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Abstract

This paper develops a perturbation observer based adaptive passive
control (POAPC) scheme to provide great robustness of nonlinear sys-
tems against to the unpredictable uncertainties and disturbances therein.
The proposed POAPC scheme includes a high-gain perturbation observer
(HGPO) and a robust passive controller. The HGPO is designed to online
estimate the perturbation aggregated from the combinatorial effect of sys-
tem nonlinearity, parameter uncertainty, unmodelled dynamics and fast
time-varying external disturbances. Then the robust passive controller,
using the estimated perturbation, can produce just minimal control effort
to compensate the magnitude of the current actual perturbation. Further-
more, the convergence of estimation error of HGPO and the closed-loop
system stability are analyzed theoretically. Finally, two practical exam-
ples are given to show the effectiveness and advantages of the proposed
approach over the accurate model-based passive control scheme and the
linearly parametric estimation based adaptive passive control scheme.

1 Introduction

Generally speaking, most practical systems should be modelled as nonlinear
systems. The concept of passivity has played a crucial role in the analysis
and control of nonlinear systems in the framework of Lyapunov stability theory
Khalil et al. (2001). A passive system is characterized by the property that at
any time the amount of energy which the system can conceivably supply to its
environment cannot exceed the amount of energy that has been supplied to it
Isidori (1995). Passivity views a dynamical system as an energy-transformation
device, which decomposes complex nonlinear systems into simpler subsystems
that, upon interconnection, add up their local energies to determine the full sys-
tem’s behaviour. The action of a controller connected to the dynamical system
may also be regarded, in terms of energy, as another separate dynamical system.
Thus the control problem can then be treated as finding an interconnection pat-
tern between the controller and the dynamical system, such that the changes
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of the overall energy function can take a desired form. This ‘energy shaping’
approach is the essence of passive control (PC), which takes the system energy
into account and gives a clear physical meaning Ortega et al. (2002); Fujimoto et
al. (2003); Loria et al. (2001); Kenji et al. (2012). The conventional PC usually
requires an accurate system model for controller design. However, no matter
how detailed and complex the nonlinear model is, there still exists an inevitable
gap between the developed nonlinear model and the practical system. That is,
many unpredictable factors, such as system nonlinearity, parameter uncertain-
ty, unmodelled dynamics and fast time-varying external disturbances, should be
considered in the nonlinear model during the investigation of practical control
systems Yao et al. (2011, 2014). Therefore, the development of advanced PC
schemes with robustness against to those unpredictable factors is an important
issue, which is very crucial and challenging in both theory and practice.

In order to handle the parameter uncertainty, an adaptive passive control
(APC) was proposed by Zhou et al. (2012); Mermoud et al. (2001); Bobtsov et
al. (2014), in which an uncertain nonlinear system was assumed to have explic-
it linearly parametric uncertainties, and then a linearly parametric estimation
based adaption law was developed to approximate these unknown parameters.
However, these laws might not be trivial and the resulting adaptive system is
highly nonlinear, with slow system responses to parameter variations. Robust
passive control (RPC) is another effective method Lin et al. (1999); Joshia et
al. (2001); Wu et al. (2013), in which the structural uncertainty was assumed
to be a nonlinear function of the state and bounded by a known function. In
general, such a function may not be easily found, and it would give an over-
conservative result as well. On the other side, functional approximators have
also been proposed to estimate uncertainties of nonlinear systems recently. For
example, the adaptive neural network, which has the capability of nonlinear
function approximation, learning, and fault tolerance, was applied to estimate
uncertain fast time-varying nonlinear dynamics Du et al. (2011); Mou et al.
(2010); Ge et al. (2007). Adaptive dynamic programming (ADP) was applied
in Fu et al. (2011); Zhang et al. (2011) to directly approximate, through learn-
ing and online measurement, the optimal controllers with guaranteed stability
for dynamical systems with the unknown dynamics. Robust adaptive dynamic
programming designed in Jiang et al. (2013) extended it into uncertain systems
with unmeasured state variables and unknown system order. A Fradkov theorem
based passification approach was proposed to stabilize a nonlinear system with
functional and parametric uncertainties Bobtsov et al. (2005), which was also
extended to the nonlinear delay systems with an unmodelled dynamics Bobtsov
et al. (2011). However, the aforementioned literatures have mainly discussed
one or a few types of uncertainties. The functional estimation for model un-
certainties, parameter uncertainties and fast time-varying external disturbances
existed in nonlinear passive systems has not yet been fully investigated.

When a reliable model for a part of the system uncertainties is available, the
robust performance of nonlinear passive systems can be improved through the
readily compensation based on model-based techniques. However, most of the
model uncertainties is arbitrary and cannot be readily identified, so a robust
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compensation method is needed to cope with it in real-time without depending
on a direct perturbation model. In the past decades, an enormous variety of
elegant approaches based on observers have been developed to estimate system
uncertainties, such as the unknown input observer (UIO) Johnson et al. (1971),
disturbance observer (DOB) Chen et al. (2000), uncertainty and disturbance
estimator (UDE) Zhong et al. (2004), generalized proportional integral observ-
er (GPIO) Chen et al. (2016), enhanced decentralized PI control via advanced
disturbance observer Sun et al. (2015), observer-based adaptive fuzzy tracking
control Li et al. (2015), hybrid fuzzy adaptive output feedback control via adap-
tive fuzzy state observer Li et al. (2015), adaptive fuzzy output feedback control
via state observer Li et al. (2016), ect. Meanwhile, perturbation observer (PO)
has also been widely employed which can dynamically estimate the lumped un-
certainty not considered in the nominal model based on an extended state. It
can be regarded as a model regulator which drives the physical system with un-
certainty to the nominal model Kwon et al. (2004). A typical PO is formulated
directly for nonlinear systems in time domain by using the derivative of state
variable and time-delay Youcef-Toumi et al. (1992), which is the origin of differ-
ent type of PO based control system. The first type is the sliding-mode control
with perturbation estimation, which uses sliding-mode PO (SMPO) to reduce
the conservativeness of the sliding-mode control Kwon et al. (2004); Yang et al.
(2016). The SMPO frequently suffers the discontinuity of high-speed switching.
The second type is the active disturbance rejection control (ADRC) Han et al.
(2009), which designs nonlinear disturbance observers. The nonlinear observer
is usually too complex for stability analysis. In the authors’ previous work Jiang
et al. (2004); Wu et al. (2004); Chen et al. (2014); Yang et al. (2015); Yang,
Jiang et al. (2016), a high-gain perturbation observer (HGPO) was proposed.
Compared with SMPO and the nonlinear observer, HGPO can provide almost
the same performance but has merits of easy design and implementation.

Motivated by the above discussion, this paper aims to develop a new type
of APC for nonlinear passive systems in consideration of model uncertainties,
parameter uncertainties and fast time-varying external disturbances by extend-
ing HGPO developed in our previous research. The main contributions of this
paper are summarized as follows:

1) An HGPO is designed to online estimate the perturbation including sys-
tem nonlinearity (variables of a polynomial of degree higher than one or in
the argument of a function which is not a polynomial of degree one), pa-
rameter uncertainty, unmodelled dynamics (ignored dynamics during the
approximation from the original high order system to the simplified lower
order system) and fast time-varying external disturbances (some type of
extraneous signals during system operation which usually includes some
high-frequency signals that vary rapidly along with the time). A pas-
sive controller with the estimated perturbation from HGPO as an input,
called as perturbation observer based adaptive passive control (POAPC),
is developed to provide desired robustness against to unpredictable un-
certainties and disturbances, of which the physical property of the system
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can be fully exploited via energy shaping.

2) Both the convergence of estimation error of HGPO and the stability of
the closed-loop nonlinear system are analyzed theoretically.

3) The proposed POAPC is evaluated in two practical examples and its ad-
vantages over some existing APCs and PC are verified.

The rest of the paper is organized as follows. Section 2 formulates the prob-
lem to be discussed. Section 3 presents the controller design and necessary
theoretical analysis. Example results are exposed in Section 4. Finally, con-
cluding remarks are contained in Section 5.

2 Problem Formulation and Preliminaries

Consider a normal passive system as follows Isidori (1995){
ẏ = a(y, z) + B̄u+ ζ(y, z, t)
ż = f0(z) + p(y, z)y

(1)

where output y ∈ Rm and input u ∈ Rm, such that system (1) is of the relative
degree {1, 1, . . . , 1}. a(y, z) ∈ Rm is nonlinear which includes the structural
and parametric uncertainty, ζ(y, z, t) ∈ Rm includes the equivalent effect of
unmodelled dynamics and fast time-varying external disturbances. z ∈ Rn−m

is the internal dynamics, with f0(z) ∈ Rn−m represents the zero dynamics and
p(y, z) is a known smooth function of dimension (n − m) × m. The unknown
control gain B̄ ∈ Rm×m is written as

B̄ =

 b11(y, z) · · · b1m(y, z)
...

...
...

bm1(y, z) · · · bmm(y, z)

 (2)

Remark 1. The same number of inputs and outputs, a known p(y, z), and the
relative degree {1, 1, . . . , 1} are basic assumptions for such particular normal
passive system Mermoud et al. (2001). Note that several work has been done to
relax these fundamental assumptions by Bobtsov et al. (2014, 2005, 2011). In
particular, a perturbation estimation based coordinated adaptive passive control
(PECAPC) has been designed if the input number is larger than the output
number Yang et al. (2015), while the relative degree has also been relaxed to
any arbitrary number Yang, Jiang et al. (2016).

Assume system (1) is zero-state detectable and locally weakly minimum-
phase Khalil et al. (2001), i.e., there exists a positive differentiable function
W0(z), with W0(0) = 0, such that

∂W0(z)

∂zT
f0(z) ≤ 0 (3)

for all z in the neighbourhood of z(t) = 0.

4



The known part of function a(y, z) and B̄ are assumed to be zero for the
simplification of formulations. In fact, one can assume the nominal part is
known, and only use the perturbation to represent the uncertain part. Define a
fictitious state as

Ψ(y, z,u, t) = a(y, z) + (B̄−B0)u+ ζ(y, z,t) (4)

where Ψ(·) ∈ Rm is called the perturbation. B0 = diag[b10, b20, · · · , bm0] with
bi0 the nominal control gain. Extend the output dynamics of system (1), yields

ẏi = Ψi(·) + bi0ui

ẏei = Ψ̇i(·)
ż = f0(z) + p(y, z)y

, i = 1, . . . ,m (5)

where yei = Ψi(·) is the extended state to represent the perturbation.

Assumption 1. Jiang et al. (2004); Wu et al. (2004); Chen et al. (2014); Yang
et al. (2015) bi0 is chosen to satisfy:∣∣∣∣∥B̄∥

|bi0|
− 1

∣∣∣∣ ≤ θi < 1 (6)

where θi is a positive constant, and ∥ · ∥ is the Euclidean norm.

Assumption 2. Jiang et al. (2004); Wu et al. (2004); Chen et al. (2014);
Yang et al. (2015) The function Ψi(y, z,u, t) : Rm × Rn−m × Rm × R+ → R
and Ψ̇i(y, z,u, t) : Rm × Rn−m × Rm × R+ → R are locally Lipschitz in their
arguments over the domain of interest and are globally bounded:

| Ψi(y, z,u, t) |≤ γi1, | Ψ̇i(y, z,u, t) |≤ γi2 (7)

where γi1 and γi2 are positive constants. In addition, Ψi(0, 0, 0, 0) = 0 and
Ψ̇i(0, 0, 0, 0) = 0, such that the origin is an equilibrium point of the open-loop
system.

An HGPO Jiang et al. (2004); Wu et al. (2004); Chen et al. (2014); Yang et
al. (2015) is designed for extended system (5) as{

˙̂yi = Ψ̂i(·) + hi1(yi − ŷi) + bi0ui

˙̂
Ψi(·) = hi2(yi − ŷi)

, i = 1, . . . ,m (8)

where ŷi and Ψ̂i(·) are the estimates of yi and Ψi(·). Positive constants hi1 and
hi2 are the observer gains.

Remark 2. HGPO is used in this paper for its relatively easy design and
implementation. Note that other types of observer, i.e., SMPO Kwon et al.
(2004) and nonlinear observer Han et al. (2009) can be used for PO design.
They can provide almost the same estimation performance.

The control problem is described as follows: For an uncertain nonlinear
system (1), design an HGPO (8) to estimate perturbation (4), and find out a
robust passive controller u such that the origin of uncertain nonlinear system
(1) is stable.
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3 Design of POAPC and its Analysis

3.1 Estimation error convergence analysis of HGPO

Define the estimation error as ỹpoi = [ỹi, ỹei ]
T, where ỹi = yi − ŷi and ỹei =

yei − ŷei symbolize the estimation error of yi and yei , respectively. System (5)
can be written as follows[

ẏi
ẏei

]
=

[
0 1
0 0

] [
yi
yei

]
+

[
0
1

]
Ψ̇i(·) +

[
bi0
0

]
ui (9)

The HGPO (8) can be written as[
˙̂yi
˙̂yei

]
=

[
0 1
0 0

] [
ŷi
ŷei

]
+

[
hi1

hi2

]
ỹi +

[
bi0
0

]
ui (10)

The estimation error can be obtained by subtracting (10) from (9) as[
˙̃yi
˙̃yei

]
=

[
−hi1 1
−hi2 0

] [
ỹi
ỹei

]
+

[
0
1

]
Ψ̇i(·) (11)

HGPO estimation error (11) can be rewritten in the following matrix form:

˙̃ypoi
= Apoi ỹpoi +BpoiΨ̇i(·) (12)

Which shows that the estimation error ỹpoi is driven by Ψ̇i(·). Matrices
Apoi and Bpoi are given as

Apoi =

[
−hi1 1
−hi2 0

]
,Bpoi =

[
0
1

]
(13)

where Apoi is a Hurwitz matrix.
As in any asymptotic observer, the observer gain Hpoi = [hi1, hi2]

T should
be chosen to achieve an asymptotic error convergence, that is

lim
t→∞

ỹpoi(t) = 0 (14)

In the absence of Ψ̇i(·), the estimation error will asymptotically convergence
to the origin as Apoi is Hurwitzian for any positive constants hi1 and hi2.

In the presence of Ψ̇i(·), one needs to determine the observer gain with an
additional goal of rejecting the effect of Ψ̇i(·) on the estimation error ỹpoi . This

can be ideally achieved, for any Ψ̇i(·), if the transfer function from Ψ̇i(·) to ỹpoi
is identically zero.

Rewrite (11) into the equations form and rearrange the equations, yields:{
ỹei = (s+ hi1)ỹi
Ψ̇i(·) = sỹei + hi2ỹi

(15)

where s is the Laplace variable.
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By replacing ỹei by ỹi in the second equation of (15), one can have

Ψ̇i(·) = (s2 + hi1s+ hi2)ỹi (16)

Similarly, by replacing ỹi by ỹei in (16), one can obtain

Ψ̇i(·) =
(s2 + hi1s+ hi2)

s+ hi1
ỹei (17)

To this end, one can obtain the transfer function from Ψ̇i(·) to ỹpoi in the
following matrix form:

Hpoi(s) =

[
ỹi

Ψ̇i(·)
ỹei

Ψ̇i(·)

]
=

1

s2 + hi1s+ hi2

[
1

s+ hi1

]
(18)

By calculating the ∥Hpoi∥∞, it can be seen that the norm can be arbitrarily
small by choosing hi2 ≫ hi1 ≫ 1. Define hi1 = αi1/ϵi and hi2 = αi2/ϵ

2
i , where

αi1, αi2, and ϵi ≪ 1 are some positive constants. It can be shown that

Hpoi(s) =
ϵi

(ϵis)2 + αi1ϵis+ αi2

[
ϵi

ϵis+ αi1

]
(19)

Hence, lim
ϵi→0

Hpoi(s) = 0. As an infinite observer gain is impossible in prac-

tice, one can determine the observer gain such that the estimation error ỹpoi
will exponentially converge to a small neighbourhood which is arbitrarily close
to the origin. The result is summarized as the following Proposition 1.

Proposition 1. Jiang et al. (2004); Wu et al. (2004) Consider system (5),
and design an HGPO (8). If Assumptions 1-2 hold for some values γi1, γi2,
and bi0. Then given any positive constant δpoi

, from the initial estimation error
ỹpoi

(0), the observer gain Hpoi
can be chosen such that the estimation error will

exponentially converge into the neighbourhood

∥ỹpoi(t)∥ ≤ δpoi (20)

HGPO (8) is basically an approximate differentiator. This can be readily
seen in the special case when the perturbation Ψi(·) and control ui are chosen
to be zero and thus the observer is linear. The transfer function from yi to ŷpoi
for system (8) is given by

αi2

(ϵis)2 + αi1ϵis+ αi2

[
1 + (ϵiαi1/αi2)s

s

]
→
[

1
s

]
as ϵi → 0 (21)

Thus, on a compact frequency internal, HGPO approximates Ψi(·) = ẏi for
a sufficiently small ϵi.

Remark 3. It should be mentioned that during the design procedure, ϵi is
only required to be some relatively small positive constant and the performance
of HGPO is not sensitive to the observer gain, as it is determined based on
the bound of perturbation estimation error. Moreover, the bound of estimates
used in HGPO can be obtained through the analysis of the system within a
predetermined range of variation in system variables.
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3.2 Controller structure and closed-loop system stability
analysis

The estimate of perturbation Ψ(·) is used to realize a robust passivation of
the uncertain nonlinear system (1). After the lumped system uncertainties are
estimated by HGPO, a robust passive controller called POAPC can be designed
for the equivalent linear system as u = B−1

0

(
−Ψ̂(·)−Ky −

(
∂W0(z)
∂zT p(y, z)

)T
+ ω

)
ωT = −ϕ(y)

(22)

where K = diag[k1, . . . , km], with ki ≥ 1, is the feedback control gain, ω ∈ Rm

is the additional input, where ϕ : Rm → Rm is any smooth function such that
ϕ(0) = 0 and yTϕ(y) > 0 for all y ̸= 0.

Rewrite (12) into the singularly perturbed form by defining the scaled esti-
mation error ηi = [ηi1, ηi2]

T = [ỹi/ϵi, Ψ̃i(·)]T, which satisfies

ϵiη̇i = Ai1ηi + ϵiBi1Ψ̇i(·), i = 1, . . . ,m (23)

with

Ai1 =

[
−αi1 1
−αi2 0

]
,Bi1 =

[
0
1

]
(24)

where positive constants αi1 and αi2 are chosen such that Ai1 is a Hurwitz
matrix.

The closed-loop system dynamics obtained under HGPO (8) and POAPC
(22) can be represented by

ẏ = −Ky + ηi2 −
(

∂W0(z)
∂zT p(y, z)

)T
+ ω

ż = f0(z) + p(y, z)y

ϵiη̇i = Ai1ηi + ϵiBi1Ψ̇i(·)
, i = 1, . . . ,m (25)

The reduced system, obtained by substituting ηi = 0 and z = 0 in system
(25), is calculated as

ẏi = −kiyi + ωi, i = 1, . . . ,m (26)

The boundary-layer system, obtained by applying the change τi = t/ϵi to
system (25) and setting ϵi = 0, is given by

dηi
dτi

= Ai1ηi, i = 1, . . . ,m (27)

Theorem 1. Let Assumptions 1-2 hold, design HGPO (8) and POAPC (22);
then there exists ϵ∗i1, with i = 1, . . . ,m, ϵ∗i1 > 0 such that, ∀ϵi, 0 < ϵi < ϵ∗i1, the
closed-loop system (25) is passive and its origin is stable.

Proof. For the proof of Theorem 1, the following corollary which is a special
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case of Young’s inequality will be used

Corollary 1. ∀a, b ∈ R+, ∀p > 1, ϵ0 > 0 it has

ab ≤ 1

ϵ0
ap + (ϵ0)

1/(p−1)bp/(p−1) (28)

For the reduced system (26), define the Lyapunov function V (yi) = (1/2)y2i
over a ball B(0, ri), for some ri > 0. ∀yi ∈ B(0, ri), one can have

V̇ (yi) = −kiy
2
i − yiϕ(yi) ≤ −y2i (29)

Thus the origin of reduced system (26) is stable in a regionRi which includes
the origin.

The boundary-layer system (27) is exponentially stable in a region Ωi which
includes the origin as Ai1 is Hurwitzian. Define the Lyapunov function W (ηi) =
ηTi Pi1ηi, where Pi1 is the positive definite solution of the Lyapunov equation
Pi1Ai1 +AT

i1Pi1 = −I. This function satisfies

λmin(Pi1)∥ηi∥2 ≤ W (ηi) ≤ λmax(Pi1)∥ηi∥2 (30)

∂W (ηi)

∂ηi
Ai1ηi ≤ −∥ηi∥2 (31)

∥∂W (ηi)

∂ηi
∥ ≤ 2λmax(Pi1)∥ηi∥ (32)

Consider a storage function as follows

H(y, η, z) =
1

2
yTy +

m∑
i=1

βiW (ηi) +W0(z) (33)

where βi > 0 is to be determined. Choose ξi < ri, given Assumptions 1-2, for
all (yi, ηi) ∈ B(0, ξi)× {∥ηi∥ ≤ ξi} = Λi, where B(∥ηi∥, ξi) ∈ Ωi, ξi is a positive
constant. Moreover, assume

|Ψ̇i(·)| ≤ Li1∥yi∥+ Li2∥ηi∥ (34)

where Li1 and Li2 are Lipschitz constants.
Differentiate H(y, η, z) along system (25), using inequalities (30)∼(34) and
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Corollary 1, with p = 2, a = ∥yi∥ and b = ∥ηi∥, it yields:

Ḣ = yT

(
−Ky + ηi2 −

(
∂W0(z)

∂zT
p(y, z)

)T

+ ω

)
+

m∑
i=1

βi
∂W (ηi)

∂ηi

(
Ai1ηi
ϵi

+Bi1Ψ̇i(·)
)

+
∂W0(z)

∂zT
(f0(z) + p(y, z)y)

≤
m∑
i=1

(
− ki∥yi∥2 −

βi

ϵi
∥ηi∥2 + 2βiLi2∥Pi1∥∥ηi∥2 + (1 + 2βiLi1∥Pi1∥)∥yi∥∥ηi∥

)
+

∂W0(z)

∂zT
f0(z) + ωTy

≤
m∑
i=1

(
− ∥yi∥2 −

βi

ϵi
∥ηi∥2 + 2βiLi2∥Pi1∥∥ηi∥2 + (1 + 2βiLi1∥Pi1∥)

× (
1

ϵi0
∥yi∥2 + ϵi0∥ηi∥2)

)
+ ωTy

≤
m∑
i=1

(
− 1

2
∥yi∥2 −

βi

2ϵi
∥ηi∥2 − bi1∥yi∥2 − bi2∥ηi∥2

)
+ ωTy

where

bi1 =
1

2
− 2

ϵi0
(
1

2
+ βiLi1∥Pi1∥), bi2 =

βi

2ϵi
− 2βi(ϵi0Li1 + Li2)∥Pi1∥ − ϵi0

(35)

with ϵi0 > 0.
Now choose βi small enough and ϵi0 ≥ ϵ∗i0 = 2 + 4βiLi1∥Pi1∥ such that

bi1 > 0, and then choose ϵ∗i1 = βi/(ϵ
∗2
i0 + 4βiLi2∥Pi1∥), ∀ϵi, ϵi ≤ ϵ∗i1, and choose

an additional input ωT = −ϕ(y), where ϕ(y) is a sector-nonlinearity satisfying
ϕ(y)y > 0 for y ̸= 0 and ϕ(0) = 0. It can be shown that

Ḣ ≤ ωTy −
m∑
i=1

(
min(1/2, βi/(2ϵi))(∥yi∥2 + ∥ηi∥2)

)
≤ ωTy ≤ −ϕ(y)y ≤ 0 (36)

Therefore, one can conclude that the closed-loop system (25) is passive and
its origin is stable. �

POAPC (22) does not require an accurate system model which structure is
illustrated in Fig. 1. The nominal system is disturbed by the perturbation,
POAPC can be decomposed as u = B−1

0 (u1+u2+u3+u4), where u1 = −Ψ̂(·)
is the distinctive adaption mechanism based on online functional estimation of
HGPO, which can provide significant robustness for lumped system uncertain-

ties; u2 = −Ky is the output feedback; u3 =
(

∂W0(z)
∂zT p(y, z)

)T
compensates

the internal dynamics and reshapes the changes of storage function; and u4 = ω
helps to construct a passive system by introducing an additional input with the
help of a sector-nonlinearity ϕ(y). Once the controller is set up for the prob-
lem within a predetermined range of variation in system variables, no tuning is
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Figure 1: Control structure of POAPC

needed for start-up or compensation for changes in the system dynamics and
fast time-varying external disturbance.

Remark 4. Compared to the conventional APC Zhou et al. (2012); Mermoud et
al. (2001); Bobtsov et al. (2014) which can only estimate the linearly parametric
uncertainties, POAPC can be regarded as a nonlinearly functional estimation
method, as it can estimate the combinatorial effect of unknown parameters, un-
modelled dynamics and fast time-varying external disturbances. If there does
not exist uncertainties and fast time-varying external disturbances, and if the
accurate system model is available, it can provide the same performance as that
of the exact passive controller. Otherwise, it will perform much better than the
exact passive controller. The use of HGPO leads to less concern over the mea-
surement and identification of the unknown parameters, unmodelled dynamics
and fast time-varying external disturbances. This tends to require less control
efforts as the perturbation has already included all of this information. It can
also avoid the issues of controller parameter initialization, learning coefficient
optimization, and slow system response to the parameter variation existed in
the conventional APC.

Remark 5. The original high-gain observer (HGO) gain must be chosen to
be large enough to suppress the upper bound of the perturbation |Ψi(·)|sup,
which will produce an undesirable peaking phenomenon Ahrens et al. (2009).
In contrast, the proposed method introduces the perturbation estimation and
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compensation, such that the HGO gain only needs to be chosen to suppress the
perturbation estimation error |Ψ̃i(·)|. As |Ψi(·)|sup is always larger than |Ψ̃i(·)|,
a relatively small gain value is needed thus the malignant effect of the peaking
phenomenon can be partially reduced Jiang et al. (2004); Wu et al. (2004); Chen
et al. (2014).

To this end, the overall design procedure of POAPC can be summarized as
follows:

Step 1: Define perturbation (4) for the original system (1);

Step 2: Define a fictitious state yei = Ψi(·) to represent perturbation (4);

Step 3: Extend the original system (1) into the extended system (5);

Step 4: Design HGPO (8) for the extended system (5) to obtain the output esti-
mate ŷi and the perturbation estimate Ψ̂i(·) by only the measurement of
yi;

Step 5: Design controller (22) for the original system (1).

4 Case Studies

This section will illustrate various features of the proposed POAPC and show
its advantages over the existing results. In the first example, the control per-
formance of POAPC is compared with that of APC for a magnetic levitator
system. In the second example, POAPC is applied in an interconnected invert-
ed pendulum system to verify its robustness against that of PC in the presence
of system uncertainties.

4.1 Magnetic levitator system

Consider a single-input single-output (SISO) magnetic levitator system used in
Mermoud et al. (2001), which is illustrated in Fig. 2. The levitation object
is a ping-pong ball with a small permanent magnetic attached to it, by which
an attraction force could be induced. The attraction force is generated by the
electromagnet and controlled by an amplifier circuit. The height of the ball is
determined by a photo emitter-detector. The system dynamics are presented in
the following second-order differential equation

md̈ = Fc −mg + ζ (37)

where m is the mass of the ball, d is the distance of the ball from the reference
line, g is the standard gravity and Fc is the magnetic control force, ζ includes
the system uncertainty and unmodelled dynamics.

The magnetic force characteristics is described as a function of voltage ap-
plied to the amplifier circuit and height of the ball, leading to the expression

Fc = Vcb̂(d) = Vc
1

a1d2 + a2d+ a3
(38)
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Figure 2: Schematic diagram of the magnetic levitator system.

Table 1: System parameters used in the magnetic levitator system
The mass of the ball m = 2.206 g

Real constant coefficients a1 = 0.0231 mg , a2 = -2.4455 mg , a3 = 64.58 mg

The standard gravity g = 9.8 m/s2

Nominal command voltage Vc0 =4.87 V

where Vc is the input control voltage applied to the amplifier, and b̂(d) =
1/(a1d

2 + a2d+ a3). a1, a2 and a3 are real constant coefficients.
The equilibrium points d0 and ḋ0 of system (37) without disturbances for a

given nominal command voltage Vc0 are obtained as

d0 =
−a2 ±

√
a22 − 4a1(a3 − Vc0/mg)

2a1
, ḋ0 = 0 (39)

Define the output y = ḋ − ḋ0 and internal dynamics z = d − d0, together
with the control input u = Vc − Vc0. Define the system perturbation as follows

Ψ(·) = b̂(z)Vc0

m
− g + (

b̂(z)

m
− b0)u+ ζ (40)

System (37) can be obtained as{
ẏ = Ψ(·) + b0u
ż = f0(z) + p(y, z)y

(41)

where

b0 =
9

10ma3
, f0(z) = 0, p(y, z) = 1. (42)
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Figure 3: System responses obtained under the nominal model.

14



0 2 4 6 8
−60

−40

−20

0

20

40

60

Time (sec)

V
el

oc
ity

 y
 (c

m
/s

)

 

 

APC
1

APC
2

POAPC

0 2 4 6 8
−15

−10

−5

0

5

10

Time (sec)

D
is

ta
nc

e 
z 

(c
m

)

 

 

APC
1

APC
2

POAPC

0 2 4 6 8
0.6

0.8

1

1.2

1.4

1.6

1.8

Time (sec)

V
ol

ta
ge

 u
 (V

)

 

 

APC
1

APC
2

POAPC

0 1 2 3 4 5
−3

−2

−1

0

1

2

Time (sec)
P
a
ra
m
e
te
r 
（
p.
u.
）
 

θ θ
2

θ
1

θ
3

Figure 4: System responses obtained under the unmodelled dynamics ζ =
1.5 sin(y).

An HGPO is designed to estimate the perturbation by only the measurement
of y as {

˙̂y = Ψ̂(·) + h1(y − ŷ) + b0u
˙̂
Ψ(·) = h2(y − ŷ)

(43)

where h1 and h2 are the observer gains. During the most severe disturbance,
the voltage of the amplifier circuit will reduce from its initial value to around
zero within a short period of time, ∆. Thus the boundary values of the system
perturbation can be obtained as

|Ψ̂(·)| ≤ (
b̂(z)Vc0

m
− g +max |ζ|) (44)

| ˙̂Ψ(·)| ≤ (
b̂(z)Vc0

m
− g +max |ζ|)/∆ (45)

The POAPC is designed as{
u = b−1

0 (−Ψ̂(·)−Ky − z + ω)
ωT = −Dy

(46)

where a linear damping function ϕ(y) = Dy, D > 0, is chosen to construct a
passive system. The zero dynamics of system are described by ż = 0 which is
Lyapunov stable. Choose H(y, η, z) = (1/2)y2 + βW (η) +W0(z) with W0(z) =
(1/2)z2, it is easy to find that the output y and state z are locally zero-state
detectable.
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Figure 5: System responses obtained under the fast time-varying external dis-
turbance ζ = 1.4 sin(πt).

The conventional APC used in Mermoud et al. (2001) is{
u = (m/b̂(d))ΘTup

Θ̇ = −Λyup

(47)

where Θ = [θ1, θ2, θ3]
T and up = [ω1, z, ω2]

T, ω1 = b̂(d)Vc0/m − g, ω2 = −βy
with β = 2.9, Λ = diag[λ1, λ2, λ3] is the learning coefficient. Two sets of
controller parameters are used, i.e., APC1: Λ1 = [−1,−1,−1]T, Θ1(0) =
[−1,−0.5, 0.8]T (dashed line) and APC2: Λ2 = [−2,−1.5,−0.5]T, Θ2(0) =
[−1,−0.2, 0.8]T (solid line). HGPO (43) parameters are h1 = 300, h2 = 22500,
and ∆ = 0.05 s. Controller (46) parameters are K = 1.5 and D = 0.5, while
control input is bounded as 0 ≤ u ≤ 1.6 V. The values of system parameters
are given in Table 1.

Fig. 3 shows the system responses obtained when an equivalent 3 N force
applied at t = 1 s and removed at t = 1.5 s under the nominal model. One can
find that APC consumes longer time for control parameter learning and requires
larger control efforts. Moreover, its control performance is sensitive to controller
parameters which can only be optimized locally at a particular operation point.
In contrast, POAPC can effectively stabilize the disturbed system with less
control costs as the system nonlinearity is globally removed. Note that a fast
tracking of the state and perturbation can be obtained by HGPO, the relatively
large estimation error at the instant of t = 1 s and t = 1.5 s is due to the
discontinuity when the magnetic control force Fc is applied and removed.

System responses obtained under an unmodelled dynamics ζ = 1.5 sin(y) are
given by Fig. 4. It shows that POAPC can maintain a satisfactory control per-
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Figure 6: The overall control efforts obtained in the magnetic levitator system.

formance as the unmodelled dynamics is estimated and compensated online. In
contrast, APC control performance degrades dramatically with a destabilizing
effect as the system uncertainty is not in the assumed linearly parametric form.
Fig. 5 demonstrates the system responses obtained when a fast time-varying
external disturbance ζ = 1.4 sin(πt) occurs, in which POAPC can rapidly atten-
uate the disturbance thus a significant robustness can be resulted in. However,
APC cannot find the optimal control parameters which causes an unsuppressed
time-varying oscillation.

Table 2: IAE indices (in p.u.) obtained in the magnetic levitator system
aaaaaaaa
Method

Case Nominal Model Unmodelled Dynamics
Time-varying

External Disturbance

IAEy IAEz IAEy IAEz IAEy IAEz

APC1 34.76 5.27 48.76 9.17 26.24 10.57

APC2 18.52 3.14 24.97 4.56 18.98 4.73

POAPC 8.91 1.62 9.50 1.84 6.95 0.88

The integral of absolute error (IAE) indices of each approach calculated in

different cases are tabulated in Table 2. Here IAEx =
∫ T

0
|x−x∗|dt and x∗ is the

reference value of variable x. The simulation time T=8 s. IAEy and IAEz are
only 19.48% and 20.07% of those of APC1 control, 38.05% and 30.35% of those
of APC2 with the unmodelled dynamics. Finally, the overall control efforts of
different approaches are presented in Fig. 6, one can find POAPC needs less
control efforts to that of APC but provides greater robustness.

4.2 Interconnected inverted pendulum system

Consider a multi-input multi-output (MIMO) system composed of two inverted
pendulums on two carts, interconnected by a moving spring Da (2000), which
is shown in Fig. 7. Assume that the pivot position of the moving spring is a
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Figure 7: Schematic diagram of the interconnected inverted pendulum system.

function of time and it can change along the full length of the pendulums. In
this example the motion of the carts is specified as a sinusoidal trajectory. The
input to each pendulum is the torque ui, i = 1, 2, applied to the pivot point.
It is desired to control each pendulum with mass independently so that each
pendulum tracks its own trajectory reference while the connected spring and
carts are moving. The system dynamics can be described as

θ̇1 = ω1

ω̇1 =
(

g
cl −

ka(t)(a(t)−cl)
cml2

)
θ1 +

ka(t)(a(t)−cl)
cml2 θ2 − β1ω

2
1 −

k(a(t)−cl)
cml2 (s1(t)− s2(t))

+ u1

cml2 + ζ1
θ̇2 = ω2

ω̇2 =
(

g
cl −

ka(t)(a(t)−cl)
cml2

)
θ2 +

ka(t)(a(t)−cl)
cml2 θ1 − β2ω

2
2 −

k(a(t)−cl)
cml2 (s2(t)− s1(t))

+ u2

cml2 + ζ2
(48)

where β1 = (m/M) sin θ1, β2 = (m/M) sin θ2, c = m/(M +m), s1(t) = sin(2t),
s2(t) = L + sin(3t), and a = sin(5t). While the input to each pendulum is
the torque |ui| ≤ 50, i = 1, 2. ζ1 and ζ2 are the unmodelled dynamics. The
definition of the symbols can be referred to Da (2000), and the values of system
parameter are provided in Table 3.

Define the output y = [ω1, ω2]
T and internal dynamics z = [θ1, θ2]

T, together
with the control input u = [u1, u2]

T. The desired trajectories are chosen as
θr1 = sin(2t) and θr2 = sin(t). System initial states are z(0) = [1,−1]T and
y(0) = [0, 0]T, respectively.
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Table 3: System parameters used in the interconnected inverted pendulum sys-
tem

The length of the pendulum l=1 The spring constant k=1

The gravity constant g=1 The natural length of the spring L=2

The mass of pendulum m=10 The mass of cart M=10

Define the system perturbation as follows

Ψ(·) =

 ( g
cl −

ka(t)(a(t)−cl)
cml2

)
z1 +

ka(t)(a(t)−cl)
cml2 z2 − β1y

2
1 −

k(a(t)−cl)
cml2 (s1(t)− s2(t)) + ζ1(

g
cl −

ka(t)(a(t)−cl)
cml2

)
z2 +

ka(t)(a(t)−cl)
cml2 z1 − β2y

2
2 −

k(a(t)−cl)
cml2 (s2(t)− s1(t)) + ζ2


(49)

System (48) can be rewritten as{
ẏ = Ψ(·) +B0u
ż = f0(z) + p(y, z)y

(50)

where

B0 =

[
b10 0
0 b20

]
, f0(z) =

[
0
0

]
, p(y, z) =

[
1 0
0 1

]
. (51)

During the most severe disturbance, both the angle and angular speed of
the pendulum will reduce from their initial values to around zero within a short
period of time, ∆. Thus the boundary values of the system perturbation can be
obtained as

|Ψ̂1(·)| = |(2− 0.2 sin(5t)(sin(5t)− 0.5))z1 + 0.2 sin(5t)(sin(5t)− 0.5)z2

− sin(z1)y
2
1 − 0.2(sin(5t)− 0.5)(sin(2t)− sin(3t)− 2) + ζ1|

≤ 2.1|z1|+ 0.3|z2|+ y21 + 1.2 + max |ζ1| (52)

| ˙̂Ψ1(·)| ≤ (2.1|z1|+ 0.3|z2|+ y21 + 1.2 + max |ζ1|)/∆ (53)

|Ψ̂2(·)| = |(2− 0.2 sin(5t)(sin(5t)− 0.5))z2 + 0.2 sin(5t)(sin(5t)− 0.5)z1

− sin(z2)y
2
2 − 0.2(sin(5t)− 0.5)(2 + sin(3t)− sin(2t)) + ζ2|

≤ 2.1|z2|+ 0.3|z1|+ y22 + 1.2 + max |ζ2| (54)

| ˙̂Ψ2(·)| ≤ (2.1|z2|+ 0.3|z1|+ y22 + 1.2 + max |ζ2|)/∆ (55)

Two identical HGPOs are designed to estimate the perturbation by only the
measurement of yi, where i = 1, 2, as follows{

˙̂yi = Ψ̂i(·) + hi1(yi − ŷi) + bi0ui

˙̂
Ψi(·) = hi2(yi − ŷi)

(56)
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Figure 8: System responses obtained under the nominal model.

The POAPC is designed as{
u = B−1

0 (−Ψ̂(·)−Ky − z+ ω)
ωT = −Dy

(57)

Two HGPOs (56) parameters are chosen as hi1 = 200, hi2 = 10000, bi0 =
1

cml2 = 0.2. Controller (57) parameters are chosen as follows

K =

[
1 1
1 1

]
, D =

[
3 0
0 3

]
(58)

Note that the above choice of the parameter values is only an example to
study the control performance of POAPC, in fact, one can choose other values
of them and it will only result in a different system damping.

In order to verify the effectiveness of POAPC, PC is used which assumes the
accurate system model is completely known for comparison. Fig. 8 gives the
tracking performance of PC and POAPC obtained under the nominal model,
one can find that POAPC can achieve as satisfactory tracking performances
as that of PC, their tiny differences are resulted from the estimation error.
Fig. 9 demonstrates that POAPC can perform much better in the presence of
the unmodelled dynamics ζ1 = 5 sin(ω1) and ζ2 = 5 cos(ω2), as the real-time
estimate of the system perturbation is used to compensate the actual system
perturbation. Hence, it possesses a high adaptation capability and robustness
in the presence of unknown dynamics with only one state measurement.

The IAE indices of each approach calculated in different cases are tabulated
in Table 4, of which the simulation time T=10 s. In particular, its IAEz1 and
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Figure 9: System responses obtained under the unmodelled dynamics ζ1 =
5 sin(ω1) and ζ2 = 5 cos(ω2).

Table 4: IAE indices (in p.u.) obtained in the interconnected inverted pendulum
system

aaaaaaaa
Method

Case Nominal Model Unmodelled Dynamics

IAEz1 IAEz2 IAEz1 IAEz2

PC 0.97 0.86 4.47 4.77

POAPC 1.01 0.89 1.03 0.92

IAEz2 are only 23.04% and 19.29% of those of PC with unmodelled dynamics.
At last, the overall control efforts of different approaches are presented in Fig.
10, which shows POAPC needs similar control efforts to that of PC but provides
greater robustness.

5 Conclusion

A nonlinearly functional estimation based POAPC approach is developed in
this paper, which employs HGPO to make PC applicable in practice. It can
effectively resolve the weakness of conventional APC or RPC when dealing with
unmodelled dynamics and various system uncertainties. A proposition is given
at first, which shows that for any given constant δpoi , from the initial estimation
error ỹpoi(0), the estimation error will exponentially converge into the neigh-
bourhood ∥ỹpoi(t)∥ ≤ δpoi . Then a theorem has been proved by the Lyapunov
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Figure 10: The overall control efforts obtained in the interconnected inverted
pendulum system.

criterion, which shows that there exists ϵ∗i1, with i = 1, . . . ,m, ϵ∗i1 > 0 such
that, ∀ϵi, 0 < ϵi < ϵ∗i1, the closed-loop system is passive and its origin is stable.
Two practical examples have been studied, the simulation results verify that
POAPC can provide significant robustness without the requirement of further
assumptions/conditions made on system, and also achieve as satisfactory control
performance as that of PC when an accurate system is available.
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