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Impaired decision-making is a core problem in several psychiatric disorders includ-
ing attention-deficit/hyperactivity disorder, schizophrenia, obsessive–compulsive disorder,
mania, drug addiction, eating disorders, and substance abuse as well as in chronic pain.
To ensure progress in the understanding of the neuropathophysiology of these disorders,
animal models with good construct and predictive validity are indispensable. Many human
studies aimed at measuring decision-making capacities use the Iowa gambling task (IGT),
a task designed to model everyday life choices through a conflict between immediate
gratification and long-term outcomes. Recently, new rodent models based on the same
principle have been developed to investigate the neurobiological mechanisms underlying
IGT-like decision-making on behavioral, neural, and pharmacological levels. The compara-
tive strengths, as well as the similarities and differences between these paradigms are
discussed. The contribution of these models to elucidate the neurobehavioral factors that
lead to poor decision-making and to the development of better treatments for psychiatric
illness is considered, along with important future directions and potential limitations.

Keywords: Iowa gambling task, animal model, validity, dopamine, serotonin, neurobiology

INTRODUCTION
Decision-making plays a pivotal role in daily life. Impairment in
this process, as observed in several psychiatric disorders, results in
an inability to make profitable long-term decisions that incorpo-
rate expectations of future outcomes (for review, see Dunn et al.,
2006). Impaired decision-making is recognized as a core prob-
lem in disorders like substance abuse (Grant et al., 2000; Bechara,
2001; Bechara and Damasio, 2002; Bechara et al., 2002; Ernst et al.,
2003; Bechara and Martin, 2004; Whitlow et al., 2004; Dom et al.,
2006; Hanson et al., 2008), pathological gambling (Cavedini et al.,
2002b; Brand et al., 2005; Goudriaan et al., 2005, 2006), schiz-
ophrenia (Bark et al., 2005; Shurman et al., 2005; Kester et al.,
2006; Lee et al., 2007b; Sevy et al., 2007), obsessive–compulsive
disorder (OCD; Lawrence et al., 2006; da Rocha et al., 2008; Cave-
dini et al., 2010; Starcke et al., 2010), eating disorders (Cavedini
et al., 2004; Tchanturia et al., 2007; Liao et al., 2009; Brogan et al.,
2010), attention-deficit hyperactivity disorder (ADHD; Toplak
et al., 2005; Garon et al., 2006; Malloy-Diniz et al., 2007; Luman
et al., 2008) chronic pain (Apkarian et al., 2004; Verdejo-García
et al., 2009), and Parkinson’s disease (Brand et al., 2004). Therefore,
understanding the mechanisms underlying poor decision-making
is key to successful treatment of neurological and psychiatric
disorders. This is why decision-making is studied intensively by
disciplines ranging from neuroscience, cognitive and social psy-
chology, to experimental and behavioral economics (Kahneman

and Tversky, 1979) leading to the recent interdisciplinary field
of neuroeconomics that combines all these disciplines (Glimcher
et al., 2009).

The Iowa gambling task (IGT) is the most commonly used
task to assess decision-making performance in a clinical setting
(Bechara et al., 1994, 1999). The IGT is particularly interest-
ing because it mimics the complexity of the choices that we are
confronted with in everyday life. Its design incorporates the unpre-
dictability of the consequences of a choice, the need to weigh short-
and long-term gains and losses, and the necessity to exert behav-
ioral control to maximize gains in the long-term. Successful per-
formance requires the integration of several executive functions:
individuals must demonstrate flexibility in planning to account
for various outcomes, constantly monitor incoming informa-
tion, evaluate the risk–reward ratio for various decision-making
options, and refrain from choosing the options that are immedi-
ately more rewarding. For these reasons, successful performance
requires the integration of several executive functions. The IGT
was originally developed to assess the specific cognitive impair-
ments of prefrontal cortex-damaged individuals (Bechara et al.,
1994), but impaired performance has subsequently been observed
following damage to other brain regions such as the amygdala,
insula, and more controversially, the dorsolateral prefrontal cortex
(dlPFC) (Bechara et al., 1998, 1999; Manes et al., 2002; Clark et al.,
2003; Fellows and Farah, 2005), as well as in a range of psychiatric

www.frontiersin.org October 2011 | Volume 5 | Article 109 | 1

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Decision_Neuroscience/10.3389/fnins.2011.00109/abstract
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=33761&d=1&sname=LeonieDe_Visser&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=35489&d=1&sname=JudithHomberg&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=34566&d=1&sname=FionaZeeb&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=28415&d=2&sname=MarionRivalan&name=Medicine
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=24680&d=1&sname=VascoGalhardo&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=5795&d=1&sname=Fran�oiseDellu_Hagedorn&name=Science
mailto:l.devisser-10@umcutrecht.nl
http://www.frontiersin.org
http://www.frontiersin.org/Decision_Neuroscience/archive


de Visser et al. Rodent models of the Iowa gambling task

populations (see above). Several (psychiatric) conditions induce
various kinds of deficits in the IGT, like disadvantageous deck pref-
erence (schizophrenia, OCD, pathological gambling, substance
abusing individuals, psychopathic individuals, ADHD, chronic
pain) with preference for infrequent punishments (ADHD, schizo-
phrenia); no preference [anxiety, (Miu et al., 2008; de Visser et al.,
2010)]; slower learning (mania, substance-dependent individu-
als) or deficits in reversal learning (schizophrenia; for review, see
Dunn et al., 2006). The effects of genetic polymorphisms, phar-
macological treatments, as well as functional neuroimaging data,
have significantly expanded our knowledge of the neural sub-
strates underlying decision-making, and how their functions are
compromised in individuals with decision-making deficits.

Interest is growing in the development of rodent models of
decision-making for several practical reasons (see also Potenza,
2009). First, such models are indispensable for the dissection
of precise mechanisms involved in decision-making, such as the
role of specific brain regions and circuits, modulation by the
monoaminergic systems, and neurodevelopmental events. Second,
rodents are particularly suitable for screening and identifying risk
or protective factors for poor decision-making. Rodent studies are
not subject to the same time constraints associated with longitu-
dinal studies in human populations and easily allow the study of
inter-individual differences in behavioral and cognitive capacities
(Rivalan et al., 2009b). Third, animal models are particularly valu-
able since environmental conditions as well as genetic variation
can be carefully controlled. As such, animal models of the IGT
have recently been developed (van den Bos et al., 2006; Pais-Vieira
et al., 2007; Rivalan et al., 2009a; Zeeb et al., 2009). These mod-
els are largely complementary, yet have distinct strengths. Here
we aim at describing the current state of these novel models with
respect to face, predictive, and construct validities. We will present
recent findings that demonstrate their potential to investigate the
neuropsychobiological mechanisms of decision-making as well as
directions for future research.

THE IOWA GAMBLING TASK
TASK CHARACTERISTICS
The IGT requires individuals to choose cards, one by one, between
four different decks to earn money. Two decks are equally advan-
tageous in the long run because cards chosen from these decks
provide immediate moderate monetary gains but also moderate

or low losses according to two different probability schedules.
Two decks are equally disadvantageous in the long run because
even though immediate gains are higher, the unpredictable losses
are also higher, according to two different probability sched-
ules (Figure 1). Thus, a conflict is induced between immediate
high rewards and long-term gains. Participants are not provided
with any information as to which choice is optimal, but they are
instructed to try to maximize their gains as much as possible by
freely choosing cards from each deck, and have the ability to switch
between decks at any time (Bechara et al., 1999). Subjects therefore
need to discover the task contingencies by trial and error. This sets
the IGT apart from tasks that overtly signal the odds of winning
such as the Cambridge Gambling Task (Clark et al., 2003).

When performing the IGT, healthy human subjects usually dis-
play a shift from primarily explorative behavior at the beginning of
the task, during which they sample from all decks, toward a more
exploitative strategy involving substantially more choices of the
advantageous options associated with the best long-term outcome
(Bechara et al., 1994, 1999; Brand et al., 2007b). Thus, decision-
making is first made under ambiguous conditions, in that the
subjects do not know what the reinforcement contingencies are.
Following repeated sampling from the decks, it can be assumed
that subjects are more aware of the chances of winning or losing
associated with each deck, and therefore risky decision-making
can take place (Stoltenberg and Vandever, 2010, but see Fellows
and Farah, 2005).

Patients suffering from psychiatric disorders in which decision-
making is compromised typically persevere in their choice of
the disadvantageous options that yield immediate large rewards,
despite larger losses in the long-term. Interestingly, a subset of
healthy individuals also makes poor decisions in the IGT, sug-
gesting a continuum between normal and pathological conditions
(Brown and Barlow, 2005). Therefore, it can be hypothesized
that poor decision-making in clinical and non-clinical popula-
tions shares common neuropsychological characteristics. As such,
identification of these markers could improve our understanding
of the transition from a healthy vulnerable state to psychiatric
conditions.

NEURAL SUBSTRATES
Studies using brain-lesioned patients and imaging techniques have
provided consistent evidence that decision-making depends on

FIGURE 1 | Schematic set-up of the Iowa gambling task.
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the integrity of, and functional connectivity between, many brain
areas. The main structures are the amygdala, the insula, the stria-
tum (STR), and several frontal cortical regions, including ventro-
medial prefrontal cortex (vmPFC), orbitofrontal cortex (OFC), the
anterior cingulate cortex (ACC), and dlPFC (Bechara et al., 1999;
Manes et al., 2002; Bolla et al., 2004; Tucker et al., 2004; Fellows
and Farah, 2005; Hsu et al., 2005; Brand et al., 2007a).

The somatic marker hypothesis proposes that emotion-based
biasing signals arising from the body are integrated in higher
brain regions, notably the vmPFC, the amygdala, the insula, and
the somatosensory cortex to regulate complex decision-making
(Bechara et al., 1997; Dunn et al., 2006). This hypothesis is based
on the fact that successful IGT performance is related to the devel-
opment of somatic marker signals, as indexed by the magnitude
of anticipatory skin conductance responses, before any conscious
knowledge of the adapted choices (Bechara et al., 1994, 1997).
These signals serve as an indicator of the value presented. If they
are ineffective, like in vmPFC lesioned people, solving the task is no
more possible. Within the vmPFC, the OFC is involved in the treat-
ment, evaluation and filtering of perceptual, social, and emotional
information (Elliott et al., 2000). This region is strongly inter-
connected with areas within the limbic system, particularly the
basolateral amygdala (BLA), and receives prominent inputs from
sensory association cortices. This pattern of connectivity suggests
that the OFC plays a role in integrating potentially salient informa-
tion about environmental contingencies (Ongur and Price, 2000),
and uses this information to assign a value to a reward and signal
outcome expectancies which can thus influence action selection
(Schoenbaum et al., 2003; Rolls and Grabenhorst, 2008; Mainen
and Kepecs, 2009; Takahashi et al., 2009). Thus, the OFC allows the
representation of the reinforcing consequences of a choice to adapt
goal-directed behaviors (Mainen and Kepecs,2009) and modulates
this value according to the contingency changes (Schoenbaum
et al., 1998; Murray et al., 2007; Hayton and Olmstead, 2009).

The ACC is a converging area for cognitive and motor com-
mands (Paus et al., 1993) that monitors and detects the presence
of conflicts related to actions (Magno et al., 2006; Oliveira et al.,
2007), whereas the dlPFC, tightly connected with ACC and OFC
(Barbas, 2000), engages a top-down process required to moni-
tor and implement change (Hyafil et al., 2009). The ACC signals
error-likelihood (Sallet et al., 2007) and has a key role in choos-
ing and updating appropriate actions when the environment is
uncertain or dynamic (Kennerley et al., 2006; Quilodran et al.,
2008), and in combining information about the costs and benefits
associated with alternative actions (Rudebeck et al., 2006). This
update is made in combination with the dlPFC, which is critically
involved in the temporary maintenance of recently acquired infor-
mation (Lee et al., 2007a), and in the detection of action–outcome
contingencies (Balleine and O’Doherty, 2010), a major aspect of
associative learning that allows the elaboration of goal-directed
responding.

It has been suggested that the exploration and exploitation
phases of the IGT involve different brain areas (van den Bos
et al., 2007). The exploration phase may be mediated by the amyg-
dala and ventral STR and their projections to the OFC (Bechara
et al., 1999; Knutson et al., 2001). When the task progresses and
a preference for the advantageous decks is emerging, the ACC,

dlPFC, and dorsal STR may be recruited to engage in cognitive
control of the once established choice in order to maintain and
exploit this strategy to secure long-term payoff (Bush et al., 2000;
Ernst et al., 2002; McClure et al., 2004; Ridderinkhof et al., 2004;
Pezawas et al., 2005). However, large inter-individual differences
in brain areas recruitment according to performances in the IGT,
certainly occurs. Animal models of the IGT are uniquely placed
to assess the validity of these theories, as brain imaging studies or
lesions to particular areas can be selectively implemented at dif-
ferent stages of training, thereby preferentially targeting either the
exploitation or exploration phases (de Visser et al., 2011b; Rivalan
et al., 2011; Zeeb and Winstanley, 2011).

NEUROMODULATORS
The dopaminergic and serotonergic systems, known to facil-
itate functional connectivity between the limbic and corti-
cal regions, are important candidates for modulating decision-
making. Changes in the functioning of these neurotransmitter
systems have been associated with pathological gambling, the psy-
chiatric disorder perhaps best classified as a disorder of excessive
risk-taking behavior and maladaptive decision-making (Shino-
hara et al., 1999; Seedat et al., 2000; Meyer et al., 2004; Pallanti
et al., 2006; Zack and Poulos, 2007; Marazziti et al., 2008; Pattij
and Vanderschuren, 2008). Furthermore, several polymorphisms
in serotonergic and dopaminergic genes have been identified that
affect frontal and sub-cortical brain function and personality
traits (e.g., neuroticism, harm avoidance, persistence, and novelty-
seeking), which play a central role in decision-making (e.g., Ha
et al., 2009; Krugel et al., 2009; Homberg and Lesch, 2010; Juhasz
et al., 2010; Paloyelis et al., 2010).

Serotonergic system and decision-making in the IGT
Several lines of evidence suggest that there is an inverse relation-
ship between serotonin levels and impulsivity (Linnoila et al.,
1983; Soubrie, 1986), a trait that may affect decision-making. For
instance, users of the serotonergic neurotoxic drug MDMA show
poorer IGT performance and elevated self-reported impulsivity
relative to controls (Hanson et al., 2008). Additionally, in OCD
patients, chronic treatment with risperidone, a mixed 5-HT2A-D2

receptor antagonist, was found to improve overall IGT perfor-
mance in patients exhibiting initially worse performance (Cavedini
et al., 2002a).

Gene variants related to serotonin function have been associ-
ated with deficits in decision-making during the IGT. In particular,
variants in the ACGCCG haplotype of the tryptophan hydroxy-
lase (TPH)-1 gene (Maurex et al., 2009), polymorphisms in the
serotonin-related TPH-2 and monoamine oxidase A (MAOA)
genes (Jollant et al., 2007) and in the common serotonin trans-
porter (SERT) promoter (Lesch et al., 1996) have been linked to
poor IGT performance. Furthermore, patients with major depres-
sion or OCD carrying the low activity (short; s) allelic variant of the
serotonin-transporter-linked polymorphic region (5-HTTLPR)
showed increased choice of the disadvantageous options in the IGT
(Must et al., 2007; da Rocha et al., 2008; He et al., 2010; Stoltenberg
and Vandever, 2010). Comparable results were obtained in healthy
female subjects (Homberg et al., 2008; van den Bos et al., 2009b,but
see Lage et al., 2011). However, studies based on male volunteers
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have yielded conflicting results (He et al., 2010; Stoltenberg and
Vandever, 2010; Lage et al., 2011). Because the SERT is respon-
sible for serotonin reuptake into the presynaptic nerve terminal,
the s-allele is hypothesized to be associated with increased extra-
cellular serotonin levels (Lesch et al., 1996; Kalueff et al., 2009).
Of interest, the s-allele, compared to the l-allele, is associated with
amygdala hyperactivity in response to fearful stimuli and at rest
(Hariri et al., 2002; Canli et al., 2006). This hyperactivation corre-
lates with reduced volume of the ACC, as well as a functional and
anatomical uncoupling between the ACC and amygdala (Pezawas
et al., 2005; Pacheco et al., 2009) and hyperactivity of the vmPFC
(Heinz et al., 2005). One speculation is that people carrying the
5-HTTLPR s-allele are hypervigilant, which is advantageous when
environmental stimuli are controllable and manageable. Indeed,
in a risky decision-making task with choice probability outcomes
made explicitly s/s subjects chose more advantageously due to
increased risk adversity (Kuhnen and Chiao, 2009). Conversely,
under conditions in which stimuli are uncertain, such as during the
IGT, s-allele carriers engage in maladaptive behavior (Homberg
and Lesch, 2010). Overall, these data indicate that serotonin signal-
ing can negatively affect decision-making on the IGT, with possible
sex-dependent effects during the explorative phase of the task.

Dopaminergic system and decision-making in the IGT
Changes in the dopaminergic system have likewise been shown
to modulate IGT performance. As previously noted, poor IGT
performance has been observed in several pathologies related to
dopamine dysfunction, such as schizophrenia, Parkinson’s dis-
ease, drug addiction, and pathological gambling (Comings et al.,
1996; Rogers et al., 1999; Mimura et al., 2006). Dopamine is
critically involved in associative learning (Schultz, 2002) time per-
ception (Meck, 2006) and signaling within the reward system (Di
Chiara and Bassareo, 2007), all of which are fundamental processes
required for decision-making. Consequently, it is not surprising
that reduction of dopaminergic levels impairs decision-making
in healthy individuals. Acute administration of a branched-
chain amino acids (BCAA) mixture lowers the plasma ratio of
dopamine’s precursor amino acids and decreases dopaminergic
activity (Harmer et al., 2001; Gijsman et al., 2002). This treatment
also orientates healthy male participants toward disadvantageous
decks in later trials as their dopamine levels reduce, thus indicating
a fundamental function of dopaminergic signaling in advanta-
geously guiding decision-making during the IGT (Sevy et al.,
2006). This impairment could be related to reduced perception
of probability and time, given that attention was shifted toward
more recent events compared to more distant events (van den Bos
et al., 2007). PET imaging data also indicate a positive correla-
tion between dopamine release in the ventral striatum and IGT
performance in healthy male participants (Linnet et al., 2010), yet
a negative correlation in problem gamblers (Linnet et al., 2011).
However, the D2 antagonist haloperidol increased the drive to play
slot machines in pathological gamblers, but not in healthy controls
(Zack and Poulos, 2007).

Two genetic factors mediating dopamine signaling, namely
the catechol-O-methyltransferase (COMT) enzyme and the D4

dopamine receptor (DRD4), are also related to IGT performance.
The rs4818 C/G polymorphism of the COMT gene, which results
in an 18-fold divergence of enzymatic activity between the high

activity variant (G allele) and low activity variant (C allele; Nackley
et al., 2006), has been shown to significantly affect performance in
the IGT. In particular, male subjects homozygous for the high
activity variant performed better than those carrying the low
activity variant (Roussos et al., 2008). In a financial risk decision-
making task in which subjects were informed on the payoff of
choice options carriers of the 7-repeat allele of DRD4 were signif-
icantly more risk seeking relative to those individuals without the
7-repeat allele (Kuhnen and Chiao, 2009), indicating that the 7R
allele is associated with novelty-seeking regardless of choice condi-
tions (uncertain or certain). Another COMT gene polymorphism,
Val158Met, is associated with IGT performance in healthy females.
The Met/Met variant, related to lower COMT activity and higher
constitutive dopamine prefrontal cortical levels, lead to poorer per-
formances compared to Val/Val (Lotta et al., 1995; Mannisto and
Kaakkola, 1999; Chen et al., 2004; van den Bos et al., 2009b); but see
(Kang et al., 2010). Interestingly, carriers of both the Met/Met and
5-HTTLPR-s/s genotypes displayed the worst IGT performance
among all possible COMT and 5-HTTLPR genotype combina-
tions (van den Bos et al., 2009b), indicating that the dopaminergic
and serotonergic systems may interact in the modulation of IGT
choice behavior.

Regarding the variable number of tandem repeat (VNTR) poly-
morphism in the DRD4 gene, healthy male carriers of the seven
repeats (7R) allele of this gene choose significantly more cards
from disadvantageous decks in the IGT compared to participants
exhibiting the 4R allele (Roussos et al., 2009). This 7R allele
is associated with lower transcriptional/translational levels and
diminished in vivo receptor responsivity compared to the four
repeats (4R) allele (Hutchison et al., 2003; Hamarman et al., 2004;
McGough, 2005; Brody et al., 2006; Ebstein, 2006).

Collectively, these data suggest that dopamine, possibly in inter-
action with serotonin, can modulate decision-making as measured
in the IGT. Serotonin may be inversely associated with IGT perfor-
mance, whereas directional consensus for dopamine is not yet fully
clear. Pathological gamblers and healthy controls appear to react
differently to dopaminergic manipulations, and may also differ in
their baseline and gambling-induced changes in DA release. How-
ever, our understanding of the monoaminergic modulation of IGT
performance is still limited, and consequently, pharmacogenetic
treatment of decision-making deficits in patients is currently a
distant goal.

MODELING THE IGT IN RODENTS
It is comparatively easy to perform pharmacological, genetic, and
environmental manipulations in mice and rats. Hence, rodent IGT
models (RGTs) can make a crucial contribution to scientific and
medical advances in the field of decision-making. For this pur-
pose, paradigms which capture the essence of the IGT have been
developed for use in rodents in order to establish animal models of
human decision-making with high face and construct validities.

The IGT (Bechara et al., 1994) has several key features that
had to be reproduced. As reviewed below, four different types of
rodent IGT models have been designed that incorporate several of
these key features (Table 1). These models differ both in the equip-
ment used (mazes vs. operant chambers), the task duration (from a
single session to several daily sessions), the learning of task contin-
gencies and the ratio between advantageous vs. disadvantageous
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Table 1 | Main features of the human and rodent gambling tasks.

Task features IGT RGTreward or quinine RGTreward probabilities RGTone session reward and time-out RGTreward or time-out

Original references Bechara et al.

(1994)

van den Bos et al.

(2006)

Pais-Vieira et al.

(2007)

Rivalan et al. (2009) Zeeb et al. (2009)

Apparatus Computerized

card game

Manually operated

maze

Manually/automated

arena

Automated operant chamber Automated operant

chamber

No. of choice options 4 4 2 4 4

Reward Monetary gain Sucrose pellets Sucrose pellets Palatable food pellets Sucrose pellets

Reward occurence Each trial Alternate with

punishment

Alternate with

punishment

Each trial Alternate with punishment

Punishment Monetary loss Quinine pellets No reward Time-outs Time-outs

Conflict immediate

rewards

100 (A and B)

vs. 50 (C and D)

3 (A) vs. 1 (B) 3 (A) vs. 1 (B) 2 (A and B) vs. 1 (C and D) 3;4 (A and B) vs. 1;2 (C and

D)

Conflict long-term

payoff

Per 10 cards

−250 vs. +250

Per 10 trials 3 vs. 8

pellets ratio = 2.7

Per 10 trials 9 vs. 8

pellets ratio = 0.9

Total test: 60 vs. 300 pellets

ratio = 5

Total test: 353 vs. 117

(average) ratio = 3

Task duration Single session

(100 trials)

10 daily sessions

(10–20 trials)

Single session Single session (1 h) 25 daily sessions for stabil-

ity (approximately 100 trials

per 30 min session)

Pre-training

procedure

None 10-min habituation 20–25 days 5–7 days 10–15 days incl. 7 forced-

choice sessions

Prior knowledge of

contingencies

No No No No Yes

Motivational aspects n/a 90–95% of FFW 80% of FFW 95% of FFW 85% of FFW

Values for the conflict long-term payoff are hypothetical calculations for RGTone session reward or time-out and RGT reward and time-out (based on a fixed trial duration of 9 or 5 s,

respectively). FFW, free-feeding weight.

options. The way in which loss is signaled also differs: making
sugar pellets aversive through the addition of the bitter-tasting
substance quinine (van den Bos et al., 2006; rats and mice), simple
non-reward (Pais-Vieira et al., 2007; rats), or the delivery of time-
out periods on loss trials which minimize the number of pellets
the animals can earn (Rivalan et al., 2009a; rats, Zeeb et al., 2009;
rats, Young et al., 2011; mice).

CONFLICT BETWEEN PROBABILITIES OF HIGH FOOD REWARD VS.
QUININE: A FOUR-ARM BOX MAZE MODEL (RGTREWARD OR QUININE)
The first experimental protocol aiming to reproduce the char-
acteristics of the IGT in rodents was developed by van den Bos
et al. (2006). This task measures the choice between four goal
arms, two of them containing either food rewards or punish-
ments per choice. High amount of rewards is combined with
the incurrence of a high amount of punishment in the disad-
vantageous arm, as opposed to the advantageous one. Uncertainty
is given by varying the sequence of sugar or quinine pellet pre-
sentation. The apparatus (Figure 2) consists of a box divided in
three different areas: a starting zone, a choice zone, and an arena
divided in four parallel arms. The goal arms, labeled A, B, C, and
D, are provided with internal visual cues (symbols of different
shapes and colors) to help animals in differentiating them during
the task apart from the spatial location. They contain “monetary

rewards” in the form of sugar pellets, or “monetary punishments”
that are quinine-treated (bitter) sugar pellets. Before testing, ani-
mals are habituated to the sugar pellet taste and briefly allowed to
explore the maze (10 min). Any animals which continue to eat the
quinine-treated sugar pellets are removed from the experiment.
Test trials are initiated by removing the slide door from the start
box. The animal is allowed to freely explore the choice area. A
choice for one of the arms is made when the animal has walked
into the arm for at least one-third of the length of the arm. Once
a choice is made, the arm is closed to prevent the animal from
walking back without investigating the reward cup. During test-
ing [10 trials a day for 12 days, but modifications of this schedule
have been used (de Visser et al., 2011b)], the pre-arranged sched-
ule of wins and losses associated with the arms are represented
according to a pre-arranged random order of sugar and quinine
pellets for each arm of the box. One “disadvantageous” and one
“advantageous” arm are present. In the former case, the chance of
obtaining high immediate rewards combined with the incurrence
of a high net loss in the long run is reproduced by presenting three
sugar pellets once every 10 choices and one quinine-treated pellet
every other time. In the latter case, the possibility of receiving low
immediate rewards but having a net gain over multiple choices
is achieved by administering one sugar pellet eight times in 10
selections and one quinine-treated pellet every other time. The
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FIGURE 2 |The four-arm box maze model (RGTreward or quinine): top view of

the maze with start box, choice area, and four arms with reward cups.

When an animal has made a choice for a particular arm, this arm is closed
off with a slide to prevent the animal from returning to the choice area
before investigation of the reward cup.

uncertainty of rewards and punishments per choice provided by
the human task is maintained by varying the sequence of sugar
or quinine pellet presentation between blocks of 10 trials in each
arm. Consequently, the net gain ratio between advantageous and
disadvantageous options is 2.67. The distribution of punishments
is randomized per 10 trials and disadvantageous options are not
“stacked” toward the end of the task (see Fellows and Farah, 2005).
Control for non-specific exploration is assessed by entries into
the two empty arms. A mouse version of the IGT has also been
designed by van den Bos et al. (2006), using an eight-arm radial
maze. This task presents main characteristics that similar to those
of the rat gambling task as described above.

Recently, an operant version of RGTreward or quinine has been
developed using specially designed operant panels that are placed
in the home cage of rats (Koot et al., 2009, 2010). Next to mea-
suring decision-making, this task allows assessment of impulsivity
(Koot et al., 2010) and is currently being further validated.

PREFERENCE FOR HIGH VS. LOW PROBABILITIES TO GET SIMILAR
AMOUNT OF REWARD: A TWO-LEVER OPERANT CHAMBER MODEL
(RGTREWARD PROBABILITIES)
In 2007, a second rodent task that modeled some features of the
IGT was established by Pais-Vieira et al. (2007). This task measures
the preference for an infrequent high amount of food compared to
a more frequent, lower amount of food, both options leading to an
almost similar amount of total reward. Another task was recently
established, based on the same principle (Roitman and Roitman,
2010), but with a lower level of unpredictability.

FIGURE 3 |The two-lever operant chamber model (RGTreward probabilities).

(A) Octagonal arena connected to a starting corridor. Levels are indicated
by the arrows. (B) The arena is divided in two sides by a central separator,
each containing one lever and one food cup (indicated by an arrow)
connected to an automated pellet dispenser.

The apparatus (Figure 3) consists of an octagonal arena con-
nected to a starting corridor through a guillotine door. The arena
is divided in a right and a left side by a central separator, and
each half of the arena is provided with one food cup and one
lever connected to an automated pellet dispenser. Training con-
sists of two phases: first, animals undergo a series of sessions to get
familiarized with the testing apparatus and to learn the association
between lever presses and food delivery. Subsequently, rodents are
subjected to five sessions of 30–90 trials in which the outcome
values are identical for both sides of the arena (one food pellet in
8 out of every 10 consecutive presses). These sessions serve as a
control for individual spatial bias: animals preferring one side of
the arena in more than 70% of the trials in two of the five sessions
are removed from the study. Each trial begins with the animal in
the starting corridor; upon lifting of the guillotine door the animal
chooses between going to the left or the right side of the arena and
presses the corresponding lever. Lever pressing results in either the
delivery of chocolate flavored sucrose pellets or no food delivery.
Subsequent presses of the levers have no effect (retractable levers
have also been used without any change in task performance).
Each trial lasts 20 s after which the animal is hand-removed from
the arena and placed back in the closed starting corridor. Then, a
new trial will start after a variable inter-trial interval (ITI) of 5–
10 s to prevent behavioral adjustment to the session limit. Trials in
which the animal fails to press a lever within the 20-s are counted
as “incomplete.”

Final RGTreward probabilities testing consists of a single probe ses-
sion of 90 trials. Reward contingencies associated with the levers
are set so that one leads to frequent small rewards and the other to
infrequent large rewards. Both levers have non-rewarded trials and
both lead to similar long-term gains in a pseudo-random order,
levers being counterbalanced between animals. Options are not
“stacked” to favor reward delivery at the beginning of the session
(see Fellows and Farah, 2005). During this test session, one lever
remains at the reward settings of the training (one food pellet in
8 out of every 10 consecutive presses) while the other lever is set
for rewarding three food pellets in 3 out of every 10 consecutive
presses. The maximum gain of pellets per 10 trials is comparable
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for the low and high risk levers [8 vs. 9; but an equal maximum
gain of nine pellets for both levers does not change task perfor-
mance (Ji et al., 2010)]. As in the human IGT, control animals
display a preference for the lever with infrequent large rewards in
the beginning of the session, but shift their preference to the lever
with frequent small rewards in the second half of the test.

ONE SESSION CHOICE FOR HIGH REWARD/IMPROBABLE LONG
PENALTIES VS. LOW REWARD/IMPROBABLE SHORT PENALTIES: THE
FOUR-HOLE OPERANT CHAMBER MODEL
(RGTONE SESSION REWARD AND TIME-OUT)
Rivalan et al. (2009a) recently proposed an alternative automated
rodent IGT in an operant chamber, with the goal to test complex
decision-making processes within a single session, as in the origi-
nal human IGT. This model offers the advantage to allow a rapid
assessment of the decision-making process, measuring the time-
course of decisions, from random choice to a majority of choices
for the preferred options, within 1 h. Because decision-making can
be measured in only one session, this task is particularly suitable for
quickly identifying individual differences, or for the search of the
neural bases of the time-course process of decision-making, using
cellular brain imaging or PET scanning. Performances in this task
are stable and reproducible (Rivalan et al., 2009a, 2011). This task
can be solved by the majority of rats, whereas some poor decision-
makers that prefer larger immediate rewards despite suffering large
losses can be identified, a result also observed in humans (Bechara
et al., 1999, 2001; Bechara and Damasio, 2002; Davis et al., 2007;
Glicksohn et al., 2007).

The test requires the rat to deduce, by trial and error, among
four options, the two that are the more rewarding on the long-term
and tracks the continuous and dynamic process of deduction and
readjustment of choice. The principle of the task tightly mimics
that of the human IGT: the contingencies are arranged so that the
two options (holes chosen by nose-poking) that steadily offer big-
ger immediate food reward, are disadvantageous in the long run
due to higher unpredictable penalties (frustrating time-outs dur-
ing which no reward can be obtained). Inversely, the two advan-
tageous options steadily offer smaller reward, but unpredictable
penalties that can follow are shorter.

The testing apparatus (Figure 4) consists of an operant cham-
ber lightly adapted from a standard five-hole operant chamber
usually used for the five-choice serial reaction time task (Imetronic,
Pessac, France). The adaptation consists of blocking the access to
the central hole by a panel, and adding a transparent vertical parti-
tion containing a central opening that divides the chamber in half
to allow an equal distance to each hole. The four holes, that can
be dimly illuminated, are available on a curved wall, with a food
dispenser on the opposite wall. The holes and food magazine are
equipped with infrared sensors that detect nose-pokes. A program
controls the chambers and collects the data.

Rewards are represented by the delivery of palatable food pel-
lets (TestDiet, formula P), while punishments are associated with
time-out periods, during which nose-pokes are inactive. As in
the original IGT, each selection is rewarded, and some are also
unpredictably punished. Similarly to RGTreward probabilities, training
for the acquisition of the basic operant responses is performed
before testing. During these daily sessions (30 min each, repeated

FIGURE 4 |The four-hole operant chamber model

(RGTone session reward and time-out). (A) Top view of the apparatus (Imetronic). These
chambers are modular and can be configured for multiple behavioral
paradigms (one or several nose-poke or levers, drug self-administration). A
transparent vertical partition containing a central opening divides the
chamber in half with four holes on a curved wall on a side, and a food
dispenser on the opposite wall. (B) The four holes, that can be dimly
illuminated, are equidistant from the central opening.

until a learning criterion is obtained within a session) animals
are trained to associate two consecutive nose-pokes (ensuring vol-
untary choice performance) in any of the four illuminated holes
with the delivery of one food pellet. Once the learning criterion
is reached, animals are habituated to variable reward amounts
(one/two pellets) per selection (two 15-min block per reward
amount). Although a preference for a side could be observed
individually, it has repeatedly been shown that this preference had
no consequences on performances during test, nor differences in
the level of exploration. Moreover, because palatable food pellets
are used, food restriction facilitate training but is not necessary
for testing (Rivalan et al., 2009a). During the subsequent test ses-
sion (1 h of duration), animals are again requested to freely choose
among the available options, but advantageous and disadvanta-
geous selection schedules are now introduced. On one side of the
curved wall, advantageous options are associated with the imme-
diate delivery of only one pellet, that can eventually be followed by
short time-outs (“deck C”: 12-s time-out 25% of the trials; “deck
D”: 6-s time-out 50% of the trials). These two choices result in
the same theoretical maximum gain of about 300 pellets in 1 h.
On the other side of the curved wall, disadvantageous options cor-
respond to two response holes that always provide two pellets as
a reward upon selection, but that can eventually be followed by
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long time-outs (“deck A”: 222-s time-out 50% of the trials; “deck
B”: 444-s time-out 25% of the trials). These two options have the
same theoretical maximum gain of about 60 pellets in 1 h. Punish-
ments are assigned to each selection in a pseudo-random manner,
so to maintain immediate outcome unpredictability, thus, options
are not “stacked” to favor reward delivery at the beginning of the
session (see Fellows and Farah, 2005). A choice also results in the
deactivation of all stimulus-lights except for the chosen hole, until
the reward is collected. This is particularly important during the
time-outs to facilitate the association between hole response and
its consequences. Based on the reinforcement schedule employed
during testing, choosing either advantageous or disadvantageous
options during this session would result in a theoretical overall
payoff ratio of 5.00 (300 or 60 pellets per response hole, consid-
ering a standard trial duration of 9 s). The task difficulty can be
easily modified, i.e.,decreasing the ratio to 3 by increasing time-out
duration associated with favorable options, that lead to a slower
decision-making process (see Rivalan et al., 2009a).

MULTIPLE SESSION CHOICE FOR CONFLICT BETWEEN OPTIONS
VARYING IN REWARD AND TIME-OUT FREQUENCY AND DURATION:
THE FIVE-HOLE OPERANT CHAMBER MODEL (RGTREWARD OR TIME-OUT)
This rodent gambling task also signals loss on non-rewarded trials
through the presentation of frustrating time-out periods, and uses
sucrose pellets as a reward. This model presents the animals with a
choice between four distinct options on each trial which are loosely
analogous to the four deck of cards in the IGT, i.e., the options dif-
fer in terms of the probability and magnitude of expected gains and
losses, such that the two options which deliver the smaller units of
reward are ultimately advantageous. However, this model differs
both in the duration of training, the reinforcement contingencies
associated with the different options and the way in which the
task is learned. Although both the RGTone session reward and time-out

and RGTreward or time-out are complementary, they also have differ-
ent strengths and can be best used to answer different questions.
Notably, the RGTreward or time-out model was designed in a manner
that could be optimized for behavioral pharmacology experi-
ments and other manipulations, which benefit from repeated daily
testing.

Testing takes place in standard five-hole operant chambers
available from a number of vendors (e.g., Med Associates, Coul-
bourn; the same chambers used for the five-choice serial reaction
time task; Figure 5). The defining feature of such boxes is that
an array of five stimulus–response holes is located on one wall of
the chamber, although only four holes are used during the task.
Each response hole can be illuminated by a stimulus light located
therein, and nose-poke responses into a hole are detected by an
infrared sensor. A food tray, also equipped with an infrared sen-
sor and a tray light, is located in the middle of the opposite wall,
into which sucrose pellets can be delivered via an external pel-
let dispenser. The entire chamber can also illuminated using a
house-light.

As is often standard for operant-based tasks, animals are first
trained to make the basic operant response, in this case to make a
nose-poke response into a single illuminated response hole within
10 s. Animals are then trained on a forced-choice version of the
task for five to seven sessions, during which only one of the four
possible options is presented on each trial (Zeeb et al., 2009; Zeeb

FIGURE 5 |The standard five-hole operant chamber, as used for the

RGTreward or time-out model. (A) Side view of a Med Associates five-hole box.
These chambers are modular and can be configured for multiple behavioral
paradigms and manipulations, hence the arm assembly for drug
self-administration/microdialysis and additional levers visible. However,
these components are not necessary for the RGT. (B) A close-up of the
standard five-hole array showing stimulus light location and infrared beam.

and Winstanley, 2011). This training stage ensures that all animals
equally experience each of the four reinforcement contingencies, in
order to prevent simple biases toward a particular hole from devel-
oping. Although this forced-choice contingency does not occur
in the IGT, subjects are verbally instructed that there are decks
which result in greater losses than others and that winning may be
accomplished if the worst decks are avoided (Bechara et al., 1999).

Following forced-choice training, all animals are then tested on
the free-choice task, where all four options are presented (i.e., all
four response holes are illuminated). Training occurs once daily,
and each session lasts for 30 min. Animals initiate each trial by
making a nose-poke response into the illuminated food tray. This
response initiates a 5-s ITI, where all lights are off and the chamber
is in darkness. A nose-poke response in any hole of the array dur-
ing this time is termed a premature response – a measure of motor
impulsivity – and is signaled by illumination of the house-light for
5 s. The animal must then re-start another trial (by making a nose-
poke response in the illuminated food tray). This measurement is
analogous to that of the premature responses measured in the
five-choice serial reaction time task (Robbins, 2002). Therefore,
for the first time, both motor impulsivity and decision-making
can be concurrently assessed – and dissociated – within the same
task (Zeeb et al., 2009).

At the end of the ITI, four holes are concurrently illuminated
(left to right: holes 1, 2, 4, and 5) for a maximum of 10 s. The ani-
mal signals its preference by nose-poking in one of the illuminated
holes, at which point all the stimulus-lights are then extinguished.
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If the trial is rewarded, the tray light illuminates and the corre-
sponding number of sucrose pellets are delivered immediately. As
in the five-choice serial reaction time task, responding at the food
tray to collect reward also initiates the next trial. However, if the
trial is a loss, no reward is delivered and a time-out period begins
during which the light in the hole chosen flashes at a frequency
of 0.5 Hz. The animal is unable to initiate any more trials or earn
reward until the time-out is over, at which the animal can initiate
the next trial by responding in the now-illuminated food tray. The
reinforcement contingency linked to each option (response hole)
varies in terms of both the number of sugar pellets available, and
the duration and probability of a punishing time-out period. The
probability of receiving reward or punishment remains constant
throughout each session, i.e., the options are not “stacked” to favor
reward delivery at the beginning of the session (see Fellows and
Farah, 2005). The spatial location of these options are balanced,
such that one advantageous and one disadvantageous option is
located on each side of the chamber, therefore the correct strategy
cannot be reduced to a side bias. The optimal strategy is to select
the two-pellet option (P2), associated with a 10-s time-out period
that occurs 20% of the time (80% chance of winning). The next
best option is P1 (5 s time-out, 90% chance of winning). The two
highly disadvantageous options are both associated with larger
immediate gain – three or four sucrose pellets – but also longer
time-out periods (P3: 30 s time-out, 50% chance of winning; P4:
40 s time-out; 40% chance of winning). Occurrence of gains and
losses on each trial is determined pseudo-randomly to ensure a
constant distribution of gains and losses throughout each session.

It is possible to calculate the hypothetical amount of reward
that could be obtained if an option is chosen exclusively in a 30-
min training session, and if each trial is initiated and performed
as quickly as possible (i.e., within 5 s; Zeeb et al., 2009). Based on
these calculations, persistent selection of the optimal choice (P2)
yields a hypothetical maximum of 411 sugar pellets, whereas P1
yields 295 pellets. The two disadvantageous options are associated
with significantly less possible reward (P3: 135 pellets; P4: 99 pel-
lets). Therefore, the optimal strategy is to prefer the advantageous
options – P2 and P1 – which are associated with smaller, imme-
diate gain, but also less punishment resulting in more reward in
the long-term, while avoiding the tempting, yet disadvantageous,
large reward options associated with greater loss – P3 and P4.

RGT VALIDITY
CRITERIA FOR THE VALIDITY OF AN ANIMAL MODEL
The goal of an animal model of human decision-making is to
develop, in laboratory animals, behavior that closely resembles
that observed in human subjects, thereby allowing researchers
to translate findings across species. The validity of animal mod-
els depends on the strict definition of its potential applications,
taking into account the models’ biases and limits. This valid-
ity is commonly assessed using the concept of face, construct
and predictive validities (McKinney and Bunney, 1969; Willner,
1995). Face validity refers to similarities between animals and
humans in symptomatology, construct validity concerns similar-
ities in underlying psychobiological and physiological processes,
and predictive validity concerns the model’s potential to predict
these processes in human, most often with regards to identifying
efficient pharmacological compounds in humans. With respect

to face validity, numerous studies using the IGT in both healthy
and patient populations provide knowledge regarding task perfor-
mance and distinct behavioral patterns of impairment that allows
direct comparison to response patterns in the rodent tasks. How-
ever, when it comes to construct and predictive validities, current
knowledge from pharmacological or imaging human studies is
incomplete, making these attributes more difficult to assess. The
gap in our current understanding of the neurobiological under-
pinnings of decision-making in fact underlines the need for animal
models that allow more thorough and controlled investigation of
these mechanisms.

FACE VALIDITY OF THE RGTs
Response patterns in RGTs
In all four RGTs, despite the considerable differences in task
characteristics, animals were able to evaluate which options are
advantageous in the long-term, and to adapt their choice behavior
accordingly. Although the end point of behavioral testing differed
across tasks, from decision-making measure during a single session
to a multiple session learning process, most rats finally developed
a significant preference for the more advantageous options (van
den Bos et al., 2006; Pais-Vieira et al., 2007, 2009; Homberg et al.,
2008; Zeeb et al., 2009; de Visser et al., 2011b; Zeeb and Winstanley,
2011), as also observed in C57BL/6 mice employing the eight-arm
radial maze model (van den Bos et al., 2006) and mice performing
a version very similar to RGTreward or time-out (Young et al., 2011).

In RGTreward or quinine rats start off with an explorative search
profile, displaying equal preference for either the advantageous
or disadvantageous arm. After 60–80 trials, a stable prefer-
ence for the advantageous arm emerges. Rats’ performance of
RGTone session reward and time-out indicates that, although most ani-
mals learn the contingencies and gradually develop a preference
for the advantageous options (Rivalan et al., 2009a), about 40%
of the animals failed to solve the task, either because they did
not develop any option preference, or because they developed a
significant preference for disadvantageous options. These inter-
individual differences are stable across time, and reproducible
across groups. Interestingly, failure to solve the IGT by a portion
(20–30%) of healthy humans has also been observed (Bechara
et al., 1998, 2001, 2002; Crone and van der Molen, 2004; Dunn
et al., 2006). These individuals have been characterized as impul-
sive and sensation-seekers (Davis et al., 2007; Franken et al., 2008),
some behavioral traits that are related to those of poor decision-
makers in rats, i.e., risk-taking and sensitivity to reward (Dellu
et al., 1993, 1996; Rivalan et al., 2009a).

In RGTreward or time-out, although an initial preference for the
advantageous options is already established in the initial train-
ing sessions, this preference continues to develop as testing pro-
ceeds. In this experimental design, learning of options’ contin-
gencies is made prior the decision-making test, by systemati-
cally exposing animals to the task contingencies during forced-
choice training sessions (Zeeb et al., 2009). This ensures that
all animals have equal exposure to the different reinforcement
contingencies associated with all the options, and theoretically
prevents the development of any biases due to inadequate sam-
pling. As a result, it can be argued that performance in this task
predominantly captures the second phase of the IGT when con-
tingencies are known (exploitation), particularly later in training
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when performance has stabilized. However, the fact that choice
between the options still varies between sessions earlier in train-
ing implies that learning (exploration) still occurs. Furthermore,
recent evidence suggests that acquisition and performance of this
task is controlled by somewhat dissociable neural circuitry (Zeeb
and Winstanley, 2011) which supports the distinction between
brain areas involved in exploration vs. exploitation outlined in
Section “Neural Substrates.”

In the RGTreward probabilities, the outcome difference between
advantageous and disadvantageous options is minimal (8 vs. 9
pellets), an inconsistency with respect to the human IGT where
choice options have marked long-term outcome differences. As
such, this task may be more similar to models of probability dis-
counting (e.g., St Onge and Floresco, 2009b) and other aspects of
decision-making under uncertainty, rather than the IGT. Never-
theless, control rats preferentially choose smaller but more reliable
rewards over larger unreliable rewards, similar to the choice pat-
tern observed in humans. In summary, in all four RGTs animals
are able to learn which options are advantageous in the long-
term, but the nature of the learning patterns differs between the
tasks. This source of variation could be used to address more
specifically one aspect of a deficit in animal models of psychiatric
conditions, as observed in mental disorders. For example, prefer-
ence for disadvantageous options, as observed in schizophrenia,
OCD, pathological gambling, substance abusing individuals, or
ADHD, can be tested in RGTs with a high ratio between advan-
tageous vs. disadvantageous options; slower IGT decision-making
in maniac or substance-dependent individuals could be addressed
in RGTone session reward and time-out with similar time-course of deci-
sion process; sensitivity to the frequency of the punishment as
observed in ADHD or schizophrenic patients (Shurman et al.,
2005; Toplak et al., 2005) could be assessed in RGTreward probabilities.

Influence of sex and inter-individual differences on RGT
performance
The only task which has been used to study sex differences to date is
the RGTreward or quinine. The overall pattern of data matches some
findings in humans in that females display poorer performance
as compared to males (Reavis and Overman, 2001; Bolla et al.,
2004; van den Bos et al., 2007; de Visser et al., 2010). Both in rats
and humans, sex differences emerge in the second part of the task
and have therefore been related to diminished cognitive control in
females vs. males (van den Bos et al., 2007; de Visser et al., 2010).

Based on findings from human IGT studies, it is well estab-
lished that inter-individual differences in personality traits, such
as trait anxiety, risk-taking, and impulsivity affect performance.
The relationship between certain individual trait differences
and decision-making performance has been investigated in both
the RGTone session reward and time-out and RGT reward or quinine mod-
els. Associations between risk-taking, reward sensitivity, and IGT
performance were demonstrated in male Wistar rats in the
RGTone session reward and time-out (Rivalan et al., 2009a). When com-
pared to good decision-makers, animals performing poorly in this
task were also more sensitive to rewards, as they ran faster to
obtain a food reward in a runway paradigm and sustained higher
amounts of effort to earn food in the context of a progressive ratio
schedule of food reinforcement. Moreover, these individuals were

more risk-prone, exposing themselves more frequently to poten-
tially dangerous environments in the light/dark emergence test
(highly illuminated compartment; Dellu et al., 1993) and in the
elevated plus-maze test (external third of the open arms; Rivalan
et al., 2009a). These data are consistent with findings from healthy
human studies, showing that poor IGT performers also exhibit
riskier choice patterns in two tasks assessing decision-making
under risk, the Game of Dice Task (Brand et al., 2007b) and the
Cups task (Weller et al., 2010), and the observation that in both
healthy and clinical populations exhibiting poor decision-making,
reward hypersensitivity appears to underlie deficits in IGT perfor-
mance (Must et al., 2006; Davis et al., 2007; Suhr and Tsanadis,
2007; Kobayakawa et al., 2010). Furthermore, abnormal levels of
risk-taking and hypersensitivity to reward are found in psychiatric
disorders associated with poor decision-making and impulsivity,
such as ADHD, substance abuse, pathological gambling, or mania
(Mazas et al., 2000; Bechara et al., 2001; Drechsler et al., 2008;
Kathleen Holmes et al., 2009). Hence, it could be argued that
poor decision-making in both humans and rats may stem from
common risk factors to develop these disorders.

In a recent study, high levels of anxiety as measured with stan-
dard parameters in the elevated plus-maze (% time and visits in
open arms) has been associated with poor decision-making using
the RGTreward or quinine model (de Visser et al., 2011b). Based on
a detailed analysis of rat choice strategies, it was suggested that
highly anxious subjects may have a shifted bias toward respond-
ing to the negatively valued stimuli, i.e., the quinine pellets, and
under-appraised the positively valued stimuli, i.e., the sucrose
rewards, leading to suboptimal decision-making. These findings
are in line with human data, in that highly anxious healthy sub-
jects performed worse on the IGT compared to their less anxious
counterparts (de Visser et al., 2010). These reports also highlight
the potential confound in the human data, in that both high anx-
iety (preferentially measured in the experimental paradigm of de
Visser et al., 2011b), and high risk seeking (preferentially measured
by Rivalan et al., 2009a) are associated with poor IGT performance,
an issue that animal models may be able to resolve, and future work
will no doubt address the biological basis of these findings.

Taken together, RGT performance, similar to the IGT, is associ-
ated with inter-individual differences related to sex differences and
behavioral traits. The study of these inter-individual differences
provide a reliable and valuable tool to investigate, for instance,
the neurobiological features of subjects at risk to develop mental
disorders related to poor decision-making.

CONSTRUCT VALIDITY OF THE RGTs
Construct validity of the RGTs can be evaluated based on the
partial knowledge of the neurobiological mechanisms underlying
IGT performance in humans. Key brain areas have been iden-
tified from lesion and imaging studies that include parts of the
prefrontal cortex, the ventral striatum, and limbic structures such
as the amygdala (see Neural Substrates). Furthermore, gene poly-
morphisms related to serotonergic and dopaminergic systems have
been identified that modulate IGT performance and affect the
function of corticolimbic neural circuits. Thus, construct validity
of the RGTs will be discussed based on these findings (see Table 2
for overview).
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Table 2 | Effect of manipulations on rodent IGT performance.

Manipulation RGTreward or quinine RGTreward probabilities RGTone session reward and time-out RGTreward or time-out

C-FOS

Orbitofrontal cortex No dissociation between

good and bad performers

(de Visser et al., 2011b)

Dissociation good and bad

performers Fitoussi et al. (in

preparation)

Medial prefrontal

cortex

Dissociation good and bad

performers (de Visser

et al., 2011b)

Dissociation good and bad

performers Fitoussi et al. (in

preparation)

Ventral striatum Dissociation good and bad

performers (de Visser

et al., 2011b)

Dissociation good and bad

performers Fitoussi et al. (in

preparation)

LESIONS/INACTIVATIONS

Orbitofrontal cortex Increased choice of higher

risk option during

exploitation phase

(Pais-Vieira et al., 2007)

Perseverative responding

(Rivalan et al., 2011)

Lesion before acquisition:

delayed development of pref-

erence for the correct option.

Lesion afer acquisition: no effect

(Zeeb and Winstanley, 2011)

Prelimbic cortex Inability to chose between good

and bad options, or inflexibility

(Rivalan et al., 2011)

Anterior cingulate

cortex

Delayed good decision-making

(Rivalan et al., 2011)

Medial prefrontal

cortex

Impaired task-progression

during exploitation phase

(de Visser et al., 2011b)

Amygdala Lesion before acquisition:

delayed development of pref-

erence for the correct option.

Lesion after acquisition: Increase

in preference for the disad-

vantageous options (Zeeb and

Winstanley, 2011)

GENETIC ALTERATIONS

SERT knockout rat Increased choice of

advantageous option

during exploitation phase

(Homberg et al., 2008)

DAT knockout

mouse

Increased choice of the disadvan-

tageous/risky options

PHARMACOLOGY

8-OH-DPAT (5-HT1A

agonist)

Less advantageous choices (Zeeb

et al., 2009)

SKF 81297 and

quinpirole or

bromocriptine (D1,

D2/3 agonists)

No effect (Zeeb et al., 2009)

Eticlopride (D2

antagonist)

Improved choice advantageous

option (Zeeb et al., 2009)

Amphetamine Increased choice of less advanta-

geous options (Zeeb et al., 2009)

NBI27914 (CRF1

antagonist)

Intra amygdala

administration (BLA)

reversed poor performance

(Ji et al., 2010)
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Serotonergic system and RGT
It is possible to draw a parallel between performances of rats lack-
ing the SERT in the RGTreward or quinine (Homberg et al., 2008)
and the 5-HTTLPR (serotonin-transporter-linked polymorphic
region) IGT studies in humans. Homozygous (SERT−/−) and
heterozygous (SERT+/−) knockout rats are suggested to model
stressed and unstressed 5-HTTLPR s-allele carriers, while wild-
type control rats may correspond to 5-HTTLPR l-allele carri-
ers (Kalueff et al., 2009; Homberg and Lesch, 2010). SERT−/−
and SERT+/− rodents show gene-dose-dependent increases in
extracellular serotonin levels due to reduced serotonin reuptake
(Homberg et al., 2007). It was found that SERT+/− and SERT−/−
rats demonstrated better decision-making compared to SERT+/+
animals, particularly in the second half of the trials. This seem-
ingly contrasts findings that human 5-HTTLPR s-allele carriers
performed worse during the task compared to l/l subjects (Must
et al., 2007; da Rocha et al., 2008; Homberg et al., 2008; van den
Bos et al., 2009b; He et al., 2010). If serotonin modulates vigilance
and is responsible for the integration of relevant environmental
stimuli (Branchi, 2010; Homberg and Lesch, 2010), this discrep-
ancy may be reconciled by the fact that RGTreward or quinine employs
two baited choice options, as opposed to four in the human IGT.
In the RGTreward or quinine, the SERT−/−, and SERT+/− rats may
not have been distracted by environmental stimuli, such that
they could focus on their long-term goal: obtaining maximum
gain. It would be interesting to test this hypothesis in one of the
RGT models which require animals to discriminate between four
options concurrently, such as the RGTone session reward and time-out or
RGTreward or time-out.

Dopaminergic system and RGT
As discussed earlier, increased choice of the disadvantageous
options on the IGT has been reported in bipolar patients. Reduced
dopamine transporter (DAT) function has been hypothesized as a
contributing factor to bipolar disorder on the basis of both genetic
linkage studies (Kelsoe et al., 1996; Greenwood et al., 2001, 2006)
and analysis of DAT expression in patients (Horschitz et al., 2005).
Using a mouse version of the RGTreward or time-out, increased choice
of the disadvantageous, or risky, options has been observed in
mice lacking the DAT (Young et al., 2011). Furthermore, this risky
decision-making correlated with specific exploratory activity in
a mouse behavioral pattern monitor (BPM), a pattern of motor
behavior that is also observed in acutely manic patients (Perry
et al., 2009). Hence, this RGT model has proven useful in demon-
strating similar behavioral phenotypes in a putative mouse model
of bipolar disorder as compared to the clinical condition.

Prefrontal cortex and RGT
Evidence of involvement of the prefrontal cortex in rodent IGT-
like decision-making was reported in three RGT studies. OFC
lesioned animals preferred the higher risk lever during the second
phase of the task in the RGTreward probabilities (Pais-Vieira et al.,
2007). This is in accordance with impaired decision-making and
high risk-taking observed in human patients with damage to the
vmPFC (Bechara et al., 2000; Clark et al., 2008), and the rela-
tionships between OFC activity and IGT performance in healthy
subjects in fMRI studies (Bolla et al., 2004; Lawrence et al., 2009).

Theoretically, OFC lesion effect on risk-taking could be expressed
in the RGTreward probabilities, since this task is based on a two-option
simple choice as opposed to the RGTone session reward and time-out

(Rivalan et al., 2011). In this latter task, measure of risk-taking is
combined with the capacity to perceive the changes in contingen-
cies between training (all options have the same consequences) and
test (four different consequences), a function also associated with
OFC (see below). Consequently, OFC lesioned rats exhibited per-
severative responding, as if they failed to encode the change in con-
tingency. This was demonstrated by an absence of sampling of the
four options at the beginning of the test, and a marked preference
for the holes on the side that they preferred during training. Such
inflexible responding following OFC lesions has been reported
multiple times, particularly in the context of impaired reversal
learning (Dias et al., 1996; Schoenbaum et al., 2002; McAlo-
nan and Brown, 2003; Ragozzino, 2007; Rudebeck and Murray,
2008; Kazama and Bachevalier, 2009; Robbins and Arnsten, 2009).
Indeed, the original demonstration that vmPFC-damaged patients
were impaired on the IGT used stacked decks, such that no losses
were experienced in the first block of trials, and all subjects initially
preferred the large reward decks (Bechara et al., 1999). Patients
with comparable vmPFC damage were not impaired on a “shuf-
fled” version of the IGT, in which gains and losses were distributed
randomly through the decks, suggesting that the original impair-
ment arose from patient’s inability to switch preferences away
from the disadvantageous decks once punishments were intro-
duced (Fellows and Farah, 2005). Considerable evidence suggests
that this region is critical in generating outcome expectancies, and
updating them as the reward value of available options changes (for
review see Schoenbaum et al., 2009). Notably, the degree of OFC
involvement may depend on the level of ambiguity experienced
by the subject, i.e., the OFC may be important when individu-
als are learning the reinforcement contingencies and ambiguity is
high. Once uncertainty becomes expected, such that the individ-
ual figures out the odds of risk and reward associated with each
option, the OFC may play less of a role in maintaining the optimal
choice strategy. This hypothesis is supported by recent findings
using RGTreward or time-out in which OFC lesions performed prior
to acquisition of the task slowed learning such that rats took longer
to develop a strong preference for the correct option (Zeeb and
Winstanley, 2011). However, if lesions were performed once the
task had already been learned, then no choice impairment was
observed. Furthermore, in RGTreward or quinine, final task perfor-
mance was not related to OFC activation, as measured by the levels
of expression of the immediate early gene c-fos (de Visser et al.,
2011b), again indicating that activity within the OFC is not a criti-
cal determinant of decision-making under risk. Conversely, under
risk and ambiguity in the RGTone session reward and time-out, c-fos
expression differentiated between good and poor decision-makers
(Fitoussi et al., in preparation).

In addition to the OFC, damage to two areas of the
medial PFC (mPFC) were found to affect performance of the
RGTone session reward and time-out: the prelimbic cortex [a primitive
version of the dlPFC of the primate (Vertes, 2006)] and the ACC
(Rivalan et al., 2011). Lesions of the ACC mainly delayed good
decision-making in this task whereas lesions of the prelimbic
cortex either led to an inability to chose between good and bad
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options (undecided behavior) or induced inflexibility in behavior,
similarly to OFC lesions. Moreover, c-fos activity in the mPFC was
found to differentiate between good and poor performers in the
RGTreward or quinine and RGTone session reward and time-out (de Visser
et al., 2011b; Fitoussi et al., in preparation). Interestingly, the rat
mPFC shares anatomical and functional homology with the ACC
and dlPFC in humans (Uylings and van Eden, 1990; Brown and
Bowman, 2002; Uylings et al., 2003). These areas are involved in
IGT performance in humans (Ernst et al., 2002; Bolla et al., 2004;
Fukui et al., 2005; Lin et al., 2008; Lawrence et al., 2009). The
ACC and dlPFC are specifically involved in a negative feedback
circuit of cortical control over limbic areas (Ridderinkhof et al.,
2004; Bechara et al., 2005). This top-down cognitive control circuit
controls decision-making on the basis of reward and punishment
(Quirk et al., 2000; Miller and Cohen, 2001; Rogers et al., 2004;
St Onge and Floresco, 2009a; Davis et al., 2010) and is suggested
to mediate predominantly the second part of the IGT, when a
preference for the advantageous decks has developed and perfor-
mance is mainly characterized by maintenance and exploitation
of the advantageous choice strategy (van den Bos et al., 2007).
Thus, activation differences in the mPFC in rats in the RGT may
be related to a weaker cognitive control system in poor vs. good
performers. In line with the aforegoing, inactivation of the mPFC
using a mixture of GABA-agonists muscimol and baclofen, ham-
pered task-progression in those animals which already showed
task-learning but not in those animals which were still in the
exploratory phase of the task (de Visser et al., 2011a). Further
experiments are needed to substantiate the role of the mPFC in
decision-making using the different RGT models.

Sub-cortical areas and RGT
Apart from cortical areas, the ventral striatum was found
to be differentially recruited in good vs. poor performers in
RGTreward or quinine (de Visser et al., 2011b). More specifically, c-
fos induced activation was higher in the nucleus accumbens core
(NaC) but lower in the nucleus accumbens shell (NaS) in good
performers compared to poor performers, suggesting distinct roles
for the nucleus accumbens subareas in rat decision-making. As Yin
et al. (2008) argued, the NaC may be involved in more advanced
decision-making processes than the shell, thus reflecting the more
advanced performance of the good decision-makers. Moreover,
the NaC has been implicated in impulse control and behavioral
flexibility (Cardinal et al., 2001; Christakou et al., 2004; Pothuizen
et al., 2005; Floresco et al., 2006), but see (Murphy et al., 2008),
which may suggest that good decision-makers are better at devel-
oping a behavioral strategy that is directed to the long-term gain
of the advantageous option as opposed to the immediate gain of
the disadvantageous option.

The amygdala has also been associated with IGT performance,
in that patients with bilateral lesions to this brain region showed
a very similar pattern of choice on the IGT as vmPFC patients,
choosing more often from the disadvantageous decks (Bechara
et al., 1999). A similar pattern of choice has recently been observed
using the RGTreward or time-out following bilateral lesions to the
BLA, in that lesions made after animals had acquired the task
lead to an increase in preference for the disadvantageous options.
Interestingly, lesions made prior to acquisition of the task strongly

resembled the effects of OFC lesions made at the same time point,
in that both groups of lesioned animals were slower to adopt the
correct strategy as compared to sham controls (Zeeb and Win-
stanley, 2011). Such data suggest that the OFC and BLA may be
working together to optimize choice behavior when the odds of
reinforcement are still unclear. These results are in accordance
with the finding that the level of ambiguity in choices was posi-
tively correlated with the level of activity in the OFC and amygdala
(Hsu et al., 2005; Lawrence et al., 2009). The fact that BLA lesions
still affected decision-making once the task had been learned sug-
gests that decreased activity in this region may precipitate an
increase in risky choice, and that this area is involved in main-
taining an optimal decision-making strategy under risk even after
the cost–benefit contingencies have been acquired.

In conclusion, neural circuitry comprising the PFC, striatum,
and amygdala appears to modulate decision-making in RGT mod-
els, and the effects observed are largely consistent with findings
in humans. Altered connectivity between cortico-striatal-limbic
circuitry has been implicated in various disorders, such as schiz-
ophrenia, drug addiction, OCD, and anxiety disorders. The RGTs
may therefore contribute to an increased understanding of the
pathophysiology of these disorders. Comparing the findings of
lesion and c-fos activation studies across the RGT models will help
to further validate their use, and may provide new insight into the
neural circuitry involved in this form of decision-making. More-
over, the somatic marker hypothesis could be addressed in all the
RGTs during the exploration phase of the tasks, i.e., when choices
evolve with time before reaching a stable level (exploitation phase).
Measures of blood pressure, heart rate, associated with behavioral
activity could serve as somatic markers in freely moving rats, by
radiotelemetry.

PREDICTIVE VALIDITY OF THE RGTs
Given that low serotonin (5-HT) function has been observed in
problem gamblers, and that selective 5-HT reuptake inhibitors are
currently used as a treatment for this disorder, Zeeb et al. (2009)
investigated the effects of acutely decreasing 5-HT release using
the 5-HT1A receptor agonist 8-OH-DPAT on performance of the
RGTreward or time-out. This compound impaired performance, sig-
nificantly increasing choice of less advantageous options (P1, P3)
and decreasing choice of the best option (P2). These effects were
effectively blocked by co-treatment with the highly selective 5-
HT1A receptor antagonist WAY100635. However, it remains to be
established whether these effects are due to activation of inhibitory
5-HT1A receptors located pre-synaptically in the raphe nuclei, or
post-synaptically in limbic and cortical brain regions.

In addition to the effects of acute 5-HT manipulations, the
effects of receptor-specific dopamine agonists and antagonists
have also been explored using RGTreward or time-out (Zeeb et al.,
2009). Interestingly, D1 and D2/D3 receptor agonists (SKF 81297
and quinpirole or bromocriptine) did not affect animals’ choice
preferences on the task. However, acute administration of the D2

receptor antagonist, eticlopride, significantly improved task per-
formance by increasing the animals preference for the optimal
option (P2) while decreasing choice of both high reward–high
punishment options (P3, P4). This effect appears to be selective to
the blockade of D2 receptors, as administration of a D1 receptor
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antagonist, SCH 23390, did not alter decision-making (Zeeb et al.,
2009).

The psychostimulant amphetamine has been shown to prime
the motivation to play slot machines in pathological gamblers
(Zack and Poulos, 2009). Amphetamine treatment significantly
impaired the animals’ ability to perform the RGTreward or time-out

optimally. However, in contrast to the effects of the 5-HT1A recep-
tor agonist 8-OH-DPAT, amphetamine caused animals to become
more punishment/loss-sensitive, illustrated by an increased pref-
erence for P1, the option with the smallest amount of immediate
reward, but also the least amount (frequency and duration) of
punishment. Therefore, amphetamine may amplify animals’ sen-
sitivity to punishment (Zeeb et al., 2009). Although this behav-
ior cannot necessarily be classified as “risky,” placing too much
emphasis on a potential loss may be unfavorable in the long-
term (Kuhnen and Knutson, 2005) and can contribute to loss-
chasing behavior in real-life gambling situations (see discussion in
Campbell-Meiklejohn et al., 2008).

Overall, there are both similarities and discrepancies when
comparing these results to human findings. As previously dis-
cussed, high levels of prefrontal dopamine and corticolimbic
5-HT levels may correlate with worse IGT performance. There-
fore, the fact that amphetamine impaired decision-making on
RGTreward or time-out supports the hypothesis that increased levels
of dopamine or 5-HT impairs decision-making. However, acutely
decreasing dopamine levels in healthy volunteers by BCAA admin-
istration causes subjects to choose the disadvantageous options on
the IGT, especially during the exploitation phase of testing (Sevy
et al., 2006). One explanation provided by Zeeb et al. (2009), is
that the effects of various drug manipulations may rely on both
the basal levels of dopamine as well as task-related changes in
dopamine release. Therefore, the effects of dopamine, and per-
haps 5-HT, may follow an inverted U-shaped curve (see Neuro-
modulators). Interestingly, it is unclear whether an acute dose of
eticlopride is modulating activity of inhibitory D2 autoreceptors
and/or post-synaptic receptors. A blockade of D2 autoreceptors
may stimulate the firing of dopaminergic neurons, while sup-
pressing dopamine transmission post-synaptically (Seamans and
Yang, 2004). The net effect may be an enhancement of predic-
tion error signals, which would thus improve decision-making. It
should be noted that high PFC dopamine levels are proposed to
enhance exploration in the direction of alternative options that
might yield higher gains (Frank et al., 2009); however pharma-
cological manipulations were performed once animals had been
trained on the RGTreward or time-out, and therefore did not assess
the ability of these drugs to alter task acquisition.

As amphetamine increased the saliency of the punishment sig-
nals in RGTreward or time-out, it may be suggested that this effect
was caused by an abnormal increase in dopamine. However, this
explanation contrasts with the finding that COMT Met/Met indi-
viduals have an attentional imbalance in favor of rewards (van den
Bos et al., 2009b). One possible explanation is that amphetamine
may be causing rats to become more risk-averse through increases
in other neurotransmitters (such as 5-HT). Another possibility
is that animals received an acute treatment in the study by Zeeb
et al. (2009), whereas the human subjects tested in the study by
van den Bos et al. (2009a) was observing the effects of long-term

genetic abnormalities. Furthermore, the COMT polymorphism is
known to target the prefrontal cortex, whereas an acute dose of
amphetamine would have more widespread effects.

5-HT mediates a variety of central processes, such as emotion-
regulation, learning and memory, motivation, and behavioral inhi-
bition; these traits may be unified by sensitivity to external and
internal environmental stimuli, and integrated in order to facili-
tate associative learning processes (Branchi, 2010; Homberg and
Lesch, 2010). While serotonin may modulate behavioral flexibility
(e.g., Borg et al., 2009; Jedema et al., 2009) by such a mechanism, it
may have less of a role when a subject has to deal with a myriad of
stimuli. However, the 5-HT system is known to be involved in the
emotional response to aversive events (Cools et al., 2008). As both
the IGT and RGTs require subjects to integrate multiple stimuli
(e.g., reward magnitude, probability of reward, punishment dura-
tion), 5-HT may play a large role in incorporation the concept of
loss, and further research should be conducted to determine the
role of acute and chronic manipulations of 5-HT.

LIMITATIONS AND PITFALLS OF THE RGTs
All of the RGT models capture one or more features of the human
IGT, and have been validated to varying degrees. However, each
of the RGTs also has limitations, and no single task fully captures
all factors present in the IGT. If these limitations are taken into
account when interpreting the data, the rodent models show great
promise in being able to address research questions that cannot be
easily studied in humans.

One general limitation of all RGTs is that rewards are rep-
resented by food pellets – a primary reinforcer – rather than a
secondary reinforcer akin to money in the IGT. Given that rodents
foraging for food in uncertain environments and human behavior
in decision-making tasks share several features, it could be argued
that the use of food as a reward may add to the ethological validity
of the tasks. Moreover, utilizing food pellets presents some prac-
tical advantages in comparison to other types of rewards, such
as the possibility of precise magnitude quantification, easiness in
administration, and low impact on general psychological/physical
functions (in contrast with psychoactive drugs, such as amphet-
amine, which mimic the effects of primary reinforcers at central
level but also produce major side effects, e.g., the emergence of
hyperactivity). However, the incentive value of food reward nor-
mally depends on an animal’s motivational state (hunger/satiety;
Cardinal et al., 2002). Therefore, interpretation of choice behavior
in RGT models may be confounded by this highly uncontrol-
lable factor. Although manipulation of the animals’ drive for
food through the employment of different food deprivation lev-
els has been found to have no impact on decision-making in
the RGTone session reward and time-out model (Rivalan et al., 2009a),
this has yet to be determined for the other RGT versions. On
the other hand, the incentive value of money, as used in human
IGTs (see below) is also subjective to individual differences in
money-triggered incentive salience, therefore this may be less of a
concern.

By far the biggest concern with using food pellets as rewards
relates to the accuracy of any of the RGTs to model the concept of
loss. In the IGT, subjects materially experience financial“wins”and
“losses” every time a selection is made. The probability associated
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with each trial of incurring financial penalties appears to be central
for IGT performance (Fernie and Tunney, 2006): for instance, a
high frequency of losses can lead human subjects to discard decks
that are advantageous in the long-term (Chiu et al., 2008; Lin et al.,
2009). Given that sugar pellets are instantly consumed, rather than
accumulated over time and then eaten, it is impossible to take
sugar pellets away from animals once they have been won, i.e.,
truly reproducing the sensation of loss. As iterated above, in order
to model the concept of loss in the RGTs, punishment is accom-
plished by delivery of quinine-treated instead of normal food items
(RGTreward or quinine), the absence of reward (RGTreward probabilities),
or delays (RGTone session reward and time-out and RGTreward or time-out).
In all cases except for RGTreward probabilities, an actual decrease of
a positive reinforcer is achieved, since choosing disadvantageous
options has a negative impact on the total amount of food pellets
consumed during the test. Nevertheless, employing unpalatable
food or delays cannot reproduce an absolute resource deficit as a
final outcome.

Gain/loss frequencies associated with each response option can
be an important determinant of choice behavior during the IGT
(Chiu et al., 2008; Lin et al., 2009). Regarding this task variable
in the RGT models here examined, a number of discrepancies
with the original human task can be identified. For both the
RGTreward or quinine and RGTreward or time-out models, the disadvan-
tageous options are associated with large but less frequent imme-
diate rewards but larger more frequent punishments, while the
advantageous options are associated with more frequent, although
smaller, gains and infrequent but smaller losses. In contrast, within
the IGT, the frequency of punishment delivery is varied within
advantageous and disadvantageous options, but does not vary
between them, such that there is both an advantageous and dis-
advantageous options associated with a high and low frequency
of punishment; the only variable that differs is the size of the
respective rewards and punishments. From this perspective, the
RGT model which best captures the reinforcement contingencies
present in the IGT is the RGTone session reward and time-out which uses
two reward sizes (1 vs. 2 pellets) and two probabilities of a penalty
(0.5 and 0.25). This task would therefore be most appropriate
for the investigation of the “prominent deck B” phenomenon, in
which individuals find it difficult to avoid responding at the high
reward deck associated with the lowest probability of punishment.
However, it could be argued the probability of receiving a penalty
in this RGT version is still higher than that in the IGT (0.4 and 0.1
for decks A and B respectively).

The fact that the reinforcement contingencies in the RGT mod-
els are not exactly the same as the IGT may offer some unexpected
benefits. For example, in the RGTreward or time-out model, one of the
more advantageous options (P1) involves a higher frequency of
wins and shorter punishing time-out periods than the most opti-
mal strategy (P2). Choice of P1 yields more reward than the “high
risk-high reward”options (P3/P4) and certainly does not represent
a“risky”choice, but is nonetheless suboptimal and may reflect risk-
averse/overtly loss-sensitive decision-making. There is no such
component in the IGT, but it may be of interest nonetheless. Like-
wise, the fact that rats in the RGTreward probabilities model prefer the
safe option even though there is only a marginal difference in net

gain between the risky and advantageous options, may likewise
be informative when considering decision-making biases under
uncertainty.

It can be argued for both human and rodent IGT that sub-
jects may perform worse as a result of working memory deficits
and therefore have problems incorporating previous outcomes in
their subsequent choices. Indeed, humans with impaired work-
ing memory were found to perform worse on the IGT (Bechara
et al., 1998; Suhr and Hammers, 2010). Furthermore, discrimi-
nation learning, reversal learning and attentional capacities, pun-
ishment and reward sensitivity may all affect performance but
are difficult to dissect within the IGT. In rodents, specific tasks
have been widely employed to address these processes and may
be combined with RGT to elucidate how different learning and
decision-processes are interweaved in a complex decision-making
task like the IGT.

CONCLUSION
Poor decision-making is a core deficit of major psychiatric disor-
ders, and the identification of the underlying neural mechanisms
will importantly advance both the diagnosis and treatment of these
disorders. Animal models of affective decision-making provide an
important tool in achieving this goal. In this review we discussed
four RGTs that model specific aspects of the human IGT. In all
these tests animals appear to use strategies that resemble those
used by humans. That is, initially the animals explore the different
choice options, but thereafter show a consistent behavioral pattern
in which they attain to a given strategy. Lesion and immunohis-
tochemistry studies have thus far shown that RGT performance is
modulated by a similar neural circuitry as in humans, involving
parts of the PFC, the nucleus accumbens, and BLA. Factors like the
perceived value of the wins and losses, probability and time, and
the integration of this information by neuromodulators dopamine
and serotonin play an important role in guiding choice.

Because carefully controlled longitudinal studies in humans
are hampered by practical issues, the RGTs provide new oppor-
tunities to investigate to what extent pre-existing changes in
decision-making predict the development and treatment out-
come of psychopathologies under influence of genes, stress, or
the availability of drugs of abuse (Potenza, 2009). Although pre-
vention is hard to achieve, even when risk factors have been
identified, improvements in diagnosis may aid in the design of
individualized therapies. Obviously, much remains to be done
before we are able to use RGTs for this purpose, but the grow-
ing interest, and concomitantly, the development and validation
of RGTs, provide heuristically useful data. While the available
RGTs need further validation, one option that should be con-
sidered is whether the different RGTs should be used in parallel,
or integrated into a more uniform model to investigate the factors
and mechanisms associated with impaired decision-making. One
potential advantage to maintaining the different models is that
they all have distinct strengths. Together, comparisons between
results obtain in the different RGTs are expected to provide sig-
nificant contributions to our understanding of a broad range
of neuropsychiatric illnesses, which will be of great benefit to
society.
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