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Abstract:  In this paper, the material nonlinearity induced by the high temperature is introduced in the modeling of 

fiber-reinforced composite thin plate structure, and a nonlinear dynamic model in thermal environment is established 

using Hamilton’s principle in conjunction with the classical laminated plate theory, complex modulus method and strain 

energy method. The nonlinear relationships between the elastic moduli, Poisson's ratios and loss factors and temperature 

change are expressed by the polynomial method. Then, the dynamic equations in the high temperature environment are 

derived to solve the inherent characteristics, dynamic responses and damping parameters with considering temperature 

dependent property. Also, the identification principle of concerned fitting coefficients in the theoretical model is 

illustrated. As an example to demonstrate the feasibility of the developed model, the experimental test of a TC500 

carbon/epoxy composite thin plate is implemented. The results of the developed model and experimental test show a 

good consistency, and both indicate that the high temperature has complicated influence on its dynamic characteristics, 

especially on damping property.  

Keywords: Nonlinear dynamic model; Fiber-reinforced composite thin plate; Temperature dependent property; 

Polynomial method; Thermal environment 

 

1. Introduction 

The fiber-reinforced composite has excellent 

mechanical properties, good thermal stability and 

capability on weight reduction, which is widely used in 

the aeronautics, astronautics, naval vessel and weapon 

industry [1-2]. Currently, there are a large number of such 

composite thin plate structures which are working in 

thermal environment, such as the composite panels in the 

high-speed aircraft, the high temperature turbine blades in 

the aeroengine, and the composite wings in the solar 

unmanned aircraft. The thermal environment could not 

only reduce the strength and increase the vibration level 

of such composite blades and plates, but also bring the 

deterioration, delamination and fatigue damage to 

composite structures. Therefore, it is of great scientific 

significance to study their dynamic characteristics and the 

corresponding theoretical analysis and modeling methods 

in the high-temperature environment [3]. 

Nowadays, some scholars and researchers have 

carried out a large number of studies on the linear and 

nonlinear vibration of the fiber-reinforced composite thin 

plate (FCTP). However, most of them focus on the 

dynamic problem without considering the temperature 

effect, with most nonlinear methods being achieved by 

the Von Kármán nonlinear strain-displacement 

relationships. Rao and Pillai [4] analyzed the 

large-amplitude vibrations of a simply supported 

composite plate with immovable edges. The Kirchhoff’s 

hypothesis and the strain-displacement relationships of 

von Kármán type were used in the formulation with the 

in-plane deformation and inertias being considered. Singh 

et al. [5] presented a direct numerical integration method 

of the frequency/time period expression to study the 

nonlinear vibration behavior of the fiber-reinforced plates. 

Ribeiro and Petyt [6] studied the geometrically nonlinear 

vibration of a thin laminated composite plate under the 

fully clamped boundary condition by the hierarchical 

finite element with consideration of Von Kármán 

nonlinear assumption. Chen et al. [7] presented the 

semi-analytical finite strip method to analyze the 

geometrically nonlinear response of a rectangular 

composite laminated plate under the simply supported 

boundary condition with the von Karman assumptions. 

Singha and Daripa [8] used the shear deformable finite 

element method to analyze the large-amplitude vibration 

characteristics of the composite plates under the 

transverse harmonic pressure. 

Some studies were also reported on the linear 

dynamic analysis and modelling of the composite plate 
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structures in thermal environment. Whitney et al. [9] 

studied the buckling and elastic response of the composite 

plates under thermal condition with the classical 

laminated plate theory. Ram and Sinha [10] established 

finite element model of the laminated composite plates in 

hygrothermal environment and solved the 

non-dimensional natural frequencies under simply 

supported and clamped boundary conditions. Gilat et al. 

[11] investigated the dynamic inelastic response and 

buckling of a metal matrix reinforced laminated 

composite plate under the effect of the 

thermo-mechanical coupling by the finite difference 

spatial domain method and Runge–Kutta method. 

Matsunaga [12] presented a two-dimensional global 

higher-order deformation theory to solve natural 

frequencies and critical temperatures of the simply 

supported multilayered plates subjected to thermal 

loading. Li and Li [13] investigated the effects of thermal 

environments on the vibration and sound radiation 

characteristics of an asymmetric laminated plate, and 

obtained the natural frequencies, resonant amplitudes and 

sound pressure levels base on the FEM and the BEM. 

In addition, several experimental studies in thermal 

environment on the dynamic characteristics of the 

fiber-reinforced composite plates were also reported. 

Melo and Radford [14] measured the time and 

temperature dependence of the viscoelastic properties of 

the composite plate using dynamic mechanical analysis 

equipment. The results showed that a decrease in the 

storage moduli and an increase in loss factors as 

temperature increased. Also, the measured changes in loss 

factors with the temperature between 20 °C and 120 °C 

were much larger than changes in storage moduli. Yang et 

al. [15] experimentally investigated the effect of the 

varying thermal conditions on the modal parameters of 

the composite laminate plate by the stochastic subspace 

identification method. It was found that the frequencies 

and damping ratios had strong negative correlation with 

temperature, but no clear correlation of modal shapes 

with temperature changes could be observed. Sefrani et al. 

[16] experimentally studied the temperature effect on the 

bending modulus and damping of the glass fiber composite 

beam. The results showed that the dynamic properties 

were appreciably kept up to the temperature of glass 

transition, where damping increased sharply in a little 

interval of temperature. Wu et al. [17] established a 

thermal/vibration test system of composite plates at 

1200 °C, where a self-developed extension configuration 

of a high-temperature resistant ceramic pole was used to 

transfer the vibration signals of the structure to a non-high 

temperature zone.  

As this paper focuses on the nonlinear dynamic 

modelling and analysis method of the composite 

structures in thermal environment, some important and 

selective literatures on this topic were highlighted here. 

Praveen and Reddy [18] analyzed the geometrically 

nonlinear static and dynamic response of the functionally 

graded plates subjected to the temperature loads based on 

the von Karman theory. Duc et al. [19-23] conducted a 

series of nonlinear mechanical, vibration and buckling 

analysis of the functionally graded circular, conical and 

elliptical cylindrical shells in thermal environment with 

and without considering the elastic foundations. The von 

Karman nonlinearity, Galerkin method, fourth order 

Runge–Kutta method, etc. were employed to calculate 

natural frequencies, nonlinear frequency–amplitude 

relation and dynamic response of the shells, and the 

nonlinear relationship between material properties and 

thermal load were also discussed. Wang et al. [24] 

investigated the nonlinear large-amplitude responses of a 

functionally graded material plate by considering the 

thermal effect and the longitudinal velocity based on the 

D'Alembert's principle. Gao et al. [25] established the 

nonlinear dynamic response equations of composite 

orthotropic plate under thermal environment. The 

Galerkin method and Airy’s stress function are 

implemented to obtain the natural frequency, 

frequency-amplitude curve and nonlinear dynamic 

responses. Thanh et al. [26] studied the nonlinear 

dynamic response and vibration of functionally graded 

carbon nanotube-reinforced composite cylindrical shell in 

thermal environment. The influences of 

temperature-dependent material properties on the 

nonlinear vibration were also analyzed. 

Up to date, it is clear that the research on nonlinear 

dynamic modelling techniques is still limited for the 

analysis of fiber-reinforced composite thin plates in 

thermal environment, especially less attention being paid 

to the damping modelling in the high temperature 

environment. Besides, most of research studies focus the 

geometric nonlinearity of the composite plates based on 

the Von Kármán strain-displacement relationships, which 

are in lack of the experimental verification in thermal 

environment. Therefore, it is still necessary to put efforts 
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to study the nonlinear dynamic problems of such 

composite plate structures, especially to establish an 

appropriate mathematical model to describe the nonlinear 

dynamic phenomenon with temperature dependence. 

2. Establishment of the nonlinear dynamic 

model of FCTP in thermal environment 

2.1 A nonlinear dynamic model of FCTP in thermal 

environment 

Assume that a fiber-reinforced composite thin plate, 

which is made of the fiber and matrix material with n  

layers, is under a uniform thermal environment, as seen in 

Fig.1. Firstly, set up the coordinate system xoy  at the 

middle surface, and suppose the length, width and 

thickness are expressed as a , b  and h , and the fiber 

direction within a layer is defined as θ  from the x-axis 

of the coordinate system. In this theoretical model, each 

layer of the composite plate is located at 1kh −  and kh  

along the z-axis with the equal thickness, “1” represents 

the direction parallel to the fiber, “2” represents the 

direction perpendicular to the fiber and “3” represents the 

direction perpendicular to the 1-2 surface. In addition, the 

plate is under cantilever boundary condition, which is 

subjected to the pulse excitation force ( )F t  in the point 

Re 0 0( , )x y , ( )w t  is the vibration displacement in any 

point Rr 1 1( , )x y ,  is the density, and ,  are the 

thermal expansion coefficients parallel and perpendicular 

to the fiber direction.  

3
θ

1

2

( )F t

0x

0y

 
Fig. 1 Theoretical model of FCTP in thermal environment 

Considering the influence of the high temperature 

environment on the fiber-reinforced material parameters, 

the polynomial method can be employed to establish the 

nonlinear relationships between the material parameters 

of fiber composite and temperature change value in 

different fiber directions [27, 28]. 
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where 0 0 0 0 0 0 0
1 2 12 12 1 2 12, , , , , ,E E G v η η η  represent elastic moduli, 

Poisson's ratios and loss factors of the composite thin 

plate under normal temperature, 

0 0 0 0 0 0 0
, , , , , ,n n n n n n nA B C D F H P

 are the fitting coefficients of 

the composite thin plate in all directions of the fiber when 

the high temperature environment is considered, 0n  is 

the maximum of the polynomial order, and ∆T  is the 

temperature change relative to the normal temperature 

environment. 

Then, consider the influence of different fiber 

directions, the elastic modulus of the composite thin plate 

can be expressed as 

( ) ( )' '
1 1 1(1 i )E T E T η∗ ∆ = ∆ +  

( ) ( )' '
2 2 2(1 i )E T E T η∗ ∆ = ∆ +  

( ) ( )( )'
12 12 121 iG T G T η∗ ∆ = ∆ +'         (2) 

where 1E∗ , 2E∗  represents the complex moduli paralleled 

and perpendicular to the fiber in thermal environment, 

respectively, 12G∗  represents the complex shear modulus 

in the 1-2 surface, and 1
'E , 2E' , 12G '  represents the real 

part of complex moduli 1E∗ , 2E∗ , 12G∗  in thermal 

environment, respectively. 

By referring to the literature [9], the generalized 

Duhamel-Neumann form of Hooke's law for the 

relationship of the stress and strain in thermal 

environment can be expressed as  

         (3) 

where, the stresses are denoted by , ,

, the strains are denoted by ，and the thermal 

expansion strains are denoted by .  

The inverted form of the Eq. (3) is 

       (4) 

where ijQ  is the stiffness matrix, it contains the 

following matrix elements 

ρ
1α 2α

( )Ѕ    , 1,  2,  6i ij j i i jε σ ε= + =

1 xσ σ= 2 yσ σ=

6 xyσ σ= iε

iε

( ) ( )   , 1,  2,  6i j jijQ i jσ ε ε= − =
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4 2 2 4
11 11 12 66 22cos 2( 2 )sin cos sink k k kQ Q Q Q Qθ θ θ θ= + + +

( ) ( )2 2 4 4
12 11 22 66 124 sin cos sin cosk k k kQ Q Q Q Qθ θ θ θ= + − + +
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E E
Q Q G

E
ν ν

ν ν
= = =

−
     (5) 

Since ijQ  consists of the real and imaginary part, it 

can be expressed as the following form 

jij ij ijQ Q Q′ ′′= +               (6) 

where ijQ ′  and ijQ ′′  are the real and imaginary parts of 

the complex stiffness matrix coefficients. 

According to the assumption of the laminated plate 

theory, the total strain of FCTP is 

( ) ( ) ( )0 , , , ,    1, 2, 6i i ix y t zk x y t iε ε= + =     (7) 

where t  denotes the time, 0εi  are the mid-plane strains, 

and are the plate curvatures. 

The plate force  and moment resultants  are 

defined in the usual manner, i.e. 

( ) ( ) ( )/ 2

/ 2
 , 1 ,  d    1,  2,  6

h

i i ih
N M z z iσ

−
= =∫     (8) 

Substitution of Eq. (7) into Eq. (4) and taking Eq. (8) 

into account, leads to plate constitutive relations in 

thermal environment 

0

0

ii ij j ij j

ii ij j ij j

N A B k N

M B D k M

ε

ε

= + −

= + −
      9) 

where 

( ) ( )/2 2

/2
,  ,  1,  ,  d

h

ij ij ij h ij
A B D Q z z z

−
= ∫  

( ) ( )/ 2

/ 2
,  1,  d

h

ii j
h ij

N M Q z zε
−

= ∫        (10) 

where, iN  and iM  are the thermal internal force and 

the thermal moment. It should be noted that for the 

general case ， where  is the 

temperature value in the corresponding thermal 

environment, and for the uniform temperature, the 

thermal expansion strain is 

( )   1,  2,  6
x

i y

xy

T i

α
ε α

α

 
 = ∆ = 
 
 

        (11) 

where xα , yα , xyα , are the coefficients of thermal 

expansion along the x, y and shear directions, 

respectively. 

From the classical laminated plate theory 

0
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 

∂ ∂  

k        (12) 

where, and  are mid-plane displacements in the 

,  directions, respectively, and w is the displacement 

in the z direction. 

By referring to the dynamic equations in the 

literature [9], the equation of vibration displacement of 

FCTP in thermal environment can be deduced and 

expressed as 
2 0

0 0
1 16 2 4 5

2 0

2

2

          
x xy

u w w
L u A L v L L

x y x y

N N u
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∂ ∂ ∂+ + − −
∂ ∂ ∂ ∂

∂ ∂ ∂− − =
∂ ∂ ∂
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2x xy y

w w w w
R q t N N N
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∂ ∂ ∂ ∂+ = − − −
∂ ∂∂ ∂ ∂

     (13) 

where  is the integral of mass density through the 

plate thickness,  are the operators,  is a 

distributed pressure over the surface of the composite 

plate. 

Because the concerned composite plate is a 

symmetric laminated structure, there is no coupling 

between the tensile and bending loads. The in-plane 

displacement and surface displacement is decoupled. 

Then, according to the small deflection theory of the thin 

composite plate, the principle of minimum potential 

energy and the Ritz method are combined to solve the 

ik

iN
iM

( )1,  2,  6i =

( ),  ,  ,  ,  i i x y z t Tε ε= T

0u 0v

x y

R

iL ( )q t
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strain energy NorU   
2 22 2 2 2

Nor 11 12 222 2 2 2

1
2 +

2 A

w w w w
U D D D

x x y y

    ∂ ∂ ∂ ∂= +    ∂ ∂ ∂ ∂   
∫  

22 2 2 2 2

16 26 662 2
4 4 4 d

w w w w w
D D D A

x y x y x yx y

 ∂ ∂ ∂ ∂ ∂ + + +  ∂ ∂ ∂ ∂ ∂ ∂∂ ∂   
 (14) 

where A  represents the area of the composite thin plate. 

Considering the influence of the thermal 

environment, the potential energy TemV  of the system 

induced by the thermal internal force can be expressed as 

22

Tem

1
+ + 2 d

2
x y xy

A

w w w w
V N N N A

x y x y

  ∂ ∂ ∂ ∂ 
 =    ∂ ∂ ∂ ∂    
∫   (15) 

The kinetic energy vT  of the system in thermal 

environment can be expressed as 

2 21
d

2v A
T h w Aρ ω= ∫               (16) 

where  represents the excitation circular frequency. 

2.2 Solutions to the inherent characteristics in thermal 

environment 

Furthermore, the vibration displacement ( , , )w x y t  

of the composite thin plate in thermal environment is 

assumed to be 

           (17) 

where, ( , )W x y  represents the modal shape function 

which can be defined as 

        (18) 

where m  and n  represent the half wavenumber of the 

modal shapes along x  and y  directions respectively, 

M and N are the maximum values of m  and n , and 

 is the coefficient. Besides, and  are 

the modal functions along x  and y  directions 

respectively, which can be expressed by the fixed-free 

beam function and free-free beam function. 

Then, according to the Ritz method and neglecting 

the influence of the harmonic componenti te ω , the 

Lagrange energy functionΠ  can be defined as  

Nor Tem vU V TΠ = + −               (19) 

By minimizing the partial derivative of the Lagrange 
energy function Π  with the respect to mna  in the 
following equation 

0
mna

∂Π =
∂

, 1,2, ,m M= L , 1,2, ,n N= L   (20) 

By substituting Eqs. (14), (15) and (16) into Eq. (20), 

the following equation can be obtained 

( )2 0ω− =K M a               (21) 

where K  and M  represent the stiffness matrix and 

mass matrix of the system, respectively, and 

( )T

11 12, , mna a a= La  is the eigenvector. 

By solving Eq. (21), the natural frequencies of FCTP 

in the high temperature environment can be obtained. 

Then, by substituting the eigenvector ( )T

11 12, , mna a a= La  

related with the certain natural frequency into Eq. (18), 

the corresponding modal shape can be obtained. 

Repeating these steps above, all the concerned modal 

shapes can be obtained. 

2.3 Solutions to the dynamic response in thermal 

environment 

After the natural frequencies and modal shapes of 

FCTP are solved, assume that the pulse excitation ( )F t  

is exerted on the point Re ( )0 0,x y , which is perpendicular 

to the plate surface. ( )F t  can be described by Dirac 

function as 

0 0

10

1

( ) ( ) ( ) ( )

0sin( ),
( )

0 ,

F t f t x x y y

t tf t
f t

t t

δ δ
ω

= − −
≤ ≤

=  >

          (22) 

where ω  is excitation circular frequency, 1t  is 
excitation time. 

On the basic of the mode superposition principle, the 
dynamic responses ( )w t can be expanded in terms of the 
mode functions as follows 

1 1

( ) ( , ) ( )mn mn
m n

w t W x y T t
∞ ∞

= =

= ∑∑            (23) 

where, ( , )mnW x y  is modal shape function, mnT  is 

modal component.   

Substituting the dynamic response ( )w t  and the 

modal shape function   into Eq. (13), the following 

equation can be derived after the simplification 

( )
2

2

2
1 1

d

d
mn

mn mn
m n

T
h h T W F

t
ρ ρ ω

∞ ∞

= =

 
+ = 

 
∑∑    (24) 

Then, multiply ( ),klW x y ( , 1, 2,3, )k l = ⋅ ⋅ ⋅ at both 

sides of Eq. (24) and perform the integral operation along 
the x-y surface, the following equation can be obtained  

( )
2

2

2
1 1

d
d d

d
mn

mn mn kl klA A
m n

T
h h T W W A FW A

t
ρ ρ ω

∞ ∞

= =

 
+ = 

 
∑∑∫∫ ∫∫  (25) 

Further, by using the orthogonality of modal shape 

of the plate with the following form 

ω

( ) i( , , ) , tw x y t W x y e ω=

( ) ( ) ( )
1 1

,
M N

mn m n
m n

W x y a X x Y y
= =

=∑∑

mna ( )mX x ( )nY y

mnW
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      (26) 

The generalized vibration differential equation 

without damping can be expressed as 

( ) ( ) ( ) ( )2
2

2

d

d
mn mn

mn
mn

T t P t
T t

t M
ω+ =         (27) 

where ( )mnP t  and mnM  are the generalized force and 

generalized mass, respectively, which have the following 
form 

 

       (28) 

Similarly, under the assumption of the small 
damping, the generalized vibration differential equation 
with damping can be expressed as 

( ) ( ) ( ) ( )2
2

2

d d
2

d d
mn mnmn

r mn
mn

T t P tT
T t

t t M
ζ ω ω+ + =    (29) 

where rζ  is the modal damping ratio at the r  mode of 

the composite plate. 

At the zero-initial condition, the solution of Eq. (29) 

can be expressed as Duhamel integral form, which has the 

following expression 

( ) ( )1 1
d0

d

,
( ) ( )e sin ( )dr

t tmn
mn

mn

W x y
T t f t

M
ζ ω ττ ω τ τ

ω
− −= −∫   (30) 

where dω  is the circular frequency of the damped 

system, which can be expressed as 2
d 1 rω ζ ω= −  

Eq. (30) can be solved using Simpson numerical 

integration technique, and by substituting the results into 

Eq. (23), the dynamic response ( )w t  of the composite 

thin plate under the pulse excitation can be obtained by 

the modal shape superposition method. 

1 1

( ) ( , ) ( )mn mn
m n

w t W x y T t
∞ ∞

= =

= ∑∑         (31) 

2.4 Solutions to the damping in thermal environment 

Based on the strain energy method, the total strain 

energy U  of FCTP in thermal environment can be 

expressed as 

Tem= + + +x y xyU U U U U         (32) 

where, xU , yU , xyU represent the strain energy along the 

x , y , and xy  directions respectively, and TemU is the 

potential energy induced by the thermal internal forces 
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∫

 

where, , , , , ,x y xyx y xy N N Nσ σ σ ′ ′ ′′ ′ ′  can be obtained by 

solving the real part of complex stiffness matrix 

coefficients ijQ ′  in Eqs. (4), (6) and (10). 

The total dissipated energy of FCTP in thermal 

environment can be expressed as 

Tem
∆ = ∆ + ∆ + ∆ + ∆x y xyU U U U U     (33) 

where 

10 0
1

∆ d d d
k

k

n a b h

x x xx y h
k

U x y zπ σ ε
−= =

=

′′= ∑∫ ∫ ∫  

10 0
1

∆ d d d
k

k

n a b h

y y yx y h
k

U x y zπ σ ε
−= =

=

′′= ∑∫ ∫ ∫  

10 0
1

∆ d d d
k

k

n a b h

xy xy xyx y h
k

U x y zπ σ γ
−= =

=

′′= ∑∫ ∫ ∫  

22

Tem
+ + 2 dx y xy

A

w w w w
U N N N A

x y x y
π

  ∂ ∂ ∂ ∂ ′′ ′′ ′′ ∆ =    ∂ ∂ ∂ ∂    
∫  

where ∆ xU , ∆ yU ,∆ xyU  represent the dissipated energy 

along the x , y , and x-y directions respectively, and 

TemU∆  is the dissipated energy induced by the thermal 

internal forces. Besides, , , ,x y xyσ σ σ′′ ′′ ′′ , ,x y xyN N N′′ ′′ ′′ can be 

obtained by solving the imaginary part of complex 

stiffness matrix coefficients 
ijQ ′  in Eqs. (4), (6) and 

(10). 
Then, the damping ratio of FCTP can be obtained as 

follow 

4r

U

U
ζ

π
∆=                 (34) 

3. Determination of fitting coefficients of 

the fiber-reinforced composite in thermal 

environment 

3.1 Measurements of the frequency response function 

(FRF) in thermal environment 

 

( )d 0mn klA
nhW W A m k lρ = ≠ ≠∫∫ 或

( ) ( ) ( )1 1,mn mnP t f t W x y=

( )( )2
, dmn mnA
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Fig.2 Schematic of FRF measurement of FCTP in thermal 

environment 

In most cases, the hammer excitation is the best 

choice to measure the FRFs of the plate structures in 

experiment. Yet in the thermal environment it is difficult 

for us to hold the hammer. Also, for the sake of the safety 

of the instrument and operator, an alternative excitation 

method needs to be considered. Assuming that the pulse 

excitation of force sensor driven by the aerodynamic load 

can be realized in the real test, and the dynamic response 

of FCTP can be measured by the laser Doppler 

vibrometer, then we can use the data acquisition 

instrument to record the pulse excitation signal of the 

force sensor and the laser response signal. In this way, the 

goal of the FRF measurement under high temperature 

environment can be turned into reality, whose schematic 

can be seen in the Fig. 2 (the detailed experimental work 

will be introduced in the case study). 

3.2 Identification principle of composite material 

parameters in thermal environment 

Because at the beginning we don't know the 

nonlinear relationship between temperature and material 

parameters. In order to determine the assumed fitting 

coefficients in this nonlinear model, the influence of 

temperature change ∆T  on the material parameters in 

Eq. (1) is temporarily neglected. In this way, the 

theoretical FRF can be sequentially obtained, and the 

concerned material parameters of fiber composite in 

different thermal environments can also be identified in 

the iterative calculation process. 

In order to calculate the theoretical FRF, the same 

amplitude of excitation force ( )F t with the experiment in 

time domain is simulated, and then the dynamic response 

signal ( )X t  in any point of FCTP can be calculated by 

the self-written MATLAB program. Consequently, do the 

Fast Fourier transformation (FFT) operation to the 

excitation and response signal, the original signal of 
( )F t and ( )X t  can be transformed as the Fourier 

function ( )F ω  and ( )X ω . According to the definition 

of frequency response function, the theoretical FRF 
( )H ω  can be expressed as 

                (35) 

As the measured FRFs of FCTP under different 

temperature conditions are already obtained (in Section 

3.1), we can compare the theoretical FRF with the 

measured FRF under certain thermal condition. If they are 

very close to each other, the composite material 

parameters of fiber composite, such as elastic moduli, 

Poisson's ratios and loss factors, can be iteratively 

obtained by the FRF approximation method (its 

identification principle will be introduced later). It should 

be noted that the accuracy of these determined material 

parameters at certain temperature condition has nothing to 

do with the above ignoration. As long as the theoretical 

FRF data and experimental FRF data are close, the 

calculated material parameters can represent the actual 

material parameters, which already reflect the influence 

of certain high temperature on the fiber material. 

The identification principle of FRF approximation 

method is simple yet useful. Fig. 3 gives the 

corresponding identification schematic of material 

parameters of fiber-reinforced composite in thermal 

environment. Firstly, the experimental FRF and 

theoretical FRF with the two methods described in the 

above are obtained and plotted on the same graph as 

shown in Fig. 3. Then, the whole concerned frequency 

range is divided into multiple frequency ones. In each 

frequency range, 2~3 modes of composite thin plate are 

included. Finally, the iteration calculation techniques are 

employed to construct the frequency relative error 

function free  between the experimental and the 

theoretical natural frequencies in each frequency range, 

which is expressed as the following form 
2

fre
1

ˆ

mR
i

i i

f
e

f=

 ∆
=  

 
∑                (36) 

where mR  represents the number of modes in the whole 

frequency range, if∆  represents the difference between 
the ith natural frequency obtained by the experiment and 

theoretical calculation, ̂ if  is the ith natural frequency 
obtained by the experiment. 

By taking the elastic coefficients at normal 

temperature as the center, such as 0 0 0 0
1 2 12 12, , ,E E G ν , and 

with the consideration of parameters error errR =50% 

caused by the temperature change, the range of these 

material parameters under certain temperature condition 

can be determined as the follows. 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

0 0
1 err 1 1 err

0 0
2 err 2 2 err

0 0
12 err 12 12 err

0 0
12 err 12 12 err

1 1

1 1

1 1

1 1

E R E E R

E R E E R

G R G G R

v R v v R

′− ≤ ≤ +

′− ≤ ≤ +

′− ≤ ≤ +

′− ≤ ≤ +

        (37) 

Further, select an appropriate step size g (for 

example g=1%) in the above range, and construct the 

( ) ( )
( )

X
H

F

ω
ω

ω
=
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iteration vectors of elastic coefficients, such as 

1 2 12 12, , ,′ ′ ′ ′E E G v  under certain temperature condition, 

which can be expressed as 
1 2 3

1 1 1 1 1

1 2 3
2 2 2 2 2

1 2 3
12 12 12 12 12

1 2 3
12 12 12 12 12 

n

n

n

n

E E E E

E E E E

G G G G

v v v v

′ ′ ′ ′ ′ =  

′ ′ ′ ′ ′ =  

′ ′ ′ ′ ′ =  

′ ′ ′ ′ ′ =  

E

E

G

v

L

L

L

L

         (38) 

By iteratively calculating theses elastic coefficients 

in a permutation and combination manner, the values of 

1 2 12 12, , ,E E G v′ ′ ′ ′  under a certain temperature condition 

can be obtained when the frequency relative error 

function free  reaches the minimum value. 

 

1f∆
2f∆ 3f∆

11H∆
12H∆

13H∆ 14H∆

15H∆

16H∆
17H∆ 1nH∆

nf∆

 

Fig. 3 The identification schematic of material parameters of fiber-reinforced composite in thermal environment 

Similarly, by extracting the multiple resonant peaks 

from the experimental FRF data and the theoretical FRF 

data, the admittance relative error function rece  can be 

obtained, which has the following form 

2

1
rec ˆ=

 ∆
 =
 
 

∑
mS

ir

r ir

H

H
e            (39) 

where mS  is the number of approximation points on the 

ith resonant peak, ˆ
irH  represents the amplitude of the 

ith experimental FRF at the approximation point r , 

irH∆  represents the difference of amplitude between 

the ith experimental FRF and theoretical FRF. 

Next, assume the maximum loss factor η =0.04 and 

construct the iteration vectors of loss factors, such as 1ηηηη , 

2ηηηη  and 12ηηηη  with an appropriate step size g (for example 

g=1%) in a range of 0~η , which can be expressed as 

1 2
1 1 1 1

1 2
2 2 2 2

1 2
12 12 12 12

n

n

n

η η η

η η η

η η η

 =  

 =  

 =  

L

L

L

ηηηη

ηηηη

ηηηη

            (40) 
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where 
1 20, , , ( 1)n
ij ij ijg n gη η η η η= = = −L . 

By iteratively calculating the loss factors in a 

permutation and combination manner, the values 

1 2 12, ,η η η′ ′ ′  under certain temperature conditions can be 

obtained when the admittance relative error functionrece  

gets to the minimum value. Finally, by repeating the 

above process, the material parameters

1 2 12 12 1 2 12, , , , , ,E E G v η η η′ ′ ′ ′ ′ ′ ′  under different temperature 

conditions can be obtained. It should be noted that the 

FRF approximation method can also be used to obtain the 

material parameters under normal temperature, such as
0 0 0 0 0 0 0
1 2 12 12 1 2 12, , , , , ,E E G v η η η , as long as the experimental FRF 

result is obtained. It is suggested that the FRF 

measurements under normal temperature should be made 

by the hammer excitation, since it is more convenient and 

faster than the excitation of force sensor driven by the 

aerodynamic load. 

3.3 Determination of the fitting coefficients 

Once the material parameters of fiber-reinforced 

composite under different temperature conditions as well 

as normal condition have been determined. Further, by 

choosing the temperature change ∆T  as the independent 

variable, and the elastic moduli, Poisson's ratios and loss 

factors along different fiber directions as the dependent 

variables respectively, the concerned fitting coefficients, 
such as , , , , ,n n n n n nA B C D F H  and nP , can be determined by 

the curve fitting technique. In this way, the unknown 

coefficients in the Eq. (1) are obtained completely, which 

reflects the influence of the high temperature on the 

fiber-reinforced composite. By referring to the 

conclusions in the literature [27-29], the cube of ∆T  is 

accurate enough to determine the fitting coefficients. So, 

the corresponding maximum value of the polynomial 
order in Eq. (1) is recommended as0 3n = . When all the 

predetermined coefficients are obtained, the natural 

characteristics, dynamic response and damping behaviors 

with considering the temperature dependent property can 

be predicted and analyzed. The analysis flow of the 

nonlinear dynamic characteristics of FCTP in thermal 

environment can be seen in Fig. 4. 

N

1i i= +

Y

1i =
fre 10%e ≤

N

1j j= +

free rese

1 2 12, ,j j jη η η′ ′ ′

1 2 12, , ,E E G′ ′ ′

1j =

1 2 12 12, , ,i i i iE E G v′ ′ ′ ′

12 1 2 12, , ,v η η η′ ′ ′ ′

 
Fig. 4 The analysis flow of the nonlinear dynamic characteristics of FCTP in thermal environment 

4. A case study 
In this section, a TC500 carbon/epoxy composite 

thin plate was made to carry out a case study. Its 

nonlinear natural frequency, dynamic response and 

damping results were measured under different 

temperature conditions, which were used to verify the 

practicability and reliability of the established nonlinear 

model of FCTP in thermal environment.  

4.1 Test object and test system  

The TC500 carbon/epoxy composite thin plate was 

symmetrically laid, made by Jiangxi Jiujiang Diwei 

composite materials Co.Ltd. It has total 21 layers with 

laminate configuration of 5 5[(0 / 90 ) / 0 / (90 / 0 ) ]° ° ° ° ° , and 

each layer has the same thickness and fiber volume 

fraction with longitudinal elastic modulus of 132GPa, 

transverse elastic modulus of 7.92GPa, shear modulus of 

5.28GPa, Poisson's ratio of 0.32 and density of 

1780kg/m3 under normal temperature. The thermal 

expansion coefficients parallel and perpendicular to the 

fiber direction are 60.15 10 /−− × ℃  and 61 3 10. /−× ℃ 

respectively. 

In order to ensure the experimental reliability in 

thermal environment, three composite thin plates with the 

same material parameters yet different sizes, namely 

composite plate A, B and C, were used in the test, as 

shown in Fig. 5. The length, width and thickness of them 

were 260mm 175mm 2.36mm× × , 

155mm 90mm 2.36mm× × and

230mm 130mm 2.36mm× × , respectively. Then, the 

vibration test system in thermal environment was set up, 
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as shown in Fig. 6, to measure the nonlinear natural 

frequencies, modal shapes, dynamic responses and 

damping parameters of the plates. In the experiment, the 

clamp fixture and M8 bolts were used to clamp the plate 

specimens firmly to simulate the cantilever boundary 

condition. The laser measuring point was 60mm above 

the constraint end, while the horizontal distance between 

this point and the left free edge of the three plates was 

20mm. Also, the excitation point was located at about 2/3 

of the length of the three plates above the constraint end, 

while the horizontal distance between this point and the 

right free edge was 20mm. 

   
Fig. 5 The three different TC500 carbon/epoxy composite thin plates 

 
Fig. 6 Test system of FCTP in thermal environment 

The instruments used in the test system were as 

follow: (I) Lianneng JZK-100 electromagnetic exciter and 

YE5878 power amplifier; (II) Lianneng force sensor 

CL-YD-301; (III) OTS 1500x4-160L air compressor (IV) 

Polytec PDV-100 laser Doppler vibrometer; (V) 

Two-dimensional laser scanning device based on 

LabVIEW control software; Yongyang PT100 

thermocouple; (VI) Changbai Heating box T-500 and 

temperature control device C-500; (VII) LMS SCADAS 

16-channel data acquisition instrument and Dell notebook 

computer (with Intel Core i7 2.93 GHz processor and 8G 

RAM to operate LMS Test.Lab 10B software). 

In the test set-up, the heating box was used to 

provide the required temperature, and there was a high 

temperature glass on the top of the box (Fig. 6), so that 

the laser Doppler vibrometer could be used to measure 

the response signal of the plate specimens through 

penetrating the glass. Besides, the motion of laser point 

was powered by the two-dimensional laser scanning 

device controlled by LabVIEW software. Both the pulse 

excitation and base excitation in thermal temperature 

were used in the experiment, where the change of 

temperature degree was measured by two thermocouples 

(one was to measure the temperature value, the other was 

employed as the feedback signal to the temperature 

control device). For the pulse excitation load, the force 

sensor driven by the aerodynamic load, which was 

provided by the air compressor, was used to excite the 
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plate specimens. For the base excitation load, the 

electromagnetic exciter and power amplifier were used to 

produce vibration excitation energy to the plate. These 

vibration and temperature signals were all recorded and 

stored by LMS SCADAS 16-channel data acquisition 

instrument and the notebook computer. 

4.2 Identification of the fitting coefficients in thermal 

environment 

Based on the established test system in Fig. 6, the 

FRFs of FCTP in thermal environment were obtained, as 

shown in Fig. 7. Then, the FRFs can be calculated based 

on the theoretical model, and the results are also plotted 

in Fig. 7. 

 
(a) 20 ℃                                 (b) 120 ℃                          (c) 250 ℃ 

Fig. 7 The FRFs of FCTP under different temperatures  

Next, using the FRF approximation method, the 

material parameters of the composite thin plates under 

different temperature environments can be identified. 

Table 1 shows the identified material parameter values of 

both plate A and B at the following seven temperatures, 

i.e. 20 (normal temperature), 60, 80, 120, 160, 200 and 

250℃ 

 

Table 1. The identified material parameter values of both A and B plates under different temperatures 

Material 

parameters 
Object 

Temperature (℃) 

20 60 80 120 160 200 250 

E1(GPa) 

Plate A 128.41 125.37 123.40 120.06 116.41 111.72 104.54 

Plate B 129.12 126.08 124.19 120.46 116.08 110.74 103.48 

Average 128.77 125.73 123.80 120.26 116.25 111.23 104.01 

E2(GPa) 

Plate A 8.08 7.91 7.68 7.39 7.04 6.45 5.68 

Plate B 8.13 7.82 7.54 7.32 6.96 6.30 5.56 

Average 8.11 7.87 7.61 7.36 7.00 6..38 5.62 

G12(GPa) 

Plate A 5.40 5.23 5.12 4.95 4.76 4.53 4.11 

Plate B 5.48 5.28 5.19 5.03 4.80 4.49 4.08 

Average 5.44 5.26 5.16 4.99 4.78 4.51 4.10 

v1 

Plate A 0.332 0.331 0.330 0.331 0.330 0.333 0.332 

Plate B 0.334 0.332 0.329 0.330 0.330 0.331 0.333 

Average 0.333 0.332 0.330 0.331 0.330 0.332 0.333 

1η (%) 

Plate A 0.682 0.713 0.765 0.814 0.864 0.927 0.996 

Plate B 0.667 0.725 0.784 0.831 0.892 0.958 1.123 

Average 0.675 0.719 0.775 0.823 0.878 0.943 1.060 

2η (%) 

Plate A 0.793 0.821 0.864 0.912 1.027 1.145 1.312 

Plate B 0.765 0.806 0.853 0.936 1.083 1.177 1.296 

Average 0.779 0.814 0.859 0.924 1.055 1.161 1.304 

12η (%) 

Plate A 0.855 0.958 1.036 1.124 1.257 1.413 1.602 

Plate B 0.883 0.956 1.051 1.153 1.295 1.406 1.624 

Average 0.869 0.957 1.044 1.139 1.276 1.410 1.613 

It can be seen from Table 1, the change of Poisson's 

ratio v1 is very small as the temperature rise, and hence 

the influence of temperature on the Poisson's ratio can be 

ignored. Then, the average results of composite material 
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parameters in Table 1 under different temperatures are 

brought into Eq. (1), and the concerned fitting coefficients 

of fiber-reinforced composite in thermal environment can 

be obtained as follows 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

2 3-2 -5 -7
1

2 3-3 -6 -8
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Fig. 8 and Fig. 9 show the fitted curves of the elastic 

moduli 1E' , 2E' , 12G'  and loss factors 12η' , 2η' , 1η'  

under different temperatures when the cubic polynomial 

is employed. It can be seen that with the increase of 

temperature, the elastic moduli of FCTP decrease in all 

directions, but the material loss factors show the 

increasing tendencies in different degrees (Fig. 9). 
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Fig. 8. The fitted curves of 1E' , 2E'  and 12G '  of fiber-reinforced composite under different temperatures 
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Fig. 9. The fitted curves of 12η' , 2η '  and 1η '  of fiber-reinforced composite under different temperatures 

4.3 Comparison and verification of the inherent 

characteristics in different thermal environments 

In order to verify the correctness of the theoretical 

model and study the effect of different temperatures on 

the dynamic characteristics of FCTP, the composite plate 

C was taken as the research object. By identifying the 

measured FRF results, the first 6 natural frequencies of 

the plate C are obtained at the temperatures of 20, 50, 100 

and 200 ℃, as shown in Table 2. Also, in order to study 

the effect of high temperature environment on the modal 

shapes of FCTP, the base excitation technique was 

employed in the established test system (Fig. 6) to excite 

the plate at different resonance state. Then, each modal 

shape in different thermal environments can be measured 

by the laser linear scanning method [30], as shown in 

Table 3. It should be noted that the excitation levels used 

in this measurement need be controlled at the normal 

level, so as to avoid the overload phenomenon of laser 

Doppler vibrometer, and also to prevent the composite 

plate specimen producing large deformation, which will 

lead to the geometrically nonlinear vibration 

phenomenon. 

Finally, by substituting the material parameter values 

obtained from the fitting curves under different 

temperatures into the theoretical model, the 

corresponding natural frequencies and modal shapes with 

considering the temperature dependence can be calculated, 

which were also listed in Table 2 and Table 3. In addition, 

in order to compare the effects on the natural frequencies 

with and without considering the temperature 
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independence, the natural frequencies and the 

corresponding errors without considering the temperature 

dependence were also given in Table 2. 

Table 2. The experimental and calculated natural frequencies of the composite plate C under different temperatures as well as the 

corresponding calculation errors with and without considering the temperature dependence 

Temperature 

(℃) 
Type 

Modal order 

1 2 3 4 5 6 

20 

Experimental test A/Hz 46.2 94.1 288.0 371.5 783.4 890.2 

Temperature dependence B/Hz 47.6 98.5 298.0 385.3 832.9 853.4 

Temperature independence C/Hz 47.6 98.5 298.0 385.3 832.9 853.4 

Errors (%) /A B A−  3.0 4.7 3.4 3.7 6.3 4.1 

Errors (%) /A C A−  3.0 4.7 3.4 3.7 6.3 4.1 

50 

Experimental test A/Hz 43.2 88.4 284.5 363.2 772.1 879.6 

Temperature dependence B/Hz 45.6 93.0 293.1 378.4 822.1 842.0 

Temperature independence C/Hz 46.20 94.51 296.83 383.74 832.73 852.70 

Errors (%) /A B A−  5.6 5.2 3.0 4.2 6.5 4.3 

Errors (%) /A C A−  6.9 6.9 4.3 5.6 7.8 3.0 

100 

Experimental test A/Hz 40.6 79.5 277.1 358.8 765.5 870.8 

Temperature dependence B/Hz 42.2 83.3 285.6 368.1 806.4 824.8 

Temperature independence C/Hz 44.0 88.5 292.1 378.8 828.5 847.8 

Errors (%) /A B A−  3.9 4.8 3.1 2.6 5.3 5.3 

Errors (%) /A C A−  8.3 11.3 5.4 5.5 8.2 2.6 

200 

Experimental test A/Hz 35.5 63.6 266.2 345.8 745.5 848.3 

Temperature dependence B/Hz 37.2 67.5 275.0 354.6 786.1 802.5 

Temperature independence C/Hz 38.5 71.3 289.2 373.5 825.0 844.5 

Errors (%) /A B A−  4.8 6.1 3.3 2.5 5.4 5.4 

Errors (%) /A C A−  8.5 12.1 8.6 8.0 10.7 4.5 

 

Table 3. The experimental and calculated modal shapes of the composite plate C under different temperatures with considering the 

temperature dependence 

Modal 

Order 

Theoretical  

(20 ℃) 

Experimental  

(20 ℃) 

Theoretical  

(200 ℃) 

Experimental  

(200 ℃) 

1     

2     

3     
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4     

5     

6     

It can be seen from Table 2 and Table 3 that the 

thermal environment has a great influence on the natural 

frequencies of FCTP between the temperatures from 20 to 

200 ℃. The natural frequency results decrease with the 

increase of temperature, e.g., when the temperature is 

raised from 20 to 200 ℃ , the 1st and 2nd natural 

frequencies have the larger reduction rate compared with 

other modes. The calculated reduction rates are 21.8 % 

and 31.5% respectively, while the measured reduction 

rates are 23.2 % and 32.4 % respectively. This 

phenomenon is mainly due to the reduction in the elastic 

modulus and the structural stiffness matrix at high 

temperature. Moreover, there is a good agreement 

between the calculated and measured inherent 

characteristics, since the maximum calculation error of 

the first 6 natural frequencies with considering the 

temperature dependence is less than 6.5 %. From both 

theoretical and experimental results, it can be seen that 

the high temperature environment has little effect on the 

modal shapes of FCTP. 

In addition, it can be seen from Table 2 that the 

natural frequencies of the composite thin plate calculated 

without considering the temperature dependence has a 

larger error compared with the experimental results. 

What’s more, the higher the temperature, the greater the 

error. For example, when the temperature rises to 200℃, 

the maximum calculation error of the first 6 natural 

frequencies is 12.1%, yet the maximum error with 

considering the temperature dependence is 6.5%. 

Therefore, this nonlinear dynamic model can improve the 

calculation accuracy of natural frequencies (since it takes 

into account of the material nonlinearity induced by the 

high temperature). 

4.4 Comparison and verification of the dynamic 

responses in different thermal environments  

Here, the dynamic responses under the temperatures 

of 20, 50, 100 and 200 ℃ were measured when an 

impulse excitation was applied to the plate. The 

theoretical impulse responses were calculated based on 

the self-written MATLAB program. Taking 100 ℃ as an 

example, Fig. 10 shows the time-domain waveforms of 

the excitation signal and the response signal of the 

composite plate C. Fig. 11 shows the first 4 dynamic 

responses obtained from theoretical calculation and 

experimental test under the above four temperatures. 
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(a) Excitation signal                              (b) Response signal 

Fig. 10 The time domain waveform of excitation signal and response signal under the temperature of 100 ℃ 
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(a) The 1st mode                                           (b) The 2nd mode 

     
(c) The 3rd mode                                           (d) The 4th mode 

Fig. 11 The dynamic responses of the composite plate C obtained by theoretical calculation and experimental test under the temperature 

range of 20-200 ℃ 

It can be seen from Fig. 11 that the dynamic 

response of FCTP increases with the rise of temperature, 

and the calculation errors under different thermal 

environments are within 9 %, which is within an 

acceptable range. The first dynamic response result is 

greatly affected by the temperature, e.g. the amplitude of 

the measured response increases from 0.68 mm at 20 ℃ 

to 0.92 mm at 200 ℃, with an increase of 35.3 %. 

Besides, the measured response amplitudes in the 2nd, 

3rd and 4th modes increase by 20, 13 and 12.3 %, 

respectively. From which we can see that with the 

increase of the mode order, the dynamic response of 

FCTP becomes increasingly insensitive to the high 

temperature. The reason for this nonlinear phenomenon 

may be that the first dynamic response is greatly affected 

by the thermal expand stresses produced in the constraint 

end of FCTP, while the responses in the higher modes are 

comparably insensitive to the expansive deformation in 

thermal environment. 

4.5 Comparison and verification of the damping 

results in different thermal environments 

In this section, the first 6 modal damping ratios of 

the composite plate C under the temperatures of 20, 50, 

100 and 200 ℃ were obtained by identifying the FRFs 

with the half power bandwidth method, as shown in Fig. 

12. For the convenience of comparison, the calculated 

damping results and the corresponding scattergram of the 

composite plate C are also displayed in the same figure. 

 
Fig. 12 The scattergram of the modal damping ratios of the composite plate C obtained by theoretical calculation and experimental test under 
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the temperature range of 20-200 ℃  
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Fig. 13 The rising rate of modal damping ratios of the composite plate C at different temperatures obtained by theoretical calculation and 

experimental test  

It can be seen from Fig. 12 that the increased thermal 

environment for the temperature range of 20-200 ℃ 

leads to a rise in each damping ratio of FCTP, with the 

errors of the calculated damping being within 5.6 % 

under different temperatures. In addition, the calculated 

rising rates in the first 6 damping ratios are 48.8, 78.4, 

34.5, 33.6, 29.3 and 28.7 % respectively, while the 

measured rising rates are 52.6, 71.0, 36.9, 35.6, 30.1 and 

28.1 % respectively. In order to visualize the effect of the 

increased temperatures on damping property, the rising 

rates of modal damping ratios of the composite plate C at 

50, 100 and 200 ℃ are plotted in Fig. 13. From which 

we can see that the increased temperature has a greater 

effect on the damping characteristics in the lower modes 

of the composite plate, such as the 1st and 2nd damping 

ratios. However, high-order damping property of the 

composite thin plate seems to be insensitive to the 

increased temperature. For example, the increased levels 

of damping ratios in 5th and 6th modes are only about 

half that of the first 2 damping ratios. The reason for this 

maybe related with the energy dissipation capacity of 

interfacial friction in the composite plate. Because in high 

temperature environment, the microscopic interface 

friction phenomenon in the high-order vibration are not as 

violent as those in low-order vibration, which can be seen 

from high-order damping ratio results (they are lower 

than the first 2 damping ratios). Therefore, the increased 

temperature has less effect on high-order damping 

property. 

Finally, it can be seen from the above results that the 

calculated errors on the natural frequencies, dynamic 

responses and modal damping ratios are less than 9%, 

which are quite reasonable. Also, the calculated modal 

shapes have a good agreement with the experimental 

results, which validates the proposed nonlinear dynamic 

model of FCTP with temperature dependence in thermal 

environment. 

5. Conclusions 

In this paper, a nonlinear dynamic model of FCTP in 

thermal environment has been established, which is used 

to investigate the influence of thermal environment on the 

nonlinear dynamic characteristics of the composite thin 

plates. Based on the theoretical and experimental results, 

the following conclusions can be drawn: 

(1) As the temperature increases, the elastic moduli 

of FCTP decrease in all directions, but the loss factors of 

the material show the increasing trends in different 

degrees. 

(2) The natural frequencies of FCTP decrease with 

the increase of temperature. By taking the experimental 

results as an example, the measured natural frequencies in 

the first 6 modes decrease by 4.7 % - 32.4 % when the 

temperature is raised from 20 ℃ to 200 ℃. However, 

the high temperature has little effect on the modal shapes. 

(3) The dynamic responses of FCTP increase with 

the increase of temperature, especially the first vibration 

response results with the largest rising about 35%. 

However, with the increase of the mode order, the 

response becomes increasingly insensitive to the high 

temperature. 

(4) The temperature contributes a rise in each 

damping ratio of the composite thin plate. However, 

high-order damping property of the composite thin plate 

seems to be insensitive to the increased temperature. 
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