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Abstract: This paper proposes a novel interactive teaching-learning optimizer (ITLO) for voltage source converter based 
high voltage direct current (VSC-HVDC) systems with offshore wind farm integration. Conventional vector control 
strategy is adopted, in which the parameters of eight proportional-integral (PI) loops are optimally tuned to achieve a 
reliable and satisfactory control performance under various operation conditions. Multiple classes are employed to 
realize a wider exploration compared with that of original teaching-learning based optimization (TLBO). Moreover, a 
small world network (SWN) is incorporated for an interactive learning among the teachers or students from different 
classes, such that a deeper exploitation can be resulted in. Hence, ITLO can effectively avoid a local optimum due to the 
appropriate trade-off between explorations and exploitations. Three case studies are carried out, such as active and 
reactive power tracking, short-circuit fault at power grid, and offshore wind farm connection. Simulation results verify 
the effectiveness and advantages of ITLO over that of existing meta-heuristic optimization algorithms.  
 

1. Introduction 

The need for more secure power grids and ever-increasing environmental concerns continue to drive the worldwide 
deployment of high voltage direct current (HVDC) transmission technology, which enables a more reliable and stable 
asynchronous interconnection of power networks that operate on different frequencies [1]. Recently, voltage source converter 
based high voltage direct current (VSC-HVDC) systems using insulated gate bipolar transistor (IGBT) technology have 
attracted enormous attentions due to the fast growing demand of inter-connection between the mainland and offshore wind 
farms, power flow regulation in alternating current (AC) power systems, long distance transmission, and introduction of the 
supergrid, which is a large-scale power grid interconnected between national power grids [2]. VSC-HVDC systems have 
several elegant merits, such as lower overall costs, a smaller environmental footprint, easier integration with renewable energy 
sources, as well as higher transmission stability and power quality compared to that of the conventional line-commutated 
converter based HVDC (LCC-HVDC) systems [3].  

Generally speaking, a proper control system design is very crucial to guarantee the reliability and optimality of VSC-
HVDC systems operation. As VSC-HVDC systems are highly nonlinear resulting from converters and also may operate in 
power grids with inaccurate system modelling or uncertain wind power penetrations, an enormous variety of advanced control 
schemes has been designed to provide a consistent and more reliable control performance, e.g., a feedback linearization control 
(FLC) was proposed to globally remove the system nonlinearities of VSC-HVDC systems, which however requires an accurate 
system model [4]. Reference [5] developed a feedback linearization based sliding-mode control (FLSMC) to provide a great 
robustness against system parameter uncertainties. Furthermore, a perturbation observer based sliding-mode control (POSMC) 
was designed in [6], which attempts to effectively handle the combinatorial effect of uncertain system parameters, unmodelled 
dynamics, and time-varying external disturbances with only one state measurement. Additionally, a Lyapunov function-based 
sliding mode control (LYPSMC) strategy was employed for a parallel AC-DC power system through an HVDC link to 
improve the system stability and robustness in the presence of various disturbances [7]. Moreover, literature [8] reported a 
perturbation observer based adaptive passive control (POAPC) for damping improvement of a multi-terminal VSC-HVDC 
system. However, the structure of the aforementioned approaches is relatively complicated thus they may not be easily 
implemented in practice. 

Conventional vector control (VC) associated with proportional-integral (PI) loops has been popularly adopted in 
industry thanks to its promising features of easy implementation and simple structure [9]. Usually, the PI controller parameters 
are manually tuned based on a specific operation point of the linearized model from the original nonlinear systems via some 
empirical trial-and-error, which control performance might be significantly degraded as the system operation conditions often 
vary [10]. As a result, more reliable and efficient optimization methods are needed to optimally tune these parameters with the 
consideration of different operation conditions. Unfortunately, traditional gradient based algorithms may fail to obtain the 
optimal parameters due to their high dependence of an accurate system model, such as Newton’s method [11] and interior 
point method [12]. As a consequence, plenty of meta-heuristic optimization approaches has been developed to handle this 
obstacle. A hybrid differential evolution (DE) and pattern search (PS) optimized fuzzy PI/PID controller is proposed for load 
frequency control (LFC) of multi-area power system in [13]. In reference [14], genetic algorithm (GA) was adopted to 
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optimize the location and size of distributed generation within a power distribution network considering uncertainties. 
Moreover, a bird mating optimizer (BMO) was designed to accurately estimate the electrical equivalent circuit parameters of 
photovoltaic arrays in [15]. In addition, a new particle swarm optimization (PSO) [16] algorithm was applied for combined 
problem of capacitor placement and network reconfiguration simultaneously in the presence of non-linear loads. Furthermore, 
literature [17] employed an artificial bee colony (ABO) algorithm for simultaneous optimum distributed generation placement 
and optimum tie-switch allocation based on maximisation of system loadability. Besides, a grouped grey wolf optimizer 
(GGWO) [18] was used to solve the maximum power point tracking of wind conversion systems. 

The main limitation of these meta-heuristic techniques is the difficulty in determining the optimal control parameters. In 
particular, they may merely obtain a near optimal solution for a problem with a large number of variables, while a change in 
the selection of algorithm parameters would dramatically influence their effectiveness. What’s worse, the challenge for the 
selection of these parameters can grow significantly if further hybridizations or modifications are undertaken [19]. Recently, a 
teaching-learning process inspired algorithm called teaching-learning based optimization (TLBO) has been proposed in [19, 
20], which is based on the effect of influence of a teacher on the performance of students in a class. It has the advantages of 
obtaining global optimum for various continuous nonlinear functions with less computational efforts and high consistency [21]. 
So far, TLBO and several of its modifications have been successfully applied in various engineering applications, e.g., multi-
objective optimal power flow considering the total fuel cost and total emission of the units [22]; simultaneous allocation 
optimization of distributed resources in radial distribution networks [23]; anticipatory load shedding for line overload 
alleviation [24]; optimal placement and size of distributed generation (DG) units in distribution systems [25]; and optimal 
reactive power dispatch (ORPD) problem for power transmission loss reduction [26], etc. 

2. VSC-HVDC Modelling 
The studied system is illustrated in Fig. 1, in which an offshore wind farm and a strong AC grid are connected at the 

PCC to transmit AC power to the rectifier. The rectifier regulates the DC voltage and reactive power, while the inverter 
regulates the active and reactive power, respectively. Note that the voltage of PCC us1 might vary due to the connection of 
offshore wind farm as the wind power is usually uncertain. In addition, only the balanced conditions are taken into account, 
e.g., the three phases have identical parameters and their voltages and currents have the same amplitude while each phase shifts 
120° between themselves. A more detailed VSC model featuring the related switches can be employed but this would only add 
a slight ripple in voltage waveforms due to the associated switch action, which does not significantly affect the fundamental 
dynamics [28]. As a consequence, VSCs are represented by their average model [29].  

The rectifier dynamics can be written at the angular frequency 𝜔 as [4, 6]. 
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where the rectifier is connected with PCC via the equivalent resistance R1 and inductance L1, respectively. C1 is the DC bus 
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The inverter dynamics is written as 
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where the inverter is connected with the AC grid2 via the equivalent resistance R2 and inductance L2, respectively. C2 is the DC 

bus capacitor at the inverter side, sd2 id
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The interconnection between the rectifier and inverter through the DC cable can be represented by 
2

dc L dc2 L 0 L2V i V i R i          (3) 
where R0 represents the equivalent DC cable resistance. The phase-locked loop (PLL) [30] is adopted during the 
transformation from the abc frame to the dq frame. In the synchronous frame, usd1, usd2, usq1, and usq2 are the d-, q-axis 
components of the PCC and AC grid2 voltages; id1, id2, iq1 and iq2 are that of the line currents; urd, uid, urq and uiq are that of the 
converter input voltages. P1, P2, Q1, and Q2 are the active and reactive powers transmitted to the VSCs; Vdc1 and Vdc2 are the 
DC voltages; and iL is the DC cable current. 
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At the rectifier side, the q-axis is set to be in phase with the PCC voltage us1. Correspondingly, the q-axis is set to be in phase 
of the AC grid2 voltage us2 at the inverter side. Hence, usd1 and usd2 are equal to 0 while usq1 and usq2 are equal to the magnitude 
of us1 and us2, respectively. Note that this paper adopts such framework from [4-6, 8] to provide a consistent control design 
procedure and an easy control performance comparison, while other frameworks can also be used as shown in [9]. The only 
difference of these two alternatives is the representation of derived system equations, while control design is totally the same. 
At last, the power flows can be calculated as 
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3. Interactive Teaching-Learning Optimizer  
 

3.1. Principle of ITLO  
 

Compared with TLBO, ITLO adopts multiple classes for an optimal solution searching, in which each class consists of 
a teacher and a group of students, as schematically shown in Fig. 2. The related concepts and principles are demonstrated as 
follows: 

 Teacher: An individual owning the best solution (which has the smallest fitness function) of a class, who is 
responsible for teaching and guiding the students of that class to find a better solution, and also learning beneficial knowledge 
through interactions with other teachers.  

 Student: An individual owning a solution with a larger fitness function than that of the teacher in the corresponding 
class, who endeavours to find a better solution via continuously learning the helpful knowledge from the teacher and 
interactions with other students. 

 Role swapping: If a student finds a better solution than that of the teacher in one iteration, then their roles will be 
swapped, i.e., the promising student will be promoted as a new teacher while the incompetent teacher has to be demoted as a 
new student of that class in the next iteration. 

 
3.2. Small world network 

 
In general, the population-based algorithms, e.g., GA and PSO, are implemented for optimization with a completely 

deterministic or a completely stochastic interaction network. However, Watts and Strongetz [27] have discovered that the 
social networks in a human or animal group/society do not always strictly focus on themselves, but might often biased to some 
neighbourhood between themselves. Motivated by this natural phenomenon, an SWN mechanism was developed to generalize 
the unique feature of such social networks. It has been proved that global searching ability of the population-based techniques 
can be significantly enhanced with the use of SWN, e.g., PSO with SWN based dynamic topology [31] and improved SWN 
based group search optimization (GSO) [32]. Hence, SWN is incorporated for the interaction network construction among the 
teachers or students. 

In the SWN, each individual can stochastically interact with any other individuals with a probability of p. Here, the 
probability of interaction pij between the ith individual and the jth individual can be calculated as 

p
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1ij

k
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where k is the iteration number; kmax is the maximal iteration number; Cp is the probability coefficient, with 0<Cp<1. 
3.3. Teaching between teachers and students 

 
In general, a teacher aims to raise the average scores/grades of the entire class, such that all students can continuously 

improve their solutions through reducing the gap between the teacher’s highest scores/grades and the relatively lower average 
scores/grades of the whole class, in which the solution of each student can be updated as [19, 20] 
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where superscripts i and m represent the ith class and the mth student, respectively; im
kx  denotes the solution of the mth student 

in the ith class at the kth iteration; ti
kx  is the obtained solution of the teacher in the ith class at the kth iteration;

teach
imx  means the 

solution of the mth student learned from the teacher; Mk
i represents the average solution of the ith class at the kth iteration; f 

denotes the fitness function; r is a random number among the range of [0, 1]; TF is a teaching factor determining the average 
solution that needs to be improved, whose value can be either 1 or 2 which is again a heuristic step and decided stochastically 
with an equal probability; and Ps is the population size of each class. 
 

3.4. Interactive learning among teachers or students 
 

Each individual (e.g., a teacher or a student) has his/her personal social (interaction) network with others. If an 
individual finds that others own more beneficial knowledge through interaction, then his/her current solution will be updated 
based on that one, which yields 
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where 
learn
imx  denotes the solution of the mth individual of the ith class learned from his/her own interacted persons; 

b e s t
imx  

represents the best solution updated from the interacted persons at the kth iteration; and Ωk
im is the set of interacted individuals 

of the mth person of the ith class at the kth iteration, which is determined by (5). 
 

3.5. Comparisons of TLBO and ITLO 
 

Each teacher only interacts with teachers from other classes via SWN, while each student can interact with students 
from any classes with a probability described by (5). Further, the main differences between TLBO and ITLO are highlighted in 
Table 1 for table of results, which can be explained as follows: 

 Range of exploration: TLBO employs a single class of individuals for the global searching, while all the students are 
guided by only one teacher, hence he/she may be trapped at a local optimum as all the individuals can only gain beneficial 
knowledge from a single class. In contrast, ITLO raises the number of class for a wider explorations, in which each teacher can 
independently guide his/her own students of that class, such that the probability of finding a higher quality optimal solution can 
be naturally increased, that is, an enhanced global searching ability can be guaranteed. 

 Depth of exploitation: In TLBO, each student just stochastically learns from one of the other students or a single 
teacher. However, the student in ITLO can learn from his/her own teacher, as well as from others through the interaction with 
SWN. Such interactions stem from different classes and are continuously varying according to SWN, thus a deeper 
exploitation can be achieved. 

4. ITLO Design for Optimal PI Controller Parameters Tuning of the VSC-HVDC System 

 
4.1. ITLO based control structure for VSC-HVDC systems 

 
It can be observed from Fig. 3 that the VSC-HVDC control system contains two parts, i.e., the rectifier controller and 

inverter controller. At the rectifier side, the outer control loops regulate both the DC voltage Vdc1 and reactive power Q1 to 
obtain the dq-axes current references 𝑖∗  and 𝑖∗ , respectively, while the inner control loops regulate these two currents 

associated with the compensation terms 𝑢′  and 𝑢′  to obtain the final control inputs ud1 and uq1. Similarly, at the inverter side, 
the outer control loops regulate both the active power P2 and reactive power Q2 to obtain the dq-axes current references 𝑖∗  and 
𝑖∗ , respectively, while the inner control loops regulate these two currents associated with the compensation terms 𝑢′  and 𝑢′  
to obtain the final control inputs ud2 and uq2. 

ITLO is adopted to optimally tune the parameters of eight PI loops. At each iteration, the controlled variables of VSC-
HVDC systems will be considered into the optimization model, i.e., the fitness functions and corresponding solutions, while 
each solution represents a teacher or a student in ITLO. Then the solutions of all the students and teachers will be gradually 
improved until the final optimal parameters are found, which will be then adopted in the VSC-HVDC control systems. Three 
cases are taken into account, e.g., (1) active and reactive power tracking; (2) 5-cycle line-line-line-ground (LLLG) fault at PCC; 
and (3) offshore wind farm connection, together with the consideration of the overall control costs, the optimization model of 
ITLO for the studied system is constructed as (13) and (14), where the proportional gains (𝐾 , 𝐾 , 𝐾  and integral gains 
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(𝐾 , 𝐾 , 𝐾  of the outer control loops are bounded among [0, 25] and [0, 600], while in the inner control loops the 
proportional gains (𝐾 , 𝐾 ) and integral gains (𝐾 , 𝐾 ) are limited in the range of [0, 5] and [0, 250], respectively. T is 
the total operation time of each case. The PCC voltage and AC grid voltage 𝑢  is limited between 0.2 p.u. to 1.0 p.u. and the 
DC voltage 𝑉  ranges between 0.98 p.u. to 1.02 p.u.. Additionally, reactive power 𝑄  is bounded by -1.0 p.u. to 1.0 p.u.. 
Finally, the weights 𝜔  and 𝜔  are introduced to assign an importance credit of each control costs, which are chosen to be 
identically 1/4 (same importance), while the control costs are bounded by 𝑢 80 kV and |𝑢 | 60 kV, respectively [6]. 

Minimize f(x) =∑ |𝑄 𝑄∗| |𝑄 𝑄∗| |𝑉 𝑉∗ | |𝑃 𝑃∗| 𝜔 𝑢 𝜔 |𝑢 | d𝑡    (13) 
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, i=1, 2.           (14) 

Here, the number of the classes n is selected as a fixed number, which is set to be 5 for all the cases in this paper, as 
shown in Table 2. Besides, the initial set of individuals (students and teachers) can be obtained by randomly choosing from the 
feasible region, as follows: 

0 ub lb lb( )* + , 1, 2, ..., ; 1, 2, ..., im
sx x x R x i n m P     (15) 

where 0
imx  denotes the initial solution of the mth individual in the ith class; R is a random vector, of which each element is 

randomly distributed among the range of [0, 1], while its size equals to the number of controllable variables; xub and xlb are the 
upper and lower bounds of the controllable variables, respectively. 

According to the obtained initial solutions by (15), the fitness function of each individual can be directly calculated by 
(13), then an individual with the minimal fitness function of that class will be promoted as the teacher of that class, while other 
individuals are degraded as the students. 

Note that each teacher only interacts with teachers from other classes via SWN, i.e., a teacher will interact another 
teacher with a probability determined by (5).  

Moreover, the mechanism of interactive learning among teachers is the same as that among students, so they are 
organized together through (10) to (12). Based on such interactive learning, a teacher will learn more beneficial knowledge 
from one of his/her interacted teachers with the minimal fitness function, thus the current solution can be considerably 
improved with a much smaller fitness function.

 
4.2. Parameter setting of ITLO 

 
In ITLO, four parameters, the maximal iteration number kmax, probability coefficient Cp, population size Ps, and the 

number of class n are very crucial thus need to be carefully selected for a desirable parameter tuning performance of VSC-
HVDC systems. Here, kmax determines the obtained optimal solution and execution time, which is chosen from one of the 
integers {50, 100, 150, 200, 250} according to a proper trade-off between the execution time and the quality of the obtained 
optimal solution. In general, a larger kmax will lead to a longer execution time and a higher quality optimal solution. Through 
trial-and-error, it shows that the optimal solutions obtained by different algorithms remain to be constants or just changed 
slightly when kmax ≥150, thus it is set to be 150 to appropriately shorten the execution time for all the algorithms. Finally, the 
uniform design technique [33] is adopted to find the appropriate parameters with a few experiments, which values are given in 
Table 2. 

 
4.3. Overall execution of ITLO 

 
To this end, the overall execution procedure of ITLO for VSC-HVDC systems is illustrated in Fig. 4. 
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5. Case Studies 

The proposed ITLO has been applied for optimal PI controller parameters tuning of VSC-HVDC system, which control 
performance is compared to that of GA [14], GSO [34], PSO [16], and TLBO [19], respectively. The AC grids frequency is 50 
Hz and the VSC-HVDC system parameters are tabulated in Table 3. Moreover, control inputs are modulated by the sinusoidal 
pulse width modulation (SPWM) technique [4, 6] while the switching frequency is 1620 Hz for both the rectifier and inverter 
[5]. The simulation is executed on Matlab/Simulink 7.10 using a personal computer with an Intel® Core™i7 CPU at 2.2 GHz 
and 4 GB of RAM. 

Besides, ITLO and all the other algorithms are applied for offline optimization, not online optimization. In other words, 
when the optimal PI controller parameters are finally found, the obtained optimal PI controller parameters will be adopted and 
maintained thereafter. This is due to the fact that their execution time (in hour) is too long to satisfy a real-time control of 
VSC-HVDC systems, in which the power tacking, events happened in the connected power systems, and offshore wind farm 
are normally in milliseconds. The offline optimized PI controller parameters of five algorithms are written in the vector form 
as: GA = [175.357, 1.909, 112.931, 1.337, 271.058, 14.864, 25.692, 2.867, 344.205, 1.423, 151.927, 1.642, 153.906, 1.749, 
166.499, 1.434]; GSO = [179.578, 3.864, 146.685, 2.775, 488.302, 3.676, 30.88, 1.354, 233.458, 2.255, 164.981, 2.662, 
199.701, 1.238, 182.476, 2.975]; PSO = [124.26, 3.109, 130.187, 4.909, 220.369, 9.592, 28.318, 2.296, 290.554, 5.399, 
131.052, 1.589, 132.892, 5.378, 147.455, 1.596]; TLBO = [201.28, 5.116, 202.18, 4.951, 501.93, 18.758, 32.971, 2.665, 
398.59, 3.189, 5.075, 3.621, 202.881, 22.384, 10.597, 1.115]; ITLO = [215.56, 9.992, 208.594, 3.328, 497.461, 19.864, 36.045, 
2.896, 405.675, 4.406, 156.195, 3.973, 199.967, 14.923]. Here, the element of the above vector is denoted by integral gain of 
reactive power Q1 (KiQ1); proportional gain of d-axis current Id1 (KpQ1); integral gain of d-axis current Id1 (KiId1); proportional gain 
of reactive power Q1 (KpId1); integral gain of DC voltage Vdc (KiVdc); proportional gain of DC voltage Vdc (KpVdc); integral gain of 
q-axis current Iq1 (KiIq1); proportional gain of q-axis current Iq1 (KpIq1); integral gain of reactive power Q2 (KiQ2); integral gain of 
reactive power P2 (KpQ2); proportional gain of reactive power P2 (KiId2); integral gain of q-axis current Iq2 (KpId2); proportional 
gain of reactive power Q2 (KiP2); proportional gain of q-axis current Iq2 (KpP2); integral gain of d-axis current Id2 (KiIq2); 
respectively. Note that these parameters are the same for all of the three cases, as shown in objective function (13). 

 
5.1. Active and reactive power tracking 

 
Simulation results obtained under six consecutive step changes of both active power and reactive power are given in Fig. 

5, which attempts to simulate sudden power variations at different operation points. It is obvious that ITLO has the smallest 
overshoot of active power and reactive power, together with a rapid and smooth power tracking. Moreover, it has the smallest 
DC voltage variation during each power tracking with the fastest convergence. 
 

5.2. 5-cycle LLLG fault at PCC 
 

A 5-cycle LLLG fault occurs at PCC when t=0.1s and removed at t=0.2s. Due to the fault, PCC voltage is decreased to 
a critical level [35, 36]. Fig. 6 illustrates that ITLO can rapidly restore the VSC-HVDC system with the smallest reactive 
power oscillations. In addition, ITLO can produce just a minimal AC fault current and restore it very rapidly, thus it is more 
effective in handling the AC fault compared to that of other algorithms. Finally, the overall control costs illustrate that ILTO 
just needs the least control efforts to restore the disturbed system. 

 
5.3. Offshore wind farm connection 

 
Due to the unpredictability and uncertainties of the wind speed [10], the injected wind power is normally a  

random value which may result in a voltage variation at PCC [6,8,37,38]. Hence, a sinusoidal AC voltage disturbance 
Δus1=19.8sin(8πt) kV (0.15 p.u.) starts at t=0.5s and ends at t=1.5s is applied to simulate the effect of offshore wind farm 
connection. The corresponding system responses are illustrated by Fig. 7, it clearly shows that ITLO can provide a minimal 
oscillation of DC voltage and reactive power, thus it is capable to effectively suppress such malignant oscillations. 
 

5.4. Comparative studies  
 

The integral of absolute error (IAE) indices of each approach calculated in different cases are tabulated in Table 4 for 

table of results. 
0

IAE | * | dt
T

x x x   and the simulation time T=5s. Note that ITLO has a little bit higher IAEQ1 and IAEQ2 

than that of TLBO, while it can obtain the optimal results in all other cases. In particular, its IAEQ1 is only 51.30% of that of 
GA in 5-cycle LLLG fault, and its IAEVdc1 is merely 33.33% of that of GSO in offshore wind farm connection. The overall 
control costs are demonstrated in Fig. 8, which clearly shows that ITLO has the lowest overall control costs in all cases.  

In addition, Table 5 provides the statistical results of fitness function obtained by different algorithms in 10 runs, in 
which all the performance indices of ITLO are the lowest among all algorithms. Note that all the algorithms have been 
executed for 10 runs, thus 10 optimal solutions with different fitness function can be obtained, among which the optimal 
solution with the minimal fitness function in 10 runs is regarded as the best case, while the one with the maximal fitness 
function is regarded as the Worst case. In particular, different runs adopt different initialization sets which are chosen 
according to (15). Here, the initialization sets include 3500 solutions (50 populations*5 classes*14 variables). Due to page 
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limits, only half of the initialization sets of the best case (25 populations*14 variables=350 solutions) are provided which can 
be found in Table 6. 

Moreover, the smallest mean value indicates that ITLO can generally find a higher quality optimum, while the smallest 
relative standard deviation (Rel. Std. Dev.) verifies that ITLO has the highest convergence stability and reliability. As a result, 
ITLO is adequate to effectively avoid a local optimum because of a wider exploration through multiple classes, as well as a 
deep exploitation via SWN based interactive learning, such that a relatively high and reliable global searching ability can be 
guaranteed. 

At last, the statistical results of execution time, convergence time, and iteration number are summarized by Table 7, in 
which the execution time and convergence time of GA are the shortest due to its simple structure, while that of ITLO are 
longer than other approaches due to its more complicated optimization mechanism resulting from the wider exploration and 
deeper exploitation. Note that such long execution time is acceptable in practical VSC-HVDC system operation as such 
optimization is in an offline manner. 

It is worth noting that the solution sets of the different algorithms used for comparison are strongly depended upon the 
initial set of individuals. As a result, a random initialization is employed to determine the initial set of individuals by (15), 
instead of a simply fixed or subjective initial set. More specifically, all the algorithms use the same manner to initialize the set 
of individuals by (15), while their sets of initial individuals might be quite different due to the random initialization. In fact, 
this is also one of the main reason of executing all the algorithms in 10 runs, such that a much fair comparison of performance 
can be achieved instead of a merely single run with a random initialization. 

6. Conclusions 

A novel ITLO scheme is developed in this paper for the optimal PI controller parameters tuning of VSC-HVDC system 
with offshore wind farm integration. A wider exploration can be achieved by employing the multiple classes into knowledge 
learning, meanwhile the interactive learning among the teachers or students through SWN can provide a deeper exploitation. 
Under such improved optimization framework, the global searching ability of ITLO is remarkably enhanced, i.e., the local 
optimum can be effectively avoided. Three case studies have been undertaken to evaluate its control performance and are 
compared to that of other typical meta-heuristic optimization algorithms. Simulation results have verified that ITLO can 
smoothly track the active and reactive power reference, rapidly restore the disturbed system after a 5-cycle LLLG fault occurs 
at PCC, and effectively suppress the malignant oscillations of DC voltage and reactive power resulted from uncertain wind 
speed variations. At last, the overall control costs of ITLO are the lowest among all algorithms. 
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Appendices  

Table 1 The comparison between TLBO and ITLO. 
Algorithm Number of class Interaction among individuals Explorations Exploitations Global searching ability 

TLBO Single Simple Medium Medium Medium 

ITLO Multiple Complicated Wide Deep High 

 
Table 2 The parameters used in ITLO. 

Parameters Range Value 

kmax kmax≥50 150 
Cp 0<Cp <1 0.9 
Ps  Ps≥2 50 
n n≥1 5 

 
Table 3 The VSC-HVDC system parameters [6].  

AC system base voltage uACbase 132kV 
DC cable base voltage VDCbase 150kV

System base power Sbase 100MVA
AC system resistance (25km) R1, R2 0.05Ω/km
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AC system inductance (25km) L1, L2 0.026mH/km
DC cable resistance (50km) R0 0.21Ω/km

DC bus capacitance C1, C2 11.94μF

 
Table 4 IAE indices (in p.u.) of five algorithms calculated in three cases. 
Cases IAE Indices GA GSO PSO TLBO ITLO 

Power tracking IAEQ1 0.2972 0.2439 0.1838 0.1470 0.1624 

IAEVdc1 0.0855 0.0837 0.0842 0.0798 0.0726 

IAEQ2 0.243 0.2698 0.1942 0.1532 0.1771 

IAEP2 0.2219 0.2008 0.1777 0.1611 0.1558 

5-cycle LLLG fault IAEQ1 0.0887 0.0912 0.0661 0.0558 0.0455 

IAEVdc1 0.0459 0.2123 0.1149 0.0470 0.0373 

Offshore wind farm connection IAEQ1 0.0279 0.0233 0.0267 0.0195 0.0111 

IAEVdc1 0.0092 0.0225 0.0115 0.0081 0.0075 

 
Table 5 Statistical results of fitness function (in p.u.) obtained by different algorithms in 10 runs. 
Algorithm Worst Best Mean Rel. Std. Dev 
GA 933.9064 4.314379 387.8964 409.3961 
GSO 891.7833 3.695776 406.9689 403.6682 
PSO 774.5416 3.142713 81.25954 231.0951 
TLBO 3.627601 2.909602 3.31814 0.258028 
ITLO 3.143953 2.738256 2.857174 0.107838 

 
Table 6 The initialization sets of the best case. 
Initial sets KiQ1 KpQ1 KiId1 KpId1 KiVdc KpVdc KiIq1 KpIq1 KiQ2 KpQ2 KiId2 KpId2 KiP2 KpP2 KiIq2 KpIq2 
X1 -200 -0.10 -200 -10.95 -100 -200 -22.95 -19.46 -5 -20.93 -200 -30 -200 -10 -200 -0.10 

X2 -30 -0.13 -146.05 -0.10 -100 -109.43 -10 -12.27 -5 -25.48 -10 -0.10 -10 -7.35 -30 -0.13 

X3 -156.12 -0.10 -20 -2.76 -100 -18.88 -191.81 -8.88 -153.06 -0.10 -10 -17.35 -10 -10 -156.12 -0.10 

X4 -104.55 -3.14 -72.61 -8.35 -154.61 -37.88 -36.12 -5.51 -134.71 -1.47 -184.26 -23.98 -112.28 -3.12 -104.55 -3.14 

X5 -63.79 -9.49 -20 -0.10 -100 -30.53 -152.94 -0.10 -5 -0.10 -200 -0.10 -10 -5.60 -63.79 -9.49 

X6 -82.40 -2.62 -20 -0.10 -135.38 -9.31 -400 -11.37 -5 -0.10 -146.70 -0.10 -59.66 -1.89 -82.40 -2.62 

X7 -47.11 -0.10 -175.46 -3.99 -100 -43.13 -365.25 -0.70 -183.27 -0.10 -36.38 -0.10 -10 -0.83 -47.11 -0.10 

X8 -98.85 -10 -20 -0.10 -100 -30.51 -400 -6.53 -200 -0.10 -200 -30 -200 -10 -98.85 -10 

X9 -200 -3.46 -200 -0.10 -127.30 -186.98 -10 -0.10 -200 -0.10 -101.41 -0.10 -51.48 -1.75 -200 -3.46 

X10 -53.37 -0.10 -26.76 -0.10 -216.58 -139.28 -298.33 -0.10 -135.91 -17.02 -86.01 -9.25 -79.00 -0.10 -53.37 -0.10 

X11 -58.61 -6.70 -27.44 -0.10 -337.74 -58.88 -246.08 -1.20 -57.84 -22.02 -90.28 -0.40 -10 -2.10 -58.61 -6.70 

X12 -66.38 -4.97 -200 -0.10 -231.50 -32.56 -183.85 -14.55 -37.24 -0.10 -121.83 -0.10 -98.62 -10 -66.38 -4.97 

X13 -200 -1.68 -200 -0.10 -100 -10.87 -10 -20 -56.32 -0.10 -46.84 -28.95 -193.97 -0.10 -200 -1.68 

X14 -200 -3.40 -126.15 -0.56 -118.37 -30.96 -139.64 -20 -200 -0.10 -10 -0.10 -80.95 -8.71 -200 -3.40 

X15 -30 -0.10 -68.72 -5.20 -100 -162.03 -400 -14.49 -58.46 -16.48 -200 -7.67 -22.15 -0.10 -30 -0.10 

X16 -30 -6.14 -20 -0.10 -328.80 -19.48 -400 -11.78 -23.66 -28.92 -43.44 -0.10 -199.05 -8.67 -30 -6.14 

X17 -30 -4.65 -48.74 -1.70 -100 -51.18 -400 -1.50 -5 -30 -10 -0.10 -10 -0.10 -30 -4.65 

X18 -30 -9.32 -66.37 -0.10 -325.04 -48.18 -10 -10.02 -70.76 -8.57 -42.03 -7.36 -10 -0.10 -30 -9.32 

X19 -30 -0.10 -157.34 -4.49 -224.08 -176.70 -10 -0.10 -5 -0.10 -55.43 -0.10 -10 -3.55 -30 -0.10 

X20 -153.80 -10 -167.52 -7.59 -391.30 -34.37 -10 -0.10 -117.25 -4.55 -34.21 -26.46 -151.47 -10 -153.80 -10 

X21 -30 -0.10 -200 -0.10 -271.88 -200 -10 -0.10 -39.19 -3.29 -159.22 -9.49 -10 -0.10 -30 -0.10 

X22 -127.99 -2.85 -155.56 -0.62 -152.35 -55.97 -341.31 -13.96 -56.62 -12.09 -138.72 -0.22 -123.17 -2.81 -127.99 -2.85 

X23 -30 -5.45 -153.75 -0.10 -309.47 -106.00 -353.83 -0.10 -194.45 -8.08 -38.88 -24.20 -22.98 -9.37 -30 -5.45 

X24 -71.95 -2.77 -120.16 -1.42 -116.91 -28.13 -137.63 -13.56 -56.30 -8.97 -69.62 -10.70 -126.99 -0.36 -71.95 -2.77 

X25 -79.19 -2.43 -27.17 -0.65 -340.64 -153.92 -231.13 -16.11 -157.73 -15.06 -127.00 -23.89 -36.94 -9.30 -79.19 -2.43 

 
Table 7 The statistical results of execution time and convergence time and iteration number obtained by different algorithm in 
10 runs. 

Algorithm kmax 
Execution time (hours) Convergence time (hours)  Iteration number 
Max. Min. Mean Max. Min. Mean Max. Min. Mean

GA 150 0.1548 0.1459 0.1484 0.1527 0.0468 0.1286 100 30 65
GSO 150 1.7088 1.6949 1.7012 1.7027 0.5437 1.4745 100 32 66
PSO 150 0.9444 0.9277 0.9382 0.6731 0.4896 0.581 61 52 56.5
TLBO 150 1.5944 1.3347 1.4347 1.4408 1.4125 1.4267 167 162 164.5
ITLO 150 16.1217 11.6997 13.9107 7.5372 7.5297 7.5335 47 46 46.5 
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Fig. 1.  A VSC-HVDC system with an offshore wind farm integration at PCC. 
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Fig. 2.  Basic optimization framework of ITLO. 
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Fig. 3.  The overall ITLO based control structure of the VSC-HVDC system.  
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Fig. 4.  The overall execution procedure of ITLO for VSC-HVDC systems. 
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Fig. 5.  System responses obtained in active power and reactive power tracking of different algorithms. 
 

 

 
Fig. 6.  System responses obtained under a 5-cycle LLLG fault at PCC of different algorithms. 
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Fig. 7.  System responses of different algorithms obtained when an offshore wind farm is connected to the VSC-HVDC system. 

 

 
Fig. 8. Overall control costs (in p.u.) obtained in different cases. 
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