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Abstract—This work proposes a novel experimental and
mathematical framework to determine the statistical models
for the Internet of Things (IoT) data traffic. Conventionally, it
is assumed that the data packet generation for IoT based appli-
cations follows a Poisson process with exponentially distributed
packet inter-arrival time. Based on such generalized premise,
majority of the network related theoretical and practical analysis
of the IoT platforms are carried out. Based on empirical data for
a smart home application recorded for over 10 weeks duration
using proposed IoT subsystem, in this paper we estimate the
empirical statistical distribution of the IoT data traffic generated
by temperature, light intensity and motion sensors. The inter-
arrival between the data packets generated from different
sensing modules of the IoT smart home application subsystem
is determined. The Empirical Cumulative Distribution Function
(ECDF) of the estimated time duration is fitted with few of the
well-established classical statistical distributions using Method
of Moments (MoM) and Maximum Likelihood (ML) estimation
techniques. The goodness of fit is quantified using Kolmogrov-
Smirnov (KS) test. The parameters of the fitted distributions
are determined as a function of the physical input parameters.
The results reveal source IoT traffic does not follow a Poisson
process which is conventionally assumed in the literature, but
rather depends on the type of application.

Index Terms—KS-Kolmogrov Smrinov Test, IoT-Internet-of-
Things, D2D-Device-to-Device, 3GPP, Traffic Modelling.

I. INTRODUCTION

Communication networks at present and in future will
not be just about connecting people, but instead evolving
into billions of interconnected smart machine-type devices
that enable automatic data collection with minimal or no
human intervention. This concept, known as the Internet
of Things (IoT) [1], [2] is seen as the next stage of the
information revolution. IoT paradigm used in conjunction
with social networking concepts treating physical param-
eters as social objects [3] is another upcoming area that
incorporates the physical world with virtual cyber space.
In order to realize the vision to make the concept of IoT
all-pervasive, researchers have come up with several real
time IoT subsystems which are highly efficient, robust, scal-
able and reliable. Different designing and implementation
challenges of one such efficient IoT subsystem prototype is
discussed in [4]. End user test cases like smart home appli-
cations, industrial equipments monitoring and healthcare
are few of the classical examples where the IoT paradigm
is used extensively.

While mobile networks will certainly support many of
the anticipated new smart IoT services, they have histor-
ically been designed to support human-related services
and as such are not perfectly suited to support the new

machine-based IoT services, which have a different set of
features and requirements. It is quite evident that the next
generation cellular communication network will depend
significantly on the IoT data traffic. Therefore, it is essential
to model the data traffic for the IoT based applications.
To this end few state of the art that has been proposed
so far includes [5]-[8]. Even similar traffic models are
considered by the next generation mobile communication
standardization body 3GPP which considers Poisson pro-
cess distribution of data traffic generation [9] and [10].
However, in terms of statistical traffic modelling all the
works described above are primarily theoretical in nature.
Furthermore, majority of the existing work does not take
into account any empirical data for specific applications
or sensor type recorded using practical IoT subsystem for
over a considerable duration of time. Therefore, to the
best of our knowledge there are no or too few literatures
available that have addressed empirical data based IoT
traffic modelling. In this work, we have determined the
statistical traffic models for realistic indoor smart home
end-user test case which is not available in literature. Data
was obtained for ambient temperature, light intensity and
motion detection using appropriate sensors and our in-
house developed Raspberry Pi based IoT subsystem for over
10 weeks [4]. Most theoretical work considers that the IoT
data is generated following a Poisson process but this work
is based on real data and finds the distribution of the inter-
arrival time of the reported data packets that fits the best.
Exhaustive numerical analysis and analytical tools were
then used to determine statistical distributions which could
best fit different application types for a single node-multi-
sensor differential reporting scheme. The rest of this work
is organized as follows. Section II contains the description
of the experimental setup and the methodology. Section III
describes the techniques used towards statistical fitting of
the inter-arrival duration of the data packets, Section IV
contains the analysis of the empirical data and Section V
contains the conclusion.

II. EXPERIMENTAL PLATFORM AND METHODOLOGY

A. Experimental Setup

Fig. 1, shows the sensor node that replicates smart
home scenario [4]. Individual sensor node comprises six
sensor modules (element 1 to 6). These sensor components
are connected to a Raspberry Pi minicomputer which is
labelled at element 7. It facilitates connection to the cen-
tral processing unit through USB WiFi adapter marked as
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Fig. 1. Raspberry Pi assisted proposed IoT subsystem [4]

element 8. There are capacitive touch sensors (element 1
and 2), motion sensor (element 3), light sensor (element
4), temperature sensor (element 5) and an image sensor
module (element 6) in the node. However, in this paper we
are focussing primarily on the temperature, light intensity
and the motion sensor data which are typically found on a
smart home environment. In this work for the temperature,
MPL3115A2 sensor (Adafruit 1893) is used. For the motion
data, Passive infra-red Passive infra-red (PIR) motion sensor
HC-SR501 and in case of the light data TSL2591 sensor
(Adafruit 1980) are considered. The detailed sensor spec-
ifications along with the embedded system block diagram
and software implementation can be referred from [4].

B. Differential Data Reporting scheme and Inter-arrival
Time estimation

The amount of IoT traffic generated strongly depends on
the reporting strategy. Furthermore, the reporting strategy
could be periodic or differential. In periodic reporting
scheme the recorded data is periodically transmitted to
the gateway. Whereas, in differential reporting scheme a
data packet transmission is assumed when the absolute
difference in the physical parameter (∆D) for temperature
and light intensity is greater or smaller than a predeter-
mined threshold as per the system design requirement. The
analysis of the periodic reporting strategy is relatively trivial
as compared to differential reporting strategy since the
inter-arrival time is deterministic. In differential reporting
scheme the inter-arrival time between the data packet
generation will be a random variable as it is unknown when
∆D will be satisfied thus making it non-deterministic. Our
motivation is to model the IoT traffic for the differential
reporting scheme by estimating the distribution of the inter-
arrival time of data packet generation and reporting.

In this work, simple data collection strategy is used to
record the data where proposed IoT subsystem senses and
samples the data at every 200 ms interval for 10 weeks. The
data is then transferred and stored at the CPU back-end.

The differential input parameter denoted as ∆D for the
temperature data is varied from 0.1 to 5 ◦C and the light
intensity data is varied from 20 to 200 lux respectively. Once
the parameter value which exceeds the input threshold is
obtained, the initial data point gets updated and stored as
that value of the physical parameter and its corresponding
index. The process is continued throughout the length of
the data vector.

III. STATISTICAL FITTING OF THE INTER-ARRIVAL TIME

The observed inter-arrival times from the captured ex-
perimental data were processed to calculate the Empiri-
cal Cumulative Distribution Function (ECDF) and then it
was used to fit the distribution models. The inter-arrival
times are random variable as the time duration among
the parameter fluctuations are non-deterministic. Upon
estimation of the ECDF, next step is to determine the
statistical distribution which would provide best fit to the
ECDF. The location, shaping and scaling parameters of the
best fitted distribution are subsequently determined using
either Method-of-Moments (MoM) or Maximum Likelihood
Estimation (MLE) technique. The best fit is quantified in
terms of the Kolmogrov-Smrinov distance denoted as DK S
which is the maximum of the absolute difference value
between the empirical CDF and the fitted statistical CDF
estimated at each sample point and expressed as:

DK S = max
{

abs
(
F EC DF

X (x)−F f i t ted
X (x)

)}
(1)

Seven classical distribution functions are considered in
this work [11]. These are Exponential, Generalized Ex-
ponential, Pareto, Generalized Pareto, Gamma, Log Nor-
mal and Weibull Distributions. Numerical fitting is based
on Method-of-Moments (MoM) and Maximum Likelihood
(ML) [12]. In MoM technique, statistical moments of all the
distributions mentioned above in terms of their location,
scaling and shaping parameter are equated with the first
and the second order moments (mean and variance) of the
available sample population. Here, the sample population
is the vector of inter-arrival times denoted as (X ) where
xi is each element of the vector such that (xi ∈ X ) for
i = {1,2...N } and N is the maximum length of the vector X
or the maximum number of real and finite feasible inter-
arrival durations. Subsequently, the location, shaping and
the scaling parameters of the fitted distributions are deter-
mined along with their respective Cumulative Distribution
Function (CDF). The CDF of the fitted distributions which
best fits the ECDF based on the KS metric is selected as
the best fitting distribution for that specific ∆D.

In ML estimation, the log likelihood factor is maximized
in terms of the shaping and the scaling parameter of the
distribution. The minimum value (µ) does not need to be
included in the equations as it is estimated as the minimum
observed value in the vector X. The Log-Likelihood function
is determined in terms of the Probability Density Function



(PDF) of the distribution denoted as fX (x). The PDF is
which is also a function of the scaling (λ) and shaping (α)
and is given by the derivative of the CDF as

fX (xi ,λ,α) = ∂FX (xi ,λ,α)

∂xi
(2)

The Likelihood function and the Log-Likelihood function
are given by

L (x,λ,α) =
N∏

i=1
fX (xi ,λ,α)

logL(x,λ,α) = log
N∏

i=1
fX (xi ,λ,α)

logL(x,λ,α) =
N∑

i=1
log fX (xi ,λ,α)

(3)

The Log-Likelihood Function now needs to be maximized
using other numerical optimization techniques using gradi-
ent descent, interior region method, etc. This would provide
the desired scaling and shaping parameters of the fitted
distribution. Upon estimation of the fitted distribution,
similar to that of the Method of Moments the KS distance
can be estimated to provide the best fit.

IV. ANALYSIS OF THE EMPIRICAL DATA

A. Temperature Data

Table I shows the DK S values between the ECDF and
different standard statistical distributions of the inter-arrival
time duration for differentially reported temperature data
∆T. It is clearly observed from the first row of the table that
the exponential distribution provides a very bad fit across
all the ∆T values ranging from 0.1 to 2.9 ◦C. Therefore
the Poisson process model, which assumes exponentially
distributed inter-arrival times, is not realistic for the tem-
perature reporting application. The threshold differential
temperature fluctuation is varied from 0.1 ◦C to 2.9 ◦C. It
is observed that the minimum KS distance for the temper-
ature data using either method of moments or Maximum
Likelihood estimation technique for ∆T= 0.1 ◦C is 0.237,
∆T= 0.5 ◦C is 0.0837, ∆T= 0.9 ◦C is 0.1178 and ∆T= 1.3
◦C is 0.0435, all following Weibull Distribution marked in
bold italics. While for ∆T= 1.7 ◦C is 0.0418 with Gamma
Distribution and for ∆T= 2.9 ◦C is 0.0454 with Generalized-
Pareto Distribution. Furthermore, it is also observed that in
case of Weibull Distribution, the KS distance at ∆T= 1.7 ◦C
is 0.0453 and for ∆T= 2.9 ◦C is 0.0558 marked underlined. It
is clearly evident that the difference between the minimum
DK S values using the Gamma and Generalized-Pareto dis-
tribution as compared to Weibull Distribution at ∆T= 1.7
◦C and ∆T= 2.9 ◦C is not widely different. Therefore, it can
be concluded that the Weibull Distribution provides overall
the best fit for all the ranges of the temperature difference
parameter ∆T ranging from 0.1 to 2.9 ◦C .

Upon numerical computation of the KS distances for
different temperature values for the Weibull Distribution,
the location parameter (µ), the shaping parameter α and
scaling parameter λ is estimated for all the values from
0.1 to 5◦ C with an increase of 0.1 ◦C. Once the values

are obtained, they are interpolated with higher resolution
and then conventional curve fitting technique is applied
using MATLAB curve fitting toolbox to obtain a generalized
analytical expression for the µ, λ and the α parameters as
a function of temperature increase. From simulation, the
best analytical fit turns out be Generalized Gaussian which
is simply sum of weighted Gaussian exponentials. Based on
these analytically calculated µ, λ and α values, the Weibull
Distribution over inter-arrival times (X ) is estimated for a
specific temperature difference value (∆T). The KS distance
is then measured with respect to the Empirical CDF of the
X for that given value of ∆T. The values of the location,
scaling and the shaping parameter are expressed as

λ (∆D) =
K∑

i=1
ai e

−
(
∆D−bi

ci

)2

(4)

α (∆D) =
K∑

i=1
ai e

−
(
∆D−bi

ci

)2

(5)

and

µ (∆D) =
K∑

i=1
ai e

−
(
∆D−bi

ci

)2

(6)

where, D=̂T in case of temperature data. In (4)-(6), K =
8. The coefficients ai , bi and ci for the α, λ and the µ
values are shown in Table II(a), (b) and (c). Fig. 2 shows
the curve fitting for the scaling, the shaping parameter
and the location parameters for Weibull distribution over
reported differential temperature ∆D= ∆T. As evident from
the figures, the data points do not follow a linear or close
to linear fit and any fundamental curve fitting technique to
obtain the fit for the parameters would result in wrong KS
distance estimation which would become very unrealistic.
Therefore, from a class of a number of fitting techniques
available in the MATLAB curve-fitting toolbox that included
a class of curve fitting options like Linear, Polynomial,
Exponential, Fourier, Sum of Sines, Rational Power, Weibull,
etc. we selected 8-th order Generalized Gaussian fit as it
provided the best curve fitting for majority of the shaping,
scaling and the location parameters. Fig. 3 shows the
comparison between the minimum of the KS distances
(DK S ) obtained numerically through Method-of-Moments
(MoM) and Maximum Likelihood (ML) numerical fitting
technique compared to the distribution whose parameters
are computed through Matlab based curve fitting technique
and the Analytical Fit obtained using the shaping, scaling
and the location parameters in terms of ∆T using the
Generalized Gaussian Fit. It could be observed that both
the numerical and the analytical KS distances are less than
10%.

B. Light Intensity Data

Table III compares the KS distances for the light intensity
data with ∆L ranging from 20 lux to 140 lux. Similar to Table
I like the previous case of temperature, the exponential
distribution fails in case of the luminous intensity data
for ∆L ranging from 20 to 200 lux. The DK S for expo-
nential distribution is much higher than acceptable range



Table I. KS Distances of different statistical distributions- Differential Temperature Reporting (in ◦C) for 10 weeks duration

Distribu-
tions

∆T= 0.1 ◦ C 0.5 ◦ C 0.9 ◦ C 1.3 ◦ C 1.7 ◦ C 2.9 ◦ C
MoM ML MoM ML MoM ML MoM ML MoM ML MoM ML

Exp 0.2402 0.2402 0.1757 0.1757 0.2563 0.2563 0.1269 0.1269 0.0529 0.0529 0.0754 0.0754
G.Exp 0.1634 0.1634 0.1168 0.1168 0.1557 0.1557 0.0548 0.0548 0.0475 0.0475 0.0823 0.0823
Pareto 0.6353 0.2076 0.8793 0.4121 0.7738 0.3391 0.9925 0.4828 0.7926 0.3353 0.7120 0.3079
G.Pareto 0.1677 0.0879 0.1051 0.1050 0.2208 0.2288 0.0982 0.0706 0.0519 0.0523 0.0454 0.0511
Log-N 0.1882 0.0445 0.1545 0.1882 0.2844 0.1939 0.1929 0.0591 0.1522 0.0837 0.1107 0.0617
Gamma 0.1412 0.1032 0.1008 0.1355 0.1649 0.2047 0.0487 0.0543 0.0479 0.0418 0.0757 0.0729
Weibull 0.0237 0.0563 0.0877 0.0837 0.2002 0.1178 0.0515 0.0435 0.0495 0.0453 0.0558 0.0770
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Fig. 2. a. Scaling Parameter (λ) vs Temperature Difference b. Shaping Parameter (α) vs Temperature Difference c. Location Parameter
(µ) vs Temperature Difference, all for Weibull Distribution

Table II. Parameters obtained analytically for Temperature data

(a) λ parameter

ai bi ci
-3.618×104 4.777 0.08703
1.64×104 4.881 0.03525
4.087×104 4.114 0.1401
-4.31×104 4.645 0.3241
0 15.87 1.709
8.102×104 3.77 0.2145
-6.047×104 3.758 0.5912
3.657×105 6.121 2.55

(b) α parameter

ai bi ci
1.079 5.005 0.6403
0.7986 3.796 0.3808
0.9632 2.141 1.184
0.394 3.13 0.3048
0.1924 1.464 0.3261
0.1626 1.181 0.1159
0.7043 0.2171 0.4053
0.3563 4.285 0.2248

(c) µ parameter

ai bi ci
2797 1.611 0.03361
2979 1.513 0.09541
653.4 1.348 0.188
-2759 0.7529 0.02518
-118.1 1.206 0.0105
1640 0.7609 0.1446
4328 1.209 0.8489
2021 0.5533 0.02146

of 10%. Therefore, Poisson process is not a valid case in
this scenario either. It is observed that for 20 and 40 lux,
Generalized-Pareto distribution provides best fit with KS
distance 0.0261 and 0.0279 respectively under ML fitting.
For 60, 80 and 100 lux, Log-Normal distribution provides
best fit with KS distances of 0.0290, 0.0275 and 0.0456
under ML fitting. For 140 lux Gamma distribution is the
best fit with KS value of 0.0674. Similar to the case of
temperature data, at ∆L= 20, 40 and 140 lux the KS values
of the Log-Normal Distribution provides a reasonably close
fit KS value 0.0660, 0.0401 and 0.0744 marked with under-
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Fig. 3. Numerically and Analytically computed KS distances vs
Temperature Difference, for Weibull Distribution

line. The difference between these values underlined with
the minimum KS distance under Generalized-Pareto and
Gamma distribution marked in bold italics is not significant.
Furthermore, with Log-Normal Distribution at ∆L= 60 and
80 lux, the KS distance is less than 3% which is almost a
perfect fit. Therefore, we select the Log-Normal Distribution
as best fit. Fig. 4 shows the scaling parameter λ, the location
parameter µ and the KS distances is shown. Similar to that
of the temperature data, in case of ∆L data the analytical
expressions for the distribution parameters are estimated
as a function of ∆L. In this case the parameters λ and µ
can be estimated as a function of ∆L from (4) and (6) with
coefficients {ai ,bi ,ci } obtained Table V(a) and Table V(b)
for corresponding λ and µ.

If we closely examine Fig. 4(c), it is observed that as we
increase the value of ∆L beyond 140 lux, the value of the KS



Table III. KS Distances of different statistical distributions- Differential Light Intensity Reporting (in degree Lux) for 10 weeks duration

Distribu-
tions

∆L= 20 lux 40 lux 60 lux 80 lux 100 lux 140 lux
MoM ML MoM ML MoM ML MoM ML MoM ML MoM ML

Exp 0.6120 0.6120 0.5761 0.5761 0.5473 0.5473 0.4975 0.4975 0.4324 0.4324 0.3095 0.3095
G.Exp 0.4379 0.4379 0.5487 0.5487 0.5259 0.5259 0.3701 0.3701 0.1629 0.1629 0.0867 0.0867
Pareto 0.4697 0.0962 0.6898 0.2206 0.8042 0.2839 0.8332 0.2764 0.8463 0.2779 0.9236 0.3759
G.Pareto 0.5319 0.0261 0.4946 0.0279 0.4638 0.0395 0.4267 0.0587 0.3731 0.0919 0.2512 0.0750
Log-N 0.2401 0.0660 0.2951 0.0401 0.3364 0.0290 0.3782 0.0275 0.3720 0.0456 0.2950 0.0744
Gamma 0.4298 0.2397 0.5350 0.2128 0.5015 0.1899 0.3388 0.1533 0.1350 0.1057 0.0674 0.0727
Weibull 0.1227 0.1064 0.1352 0.0893 0.0940 0.0771 0.1138 0.0735 0.1560 0.0527 0.1094 0.0720

Table IV. KS Distances of different statistical distributions- Differential Light Intensity Reporting (in degree Lux) for 10 weeks duration

Distribu-
tions

∆L= 150 lux 160 lux 170 lux 180 lux 190 lux 200 lux
MoM ML MoM ML MoM ML MoM ML MoM ML MoM ML

Exp 0.2899 0.2899 0.3015 0.3015 0.2504 0.2504 0.3221 0.3221 0.2295 0.2295 0.1379 0.1379
G.Exp 0.0632 0.0632 0.1209 0.1209 0.3196 0.3196 0.3829 0.3829 0.1234 0.1234 0.1052 0.1052
Pareto 0.9391 0.3588 0.9671 0.3956 0.8456 0.2980 0.9264 0.3802 0.8329 0.2907 0.8278 0.3388
G.Pareto 0.2363 0.0976 0.2402 0.0889 0.1905 0.0853 0.2561 0.0911 0.1970 0.1673 0.1294 0.1311
Log-N 0.2917 0.0801 0.2813 0.0698 0.1807 0.0744 0.2123 0.0695 0.2546 0.1633 0.2040 0.1979
Gamma 0.0664 0.0717 0.1021 0.0952 0.2915 0.0854 0.3541 0.1287 0.1162 0.0970 0.1041 0.1260
Weibull 0.1229 0.0756 0.1012 0.0638 0.0973 0.0513 0.1059 0.0631 0.0961 0.1042 0.1053 0.1272

distance is gradually increasing. Beyond 180 lux the KS dis-
tance under Log-Normal Distribution is more than 0.1 that
is almost over 10% and inappropriate to be considered as
best possible fitting distribution. Therefore, the KS distances
with other distributions are investigated with ∆L ranging
from 150 to 200 lux in Table IV. It is observed that at ∆L =150
lux Generalized-Exponential Distribution provides best fit
with KS distance of 0.0632. From ∆L= 160 to 180 lux, Weibull
Distribution provides best fit under ML estimation with KS
distances of 0.638, 0.0513 and 0.631 respectively whereas at
∆L= 190 lux it is Weibull Distribution as well under MoM
Estimation with KS distance equals 0.0961. At ∆L=200 lux
the best fit is provided by the Gamma Distribution with
KS value of 0.1041. However, at ∆L =150 and 200 lux the
KS values under Weibull Distribution is 0.0750 and 0.1053
marked underlined in bold italics. Therefore, it could be
easily observed that these KS distances are not too far
from the best fit KS value of 0.0632 and 0.1041. Hence, ∆L
ranging from 150 to 200 lux, Weibull Distribution could be
considered as the best possible fit. Like Fig. 2, in Fig. 5 the
shaping, scaling and the location parameters are shown for
∆L ranging from 150 to 200 lux under Weibull Distribution.
The analytical expressions for λ, α and µ in terms of ∆L
are determined which follows again a Generalized Gaussian
expression as per (4) to (6) with the coefficients ai , bi and ci
given in Table VI(a), VI(b) and VI(c) for Weibull distribution.
Fig. 6 shows the KS distances for the ∆L values ranging from
150 to 200 lux. It is clearly observed both the empirical and
the estimated analytical KS distances are 10%.

C. Motion sensors

Table No. VII, VIII and IX shows the KS distance for the
involved inter-arrival times with reference to the motion
sensor data. Table VII shows the inter-arrival duration
between two ON- states of the motion sensor data. It
follows a similar trend like the previous results. The DK S for
the inter-arrival time between two successive ON-states of
the motion sensor does not follow exponential distribution
indicating it is not a Poisson process yet again. Pareto and
Generalized Pareto distributions are the best fit. Similarly,

Table V. Luminous Intensity- fitting parameter coefficients for Log-
Normal Distribution

(a) λ parameter

ai bi ci
0.4656 102.4 9.473
0.3321 115.3 5.533
0.3319 88.49 10.74
0.2029 127.6 4.575
0.5653 75.34 24.64
2.272 136.3 45.32
2.304 32.71 69.04
1.68 192.9 24.24

(b) µ parameter

ai bi ci
38.65 260.8 36.11
-0.3388 170.1 9.096
-0.404 159 1.508
-1.532 137.4 21.44
0.5592 135.5 9.772
0.4056 122 2.315
9.566 158.9 82.39
2.248 48.84 43.33

Table VI. Luminous Intensity- fitting parameter coefficients for
Weibull Distribution

(a) λ parameter

ai bi ci
3.261 ·104 1.712 0.259
8702 1.473 0.07715
2.235 ·104 1.078 0.3924
9349 0.5467 0.1693
7735 0.2264 0.2643
5353 1.255 0.03825
2.06 ·104 -0.6246 1.632
3070 -0.1823 0.1162

(b) α parameter

ai bi ci
1785 1.615 0.1328
-1785 1.615 0.1328
0.5182 1.149 0.415
0.4591 -1.6 0.3643
0.5354 0.2724 0.6343
0.1521 0.526 0.07169
0.5535 -0.8251 0.6655
0 -1.001 2.735 ·10−5

(c) µ parameter

ai bi ci
77.3 163.1 0.3403
62.54 166.6 0.587
70.8 165.1 1.036
34.99 161.6 .226
13.09 193.8 0.3571
-27.96 201.4 3.157
8.463 194.9 0.9891
2.995·1012 632.2 87.38

in Table VIII which is for the ON duration, the best fits are
Exponential and Generalized Pareto distributions for which
the KS distances are almost 5% and 6% respectively. Table IX
shows the KS distance for the OFF duration of the motion
sensor. It is similar to that of the two intermediate ON-
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Fig. 4. a. Scaling Parameter (λ) vs Luminous Intensity Difference b. Location Parameter (µ) vs Luminous Intensity Difference c.
Numerically and Analytically computed KS distances vs Luminous Intensity Difference, all for Log-Normal Distribution
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Fig. 5. a. Scaling Parameter (λ) vs Luminous Intensity Difference b. Shaping Parameter (α) vs Luminous Intensity Difference c. , Location
Parameter (µ) vs Luminous Intensity Difference, all for Weibull Distribution
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Fig. 6. Numerically and Analytically computed KS distances vs
Luminous Intensity Difference, for Weibull Distribution

states which Pareto and Generalized Pareto again proving
the best fit. This is mainly due to the fact that the order of
duration between two ON states and

the OFF states are similar. Furthermore, in our obser-
vation the time duration of the ON period or the period
of activity is much smaller as compared to the period
of inactivity. The Fig. 7 shows the fitted and empirical
CDFs for the two successive ON-states, the duration of
ON-states and the duration of OFF-states. In Fig. 7(a) and
Fig. 7(c) since the time duration between the initiation

Table VII. KS Distances of statistical distribution of inter-arrival
times between two successive ON-states of the motion sensor for
10 weeks

Distribution MoM ML
Exp 0.7428 0.7334
G.Exp 0.9456 0.1792
Pareto 0.1392 0.0388
G.Pareto 0.6807 0.0416
Log-N 0.2730 0.1364
Gamma 0.9404 0.3312
Weibull 0.4677 0.2296

Table VIII. KS Distances of statistical distribution of ON-durations
of the motion sensor for 10 weeks

Distribution MoM ML
Exp 0.0580 0.0580
G.Exp 0.0951 0.0951
Pareto 0.3454 0.1792
G.Pareto 0.0640 0.0634
Log-N 0.0798 0.0817
Gamma 0.0917 0.0718
Weibull 0.0801 0.2219

of two intermediate ON-duration and the OFF-duration
is high, therefore the x-axis is shown in the Logarithmic
scale. Table X shows the parameter values of the best fitting
distributions for the length between two successive ON
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Fig. 7. Fitted and empirical CDFs for: (a) two successive ON-states, (b) duration of ON-states, (c) duration of OFF-states.

Table IX. KS Distances of statistical distribution of OFF-durations
of the motion sensor for 10 weeks

Distribution MoM ML
Exp 0.7488 0.7454
G.Exp 0.9526 0.1631
Pareto 0.1157 0.0456
G.Pareto 0.6924 0.0164
Log-N 0.3138 0.0676
Gamma 0.9482 0.2940
Weibull 0.3953 0.1757

Table X. Best Fitting Distributions and their parameters for motion
sensors data

Time Duration Best-fit Dist. λ α µ
Between two ON Pareto 8.8 0.7442 −−
ON Exponential 0.1510 −− 1.8
OFF Gen. Pareto 0.0345 1.9692 0.0600

durations, length of the ON-duration and length of OFF
duration along with their parameter values.

V. CONCLUSION

Based on our findings from the real time data collected
for over 10 weeks we have thus found some counter
intuitive results. The traditional idea of assuming any data
packet generation process as Exponential or Poisson dis-
tributed is not always correct. For change in Temperature
parameter Weibull Distribution provides the best fit for
values ranging from 0.1 to 5 ◦C. In case of the change
in Luminous Intensity parameter, from 10 to 140 lux Log-
Normal Distribution provided the best fit while from 150 to
200 lux it is Weibull Distribution. The shaping, scaling and
the location parameters of the distribution which best fits
the empirical CDF are expressed as a function of the input
parameter. This will be helpful to emulate a real time IoT
traffic generation setup which could closely track the inter-
arrival periods of data packet generation and can be exten-
sively used for optimization of the next generation mobile
network architecture where IoT and M2M communication
will be an integral part.
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