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Abstract

This paper proposes a novel passivity-based sliding-mode control (PB-SMC) scheme of perma-

nent magnetic synchronous generator (PMSG) for maximum power point tracking (MPPT). A storage

function is constructed based on the passivity theory at first, in which the beneficial system nonlin-

earities, e.g., which can make the derivative of storage function to be more negative, are carefully

remained so as to improve the system damping while all the other system nonlinearities are fully re-

moved. Then, an additional input is used to lead the closed-loop system to be output strictly passive

via energy reshaping, meanwhile a sliding-mode control (SMC) is incorporated to greatly enhance

the system robustness against various uncertainties of PMSG. Hence, PB-SMC can simultaneously

own the promising merits of improved system damping and significant robustness, together with a

globally consistent control performance under various operation conditions. Case studies including

step change of wind speed, stochastic wind speed variation, pitch angle variation, and generator

parameter uncertainties, are undertaken which verify the effectiveness and superiority of PB-SMC

compared to that of other typical controllers. Lastly, a dSpace based hardware-in-loop (HIL) test is

carried out to validate the implementation feasibility of PB-SMC.
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1 Introduction

Sustainable energy has been undoubtedly regarded as a promising alternative energy source as conven-

tional fossil fuels are limited and continuously cause ever-growing pollution issues. Currently, one of the

most favorable sources of sustainable energy is wind energy which has the merits of abundance, cleanness,

and wide distribution [1–5]. The variable speed wind turbine systems are usually based on doubly-fed

induction generator (DFIG) [6] or permanent magnet synchronous generator (PMSG) [7]. Recently, the

application of PMSG has been considerably increased thanks to its elegant features of simple structure,

efficient energy production, gearless construction, self-excitation, and low noise [8]. Therefore, it is ex-

pected that a growing number of PMSG will be employed in wind energy conversion systems (WECS)

around the globe.

In WECS, an effective optimal power extraction with low implementation costs, also known as maxi-

mum power point tracking (MPPT) [9,10] control strategy, is essential to improve the operation efficiency.

Conventional vector control (VC) associated with proportional-integral (PI) control loops are popularly

adopted and widely implemented in practice due to its elegant advantages of simple structure [11]. How-

ever, its control design is mainly based on an linearized model at a specific operation point, while its

control performance might be significantly degraded or even lead to a system instability as the operation

condition of PMSG often varies. In order to remedy this inherent flaw of PI control, a virtually adaptive

PI controller was proposed with a wavelet neural network (WNN) to dynamically adjust the PI gains

through online training [12]. Moreover, reference [13] developed a back-propagation learning algorithm

with modified particle swarm optimization (MPSO) to tune the PI parameters of PMSG, such that a

loss-minimization control of MPPT can be realized. In addition, a fuzzy fractional order PI+I controller

was designed with a particle swarm optimization (PSO) to realize MPPT of PMSG [14]. Besides, an im-

proved bacterial foraging optimization (BFO) technique was employed to optimize PI parameters which

aims to extract the maximum power from the wind [15].

On the other hand, nonlinear control has been largely investigated to handle the above thorny problems

resulted from one-point linearization. Reference [16] reported a feedback linearization control (FLC)

which globally removes all the nonlinearities to achieve MPPT while PSO is used to optimize the control

gains of FLC [17], such that a consistent control performance under various operation conditions can be

realized. In work [18], a model predictive control (MPC) and dead-beat predictive control strategies were

developed to forecast the possible future behaviour of the control variables of PMSG. Additionally, a fuzzy

integral sliding-mode current controller was proposed to extract the optimal wind power and eliminate

the high-order voltage harmonics of PMSG [19]. Further, literature [20] presented a multiple-input-
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multiple-output high-order sliding-mode control (SMC) scheme so as to regulate the active and reactive

power delivered to the power grid, minimize the resistive losses of the generator and maintain important

internal variables into the desired range. Meanwhile, an enhanced exponential reaching law based SMC

was devised for PMSG to reduce the malignant chattering issues and to improve total harmonic distortion

property [21]. Meanwhile, literature [22] presented a robust nonlinear predictive control (RNPC) to

adjust the rectifier voltage amplitude and stator current in the face of external disturbances, which

implementation feasibility was validated by dSPACE hardware. Besides, a nonlinear Luenberger-like

observer was designed to estimate the mechanical variables by only the measurement of electrical variables

of PMSG to achieve MPPT [23]. Moreover, an artificial neural network (ANN)-based reinforcement

learning (RL) was employed for PMSG to achieve MPPT, which enables the WECS to behave like an

intelligent agent with memory to learn from its own experience, thus improving the learning efficiency [24].

However, the aforementioned approaches usually ignore the physical property of PMSG during the

control design. Inspiringly, passive control (PC) provides an invaluable insight of physical features of a

given engineering problem so as to achieve an optimal control. It actually views a dynamical system as

an virtual energy-transformation device, which can decompose a complex nonlinear system into several

simpler subsystems that, upon careful interconnection, and adds up their local/distributed energies to

determine the overall system’s behaviour [25]. PC was adopted to synthesize a controller for the active

power of DFIG via energy reshaping in the context of extreme operating conditions [26]. Based on

interconnection and damping assignment, PC was employed to achieve MPPT of PMSG [27]. Other

engineering applications of PC can be referred to voltage source converter based high-voltage direct-

current (VSC-HVDC) systems [28], synchronous generator [29], marine vehicle [30], photovoltaic/battery

hybrid power source [31], fuel cell and supercapacitors [32], etc.

One obvious drawback of PC is the fact that it usually requires an accurate system model in order to

analyze the physical property and roles of each terms of a dynamical system, thus its practical application

is somehow limited resulted from the lack of robustness, particularly for PMSG in whcih the wind speed is

highly stochastic and accurate generator parameters are generally unavailable. Such challenging obstacle

motivates this paper to develop a robust PC scheme to enhance the robustness in the context of wind

speed randomness and generator parameter uncertainties. The novelty and contribution of this paper

can be summarized as the following three aspects:

• Based on passivity theory, a storage function is constructed for PMSG to achieve MPPT, which

is in the form of the sum of the resistor heat produced by d-axis current flowing through a virtual unit

resistance, kinetic energy of the shaft system, and the accelerating torque energy. Hence, the physical
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Figure 1: The configuration of a PMSG directly connected to a power grid.

property of PMSG is thoroughly analyzed;

• The beneficial terms are wisely exploited to improve the system damping while an addition input

is introduced to lead the closed-loop system to be output strictly passive via energy reshaping, which

guarantee a rapid error tracking convergence of mechanical rotation speed and reactive power;

• An SMC is incorporated into original PC which attempts to considerably enhance the robustness of

the proposed approach in the presence of stochastic wind speed and generator parameter uncertainties.

The remaining of this paper is organized as follows: Section II develops the PMSG model and Section

III provides the design procedure of PB-SMC for MPPT of PMSG. Then, case studies are undertaken

in Section IV while hardware-in-loop (HIL) test is carried out in Section V. At last, some concluding

remarks and future studies are summarized in Section VI.

2 Modelling of PMSG based Various Speed Wind Turbine

The configuration of a PMSG directly connected to an infinite power grid bus through back-to-back

voltage source converter (VSC) is demonstrated by Fig. 1, in which the wind energy captured by a variable

speed wind turbine is transmitted to a gearless PMSG. Here, The produced power of the generator is

controlled by the generator-side VSC, while the grid-side VSC is responsible for delivering active power

to the grid via the DC-link and maintaining the DC-link voltage. Two VSCs are controlled separately

and the dynamics of the PMSG and the power grid is decoupled via the DC-link. As the MPPT of PMSG

mainly relies on the control of the generator-side VSC, the dynamics of grid-side VSC is ignored in this

paper.
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2.1 Wind turbine model

In general, the aerodynamics of wind turbine is normally described by a power coefficient Cp(λ, β), which

is usually an algebraic function of both blade pitch angle β and tip-speed-ratio λ, with λ being defined

as follows

λ =
wmR

vwind
(1)

where ωm denotes the mechanical rotation speed of wind turbine and vwind represents the wind speed; R

is the blade radius of wind turbine. According to the wind turbine dynamics, a generic equation employed

to describe the power coefficient Cp(λ, β) can be written as

Cp(λ, β) = c1

(
c2
λi

− c3β − c4

)
e
− c5

λi (2)

with

1

λi
=

1

λ+ 0.08β
− 0.035

β3 + 1
(3)

The coefficients c1 to c5 are selected as c1=0.22, c2=116, c3=0.4, c4=5, and c5=12.5, respectively [16,33].

Besides, the mechanical power extracted by the wind turbine from the wind energy can be calculated

by

Pm =
1

2
ρπR2Cp(λ, β)v

3
wind (4)

where ρ is the air density. It is worth noting that this paper focuses on the MPPT of PMSG, thus the

wind turbine merely operates in the sub-rated speed range while its pitch control is deactivated for the

whole operation of PMSG.

2.2 Permanent magnetic synchronous generator model

The PMSG model is modeled as the same as that of permanent magnetic synchronous machine (PMSM).

The voltage and torque equations of the PMSM in the d-q reference frames are expressed as [16, 33]

Vd = idRs + Ld
did
dt

− ωeLqiq (5)

Vq = iqRs + Lq
diq
dt

+ ωe(Ldid +Ke) (6)

Te = p[(Ld − Lq)idiq + iqKe] (7)
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where Vd and Vq are the stator voltages in the d-q axis; id and iq are the currents in the d-q axis; Rs is

the stator resistance; Ld and Lq are d-q axis inductances; ωe = pωm is the electrical rotation speed; Ke

is the permanent magnetic flux given by the magnets; and p is the number of pole pairs.

2.3 Shaft system model

The dynamics of shaft system and mechanical torque of PMSG are given as follows [16, 33]

Jtot
dωm

dt
= Tm − Te −Dωm (8)

Tm =
1

2
ρπR5Cp(λ, β)

λ3
ω2
m (9)

where Jtot is the total inertia of the drive train which equals to the summation of wind turbine inertia

constant and generator inertia constant; D is the viscous damping coefficient which is taken to be 0 in

this paper; Tm and Te are the mechanical torque and electromagnetic torque of wind turbine, respectively.

Moreover, electrical power Pe = Teωe.

In order to capture the maximum wind power, the power coefficient Cp(λ, β) should be maintained at

its maximum point C∗
p at various wind speed within the operation range. Particularly, maximum power

coefficient C∗
p is achieved by maintaining the tip-speed-ratio λ to be equal to its optimal value λ∗ and

the pitch angle β at a fixed value, yields

C∗
p = Cp(λ

∗) (10)

which in turn requires the mechanical rotation speed ωm to track its optimal reference ω∗
m as follows

ω∗
m =

vwind

R
λ∗ (11)

Here, the pitch angle is taken as β = 2◦, the optimal tip-speed-ratio λ∗ = 7.4 while maximum power

coefficient C∗
p = 0.4019 [16, 33]. Moreover, x∗ denotes the reference of variable x throughout the whole

paper.

Lastly, the aim of MPPT is to track the optimal active power curve which is obtained by connecting

each maximum power point (MPP) at various wind speed, as illustrated by Fig. 2. Here, the optimal

6



Rotor speed

A
ct

iv
e 

po
w

er

v3
v4

v5

v6

v7

Popt(ωm)

vvv4

vvv55

vv6

vv77

v8

0.4

0.3

0.2

0.1

0.0
1 4 7 10

C p
Cmax

p

λopt

 Tip-speed-ratio λ

Po
w

er
 c

oe
ffi

ci
en

t

1 4 7 1000000000000

v3

v2v1

MPP

CmaxCC p

Optimal active 
power curve

opt(ωm)

Figure 2: The optimal active power curve obtained under various wind speed.

active power curve is determined as

Popt(ωm) = K∗ω3
m (12)

where K∗ = 0.5ρπR5C∗
p/(λ

∗)3 denotes the shape coefficient of optimal active power, which shows that

the optimal power is proportional to the cube of mechanical rotation speed and can be interpreted as the

mechanical power produced on the wind turbine in terms of mechanical rotation speed.

3 Passivity-based Sliding-mode Control of PMSG

3.1 Preliminary

Consider a dynamical nonlinear system represented with the general model

⎧⎪⎨
⎪⎩

ẋ = f(x, u)

y = h(x, u)
(13)

where x ∈ Rn is the system state vector. u ∈ Rm and y ∈ Rm represent the input and output, respectively.

The energy balancing equation can be written as follows:

H [x(t)] −H [x(0)]︸ ︷︷ ︸
stored

=

∫ t

0

uT (s)y(s)ds︸ ︷︷ ︸
supplied

− d(t)︸︷︷︸
dissipated

(14)

where H(x) is the stored energy function, and d(t) is a nonnegative function that captures the dissipation

effects, e.g., due to resistances or frictions, etc.
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System (13) is defined to be output strictly passive if there exists a continuously differentiable positive

semi-definite function H(x) (called the storage function) such that

uTy ≥ ∂H

∂x
f(x, u) + ζyTy, ∀(x, u) ∈ Rn ×Rm (15)

where ζ > 0. In order to obtain the asymptotic stability the following lemma is needed.

Lemma 1. Consider the system described in (13), The origin of the uncontrolled system ẋ = f(x, 0)

is asymptotically stable if the system is output strictly passive and zero-state detectable with a positive

definite storage function H(x). Moreover, if the storage function H(x) is radially unbounded then the

origin is globally asymptotic stable [25].

If system (13) is not passive, but there exists a positive definite storage function H(x) and a feedback

control law u = β(x) + κv such that Ḣ ≤ vy, then the feedback system is passive. As a result, the

feedback passivation can be used as a preliminary step in a stabilization design because of the additional

output feedback

v = −φ(y) (16)

where φ(y) is a sector-nonlinearity satisfying yφ(y) > 0 for y �= 0 and φ(0) = 0, can achieve Ḣ ≤
−yφ(y) ≤ 0.

3.2 PB-SMC design

The objective of PB-SMC is to carefully passivize a dynamical system with a storage function which has

a minimum at the desired equilibrium point, therefore it reshapes the original system energy and assigns

a closed-loop energy function equals to the difference between the energy of the system and the energy

supplied by the controller, such that a significant system damping can be injected. Furthermore, a great

robustness can be provided thanks to the SMC mechanism employed by the PB-SMC.

Define state variable x = [id, iq, ωm]
T and output y = [y1, y2]

T = [id, ωm]
T, the state space equation

of PMSG can be calculated from (5-9), as follows

ẋ = f(x) + g1(x)u1 + g2(x)u2 (17)
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where

f(x) =

⎡
⎢⎢⎢⎢⎣

−Rs

Ld
id +

ωeLq

Ld
iq

−Rs

Lq
iq − ωe

Lq
(Ldid +Ke)

1
Jtot

(Tm − Te)

⎤
⎥⎥⎥⎥⎦ , g1(x) =

⎡
⎢⎢⎢⎢⎣

1
Ld

0

0

⎤
⎥⎥⎥⎥⎦ , g2(x) =

⎡
⎢⎢⎢⎢⎣

0

1
Lq

0

⎤
⎥⎥⎥⎥⎦ (18)

Differentiate output y until control input u = [u1, u2]
T = [Vd, Vq]

T appears explicitly, it obtains

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẏ1 = 1
Ld

u1 − Rs

Ld
id +

ωeLq

Ld
iq

ÿ2 = − piq
JtotLd

(Ld − Lq)u1 +
Ṫm

Jtot
− p

JtotLq
[Ke + (Ld − Lq)id]u2 − piq

JtotLq
(Ld − Lq)(−Rsid + Lqωeiq)

+ p
JtotLq

[Ke + (Ld − Lq)id](Ldωeid +Rsiq + ωeKe)

(19)

System (19) can be then rewritten into the following matrix form

⎡
⎢⎣ ẏ1

ÿ2

⎤
⎥⎦ =

⎡
⎢⎣ h1(x)

h2(x)

⎤
⎥⎦+B(x)

⎡
⎢⎣ u1

u2

⎤
⎥⎦ (20)

where

h1(x) = −Rs

Ld
id +

ωeLq

Ld
iq (21)

h2(x) =
Ṫm

Jtot
− piq

JtotLq
(Ld − Lq)(−Rsid + Lqωeiq) +

p

JtotLq
[Ke + (Ld − Lq)id](Ldωeid +Rsiq + ωeKe)

(22)

and

B(x) =

⎡
⎢⎣ 1

Ld
0

− piq
JtotLd

(Ld − Lq) − p
JtotLq

[Ke + (Ld − Lq)id]

⎤
⎥⎦ (23)

The inverse of control gain matrix B(x) can be calculated as follows

B−1(x) =

⎡
⎢⎣ Ld 0

− iqLq(Ld−Lq)
Ke+(Ld−Lq)id

− JtotLq

p[Ke+(Ld−Lq)id]

⎤
⎥⎦ (24)

In order to ensure the above input-output linearization to be valid, it requires control gain matrix B(x)
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must be nonsingular among the whole operation range, it requires

det[B(x)] = −p[Ke + (Ld − Lq)id]

JtotLdLq
�= 0 (25)

which can be always satisfied when Ke �= −(Ld − Lq)id.

For system (19), construct a storage function as follows:

H(id, ωm, Te, Tm) =
1

2
(id − i∗d)

2

︸ ︷︷ ︸
resistor heat

+
1

2
(ωm − ω∗

m)
2

︸ ︷︷ ︸
kinetic energy

+
1

2
(
Tm − Te

Jtot
− ω̇∗

m)
2

︸ ︷︷ ︸
accelerating torque energy

(26)

where i∗d, ω
∗
m, and ω̇∗

m are the reference of d-axis current, mechanical rotation speed, and the derivative

of mechanical rotation speed, respectively. Here, H(id, ωm, Te, Tm) is constructed in the form of the sum

of the resistor heat produced by d-axis current flowing through a virtual unit resistance r = 1 Ω, kinetic

energy of the shaft system, and the accelerating torque energy, respectively.

Differentiate storage function H(id, ωm, Te, Tm) (26) with respect to the time, yields

Ḣ(id, ωm, Te, Tm) =

(id − i∗d)
( 1

Ld
u1 − Rs

Ld
id +

ωeLq

Ld
iq − i̇∗d

)
+ (

Tm − Te

Jtot
− ω̇∗

m)
{
− ω̈∗

m − piq
JtotLd

(Ld − Lq)u1 +
Ṫm

Jtot

− p

JtotLq
[Ke + (Ld − Lq)id]u2 − piq

JtotLq
(Ld − Lq)(−Rsid + Lqωeiq) + ωm − ω∗

m

+
p

JtotLq
[Ke + (Ld − Lq)id](Ldωeid +Rsiq + ωeKe)

}
(27)

Design PB-SMC for system (20) as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1 = −ωeLqiq +Rsi
∗
d + Ldi̇

∗
d + ν1

u2 = − Lqiq(Ld−Lq)
Ke+(Ld−Lq)id

u1 +
JtotLq

p[Ke+(Ld−Lq)id]

{
ω̈∗
m − ωm + ω∗

m − Ṫm

Jtot
+

piq
JtotLq

(Ld − Lq)(−Rsid + Lqωeiq)

− p
JtotLq

[Ke + (Ld − Lq)id](Ldωeid + ωeKe)− Rs

JtotLq
Tm + Rs

Lq
ω̇∗
m + ν2

}
(28)

where ν1 and ν2 are additional inputs which will be designed later.

Substitute PB-SMC (28) into the derivative of storage function (27), together with electromechanical

relationship (8), it gives

Ḣ(id, ωm, Te, Tm) = −Rs

Ld
(id − i∗d)

2 − Rs

Lq
(ω̇m − ω̇∗

m)
2

︸ ︷︷ ︸
beneficial terms

+
id − i∗d
Ld

ν1 + (ω̇m − ω̇∗
m)ν2︸ ︷︷ ︸

additional inputs

(29)
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Remark 1. The first two terms of system (29) are carefully remained as they are beneficial terms which

can accelerate the error tracking rate of d-axis current id and mechanical rotation speed ωm. In particular,

their physical property can be interpreted as the sum of the heat produced by the d-axis current id on the

stator resistance Rs associated with d-axis inductance Ld and the accelerating torque energy associated

with the stator resistance Rs and q-axis inductance Lq, such energy will be dissipated to result in a faster

decrease of storage function, that is, a larger system damping. Consequently, PB-SMC can improve the

transient responses of PMSG compared to that of FLC [16, 17] which fully removes the nonlinearities

without any consideration or analysis of the actual role of each term existed in PMSG.

There are two objectives to design additional inputs ν1 and ν2, e.g., lead the system to be output

strictly passive through energy reshaping to ensure the stability of the closed-loop system and enhance

system robustness by using sliding-mode mechanism. As a consequence, two sliding surfaces need to be

chosen as

S1 = id − i∗d (30)

S2 = ρ1(ωm − ω∗
m) + ρ2(ω̇m − ω̇∗

m) (31)

where ρ1 and ρ2 are the positive sliding surface gains. The attractiveness of the sliding surfaces (30) and

(31) ensures d-axis current id and mechanical rotation speed ωm can eventually track to their reference.

Consider the structure of system (29), the additional inputs can be then designed as follows:

ν1 = −α1(id − i∗d)︸ ︷︷ ︸
energy reshaping

−ζ1S1 − ϕ1sat(S1, ε1)︸ ︷︷ ︸
sliding−mode

(32)

ν2 = −α2(ω̇m − ω̇∗
m)︸ ︷︷ ︸

energy reshaping

−ζ2S2 − ϕ2sat(S2, ε2)︸ ︷︷ ︸
sliding−mode

(33)

where positive control gains ζ1, ζ2, ϕ1, and ϕ2 are chosen to guarantee the attractiveness of sliding surfaces

(30) and (31); while positive passivation gains α1 and α2 reshape the system into output strictly passive,

such that the closed-loop system is stable; Moreover, function sat(Si, εi), with i = 1, 2, is employed

to replace conventional sgn(Si) function, such that the malignant effect of chattering existed in SMC

resulted from discontinuity can be reduced, which is defined as sat(Si, εi) = Si/|Si| when |Si| > εi and

sat(Si, εi) = Si/εi when |Si| ≤ εi; and εi denotes the thickness layer boundary of PB-SMC.

To this end, the overall PB-SMC structure of PMSG for MPPT is demonstrated by Fig. 3, in which

mechanical rotation speed is fully decoupled from d-axis current. Lastly, the obtained control inputs (28)
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Figure 3: The overall PB-SMC structure of PMSG for MPPT.

are modulated by the sinusoidal pulse width modulation (SPWM) technique [34].

4 Case Studies

The simulation is executed on Matlab/Simulink 7.10 using a personal computer with an IntelR CoreTMi7

CPU at 2.2 GHz and 4 GB of RAM, the PMSG system parameters are taken from reference [33] which are

tabulated in Table 1. The proposed PB-SMC is applied on a PMSG based variable speed wind turbine

for MPPT, which control performance is compared to that of VC [11], FLC [16], and SMC [20], under

four cases, i.e., step change of wind speed, stochastic wind speed variation, pitch angle variation, and

robustness against generator parameter uncertainties. Moreover, the PB-SMC parameters are tabulated

in Table 2. Consider control inputs may exceed the admissible capacity of generator-side VSC at some

operation point, hence their values must be limited, i.e., |u1| ≤ 0.6 p.u. and |u2| ≤ 0.8 p.u., respectively.

Remark 2. Note that a larger value of control gains ζ1, ζ2, ϕ1, and ϕ2 and sliding surface gains ρ1 and

ρ2 will result in a faster convergence of sliding surface but with larger control costs; Moreover, a larger

value of passivation gains α1 and α2 and will inject higher system damping but with larger control costs;

Lastly, a larger value of thickness layer boundary ε1 and ε2 will lead to a less chattering but with degraded

control performance near the sliding surface. The control parameters used in Table 2 are determined by

trial-and-error such that a proper trade-off of the above contradictory effects could be achieved.
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Table 1: The PMSG system parameters
PMSG rated power Pbase 2 MW

radius of wind turbine R 39 m

air density ρ 1.205 kg/m3

rated wind speed vwind 12 m/s

total inertia Jtot 10000 kg · m2

field flux Ke 136.25 V · s/rad
pole pairs p 11

d-axis stator inductance Ld 5.5 mH

q-axis stator inductance Lq 3.75 mH

stator resistance Rs 50 μΩ

Table 2: PB-SMC parameters used in the case studies
control parameters of d-axis current

α1 = 25 ζ1 = 15 ϕ1 = 10 ε1 = 0.1

control parameters of mechanical rotation speed

α2 = 30 ζ2 = 25 ϕ2 = 15 ε2 = 0.1

ρ1 = 100 ρ2 = 1

4.1 Step change of wind speed

A series of four consecutive step changes of wind speed are applied to briefly mimic a gust, i.e., 8-9 m/s,

9-10 m/s, 10-11 m/s, 11-12 m/s at t=5 s, 10 s, 15 s, 20 s, respectively. The MPPT performance of different

controllers is provided in Fig. 4. As the wind speed increases sharply, the mechanical power injected

into the PMSG grows rapidly thus a power imbalance is resulted in, which then drives an increase of

electrical power by accelerating the mechanical rotation speed of wind turbine. Moreover, Fig. 4 clearly

illustrates that PB-SMC can extract the optimal wind power as it can maintain the power coefficient

closest to its optimum, together with a smooth and rapid mechanical rotation speed compared to that

of VC, FLC, and SMC. Additionally, it is worth noting that VC performance degrades considerably at

different operation points due to its one-point linearization while the other nonlinear approaches can

achieve a globally consistent control performance. Besides, three step changes of d-axis current are also

applied to investigate the current regulation performance. It can be clearly observed that VC has a

current overshoot during each step change. while PB-SMC can track the current reference at the fastest

rate without any overshoot among all controllers.

4.2 Stochastic wind speed variation

A stochastic wind speed variation is simulated to investigate the control performance of the proposed

method, in which the wind speed rapidly varies among 7 m/s to 11 m/s in 25 s to mimic a more realistic

wind speed in reality [35–37]. The system responses are presented in Fig. 5, from which one can find that
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Figure 4: MPPT performance obtained under four consecutive step changes of wind speed from 8 m/s
to 12 m/s.

PB-SMC could effectively extract the optimal wind power with the least deviation of power coefficient

from its optimum. Again, VC provides the poorest power tracking and it can not achieve a satisfactory

performance in the presence of such high-frequency wind speed variation. Besides, SMC outperforms

FLC as it owns higher robustness to wind speed uncertainties.

4.3 Pitch angle variation

A pitch angle decrease starts from 2 deg. to 0 deg. in 0.4 s with a constant wind speed of 12 m/s is applied

to compare the control performance of PB-SMC to that of others, the performance is given in Fig. 6. It

is obvious that PB-SMC can reach the new steady state at the fastest rate thanks to its extra system

damping which significantly improves the transient responses. In contrast, the mechanical rotation speed

of VC varies dramatically as such operation point shifts from the normal operation condition.

4.4 Robustness against parameter uncertainties

In order to evaluate the robustness against generator parameter uncertainties [38, 39], a series of plant-

model mismatches of stator resistance Rs and d-axis inductance Ld with ±20% variation around their

nominal value are undertaken, in which a 2 m/s wind speed step increase from 10 m/s is applied. Note

that such generator parameter uncertainties might be caused by the temperature variation, wear-and-tear

of the generator, measurement errors of apparatus, etc. The peak value of active power |Pe| is recorded
for a clear comparison. Fig. 7 illustrates that the variation of |Pe| obtained by VC, FLC, SMC, and
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Figure 5: MPPT performance obtained under stochastic wind speed variation among 7 m/s to 11 m/s.
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PB-SMC is around 17.4%, 28.1%, 9.6%, and 8.1%, respectively. As FLC requires an accurate system

model thus it is quite invulnerable to any generator parameter uncertainties. In addition, both SMC and

PB-SMC are robust to the generator parameter uncertainties due to the sliding-mode mechanism while

PB-SMC performs better than that of SMC thanks to the remained beneficial terms which enhance the

system damping.

Table 3: IAE indices (in p.u.) of four controllers obtained in different cases
��������
Control

Case Step change of

wind speed

Stochastic wind

speed variation

Pitch angle variation

IAEid
IAEωm IAEid

IAEωm IAEid
IAEωm

VC 1.58E-02 3.67E-03 6.17E-03 4.83E-03 3.26E-04 2.18E-04

FLC 1.39E-02 3.24E-03 4.83E-03 2.66E-03 2.86E-04 1.74E-04

SMC 1.31E-02 3.11E-03 3.64E-03 1.97E-03 2.35E-04 1.52E-04

PB-SMC 1.06E-02 2.75E-03 3.12E-03 1.42E-03 2.08E-04 1.26E-04

4.5 Comparative analysis

The integral of absolute error (IAE) indices of each approach calculated in different cases are provided in

Table 3, where IAEx =
∫ T

0 |x−x∗|dt and x∗ is the reference of variable x. The simulation time T=25 s. It

gives that PB-SMC owns the lowest IAE indices (in bold) in all cases among all controllers. Particularly,

its IAEid obtained in stochastic wind speed variation is just 50.57%, 64.60%, and 85.71% to that of VC,

FLC, and SMC, respectively; Besides, its IAEωm obtained in step change of wind speed is only 67.09%,

76.26%, and 80.92% to that of VC, FLC, and SMC, respectively.

In addition, the real-time variation of storage function H(id, ωm, Te, Tm), which describes the system

transient responses while a steeper curve indicates a faster error tracking, is demonstrated by Fig. 8.

One can observe that PB-SMC has the fastest decrease of storage function and the lowest peak value

when a disturbance (wind speed variation or pitch angle variation) occurs. Moreover, the overall integral

of storage function
∫ T

0
H(id, ωm, Te, Tm)dt of different cases, which describes the accumulated energy

produced by the tracking error while a smaller value means a lower overall tracking error, is compared

in Fig. 9. It can be seen that VC has the highest value which means it has the largest accumulated

tracking error among all approaches. In contrast, PB-SMC has the minimal accumulated tracking error

in all cases.

Lastly, the overall control costs of four controllers required in different cases are presented in Fig.

10. Here, PB-SMC merely requires the lowest control costs in stochastic wind speed variation and pitch

angle variation thanks to the careful exploitation of beneficial terms by examining their physical property.
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Meanwhile, its control costs are just slightly higher than that of FLC and ranks the second lowest among

all methods in the step change of wind speed. As a consequence, it can be concluded that PB-SMC is

adequate to achieve a satisfactory control performance with reasonable control costs.

5 Hardware-in-the-loop Test

HIL test is an important and powerful technique used in the development and test of complex real-

time embedded systems, which provides an effective platform by adding the complexity of the plant

under control to the test platform. The complexity of the plant under control is included in test and

development by adding a mathematical representation of all related dynamic systems. HIL test has been

successfully used in wind energy systems [40–42] to validate the hardware implementation feasibility.

A dSPACE based HIL test is undertaken which configuration and experiment platform are demon-

strated by Fig. 11 and Fig. 12, respectively. Here, the PB-SMC based d-axis current controller and

mechanical rotation speed controller (28) are implemented on one dSPACE platform (DS1104 board)

with a sampling frequency fc = 1 kHz, and the PMSG system is simulated on another dSPACE platform

(DS1006 board) with the limit sampling frequency fs = 50 kHz to make HIL simulator as close to the real

generator as possible [29, 43]. The measurements of the d-axis current id, q-axis current iq, mechanical

rotation speed ωm, and mechanical torque Tm are obtained from the real-time simulation of the PMSG

system on the DS1006 board, which are sent to two controllers implemented on the DS1104 board for

the control inputs calculation.
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Figure 13: Simulation and HIL test results obtained under four consecutive step changes of wind speed
from 8 m/s to 12 m/s.

The HIL tests are performed mainly for two purposes: 1) Validate the correctness and effectiveness

of the PB-SMC in real applications; 2) Evaluate the accuracy and real-time computing ability of the

PB-SMC based PMSG system in practice.

5.1 HIL Test: Step change of wind speed

The system responses obtained under the simulation and HIL test are compared by Fig. 13 under the

same step change of wind speed used in Case Studies. It can be clearly seen that the HIL test has almost

the same results as that of the simulation.

5.2 HIL Test: Stochastic wind speed variation

In the presence of the same stochastic wind speed variation of Case Studies, Fig. 14 demonstrates that

an optimal power can be effectively extracted while the system responses obtained by the HIL test is

similar to that of simulation.

5.3 HIL Test: Pitch angle variation

The same pitch angle variation of Case Studies is applied. One can readily observe from Fig. 15 that the

results of the HIL test and simulation match very well.

To this end, the difference of the obtained results between the HIL test and simulation is mainly due

to the following three reasons:
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Figure 14: Simulation and HIL test results obtained under stochastic wind speed variation among 7 m/s
to 11 m/s.
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Figure 15: Simulation and HIL test results obtained under pitch angle variation reduced from 2 deg. to
0 deg..
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• There exist measurement disturbances in the HIL test which are however not taken into account

in the simulation, a filter could be used to remove the measurement disturbances thus the control

performance can be improved;

• The discretization of the HIL test and sampling holding may introduce an additional amount of

error compared to continuous control used in the simulation;

• The existence of time delay of the real-time controller, which exact value is unlikely to obtain in

practice. A time delay τ = 2 ms is assumed in the simulation.

6 Conclusions

A novel PB-SMC is designed in the paper in order to achieve MPPT of a PMSG based variable speed

wind turbine. The conclusions can be summarized as the following four aspects:

(1) Based on the passivity theory, a storage function is constructed in the form of the sum of the resistor

heat produced by d-axis current flowing through a virtual unit resistance, kinetic energy of the shaft

system, and the accelerating torque energy. Then, its derivative is calculated upon which the role of each

term is carefully investigated while the beneficial ones are thus remained to improve the system damping;

(2) An addition input is introduced to lead the system to be output strictly passive via energy reshaping

and to enhance system robustness by employing a SMC, such that PB-SMC is capable of handling various

uncertainties;

(3) Case studies have been undertaken which verify that PB-SMC can rapidly achieve MPPT with the

least overshoot under step change of wind speed and stochastic wind speed variation, effectively restore

the PMSG system under pitch angle variation, provide significant robustness against generator parameter

uncertainties, as well as require relatively low control costs among all cases.

(4) A dSpace based HIL test has been carried out which validate the implementation feasibility of PB-

SMC.

Future studies will be focused on two aspects:

(a) Apply PB-SMC on both the generator-side converter and grid-side converter to accomplish a complete

control design system of PMSG;

(b) Employ some optimization algorithms to determine the optimal control parameters of PB-SMC.

23



Acknowledgements

The authors gratefully acknowledge the support of National Natural Science Foundation of China

(51477055,51667010,51777078), Yunnan Provincial Talents Training Program (KKSY201604044), and

Scientific Research Foundation of Yunnan Provincial Department of Education (KKJB201704007).

References

[1] Sagbansua L. and Balo F. ‘Decision making model development in increasing wind farm energy

efficiency’, Renewable Energy, 109, 354-362, 2017.

[2] Kaldellis J. K. and Apostolou D. ‘Life cycle energy and carbon footprint of offshore wind energy.

Comparison with onshore counterpart’, Renewable Energy, 108, 72-84, 2017.

[3] Liao S. W., Yao W., Han X. N., Wen J. Y., and Cheng S. J. ‘Chronological operation simulation

framework for regional power system under high penetration of renewable energy using meteoro-

logical data’, Applied Energy, 203, 816-828, 2017.

[4] Liu J., Wen J. Y., Yao W., and Long Y. ‘Solution to short-term frequency response of wind farms

by using energy storage systems’, IET Renewable Power Generation, 10(5), 669-678, 2016.

[5] Shen Y., Yao W., Wen J. Y., and He H. B. ‘Adaptive wide-area power oscillation damper design for

photovoltaic plant considering delay compensation’, IET Generation, Transmission & Distribution,

DOI: 10.1049/iet-gtd.2016.2057.

[6] Yang B., Zhang X. S., Yu T., Shu H. C., and Fang Z. H. ‘Grouped grey wolf optimizer for maximum

power point tracking of doubly-fed induction generator based wind turbine’, Energy Conversion and

Management, 133, 427-443, 2017.

[7] Xie D., Lu Y. P., Sun J. B., and Gu C. H. ‘Small signal stability analysis for different types of

PMSGs connected to the grid’, Renewable Energy, 106, 149-164, 2017.

[8] Tripathi S. M., Tiwari A. N., Singh D. ‘Grid-integrated permanent magnet synchronous generator

based wind energy conversion systems: A technology review’, Renewable and Sustainable Energy

Reviews, 51, 1288-1305, 2015.

24



[9] Yang B., Jiang L., Wang L., Yao W., and Wu Q. H. ‘Nonlinear maximum power point tracking

control and modal analysis of DFIG based wind turbine’, International Journal of Electrical Power

and Energy Systems, 74, 429-436, 2016.

[10] Fernando J. L., Godpromesse K., Francoise L. L. ‘A novel online training neural network-based algo-

rithm for wind speed estimation and adaptive control of PMSG wind turbine system for maximum

power extraction’, Renewable Energy, 86, 38-48, 2016.

[11] Li S. H., Haskew T. A., and Xu L. ‘Conventional and novel control designs for direct driven PMSG

wind turbines’, Electric Power Systems Research, 80(3), 328-338, 2010.

[12] Alizadeh M. and Shokri K. S. ‘Augmenting effectiveness of control loops of a pmsg (permanent

magnet synchronous generator) based wind energy conversion system by a virtually adaptive pi

(proportional integral) controller’, Energy, 91, 610-629, 2015.

[13] Hong C. M., Chen C. H., Tu C. S. ‘Maximum power point tracking-based control algorithm for

PMSG wind generation system without mechanical sensors’, Energy Conversion and Management,

69, 58-67, 2013.

[14] Antar B., Hacene B., Badreddine B., and Hamza A. ‘Experimental enhancement of fuzzy fractional

order PI+I controller of grid connected variable speed wind energy conversion system’, Energy

Conversion and Management, 123, 569-580, 2016.

[15] Naggar H. S., Ahmed A. E., and Mohamed E. M. ‘Improved bacterial foraging optimization for

grid connected wind energy conversion system based PMSG with matrix converter’, Ain Shams

Engineering Journal, http://dx.doi.org/10.1016/j.asej.2017.03.010.

[16] Chen J., Jiang L., Yao W., and Wu Q. H. ‘A feedback linearization control strategy for maximum

power point tracking of a PMSG based wind turbine’, International Conference on Renewable

Energy Research and Applications, Madrid, Spain, 20-23 October 2013.

[17] Youcef S., Sami K., and Mohcene B. ‘Feedback linearization control based particle swarm optimiza-

tion for maximum power point tracking of wind turbine equipped by PMSG connected to the grid’,

International Journal of Hydrogen Energy, 41, 20950-20955, 2016.

[18] Ikram M. H., Mohamed W. N., Najiba M. B. ‘Predictive control strategies for wind turbine system

based on permanent magnet synchronous generator’, ISA Transactions, 62, 73-80, 2016.

25



[19] Yin X. X., Lin Y. G., Li W., Gu Y. J., Liu H. W., and Lei P. F. ‘A novel fuzzy integral sliding mode

current control strategy for maximizing wind power extraction and eliminating voltage harmonics’,

Energy, 85, 677-686, 2015.

[20] Fernando V. and Roberto D. F. ‘Multiple-input-multiple-output high-order sliding mode control

for a permanent magnet synchronous generator wind-based system with grid support capabilities’,

IET Renewable Power Generation, 9(8), 925-934, 2015.

[21] Seyed M. M., Maarouf S., Hani V., Handy F. B., and Mohsen S., ‘Sliding mode control of PMSG

wind turbine based on enhanced exponential reaching law’, IEEE Transactions on Industrial Elec-

tronics, 63(10), 6148-6159, 2016.

[22] Riad A., Toufik R., Djamila R., and Abdelmounaim T. ‘Robust nonlinear predictive control of

permanent magnet synchronous generator turbine using Dspace hardware’, International Journal

of Hydrogen Energy, 41, 21047-21056, 2016.

[23] Fantino R., Solsona J., and Busada C. ‘Nonlinear observer-based control for PMSG wind turbine’,

Energy, 113, 248-257, 2016.

[24] Wei C., Zhang Z., Qiao W., and Qu L. Y. ‘An adaptive network-based reinforcement learning

method for MPPT control of PMSG wind energy conversion systems’, IEEE Transactions on Power

Electronics, 31(11), 7837-7848, 2016.

[25] Ortega R., Schaft A., Mareels I., and Maschke B., ‘Putting energy back in control,’, IEEE Control

Systems, 21(2), 18-33, 2001.

[26] Pena R. R., Fernandez R. D., Mantz R. J. ‘Passivity control via power shaping of a wind turbine

in a dispersed network’, International Journal of Hydrogen Energy, 39, 8846-8851, 2014.

[27] Santos G. V., Cupertino A. F., Mendes V. F., and Seleme S. I. ‘Interconnection and damping

assignment passivity-based control of a PMSG based wind turbine for maximum power tracking’,

2015 IEEE 24th International Symposium on Industrial Electronics (ISIE), Buzios, 306-311, 2015.

[28] Yang B., Jiang L., Yao W., and Wu Q. H. ‘Perturbation observer based adaptive passive control

for damping improvement of VSC-MTDC systems’, Transactions of the Institute of Measurement

and Control, 39(9), 1409-1420, 2017.

[29] Yang B., Jiang L., Yao W., and Wu Q. H. ‘Perturbation estimation based coordinated adaptive

passive control for multimachine power systems’, Control Engineering Practice, 44, 172-192, 2015.

26



[30] Donairea A., Romeroc J. G., Perezd T. ‘Trajectory tracking passivity-based control for marine

vehicles subject to disturbances’, Journal of the Franklin Institute, 354, 2167-2182, 2017.

[31] Mojallizadeh M. R., Badamchizadeh M. A. ‘Power management of PV/battery hybrid power source

via passivity-based control’, Renewable Energy, 36, 2440-2450, 2011.

[32] Ayad M. Y., Becherif M., Henni A., Aboubou A., Wack M., and Laghrouche S. ‘Passivity-based

control applied to DC hybrid power source using fuel cell and supercapacitors’, Energy Conversion

and Management, 51(7), 1468-1475, 2010.

[33] Uehara A., Pratap A., Goya T., Senjyu T., Yona A., Urasaki N., and Funabashi T. ‘A coordinated

control method to smooth wind power fluctuations of a PMSG-based WECS’, IEEE Transactions

on Renewable Energy, 26(2), 550-558, 2011.

[34] Faraji F., Mousavi S. M., Hajirayat A., Birjandi A. A. M., AlHaddad K. ‘Single-stage single-phase

three-level neutral-point-clamped transformerless grid-connected photovoltaic inverters: Topology

review’, Renewable Energy 80, 197-214, 2017.

[35] Yang B., Yu T., Shu H. C., Dong J., Jiang L. ‘Robust sliding-mode control of wind energy conver-

sion systems for optimal power extraction via nonlinear perturbation observers’, Applied Energy,

http://dx.doi.org/10.1016/j.apenergy.2017.08.027

[36] Yang B., Hu Y. L., Huang H. Y., Shu H. C., Yu T., Jiang L. ‘Perturbation estimation based robust

state feedback control for grid connected DFIG wind energy conversion system’, International

Journal of Hydrogen Energy, vol. 42, no. 33, pp. 20994-21005, 2017.

[37] Yang B., Yu T., Zhang X. S., Huang L. N., Shu H. C., Jiang L. ‘Interactive teaching-learning

optimizer for parameter tuning of VSC-HVDC systems with offshore wind farm integration’, IET

Generation, Transmission & Distribution. DOI: 10.1049/iet-gtd.2016.1768

[38] Yao W., Jiang L., Wen J. Y., Wu Q. H., and Cheng S. J. ‘Wide-area damping controller for power

system inter-area oscillations: a networked predictive control approach’, IEEE Transactions on

Control Systems Technology, 23(1), 27-36, 2015.

[39] Shen Y., Yao W., Wen J. Y., He H. B., and Chen W. B. ‘Adaptive supplementary damping control

of VSC-HVDC for interarea oscillation using GrHDP’, IEEE Transactions on Power Systems, DOI:

10.1109/TPWRS.2017.2720262.

27



[40] Li H., Steurer M., Shi K. L., Woodruff S., Zhang D. ‘Development of a unified design, test, and

research platform for wind energy systems based on hardware-in-the-loop real-time simulation’,

IEEE Transactions on Industrial Electronics, vol. 53, no. 4, pp. 1144-1151, 2006.

[41] Hasanzadeh A., Edrington C. S., Stroupe N., and Bevis T. ‘Real-time emulation of a high-speed

microturbine permanent-magnet synchronous generator using multiplatform hardware-in-the-Loop

realization’, IEEE Transactions on Industrial Electronics, vol. 61. no. 6, pp. 3109-3118, 2014.

[42] Huerta F., Tello R. L., and Prodanovic M. ‘Real-time power-hardware-in-the-loop implementation

of variable-speed wind turbines. ’, IEEE Transactions on Industrial Electronics, vol. 64, no. 3, pp.

1893-1904, 2017.

[43] Yang B., Sang Y. Y., Shi K., Yao W., Jiang L., and Yu T. ‘Design and real-time implementation

of perturbation observer based sliding-mode control for VSC-HVDC systems’, Control Engineering

Practice, vol. 56, pp. 13-26, 2016.

28


