicity assmmption on P or Q. In particular, this example demolish the previously mentioned conjecture. An immediate corollary to the majn result of this clinpter in that the Markov shift is strong-mizing. Of course, all the above ran he geurralised to higher dimensional Markov shifte.

References

[1] J. W. S. Cassels \& A. Fröhlich, Algebraic Number Theory, Academic Press, Loudon (1367).
[2] 1. P. Cornfeld, S. V. Fomin \& Ya. G. Sinai, Ergodic Theory, Springer Virtag (1982).
[3] M. Druker, C. Grilleuberger \& K. Sigmund, Ergodic Theory on Compact Spaces, Springer Lecture Notem in Math. 527 (1976).
[4] H. B. K'yuex \& D. Newton, Ergodir measures for non-slielian compact group extensions, Compositio Mathematica 32 (1976), 53-70.
[5] W. Parry. Endomorphisins of Lebesgue Space III, Istael Jour. Math. 21 (1975). 167172.
[6] W. Parry \& M. Pollirott, The Chebotarev Theorem For Galois Coverings of A xiom A Flown, Ergod. Theory \& Dynam. Sys 6 (1986), 133148.
[7] W. Parry \& M. Pollicott, Zeta functions aud the periodic orbit etrurture of hyperisolic dyuamies, Astérisque Vol. 187-188 (1990).
[8] W. Parry \& S. Tuucel, Classification problems in Ergodic Theory, L.M.S. Lerture Netes 67 (1982), C.U.P.
[9] D. J. Rudolph, Clnssifying the isometric extensions of a Bernoulli shift, J. d Analyse Mathematique 34 (1978), 3660.
[10] K. Schwidt, Algebraic ideas in Ergodic Theory, CBMS Regional Conf. Ser. in Math., No. 76 (1990), Amer. Math Suc., Providence RI.
[11] R. K. Thomas, Metric propertips of trausformations of G-spaces, Thans. Amer. Math. Soc. 160 (1971), 103-117.

Chapter 1

A Chebotarev Theorem For Finite Homegeneous Extensions Of Shifts

by
Mohd Salus Md. Nooranit and William Parry Mathematics Iustitute, Üuiversity of Warwick, Coventry CVitil. CK

Abstract

Wis deriva © Chabotarev Theorem for finju homogeteous axtensiona of shifte of the \boldsymbol{z}-closed orbits covering r deflnes a partition of the integer $|G / H|$. The theorem then givel vi an mymptotic formula for the number of closed orbice wirh respect to tha verious paptitione of the integer $|G / H|$. Wie apply our theorem to the case of a faite entansion and of en automorphism antension of shifte of finite type. Wialmogive further application to automorphiem entemelonat of bypertolic toral eutomorphiame.

0. Introduction

The Chebotarev Theorem for a group extension of a shift of finite type σ gives us an asymptotic formula for the number of σ-closed orbits according to how they lift in the extensiou space and how they lift is completely determined by their Frobenius classes. It is with respect to these classes that the asymptotic formula applies. This, and indeed many more distribution results for closed orbits of shifts of finite type has been derived by the second author together with Mark Pollicott (see [4$]$ for the entire collection).

Strictly speaking the above mentioned result is for a suspeusion flow over a shift of finite type. To obtain the appropriate result for the discrete case, all one ueeds do is use the constant function 1 as 1 he suspension function.

[^1]Our ain in this paper is to study the analogous problem for a more general extension of the shift. In fact,our consideration bere were motivated by two examples: a finite extension aud a so-called automorphism extension of the sluft. It will become apparent that to cater for these examples, the appropriate extension oup should consider is a homogeneous extenviou. i.e., of the form $\bar{\sigma}: \mathbf{X} \times G / H \rightarrow X \times G / H$ for some (finite) group G and suligroup H.

We observe that, unlike the groupextension case, the lifted closed orbits may not have the same length. This unevenness will then be the basis for classifying the σ-closed orbits. To proceed with the asyuptotics with respect to this classification we have to understand how these classes come about. We show that this is equivalent to looking at actions of certain cyclic subgronps on G / H. This in done by resorting to a certain group extension. Thus it is no surprise that our main result is just a direct application of the Chebotarev Theorem for group extensions.

1. Baaics facts and Definitions

Let $\{1.2, \ldots, n\}$ be given the discrete topology and A be $a n n$ irredurible 0-1 matrix. Define the set

$$
X_{A}=\left\{x \in \prod_{+=}^{\infty}(1,2, \ldots, n): A\left(x_{1}, x_{1}+1\right)=1, \forall i \in Z\right\}
$$

Then X_{A} is a compact zero dimensional space. Let $\sigma: X_{A} \rightarrow X_{A}$ be defined by $(\sigma x)_{1}=s_{1+1}$. Then σ is called a shift of finite type (with trausition matrix A). From now on we shall write X for X_{A}.

Rerall that a homeomorphisin $T . Y^{*} \rightarrow Y^{*}$ is said to be topologically transitive if T has a deuse orbit. Also T is asid to be topologically mixing if for any two uon-empty open sets \mathcal{L}^{\prime}, V in ξ^{\prime}, there is an integer N such that $T^{\prime \prime}\left(C^{\prime}\right) \cap V^{\prime} \neq \emptyset$ for all $n \geq N$.

For shifts of fimite type, it ia well-known that thene two notions are equivalent to the requirement that the crausition matrix A be irredurible and aperiodic respectively. The topological entropy of a is $\log \beta$, where β is the maximal ponitive eigenvalue of A as furnished by the Perron-Frobenius Thmorem.

Given a closed orbit (i.e. periodic orbit) τ of σ, we shall denote its least period by $\boldsymbol{\lambda}(\tau)$. Then the zeta function of σ is defined as

$$
\begin{aligned}
\zeta_{n}(z) & =\prod_{r}\left(1-z^{\lambda(r)}\right)^{-1} \\
& =\exp \sum_{r} \sum_{n=1}^{\infty} \frac{-\lambda(r) n}{n} \quad \text { for } \mid \approx 1<\beta^{-1}
\end{aligned}
$$

In fact we have the following well known restult of Bowen and Lanford [1].
1.1 Proposition. Let σ be a shift of finite type with transition matrix A. And let θ be the associated maximal positive eigenvalue. Then

$$
\zeta_{\sigma}(z)=\frac{1}{\operatorname{det}(I-z-4)} \quad \text { for }|z|<\beta^{-1}
$$

An immediate corollary to the above sesult is
1.2 Corollary. Let σ be a topologically mixing shift of finite type. Then $\zeta_{0}(=)$ has a non-zero analytic extension to a disc of radius greater than β^{-1} except for a simple polm at 3^{-1}.

Csing this result Parry and Pollicott (see [4] pg 104) deduced the Prime Orbit Theorem for shifts of finite type:
1.3 Theorem. Let σ be a mixing shift of finite type and let $\pi(x)=$ Card $\{r \subset X \mid \lambda(t) \leq r\}$. Then

$$
\pi(x) \sim \frac{\beta}{\beta-1} \cdot \frac{\beta x}{x} \quad \text { as } x \rightarrow \infty
$$

When σ is not topologically mixing, we can decompose X into a disjoint union of $d\left(=\right.$ period of A) closed-open sets X_{1}, \ldots, X_{d} such that $\sigma\left(X_{i}\right)=X_{j}$ $\left(j=i+1\right.$ mod d) and $\left.\sigma^{d}\right|_{X}$ is topologically mixing, $i=1, \ldots, d$. Hence applying (1.3) to this case we have

1.4 Proposition. When o is not topologically mixing, then

$$
\pi(d s) \sim \frac{d^{d}}{B^{d}-1} \cdot \frac{B^{d s}}{x} \quad \text { as } \quad x \rightarrow \infty
$$

where d is the period of the transition matrix A.
All gronps considered in this paper are assumed to be fixite. So let G be such a group and $a: X \rightarrow G$ be a function depending on a fiuite uumber
of coordinates. The gronp extension $\sigma: X \times G \rightarrow X \times G$ of σ is then defined by the skew-product $\vec{\sigma}(x, g)=(\sigma r, a(r) g)$. We shall always assume that $\dot{\theta}$ is topologically trausitive. Thus by definition $\tilde{\sigma}$ is also a shift of finite type. Letting $\pi: \mathcal{X} \times G \rightarrow \boldsymbol{X}$ be $\pi(r, g)=r$, we have $\pi \vec{\sigma}=\sigma \pi$.

We are interested in how σ-closed orhits lift into the extension space. To classify these closed orbits, we introduce a free right-action of G on $X \times G$ ly $h \cdot(x, g)=(x, g h), h \in G$. This artion commutes with $\dot{\sigma}$. Thus given a closed orbit τ of σ with least period $\lambda(r)$ and a $\bar{\sigma}$-closed orbit \uparrow covering τ (i.e. $\pi(\hat{\tau})=\tau$), there exists a unique element $\gamma(\hat{\tau}) \in G$ such that if $p \in \hat{\tau}$. then

$$
\gamma(\dot{\tau}) p=\hat{\sigma}^{\lambda(r)} p
$$

In fact $q(\hat{r})$ depeuds ouly on \dot{f}. This group element $\mathcal{f}(\dot{f})$ is called the Frobenius element of $\dot{\boldsymbol{\tau}}$. Morpover if \boldsymbol{f}^{\prime} is nnother $\dot{\boldsymbol{\sigma}}$-closed orbit also covering τ. then since G acts transitively on fibers, there exists an $h \in G$ such that $h p \in \hat{\tau}^{\prime}$. Thus the Frobenins element $\gamma\left(\dot{\tau}^{\prime}\right)$ of $\hat{\tau}^{\prime}$ satisfies

$$
\gamma\left(\hat{\tau}^{\prime}\right) h p=\hat{\partial}^{A(r)} h p .
$$

Hence $\gamma\left(\hat{r}^{\prime}\right)=h \gamma(\hat{r}) h^{-1}$. In other words, the Frolsenius elements of the lift of τ are all in the same conjugacy class which is uniquely deteruined by T. This coujugary class is called the Frobenius class of τ and is denoted by [T].

Let R_{λ} be an irreducible representation of G with clasacter λ. The L-function (with respect to $\pi: X \times G \rightarrow X$) of λ is defined as

$$
L(z, \lambda)=\prod_{\tau} \operatorname{det}\left(I-z^{\lambda(r)} R_{\mathrm{A}}([r])\right)^{-1}
$$

where the product is taken over all o-closed orbits. By comparing the above expression with the zeta function of the shift we deduce that $L(:, ~ y)$ is nonzero and analytio on $D=\left\{:\left||=|<s^{-1}\right\}\right.$. Observe that when $\lambda=\lambda_{0}$, the principal character, $L\left(z, \lambda_{1}\right)=\zeta_{0}(z)$. In fact one can show
1.5 Proposition. Let $\bar{\sigma}$ be a group extension of σ with skewing function $\boldsymbol{a}: \mathbf{X} \rightarrow G$ depending on a finite number of coordinates. Then

$$
L(z, \lambda)=\frac{1}{\operatorname{det}\left(I-z M_{n}\right)} \text { for }|z|<\beta^{-1}
$$

for some matrix M_{1} closely related to the representation R_{1}
The Chehotarev Theorem of Parry and Pollirott for group extennions in an follown:
1.6 Theorem. Let $\bar{\sigma}$ be a topologically transitive group extension of a shift of finite type σ. For a coujugary class C of G, let $\pi_{c}(x)=\operatorname{Card}(\underset{r}{ } C$ $X:\{r]=C, \lambda(r) \leq \boldsymbol{r}\}$. Then
a) if $\dot{\sigma}$ is mixing, $\pi C(x) \sim \frac{|C|}{|G|} \frac{\beta}{\beta-1} \cdot \frac{\beta^{x}}{x} \quad$ as $x \rightarrow \infty$,
b) if σ is mixing and \dot{o} not mixing with $d=$ period of the transition matrix of $\dot{\sigma}$,

$$
\pi_{c}(x) \sim d \frac{|C|}{|G|} \frac{\beta^{d}}{\beta^{d}-1} \cdot \frac{\beta^{v}}{x} \quad \text { as } x \rightarrow \infty
$$

We indicate how one proves this result. We shall zestrict our attention to the rase when $\bar{\sigma}$ is mixing. To capture the σ-closed orbits with a given Frobeuius class C, we introduce the following zeta function,

$$
\zeta c(z)=\prod_{|r|=C}\left(1-z^{\lambda(r)}\right)^{-1}
$$

Let $g \in C$. Then by the orthogonality relation for irreducible clararters of G we have

$$
\frac{|G|}{|C|} \frac{\zeta_{C}^{\prime}(z)}{\zeta_{C}(z)}=\sum_{x \text { irreducible }} \lambda\left(g^{-1}\right) \frac{L^{\prime}(z, \chi)}{L(z, \chi)}
$$

Then we identify the poles of $\zeta_{C}^{\prime}(z) / \zeta C(z)$ in a small ueighbourhood D^{\prime} of $\left\{z\left||=| \leq \beta^{-1}\right\}\right.$ and thus calculate their residues. We know that $L\left(z, \lambda_{0}\right)=$ $\zeta_{\sigma}(z)$ has a simple pole at $z=\beta^{-1}$ on the circle $\left\{z\left||z|=\beta^{-1}\right\}\right.$ and if we take D^{\prime} to be swall enough, $z=\beta^{-1}$ is the ouly pole in this region. To do this we bring in the identity (see Prop. 4 of [5])

$$
\zeta_{o}(z)=\zeta_{o}(z) \prod_{x w_{20}} L(z, x)^{d_{x}},
$$

Since $\bar{\sigma}$ is a mixing shift of finite type with the same topological entropy as σ (heranse π is $|G|$ to 1) we deduce, via (1.5), that $L(z, \lambda), \lambda \neq \lambda_{0}$ has a non-zero analytir extension to some ueighbourhood $D^{\prime \prime}$ of $\left\{\geq\left||=| \leq a^{-1}\right\}\right.$. Thus $\zeta_{C}^{\prime}(z) / \zeta C(z)$ has ouly one pole in the smaller of the two regions, namely $z=j^{-1}$ and its residue is $-|C| /|G|$. Then the proof proceeds analogously with the proof of the Prime Orbit Theorem for shifts of finite type (1.3).

Remark:

1. The argument used in the above dincussion comes from [5].
2. Olserve that the assumption that the skewing function depends only on a finite number of coordinates plays two roles: Firstly it turns $\bar{\sigma}$ juto a shift of finite type. Seconclly, it also implies a meromorplic (in fact rational) extension of $L(=, \lambda)$ to the whole plane
3. There exists a similar formula for the case when σ is not mixing.

2. The Homogeneous Extension

As before let σ be a shift of finite type and G a finite group together with a map a: $X \rightarrow G$ such that o depends on a finite number of coordinates. Let H be an arbitrary sulgroup of G. Fonm the coset space $G / H=\{g H$: $g \in G\}$. A homogeneous extension $\bar{\sigma}: \mathbf{X} \times G / H \rightarrow X \times G / H$ of σ is defined by the skew-product $\sigma(x, g H)=(\sigma r, \sigma(x) g H)$. We shall always assume that σ is topologically transitive. Let $\boldsymbol{\pi}: \mathcal{X} \times G / H \rightarrow X$ be surlithat $\pi(x . g H)=r$.

Observe that the group extension $\sigma: \mathbb{X} \times G \rightarrow \mathbb{X} \times G$ defined by $\sigma(r, g)=$ ($\sigma r, a(x) g$) is, by using the obvious projection map, an extension of $\bar{\sigma}$. We have the following multi-commutative diagram:

Note that we cannot expect σ to be also topologically transitive. For our purposes, it suffices to note that if σ is not transitive then, as with all intransitive shifts of finite type, we can decompose $X \times G$ into $\dot{\boldsymbol{\sigma}}$-invariant transitive pieces X_{0}, \ldots, X_{0-1}. Moreover $\left.\delta\right|_{N ;}$ is a G_{1}-invariant extension of X where G_{i} is the sulgroup of G such that $g X_{1}=X_{1} \forall g \in G_{1}$. This follows since the group action commutes with σ and the fact that of is trantive. Note that the subgroups $G_{i}, i=0,1, \ldots, s-1$, are conjugate to each other More importautly, by the transitivity of σ, we can identify $X \times G / H$ with the H_{1}-orbit space X_{1} / H_{1} where $H_{1}=H \cap G_{1}$. Hence by reatricting to any X_{1} if uecessary: there is no loss in generality in assuming that $\bar{\sigma}: X \times G \rightarrow X \times G$ is topologically transitive.

Rerall that a partition of a positive integer k is a collection of positive integers, $I_{1}, I_{2}, \ldots, I_{\text {m }}$ such that $k \geq I_{1} \geq I_{2} \geq \ldots \geq I_{m} \geq 1$ aud $I_{1}+\ldots+I_{m}=$ h. In this case we write I for the m-tuple (l_{1}, \ldots, l_{m}).

Let τ bena σ-closed orbit with period $\lambda(\tau)$ and $\dot{\tau}$ be a $\dot{\sigma}$-closed orbit with period $\lambda(\bar{r})$ surl that $\bar{\pi}(\dot{r})=r$. Then the degree of \bar{r} over r is defined ley the integer

$$
\operatorname{deg}\left(\frac{\tilde{\tau}}{\tau}\right)=\frac{\lambda(\tilde{\tau})}{\lambda(\tau)}
$$

Note that thin is where the finiteness of G comes in. For in this rase the lift of r in $X \times G / H$ also cousists of closed orbits. Moreover if $\dot{\boldsymbol{r}}_{1} \ldots \ldots, \overline{\boldsymbol{\tau}}_{\text {m }}$ now the distinct $\dot{\sigma}$-closed orbits that cover T then the following basic relation holds:

$$
\operatorname{deg}\left(\frac{\tilde{\tau}_{1}}{\tau}\right)+\ldots+\operatorname{deg}\left(\frac{\tilde{\tau}_{m}}{\tau}\right)=\frac{|G|}{|H|},
$$

so that the above equation gives us a partition of $|\boldsymbol{G}| /|\boldsymbol{H}|$. Thus we say τ indures the partition $\underline{l}=\left(l_{1} \ldots \ldots l_{m}\right)$ of the integer $|G| /|H|$ if

$$
\boldsymbol{I}=\left(\operatorname{deg}\left(\frac{\dot{f}_{1}}{\tau}\right) \ldots . \operatorname{deg}\left(\frac{\dot{F}_{m}}{\tau}\right)\right) \quad \text { (nfter teordering if need be). }
$$

Let K^{-}be auother subgroup of G. We can define a left action of $k \in K$ on the coset space G / H by $k \cdot g H=k g H$. Let K_{1}, \ldots, K_{m} be the distiuct orbits of this action and $r_{1}, B=1, \ldots, m$, be their respective 'sizes'. Notice that these r_{1} is form a partition of $|G| /|H|$. In this case we say K induces the partition $r=\left(r_{1}, \ldots, r_{m}\right)$ of $|G| /|H|$ (after reordering if need be). It is ensy to see that if k is conjugate to k then the respective cyclie subgroups gramerated by them indures the same partition of $|\boldsymbol{G}| /|H|$.

For enclupartition l of $|G| /|H|$, let $A_{I}=\{\tau \subset X: \tau$ induces the partition 1). Then wr are interested in chararterizing those A!'s that are non-empty: Wie have
2.1 Proposition. Let τ bena-closed orbit. Thentinduces the partition l of $|G| /|H| \Longleftrightarrow$ the action of the cyclic group generated by some (and hrnice all) Frohenius element g associated with t induces the partition I on $|G| /|H|$.

Proof. Let + be a σ-closed orbit of period m such that r induces the partition $\mathfrak{l}=\left(l_{1}, \ldots, I_{n}\right)$ of $|\boldsymbol{G}| /|\boldsymbol{H}|$. Suppose $\boldsymbol{f}_{1}, \ldots, \boldsymbol{\tau}_{n}$ be the distinct $\dot{\boldsymbol{T}}$-cloaed orbits that rovers r. For $s \in f$, we write $\alpha_{m}(x)=a\left(\sigma^{m-1}(x)\right) \ldots a(x)$. Then the filser above \boldsymbol{z} contained in \dot{f}_{1} cousists of the elements

$$
(x, a, H),\left(x, \alpha_{m}(x) a_{t} H\right), \ldots,\left(x,\left(\alpha_{m}(x)\right)^{t,-1} a, H\right)
$$

for some $(\boldsymbol{r}, a, H) \in \dot{f}_{\mathbf{t}}$. Note that I_{1} is the least integer such that

$$
\left(\alpha_{m}(x)\right)^{t^{\prime}} a_{1} H=a_{1} H .
$$

Thus $J_{1}=\operatorname{deg}\left(\tilde{r}_{i} / \tau\right)$. Let $J_{i}=\left\{a_{1} H_{1} \ldots,\left(a_{m}(x)\right)^{d_{i}-1} a_{i} H\right\}$. Then clearly $J_{1} \cap J_{k}=0$ wheu i $\neq k$ and $G / H=\bigcup_{i=1}^{*} J_{i}$.

Let $\left\langle\mathrm{a}_{\mathrm{m}}(\boldsymbol{f})>\right.$ be the cyclic gronp geuerated by $\mathrm{a}_{m}(\boldsymbol{r})$. Evidently the J_{i} 's are the distinct and indeed the totality of the orbits of the action of $\left\langle\mathbf{a}_{\ldots}(x)\right\rangle$ on G / H. Thus $\left\langle\boldsymbol{a}_{m}(x)\right\rangle$ induces the partition ! on G / H. By the definition of the group extension $\bar{\theta}: X \times G \rightarrow X \times G$ and the right action $g \cdot(x, k)=(x . k \cdot g)$ of G ou $X \times G$ we deduce that $a_{m}(x)$ is indeed a Frobeuius of τ.

Conversely. let $x \in f$, then reversing the presious argument we can constrint the fiber alowe x by considering the distinct orbits of the action of $\left\langle\sigma_{m}(\mathrm{~s})\right\rangle$ on $\boldsymbol{G}_{\mathfrak{i}} / H$. Then these distinct orlits ennstitute distinct $\overline{\boldsymbol{\sigma}}$ rlosed orlits covering r. In fact thic construction is independent of x since if $y \in \tau$ then $\Omega_{m}(y)$ is coujugate to $\Omega_{m}(x)$. This completes the proof. .

Remark. Observe that in general, we canuot expect the lifts of τ in $\boldsymbol{N} \times$ G/H to have equal period. For in this case we are dealing with a double coset partitioning of G. In the special case when $H=\{e\}$ (i.e. group extension). we do get equal period since the orbits of the subgroup action are just right cosets. In fact the degree of any \bar{T} over T in this case is then equal to the order of the Frobenius element $\gamma(\bar{r})$ of \bar{r}.

Let $C(g)$ denote the conjugacy class containing g. As an immediate corollary to (2.1). we linve
2.2 Corollary. Lef 1 be a partition of $|G / H|$. And let $C_{1}(\mathbb{l})=\{+\mathbb{C} . \mathbf{X}$: $\left.|r|=C\left(g_{1}\right)\right\}$ he the distinct classes of n-closed orbits with Frobemins chass $C\left(g_{1}\right)$ rempectively such that $\left\langle g_{1}\right\rangle$ induces the partition I. i $=1, \ldots, m$. Then

$$
A_{l}=\bigcup_{i=1}^{m} C_{1}(l) .
$$

For each partition l. with $A_{l} \neq 0$, l-t $\pi_{l}(r)=\operatorname{Card}\{\tau \subset X: \tau \in$ $\left.A_{1}, \lambda(r) \leq r\right\}$. Heure $1, y$ a direct application of the Chebotarev Theorew of Pany nul Pollicott. We have, for e.g. the following result for a homogeneous extersiou.
2.3 Theorem. Let $\bar{\sigma}$ be a homngeneous extension of o where the associated group extension \dot{o} is topologicnlly unixing. Let l be a partition of $|G| /|H|$ such that $A_{1} \neq 0$. Then

$$
\pi_{l}(x) \sim \frac{1}{|G|} \sum_{n=1}^{m}\left|C\left(g_{1}\right)\right| \pi(x)
$$

Whare the $C\left(g_{1}\right)$'s are as in (2.2) and

$$
\pi(x) \sim \frac{\beta}{\beta-1} \cdot \frac{\beta^{x}}{x} \quad \text { as } x \rightarrow \infty
$$

3. Application I: Finite Extensiona of shifte of finite type

Let $F=\{1.2 \ldots \ldots k\}$. A finite (k-point) extension of the shift σ is a skew-product $\bar{\sigma}: \mathcal{K} \times F \rightarrow \boldsymbol{X} \times F$ defined by $\sigma(x, i)=(\sigma x, a(x)(i))$ where a: $X \rightarrow G$, as usual depends on a finite number of coordiuates and G is the symmetric group $S_{\&}$ on k-symbols $\{1,2, \ldots, k\}$.

Now, let $H=\{h \in G: h(1)=1\}$. Theu $H \cong S_{k-1}$. Also it is clear that the map, from F to G / H sending ito $g H$ where $g(1)=i$ is a bijection. Threrfore we cau identify $X \times F$ with $X \times G / H$ and obtain the homogeneous extrusiou $\bar{\sigma}: X \times G / H \rightarrow \hat{X} \times G / H$ defined by $\bar{\sigma}(x, g H)=(\sigma x, a(x) g H)$. Letting $\bar{\pi}: X \times G / H \rightarrow X$ be $\bar{\pi}(x, g H)=x$ we have 玄完 $=\sigma \bar{\pi}$. We shall assume that ∂ is topologically transitive.

Also we have $\dot{\sigma}: X \times G \rightarrow X \times G$ where $\dot{\sigma}(x, g)=(\sigma, a(x) g)$. So that $\dot{\sigma}$ is a group extension of σ. As mentioned in $\$ 2$ there is no loss of generality in mssuming ô is also topologirally tranaitive.

Froall that an eloment g of a symurtric group G is said to bave cycle decomposition $\underline{m}=\left(m_{1}, m_{2} \ldots, m_{1}\right)$ if it can be written as the product of disjoint ryrlex of length $m_{1}, m_{2}, \ldots, m_{\text {, }}$ where $m_{1} \geq m_{2} \geq \ldots \geq m_{1}$. Recall nlan that two Hemputs of G are roujugate if and only if they have the same rycle decomponition.
3.1 Proposition. Let 1 be an arbitrary partition of k. Then $A_{i} \neq 0$. Moreover $A_{i}=\left\{r \subset X:\{r\rceil=C_{i}\right\}$ where C_{l} is the conjugacy class of G consisting of elements with cycle decomposition 1 .

Proof.
Let $I=\left(I_{1}, \ldots, l_{n}\right)$ be a partitiou of k. Thus there exists some $g \in G$ such that g has cycle decomposition ! . This follows since each partition ${ }^{n}$ of \& can be uniquely associated with the conjugacy class C_{n} of G cousisting of elements with cycle decomposition n. Now cousider the action of the cyclic group $\langle g\rangle$ generated by g on $F=\{1,2, \ldots, k\}$. Then using the cycle decomposition form of g, it is clear that this action gives rise to n orbits O_{1}, \ldots, O_{n} such that $\left|O_{i}\right|=I_{1}, i=1, \ldots, n$. In other words $\langle g\rangle$ induces the partition 1 on F or equivalently on G / H. Since this only depends on the cyrle decomposition l of g and elements with such a cycle decomposition constitute a whole conjugary class C_{1} we have $A_{1}=\left\{r \subset X:[r]=C_{1}\right\}$ by (2.2).

The Cauchy formula (see for e.g. [3]) for the cardinality of C_{l} gives us

$$
\left|C_{\underline{t}}\right|=\frac{k!}{l_{i 1}^{\pi_{1}} \alpha_{i_{1}}!\ldots l_{i,}^{a_{1}, \alpha_{i_{1}}!}}
$$

where the I_{1} 's are the distinct components of $\left(I_{1}, I_{2}, \ldots, I_{n 1}\right)$ and $\alpha_{1 j}$ is the number of cycles of length I_{i} in the cycle decomposition of $g \in C_{\underline{L}}$. Hence, for a finite exteusion of a shift of finite type (cf. (2.3)), we have
3.2 Theorem. Let $\bar{\sigma}$ be a finite (k-point) extension of a shift of finite type σ where the associated group extension $\hat{\sigma}$ is topologically mixing. For each partition l of the integer \mathbb{k}. let $\pi_{l}(r)=C a r d\left\{+\subset X: \tau \in A_{1}, \lambda(r) \leq r\right\}$. Then

$$
\pi_{1}(x) \sim \frac{1}{l_{i_{1}}^{a_{i}} \alpha_{i_{1}}!\ldots l_{i_{0}}^{\alpha_{i_{0}}} \alpha_{i_{4}!}!} \pi(x)
$$

where the l's and o's are as above and

$$
\pi(x) \sim \frac{d}{y-1} \cdot \frac{g^{x}}{x} \quad \text { as } x \rightarrow \infty \text {. }
$$

Example. In the case of a 3 -point extension $\dot{\sigma}$ of σ, i.e., $G=S_{3}$, the σ-closed orbits can lift in the extensiou spare in 3 different wayn. These correspouds to the partition (1,1,1), (2,1) and (3). Let us define the density
D_{i}. of the σ-closed orbits that lift in the extension space corresponding to the partition l as

$$
D_{i}=\lim _{x \rightarrow \infty} \frac{\pi_{i}(x)}{\pi(x)}
$$

Since $S a$ has 1 element with cycle decomposition ($1,1,1$), 3 elements with cycle decomposition (2.1) and 2 elements with cycle decompositiou (3), we deduce that the densities $D_{(1,1,1)}, D_{(2,1)}, D_{(3)}$ are $1 / 6,1 / 2$ and $1 / 3$ respectively.

We remark that our consideration here was really motivated by an anal. ogous number-theoretic example due to Heilbronu (see pg 227 of [2]). In this example he considered a non-normal cubic field extension K_{3} / k and in particular was interested in the deusities of primes in k according to how they lift into K_{3}. Roughly speaking, we can say that the primes in \boldsymbol{k} splits in Iis according to the partitions ($1,1,1$), (2,1) and (3) (of the number 3). To calculate the densities. Hrilbronn then considered the minimal extension $K_{\text {s }}$ of K_{z} that is normal over k and argued that the primes that splits in K_{3} according to the partition $(1,1,1),(2,1)$ and (3) corresponds precisely to the primes that splits in K_{6} with Frobeuius class $C(e), C(2,3), C(1,3,2)$ respectively. Note that the Galois group of K_{b} / k is S_{3}. Then applying the Chebotarev Theorem for the normal extension K_{s} / k, he deduced that (using the ahove notation) the densities $D_{(1,1,1)} . D_{(2,1)} . D_{(3)}$ are equal to $1 / 6$, 1/2, $1 / 3$ respectively.

4. Application II: Automorphimentenaions of ahifta of finite type

We now apply our findings of $\S 2$ to a so-called automorphism extension of the shift. As always let σ be a slift of fiwite type and G a finite group. Let $\gamma: G \rightarrow G$ be an automorphism of G and $\beta: X \rightarrow G$ be a function depending on a fimite number of coordinates. An nutomorphism extension $\bar{\sigma}$ of the shift is defined as the skew-product $\bar{\sigma}: X \times G \rightarrow X \times G$ where
 assume that $\bar{\sigma}$ in topologically trausitive. Thus by definition $\bar{\sigma}$ is also a shift of finite type.

Note that since G is finite there exints a least n such that $\gamma^{\prime \prime}=$ id Now counider the following cyclic extension of σ. That is $\sigma: \mathbf{Z}_{n} \times \mathbf{X} \times G \rightarrow$
$Z_{n} \times \hat{X} \times G$ defined by $\dot{\sigma}(r,(r, g))=(r+1,(\sigma(x) \cdot B(x) \gamma(g)))$. Also observe that except possibly for trivial $\gamma, \dot{\sigma}$ is never mixing. We can rewrite $\bar{\sigma}$ as $\tilde{\sigma}: \mathbf{X} \times \mathbf{Z}_{n} \times G \rightarrow \mathbf{N} \times \mathbf{Z}_{n} \times G$ and $\dot{\sigma}(r,(r, g))=(\sigma r,(r+1, \theta(r) \gamma(g)))$. We give the set $Z_{n} \times G$ a group structure ly defining the product of $(r, g) .(s, h) \in$ $Z_{n} \times G$ as follows:

$$
\left.(r, g) \cdot(s, h)=(r+s, g)^{r}(h)\right)
$$

and denoting the resulting group by $Z_{n} x_{n} G$. Then $Z_{n} \times, G$ with this operation defined on its elements is known as the semi-direct product of G by Z_{n} or a Z_{n} ryclir extension of G.

Let $\mathrm{a}: X \rightarrow \mathbf{Z}_{\mathrm{n}} \times{ }_{7} G$ be defined as $\alpha(x)=(1, \beta(x))$ and let $G^{\prime}=Z_{n} \times, G$. Then we can rewrite $\hat{\sigma}$ as $\hat{\sigma}: \hat{X} \times G^{\prime} \rightarrow X \times G^{\prime}$ and $\hat{\sigma}(x, k)=(x, o(x) k)$. $\cdot \in \in$ G^{\prime}, so that we can view $\dot{\sigma}$, as a group extensiou of a. We call define a free action of G^{\prime} on $X \times G^{\prime}$ by $l(x, k)=(x, k l)$. $k, l \in G^{\prime}$, and deduce that it commutes with σ. Thus the notion of Frobenius class exists for σ-closed orbits.

Sow. let H be the sulggroup $Z_{n} \times\{e\}$, $(e=$ identity of $G)$ of G^{\prime}. Consider the action of H on $\bar{E} \times G^{\prime}$. Then a typical element of the H-orbit space will take the fom $(x,(0, g) H)$ where we write $(x,(0, g) H)$ to mean the set $\left\{(r,(r, g)): r \in Z_{n}\right\}$. Moreover it is easy to see that the induced map σ_{2} satisfies $\sigma_{2}(x,(0, g) H)=\left(\sigma_{x},(0, g(x)=(g)) H\right)$. Heuce we can identify $(X \times G . \dot{\sigma})$ with $\left(\left(X \times G^{\prime}\right) / H, \sigma_{2}\right)$.

In other words we are in the setting of a homogeneous space extension of the shift and thus the result of $\S 2$ applies once we have formulated the Chebotarev Theorem for the extensiou $\pi: X \times G^{\prime} \rightarrow \mathbf{X}$. In partirular given $(r . g) \in G^{\prime}$ we would want to look at the action of $\langle(r, g)\rangle$ on G^{\prime} / H. Note that this is equivalent to studyiug the map $T_{(r g)}: G^{\prime} / H \rightarrow G^{\prime} / H$ defined by $T_{(r, g)}((s, k) H)=(r, g)(s, k) H$. The following result may simplify the calculations.
4.1 Proposition. Let $(r, g) \in G^{\prime}$. Then $T_{(r, s)}$ is conjugate to the map $S_{(r, g)}: G \rightarrow G$ defined by $\left.S_{(r, g)}(k)=g\right)^{*}(k)$.

Proof. Recall that a typical element of G^{\prime} / H takes the form (a,k) $H=$ $\left\{(s, k)(t, e): t \in \mathbf{Z}_{n}\right\}=\left\{(a, k): a \in \mathbf{Z}_{n}\right\}$. Hence G^{\prime} / H can be ideutified with G sia the $\operatorname{map}(s, k) H \stackrel{L}{\leftarrow} k$. Also $T_{(r, g)}((s, k) H)=(r, g)(s, k) H=$ $\left.(a, g)^{r}(k)\right) H$. Thus letting $S_{(r, p)}(k)=g \gamma^{r}(k) . k \in G$. we deduce that $L T_{(r, g)}=S_{(r, g)} L$. The result follows since $L . T_{(r, j)}$ and $S_{(r, b)}$ are bijective
maps.

As ustual (a, b) shall denote the luc.f of a and b.
4.2 Proposition. Let $\bar{\tau}$ be $\boldsymbol{a} \bar{\sigma}$-closed orbit with $\lambda(\bar{\tau})=\boldsymbol{A}$. and $\hat{\tau}_{1}, \ldots, \tilde{\tau}_{r}$ be the $\dot{\sigma}$-closed orbits that cover $\tilde{\tau}$. Then $\lambda\left(\hat{\tau}_{i}\right)=1 . c . m[k, n], i=1, \ldots, r$ where $r=(k, n)$.

Proof. Let $z \in T$. Then for all $r \in \mathbf{Z}, \hat{\sigma}^{\prime \prime \prime}(r, r)=\left(r+m, \hat{\sigma}^{\prime \prime \prime}(r)\right)=(r, r)$ implies m is n multiple of hoth n and k. Hence the least period of $(r, r)=$ l.e.m $[k, n]$. Recall that 1.c.m $[a, b]=a b /(a, b)$. Thus since

$$
\sum_{i=1}^{r} \operatorname{deg} \frac{\lambda\left(\hat{\tau}_{i}\right)}{\lambda(\tilde{\tau})}=n
$$

we have $r=(k, n)$. Aud this completes the proof.

Let $\zeta_{d}(z) . \zeta_{\sigma}(=)$ be the zeta functions of σ and σ respectively. Then we have

4.3 Proposition.

$$
C_{o}(z)=\prod_{i=0}^{n-1} C_{B}\left(w^{\prime} z\right) .
$$

where w is a primitive $n-t h$ root of unity.

Proof-

First we note that

$$
1+\omega^{r}+\omega^{2 r}+\ldots+\omega^{(n-1) r}= \begin{cases}n, & \text { if } n \mid r ; \\ 0, & \text { otherwise }\end{cases}
$$

Thus for $z \in C$ and $k \in \mathbf{Z}^{+}$,

$$
\begin{aligned}
\sum_{m=1}^{\infty} \frac{z^{k m}}{m}\left\{1+\omega^{k m}+\ldots+\omega^{(n-1) k m}\right\} & =\sum_{l=1}^{\infty} \frac{(n, k)}{l} z^{\frac{k n}{(n, k)} l} \\
& =\sum_{i=1}^{(n, N)} \sum_{i=1}^{\infty} \frac{z^{(n+1)}+1}{l}
\end{aligned}
$$

Hence
$\log \left(1-z^{k}\right)+\log \left(1-(\omega z)^{k}\right)+\ldots+\log \left(1-\left(w^{n-1} z\right\}^{k}\right)=(n, k) \log \left(1-z^{n^{n k n}}\right)$.

That is

$$
\left(1-z^{k}\right)\left(1-(\omega z)^{k}\right) \ldots\left(1-\left(\omega^{n-1} z\right)^{k}\right)=\left(1-z^{\frac{n}{n+\pi}}\right)^{(n, k)} .
$$

Let \mathfrak{q} be a \bar{o}-closed orbit such that $\lambda(\bar{r})=k$. Then by (4.2),

$$
\prod_{i=0}^{n-1}\left(1-\left(w^{i} z\right)^{\lambda(p)}\right)=\prod_{\pi(r)=p}\left(1-z^{\lambda(r)}\right)
$$

The tesult follows by inverting and taking products over all $\tilde{\sigma}$-closed orbits.
4.4 Corollary. If ò is mixing then $C_{\sigma}(z)$ has a non-zero analytic extension to a neighbourhood of $\left\{z\left|\mid=1 \leq \xi^{-1}\right\}\right.$ except for simple poles at $\left(\omega^{1} \beta\right)^{-1}$. $i=0,1 \ldots n-1$ where ω is a primitive $n-t h$ root of mity:

Proof.

The result follows since $\hat{\sigma}$ is a topologirally transitive shift of finite type.

Thus for mixing $\bar{\sigma}$ the secoud part of (1.6) holds with $n=$ period of the transition matrix of $\hat{\sigma}$. Hence the Chelsotarev Theorem for the extension $\pi: \mathbf{X} \times \mathbf{Z}_{\mu} \times, G \rightarrow X$ is
4.5 Theorem. Let ồ be a mixing automorphismextension of σ and \dot{o} be the associated \mathbf{Z}_{n} cyclic extension. Then. given a conjugacy class C,

$$
x_{C}(x) \sim \frac{|C|}{\left|G^{\prime}\right|} \cdot n \cdot \frac{\beta^{n}}{\beta^{n}-1} \cdot \frac{\beta^{x}}{x} \quad \text { as } x \rightarrow \infty \text {. }
$$

We now come to the main result in this section. Since the automorphism exteusion \dot{o} can be identified with a homogeneous extension of σ with respect to the subgroup $H=\mathbf{Z}_{n} \times\{e\}$. we ran apply our findings in $\S 2$ to the above theorem to oldtain
4.6 Theorem. Let $\dot{\sigma}$ be n mixing antomorphisn extension of a shift of finite type σ. If \mid is a partition of $\left|G^{\prime} / H\right|$ such that

$$
\begin{aligned}
A_{1} & :=\left\{r \subset X: \tau \text { induces the partition } \mid \text { on }\left|G^{\prime}\right| /|H|\right\} \\
& =\bigcup_{i=1}^{m} C_{i}
\end{aligned}
$$

where $C_{i}=\left\{r \subset X:[r]=C\left(r_{i}, g_{i}\right)\right\}, i=1, \ldots, m$, then

$$
\pi_{\underline{1}}(x) \sim \sum_{i=1}^{m} \frac{\left|C\left(r_{i}, g_{i}\right)\right|}{\left|G^{\prime}\right|} \cdot n \cdot \frac{\beta^{n}}{\beta^{n}-1} \cdot \frac{\beta^{x}}{x} \quad \text { os } x \rightarrow \infty
$$

There is another situation where a 'homogeneous extension' arises. Let A be a byperbolic automorphism of a finite dimensional torus T. Let G be the set of all points in T with order m, say. Then G is an (abelian) group such that $\bar{A} G=G$. We let G act on the right of T and using additive notation we have

$$
\tilde{A}(x+g)=\tilde{A}(x)+\tilde{A}(g) \quad x \in \mathbf{T}, g \in G
$$

Then \bar{A} induces an action A on the G-orbit space T / G such that $A: T / G \rightarrow$ T / G is also a hyperbolic toral automorphism. If $\left.\mathcal{A}^{\boldsymbol{q}}\right|_{G}=I d_{\text {, then working }}$ analogously with the automorphism extension, we can define the \mathbf{Z}_{n}-cyclic extension of \bar{A} and thus is in the setting studied above. In fact, one can show that the nutomorphisin extension of the shift is actually the symbolic morlel for our toral automorphism (see $1 \mathrm{gg} 13^{7}$ of [5] for the main idea). Furthermore, since the counting functions for the shifts and the toral automorphisms are asymptotic (see [4]), we deduce that the statements of Theorems (4.5) and (4.6) also hold for 'automorphism extensions' of hyperbolic toral automorphisms.

We illustrate the above disrussion by the following example:
Example. Let \bar{A} be the hyperbolic antomorphism on the two-dimensional torns T induced by the matrix $\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$. Here we take T to be the unit square on R^{2} with respect to addition mod 1 and the appropriate identifications. Let $G=\{(0,0),(0,1 / 2),(1 / 2,0),(1 / 2,1 / 2)\}$ i.e G cousists of elements of \mathbf{T} with order 2 . Then $G \geq \mathbf{Z}_{2} \times \mathbf{Z}_{1}$. Also, one can easily check that $\left.\dot{A}^{3}\right|_{G}=1 d$. Thus the associated semi-direct product group is $G^{\prime}=Z_{3} \times{ }_{i}\left(Z_{2} \times \mathbf{Z}_{2}\right)$. Now G^{\prime} has 4 coujugacy classes:

$$
\begin{aligned}
& C_{1}=\{(0,(0,0))\} \\
& C_{2}=\{(0,(0,1)),(0,(1,1)),(0,(1,0))\} \\
& C_{3}=\{(1,(0,0)),(1,(1,0)),(1,(1,1)),(1,(0,1))\} \\
& C_{4}=\{(2,(0,0)),(2,(1,1)),(2,(1,0)),(2,(0,1))\}
\end{aligned}
$$

By using (4.1), it is straight-forward to check that C_{1} gives rise to the partition ($1,1,1,1$), C_{2} to the partition (2,2) aud both C_{3}, C_{4} to the partition $(3,1)$ on $\left|G^{\prime} / Z_{3} \times\{e\}\right|$. This implies that, given a closed orbit $\tau \in T / G$, the 'types' of A-closed orbits covering τ can only take one of the following forms: There are, depending on the Frobenius class of τ,
i. 4 closed orbits each of degree 1 over τ,
ii. 2 closed orbits each of degree 2 over τ, or
iii. 2 closed orbits, one of degree 3 and one of degree 1 over T.

Heure the asymptotir formulas for types i. ii. iii. are

$$
\begin{aligned}
\pi_{(1,1,1,1)}(x) & \approx \frac{1}{12}+3 \cdot \frac{\beta^{3}}{\beta^{3}-1} \cdot \frac{\beta^{x}}{x}, \\
\pi_{(2,2)}(x) & \approx \frac{3}{12} \cdot 3 \cdot \frac{\beta^{3}}{\beta^{3}-1} \cdot \frac{\beta^{x}}{x} \\
\pi_{(3,1)}(x) & \approx \frac{8}{12} \cdot 3 \cdot \frac{\beta^{3}}{\beta^{3}-1} \cdot \frac{\beta^{x}}{x} \quad \text { as } x \rightarrow \infty, \text { respectively } .
\end{aligned}
$$

References

[1] Boweu, R. and Lanford, O. III., Zela functions of restrictions of the shift map, in Global Analysis, Vol XIV (Proceedings of Symposia in Pure Mathematics). American Mathematical Society, Provideuce, R.I., 1970, p. 43.
(2] Cassels, J.W.S. and Fröllich, A., Algebraic Number Theory, (Academic Press, Loudon 1967).
[3] Ledermann, W., Introduction to Group Theory, (Oliver \& Boyd, 19i3).
[4] Parry, W. and Pollicott, M., Zeta functions and the periodic orbit structure of hyperbolic dynamics, 1990, Astérisque 187-188.
[5] Parry, W. and Pollicott, M., The Chebotarev Theorem For Galois Coverings of Axiom A Flows, Ergod. Theory \& Dynam. Sys 6 (1986), 133-148.

Chapter 2
 Lifting Ergodic Properties To Homogeneous Extensions And Applications To Markov Shifts

1 Introduction

In a joint papar [12] (sere Chapter 1), we study how closed orbits of a shift of finite type (X, σ) lift to a bomogeneous extension è: $X \times G / H \rightarrow X \times G / H$ of X. Here G is a finite group and H is an arbitrary sulgroup of G. The resilt we gave exteuds that of Parry and Pollicott [17] (gee also [18|), which was derived for finite group extensions of shifts of finite type. Crucial to the proof of their therorem is the nssocinted ergodicity and weak mixiug criteria for gromp extensions. Indeed, these criteria, which are valid for arbitrary "ompart group extensions of measure preserving transformations, was utiLized by Pariy and Pollicott to deduce the analytic properties of a certain L-function and which in turn was used to ohtain the necessary asymptotic formules.

This motivates un to consider the analogous criteria for (compact) bomogeveons extensions of measite preserving transformations. In other words, we are interested in lifing ergodicity and weak uixing of the base transformation to the homogrucoun extension. Iudeed, in thin note, we give necessary nul sutheient conslitions for the ergodicity and weak-mixing of these homogemeons extensions. Similar to group extensions, the criteria we olfained also involves functional equations. The proof of these resulth are based on similar and in fact well kuown resulte already ohtained for the case of compart group extensions. For rompletenesn, we also iuclude the proofs of the hualugous result, for group extensious.

In eddition to ergodicity and weak mixing, we also take the opportunity to consider the appropriate lifting results in the rase where the base transforwation in a K^{-}-antomorphism or a Bernoulli shift. For compact group extensions, the lifting results with respect to these dyuamical properties are wellknown. Uufortunately, when the base transformation is a K-automorphism. we are only able to solve the problem for the sperial case of a finite G. In this (riter, the result we provide follows easily from the aualogous result olstained by Thomas [23] for rompact group extensions (in fact, (G, τ)-extensions) since homogeneros extensions occur as fartors of group extensions. Also, the relevant result for a Bernoulli base is simple since it is implicit in a result of Rudolph [21].

After estalilishing the above lifting results, we sperialize our study to the case where the base transformation is a Markov shift. In particular, we are interested in the rase where the associated extension has skewing-function dejpruling on a finite nmmber of condinates. It is interesting to see bow the alove tesints simplify under this additional assumption. We show that, in this case, the solution to the relevant functional equations also involves functions drepending an a finite number of coordinates. Indeed, in general, the aforementioned solntion depends on one less coordinate than that of the skewing function. The results we obtain generalizes that of Parry [16] and of Adler et al [1].

In \$2, we give the neressary defiuitions and basir elementary results. The well known results and their proofs for group extensions is given in §3. In $\S 4$, the relevant results for the homogeneous case is provided. Finally, in $\S 5$, we restrict our attention to the case of a Markov base and with the aid of neveral examples, illustrate the simplifirations derived in this situation

2 Preliminaries

In this section, we give the uecensary defiuitions and facts which are needed for later use. The referencer for this section are Walters [24] and Cornfeld ct al [2].

Unless otherwise stated, throughont this note, (X, B, m) will stand for a probability space and $T: X \rightarrow X$ a measure-preserving transformation on (X, B, m). On certain occasions we will require the probsbility space (X, B, m) to also be a Lelbesgue space. It is well- known that this extra
condition dows not impose a serious restriction on the space in question for the proprity of being Leloengit incluclem a lot of interenting dynamical systems. For further information on the theory of Lebesgne space, see Rohlin [20].

We luegin with the definitions of the varions extensions of T meutioned in the intronlartion.
2.1. Compart group extensions. Let G lif a compact gronpequippod with the
 G bee a mensurable map. Then the product space $(X \times G, B \times B(G), m \times \lambda)$ together with the map $S: X \times G \rightarrow X \times G$ defined by

$$
S(x, \gamma)=(T x, \phi(x) \gamma), \quad(x, \gamma) \in X \times G
$$

is called a compart group extensiou of T with respect to G. It is unt too difficult to nee that S is measure preserving with respect to the Haar extedsion $m \times \lambda$. Moroover it is clear that S is indeed an extension of T with respert to the obvious projection map π 保 $X \times G \rightarrow X$. In the literature, S is also called a skew-proinct of T and G with skewing function ϕ.

Note that G arts on $X \times G$ by invertible measure-preserving trannformations $T_{g}, g \in G$, where $T_{g}(x, \gamma)=(x, \gamma g),(x, \gamma) \in X \times G$. Let $U_{T_{g}}$ be the nuitary operator on $L^{2}(X \times G)$ induced by the transformation $T_{g}, g \in G$. Then the wap $G \times L^{2}(X \times G) \rightarrow L^{2}(X \times G)$ given by $(g, f) \mapsto U_{T_{s}}(f)=f \circ T_{g}$ detinuen (rontinuous) action of G on $L^{2}(X \times G)$. In other words, we lave a (continnonis) representation of G by mitary opmators on the Hilliert mpare $L^{\prime}(X \times G)$. Fur thin renson $X \times G$ is alsor referred to an a G space. Observe that the G-artion on $X \times G$ commutes with the transformation S. We remark that this observation will be heavily relied upon when proving theorems in the next section.
2.2. Homogeneous extensions. Agaiu let G be a compact group. Now let H be nu arbitrary closed nubgroup of G. Then it in well-known that the left artion of G on G / H defined hy $g \cdot \gamma H=g \gamma H, g \in G$ and $\gamma H \in G / H$, turns G / H into a (compact) homogeneotis sjace. On the Borel σ-algebra $B(G / H)$, we detime the probability measure λ ' by

$$
\lambda^{\prime}(A)=\lambda\left(p^{-1}(A)\right), \quad A \in B(G / H),
$$

whrre λ is the (normalised) Harar mensure on ($G, B(G)$) and p is the natural map from G onto G / H. The mensure λ^{\prime} is more commonly lnown as the restricted Hanr maraite on $(G / H, B(G / H))$. Let $\phi: X \rightarrow G$ he a measirable X map: Then the product space $\left(X \times G / H, B \times B(G / H), m \times \lambda^{\prime}\right)$ together with the แи! $S^{\prime}: X \times G / H \rightarrow X \times G / H$ defined by

$$
S^{\prime}(x, \gamma H)=(T x, \phi(x) \gamma H), \quad(x, \gamma H) \in X \times G / H
$$

is cullerl the houngeverus exteusion of T with respect to $\boldsymbol{G} / \boldsymbol{H}$. Aloug similar lines of argnmeyt as for the group extension, one can show that S^{\prime} is measurepreserving with renpert to the restricted Haar extension $m \times \lambda^{\prime}$. Furthermore, it in easy ter see that S^{\prime} is indeed an extennion of T with respert to the obvious projertion map $\pi_{(i / H}: X \times G / H \rightarrow X$. Of course, S^{\prime} is also referred to as a nkew-prorluct of T and G / H with skewing function ϕ.

Oliserve that given a homogeneoms exteusion S^{\prime} of T with respect to G / H and with skewing function ϕ, there existh a natural compact gronp extension S of T with respect to G, also with skewing function ϕ wuch that S is an *xtension of S^{\prime}. Here the map commerting S and S^{\prime} is wone other than the maן $\pi: X \times G \rightarrow X \times G / H$ given by $\pi(x, \gamma)=(x, \gamma H),(x, \gamma) \in X \times G$. It is hedpful to lave the following commintative picture in mind:

An before, lot T lue a menoure prenerving transformation of a probability space (X, B, m). We ucow give three examples of houngrene-ons extensions of T :

Example 1 Let G^{\prime} be a compact topological group and $r: G^{\prime} \rightarrow G^{\prime}$ be a group, antoumorphinm such that $\boldsymbol{r}^{\prime \prime}=\mathrm{id}$, for anme $n \in \mathbb{Z}^{+}$(n lenat). Furthermore, let $d: X \rightarrow G^{\prime}$ lie n mensuralile map. Then the map $S: X \times G^{\prime} \rightarrow X \times G^{\prime}$ which is definerd by

$$
S(x, \gamma)=(T x, \beta(x) \gamma(\gamma)), \quad(x, \gamma) \in X \times G^{\prime}
$$

is a meraiure pressriving transformation with respert to the product σ-algelira $B \times B\left(G^{\prime}\right)$ and H har extension $m \times \lambda$ (see (2.1)). Observe that the G^{\prime}-artion on $X \times G^{\prime}\left(\right.$ i.e. $g \cdot(x, \gamma)=(x, \gamma g),(x, \gamma) \in X \times G^{\prime}$ and $\left.g \in G^{\prime}\right)$ satisties the rulation

$$
S g=\tau(g) S, \text { for } \text { rll } g \in G^{\prime}
$$

The map S is more coumonly known as a $\left(G^{\prime}, \tau\right)$ extenaion or an antomorphism exteusion of T.

Now, form the semi cliert product group) $\mathbf{Z}_{n} X_{r} G^{\prime}$ of G^{\prime} by \mathbf{Z}_{n} where the proilut of $(r, \gamma),\left(n, \gamma^{\prime}\right) \in Z_{n}, X_{r} G^{\prime}$ is given by the formula

$$
(r, \gamma) \cdot\left(s, \gamma^{\prime}\right)=\left(r+s, \gamma \tau^{r}\left(\gamma^{\prime}\right)\right)
$$

Then it is clear that $\mathbf{Z}_{n} \times{ }^{\prime} G^{\prime}$ is also a compart topolegiral group. Let G denote $\mathbf{Z}_{n} \times{ }_{+} G^{\prime}$ and H denote the (elosed) subgroup $\mathbf{Z}_{n} \times+\{e\}$ (e $=$ identity of G^{\prime}) of G. We shall write $(0, \gamma) H$ for a typical element of the quotient space G / H. Then it is well kuown that we can identify \bar{S} with the homogeneons extension $S^{\prime}: X \times G / H \rightarrow X \times G / H$ where

$$
S^{\prime}(r,(0, \gamma) H)=(T r, \phi(x)(0, \gamma) H), \quad(x,(0, \gamma) H) \in X \times G / H
$$

anil $\phi: X \rightarrow G$ is givin $1, y(x)=(1, \phi(x))$. For details, see, for example, Noxrani \& Parry [12] (see Chapter 1). Hence, we deduce that any ($\left.G^{\prime}, \tau\right)$ extension of T with $\tau^{n \prime}=$ id (some $n \in \mathbf{Z}^{+}$) reduces to a homogeneous extension of T with respert to the compart semi-direct product group $\mathbf{Z}_{n} \times{ }_{p} G^{\prime}$ and suligroup $Z_{n} x_{r}\{e\}$.

Example 2 Let S^{n-1} denoter the ($n-1$)-sphere and let $O(n)$ be the (compact) group of $u \times u$ real orthogonal matrices. Here we iclentify S^{n-1} with the subset $\left\{x \in \mathbf{R}^{\prime \prime}:\|x\|=1\right\}$ of \mathbf{R}^{n} together with the spherical Lebesgue uehnure. Furthermore, let $\phi: X \rightarrow O(n)$ be a measurable map. Then the map $T^{\prime}: X \times S^{\mathrm{m}-1} \rightarrow X \times S^{n-1}$ which in defined by

$$
T^{\prime}(\delta, v)=(T x, \phi(x) v), \quad(x, v) \in X \times S^{n-1}
$$

is a homogeneous extennion of T. To sep this, racall that the group $O(n)$ acts transitively on S^{n-1}. Then, as with all transitive actions, we can identify S^{n-1} with the quotiont npace $O(n) / O(n-1)$ where $O(n-1)$ in the closerd suligromp of $O(n)$ fixing the rlement $(1.0, \ldots, 0) \in S^{n-1}$, nay (i.e. $O(n-1)$ is
the inotropy group of $(1,0, \ldots, 0))$. The map T^{\prime} can then be identified with the maj, $S^{\prime}: X \times O(n) / O(n-1) \rightarrow X \times O(n) / O(n-1)$ where

$$
S^{\prime}(x, \gamma O(n-1))=\left(T_{r}, \phi(x) \gamma O(n-1)\right)
$$

for all $(x, \eta O(n-1)) \in X \times O(n) / O(n-1)$. Hence T is indeed a homogeneous extension of T.

Example 3 Let F be the set $\{1,2, \ldots, n\}$ and S_{n} be the group of all permutations of F (i.e. the symmetric group on n-symbols). Define the measure v ou F by $\nu(i)=1 / n$, for each $i \in F$ and let $\phi: X \rightarrow S$, be a measurable map. Then the map $T^{\prime}: X \times F \rightarrow X \times F$ which is given by

$$
T^{\prime}(x, i)=(T x, \phi(x)(i)), \quad(x, i) \in X \times F
$$

is a homogeneons extemsion of T. In fart. the map T^{\prime} is more commonly known as a finite (n point) extension of T. To see why T^{\prime} is a homogeneous extension of T, observe that S_{n} acts transitively on F. Hence, as is well known, we can identify F with the quotient space S_{n} / S_{n-1} so that T^{\prime} is indeed a homogeneous exteusion of T with respect to this ideutification (for details, see, for e.g., Noorami \& Parry [12] (see Chapter 1)).

We shall nerd the following standard result from Harmoni- Analysis when proving theoretus in the next two sertions (see, for e.g., Hewitt \& Ross [6] Theorem 27.44).

Proposition 1 Let R be a continuous unitary representation of a compact group G with representation space \mathcal{H}. Then \mathcal{H} decomposes into a direct sum of R-invariant closed finite dimensional subspaces $\left(V_{i}\right)_{i \in f}$ such that the restriction of R on V_{i} in irredurible for each $i \in I$.

3 Lifting To Compact Group Extensions

As before, let T be a measure preserving transformation of a probability spare (X, \mathcal{B}, m) and S a compact group extension of T with skewing function $\phi: X \rightarrow G$.

In thin section, we gather all the relevant results with respect to lifting engodic propertien of the base transformation T outo the compart group extrision S which are ueeded later. We would like to stress that all the results
in this nertion are well kuown. We include the pronfs concerning ergodicity nul werl mixing of the rompact group extension S for completeness. Wr also remark that parts of these proofs go through to the homogeneous case, wit that when proving the malogous results in the next section we shall constantly refer to the ones given here.

Recall that a mersure premerving transformation W of a probability mpare ($\mathcal{Y}, \mathcal{C}, \boldsymbol{\nu}$) is said to be ergodic if and only if every W invariant measimable function ($f \circ \mathcal{W}^{\prime}=f$ a.e.) on Y is constant a.e. The following result is esserntially dine to Keyues and Newton

Theorem 1 ([10]) Let T be ergodic. Then S is ergodic if and only if for any non-trivial irreducible unitary representation R of G (of degree d, say). the equation

$$
F(T x)=R(\phi(x)) F(x) \quad \text { a.e. } \quad \text {. }
$$

has no non-trivial measurable solutions $F: X \rightarrow C^{d}$.

Proof Suppose the equation has a non-trivial mersurable solution F (i.e. $F \neq 0$), for some non-trivid irreducible representation R of G. Let d be the dimension of R and define $H: X \times G \rightarrow C^{d}$ by

$$
H(x, \gamma)=R\left(\gamma^{-1}\right) F(x), \quad(x, \gamma) \in \mathbf{X} \times G
$$

Clearly H is measuralile and nou-coustant. Moreover

$$
\begin{aligned}
H \circ S(x, \gamma) & =H(T x, \phi(x) \gamma) \\
& =R\left((\phi(x) \gamma)^{-1}\right) F(T x) \\
& =R\left(\gamma^{-1}\right) R\left(\phi(x)^{-1}\right) F(T x) \\
& =R\left(\gamma^{-1}\right) F(x) \\
& =H(x, \gamma) \quad \text { a.e. }(x, \gamma) .
\end{aligned}
$$

Hener S canuot be ergodic.
C'suvirmly, assume that the functional equation has no non-trivial solutions. For a contradiction, let us auppose that S in uot ergodic. We nhall construct a nou-trivial irreducible representation R of G and a function F Natisfyiug the required equation as follows:
Riwall that G arts continuously on $L^{2}(X \times G)$ by uwitary operators U_{T}. Now, consider the Hillurt mulapace $\mathcal{H}=\left\{f \in L^{2}(X \times G): f \circ S=f\right.$ a.e. $\}$.

Then. since $T_{g} \circ S=S \circ T_{g}$, for all $g \in G$, we deduce that \mathcal{H} is a G-invariant nulephace of $L^{2}(X \times G)$. Let $\Gamma: G \rightarrow U(\mathcal{K})$ be the (coutinuous) represpentation indured by the restricted artion of G ou \mathcal{H}. Thus, Proposition 1 now implien that we can rhoose a nom-trivial finite-dimensional sulspace V of \mathcal{H} such that $\Gamma_{\mid v}$ is irreducible. Note that the non-triviality of V comess from the masimintion S is not argodis.
Let t bee of dimension d and $\left\{f_{1}, \ldots, f_{d}\right\}$ be an orthonormal basis for V. There we leave.

$$
\left(\begin{array}{c}
f_{1} \tag{*}\\
\vdots \\
f_{d}
\end{array}\right) \circ T_{g}=\left(a_{\mathrm{s}},(g)\right)\left(\begin{array}{c}
f_{1} \\
\vdots \\
f_{d}
\end{array}\right)
$$

for sonne $d \times d$ matrix $\left(a_{i j}(g)\right.$) depending only on $g \in G$. Also since $\left\{f_{1}, \ldots, f_{d}\right\}$ is an orthourormal lasis, we see that the matrix $\left(a_{3}(g)\right)$ is unitary for rach $g \in G$. Now let $R(g)=\left(a_{i},\left(g^{-1}\right)\right)$, then $R(g h)=R(g) R(h)$. Hence R defines a nou-trivial representation of G by $d \times d$ uwitary matrices. Moreover, since R is equivalent to $\Gamma_{\mid \text {w }}$ we deduce that R is also irreducible. Let $\hat{F}=\boldsymbol{c}(\mathrm{l})\left(f_{1}, \ldots, f_{d}\right)$. Then $(*)$ implies $\bar{F}(x, \gamma g)=\boldsymbol{R}\left(g^{-1}\right) \vec{F}(x, \gamma)$. Also, it is -lear that $\bar{F} \circ S(x, \gamma)=\bar{F}(x, \gamma)$ a.e. (x, γ). Moreover, by Fuhini's theorem, wre 'rul claose a 'good' $\gamma_{0} \in G$ wuch that

$$
\hat{F} \circ S\left(x, \gamma_{0}\right)=\hat{F}\left(x, \gamma_{0}\right) \quad \text { a.e. } x .
$$

Ohserve that

$$
\begin{aligned}
\tilde{F}\left(x, \gamma_{0}\right) & =\bar{F} \circ S\left(x, \gamma_{0}\right) \\
& =\vec{F}\left(T x, \phi(x) \gamma_{0}\right) \\
& =\vec{F}\left(T x, \gamma_{0}\left(\gamma_{0}^{-1} \phi(x) \gamma_{0}\right)\right) \\
& =R\left(\gamma_{0}^{-1} \phi(x)^{-1} \gamma_{0}\right) \bar{F}\left(T x, \gamma_{0}\right) .
\end{aligned}
$$

That in

$$
R\left(\gamma_{0}\right) F\left(T x, \gamma_{0}\right)=R(\phi(x)) R\left(\gamma_{0}\right) F\left(x, \gamma_{0}\right) \text { s.e. } x
$$

Lettiog $F(x)=\boldsymbol{R}\left(\gamma_{0}\right) \bar{F}\left(x, \gamma_{0}\right)$ we have

$$
F(T x)=R(\phi(x)) F(x) \quad \text { a.e. } \quad \text { r }
$$

and thin gives un the recuired contradietion. Thus S mmet he ergodic.

Remarks

1. One of the first resitles in thin direction was given hy Furstenlerg [5], where he cousidered the case where $G=K$. This was then generalised to the ctue where G is a compart abelian group) by Parry [14]. The case when G is an arhitragy compact group was studied by Keyues \& Newtou [10]. In fart. Keyuen \& Newton also obtained a criteria for the ergodicity of an arbitrary (G, r) extedsion (i.e. reed not satisfy $\boldsymbol{r}^{n}=$ id for nomer $n \in \mathbf{Z}^{+}$) of a topologionl transformation gronj) (X, T) (see [11] for details).
2. Strictly sporking, the result derived ly Keynes \& Newton was arhieverl in the sotting of a topological transformation group acting on an arbitary G mpare. Aul in thin setting the criteria for ergodicity was alsor given in the form of a functional equation but with nu implicit usage of the representation \boldsymbol{R}. In fact, the functional equation they gave involves the so-relled \boldsymbol{R} functions (R an irreducible represeutation of G) (see [10] for detaily). It is immerliate that the same eriteria also bolds in our case. Furthermore, since we are dealing with the product bundle (with fibre G), the rorrexpouding R functions, which are the functions H and F in the aloove proof, reduces to a function defined on the base npace and thins making the usage of the represurntation R explicit.
3. For a resinlt similar to that in Theorem 1, but where the criteria is given in terms of the rauge of the associnted cocycle instead of a functional equation, see Zimmer [25].

A measite preserving transformation W on (Y^{*}, \mathcal{C}, ν) is said to be weak mixing if and only if every measurable fuaction f on Y which satisfies $f \circ W^{\prime}=$ λf a.e. is constant a.e, and $\lambda=1$. We uow give the neressary and sutficient conditions for a compact gronp, "xtemsion to be weak mixing. We remark that moth of the prowf of Theorem 1 gores through to this case.

Theorem 2 Let T be weak-mixing and S be ergodic. Then S is weak-mixing if and only if for any $e^{\text {ta }} \neq 1$ and any non trivial one-dimensional representation 1 of G, the equation

$$
F(T x)=e^{1 a}(\phi(x)) F(x) \quad \text { a.c. } x
$$

has no non-trivial measurable solution $F: X \rightarrow C$.
Proof Suppowe S in wenk mixing and the equation han a non trivial mersuruble whintion F (i.e. $F \neq 0$ a.e) for nome non trivial oue dimensional
representation iof G aud some $e^{1 a} \neq 1$. Define $F: X \times G \rightarrow C$ by $F(x, \gamma)=$ ($\left.\gamma^{-1}\right) F(x)$. Then dearly F is mensurable and mon-ronstant. Also

$$
\begin{aligned}
F \circ S(x, \gamma) & =F(T x, \phi(x) \gamma) \\
& =x\left((\phi(x) \gamma)^{-1}\right) F(T x) \\
& =x\left(\phi(x)^{-1}\right) \times\left(\gamma^{-1}\right) F(T x) \\
& =e^{i \theta} \chi\left(\gamma^{-1}\right) F(x) \\
& =e^{\prime 4} \tilde{F}(x, \gamma) \text { a.e. }(x, \gamma) .
\end{aligned}
$$

This contradicts the assimption that S is werk mixing. Thus, there cannot loe a non trivial \bar{F} satisfying the aloove equation.

Convernely, nuppose that the equation has no non-trivial solutions. For n contracliction, let us suppose that S is not wenk-mixing. Let $\mathcal{H}=\{f \in$ $L^{2}(X \times G): f \circ S=c^{00} f$ a.e. $\}$. Then \mathcal{H} is a non-trivial closed subspace of $L^{2}(X \times G)$ for some $e^{1 a} \neq 1$. In particular \mathcal{H} is a Hilbert npace. As in the proof of Theorem 1, we lave a (continuous) representation Γ of G by unitary operators defined by $\Gamma: G \rightarrow \boldsymbol{U}(\mathcal{H})$ where $\Gamma(g)=U_{T_{1}}$. Invoking Proposition 1. we dedure that there exists a non trivial finite dimeusiound subspace V (of dimension d, way) nith that the restriction of Γ on V in irreducible. Let $\left\{f_{1}, \ldots, f_{d}\right\}$ be an orthonormal basis for V. By definition, we lave $f, \circ S=$ r'a $f_{j}, j=1, \ldots . d^{\prime}$. Since the zero'n of the f_{s} 's have measure zeto, we may divide $f_{j}, j=1, \ldots, d$, with f_{1} say, and apply the ergodicity of S to deduce that $f_{s}=c_{1} f_{1}$ a.e., where c_{j} are wou zero constants, $j=1, \ldots, d$.

This. if we let $\bar{F}=\operatorname{col}\left(f_{1}, \ldots, f_{d}\right)$ then $\bar{F}(x, \gamma)=f_{1}(x, \gamma) c$ whert $c=$ (oll $\left(c_{1}, \ldots, c_{d}\right) \neq 0$. Also, as in the proof of Theorem 1, we have, for each $g \in G$,

$$
\begin{equation*}
\bar{F}(x, \gamma g)=R\left(g^{-1}\right) \bar{F}(x, \gamma) \quad \text { A.e. }(x, \gamma) \tag{*}
\end{equation*}
$$

where $R: G \rightarrow C^{\prime}\left(C^{d}\right)$ is the irreducible unitary representation of G nrising from the matrix represeutation of the representation $\Gamma_{\mid v}$, with respect to the orthonormal hasis $\left\{f_{1}, \ldots, f_{d}\right\}$. Combining this with the fact that $F(x, \gamma)=$ $f_{1}(x, \gamma) c$ wr obtain, for wach $g \in G$,

$$
f_{1}(x, \gamma g) c=R\left(g^{-1}\right) f_{1}(x, \gamma) c \quad \text { a.e. }(x, \gamma)
$$

This last equation then implies that R leaves the one-dimensional subspace generated by the vector c invariant. Hence, since R is irreducible, we deduce that R in necersarily one dinnemsional. Thus, by identifying R with its -haracter \boldsymbol{A}, the equation (*) beromes

$$
F(x, \gamma g)=\chi\left(g^{-1}\right) \tilde{F}(x, \gamma) \quad \text { a.e. }(x, \gamma)
$$

Where uow $F: X \times G \rightarrow C^{1}$. Recall that \hat{F} also satisfy \hat{F} o $S=e^{\text {oo }} \hat{F}$ a.e. Hence, as loefore, we deduce that

$$
\hat{F}\left(x, \gamma_{0}\right)=e^{-s a} \chi\left(\phi(x)^{-1}\right) \hat{F}\left(T x, \gamma_{0}\right) \quad \text { R.e. } x
$$

for mome 'good' $\gamma_{0} \in G$. Letting $F(x)=F\left(x, \gamma_{0}\right)$, then gives us the required contradiction.

Remark The alove result was proven by Jones \& Parry in [7] for the abelian case. This was thell exteuded to the compart case ly Parry \& Pollicott in [17] (see also |18|).

Wir now consid+ry ther case when T is a K-atomorphism . Recall that nu nutomorphisu T of a problability space (X, B, m) is asid to be a K hutonorphismif it posisesmes a sul, $-\sigma$ algebra \mathcal{A} such that $T^{-1} \mathcal{A} \subset \mathcal{A}, U_{n} T^{n} \mathcal{A}$ ge-uerates B and $n_{n} T^{-4} \mathcal{A}$ is the trivial σ-algebra \mathcal{N}. The following result is due to Thomas.

Thearem 3 ([23]) Let T be a K automorphism of a Lebesgue probabslity space (K, B, m) and G a compact separable group. Then either S is a K autumorphiom ar S is not weak mixing.

Remark In the case when G in compart abelian, the alouve rexult wan proven earlier by Parry [15]. The nlouve theorem of Thomas, which generalises that of Parry, was in fact proven in the setting of a (G, τ)-exteusion of T (see [23] for details).

Before giving the corresponding result for a Bernoulli shift T, we shall newd the notion of an isometric C-exteusion. Of course, by a Beruoulli shift we wert a probability npace (X, B, m) which is an infinite direct product $\Pi_{-\infty}^{\infty}\left(\mathcal{Y}^{*}, \mathcal{C}, \nu\right)$ of a fix probalility (state) space ($\left.Y, \mathcal{C}, \nu\right)$, together with the whift map T.

Let C be a compact howogeueous metric space and let G^{\prime} be the compact metric group) of all inometries of C. Then S is an igomptric C extension of T if S is n nkew product $S: X \times C \rightarrow X \times C$ where

$$
S(x, c)=(T r, \phi(x)(c)), \quad(x, c) \in X \times C
$$

and $\Phi: X \rightarrow G^{\prime}$ is a mensimalde map. When T is Bernoulli, we have the following rosult of Rudolph:

Theorem 4 ([21]) Let T be a finste entropy Bernoulh shift. Then ant ssometric C extension S of T either is inelf Bernoulli or is not weak mixing.

Since a compart metric gront) G is a homogeneons space (with respert to the Ifft trauslatioun, nsy) aud siuce the orgiual metric on G (aum be replaced, If uarel ler, with a left invariant metric $(d(g r, g y)=d(r, y) \forall x, y, g \in G)$ so that the left translations are indeed isometries of G, wr have, as an immediate' consergence of the alove theorem:

Corollary 1 Let T be a finite entropy Bernoulli shifi and G a compact metric group. Then a rompact group extenaion S of T either is itself Bernoulli or in not weak mazing.

It is interesting to notr that the above result of Rudolph (Theorem 4) has revontly bew extended to the case where T is a Z^{d} Bernoulli shift (sex Kamme'yer [9]).

4 Lifting To Homogeneous Extensions

Onr ain in this section is to oldtain similar results to the ones given in the previous arction for homogrinerine extensions of a measure preserving transformation. In particular. let G be a compact gronj and T be a measiure prentrving transformation of a probability spare (X, B, m). Let S^{\prime} be a ber mogenerons exteusion of T with respect to some closed milggroup H of G and let ϕ lee the skewing function (nee $\S 2$ for details). Our first result in concerned with the ergolicity of S^{\prime}.

Theorem 5 Let T be ergodic. Then S^{\prime} is ergodic if and only if for any nontrivial irreducible unitary representation R of G (of degree d, say) satiofying $b R(h)=h \quad \forall h \in H$. for some non-zere $b \in \mathbb{C}^{d}$, the equation

$$
F(T x)=R(\phi(x)) F(x) \quad \text { a.e. } f_{1}
$$

has no non trivial measurable solution $F: X \rightarrow C^{d}$.
Proof Suppose S^{\prime} is ergotir aud the equation han a non-trivial solution. That in, there existn nowe won-trivial F, R and $b \in C^{d}$ antisflying the ahove
rquation. Define $K: X \times G / H \rightarrow C$ liy $K(x, \gamma H)=b R\left(\gamma^{-1}\right) F(x)$. Theu K is well defined aud merasmable. Alsu

$$
\begin{aligned}
K^{\prime} \circ S^{\prime}(x, \gamma H) & =K^{\prime}\left(T_{x}, \phi(x) \gamma H\right) \\
& =b R\left((\phi(x) \gamma)^{-1}\right) F\left(T_{x}\right) \\
& =b R\left(\gamma^{-1}\right) R\left(\phi(x)^{-1}\right) F(T x) \\
& =b R\left(\gamma^{-1}\right) F(x) \\
& =K(x, \gamma H) \quad \text { a.e. }(x, \gamma H) .
\end{aligned}
$$

Siure S^{\prime} is ergodic aull K is uon coustamt, we have a coutradiction. Thus the equation raunot have mon-trivial solutions.

Conversely, let us assume that the functional equation bas no non-trivial solutions and for a contradiction, suppose that S^{\prime} is not ergodic. Let S be the assoriated group extension (see $\S 2$). As before, let \mathcal{H} be the Hilbert spare consinting of S-invariaut functions. By lifting mon-coustant S^{\prime}-invariant functions outo the gromp extension we deduce that there exists some nonconstant $k \in \mathcal{H}$ such that $k=k^{\prime} \circ \pi H$ for some S^{\prime}-invariant function k^{\prime}. Furthermore, it is rasy to check that k is also H-invariant, i.e. k o $T_{h}=$ $k \forall h \in H$.

As in the proof of Theorem 1, the G action on \mathcal{H} gives us a decomposition of \mathcal{H} into a direct sum of finite dimensional nubspaces V_{i} such that G acts irrorlucibly on each V_{0}. Heuce, we can uniquely write

$$
k=\sum_{V_{1}} f^{V_{1}}, \quad f^{V_{i}} \in V_{i}
$$

Furthermore, since k is H-invariant, we deduce that

$$
k=k \circ T_{h}=\sum_{v_{i}} f^{v \cdot} \circ T_{h} \quad \text { for all } h \in H
$$

no that $f^{V_{i}}$ o $T_{h}=f^{V}$ for all V_{1} and $h \in H$. And in particular, there exists nome subspace V such that $f^{V} \circ T_{h}=f^{V}$ for all $h \in H$ with f^{\prime} non-constant. Now let $\left\{f_{1}, \ldots, f_{d}\right\}$ be an orthomormal besis for V where d is the dimension of V. As in the proof of Theorem 1, we obtain a functional equation

$$
\begin{equation*}
F(T s)=R(\phi(x)) F(x) \text { A.e. } x \tag{1}
\end{equation*}
$$

where $F: X \rightarrow C^{d}$ is a nou trivial measuralle function and R is the irtedurible nuitary reptrmentation of G arising from the reatricted action of G outo V with respert to the orthonormal basis $\left\{f_{1}, \ldots, f_{d}\right\}$.

Also we have $\boldsymbol{f}^{\boldsymbol{V}}=b_{1} f_{1}+\ldots+b_{d} f_{d}$ for some $b=\left(b_{1}, \ldots, b_{d}\right) \neq 0$. Mortover, by writing $f^{b}=b \operatorname{col}\left(f_{1}, \ldots, f_{d}\right)$ aud noting that $\operatorname{col}\left(f_{1}, \ldots, f_{d}\right) \circ$ $T_{g}=R\left(g^{-1}\right) \operatorname{col}\left(f_{1}, \ldots, f_{d}\right) \forall g \in G$. we olitain

$$
f^{V} \circ T_{h}=b R\left(h^{-1}\right) \operatorname{col}\left(f_{1}, \ldots, f_{d}\right)
$$

for all $h \in H$. Thas, since $f^{v} \circ T_{h}=f^{h} \quad \forall h \in H$ and $\left\{f_{1}, \ldots, f_{d}\right\}$ is an orthonormal basis, we couclude that

$$
\begin{equation*}
b R(h)=b \text { for all } h \in H \tag{2}
\end{equation*}
$$

Combining (1) and (2) then gives us the required contradiction.

We illustrate how oue ran apply the above result to the following situation:

Example Let T be a measure preserving transformation of a probability space (X, B, m). Let $G^{\prime}=\{f, r, y, z\}$ be the klein-4 group and $r: G^{\prime} \rightarrow G^{\prime}$ lif given by $T(f)=r, r(r)=z, r(y)=r, T(z)=y$. Then r is an automorplism of G^{4} such that $\boldsymbol{r}^{3}=$ id. Suppose S is a (G, τ)-extension of T where $S(r, \gamma)=(T r, \beta(x) \tau(\gamma)),(x, \gamma) \in X \times G^{\prime}$, for some measurable map f: $X \rightarrow G^{\prime}$ (see $\S 2$ for details). As before, let $G=\mathbf{1}_{3} \times_{r} G^{\prime}$ be the associated somi -riect product group and let H be the sulugroup $Z_{a} \times{ }_{r}\{e\}$. Then one can easily cherk that there is ouly one (non trivial) irreducible representation (up to equivaleuce class) R of G such that $b R(h)=b \forall h \in H$, for some non zero $b \in C^{d}(d=$ degrie of R). In fact, R has degrese 3 and on $H . R$ satisties

$$
R((0, e))=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad R((1, e))=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \quad R((2, e))=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Thus, auy (non zero) $b=\left(b_{1}, b_{2}, b_{3}\right) \in \mathrm{c}^{3}$ with $b_{1}=b_{2}=b_{1}$ satisfy $b R(h)=$ $b, \forall h \in H$. Now, asnume T is ergodic. Then. ly Therorem 5 , we have
S is ergodic if and only if there doen not exists a non trivial measurable function $F: X \rightarrow C^{3}$ such that

$$
F(T x)=R((1, H(x)) F(x) \text { a.e. } x .
$$

We remark that thim example ocrur as a spymbolic model' for the hyperbolic toral antomorphism \boldsymbol{A} on the two dimensional torus I indured by the matrix $\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$. Here we take G^{\prime} to be the group of all elements of T of order two, so that we have

$$
\tilde{A}(x+g)=\tilde{A}(x)+\tilde{A}(g), \quad x \in \mathbf{T}, g \in G^{\prime}
$$

Then, A induces the toral automorphism A on the G-orbit spare T / G^{\prime} such that A is also hyperbolic. Of course, in this case, the symbolic model for the antomorphisto A, which correspond to the map $T: X \rightarrow X$ in the above discussion. is a sulsshift of finite type (see Noorawi \& Parry [12] (seer Chapter 1) for further retuils).

As in $\S 2$, let S be the compact gronp extension associated with S^{\prime}. The weak mixing criteria for the homogentrous extension $S^{\prime \prime}$ is given ly the following theorem

Theorem 6 Suppose T is weak-maxing and S is ergodic. Then S^{\prime} is weak mising if and only if for any $e^{10} \neq 1$ and any nontrivial one-dimenasonal represcutation $₹$ of G, satisfying $\chi(h)=1 \forall h \in H$, the equation

$$
F(T x)=\mathrm{e}^{\operatorname{ta}} \chi(\phi(x)) F(x) \quad \text { ब.e. } x
$$

has no non trivial measurable solution $F: X \rightarrow C$.
Proof Let S^{\prime} be weak twixing and suppose that the equation has a nontrivial measuralile solution $F: X \rightarrow C$ for some non trivial one-dimensional representation \backslash aud $r^{\text {ra }} \neq 1$. Define $K: X \times G / H \rightarrow C$ by $K(x, \gamma H)=$ $t\left(\gamma^{-1}\right) F(x)$. Then

$$
\begin{aligned}
K \circ S^{\prime}(x, \gamma H) & =K(T x, \phi(x) \gamma H) \\
& =x\left((\phi(x) \gamma)^{-1}\right) F(T x) \\
& =\chi\left(\gamma^{-1}\right) \chi\left(\phi(x)^{-1}\right) F(T x) \\
& =e^{t a} \chi\left(\gamma^{-1}\right) F(x) \\
& =e^{* a} K(x, \gamma H) \text { a.e. }(x, \gamma H) .
\end{aligned}
$$

Thim contradicts the aswumption that S^{\prime} is weak mixing. Thin the equation cannot have non trivial nolutions.

Connersely, let us suppose that the equation has no non-trivial solutions and for a contradiction, suppose that S^{\prime} is uot weak mixing. Thus since S^{\prime} is assumed to be ergodic there exists eia $\neq 1$ and nou-constant $g: X \times G / H \rightarrow \mathrm{C}$ such that g o $S^{\prime}=e^{\prime a} g$ a.e. By lifting such g 's onto the assoriated group extension $S: X \times G \rightarrow X \times G$ we deduce that the Hilbert space

$$
\mathcal{H}=\left\{f \in L^{2}(X \times G): f \circ S=e^{2 a} f\right\}
$$

rontains a now constant function k such that k is also H-invariant, i.e. k o $T_{h}=k \quad \forall h \in H$. The rest of the proof then follows closely the proofs of theoremins 2 and 5.

We now cousider the case when T is a K^{\prime}-autornorphism. Unfortunately in this case, we are only able to obtain the appropriate result for the special case when G is a finite group. Before giving the relevant result in this case, we shall nerd the following observation: Recall that given a homogeneous extension $S^{\prime}: X \times G / H \rightarrow X \times G / H$ of T, there exists a group exteusion $S: X \times G \rightarrow X \times G$, which is an extension of both T and S^{\prime}. Now, suppose S^{\prime} is ergorlic (so that T in ergodic) and S is not ergodic. Then we can derompose $X \times G$ into finitely many ergodic pieces Y_{1}, \ldots, Y_{n}. For each Y_{i}, let G_{1} be the sul.gronp of G such that $g Y_{i}=Y_{i}$, for all g in G_{1}. Then the G_{i} orbit space Y_{i} / G_{i} together with the map induced by $S_{\left.\right|_{i}}$ on $Y_{i} / G_{\text {, can }}$ be ideutified with the map $T: X \rightarrow X$. All the above follows from the ergodicity of T. Now, let $H_{1}=H \cap G_{1}, i=1, \ldots, n$ and consider the H_{i}-orbit space Y_{i} / H_{1} together with the associated induced map. The assumption that S^{\prime} is ergodic then implies that we can identify Y_{i} / H_{i} (together with the induced map) with $S^{\prime}: X \times G / H \rightarrow X \times G / H$. In other words, under the assumption that S^{\prime} is prgodic, we have $S_{l_{4}}$ as an exteusion of looth T and S^{\prime}, for each $i=1, \ldots, n$. Thus, as far as the homogeumonextension S^{\prime} is concerned there is no loss in generality if we also assume that the group extension S is ergodic. For if S in not ergodir, then we ran always restrict our attention to any one of the ergorlic pieces Y; and then apply the appropriate identification.

Proposition 2 Let T be a K-automorphism of a Lebesgue space (X, \mathcal{B}, in) and G a finite group. Then a homageneous extension S^{\prime} of T either is itself a K automorphism or is not weak-mizing.

Proof Let T lie a K-automorphism and suppose that the homogeneons extension S^{\prime} is weak mixing. Then by the above oloservation we may as-
sume that the associated group extension S is ergodic. If S is also weak mixing then. ly Thencem 3, we deduce that S^{\prime} is also a F^{\prime} antomorphism. This follows from the fact that factors of K automorphisms are also K antomorphisins. We are now left with the case where S is ergodic but not weal mixing. By using Theorem 2 and the fact that G is fiuite, we deduce that the eigenvalues of S forms a finite ryclic group generated by some $\omega \in \mathbb{C}$, where w is a primitive d-th root of unity and $d>1$. This means that the space $X \times G$ decomposes into a disjoint union of d pieces X_{1}, \ldots, X_{d} such that $S\left(X_{i}\right)=X,(j=i+1 \bmod d)$ and $S^{d}{ }_{n_{i}}$ is weak mixing, for $i=1, \ldots, d$. Moreover, by applying arguments similar to the one given in the above observation to the map S^{d}, we deduce that $S_{d_{x}}$ is an extension of both $T^{\text {d }}$ and $\left(S^{\prime}\right)^{d}$, for each $i=1, \ldots, d$. This is clear siuce both T^{d} and $\left(S^{\prime}\right)^{d}$ are ergodic. Hence, by applying Thoorem 3 to $S^{d_{x_{3}}}$ (any i) and noting that T^{d} is a K^{\prime}-antomorphism, we gather that $S^{d}{ }_{\mid x}$, is a K^{-}-antomorphism. Thus ($\left.S^{\prime}\right)^{d}$ is also a K automorphism. The proof is completed since the fact that ($\left.S^{\prime}\right)^{d}$ is a \boldsymbol{K} antomorphinm then implies S^{\prime} is a K-automorphism.

We remark that when S^{\prime} is a (G, τ)-extension of a K automorphisin, Thoman [23] showed that, irrespertive of $\tau^{n}=i d$ or not (for some $n \in \mathbf{z}^{+}$), if S^{\prime} is weak-mixing then it is a K-antomorphism. As mentioned parlier, we have been umable to obtain the analogue of the above proposition for a general compact group G. Nevertheless, by taking the above discussions as our support, we would like to make the following conjecture:

Conjecture 1 Let T be a K^{-}-automorphism of a Lebesgue space (X, B, m) and G a compact separable group. Then a homogeneous extension S^{\prime} of T either in itself a K-automorphsm or in not weak-mixing.

Similar to Corollary 1, the result for Beruoulli T, is yet auother cousequence of the theorem of Rudolph (Theorem 4).

Corollary 2 Let T be a finite entropy Bernoulli shift and G a compact metrif group. Then a homogeneous extension S^{\prime} of T either is itself Bernoulli or in not weak miring.

Proof Let d be a metric on G. Without lons of generality, we may assinue that d is trausiation invariant (i.e. $d(g x, g y)=d(x, y)=d(x h, y h)$ for all
$x . y, g . h \in G$) for if uot, then we could replace d with the metric d^{\prime} which is given ly $d(r, y)=\int\left(\int d(g r h, g y h) d \lambda(h)\right) d \lambda(g)$. Set

$$
d(x H, y H)=\inf _{h i \in H} d\left(x h, y h^{\prime}\right), \quad x H, y H \in G / H .
$$

Then it is uot too difficult to see that d^{μ} is a metric on G / H which generates the quotient topology (new, for e.g., Dieudouné [4]). In fact, $d^{2}(x H, y H)=$ inf $h_{G H} d(r, y h)$. Thus, since d in transiation invariant, we deduce that the l-ft action of G on $G / H(g \cdot x H=g r H . g \in G, x H \in G / H)$ is indeed by inometries. The resule then follows by applying Theorem 4 to the crse where $C=G / H$ and noting that G / H is rompact.

We would like to add that in an earlier paper [22], Rudolph obtaiued a result for finite extensions of a Bermoull shift in terms of the existence of rotation factors. More precisely, he showed that a finite exteusion S^{\prime} of a Bernoulli shift is either Bernoulli or has a finite rotation fartor. Of course, the eristeuce of a finite rotation fartor then implies S^{\prime} is not weakly mixiug.

5 Applications to Markov Shifts

In this section, we sprecialize onr study to the case where (X, B, m) is a Markov shift and T is the shift mapa. Recall that a Markov shift is defined us follows:
Let $P=\left(p_{i j}\right)$ be an irreflucille $k \times k$ stochastic matrix, i.e., $p_{G} \geq 0, \sum_{j=0}^{k-1} p_{i j}=$ 1 and for each i, j there exists some n such that $P^{\prime \prime}(i, j)>0$. Then theret exists a nuique $p=\left(p_{0}, \ldots, p_{k-1}\right)$ such that $p_{1}>0, \sum_{k=0}^{k=1} p_{1}=1$ and $p P=p$. L+t

$$
X=\prod_{\infty}^{\infty}\{0,1, \ldots, k-1\}=\left\{x=\left(x_{n}\right)_{-\infty}^{\infty}: x_{n} \in\{0,1, \ldots, k-1\}\right\}
$$

aud $\sigma: X \rightarrow X$ be defined 1 by $\sigma\left(x_{n}\right)=\left(x_{n+1}\right)$. Equip X with the σ algebra B gererated by the cyliuder netis. A cylinder set is any aet of the form

$$
\Delta\left[i_{0}, i_{1}, \ldots, i_{1-z}\right]_{1}=\left\{x \in X: x,=i_{0}, x_{s+1}=i_{1}, \ldots, x_{i}=i_{t-1}\right\}
$$

whure $A \leq t, n, t \in \mathbf{Z}$. For earli cylinder,$\left[i_{0}, i_{1}, \ldots, i_{t-a}\right]$ define

Then mextends uniquely to a prohability measure on B auch that σ preserves m. The probsability space (X, B, m) together with the shift wap σ is called an (ergodic (wo-sided) Markov shift with transition proliability (p, P) and atate spave $\{0,1 \ldots \ldots-1\}$. Note that when the matrix P has identical rows. then or in a Brruoulli shift with state space $\{0,1, \ldots, k-1\}$.

As mentioned in the introduction, we are interented in how the various lifting tesults oltained in the previous nections changes when we allow the skewing function to depend only on a finite number of coordinates. To motivate our study, we would like to recall an old result of Kakutani:

Proposition 3 ([8]) Let $a: X \rightarrow X$ be a Bernotslli shifi with state space $\{0,1, \ldots, k-1\}$. Also let $\Lambda=\left\{\phi_{0} \ldots, \phi_{k-1}\right\}$ be a (not necessary distinct) family of inomorphisms of a probability space (Y, \mathcal{C}, ν). Then the skew product $\sigma: X \times Y \rightarrow X \times Y$ which is defined by

$$
\dot{\sigma}(x, y)=\left(\sigma x, \phi_{x_{0}}(y)\right)
$$

is ergodic if and oniy if the family Λ is ergodic.
By an ergodic family of isomorphinms $\mathrm{A}=\left\{\phi_{0}, \ldots, \phi_{k-1}\right\}$ we mean, nny measurable set which is invariant under each $\phi_{0}, \phi_{1}, \ldots$, ϕ_{6-1} has measure zero or one (sere [8] for further details). Ohserve that the skewing function in the above proposition is a function of one coordinate. Also observe that, when applied to group extensions of Beruoulli shifts, the above result, in contrast with Theorem 1, doen not involves any functional equation or group representatious. It is interesting to see if the ahove proposition also holds for arlitrary Markov shifts. But, as the following example shows, this is not the crase.

Example Let $X=\prod_{-\infty}^{\infty}\{0,1\}$ be the Bernoulli $\left(\frac{1}{2}, \frac{1}{2}\right)$-shift. Let K the the nuit circle in the complex plane aud a he a fixed irrational number. Define the function f on X by $f(x)=s_{0}$ (i.e. $f(x)=0$ or 1). Then the nkew product ơ: $X \times K \rightarrow X \times K$ which is given by

$$
\hat{\sigma}(x, z)=\left(\sigma x, e^{2 x+(f(\sigma s)-f(s)\} a} z\right), \quad(x, z) \in X \times K
$$

is Lever argodic (sfe Therorem 1). Set $\phi_{x_{0} F_{1}}(z)=e^{2 \pi\left(x_{1}-x_{0}\right) 0_{z}}$ so that we bave the fanily $\boldsymbol{\Lambda}=\left\{\phi_{00}\left(=\phi_{11}\right), \phi_{01}, \phi_{00}\right\}$ of rotations of \boldsymbol{K}, an $\boldsymbol{x}_{\mathrm{a}}, \boldsymbol{x}_{1}$ varien over 0 nud 1. By a suitable recoling (see, for e.g. Denker of al [3]), we can counider

K as a 2 step Markov shift with alphabets 00, 01, 10 and 11. However, the fanily A of multiplications ly $1 . \mathrm{f}^{2 \# 1 a}, e^{-2 \pi 0}$ is ergodic, when a is irrational.

Oloserve that the above counter example tells nis that Kakutami's result is mot even trur for mixing Markuvs shifts. In particular, this negative answer then formes us to concentrate on the related functional equations and ery to aimplify it under the assimmption that the skewing function depeudis only on a finite number of coordinates. Later on we shall give an analogue of Proporsition 3 (i.e. when the skewing function depeuds only on one roordinate) which is valid for arbitrary Markov shifts. We shall need the following easily proven lemema.

Lemma 1 Let V be a closed subspace of a Hilbert space \mathcal{H}. And let P be the orthogonal projection of \mathcal{H} onto V. Then

$$
\langle r, P x\rangle=\langle s, r\rangle \text { if and only if } P_{x}=x
$$

Wi- are indehted to Prof. W. Parry for showing us the proof of the following result. For the relevant properties of the couditional expectation operator and the Increasing Martingle Theorem, spe Parcy [13].

Proposition 4 Let $T: X \rightarrow X$ be an automorphism of a probabslity space (X, B, m) and \mathcal{A} an invariant aub-a-algebra of B such that $T^{n} \mathcal{A} \uparrow B$ (s.e. $T^{-1} \mathcal{A} \subset \mathcal{A}$ and $\cup_{n>1} T^{\prime \prime} \mathcal{A}$ generates $\left.B\right)$. Suppose U, V, F are B measurable functions, from X into $U(d)$, the group of $d \times d$ unitary matrices, wuch that

$$
F \circ T(x) \cdot V(x)=U(x) \cdot F(x) \quad \text { a.e. } x
$$

Then F is A measurable if both U, V are \mathcal{A}-measurable.
Proof We shall identify $U(d)$ with a subset of $C^{P^{p}}$. Note that since U, V, F are loounded furctions we deduce that $U, V, F \in L^{d}\left(X, B, m, C^{d^{2}}\right)$. Let $E(\cdot \mid \mathcal{A})$ lie the conclitional expectation operator with respert to the muls-o-algebra A. Then the equation $F \circ T \cdot V=U \cdot F$ a.e. implies

$$
E(F \circ T \cdot V \mid \mathcal{A})=E(U \cdot F \mid \mathcal{A})
$$

This in turu implieк $E(F \circ T \mid \mathcal{A}) \cdot V=U \cdot E(F \mid \mathcal{A})$ a.e., for U, V are ansumed to be \mathcal{A} measurable. Also, since T is invertible, the conditiounal expertation oprerator matinfy

$$
E(F \circ T \mid \mathcal{A})=E(F \mid T \mathcal{A}) \circ T \text { A.e. }
$$

Henct. we oldain $E(F \mid T \mathcal{A}) \circ T \cdot V=U \cdot E(F \mid \mathcal{A})$, so that
$F(x)^{-1} \cdot E(F \mid \mathcal{A})(x)=V(x)^{-1} \cdot(F \circ T(x))^{-1} \cdot E(F \mid T \mathcal{A}) \circ T(x) \cdot V(x)$..e. x.
Thus:

$$
\text { Trece } F^{-1} \cdot E(F \mid \mathcal{A})=\operatorname{Trace}\left(F^{-1} \circ T\right) \cdot E(F \mid T \mathcal{A}) \circ T \text { a.e., }
$$

nudl

$$
\int \operatorname{Trmre} F^{-1} E(F \mid \mathcal{A}) d m=\int \operatorname{Trace} F^{-1} E(F \mid T \mathcal{A}) d m
$$

since T in m invariant. Also since F is unitary valued, we lhave $F(x)^{-1}=$ $F(x)^{\prime}$ for fll $x \in X$. A straight forward ralrulation then gives us

$$
\int \sum_{i, 1} \bar{F}_{j i} E\left(F_{n} \mid \mathcal{A}\right) \mathrm{d} m=\int \sum_{i, 1} F_{n} E\left(F_{n i} \mid T \mathcal{A}\right) \mathrm{d} m
$$

where the F_{1}, 's are the coordinate functions of F. Moreover, by considering the operator $E(\cdot \mid T \mathcal{A})$ and using the assumption $T \mathcal{A} \supset \mathcal{A}$, we deduce that the previons equation is equivaldent to the equation

$$
\int \sum_{i, j} E\left(F_{j u} \mid T \mathcal{A}\right) E\left(F_{j 1} \mid \mathcal{A}\right) d n=\int \sum_{i, j} E\left(F_{j v} \mid T, \mathcal{A}\right) E\left(F_{1 \mid} \mid T \mathcal{A}\right) \mathrm{d} m
$$

Alno, observe that $T \mathcal{A} \supset \mathcal{A}$ implies $E\left(F_{y ;} \mid \mathcal{A}\right)=E\left(E\left(F_{j \mid} \mid T \mathcal{A}\right) \mid \mathcal{A}\right)$ a.e., for whilh i, j. Thus, ly applying Lemma 1 to the above integral equation with $P=E(\cdot \mid A)$, aud unting that P is an orthogonnd projection, we obtain

$$
E\left(F_{y 0} \mid \mathcal{A}\right)=E\left(F_{y 1} \mid T \mathcal{A}\right) \text { a.e., for each } i_{1} j
$$

By reperating the alonve urgument for $T^{u+1} \mathcal{A} \supset T^{n} \mathcal{A}, n \geq 0$, we dedure that

$$
E\left(F_{i,} \mid \mathcal{A}\right)=E\left(F_{i,} \mid T^{m \prime} \mathcal{A}\right) \text { a.e., for all } n \geq 0
$$

Nuw, the increqsing martingle therrem givea us, $E\left(F_{i} \mid T^{n} \mathcal{A}\right) \rightarrow E\left(F_{i,} \mid B\right)$ a.e., for rach i, j. So that, for earh $i, j, E\left(F_{i j} \mid \mathcal{A}\right)=E\left(F_{i} \mid \mathcal{B}\right)=F_{1,}$ a.e. This merus ench F_{0} is \mathcal{A} menamable. Thus F is \mathcal{A} measurable.

We alsu Lave
Propositions Let $T: X \rightarrow X$ be an automorphism of a probability space (X, B, m) and A an invariant sub- $\sigma \cdot a l g e b r a$ of B such that $T^{n} \mathcal{A} \uparrow B$. Let $\boldsymbol{U}: \mathbf{X} \rightarrow \boldsymbol{U}(\boldsymbol{d})$ and $F: X \rightarrow \mathbf{C d}^{d}$ be \boldsymbol{B}-meanurable functions auch that they satisfy

$$
F(T(x))=U(x) \cdot F(x) \quad \text { a.e. } x .
$$

Then F is \mathcal{A}-measurable if U is \mathcal{A}-measurable.
Proof We shall identify $U(d)$ with a subset of $\mathbf{C}^{d^{2}}$. First, we assume that $F \in L^{2}\left(X, \mathcal{B}, \mathrm{c}^{d}\right)$, so that $U \cdot F \in L^{2}\left(X, \mathcal{B}, \mathrm{C}^{d}\right)$. Let $E(\cdot \mid \mathcal{A})$ be the conditional expectation operator with respect to the sub- σ-algebra \mathcal{A}. Then, from the above equation we obtain $E(F \circ T \mid \mathcal{A})=E(U \cdot F \mid \mathcal{A})$ a.e. That is

$$
E(F \mid T \mathcal{A}) \circ T=U \cdot E(F \mid \mathcal{A}) \text { a.e. }
$$

since U is \mathcal{A}-measurable and T is invertible. Let $<,>$ be the standard inner-product on $L^{2}\left(X, \mathrm{C}^{d}\right)$. Then

$$
<E(F \mid T \mathcal{A}) \circ T, F \circ T>=<U \cdot E(F \mid \mathcal{A}), U \cdot F\rangle \text { a.e. }
$$

implies

$$
<E(F \mid T \mathcal{A}), F>o T=<E(F \mid \mathcal{A}), F\rangle \text { a.e. }
$$

since U is unitary-valued. Therefore,

$$
\int \sum_{i=1}^{d} \bar{F}_{i} E\left(F_{i} \mid T \mathcal{A}\right) \circ T \mathrm{~d} m=\int \sum_{i=1}^{d} \bar{F}_{i} E\left(F_{i} \mid \mathcal{A}\right) \mathrm{d} m
$$

where $F_{i}, i=1, \ldots, d$ are the coordinate functions of F. Then, by imitating the proof of the above proposition we deduce that F is indeed \mathcal{A}-measurable.

Now, suppose that F is only \mathcal{B}-measurable. Let || \| be the standard norm on C^{d} and let $B_{n}=\{x \in X:\|F(x)\| \leq n\}$. Since U is norm-preserving we deduce that $\|F\| \circ T=\|F\|$ a.e., so that the set B_{n} is T-invariant for each $n \geq 1$. Let $F_{n}=\chi_{B_{n}} F$ for each $n \geq 1$. Then $F_{n} \circ T=U \cdot F_{n}$, for all $n \geq 1$. Thus, by the above F_{n} is \mathcal{A}-measurable. It is clear that $F_{n} \rightarrow F$ a.e. Hence F is \mathcal{A}-measurable.

The above result generalises that of Parry [16] (see also (2.37) of Parry \& Tuncel [19]).

We shall need the following result whose proof depends on Proposition 5 and follows closely the arguments given in (2.38) of Parry and Tuncel [19]. First, recall that a generator α of an automorphism T of a probability space (X, B, m) is a countable measurable partition of the space X such that

$$
\left.\bigvee_{i=-\infty}^{\infty} T^{i} \mathcal{A}(\alpha)=\mathcal{B} \quad \text { (i.e. } \bigcup_{i=-\infty}^{\infty} T^{i} \mathcal{A}(\alpha) \text { generates } \mathcal{B}\right) .
$$

Here $\mathcal{A}(\alpha)$ is the sub- σ-algebra generated by α.

Proposition 6 Let T br an automorphism of a probability space (X, B, m) with generator a. Let $U: X \rightarrow U(d)$ and $F: \mathbf{X} \rightarrow \mathbf{C}^{d}$ satisfy $F \circ T=U \cdot F$ a.e. If Cl is

$$
\mathcal{A}(\alpha) \vee T^{-1} \mathcal{A}(\alpha) \vee \ldots \vee T^{-\pi} \mathcal{A}(\alpha)
$$

measurable then F is measurable with reapect to the sub-a-algebra

$$
\left(\bigvee_{i=0}^{\infty} T^{-i} \mathcal{A}(\alpha)\right) \cap\left(\bigvee_{i=-(n-1)}^{\infty} T^{i} \mathcal{A}(\alpha)\right), \quad \text { for } n=1,2, \ldots
$$

Corollary 3 Let (X, σ) be a Markov shift. Suppose $U: X \rightarrow U(d)$ and $F: X \rightarrow C^{d}$ satisfy $F \circ \sigma=U \cdot F$ a.e. If U is a function of $n+1$ coordinates (i.e. $U(x)=U\left(x_{0} x_{1} \ldots x_{n}\right)$ then F is a function of n coordinates (i.e. $F(x)=F\left(x_{\mathrm{u}} J_{1} \ldots x_{n-1}\right)$), $n=1,2, \ldots$.

Proof Let o be the state partition of X, i.e., a consists of the cylinders a $[0]_{0}$, where i in su element of the state space of X. Then it is well known that σ is a gemorator for (X, σ). The result then follows from the previons proposition, since for Markov shifts

$$
\left(\bigvee_{i=0}^{\infty} T^{-i} \mathcal{A}(\alpha)\right) \cap\left(\bigvee_{i=-(n-1)}^{\infty} T^{i} \mathcal{A}(\alpha)\right)=\bigvee_{i=0}^{n-1} T^{-i} \mathcal{A}(\alpha)
$$

for $n=1,2, \ldots($ mee (2.41) of $[19])$.

Remarks

1. The ahove result gemeralises Proposition 3 of Parry [16].
2. Note that in the special case when U in a function of one coordinate then F in also a function of one coordinate. We would like to add that in this case, there is a wurh shorter proof of Corollary 3 which only uses Proposition 4. 3. By initating the proofs of the above rexilts, one ran also show that the andogue of Proposition 6 and Corollary 3 are also true for Markov shifts (X, σ) with umitary-valued functions U, V, F defined on X wuch that they matimy F or $\cdot V=U \cdot F$ ne. This result then generalises that of Adler ef al [1].

We now give two examplex to illuntrate how one could apply Corollary 3 th the renults olfained in the previoun nections. As promised, the first
*xample gives us an analogute of Kakutani's result for group exteusious of arlitrary Markov shifts with skewing function depending ouly on one roordinate.

Example 1 Let (X, σ) ber an ergodic Markov shift and let G be a compact group with a mapp $\phi: X \rightarrow G$ such that $\phi(x)=\phi\left(x_{0} x_{1}\right), \forall x=\left(\ldots, x_{-1}\right.$, $\left.s_{0}, s_{1}, \ldots\right) \in X$, i.e., ϕ is a function of two comrdinates. Furthernors, let $S: X \times G \rightarrow X \times G$ be the gronp exteusion of a with skewing function ϕ. Then ly combining Theorem 1 and Corollary 3, we obtain the following riteria for the argodicity of S :
> S is ergodic if and only if the only non-trivial solutions to the equation $F\left(x_{1}\right)=R\left(\phi\left(x_{0} x_{1}\right)\right) F\left(x_{0}\right)$ a.e. x, is when R is the trivial representation of the group G and F is constant a.e.

Observe that the function F is a function of one coordinate. In the counterexample to Kakutan's resinlt, the function F in the above functional equation may be chosen to be $F(x)=e^{2 \pi+x_{0} a n}$ for each reprenentation $R(z)=z^{n}$ of the unit circle K. In particular, this confirms the non ergodicity of σ. Note that the alowe criteria is also valicl for the case when ϕ in a function of only one coordinate. This then gives us the analogne of Kakutanis result for Markov shiftr (c.f. Prop. 3).

The following "xample is the analogur of the above criteria for homogeneous extensions.
Example 2 Let (X, σ) le an ergordic Markov shift and G be a compact group. Let H bee a closed sulggroup of G. Furthermore, let $S^{\prime}: X \times G / H \rightarrow$ $X \times G / H$ be the homogeneorsextension of σ with skewing function $\boldsymbol{\phi}: X \rightarrow$ G ifepeuding on two roordinates, i.e., $\phi(x)=\phi\left(x_{0} x_{1}\right)$. Then, by combining Theorem 5 and Corollary 3, we have:
S^{\prime} is ergodic if and only if for any non-trivial irreducible unitary representation R of G satiofying $b R(h)=b, \forall h \in H$, for some nan-zera $b \in C^{d}(d=$ degree of $R)$, the equation

$$
F\left(x_{1}\right)=R\left(\phi\left(x_{0} x_{1}\right)\right) F\left(x_{0}\right) \text { a.e. } x
$$

has no nan trivial measurable solutions $F: X \rightarrow C^{d}$ depending on one coordinate.

We can apply this criteria to the following situation. Suppose K is the unit rircle in the complex plame and H is the sulggroup $\left\{1, \omega, \ldots, \omega^{p-1}\right\}$, where ω is a primitive p th resot of unity. Furthermore, let $X=\prod_{-\infty}^{\infty}\{0,1\}$ be equipped with some prgolic Markov measure. Then, for irrational a, the homogenerous extension $S^{\prime}: X \times K / H \rightarrow X \times K / H$ where $S^{\prime}(x, z H)=\left(\sigma x, e^{\left.\left.z \pi i(x)-x_{0}\right) \alpha_{z} H\right) \text { is }}\right.$ not ergodic. To see this, let ibe the representation of K satinfying $(z)=z^{p}$, $\forall z \in K$. Theu $\mathfrak{z}(h)=1, \forall h \in H$. Moreover, the function $F: X \rightarrow C$, defined lyy $F(x)=e^{\text {d*roap }}$ watisfy

$$
F\left(r_{1}\right)=x\left(\phi\left(r_{0} r_{1}\right)\right) F\left(x_{0}\right) .
$$

Thas S^{\prime} is not ergodie by the above cinterin.

An a fiual rewark, we would like to add that, as far as Markov shifts are concerned, the condition for the associated group or homogeneous extensions (1) Ise* ergodic, wrak mixing, a K-automorphism or a Beruouli shift (i.e. existeuce of uof exjntence of nolutions to the relevant functional equations) is indelendent of the transition probalility measure (p, P) in the following sense: if Q is another stochastic matrix which is compatible with P (i.e. $P(i, j)=0 \Leftrightarrow Q(i, j)=0)$ then the same condition also bolds when the hase space X is endowed with the transition probability measure (q, Q) (for some umique prohability vector q). This is clear since the measures iudured by compatible stochastic matricen provide X with the snme ergodic propertion and nimee any solution (if it exists) to the relevant functioual "quation of a given extension with respect to one measure is also a solution to the functional equation of the same extension with respert to any other compatible measure.

References

[1] R. Adler, B. Kitchebs \& B. Marcus, Almost topological rlassification of finite to one furtor mapm between whifts of finite type, Ergod. Th. Ph Dynam. Sya. 5 (1985), 485 500.
[2] 1. F. Cornfeld, S. V. Fumin \& Ya. G. Sinai, Ergodic Theory, Spriuger Verlag (1982).
[3] M. Drnker, C. Grilleuberger \& K. Sigmund, Ergadic. Theory on Compact Spaces. Springer Lecture Notes in Math. 527 (1976).
[4] J. Diendonmé, Treatise on Analysia II. Acndemic Presis (1970).
[5] H.Furntenlerg, Strict ergodicity and transformations of the torns, Amer. J. Math 83 (1961), 573601.
[6] E. Hewitt \& K. Ross. Abstract Harmonic Analysia II, Springer Verlag (1970).
[7] R. Jomes \& W. Parry, Compact abelian gromp extensions of dynamirad system, 11. Compositio Mathematica 25 (1072), 135-147.
[8] S. Kalntani, Random ergodic theorem and Markoff processes with sta1, distrilution. Proc. Second Berkeley Sympos. on Prob. and Stat. (1950), 247261.
[9] J. W. Kanmeyer. A classification of the isometric extersions of a multidimensional Burnoulli shift, Ergod. Th. A Dynam. Sys. 12 (1992), 2G7282.
[10] H.B. Keynes \& D. Newton, Ergodic memores for non abelian compact group extensions, Compositio Mathematica 32 (1976), 53-70.
[11] H.B. Keyues \& D. Newtou, Ergodecity in (G, σ)-extensions, Lecture Noten in Maths. 819, Spriuger (1980).
[12] M. S. M. Noornin \& W. Parry, A Chebotarev Theorem for Finite Homogenoruts Exteusious of Shifts, Boletim Da Sociedade Brasileira De Matemática. Vol. 23, Ns. 12 (1902), 137-151.
[13] W. Party, Topics in Engodic Theory, C.U.P. Cambridge (1981).
[14] W. Party, Compart abeliny groupe extemions of diverete dyunmical sygtema, Z. für Wahrs. Geb. 13 (1969), 95-113.
[15] W. Pary, Engodic propertien of affine transformatione and flows on uilmamifolds. Amer. J. Math. 91 (1969), 757771.
[16] W. Parry. Eudomorphisws of Lebergue space III, Israel Jour. Math. 21 (1975), 167-172.
[17] W. Parry \& M. Pollicott. The Chelootarev theorem for Galsis coverings of Axiom A flows, Ergod. Th. \& Dynam. Sys 6 (1986), 133148.
[18] W. Parry \& M. Pollicott, Zeta functions aud the periodic orlit structure of Hyprrioclic Dyuaniss. Astérisque 187-188 (1990).
[19] W. Parry \& S. Tuncel, Classification prablems in ergodic theory. L.M.S. Lecture Notes 67 (1982), C.U.P.
[20] V. A. Rohlin, Lerturew on Ergorlic Theory, Russian Math. Surveys 22 (1967), 152
[21] D. 1. Rudolph, Classifying the isometric extensious of a Bernoulli shift, J. d'Analyse Mathematique 34 (1978), 36 -60.
[22] D. J. Rudulph, If a finite extension of a Bernoulli shift has no finite rutation fartors, then it is Bernoulli, Israel J. Math 30 (1978), 193-206.
[23] R. K. Thomas, Metric properties of transformations of G - spmess, Thans. Amer. Math. Soc. 160 (1071), 103-117.
[24] P. Walters. An introduction to ergodic theory, G.T.M. 79, Berlin, Springer (1981).
[25] R. J. Zinmer, Extensions of Ergorlic Group Artions, IMinois J. Math 20 (1976), 373-409.

Chapter 3 A Note On The Rate Of Mixing Of Two-Dimensional Markov Shifts

1 Motivation

A standard result in the ergodic theory of one -dimensional Markov shift is ns follows: Let (T, X, \mathcal{C}, μ) be a (one-dimensional) Markov shift where the Markov metsure is given by some transition probability (p, P). Suppose A and B are arlitrary cylinder sets in \mathcal{C}. Then the sequence $\left(\mu\left(A \cap T^{-n} B\right)\right)_{n \geq 0}$ converges to $\mu(A) \mu(B)$ at an exponential rate as n tends to infinity, when the matrix P is apreriodic (i.e., there exists some integer $N>0$ such that all the entries of P^{N} are strictly positive). We remark that this result follows from the crucied matrix fact that when P is aperiodic, then the sequence ($\left.P^{\prime \prime}(i, j)\right)_{n \geq 0}$ converges exponentially fast to $p(j)$ as n tends to infinity, for all i, j. Note that an immediate corollary to the above result is that T is strong mixing.

Our purpose in this short uote is to generalize the aforementioned results to the case of a two dimeusional Markov shift. Observe that, the dymamichl system in question consists of two commuting (invertible) measurepreserving transformations acting on the measurable space of functions from Z^{2} to some fixed finite set together with the Markov measure. Here the Markov messure is defined by two commuting stochastic matrices P and Q such that they share a rommon stationary probability vector p (see later for (letaib). Working amalogonsly with the one-dimensional case, we need to look at the rate of convergence of the sequence ($\left.P^{\prime \prime} Q^{\prime \prime}\right)(i, j)_{m, n \geqslant 0}$ to $p(j)$ as m, u tends to intinity, for all i, j. We show thict if either P or Q is aperiodic then the convergence rate of the aforementioned sequence is exponentially fast. This in turn implien the exponential convergence of meanures on rect-
angle sets for the correspouding two dinensioual Markov shift (nex Thetrem 1). We indinate ly an example what could happen if we relax the aperiodicity asmmption on rither P or Q. An immediate corollary to the above is that the two dimensional Markov shift is strong-mixing.

2 Definitions and Results

Let Y be the finite set $\{1,2, \ldots, k\}$ equipped with the σ-algebra $2^{\boldsymbol{V}}$. The meanurable sjpare $\left(\mathcal{F}^{-\mathbf{Z}^{i}}, B\right)$ is defined to lue the space of all functions $\boldsymbol{r}: \mathbb{Z}^{2} \rightarrow Y$ endowed with the product σ-algelira B. Recall that this meaus, B is the smallent a algelira such that the collection of all projection waps $\pi_{F}: \boldsymbol{Y}^{\mathbf{Z}^{i}} \rightarrow$
 Of course, the set Y^{F} here in equipped with the product σ elgelura $\prod_{c \in F} 2^{V}$. Given $x \in Y^{-Z^{2}}$, then we shall write x_{c} for the value of the function x at $c \in \mathbb{Z}^{2}$

We shall he interested in the following subsets of $Y^{Z^{i}}$. Firstly, let F he the set $\left\{c=\left(r_{1}, r_{2}\right) \in \mathcal{Z}^{2}: a_{t} \leq c_{f} \leq a_{t}+u_{4} t=1,2\right\}$ for some given $\mathrm{a}=\left(a_{1}, a_{2}\right) \in \mathbf{z}^{2}, \mathbf{u}=\left(u_{1}, u_{2}\right) \in\left(z^{+}\right)^{2}$. Then, an (elementary) rectangle $R_{a, \text { a }}$ is any subset of $\boldsymbol{Y}^{\mathbf{Z}^{2}}$ which takes the form

$$
A_{\mathrm{a}, \mathrm{u}}=\left\{r \in Y^{-Z^{2}}: f_{\left(c_{1}, c_{2}\right)}=i_{\left(r_{1}, c_{2}\right)}, \forall a_{t} \leq r_{t} \leq a_{i}+u_{i}, t=1,2\right\}
$$

for some fix elements ic of Y, for each $c \in F$. It is clear that such subsets are measuralile. Moreover, it is uot difficult to see that the collection of such rectangles generates the product σ algelira B.

We shall now move on to the notion of a Markov measure on (Y^{Z}, B). For this, ensume that we are given two $k \times k$ matrices P and Q satisfying the following three properties:

1. P, Q are ntochantic matrices surh that $P Q=Q P$.
2. There pxistn n prolbability vector $p=(p(1), \ldots, p(k))$ such that $p P=p$ and $p Q=p$.
3. If P^{0}, Q^{0} deuntes the $0-1$ matrices which age compatible with P and Q renpertively, then we require $P^{0} Q^{n}=Q^{0} P^{0}$ and $P^{0} Q^{0}$ is alnos an 0-1 watrix.

Let
l_{f} н yertangle. for some $\mathrm{a}=\left(\boldsymbol{a}_{1}, a_{2}\right) \in \mathbf{Z}^{2}$ and $u=\left(u_{1}, u_{2}\right) \in\left(\mathbf{Z}^{+}\right)^{2}$. We shall call $R_{\text {au }}$ an allowable rectangle if, in addition,

$$
P^{\prime \prime}\left(x_{\left(c_{1}, c_{2}\right)}, x_{\left(c_{1}+1, c_{2}\right)}\right)=Q^{2}\left(x_{\left(c_{1}, c_{7}\right)}, x_{\left(c_{1}, c_{2}+1\right)}\right)=1
$$

for all $s \in R_{\text {a.u }}$ nud $a_{t} \leq c_{t} \leq a_{t}+u_{i}-1, t=1,2$. We are now ready to define the Markov merasure m ou ($Y^{Z^{2}}, B$) associated with the watrices P aud 4 . Let $R_{a, u}=\left\{r \in Y^{Z^{2}}: x_{\left(e_{1}, c_{1}\right)}=i_{\left(e_{1}, c_{1}\right)}, \forall a_{i} \leq c_{t} \leq a_{i}+u_{t}, t=1,2\right\}$ be an allowalle rectangle. Then the measure of $R_{\text {ase }}$ is taken to be

$$
\begin{array}{r}
m\left(R_{\mathrm{a}, u}\right)=p\left(i_{\left(a_{1}, a_{2}\right)}\right) \prod_{k=0}^{u_{1}-1} P\left(i_{\left(a_{1}+e, a_{3}\right)}, i_{\left(a_{1}+e+1, a_{2}\right)}\right) \times \\
\prod_{f=0}^{w} Q\left(i_{\left(a_{1}+m_{1}, a_{2}+f\right)}, i_{\left(a_{1}+w_{1}, a_{2}+f+1\right)}\right)
\end{array}
$$

For non-allowablie rertangles R, we take $m(R)$ to be zero. By using the Kolnogorov cousintency theorem (see, for e.g., Parthasarathy [3]), m extends unicurly to a probialibity measine on the proaluct a-algelira B. In analogy with the one dimensional rase, we shall call this measure on the Markov measure defiued by the matrices P and Q.

We shall define the horizontal shift $\sigma: Y^{\mathbf{Z}^{2}} \rightarrow Y^{\mathbf{Z}^{2}}$ and the vertical shift $\tau: Y^{\mathbf{Z}^{2}} \rightarrow \boldsymbol{Y}^{\mathbf{Z}^{2}}$ by

$$
(\sigma x)_{\left(c_{1}, c_{2}\right)}=x_{\left(c_{1}+1, c_{2}\right)} \text { and }(r x)_{\left(c_{1}, c_{1}\right)}=x_{\left(c_{1}, x_{2}+1\right)}
$$

for all $r \in Y^{Z^{2}}$ and $\left(c_{1}, c_{2}\right) \in \mathbf{Z}^{2}$. Then, it is rlear that σ and τ commintes. Moreover, since each σ had 9 preserven the measure in on the algeIsta \mathcal{A} of finite disjoint umion of rectangles then they are measure preserving on the smallest n-algelya routaining \mathcal{A}, which is, of course, the product a molgebra B. Thus a and τ are two commuting measure-preserving automorphisms acting on $\left(\boldsymbol{Y}^{\mathbf{Z}^{2}}, \mathcal{B}, \boldsymbol{m}\right)$. We shall call the resulting (invertible) nu'sure-preserving dynamical system ($\left.\boldsymbol{Y}^{\mathbf{Z}^{2}}, \mathcal{B}, m, \sigma, \tau\right)$ a (two-dimensional) Markiv silift with trankitiun proloalility (p, P, Q).

Remarks

1. By working of rertangle sets, it ran be shown that the aswumption that
$P^{0} Q^{0}$ is also a $0-1$ matrix is needed to cherk consistency of the Markov measure (c.f. Kolusugoroy's theorem).
2. A second implication of the $0-1$ nssumption on the matrix $P^{0} \boldsymbol{Q}^{0}$ is that for allowable rectaugles $R_{\text {a.u }}, m\left(R_{\text {a.u }}\right)$ is also given by

$$
\begin{array}{r}
m\left(R_{\mathrm{a}, \mathrm{u}}\right)=p\left(i_{\left(a_{1}, a_{2}\right)}\right) \prod_{\mathrm{s}^{\prime}=0}^{m-1} P\left(i_{\left(a_{1}, w_{2}+e^{\prime}\right)}, i_{\left(a_{1}, a_{2}+e^{\prime}+1\right)}\right) \times \\
\prod_{f^{\prime}=0}^{m-1} Q\left(i_{\left.\left(a_{1}+f_{i}^{\prime}, a_{2}+w_{2}\right), \mathbf{1}_{\left(a_{1}+f^{\prime}+1, a_{2}+\alpha_{2}\right)}\right)}\right.
\end{array}
$$

3. Suppose we give the set Y the discrete topology. Then the Markov measure m in supported by the suloslift of finite type

$$
X=\left\{x \in \mathcal{Y}^{Z^{2}}: P^{0}\left(x_{(e, f)}, x_{(e+1, f)}\right)=Q^{0}\left(x_{(e, f)}, x_{(e, f+1)}\right)=1, \forall e, f \in \mathbf{Z}\right\}
$$

when we assume that the statiouary probability vector p is a strictly positive vertor. Note that the fact that X is noy-empty follows from the commuting assumption on P^{0} and Q^{0}.

Using well known methorls from the theory of one-dimensional Markoy shifts. we prove:

Lemma 1 Suppose P and Q are two commtsting $k \times k$-stachastic matrices such that there exists some probability vector $p=(p(1), \ldots, p(k))$ satisfying $p P=p=p Q$. If either P or Q is aperiodic then the sequence ($\left.P^{m} Q^{n}(i, j)\right)_{m, n>0}$ converges to $p(j)$ at an exponential rete as m, n tends to infinity. for all $i, j=1, \ldots, k$, i.e., there exists constants, $C>0,0 \leq \alpha, \beta \leq 1$ with a/t <1 such that

$$
\left|P^{\prime \prime} Q^{\prime \prime}(i, j)-P(j)\right| \leq C \sigma^{\prime \prime} / \beta^{\prime \prime} \quad \text { for all }, m, n \geq 0
$$

and for all $i, j=1, \ldots, k$.
Proof Withomt loss on generality, we shall assume that P is aperiodic. Thns by the Perron-Frobenius theorem (see, for instance, Seneta [4]), the dominant rigenvalue 1 is a simple figenvalue for P. Now, let V be the mulspace $\left\{\mathrm{n} \in \mathrm{C}^{*}:<\boldsymbol{p}, \mathrm{v}>=0\right.$ \}. (Here $<,>$ denoten the standard inner profluct in C^{*}). Then, it in enny to mee that P leaven V invariant, i.e., $P V \subset V$.

Mormerer, if we denote the vector $(1,1, \ldots, 1)$ ly 1 , then each ar $\in \mathbb{C}^{*}$ can be uniquely written as

$$
w^{\prime}=u^{\prime}-<p, w^{\prime}>\cdot \mathbf{1}+<p, w>\cdot \mathbf{1}
$$

surl that $w-\left\langle p, w^{\prime}\right\rangle-1 \in V$ and $\langle p, w\rangle-1 \in U$, where U is the one dimensional subspace generated by the vector 1. Thin we have,

$$
c^{k}=V^{v} \oplus U
$$

Hencr, by virtur of the simplicity of the rigenvalue 1 of P, we deduce that the spectral radins of P_{v} is strictly less than 1 . The spectral radius formula then inplies there exists some $0 \leq \alpha<1$ such that

$$
\left\|P_{l_{v}^{\prime m}}^{\prime m}\right\| \leq C_{1} o^{m}
$$

for all $m \geq 0$ aud some coustant $C_{1} \geq 0$. Now, if Q also has 1 as a simple eigenvalue then using the same argument as above, giver us

$$
\left\|Q_{i v}^{*}\right\| \leq C_{3} \beta^{n}
$$

for all $n \geq 0$ and mome constants $0 \leq \theta<1, C_{3}>0$. Thus, in this care, we have

$$
\left\|P_{l_{v}}^{m} Q_{l_{v}^{\prime}}^{n}\right\| \leq C a^{\prime n} \beta^{n}
$$

for all $m, n \geq 0$ nud some ronatant $C>0$.
On the other hand. when the eigenvalue 1 of Q is no longer simple we may lave that the spectral radins of $Q_{1 v}$ equals 1 . In this case, it suffices to note that Q_{i}^{\prime} is bounded so that

$$
\left\|Q_{v}^{n}\right\| \leq C_{3}
$$

for all $n \geq 0$ and for some constant $C_{3}>0$. This in turn implies that

$$
\left\|P_{V_{v}^{\prime n}}^{\prime n} Q_{V}^{n}\right\| \leq C^{\prime} n^{\prime n}
$$

for all $m, n \geq 0$, and some constant $C^{\prime}>0$. Hence, in either case, we have

$$
\left\|P_{\|_{v}^{\prime m}} Q_{I_{v}}^{\prime \prime}\right\| \leq C a^{m} \beta^{n} \quad \forall m, n \geq 0
$$

and for some constants $C>0,0 \leq \alpha, \beta \leq 1$ with $a \beta<1$. From this last inequality we deduce that

$$
\left\|P^{m} Q^{n} v\right\| \leq C \sigma^{m} \beta^{n}\|v\| \quad \forall m, n \geq 0, \forall v \in V
$$

Rerall that given $u^{\prime} \in \mathbb{C}^{k}$. then $w^{\prime}-<p, w>1 \in V$. Thus, since $P^{m} Q^{n}$ is stor-Lastic for all $m, n \geq 0$, we have

$$
\left\|P^{\prime \prime \prime} Q^{\prime \prime} u^{\prime}-<p, w^{\prime}>1\right\| \leq C \alpha^{m} \beta^{n}\left\|w-<p, w^{\prime}>\cdot \mathbf{1}\right\|
$$

for all $m, n \geq 0$ and all $w \in \mathbb{C}^{\star}$. Furthermore, by taking $w^{\prime}=(0, \ldots, 0,1,0, \ldots, 0)$, the j-th uuit vector, it is easy to seee that

$$
\left|P^{\prime n} Q^{\prime \prime}(i, j)-p(j)\right| \leq\left\|P^{m n} Q^{\prime \prime \prime} w^{\prime}-<p, w>1\right\|
$$

for all $m, n \geq 0$ und $i, j=1,2, \ldots, k$. Thus

$$
\left|P^{m} Q^{m}(i, j)-p(j)\right| \leq C^{\prime} a^{m} j^{n} \quad \forall m, n \geq 0
$$

and for all $i, j=1,2 \ldots, k$ where $C^{\prime}=C\|w-<p, w>\cdot 1\|>0$. And thin gives us the required rexilt.

OHserve that the esmential ingredient in the above proof in the fart that either P or Q has a simple dominant eigenvalue 1 and the rest of the spectrum having modulus strictly less than 1 . Of course, a similar observation also holds in the case of a oue dimeusioual Markov shift. We will see later that this assmmptiou ia not necressary.

The following example of matrices illustrates what could go wrong if the hypothesis in the nhove lemma is relaxed. We remarle that the matrices we are about to give are just the 'stochastic version' of an example due to Markley and Panl [2], which was used by them to study nome topological dyunmical questions with regards to higher-dimensional sulshifts of finite type.

Example Let P and Q be the matrices

$$
\left(\begin{array}{llll}
\frac{1}{4} & \frac{3}{4} & 0 & 0 \\
\frac{3}{4} & \frac{1}{4} & 0 & 0 \\
0 & 0 & \frac{1}{4} & \frac{3}{4} \\
0 & 0 & \frac{3}{4} & \frac{1}{4}
\end{array}\right) \text { and }\left(\begin{array}{cccc}
\frac{1}{4} & 0 & 0 & \frac{3}{4} \\
0 & \frac{1}{4} & \frac{3}{4} & 0 \\
0 & \frac{3}{4} & \frac{1}{4} & 0 \\
\frac{3}{4} & 0 & 0 & \frac{1}{4}
\end{array}\right) \quad \text { respertively }
$$

The'n. it in efasy to nee that wither P nor Q is aperiodic and that $P Q=Q P$ with $p=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$ natisfying $p P=p=p Q$. Observe that since $P Q$ is aperiodic then surh a p is unique. This follows from the Perron-Frobsenius theorrem. Also, slonerve that the correxpouding $0-1$ matrix P^{0} and Q^{0} rommutess
and that $P^{00} Q^{0}$ in a 0-1 matrix. One can easily check that the chararteristir polynomials of the matrices $P, Q, P Q$ ate given by
$C_{F}(\lambda)=C_{Q}(\lambda)=(1-\lambda)^{2}\left(-\frac{1}{2}-\lambda\right)^{2}$ and $C_{P Q}(\lambda)=(1-\lambda)\left(-\frac{1}{2}-\lambda\right)^{2}\left(\frac{1}{4}-\lambda\right)$ resipectively and that pach of the matrices are diagoualizable. Recall that our aim is to lools at the rate of couvergence of the sequeuce ($\left.P^{m} Q^{n}(i, j)\right)_{m n \geq 0}$ to $1 / 4$. for earh $i, j=1.2,3,4$. Note that in this situation, we can uo louger use the method an in the proof of Lemma 1 for the eigenvalue 1 of P and Q is mot simple. Nevertheless, in this sperific example we can rall upon the so called spectral flecomposition method to look at the rate of convergence of the relevant sequences. For this, let R be the (nou-singular) matrix

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1
\end{array}\right)
$$

Then

$$
P=R \operatorname{diag}\left(1,1,-\frac{1}{2},-\frac{1}{2}\right) R^{-1} \text { and } Q=R \operatorname{diag}\left(1,-\frac{1}{2}, 1,-\frac{1}{2}\right) R^{-1}
$$

so that

$$
P Q=R \operatorname{diag}\left(1,-\frac{1}{2},-\frac{1}{2}, \frac{1}{4}\right) R^{-1}
$$

Now, let $E_{1}, E_{2}, E_{3}, E_{4}$ be the matrices

$$
\begin{gathered}
R \operatorname{diag}(1,0,0,0) R^{-1}, R \operatorname{ling}(0,1,0,0) R^{-1}, R \operatorname{diag}(0,0,1,0) R^{-1} \\
\text { aud } R \operatorname{diag}(0,0,0,1) R^{-1}
\end{gathered}
$$

respectively. In particuler,

$$
\begin{aligned}
E_{1} & =\frac{1}{4}\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right), E_{2}=\frac{1}{4}\left(\begin{array}{cccc}
1 & 1 & -1 & -1 \\
1 & 1 & -1 & -1 \\
-1 & -1 & 1 & 1 \\
-1 & -1 & 1 & 1
\end{array}\right) \\
E_{3} & =\frac{1}{4}\left(\begin{array}{cccc}
1 & -1 & -1 & 1 \\
-1 & 1 & 1 & -1 \\
-1 & 1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right), E_{4}=\frac{1}{4}\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1
\end{array}\right) .
\end{aligned}
$$

More importuntly, we raw write

$$
P=E_{1}+E_{2}+\left(-\frac{1}{2}\right) E_{3}+\left(-\frac{1}{2}\right) E_{4}
$$

musl

$$
Q=E_{1}+\left(-\frac{1}{2}\right) E_{2}+E_{3}+\left(-\frac{1}{2}\right) E_{4} .
$$

Furthermore, siuce $E_{i} E_{j}=0$ when $i \neq j$ and $E_{0}^{2}=E_{1}$, we deduce that

$$
P^{m}=E_{1}+E_{2}+\left(-\frac{1}{2}\right)^{m} E_{3}+\left(-\frac{1}{2}\right)^{m} E_{4}
$$

aud

$$
Q^{n}=E_{1}+\left(-\frac{1}{2}\right)^{\prime \prime} E_{2}+E_{3}+\left(-\frac{1}{2}\right)^{n} E_{4}
$$

sor that

$$
P^{\prime n} Q^{\prime \prime}=E_{1}+\left(-\frac{1}{2}\right)^{n} E_{2}+\left(-\frac{1}{2}\right)^{m} E_{3}+\left(-\frac{1}{2}\right)^{m+n} E_{4} \quad \forall m, n \geq 0
$$

Thus, the (i, j)th-entry of $P^{\prime n} Q^{n}$ setisfy

$$
p^{3 n} Q^{\prime \prime}(i, j)-\frac{1}{4}=\left(-\frac{1}{2}\right)^{n} E_{2}(i, j)+\left(-\frac{1}{2}\right)^{m} E_{3}(i, j)+\left(-\frac{1}{2}\right)^{m+n} E_{4}(i, j)
$$

for ehch $i, j=1,2,3,4$. It is clear that the sequence arisiug from the right hand side of the above equality does not converge to zero at an exponentiad rate. Heuce, this implies neither does the sequence ($\left.P^{m m} Q^{\prime \prime}(i, j)-\frac{1}{4}\right)_{\text {n,n }}>0$ for all $i, j=1,2,3,4$.

Remarka

1. Rerall that earlier on we mentioned that the validity of Lemma 1 relies on the' simplicity of the dominant rigenvalue 1 of P or Q. This assumption is not noeressary since in the rase whate all the non zero entries of P and Q in the mbove "xample taken on the value $1 / 2$, then $P^{\prime \prime} Q^{\prime \prime}(i, j)=1 / 4$ for all i. $j=1,2,3,4$ and for all $m, n>0$. Moreover, since the stationary probability vector p is given by $(1 / 4,1 / 4,1 / 4,1 / 4)$ then the sequence $\left(P^{\prime n} Q^{n}(j, j)\right)_{m, n>0}$ convergex to $1 / 4$ at an exponential rate trivially, for all i, j. Here, the eigenvalue 1 of both P nud Q have multiplicity 2 and the rent of the eigenvalues are zerco.
2. Observe that the above method of looking at the spertral decumposition of two diagoualizable comumiting watricen in order to find the rate of convergence of the rele'vant mequeucen in quite general. Thin relien on the fact
that given any two commuting matrices P and Q then it is always possible to simultauconsly "diagoualize" them, i.e.. there exists a matrix R such that

$$
R^{-1} P R \text { und } R^{-1} Q R
$$

hre the Iordan wanoural forme of P and Q respectively (new, for e.g., Jacolbanil [1]).

The following theorem is the main result of this note.
Thearem 1 Let $\left(Y^{\cdot Z^{2}}, B, m, \sigma, T\right)$ be a Markov shift with transition probability (p, P, Q). Suppase either P or Q is aperodic. Then given any rectangles A. $B \in \mathcal{B}$. thene exists an integer $N>0$ and constanta $C>0,0 \leq \alpha, \beta \leq 1$ with ail < 1 suck that

$$
\left|m\left(A \cap \sigma^{-m} \tau^{-m} B\right)-m(A) m(B)\right| \leq C a^{m} \beta^{n}
$$

for all integers $m, n \geq N$.
Proof Let $A, B \in B$ be two arlitrary rectangles. Thew, by definition, there rints $a=\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right) \in Z^{2}, u=\left(w_{1}, u_{2}\right), v=\left(v_{1}, v_{2}\right) \in\left(Z^{+}\right)^{2}$ such that $A=R_{\mathrm{a}, \mathrm{a}}$ and $B=R_{\mathrm{b}, \mathrm{y}}$ where

$$
R_{a, u}=\left\{r \in \mathfrak{r}^{-z^{2}}: \delta_{\left(e_{1}, w_{2}\right)}=z_{\left(r_{1}, c_{2}\right)}, \forall a_{1} \leq c_{1} \leq a_{t}+u_{1}, t=1,2\right\}
$$

rud

$$
R_{\mathrm{b}, v}=\left\{x \in Y^{Z^{2}}: x_{\left(d_{1}, d_{2}\right)}=i_{\left(d_{1}, d_{2}\right)}^{\prime}, \forall h_{t} \leq d_{t} \leq b_{1}+v_{1}, t=1,2\right\}
$$

Hruce

$$
\begin{gathered}
A \cap a^{-n} \tau^{-n} B=\left\{x \in Y^{2}: x_{\left(c_{1}, c_{2}\right)}=i_{\left(c_{1}, c_{2}\right)}, \forall a_{t} \leq c_{t} \leq a_{t}+u_{t}\right. \\
\text { and } \left.\quad\left(d_{1}+m, d_{2}+m\right)=i_{\left(d_{1}, d_{2}\right)}^{\prime}, \forall b_{1} \leq d_{i} \leq b_{t}+v_{1}, t=1,2\right\}
\end{gathered}
$$

Now, let $m>a_{1}+u_{1}-b_{1}$ and $n>a_{2}+u_{1}-b_{2}$. Then, in partirular. $A \cap$ $a^{-1 n} \tau^{-8} B$ is a finite disjoint umon of elementary rectangles $R_{1}, R_{2}, \ldots, R_{k}$, nay. If either A or B in nou-allowahle, then earh of the R_{1} 's are uon allowable. Thus, in thin raxp, we have $m\left(A \cap \sigma^{-m} T^{-n} B\right)=\sum_{i=1}^{k} m\left(R_{4}\right)=0$. Moreover, niuce $m(A) m(B)$ in alse zero, then the reguired result bolds trivially in this rfins. We are uow left with the rase when the elementary rectanglen A and B
are both allowable. Then, by the assumption $P^{0} Q^{0}$ is also a 0-1 matrix (few remarle at the lagenning of this section), it is straight forward (but tedious) to cherle that

$$
\begin{aligned}
m(A \cap & \left.\sigma^{-m} \tau^{-n} B\right)=p\left(i_{\left(a_{1}, a_{2}\right)}\right) \prod_{e=0}^{u_{1}-1} P\left(i_{\left(a_{1}+e, a_{2}\right)}, i_{\left(a_{1}+e+1, a_{2}\right)}\right) \times \\
& \prod_{f=0}^{u_{2}-1} Q\left(i_{\left(a_{1}+u_{1}, a_{2}+f\right)}, i_{\left(a_{1}+u_{1}, a_{2}+f+1\right)}\right) P^{m^{\prime}} Q^{n^{\prime}}\left(i_{\left(a_{1}+u_{1}, a_{2}+u_{2}\right)}, i_{\left(b_{1}, b_{2}\right)}^{\prime}\right) \\
& \prod_{n=i}^{n=1} P\left(i_{\left(b_{n+v}^{\prime}, b_{2}\right)}, i_{\left(b_{1}+e+1, b_{2}\right)}^{\prime}\right) \prod_{j=0}^{n-1} Q\left(i_{\left.\left(t_{1}+v_{1}, b_{2}+1\right), i_{\left(b_{1}+v_{1}, b_{2}+f+1\right)}^{\prime}\right)}\right.
\end{aligned}
$$

where $m^{\prime}=b_{1}+m-\left(a_{1}+u_{1}\right)>0, n^{\prime}=b_{2}+n-\left(a_{2}+z_{2}\right)>0$. Observe that sinco une of P or Q is aperiodic, then the stationary probability vector p in strictly positive. Heucr

$$
m\left(A \cap \sigma^{-m} \tau^{-n} B\right)=\frac{m(A) m(B)}{p\left(v_{\left(b_{1}, b_{2}\right)}\right)} P^{n^{\prime}} Q^{n^{\prime}}\left(i_{\left(a_{1}+w_{1}, a_{2}+m_{2}\right), i^{\prime}\left(b_{1}, b_{2}\right)}\right) .
$$

Sothint
$\left|\frac{m\left(A \cap \sigma^{-m} \tau^{-n} B\right)}{m(A) m(B)}-1\right|=\frac{1}{p\left(i_{\left(b_{1} b_{1}\right)}^{b_{1}}\right)}\left|P^{m^{\prime}} Q^{n^{\prime}}\left(i_{\left(a_{1}+a_{1}, A_{2}+u_{2}\right)}, \dot{B}_{\left(b_{1}, b_{2}\right)}^{\prime}\right)-p\left(\dot{z}_{\left(b_{1}, b_{2}\right)}^{\prime}\right)\right|$
Thus, ly combining the previous line and Lemma 1 , we gather that there exints: $0 \leq \alpha, \beta \leq 1$ with $\alpha \beta<1$ such that

$$
\left|m\left(A \cap \sigma^{-m} \tau^{-m} B\right)-m(A) m(B)\right| \leq C \alpha^{m^{\prime}} \dot{\beta}^{m^{\prime}}
$$

for all $m^{\prime}, n^{\prime}>0$ and for some constant $C>0$. Finally, by taking $N=$ $\max \left(\left(a_{1}+u_{1}\right)-b_{1},\left(a_{2}+u_{2}\right)-b_{2}, 1\right)$, we deduce that

$$
\left|m\left(A \cap \sigma^{-m} \tau^{-n} B\right)-m(A) m(B)\right| \leq C^{\prime} a^{m} \beta^{n}
$$

for all $m, n \geq N$ aud some comstant $C^{\prime}>0$. This theu gives us the required remult.

Let T_{1}, T_{a} lie two commuting measure preserving traunformations arting on the probability npare (Z, \mathcal{D}, ν). Then the resulting dynamical system is said to be strong mixing if

$$
\lim _{\infty} m\left(A \cap T_{1}^{-m} T_{2}^{-n} B\right)=m(A) m(B)
$$

for all A. $B \in D$.
Recall that for Markov shifts, clisjoint unions of rectangles forms an algebra that gencrates the produrt σ algebra. Hence, by using a standard approximation theorem (ser, for e.g., Whalters [5]), we have an immediate corollary to Theorem 1.

Carollary 1 Lft $\left(Y^{-Z^{3}}, B, m, \sigma, r\right)$ be a Markov shift with transition probability (p, P, Q). If either P or Q sapernodic then the Markov shift is strongmaring.

Oloserve that if P, say, is aperiodic and Q is the identity matrix then we can identify the two dimensional Markov shift with the one dimensional Markov shift with transition probability (p, P). Thus we can retrieve the well known mixing result for one-dimensional Markov shifts from the alove rorollery.

References

[1] N. Jacolbou, Lectures in Abstract Algebra, Vol. II, (Van Nostrand, 1953).
[2] N. G. Markley \& M. E. Paul. Matrix subshifts for $\mathbf{Z}^{\boldsymbol{\nu}}$-symbolic dyuamics, Proc. Londan Math. Soc. 43 (1981), 251-272.
[3] K. L. Parthasarathy, Probability Measures on Metric Spaces, (Academir Prewn, New York, 1967).
[4] E. Seneta, Non-negative Matrices and Markoy Chains, (Springer arries in Statistics, 2ud ed., 1981)
[5] P. Walters, An Introduction ta Ergodic Theory, G.T.M. 79, (Springer, Barlin 1981)

[^0]: 'Finanrially wupporied by dPA/UKM and on atudy leave from Fakulti Sains Matematik dan Komputer, Iniveruiti Krbangman Malaynin.

[^1]: \$ Finaucially supported by L゙uiversiti Kehangsann Malaysia

