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Abstract—Chance constrained optimal power flow (OPF) has
been recognized as a promising framework to manage the
risk from variable renewable energy (VRE). In presence of
VRE uncertainties, this paper discusses a distributionally robust
chance constrained approximate AC-OPF. The power flow model
employed in the proposed OPF formulation combines an exact
AC power flow model at the nominal operation point and
an approximate linear power flow model to reflect the system
response under uncertainties. The ambiguity set employed in
the distributionally robust formulation is the Wasserstein ball
centered at the empirical distribution. The proposed OPF model
minimizes the expectation of the quadratic cost function w.r.t. the
worst-case probability distribution and guarantees the chance
constraints satisfied for any distribution in the ambiguity set.
The whole method is data-driven in the sense that the ambiguity
set is constructed from historical data without any presumption
on the type of the probability distribution, and more data
leads to smaller ambiguity set and less conservative strategy.
Moreover, special problem structures of the proposed problem
formulation are exploited to develop an efficient and scalable
solution approach. Case studies are carried out on IEEE 14
and 118 bus systems to show the accuracy and necessity of
the approximate AC model and the attractive features of the
distributionally robust optimization approach compared with
other methods to deal with uncertainties.

Index Terms—optimal power flow, distributionally robust op-
timization, chance constraints, uncertainty, ambiguity

NOTATION

In this paper, boldface lower-case letter x represents a real
vector and its i-th element is denoted by xi. Boldface upper-
case letter A represents a matrix with its (i, j)th element
denoted by Aij . Random vectors are written as boldface lower-
case letter with tildes, i.e. ỹ. Given an index set S, the
subvector of x indexed by S is denoted by xS . The imaginary
unit is denoted by j. We use parentheses to construct vectors
from comma separated lists as (x,y, z) = [xT ,yT , zT ]T .
In addition, the following special symbols are used in our
problem formulation and derivation:
nb, nl Number of buses and lines.
R, S, L Index sets for reference bus, PV buses and PQ

buses, respectively.
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θ,v nb × 1 vectors of nominal bus voltage angles
and magnitudes.

f nl × 1 vector of nominal line MW flow.
Y ,G,B Y = G+ jB is the system admittance matrix.
B′ The susceptance matrix without shunt ele-

ments.
Gl, Bl nl × nb matrices with Glki = −Glkj = Gij ,

Blki = −Blkj = Bij , and other elements being
zeros.

p, q nb × 1 vectors of nominal active and reactive
power injection.

pg, qg nb × 1 vectors of nominal active and reactive
power injection from generators. pgi = qgi = 0
if no generator at bus i.

pw, qw nb × 1 vectors of nominal active and reactive
power injection from VRE.

pl, ql nb × 1 vectors of nominal active and reactive
power consumption of load.

pg,pg nb×1 vectors of upper and lower output power
limits of generators. pgi = pg

i
= 0 if no

generator at bus i.
α nb × 1 vectors of AGC participation factors of

generating units. αi = 0 if no generator at bus
i.

r, r nb× 1 vectors of upward and downward regu-
lating reserves of generating units. ri = ri = 0
if no generator at bus i.

c, c nb× 1 vectors of upward and downward regu-
lating reserves prices.

ξ̃ nb×1 random vectors representing forecasting
errors of VRE generation.

P A probability distribution (measure).
EP Expectation with probability distribution P.
P(Ξ) Set of all distributions with support Ξ.
(x)+ max{x, 0}.
A ◦B Hadamard product of matrix A and B, i.e.

Cij = AijBij if C = A ◦B.

I. INTRODUCTION

Large-scale VRE sources have been integrated into modern
power systems with ever-increasing penetration. The uncer-
tainties brought by VREs are no longer negligible and pose
considerable risk to power system security. Risk management
has been identified as one of the major challenges of inte-
grating high penetrations of renewable energy [1]. Therefore,
developing optimization models and solution approaches with
risk consideration is crucial for the reliable and economical
operation of power systems. In recent years, we have seen
extensive literature dealing with optimization of power system
operation under uncertainties.
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Stochastic programming (SP) [2], [3], robust optimization
(RO) [4]–[7] and distributionally robust optimization (DRO)
[8]–[16] have been employed to tackle uncertainties in power
system operation. SP assumes the uncertainties follow a known
probability distribution and transforms the stochastic problems
into deterministic ones either by sampling or by analytical
reformulation. On the contrary, RO does not require any
probabilistic information of the uncertainties. A deterministic
uncertainty set is constructed to include all possible realiza-
tions of the random variable. RO seeks strategies that perform
best w.r.t. the worst-case realization in the uncertainty set. In
fact, the uncertainties do obey some underlying probability
distribution, but this distribution is not known as a priori
and only some sample data is available. In other words,
the underlying true distribution is ambiguous to the decision
makers. To remedy the SP’s specificity and RO’s ignorance of
the probabilistic information, DRO assumes that the true dis-
tribution lies in an ambiguity set and immunizes the operation
strategies against all distributions in the ambiguity set. The
most popular ambiguity set is moment-based, i.e. the set of
all probability distributions with given mean and covariance
[10]–[13], [15]. However, only the first two moments do not
constitute a detailed characterization of the true distribution.
Especially when we have a large amount of data at hand,
much more probabilistic information can be extracted and
exploited not just the first two moments. Intuitively, the more
data is available, the more we know about the true distribution.
Therefore, a desirable ambiguity set should be made smaller
by incorporating more data. Moment-based ambiguity sets,
obviously, do not possess such feature.

In the framework of SP or DRO, the chance constraints,
which require the security constraints hold with a specified
probability level, have also been introduced to power system
operation problems, especially the OPF problem [14], [15],
[17]–[19]. In [14], [17], [18], by assuming the uncertainties
follow Gaussian or Student’s t distribution, the chance con-
straints are cast into second-order cone programming (SOCP)
constraints, and the uncertainties of the mean and covariance
are further considered to achieve distributional robustness.
In [15], [19], no assumption about the distribution type is
used. The chance constraints are required to be satisfied for
any probability distribution in the moment-based ambiguity
set. All above existing works employ the DC power flow
model without consideration for the voltage magnitudes and
reactive power, which may lead to unpractical and unsafe
operation strategy. Operated under the strategy obtained with
DC power flow model, the system could be exposed to great
risk of under- or over-voltage at some critical buses, and the
generators would be forced to violate the excitation limits.
Therefore, extending the chance-constrained OPF framework
to include AC power flow model is a crucial step toward a
better operation strategy under uncertainties.

In this paper, we propose a Wasserstein-metric-based dis-
tributionally robust chance-constrained approximate AC-OPF.
The contributions are as follows.

1) In the OPF formulation, to overcome the inaccuracy and
V/Q unconcern of DC power flow model, we develop a
hierarchical AC power flow model which is a combination

of the exact nonlinear AC model at the nominal operation
point and the approximate linear model developed in [20]
to represent the system response under uncertainties. It
largely inherits the accuracy of the full AC model and also
maintains the tractability of linear power flow model for use
in stochastic optimization.

2) We apply the recent results [21], [22] of data-driven
DRO with Wasserstein metric to the approximate AC-
OPF model. To our knowledge, this is the first time the
Wasserstein-metric-based ambiguity set is introduced to the
OPF problems, which provides a promising alternative for
the moment-based ambiguity set. The method is data-driven
without any presumption on the probability distribution
of the uncertainties. With only a limited number of data,
the chance constraints w.r.t. the underlying true probability
distribution can be robustly guaranteed. The more historical
data is available, the less conservative the solution is.

3) Note that the naive applications of the DRO approach
discussed in [21], [22] would lead to very unscalable im-
plementations, i.e. the computational burden grows heavily
with the number of data and dimension of uncertainties. To
overcome such drawbacks, beyond a direct application of
the general theories, the specific problem structures of the
proposed OPF formulation are fully exploited to develop a
scalable and efficient solution method.

II. PROBLEM FORMULATION

A. Power Flow and Its Control under Unceratainties

In a VRE integrated power system, the active and reactive
power balance is governed by the following equations:{

pg + pw − pl = P(θ,v)

qg + qw − ql = Q(θ,v)

(1a)

(1b)

where{
P(θ,v) = (G ◦W ◦ cosΘ +B ◦W ◦ sinΘ) 1

Q(θ,v) = (−B ◦W ◦ cosΘ +G ◦W ◦ sinΘ) 1

(2a)
(2b)

with W = vv> and Θ = θ1> − 1θ>. For any fixed
amount of renewable energy generation pw + jqw and load
demand pl+jql, the conventional OPF addresses the problem
of designing the optimal operation point (θ,v,pg, qg) which
minimizes the generation costs while satisfying the system
balance and security constraints. With increasing level of VRE
penetration, the power injections across the network are facing
continuous fluctuations due to the variability and unceratainty
of VRE. Under such circumstance, a deterministic optimal
operation point is no longer enough to guide the system
operation. Therefore, the control mechanism to couple with
renewable and load unceratinties must be taken into account
in the OPF formulation. The most widely used control systems
in response to volatility are the automatic generation control
(AGC) and automatic voltage regulation (AVR) shown in Fig.
1 and Fig. 2 [23]. The AGC is a centralized control scheme
to maintain the real-time active power balance by distributing
the system power imbalance to each generating unit according
to the corresponding participation factor. The AVR, on the
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other hand, is a decentralized control scheme to keep fixed
voltage magnitudes at the buses equipped with reactive power
scources. The most classic AVRs are those implemented in the
generator exicitation systems, shown in Fig. 2, which maintain
the stator voltages at the set values. With the implementation
of the AGC and AVRs, the trasition of system operation point
when renewable generation deviating from forecasting values
is completely determined by the power flow equations (1).
The new operation point can be computed by solving the
conventional power flow problem with one generator bus as
the reference bus, other generator buses as PV buses and the
rest buses as PQ buses. Therefore, the new OPF formulation
thus targets at deciding the optimal nominal operation point
(θ,v,pg, qg) as well as the participation factors α which pro-
vide a statistically economic and reliable system performance
under uncertainties. However, the system response under un-
certainties as described above is an inexplicit function given
by the nonlinear power flow equations (1), which poses great
challenge for formulating a tractable stochastic optimization
problem. To circumvent this difficulty, an explicit surrogate
formula is needed to approximate the exact implicit system
response.
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Fig. 1. Automatic Generation Control
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Fig. 2. Automatic Voltage Regulation

B. Linear Power FLow Response Model under Uncertainties

Recent advances in linear power flow model have opened
a way for developing simple explicit formula for system
response under uncertainties. The following linear power flow
(LPF) model was developed in [20]:[

p
q

]
= −

[
B′ −G
G B

] [
θ
v

]
(3)

f = Glv −Blθ (4)

where p and q are the nb × 1 vectors of nodal active and
reactive power injections. The reference bus and PV buses are
equipped with excitors or controllable reactive power com-
pensators to maintain the pre-scheduled voltage magnitudes,
and the reference bus is with fixed phase angle, typically 0.
The state variables are arranged in the following sequence:
θ = (θR,θS ,θL) and v = (vR,vS ,vL). Other variables

and coefficient matrices are ordered accordingly. By partially
inverting (3) and taking a incremental form, we have∆θS

∆θL
∆vL

 = −N−1

∆pS
∆pL
∆qL

−N−1H

 0
∆vR
∆vS

 (5)

[
∆qR
∆qS

]
= LN−1

∆pS
∆pL
∆qL

+ (LN−1H −M)

 0
∆vR
∆vS

 (6)

where

H =

B′SR −GSR −GSS
B′LR −GLR −GLS
GLR BLR BLS

 (7)

N =

B′SS B′SL −GSL
B′LS B′LL −GLL
GLS GLL BLL

 (8)

M =

[
GRR BRR BRS
GSR BSR BSS

]
(9)

L =

[
GRS GRL BRL
GSS GSL BSL

]
. (10)

Given a nominal operation point x = (θ,v,pg, qg), equation
(5) and (6) constitute the explicit formulas for calculating
system response under VRE and load uncertainties. Due to
the implementation of AVR, (5) and (6) are further simplified
as ∆vR = ∆vS = 0. The method in this paper can be
used to consider any form of power injection uncertainties.
But for ease of notation and without loss of generality, in
the description of our method, we only consider the VRE
uncertainties which are characterized by the random forecast-
ing errors ζ̃ of VRE active power generation. The VREs are
assumed to maintain a fixed power factor cosφ at the points of
connection. Under the regulation of AGC, the generating units
respond affinely to the total forecasting errors. As a result, the
incremental active and reactive power injections in equation
(5) and (6) become random variables (with tildes) as follows:

∆p̃S = −(1>ζ̃)αS + ζ̃S

∆p̃L = ζ̃L

∆q̃L = σζL

(11a)

(11b)
(11c)

where σ = sinφ/cosφ with cosφ being the mandated power
factor of wind farms.

In summary, submitting (11) into (5)(6) along with (4) and
re-arranging the equations in an orgranized form, we obtain
the following expression for system responses:

ṽL = (1>ζ̃)Avα+Bvζ̃ + vL

q̃R∪S = (1>ζ̃)Aqα+Bqζ̃ + qR∪S

f̃ = (1>ζ̃)Afα+Bf ζ̃ + f

(12a)

(12b)

(12c)

where Ai,Bi, i = v, q, f are all constant matrices decided
by network parameters and nominal line MW flow f is given
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by (4). To facilitate further discussion, we rewrite (12) in a
component-wise form as follows:

ṽi = vi(x,1
>ζ̃,Bv

i:ζ̃), i ∈ L
q̃j = qi(x,1

>ζ̃,Bq
j:ζ̃), j ∈ R ∪ S

f̃k = fk(x,1>ζ̃,Bf
k:ζ̃), k = 1, 2, · · · , nl

(13a)

(13b)

(13c)

where Bv
i: denotes the ith row of matrix Bv and this notation

extends to other matrices as well; the explicit formulas for
vi(·), qj(·) and fk(·) can be easily seen from (12).

C. Problem Formulation of Distributionally Robust Chance-
constrained Approximate AC-OPF

Based on the discussion in the last subsection, we formu-
late the distributionally robust chance-constrained approximate
AC-OPF as follows:

min
x

sup
P∈P̂N

EP

{
nb∑
i=1

fi

(
pgi − (1>ζ̃)αi

)
+ c>r + c>r

}
(14)

s.t.



pg + pw − pl = P(θ,v)

qg + qw − ql = Q(θ,v)

v ≤ v ≤ v
1>α = 1, α ≥ 0

pg − r ≥ pg, r ≥ 0

pg + r ≤ pg, r ≥ 0

inf
P∈P̂N

P
{
−r ≤ −(1>ζ̃)α ≤ r

}
≥ 1− ρ1

∀i ∈ L, j ∈ R ∪ S, k = 1, 2, · · · , nl :

inf
P∈P̂N

P {vi ≤ ṽi ≤ vi} ≥ 1− ρ2

inf
P∈P̂N

P
{
q
j
≤ q̃j ≤ qj

}
≥ 1− ρ3

inf
P∈P̂N

P
{
f
k
≤ f̃k ≤ fk

}
≥ 1− ρ4

(15a)

(15b)
(15c)

(15d)
(15e)

(15f)

(15g)

(15h)

(15i)

(15j)

where x = (v,θ,pg, qg,α, r, r); PN is an ambiguity set of
probability distributions constructed from historical data and
its explicit expression will be discussed in the next section.
The objective function (14) is the worst-case expectation
of generation and reserve costs in which the cost function
fi(·), i = 1, · · · , ng are convex quadratic functions of the
form:

fi(x) = ci2x
2 + ci1x+ ci0. (16)

with ci2, ci1, ci0 ≥ 0. Nolinear equality constraint (15a) and
(15b) ensure the active and reactive power balance at the
nominal opeartion point where the VRE generation exactly
match the forecasting values. Constraint (15c) sets the voltage
magnitude limits for all buses at the nominal opeartion point
and also for the reference and PV buses under perturbed
conditions. Constraint (15d) enforces the basic requirement for
participation factors in the AGC system. Constraint (15e) and
(15f) guarantee the reserve availability considering the output
limits of generating units. The adequacy of downward and
upward regulating reverse is ensured by distributionally robust
chance constraint (15g). Similarly, constraint (15h) ensures the

voltage quality for PQ buses, and constraint (15i) safeguards
the adequancy of reactive power for AVR at generator buses.
Finally, constraint (15j) guarantees the adequacy of transmis-
sion line capacity.

Remark 1: The OPF formulation (14)(15) combines the
exact nonlinear power flow equations (1) and the linear
approximate system response model (13). On the one hand,
this new problem formulation inherits the basic feature of
conventional AC-OPF by using the exact nonlinear power
flow to govern the system state at the nominal condition.
On the other hand, the linear approximate power flow re-
sponse model is employed to describe the system behavior
when VRE generation deviates from forecasting values, which
makes it possible to develop efficient techniques to deal
with the stochastic formulation (14)(15g)∼(15j). Of course,
though more tractable, the linear power flow response model
still brings inaccuracies in evaluating the operational costs,
voltages, reactive power and line flows. The accuracy of this
approach will be assessed by comparative numerical studies
in section V.

Remark 2: Note that the dimension of random variable ζ̃
is equal to the number of VREs installed across the network.
It could be prohibitively high for numerical computation in
a real-world large-scale power system with distributed wind
farms and PVs. Fortunately, the simple affine policy employed
in the AGC scheme enables significant reduction in the di-
mension of the random variable considered in model (14)(15).
Specifically, in the objective function (14) and constraint (15g),
we only need to consider the 1-dimensional random variable
1>ζ̃. For the constraint (15h), it is only required to consider
the 2-dimensional random variable (1>ζ̃,Bv

i:ζ̃) in light of
equation (13). Similarly, the 2-dimensional random variable
(1>ζ̃,Bf

i:ζ̃) needs to be taken into account in constraint
(15j). When the historical data of ζ̃ is available at hand,
it is equivalent to have the historical data for the 1- or 2-
dimensional random variables described above. In summary,
no matter how many uncertain renewable sources are installed
in the system, we only need to deal with 1- or 2-dimensional
random variables which significantly improve the scalability
of the proposed method.

Remark 3: In a conventional stochastic chance-constrained
programming, the probability distribution P is assumed to be
known apriori. However, in practice, the probability distribu-
tion of ξ̃ is unknown and only some historical data is avail-
able. Theoretically, the precise knowledge of the probability
distribution cannot be obtained from finite data. Therefore,
the probability distribution is ambiguous. Nonetheless, the
historical data does provide us some reliable probabilistic
information based on which we can construct an ambiguity set
PN , i.e. a set of probability distributions consistent with the
observed historical data. Therefore, the objective function (14)
and the chance-constraints (15g)∼(15j) consider the worst-
case distribution in the ambiguity set PN to ensure the strategy
performs well under the ambiguity of distribution.
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III. AMBIGUITY SET USING WASSERSTEIN METRIC

A. Wasserstein Metric and Ambiguity Set

As shown in equation (12), the system responses are the
functions of some random variable ξ̃. Whether evaluating
the expected generation costs or assessing the reliability
of system operation, we need to have a knowledge about
the probability distribution P of random variable ξ̃ under
consideration. Unfortunately, in the real-life application, we
only have a finite set of historical data and the precise
characterization of P can never be extracted from finite sam-
ples. In other words, the underlying true distribution P is
ambiguous. However, according to the historical sample set
{ξ̂(1), ξ̂(2), · · · , ξ̂(N)} at hand, we can construct an empirical
distribution P̂N = 1

N

∑N
k=1 δξ̂(k) which acts as an estimation

of the true distribution P. Intuitively, P̂N converges to P as
N → ∞, i.e. the “distance” between P̂N and P becomes
smaller when more data is available. One of the “distances”
to establish the convergence of P̂N to P is the Wasserstein
metric defined as follows:

Definition 1 (Wasserstein Metric): For any probability dis-
tribution Q1,Q2 ∈ P(Ξ), the Wasserstein metric can be
defined through

W (Q1,Q2) = inf
Π

{∫
Ξ2

‖ξ1 − ξ2‖Π(dξ2, dξ2) :

Π is a joint distribution of ξ1 and ξ2
with marginal distributions Q1 and Q2

}
.

(17)

where P(Ξ) denotes the set of all probability distributions
with support Ξ; ‖·‖ can be any norm in Rn, and we use l1
norm ‖·‖1 in this paper for its superior numerical tractability
in DRO. Hence, we have W (P̂N ,P) ≤ ε(N) where ε(·) is
some sample-dependent monotone function decreasing to 0 as
N tends to infinity, and the explicit formula for ε(·) will be
discussed in the next subsection. Therefore, given a historical
data set with N samples, we know that the true distribution P
belongs to the following set:

P̂N =
{
P ∈ P(Ξ) : W (P, P̂N ) ≤ ε(N)

}
(18)

which is called a ambiguity set of the underlying true distri-
bution. Note that P̂N is the Wasserstein ball of radius ε(N)
centered at the empirical distribution P̂N . It represents the
reliable information about the true distribution P observed
from the N historical samples at hand.

B. Selection of Wasserstein Radius ε(N)

The radius of the Wasserstein ball in the ambiguity set (18)
is crucial for the performance of the distributionally robust
chance-constrained optimization problem (14)(15). Following
the discussion in last subsection, ε(N) is a decreasing function,
as small as possible, to bound W (P̂N ,P) from above. One
possible choice for ε(N) was given in [24] as follows:

ε(N) = D

√
2

N
log
(

1

1− β

)
, (19)

where β is a confidence level and D is the diameter of the
support of the random variable. However, in our numerical

experience, we find this choice of ε(N) overly conservative
for the DRO to gain noticable advantage over the conventional
RO with reasonable amount of data.

To improve the formula (19), let’s review the derivation of
(19) presented in [24], [25]. In the proof of proposition 3 in
[25], it is shown that for any δ > 0

P[W (P̂N ,P) ≥ ε] ≤ exp
(
−N inf

Q:W (Q,P)≥ε
(H(Q|P)− δ)

)
(20)

where H(Q|P) is called the Kullback information of Q w.r.t.
P (see [26] for more detail). Corollary 2.4 in [26] shows

H(Q|P) ≥W (Q,P)2/C2, ∀Q ∈ P(Ξ) (21)

where

C = 2 inf
ξ0∈Ξ,α>0

(
1

2α
(1 + lnEP[eα‖ξ̃−ξ0‖

2
1 ])

)1/2

(22)

with a particular case C =
√

2D (particular case 2.5 in [26]).
Plugging (21) into RHS of (20) and taking δ → 0, we have

P[W (P̂N ,P) ≤ ε] ≥ 1− exp
(
−N ε2

C2

)
. (23)

Equating the RHS of (23) to β leads to

ε(N) = C

√
1

N
log
(

1

1− β

)
. (24)

Note that if the special case C =
√

2D is adopted, (24) turns
into (19). However,

√
2D is much larger than (22) in practice,

which is one of the major sources of conservatism for (19).
Instead of adopting the special case C =

√
2D, we directly

use (22) by estimating its value from data. From (22), we have

C ≤2 inf
α>0

(
1

2α
(1 + lnEP[eα‖ξ̃−µ̂‖

2
1 ])

)1/2

≈2 inf
α>0

(
1

2α

(
1 + ln(

1

N

N∑
k=1

eα‖ξ̂
(k)−µ̂‖21)

))1/2 (25)

where µ̂ denotes the sample mean and the minimization over
α can be easily done by the bisection search method.

IV. SOLUTION APPROACH

To solve the distributionally robust voltage-concerned
chance-constrained AC-OPF (14)(15), we need to evaluate
the worst-case expected costs in (14) and reformulate the
distributionally robust chance constraints (15g)∼(15j). The
underlying engine for the reformulation is the strong duality
result developed in [22]. We tailor the result to our problem
setting as the following lemma.

Lemma 1 ( [22]): Given a random variable ξ̃ ∈ Rm with
closed and convex support Ξ, the Wasserstein ball Bε(P̂ξ) is
constructed from sample set {ξ̂1, ξ̂2, · · · , ξ̂N}. If the loss func-
tion l(ξ̃) is upper semi-continuous, the worst-case expectation

sup
P∈P̂N

EP

{
l(ξ̃)

}
= inf
λ≥0

{
λ · ε+

1

N

N∑
k=1

sup
ξ∈Ξ

(
l(ξ)− λ‖ξ − ξ̂k‖1

)}
.

(26)
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Note that a naive application of Lemma 1 will make the
optimization problem scale grows with number of historical
data, which is computationally undesirable. To develop a more
efficient solution approach, using Lemma 1 while exploiting
the problem structures, this section replaces the worst-case
expected cost with its tight upper bound (Section-IV-A) and
safely approximates the chance constraints by corresponding
robust constraints (Section-IV-B). By doing so, the compu-
tational burden almost remains unchanged as more historical
data is available at hand.

In our implementation, we estimate the support Ξ from the
sample set as

Ξ = {ξ ∈ Rm| − σmax1 ≤ Σ̂−1/2(ξ − µ̂) ≤ σmax1} (27)

where µ̂ and Σ̂ are the sample mean and sample covariance,
and σmax = 10 in our practice.

A. Evaluation of Worst-case Costs

By noticing (16), the cost function inside the EP{·} operator
in (14) can be written as follows:

η(x, ω̃) = c2ω̃
2 − c1ω̃ + c0 (28)

where
c2 =

∑ng

i=1 ci2α
2
i

c1 =
∑ng

i=1 2ci2piαi + ci1αi
c0 =

∑ng

i=1(ci2p
2
i + ci1pi + ci0) + c>r + c>r.

(29)

with ω̃ = 1>ζ̃. Since ci2 ≥ 0, we have c2 ≥ 0. It follows
that η(x, ·) is a convex quadratic function. In addition, η(·, ω̃)
is also a convex quadratic function because it is the sum of
convex quadratic funtions {fi}

ng

i=1.
Given sample set {ω̂1, ω̂2, · · · , ω̂N} of random variable ω̃

and its support [ω, ω], we can evaluate the worst-case costs in
(14) using Lemma 1 as follows:

sup
P∈P̂N

EP {η(x, ω̃)}

=


inf

λ≥0,s∈RN
λ · ε+ 1

N

∑N
k=1 sk

s.t. sup
ω≤ω≤ω

(η(x, ω)− λ|ω − ω̂k|) ≤ sk,∀k ≤ N

=


inf

λ≥0,s∈RN
λ · ε+ 1

N

∑N
k=1 sk

s.t. η(x, ω) + λ(ω − ω̂k) ≤ sk,∀k ≤ N
η(x, ω)− λ(ω − ω̂k) ≤ sk,∀k ≤ N
η(x, ω̂k) ≤ sk,∀k ≤ N

(30a)

(30b)

(30c)

where (30b) follows from a direct application of Lemma 1
and the introduction of epigraphical auxiliary variables sk, k ≤
N ; equality (30c) comes from the observation that η(x, ω)−
λ|ω − ω̂k| is convex in ω in the intervals [ω, ω̂k] and [ω̂k, ω],
repectively. Hence, the supremum in (30b) can only be attained
at the boundary of the intervals, i.e. ω, ω̂k or ω. Note that the
worst-case expected costs have already been transformed into a
tractable deterministic formulation (30c) with linear objective
function and convex quadratic constraints. However, problem
(30c) has a huge computational disadvantage: the numbers of
auxiliary variables and quadratic constraints are proportional

to the size of historical sample set. When a large data set
is at hand, the computational burden could prevent us fully
exploiting the historical data.

To overcome this drawback, we replace (30c) with a close
upper approximation which is more scalable w.r.t. the size
of sample set. Let η′(x, ω̃) = 2c2ω̃ − c1 be the derivative
of η(x, ω̃) w.r.t. ω̃, and take λ = max{η′(x, ω),−η′(x, ω)}
which is the smallest value of λ in (30c) such that{

η(x, ω) + λ(ω − ω) ≤ η(x, ω), ∀ω ∈ [ω, ω]
η(x, ω)− λ(ω − ω) ≤ η(x, ω), ∀ω ∈ [ω, ω].

(31)

Thus,

(30c) ≤


inf
λ∈R

λ · ε+ 1
N

∑N
k=1 η(x, ω̂k)

s.t. η′(x, ω) ≤ λ
−η′(x, ω) ≤ λ.

(32)

Note that the numbers of decision variables and constraints in
(32) stay unchanged when using larger sample set, therefore
(32) is more computationally favorable than (30c). In addition,
the optimums of (30c) and (32) have very small difference in
practice and such difference diminishes as the sample size N
increases.

B. Reformulation of Distributionally Robust Chance Con-
straints

The chance constraints (15g)∼(15j) can be written in the
general form:

inf
P∈P̂N

P[g(x, ξ̃) ≤ 0] ≥ 1− ρ. (33)

where g depends linearly on decision variable x and ran-
dom variable ξ̃, respectively. The above constraint is in fact
non-convex, so it is generally difficult to derive a tractable
equivalent reformulation. In this paper, we develop a convex
conservative approximation to (33) through the following
strategy. We seek a deterministic uncertainty set U such that
the robust constraint

g(x, ξ) ≤ 0, ∀ξ ∈ U (34)

implies the distributionally robust chance constraint (33). In
addition, the uncertainty set U should possess the following
features: 1) obtaining U is computationally cheap; 2) robust
constraint (34) is numerically tractable and efficient; 3) uncer-
tainty set U is made as small as possible.

Given a sample set {ξ̂(1), ξ̂(2), · · · , ξ̂(N)} of random vari-
able ξ̃ ∈ Rm with the unknown underlying true distribution P,
we can compute the sample mean µ̂ and the sample covariance
Σ̂. Instead of directly working with random variable ξ̃, we
consider its standardized version ϑ̃ = Σ̂−1/2(ξ̃−µ̂) with sam-
ple set {ϑ̂(k) = Σ̂−1/2(ξ̂(k)−µ̂)}k=1,2,··· ,N , illustrated in Fig.
3. Obviously, random variable ϑ̃ has sample mean 0, sample
covariance I and support Θ = {−σmax1 ≤ ϑ ≤ σmax1}. Let Q
and QN denote the true distribution and empirical distribution
of ϑ̃, respectively. Accordingly, the ambiguity set Q̂N can be
constructed as in (18). We seek a set V ⊆ Rm such that

sup
Q∈Q̂N

Q[ϑ̃ /∈ V] ≤ ρ. (35)
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Then U = Σ̂1/2V + µ̂ would be a desired uncertainty set
needed in (34). To develop an efficient method to find out such
V , considering the sample uncorrelatedness and equal variance
among different components of ϑ̃, we restrict the structure of
V as the hypercube

V(σ) = {ϑ ∈ Rm| − σ1 < ϑ < σ1} (36)

whose side length σ needs to be minimized in order to
reduce conservatism. This leads to the following optimization
problem:

min
0≤σ≤σmax

σ s.t. sup
Q∈Q̂N

Q[ϑ̃ /∈ V(σ)] ≤ ρ. (37)

By leveraging the worst-case probability formulation in [21]
and the duality result in Lemma 1, problem (37) has a very
simple deterministic reformulation which is a consequence of
the following lemma.

Lemma 2:

sup
Q∈Q̂N

Q[ϑ̃ /∈ V(σ)]

= inf
λ≥0

{
λ · ε+

1

N

N∑
k=1

(
1− λ(σ − ‖ϑ̂(k)‖∞)+

)+
}
.

(38)

where (x)+ = max(x, 0).
Proof: The proof is delayed to the appendix.

Using Lemma 2, problem (37) is equivalent to

min
0≤λ,0≤σ≤σmax

σ s.t. h(σ, λ) ≤ ρ. (39)

where h(σ, λ) = λε+ 1
N

∑N
k=1

(
1− λ(σ − ‖ϑ̂(k)‖∞)+

)+

.
Note that the worst-case probability (38) is non-decreasing

in σ, therefore problem (37), equivalently problem (39), has
a unique minimum. Although problem (39) is non-smooth, it
only involves two 1-dimensional decision variables. We can
design a nested bisection search method to quickly locate the
optimal solution. The method is summarized in Algorithm 1
in which the function bisearch(f(·), a, b) returns the min-
imum of f(·) in the interval [a, b] by performing a bisection
search. Further note that h(σ, λ) is convex in λ for fixed σ, so
the bisection search in step 4 of Algorithm 1 is well-defined.
Since Algrithm 1 only involves function evaluations, it solves
problem (39) very efficiently.

Algorithm 1 Nested Bisection Search
1: Initialize σ = 0, σ = σmax;
2: while (σ − σ > 10−4) do
3: σ = (σ + σ)/2;
4: γ =bisearch(h(σ, ·),0,100);
5: if γ > ρ then
6: σ = σ;
7: else
8: σ = σ;
9: end if

10: end while
11: Output σ = σ.

After determining the optimal σ, the hypercube V(σ) can
be expressed as the convex hull of its vertices. For 1-
dimensional random variable, V(σ) = conv({−σ, σ}), and for
2-dimensional random variable, V(σ) = conv({(±σ,±σ)}).
In general, V(σ) = conv({v(1), · · · ,v(2m)}). Hence the
desired uncertainty set U takes the form

U = conv({u(1), · · · ,u(2m)}) (40)

where u(i) = Σ̂1/2v(i) + µ̂, 1 ≤ i ≤ 2m. Thus, noticing
the linear dependence of g on ξ, the robust constraint (34) is
equivalent to

g(x,u(i)) ≤ 0, 1 ≤ i ≤ 2m (41)

which is a set of linear inequality constraints on decision
variable x. As a result, the distributionally robust chance
constraint (33) can be safely approximated by the linear
constraints (41). Note that we only need to deal with the cases
of m = 1 and m = 2 as commented in Remark 2, therefore
constraint (41) does not bring any scalability problems and can
be handled very efficiently. The whole procedure is illustrated
in Fig. 3.

Fig. 3. The procedure to determine the uncertainty set U in two dimension.

To sum up, replacing the worst-case expected costs in (14)
with (32), taking the place of chance constraints (15g)∼(15j)
with their corresponding deterministic constraint (41), we
obtain a deterministic optimization problem with quadratic ob-
jective function (15), nonlinear equality constraints (15a)(15b),
and linear constraints (15c)∼(15j). In fact, this problem struc-
ture can be seen as an extension of conventional AC-OPF
by adding decision varibles (α, r, r) and a set of linear
constraints. Therefore, the problem can be solved (at least
to local optimality) by a mature interior point method (IPM)
solver.

V. NUMERICAL RESULTS

This section reports numerical results. We will first discuss
some implementation issues of the proposed method and the
related benchmarking approaches. Then the case studies on
IEEE 14 and 118 bus systems will be presented. The tests
on 14-bus system emphasize on validity and necessity of
the proposed approximate AC-OPF formulation. Whereas the
studies on 118-bus system focus on the features of the DRO
approach with the comparison to other methods to deal with
uncertainties.
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A. Implementation and Benchmarking

The MATPOWER [27] offers a very convenient way to
implement our problem formulation. It employs an extensible
OPF structure [28] to allow the user to modify and aug-
ment the problem formulation without rewriting the portions
that are shared with the conventional AC-OPF. Our problem
formulation fits well into this structure and the modification
needed can be easily done with the help of YALMIP [29]. We
choose KNITRO [30] as the default IPM solver. Further note
that voltage magnitude (15h), reactive power (15i) and line
flow (15j) constraints are only active at a fraction of buses,
generators and lines in practical systems. To improve the
computational efficiency, we employ the successive constraint
enforcement scheme [7] which relaxes all the constraints
(15h)∼(15j) initially and subsequently adds back those that
are violated at the solution of the relaxed model.

In order to comprehensively assess the performance of
the proposed Wasserstein-metric-based distributionally robust
optimization (WDRO) method, three other methods are intro-
duced for benchmarking. The first one is the robust optimiza-
tion (RO) approach which requires the security constraints
(15g)∼(15j) to be satisfied for all realizations in the support of
the random variable. The second benchmarking approach is the
moment-based distributionally robust optimization (MDRO).
The ambiguity set for MDRO is the set of all probability
distributions with given mean and covariance (usually sample
mean and sample covariance). Then the chance constraints
(15g)∼(15j) can be reformulated as SOCP constraints by lever-
aging the Chebyshev inequality P{|ξ̃ − µ| ≥

√
1/ρσ} ≤ ρ.

Moreover, the third approach is the Gauss-based stochastic
programming (GSP) which presumes that the random variable
follows Gauss distribution with given mean and covariance.
Then the chance constraints (15g)∼(15j) can also be re-
formulated into SOCP constraints by using the inequality
P{|ξ̃ − µ| ≥ Φ−1(1− ρ/2)σ} ≤ ρ where Φ is the cumulative
distribution function of standard Gauss random variable. In all
three benchmarking approaches described above, the expecta-
tion in the objective function (14) is estimated by the sample
average of the cost function. It seems that the MDRO and
GSP cannot be integrated into the extensible OPF structure
provided by MATPOWER due to the introduction of SOCP
constraints. However, rather than directly working with the
SOCP constraints, the cutting-plane approach illustrated in
[14] and [17] iteratively employs a sequence of linear cuts to
the SOCP constraints. In each iteration, only linear constraints
are involved in enforcing the chance constraints (15g)∼(15j),
therefore it fits well in the extensible OPF structure provided
by MATPOWER.

To test and compare the performance of different methods
to deal with uncertainties, an underlying random number
generator (RNG) is employed to simulate the VRE forecasting
errors. Following the suggestion in [31], we use Laplace
distribution to generate “realistic” historical data for wind
power forecasting errors with the typical standard error in
U.S. reported in [32]. The parameters of RNG including the
type of distribution is secret and only the data generated from
the RNG is available to all the methods under test. From a

finite number of data, each method constructs its own optimal
operation strategy. Then the RNG is again used to generate
a much larger set of data for Monte Carlo simulation (MCS)
to assess the statistical performance of the operation strategy
obtained by each method.

B. IEEE 14-Bus System

The diagram of the modified IEEE 14-bus system is shown
in Fig. 4. Four wind farms with each capacity of 36 MW
are installed at bus 11, 12, 13 and 14. The forecasting values
of wind power are 50% of their capacity. The transmission
capacity of each line is set to be 40 MW. The regulating
reserve prices are assumed to be 50% of the linear coeffi-
cients of the generator cost functions. The following group of
tests is designed to demonstrate the features of the proposed
approximate AC-OPF model.

Table I presents the optimal operation strategy of the pro-
posed model under different conditions with the comparison
to the DC model. When operated with the strategy given by
the complete model, all the chance constraints for reserve,
voltage, reactive power and line flow are well guaranteed. For
example, Fig. 5 shows the normalized histogram of system
reserve usage, voltage magnitude at bus 12, reactive power
output of G1 and line flow in line 4-5. It is shown those
quantities safely distribute in the allowable ranges. If we
exclude the voltage chance constraints (15h) from the proposed
model, the corresponding optimal generation strategy is also
given in Table I. Compared with the strategy of complete
model, the nominal active power and participation factors
of generators do not have many differences, but the setting
voltage magnitudes at generator buses increase significantly.
The consequence of this change is shown in Fig. 6 (a). Under
the voltage unconcerned strategy, the bus 12 will be exposed to
the huge risk of over-voltage. On the other hand, if we drop
the generator reactive power limits (15i) from the complete
model, the obtained operation strategy is also presented in
Table I. Again, the nominal active power and participation
factors only exhibit slight changes whereas the AVR setting
points vary significantly. For example, the setting voltage of
G1 decreases from 1.036 to 1.029. The consequence this
change is illustrated in Fig. 6 (b) which shows G1 is under
significant risk of crossing the under-excitation limit. Above
discussion indicates that both voltage chance constraint (15h)
and the reactive power chance constraint (15i) are essential for
a safe and meaningful operation strategy under uncertainties.
Table I further lists the strategy obtained by the DC model
widely used in the literature [14], [15], [17]–[19]. Except for
the voltage and reactive power unawareness of DC model,
more importantly, the nominal active power and participation
factors exhibit non-negligible differences compared with those
of the proposed model. This shows that a more accurate power
flow model could significantly improve the operation strategy
obtained by DC model.

So it is important to ask how accurate is the approximate
AC-OPF model in this paper? In our model (15), we have an
exact AC model (1) to govern the nominal operation point and
the approximate LPF model (5)(6) to calculate the incremental
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response under uncertainties. The accuracy, therefore, should
lie between the LPF model (3) and the exact AC model.
The following group of tests is conducted under the operation
strategy obtained by the proposed complete model shown in
Table I. Table II shows the operation costs calculated using
different models as the total VRE forecasting error varies
from -32 MW to +32 MW. When the forecasting error is
zero, our model coincides with the full-AC model, so the
error of operation costs is zero. For other values of total
forecasting error, the approximate AC model in this paper
shows much higher accuracy than the LPF model in calculating
the operation costs. Table III and Table IV further show the
accuracy of calculating voltage magnitudes and reactive power
outputs when the total VRE forecasting error is -32 MW. It is
shown the accuracy of the approximate AC model in this paper
is at least one-order-of-magnitude higher than that of the LPF
model for calculating both voltage and reactive power. Since
the approximate AC model in this paper inherits the formula
(4) of the LPF model, it has the same accuracy as the LPF
model in calculating line MW flow but has higher accuracy
than the DC model as shown in Table V. In summary, the
proposed approximate AC model combines the accuracy of
the full-AC model and the tractability of LPF model, which
makes it a more attractive model for OPF under uncertainties.

Generators

Wind Farms

Loads

Fig. 4. Diagram of the Modified IEEE 14-bus System

C. IEEE 118-Bus System

On the IEEE 118-bus system, 18 wind farms are installed
at bus 2, 5, 7, 13, 15, 21, 25, 28, 35, 45, 53, 58, 63, 75, 88,
95, 106 and 115, respectively. The capacity of each wind farm
changes from 30 to 90 MW to test the methods under different
levels of wind penetration and uncertainties.

In our implementation, the tolerable violation probability
in (15g)∼(15j) is set to ρ1 = ρ2 = ρ3 = ρ4 = 0.05, and
the confidence level in (24) is set to 0.9. The forecasting
values of wind generation are set to be 50% of the installed
capacity. The available sample size ranges from 102 to 106

to showcase the data-exploiting feature. After solving each
problem, Monte Carlo simulation with 107 samples is em-
ployed to test the practical and out-of-sample performance.
The major test results are summarized in Table VI. When the
capacity of each wind farm is 30MW, all the tested methods

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
System Regulating Reserve Usage (p.u.)

0

0.5

1

1.5

2

2.5

3

3.5

P
ro

ba
bi

lit
y 

D
en

si
ty

(a)

down-regulating
reserve limit

up-regulating
reserve limit

1.01 1.02 1.03 1.04 1.05 1.06 1.07
Voltage Magnitude at Bus 12 (p.u.)

0

20

40

60

80

100

120

P
ro

ba
bi

lit
y 

D
en

si
ty

(b)

Vmax limit

0 2 4 6 8
Reactive Power Output of G1 (p.u.) ×10-3

0

200

400

600

800

P
ro

ba
bi

lit
y 

D
en

si
ty

(c)

reactive power
lower limit

0.36 0.37 0.38 0.39 0.4 0.41
Active Power Flow in Line 4-5 (p.u.)

0

50

100

150

P
ro

ba
bi

lit
y 

D
en

si
ty

(d)

line flow
upper limit

Fig. 5. Normalized histogram of system reserve usage, voltage magnitude at
bus 12, reactive power output of G1 and line flow in line 4-5 by MCS when
operated at the strategy given by the proposed complete model
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Fig. 6. Normalized histogram of voltage magnitude at bus 12 (a) for the
proposed model without voltage constraint and the normailized histogram of
reactive power output at G1 (b) for the proposed model without reactive power
constraint.

obtain the corresponding optimal solutions. The evolution of
the operational costs by Monte Carlo simulation is illustrated
in Fig. 7. The costs of WDRO and MDRO lie between RO and
GSP due to the fact that RO completely ignores the probabilis-
tic information whereas the GSP assumes precise knowledge
about the probability distribution. In other words, RO and
GSP produce the most conservative and aggressive strategies,
respectively. MDRO assumes partial knowledge, the first and
second moments, of the probability distribution, which reduces
conservatism compared with RO to some degree. In contrast,
the proposed WDRO fully relies on the information told by
the data at hand. When we are in short of data, it approaches
the RO method to take a conservative decision. On the
contrary, when the data is rich, it approaches the stochastic
programming approach with complete information about the
distribution. Fig. 8 further compares the lowest reliability level
of the security constraints. Although GSP obtains the strategy
with lowest operation costs, it fails to guarantee the required
reliability level. This is due to the deviation of the underlying
true distribution from the Gauss assumption made in GSP
method. All other methods, including RO, MDRO and the
proposed WDRO ensure higher reliability level than required
due to their “robust” nature. As more data is available, the
proposed WDRO gradually and safely reduce the guaranteed
reliability level to pursue higher economic efficiency. Note
that the proposed WDRO considers the expected costs in
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TABLE I
OPTIMAL OPERATION STRATEGY OF THE PROPOSED MODEL UNDER DIFFERENT CONDITIONS WITH COMPARISON TO THE DC MODEL

the proposed complete model without voltage constratints without Qg constratints DC Model
Pg alpha Voltage Pg alpha Voltage Pg alpha Voltage Pg alpha Voltage

G1 0.562 0.061 1.036 0.561 0.061 1.058 0.566 0.066 1.029 0.555 0.062 /
G2 0.339 0.292 1.026 0.339 0.293 1.048 0.343 0.309 1.019 0.338 0.195 /
G3 0.538 0.000 1.024 0.539 0.000 1.045 0.546 0.000 1.017 0.454 0.000 /
G4 0.376 0.535 1.032 0.376 0.535 1.055 0.370 0.525 1.033 0.386 0.548 /
G5 0.079 0.112 0.995 0.078 0.111 1.018 0.070 0.100 0.986 0.137 0.195 /

TABLE II
OPERATION COSTS ($) CALCULATED BY DIFFERENT MODELS

VRE forecast error full-AC this paper error(%) LPF error(%)
-32 7502.07 7500.66 0.02% 7440.90 0.82%
-24 7180.80 7180.89 0.00% 7121.23 0.83%
-16 6863.44 6864.26 -0.01% 6804.70 0.86%
-8 6549.98 6550.76 -0.01% 6491.31 0.90%
0 6240.41 6240.41 0.00% 6181.06 0.95%
8 5934.71 5933.19 0.03% 5873.94 1.02%
16 5632.86 5629.11 0.07% 5569.96 1.12%
24 5334.86 5328.17 0.13% 5269.12 1.23%
32 5040.69 5030.36 0.21% 4971.41 1.37%

TABLE III
VOLTAGE MAGNITUDES (P.U.) CALCULATED BY DIFFERENT MODELS

Bus No. full-AC this paper error LPF error
4 1.019 1.019 -0.0001 1.017 -0.0023
5 1.025 1.025 -0.0001 1.024 -0.0012
7 1.002 1.002 -0.0001 0.993 -0.0094
9 0.998 0.998 -0.0002 0.979 -0.0192
10 0.997 0.997 -0.0003 0.982 -0.0153
11 1.015 1.014 -0.0003 1.007 -0.0073
12 1.028 1.028 -0.0004 1.027 -0.0012
13 1.018 1.017 -0.0001 1.015 -0.0025
14 0.995 0.995 -0.0003 0.984 -0.0114

the objective function (14) w.r.t. the worst-case distribution
and the true distribution usually differs from the worst-case
one, so the simulated costs are always upper bounded by
the objective function as shown in Table VI. Fig. 9 shows
the evolution of percentage difference between the objective
function and simulated costs for the proposed WDRO. As
more data is available, the ambiguity set shrinks and worst-
case distribution approaches the true distribution, and the

TABLE IV
REACTIVE POWER OUTPUT (P.U.) CALCULATED BY DIFFERENT MODELS

Unit No. full-AC this paper error LPF error
G1 0.006 0.006 -0.0006 0.005 -0.0011
G2 -0.101 -0.103 -0.0023 -0.094 0.0067
G3 0.298 0.297 -0.0005 0.301 0.0034
G4 0.211 0.213 0.0025 0.259 0.0480
G5 -0.041 -0.041 -0.0001 0.011 0.0519

TABLE V
LINE MW FLOW (P.U.) CALCULATED BY DIFFERENT MODELS

line full-AC this paper error DC error
4-5 -0.405 -0.390 0.0149 -0.340 0.0650
1-2 0.388 0.374 -0.0139 0.323 -0.0651
2-3 0.292 0.291 -0.0019 0.261 -0.0315
2-4 0.199 0.195 -0.0035 0.148 -0.0509

10-11 -0.199 -0.204 -0.0058 -0.185 0.0133

difference between simulated costs and objective function
diminishes. As shown in Table VI, when the installed capacity
of wind power increases to 60×18 MW, the RO along with the
WDRO with 102 and 103 samples become infeasible. When
the installed capacity increases to 90 × 18 MW the MDRO
and the WDRO with 104 also become infeasible. In summary,
we can order the methods according to their conservatism as:
RO>WDRO(102∼3)>MDRO>WDRO(104∼6)>GSP.

The computation of the proposed method consists of two
stages. One is the preparation stage to construct the uncertainty
set U in (34), and the other is the operation stage to solve
the optimization problem (14)(15). In practice, the preparation
stage can be done off-line and updated on weekly or monthly
basis according to the new data available. In addition, the
construction of the uncertainty set is highly parallelizable
among different buses and transmission lines. The time on our
12-core workstation to construct uncertainty set for the whole
118-bus system is listed in Table VII. The computation time
grows linearly with the sample size N , and further speed-
up is possible by leveraging distributed computation. The
computation time for the on-line operation stage is listed in
Table VI. In this stage, the solver time is nearly the same as the
RO approach and less than that of MDRO and GSP methods.
More importantly, the solver time of WDRO approach at the
operation stage is irrelevant to the number of wind farms and
amount of historical data at hand. Therefore, the proposed
WDRO approach is highly scalable and efficient for real-time
operation.
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Fig. 7. Evolution of simulated operational costs as more historical data is
available with 30× 18 MW wind integration.

VI. CONCLUSION

This paper has proposed a chance-constrained approximate
AC-OPF under uncertainties based on distributionally robust
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TABLE VI
COMPARATIVE CASE STUDY ON IEEE 118-BUS SYSTEM

Wind Capacity Performance
Methods the proposed WDRO with different sample sizes RO MDRO GSP1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

30*18 MW

objective ($) 128345 124192 122483 121588 121227 128355 123168 120839
simulated costs ($) 127574 123953 122381 121560 121218 128322 123081 120694
up reverse (p.u.) 4.296 2.504 1.712 1.302 1.130 4.672 2.038 0.828
down reverse (p.u.) 4.319 2.490 1.711 1.299 1.129 4.690 2.084 0.906
reliability 99.99997% 99.98933% 99.74943% 98.75797% 97.61366% 100.00000% 99.93666% 93.56586%
cpu time (s) 0.31 0.27 0.31 0.23 0.29 0.45 0.27 0.29

60*18 MW

objective ($)

Infeasible Infeasible

115404 113883 113017

Infeasible

116608 112015
simulated costs ($) 115197 113814 112990 116692 111867
up reverse (p.u.) 3.340 2.672 2.258 4.128 1.657
down reverse (p.u.) 3.344 2.677 2.259 4.081 1.738
reliability 99.70579% 98.90693% 97.61284% 99.93669% 93.18895%
cpu time (s) 0.32 0.44 0.27 1.14 0.26

90*18 MW

objective ($)

Infeasible Infeasible Infeasible

106522 105369

Infeasible Infeasible

103719
simulated cost ($) 106391 105315 103582
up reverse (p.u.) 3.877 3.410 2.575
down reverse (p.u.) 3.890 3.407 2.654
reliability 98.72546% 97.66914% 93.75508%
cpu time (s) 0.33 0.32 1.72

 

Fig. 8. Comparison of the lowest reliability of all security constraints by
Monte Carlo simulation
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Fig. 9. The procedure to determine the uncertainty set U .

optimization with Wasserstein metric. In order to overcome the
flaws of the DC power flow model extensively used in stochas-
tic OPF formulations, we have developed a tractable AC power
flow model by integrating the full AC power flow and a linear
power flow models. Numerical studies have demonstrated the
proposed OPF formulation has improved precision as well as

TABLE VII
TIME (S) TO CONSTRUCT UNCERTAINTY SETS FOR 118-BUS SYSTEM

N 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06
Time (s) 0.67 0.82 1.64 16.48 291.64

good numerical tractability. Without any assumption on the
underlying probability distribution of the uncertainties, the
proposed chance-constrained AC-OPF is completely driven by
the available historical data. It extracts reliable probabilistic
information from historical data to construct an ambiguity
set of all possible distributions and immunizes the operation
strategy against all distributions in the ambiguity set. The
more data is available, the less conservative the solution is.
In addition, special problem structures are properly exploited
in the reformulation of the distributionally robust optimization
problem to improve the scalability and efficiency of the
numerical solution approach.

APPENDIX

Proof of Lemma 2: Using the idea from section 5.2 of
[21], for every 1 ≤ i ≤ m, we define

li(ϑ̃) =

{
1 if ϑ̃i ≤ −σ
−∞ otherwise

(42)

li(ϑ̃) =

{
1 if ϑ̃i ≥ σ
−∞ otherwise .

(43)

Further define

l(ϑ̃) = max
{

max
1≤i≤m

li(ϑ̃), max
1≤i≤m

li(ϑ̃), 0

}
. (44)

It is easy to see that l(ϑ̃) is the indicator function of the
compliment of V(σ), so Q[ϑ̃ /∈ V(σ)] = EQ[l(ϑ̃)]. In addition,
l(ϑ̃) is the maximum of upper-semicontinuous functions,
which implies l(ϑ̃) itself is upper-semicontinuous. Therefore,
Lemma 1 applies:

sup
Q∈Q̂N

Q[ϑ̃ /∈ V(σ)] = sup
Q∈Q̂N

EQ[l(ϑ̃)] (45a)

=


inf

λ≥0,s∈RN
λ · ε+ 1

N

∑N
k=1 sk

s.t. ∀1 ≤ k ≤ N :

sup
ϑ∈Θ

(
l(ϑ)− λ‖ϑ− ϑ̂(k)‖1

)
≤ sk

(45b)
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=



inf
λ≥0,s≥0

λ · ε+ 1
N

∑N
k=1 sk

s.t. ∀1 ≤ k ≤ N, 1 ≤ i ≤ m :

sup
ϑ∈Θ

(
li(ϑ̃)− λ‖ϑ− ϑ̂(k)‖1

)
≤ sk

sup
ϑ∈Θ

(
li(ϑ̃)− λ‖ϑ− ϑ̂(k)‖1

)
≤ sk

(45c)

=


inf

λ≥0,s≥0
λ · ε+ 1

N

∑N
k=1 sk

s.t. ∀1 ≤ k ≤ N, 1 ≤ i ≤ m :

1− λ(ϑ̂
(k)
i + σ)+ ≤ sk

1− λ(σ − ϑ̂(k)
i )+ ≤ sk

(45d)

= inf
λ≥0

{
λ · ε+

1

N

N∑
k=1

(
1− λ(σ − ‖ϑ̂(k)‖∞)+

)+
}

(45e)

where (45b) is a direct application of Lemma 1; (45c) uses the
the definition of l(ϑ̃) given in (44); (45d) explicitly evaluates
the supremums in (45c) by exploiting the definitions of Θ,
(42)(43) and the l1 norm; some direct calculation of (45d)
leads to (45e) which completes the proof.
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