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Abstract 

 
This paper presents a study focusing on the perforation resistance of glass fibre-reinforced 

PEKK composites. Woven S-glass fibre (GF) reinforced poly-ether-ketone-ketone (PEKK) 

thermoplastic prepreg materials were manufactured using a dry powder prepregging method. 

Prior to impact testing and modelling, the properties of the composites were evaluated by 

conducting a series of quasi-static tests at room and elevated temperatures.  

Quasi-static tensile and perforation tests showed that the optimum weight fraction of PEKK, 

wf, is approximately 0.4, which gives the peak tensile strength and perforation resistance. 

Tests at elevated temperatures highlighted the excellent stability of these materials under 

extreme conditions. As expected, the energy required to perforate the targets increased with 

projectile diameter. Subsequent tests highlighted the severity of conically-shaped projectiles 

with the perforation resistance dropping under sharp object impact loading. 

A series of finite element models were also developed to predict the response of the glass 

fibre/PEKK composites to impact by projectiles based on different diameters and shapes. The 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

2 
 

predictions were validated against the experimental force-displacement traces and failure 

modes with good agreement.  

Keywords: Poly-Ether-Ketone-Ketone (PEKK); woven S-glass fibre; powder prepregging; 

temperature-dependent behaviour; perforation; finite element. 
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1. Introduction 
 

The introduction of high-performance thermoplastic composites has resulted in increasing 

interest in the aerospace, automotive and marine industries, due to the light-weight 

characteristics, the ability for integral design, fire/smoke resistance, recyclability, almost 

unlimited shelf life and superior impact properties [1, 2]. Moreover, thermoplastic composites 

can be welded at high temperatures, thus making them suitable for high speed production 

processes such as thermoforming, and allowing the application of novel joining techniques 

such as ultrasonic and induction welding [3]. Although thermosetting (TS) prepregs, such as 

epoxy prepregs, are also used widely in automotive, construction and aerospace industries, 

they have a limited shelf life and need to be stored in a freezer, typically at -18°C [4-7] to 

prevent polymerisation of the resin.   

In the aerospace applications, fibre metal laminates (FMLs) are finding use in fuselage, wing 

and leading edge tail structures, most of which are based on thermosetting epoxy based 

prepregs. Low viscosity, a low fabrication temperature and good resin/fibre wettability are 

the major reasons for the use of epoxy-based composites. However, these kinds of prepregs 

do exhibit relatively poor hot/wet stability, higher cost of manufacture and low combustibility 

resulting in smoke and toxic fumes which can pose a serious health hazard [8–12]. 
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Thermoplastic prepregs can be stored in an ambient environment with an infinite shelf-life 

unless they contain solvent, which may limit their shelf life [13].  Despite the advantages 

offered by the traditional thermoplastic matrices, their use has been limited due to their low 

modulus, poor chemical resistance, low glass transition temperature (Tg) and poor thermal 

stability at elevated temperatures [14]. The development of multi-functional thermoplastic 

matrices based on an aromatic polymer has potential to address all the above limitations.  

High-performance thermoplastics, such as poly-ether-ketone-ketone (PEKK), have 

demonstrated exceptional impact resistance, vibration damping and thermal properties at high 

temperatures, especially when reinforced with high-performance fibres [15].  

Previous work has shown that there are a number of procedures available to combine a 

thermoplastic matrix with fibres to make prepregs, such as solution dip prepregging [16], hot 

melt prepregging [17, 18], film calendaring [18], dry powder and aqueous suspension 

techniques [19, 20]. Differences between these methods relate to the way in which the matrix 

is deposited on fibres and the bonding force between the matrix and the fibre, which is 

responsible for adhesion at the microstructural level [21].  There are a number of advantages 

associated with dry powder prepregging, including a wide range of melt viscosities without 

the need for a solvent or hot melt problems, thus widening the potential range of available 

polymers [22]. High-performance thermoplastics, such as PEEK and PEKK [23, 24], are 

considered to be amongst the most suitable matrix systems for use in the aerospace industry, 

satisfying the need for light-weight, low cost primary load-bearing structures and high 

temperature FMLs [25–27].  Extensive work has been carried out on PEEK based composites 

[28–32] . However, PEKK is expected to become a competitive candidate for aerospace 

applications given that it is 60% cheaper than PEEK, with a Tg of 165 oC compared to 145 oC 

for PEEK. Moreover, the processing temperature for PEKK is lower than for PEEK, which 

simplifies the manufacturing process. 
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A review of the literatures indicates that few researchers have studied the behaviour of 

PEKK-based composites under various loading conditions. The influence of accelerated 

aging on the compression strength and interlaminar shear strength of carbon fibre reinforced 

PEKK composites were investigated by Mazur et al. [32]. Here, laminates were manufactured 

using hand lay-up and hot compression moulding techniques.  The authors showed that hot 

compression is a suitable technique for producing thermoplastic composites. Bucher and 

Hinkley [33] studied the flexural strength of PEKK reinforced with different types of 

unidirectional carbon fibres, these being AS-4, IM-7 and G30-500. The unidirectional 

towpreg was manufactured via a dry powder prepregging technique using a continuous 

powder prepregging line. The results showed that composites based on CF/PEKK prepregs 

behave differently with different carbon fibre types. Sun et al. [34] proposed a model to 

predict the elasto-plastic behaviour of PEKK composites reinforced with discontinuous 

(LDF) and continuous carbon fibres (AS-4). The results showed that the model could be used 

to successfully predict the plastic behaviour of those composites at ambient and elevated 

temperatures up to 177 oC.   

To date, little work has been undertaken to investigate the perforation resistance of high-

performance thermoplastic composites. The current work is primarily to study the perforation 

resistance of S-glass fibre reinforced PEKK prepregs manufactured using a powder-based 

prepregging technique. The initial study focuses on developing the composite material, with 

the identified optimum weight fraction of the polymer for better mechanical behaviour. Other 

key mechanical properties were evaluated to characterize the composite developed as well as 

to generate input data for subsequent numerical analyses. Finite element models were then 

developed to simulate the impact response of GF/PEKK laminates, which were validated 

against the corresponding test results. 
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2. Preparation of the material and samples 
 

The fibre reinforced laminates investigated in this study were based on prepreg sheets 

manufactured from an S-glass woven fabric and a poly-ether-ketone-ketone (PEKK) matrix. 

PEKK is a high temperature, high performance thermoplastic material that belongs to the 

poly aryl ether ketone (PAEK) family, in which the resulting polymers differ according to the 

ratio of ketone-ether groups within the structure. These resins have a semi-crystalline 

aromatic structure and exhibit low melt viscosity, excellent thermal stability, low moisture 

absorption, high toughness and tensile modulus, good chemical resistance and good 

flammability resistance. The glass transition temperature or Tg of PEKK is 165 °C. Table 1 

shows the mechanical and physical properties of PEKK and other thermoplastic polymers. In 

this research, KEPSTAN-6003 PL (Lot # P12S049) PEKK resin (ARKEMA, France), 

supplied in powder form with a particle size of 50 microns, was used. This polymer was 

selected since it has a relatively low melting point (~303 °C) coupled with a high Tg and 

excellent metal bonding characteristics. 

S-glass fibres offer a high compressive strength, a superior high temperature performance and 

a good impact resistance. Here, a plain S-glass woven fabric (124 gsm) from Aerialite (East 

Coast fibreglass Supplies, UK) was used. 

A dry powder prepregging technique was used to manufacture prepregs of PEKK and woven 

S-glass fabric, in which PEKK polymer in the form of a dry powder was deposited onto the 

fibres. The GF/PEKK prepregs were manufactured following steps below: 

1. The woven S-glass fibre fabric was cut into square sheets (250 mm x 250 mm) and 

weighed using a precision balance.  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

6 
 

2. An adhesive (3M Multipurpose Spray) was sprayed evenly on the fabric and re-

weighed. The adhesive served as a temporary binder to hold the PEKK powder in 

place on the glass fibre fabric.  

3. The fabric was then repeatedly dipped into a powder tank and weighed until the target 

weight fraction of resin was obtained. 

4. The glass fibre fabric containing the desired amount of powder was placed between 

two platens in a Meyer hydraulic press with platen dimensions of 300 mm x 300 mm 

and heated to 330 oC. A high temperature release agent (Frekote) was applied to the 

mould to facilitate removal after consolidation. The processing cycle involved 

applying a pressure of 6 bars during a holding time of 10 minutes.  

 

The composite laminates were manufactured by stacking the prepreg plies (0.12 mm 

thick) in a mould. The resulting stack was then heated to a temperature of 330 oC at a rate of 

5 oC/minute. Laminates, with dimensions (125 mm x 125 mm) and (250 mm x 62.5 mm), 

were consolidated under a pressure of 3 bars for 30 minutes prior to cooling at a rate of 2 

oC/minute. After cooling, the pressure was released and the laminates were removed from the 

mould and inspected for defects. The laminates were produced based on different weight 

percentages of PEKK. Table 2 gives details of the panels investigated in this study. Four 

thicknesses of plain GF/PEKK laminates were studied, these being 0.47, 0.96, 1.4 and 1.8 

mm, which corresponding to 4, 8, 12 and 16 plies. 
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3.  Mechanical tests 

A series of mechanical tests on the GF/PEKK laminates (4-ply) were undertaken to evaluate 

their mechanical response under various loading conditions. Initially, quasi-static tensile tests 

were conducted according to ASTM D3039/D3039M – 14 [35] using an Instron 3369 testing 

machine. The length and the width of the tensile specimens were set as 200 mm and 15 mm 

(with different ply numbers), respectively, which were based on trial tests with various 

widths.   An extensometer, with a gauge length (GL) of 25 mm, was attached to the middle 

section of the specimen to measure extension. Three repeat tests were undertaken at a 

constant crosshead speed of 0.5 mm/minute.  

 

Quasi-static perforation tests were also carried out on the GF/PEKK panels clamped in a 

square steel frame with a 72 mm x 72 mm opening. A hemispherical indentor, with a 

diameter of 10 mm, was used to perforate the specimens. The specimens were tested on an 

Instron 4505 testing machine with a maximum loading capacity of 50 kN. A crosshead 

displacement rate of 1 mm/minute was selected and the load-displacement curve was 

recorded during each test.  

 

The influence of temperature on the tensile strength of GF/PEKK laminates was investigated 

by conducting tensile tests on an Instron 3369 testing machine. GF/PEKK samples were 

tested at temperatures of 25, 50, 150, 200 and 250o C. The samples were heated locally in a 

small heating chamber. Here, two thermocouples were attached to sample edges to monitor 

the temperature throughout the test. The temperature was maintained using a temperature 

controller and the variation of the temperature inside the chamber was approximately within 

± 0.5 % of the desired values.   
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Finally, low velocity impact tests were conducted on 4, 8, 12 and 16-ply laminates using a 

drop-weight tower. A steel mass was attached to a carriage with a 10 mm diameter hemi-

spherical steel indentor to impact the laminated panels centrally. The mass of the impactor 

was 1.37 kg and the release height of the carriage was varied between 0.29 and 1.09 meters. 

Further impact tests were undertaken on an 8 ply composite to investigate the influence of the 

project shape and diameter on the impact response of the thermoplastic laminates. Details of 

these tests are given in Table 3. The composite plates were clamped in the same frame as that 

used for quasi-static perforation testing, this being a square steel support with external 

dimensions of 100 mm x 100 mm and opening of 72 mm x 72 mm. The impact force and 

displacement were recorded using a piezoelectric load cell and a high speed camera, 

respectively. 

4. Investigation of effects of binder and PEKK content on the mechanical 

behaviour 

Experimental work was initially focused on investigating the effect of a binder between 

the thermoplastic powder and the fibres on the mechanical properties of the GF/PEKK 

laminates. Figure 1 shows the average load-displacement traces with the standard deviations 

following quasi-static perforation tests on panels manufactured with and without the use of a 

binder. An examination of the figure indicates that both traces exhibit similar initial stiffness 

characteristics due to the similar initial contact area before the first delamination. However, 

the maximum force in the modified laminate is roughly double that of its untreated 

counterpart. Clearly, the higher maximum force for the treated panels is associated with the 

enhanced level of adhesion between the thermoplastic polymer and the glass fibres. The 

influence of fibre treatment on the tensile strength of GF/PEKK samples was also studied. 

Here tensile tests were conducted on a four ply laminate with a thickness of 0.47 mm and 
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typical stress-strain traces are shown in Figure 2. As noted previously, the treated laminates 

offer strength properties that are more than double those associated with untreated laminates.  

Then, work was carried out on studying how PEKK content affects the mechanical behaviour 

of GF/PEKK laminates. Figure 3 presents load-displacement traces following quasi-static 

perforation tests on laminates with weight fractions of PEKK between 0.3 and 0.5. All of the 

traces exhibit similar trends during the perforation process, with the force initially increasing 

in a non-linear fashion to the maximum force at a displacement of approximately 4 mm, 

followed by a progressive decrease as the projectile perforates the plate.  Clearly, the 

maximum force increases with PEKK weight fraction, reaching the highest value at 0.4 of 

PEKK.  

The influence of the weight fraction of PEKK on the tensile strength of the GF/PEKK 

composites is shown in Figure 4. Clearly, the tensile strength increases with PEKK w%, 

reaching a maximum at 300 MPa, again corresponding to a PEKK weight fraction of 0.4. At 

higher weight fractions, a noticeable drop in the tensile strength occurs, probably due to the 

presence of resin-starved regions between the fibres. The above results suggest that, in terms 

of mechanical properties, the optimum weight fraction of PEEK is close to 0.4. 

Prior to undertaking further mechanical tests, a number of specimens were sectioned, 

polished and examined under an optical microscope to study their microstructure and the 

distribution of the fibres within their cross-sections. Figure 5 shows a micrograph of a 4 ply-

GF/PEKK with the optimum PEKK content (i.e. 0.4 or 40 wt. %) where it can be seen that 

the glass fibres are fully impregnated by the PEKK polymer. This point is emphasized when 

examining the high magnification image where it is evident that the thermoplastic resin has 

flowed between all of the individual glass fibres to give a high quality composite laminate. 
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5. Finite element modelling 

ABAQUS/Explicit [38] was used to develop numerical simulations to predict the response  of 

the GF/PEKK laminates under low velocity impact loading. The woven glass fibre reinforced 

PEKK laminates were modelled as an orthotropic elastic material prior to the onset of 

damage.  Table 4 shows the material properties of the laminates used in this study. 

Hashin failure criteria [39, 40] were used to model damage initiation in the laminates, 

involving four failure initiation mechanisms, namely fibre tension, fibre compression, matrix 

tension and matrix compression. The criteria based on effective stress tensor components (

11 12 22ˆ ˆ ˆ,  , σ σ σ  ) and strengths of woven composites (TX , CX , TY , CY , LS , TS ) are expressed in 

equations [38] below.  

Fibre in tension: 

2 2

11 12
11

ˆ ˆ
ˆ0,  0t

f T L
F

X S

σ σα σ
    − + = ≥    
     

       (1) 

Fibre in compression: 

2

11
11

ˆ
ˆ0,  0c

f C
F

X

σ σ − = ≤ 
 

        (2) 

Matrix in tension: 

2 2

22 12
22

ˆ ˆ
ˆ0,  0t

m T L
F

Y S

σ σ σ
    − + = ≥    
     

      (3) 

Matrix in compression: 

22 2

22 22 12
22

ˆ ˆ ˆ
ˆ1 0,  0

2 2

C
c

m T T C L

Y
F

S S Y S

σ σ σ σ
        − + − + = ≤    
        

    (4) 
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An element removal procedure was employed to remove elements following matrix and fibre 

failure. Table 5 gives the damage initiation properties used in this investigation. The values 

for the fracture energies in the longitudinal and transverse directions of the woven laminates 

under tension and compression were based on previous work on glass fibre reinforced 

composites [41] and taken to be 50 kJ/m2 and 60 kJ/m2, respectively. One half of the panel 

was modelled, as shown in Figure 6, to reduce the CPU time and associated costs. 

Surface-based tie constrains were employed between adjacent plies in the composite, and 

surface to surface contact interaction was imposed between the projectile surface and the 

node set over the central region (20 x 20 mm x thickness) of the target. A penalty friction 

coefficient of 0.15 was used to simulate the tangential contact behaviour. Linear pressure-

overclosure, with a contact stiffness of 0.5 MPa, was assumed for all interaction surfaces.  

The composite plies were meshed using eight-noded linear brick elements with reduced 

integration and hourglass control (SC8R), and the projectile was meshed as a rigid body 

using four–noded bilinear quadrilateral rigid elements (R3D4). A mesh-sensitivity study was 

conducted to obtain the optimized mesh size for which a suitable balance between the 

accurate modelling results and the CPU time was achieved. As a result, a mesh size of 1.1 

mm x 1.1 mm over a central area of 20 mm x 20 mm was employed. The contact force was 

calculated by summing the contact force between the projectile and the individual composite 

plies. 

 

6. Results and discussion 

In order to assess the effect of specimen thickness on the tensile strength of GF/PEKK 

laminates, samples were manufactured with different thicknesses, being based on 4, 8, 12 and 

16 ply samples. The resulting experimental data showed that the tensile strength of GF/PEKK 
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panels is not significantly affected by the sample thickness or ply number, with the tensile 

strength being approximately 300 MPa.  

The load-displacement traces following quasi-static perforation tests on GF/PEKK laminates 

with different ply number (thickness) are shown in Figure 7. Here, it is evident that the initial 

stiffness and the maximum force values increase with the ply number (so (thickness) of the 

sample.  

Figure 8 shows the variation of the tensile strength of the 4 ply GF/PEKK composite with 

temperature. As expected, the figure shows that the tensile strength of the laminate decreases 

with the temperature. At 250 oC, the tensile strength had dropped by approximately 35% 

relative to room temperature. It is interesting to note that there was hardly any change in the 

tensile strength when the composite was heated to 100 oC. There is a 10 % reduction in 

tensile strength at 150 oC. a temperature that is close to the glass transition temperature of the 

PEKK matrix (165 oC) It is worth noting that, even at a temperature of 250 oC, the GF/PEKK 

still exhibits a tensile strength of approximately 200 MPa.  

Figure 9 shows a comparison between the predicted load-displacement traces and the 

corresponding experimental data for the GF/PEKK composite laminates under low velocity 

impact loading. An examination of the figure indicates that, for the range of sample 

thicknesses (number of plies) considered here, good agreement was observed in terms of the 

initial stiffness, maximum load and maximum displacement. From the figure, it can also be 

noted that the traces are highly oscillatory, due to the dynamic nature of the test, associated 

with ringing in the load cell. The trends in the traces under impact loading are similar to those 

observed following quasi-static perforation tests, with higher maximum forces being 

observed during dynamic testing, highlighting the strain-rate sensitivity of the glass fibres, as 

observed by other research [42, 43]. It is encouraging to note that the FE model predicts the 
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impact perforation resistance of the laminates. As a result, the fundamental features of impact 

event were successfully captured by the numerical model.  

Figure 10 shows a comparison of the experimental and predicted rear surfaces of the 

perforated 4-ply of GF/PEKK composites following impact. Here, the experimental failure 

mode was captured after removing the projectile from the damaged panel, whereas the 

predicted cross-section was taken without unloading the panel (i.e. removing the projectile). 

Clearly, the FE simulation shows a good degree of agreement with the experimental damage 

pattern in terms of the local deformation at the target centre and the cross-cracks on the rear 

surface of the panel. This evidence suggests that the FE model captures the failure modes in 

the perforated GF/PEKK composite reasonably successfully.   

The impact perforation resistance of the 8-ply laminates involving projectiles with various 

diameters of 5, 10, 15 and 20 mm was investigated both experimentally and numerically. 

Figure 11 compares the load-displacement curves, where a high level of correlation is 

observed between the experimental and experimental traces.  As expected, the maximum 

impact force increases with projectile diameter. For example, the panel impacted by a 20 mm 

indentor results in a much higher impact force of 1710 N than the value of 815 N resulting 

from impact by a 5 mm projectile. This is due to the larger volume of sheared material in the 

panel impacted by the large diameter projectiles.  

Load-displacement traces following impact tests on the GF/PEKK laminates by flat (flattened 

area/overall area = 0.55), hemispherical and conical projectiles are shown in Figure 12. 

Clearly, the panels impacted by the flat and hemispherical projectiles exhibit similar initial 

stiffness values, due to the fact that they have a similar initial contact area. In contrast, the 

trace associated with impact using a conically shape projectile results in a much lower 

stiffness. The figure also shows that the panel impacted by the flat projectile exhibits a higher 
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impact force (approximately 2100 N) than the value (1070 N) generated by the hemispherical 

projectile. The conically shaped projectile resulted in the lowest impact force of 870 N [44]. 

Figure 13 compares the predicted and experimental load-displacement traces of 8-ply 

GF/PEKK panels resulting from impact by flat and conical projectiles where good agreement 

between the predicted and measured traces is apparent.  The simulated results capture the 

experimental features from the beginning to the full perforation stages. 

The influence of the projectile diameter on the perforation energy for the 8-ply GF/PEKK 

laminates is shown in Figure 14. The solid line represents the predictions from the FE 

analyses. Clearly, the perforation energy increased rapidly with the projectile diameter in a 

non-linear fashion. Good agreement between the predicted and the measured perforation 

energies was obtained. The influence of the projectile shape on the perforation energy was 

also investigated. Figure 15 shows the variation of the perforation resistance of 8-ply 

GF/PEKK laminates subjected to impact by different projectile head shapes. From the figure, 

it is clear that the perforation energies associated with panels impacted with hemi-spherical, 

conical and partial flat projectiles are following an uptrend almost linearly. Again, reasonably 

good agreement between the measured data and the predicted results is obtained over the 

relatively narrow range of the projectile shapes. 

7. Conclusions 
 

The mechanical properties of a high temperature thermoplastic composite based on S-glass 

fibre reinforced poly-ether-ketone-ketone (PEKK) were investigated. A dry powder 

prepregging technique was employed to manufacture the GF/PEKK prepregs. The wettability 

of the resin was investigated by examining polished sections removed from the as-

manufactured laminates. Experimental tests showed that the maximum perforation force and 

the tensile strength of laminates are observed at a weight fraction of fibres of approximately 
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0.4. The GF/PEKK laminates offer attractive residual strength characteristics at high 

temperatures, highlighting the potential of such thermoplastic-matrix composites for use in 

aerospace applications. The perforation response of the GF/PEKK laminates was 

subsequently modelled using finite element analysis techniques, and the predictions were 

compared with the experimental data where good agreement was observed in all cases. The 

FE models yielded accurate predictions of the load-displacement traces and the associated 

perforation threshold energy. The perforation energy increased with increasing panel 

thickness in a linear fashion, whereas the variation of perforation energy with projectile 

diameter followed a more non-linear relationship. 
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Table 1: Comparison of the properties of PEKK with other thermoplastic polymers [13]. 

Property unit PEI PPS PEEK PEKK 

Density kg/m3 1270 1330 1320 1290 

Tensile strength MPa 105 90 100 90 

Tensile Modulus GPa 3.0 3.8 3.5 3.4 

Elongation at Failure % 60 3 60 80 

Flexural Modulus GPa 3.3 3.8 4.0 3.3 

Flexural Strength MPa 152 96 170 138 

Notched Izod Impact Strength J/m 53 16 60 48 

 

 

 

 

Table 2: Summary of the laminates investigated in this study. 

 

No. of plies Thickness 

(mm) 

Weight fraction of fibres 

(wt. %) 

4 0.47 60 

8 0.96 60 

12 1.4 60 

16 1.8 60 
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Table 3: Details of the impact tests involving various projectile shapes and diameters. 

Indentor shape Indentor diameter Impactor mass (kg) 

Hemi-spherical 5 3.02 

Hemi-spherical 10 3.02 

Hemi-spherical 15 3.19 

Hemi-spherical 20 3.22 

Semi-flat 10 3.02 

conical 10 3.02 

 

 

Table 4 Material properties for the glass fibre reinforced PEKK laminates used in this programme. 

E1 (GPa) E2 (GPa) E3 (GPa) ν12 ν13 ν23 G12 (GPa) G13 (GPa) G23 (GPa) 

26 26 2.6 0.15 0.15 0.15 2.6 2.6 2.6 

 

 

 

 

Table 5: Strength data for the glass fibre reinforced PEKK laminates. 

XT  (MPa) XC  (MPa) �� (MPa) ��  (MPa) ��  (MPa) �� (MPa) 

304 200 304 200 50.4 50.4 
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Nassir, et al. 

 

 

Figure 1.  Load-displacement traces following perforation tests on the 4 ply PEKK/GF composite with binder 

(solid line) and without binder (dashed line) applied to the fibres. 

`  

 

Figure 2. Tensile stress-strain curves for the 4 ply PEKK/GF composites with binder and without binder applied 

to the fibres. 
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Figure 3. Load-displacement traces following quasi-static perforation tests on the 4-ply panels based on different 

weight fractions of PEKK. 

 

 

 

Figure 4. Tensile strength versus weight percentage of PEKK. 
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Figure 5. Micrographs of the 4-ply GF/PEKK at magnification factor of (a) 200 and (b) 1000. 

 

 

 

 

Figure 6. Geometrical, boundary and conditions as well as mesh generation of a half model of 8-ply GF/PEKK 

composite panel. 
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Figure 7. Load-displacement traces following quasi-static perforation tests on the 4, 8, 12 and 16 ply GF/PEKK 

laminates with differing thicknesses.  

 

 

Figure 8. Tensile strength of the 4-ply GF/PEKK panels as a function of temperature.  
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Figure 9. Load-displacement traces for 4, 8, 12 and 16-Ply GF/PEKK laminates subjected to low velocity impact 

loading. The solids line corresponds to experimental traces and the dashed line to numerical predictions. 

 

 

  

 

Figure 10. Comparison of the predicted and experimental failure modes following impact test for the 4-ply 

GF/PEKK panel. 
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( a) Projectile diameter = 5 mm 

 

 

(b) Projectile diameter = 10 mm 

  
 

(c) Projectile diameter = 15 mm 
 

(d) Projectile diameter = 20 mm 
 

Figure 11. Load-displacement traces following impact tests on 8 ply laminates with various projectile diameters. 

The solid lines are the experimental traces and the dashed lines the numerical predictions. 
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Figure 12. Load -displacement relationship for 8-ply panels impacted with projectiles with different shapes.  

The projectile diameter = 10 mm. 

 

 

 
 

 
(a) 

 

(b) 

 
Figure 13. Predicted and experimental load-displacement traces for 8-ply GF/PEKK panels following low 

velocity impact by different projectile shapes: (a) conical; (b) partially-flat. 

The solid lines are the experimental traces and the dashed lines the numerical predictions. 
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Figure 14. Variation of perforation energy with projectile diameter for 8-ply GF/PEKK panels impacted by 

projectile with diameters of 5, 10, 15 and 20 mm respectively. 

 

 

 

 

Figure 15. Variation of perforation energy with projectile head shapes for 8-ply GF/PEKK panels.  
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Highlights 

• Manufacture S-glass fibre/PEKK prepreg materials using a dry powder prepregging method; 

• The optimum weight fraction of PEKK is approximately 0.4 to offer high mechanical behaviour; 

• There is no tensile strength reduction at 100 oC and only 10 % reduction at 200 oC; 

• Perforation resistance was studies with projectiles in various sizes and shapes; 

• The finite element modelling outputs show good correlation with the related test results; 


