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A nonlinear dynamic model of fiber-reinforced compgaite thin plate with

temperature dependence in thermal environment

Hui 1i*2, Huaishuai WU, Tinan Zhang', Bangchun Wen' andZhongwei Guan?
School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
2school of Engineering, University of Liverpool, Brownlow Street, Liverpool L69 3GQ, United Kingdom

Abstract: In this paper, the material nonlinearity inducedtbg high temperature is introduced in the modetihg
fiber-reinforced composite thin plate structured annonlinear dynamic model in thermal environmsngstablished
using Hamilton’s principle in conjunction with tleéassical laminated plate theory, complex modulashed and strain
energy method. The nonlinear relationships betwkerelastic moduli, Poisson's ratios and loss fadod temperature
change are expressed by the polynomial method., Therdynamic equations in the high temperaturérenment are
derived to solve the inherent characteristics, dynaesponses and damping parameters with consgléimperature
dependent property. Also, the identification prnptei of concerned fitting coefficients in the thdaa model is
illustrated. As an example to demonstrate the lbdagi of the developed model, the experimentak tesa TC500
carbon/epoxy composite thin plate is implementdae Tesults of the developed model and experimeesalshow a
good consistency, and both indicate that the heghperature has complicated influence on its dynamméracteristics,
especially on damping property.

Keywords: Nonlinear dynamic model; Fiber-reinforced compmsihin plate; Temperature dependent property;
Polynomial method; Thermal environment

the Von Kéa&rman nonlinear strain-displacement
relationships. Rao and Pillai [4] analyzed the
The fiber-reinforced composite has excellent large-amplitude vibrations of a simply supported
mechanical properties, good thermal stability andcomposite plate with immovable edges. The Kirchboff
capability on weight reduction, which is widely dsm hypothesis and the strain-displacement relatiossiop
the aeronautics, astronautics, naval vessel angomea von Karman type were used in the formulation wrib t
industry [1-2]. Currently, there are a large numiesuch  in-plane deformation and inertias being consideggh
composite thin plate structures which are working i et al. [5] presented a direct numerical integratiwgthod
thermal environment, such as the composite pandlsei  of the frequency/time period expression to studg th
high-speed aircraft, the high temperature turbia€ds in  nonlinear vibration behavior of the fiber-reinfodcplates.
the aeroengine, and the composite wings in ther solaRibeiro and Petyt [6] studied the geometrically livear
unmanned aircraft. The thermal environment coultl no vibration of a thin laminated composite plate untte
only reduce the strength and increase the vibrd&ael fully clamped boundary condition by the hierarchica
of such composite blades and plates, but also kihiag finite element with consideration of Von Karman
deterioration, delamination and fatigue damage tononlinear assumption. Chen et al. [7] presented the
composite structures. Therefore, it is of greaerstific semi-analytical finite strip method to analyze the
significance to study their dynamic characteriséind the  geometrically nonlinear response of a rectangular
corresponding theoretical analysis and modelinghots  composite laminated plate under the simply supgorte
in the high-temperature environment [3]. boundary condition with the von Karman assumptions.
Nowadays, some scholars and researchers hav®ingha and Daripa [8] used the shear deformabiee fin
carried out a large number of studies on the liread  element method to analyze the large-amplitude tigma
nonlinear vibration of the fiber-reinforced comgediin characteristics of the composite plates under the
plate (FCTP). However, most of them focus on thetransverse harmonic pressure.
dynamic problem without considering the temperature Some studies were also reported on the linear
effect, with most nonlinear methods being achielsgd dynamic analysis and modelling of the compositaepla

1. Introduction



structures in thermal environment. Whitney et &) [
studied the buckling and elastic response of timeposite

plates under thermal condition with
laminated plate theory. Ram and Sinha [10] estaddis
finite element model of the laminated compositegdan

hygrothermal environment and solved
non-dimensional natural frequencies under
supported and clamped boundary conditions. Gilatl.et

1200 °C, where a self-developed extension conftgura
of a high-temperature resistant ceramic pole wasl s

the classical transfer the vibration signals of the structura t@on-high

temperature zone.
As this paper focuses on the nonlinear dynamic

the modelling and analysis method of the composite
simplystructures in thermal environment, some importard a

selective literatures on this topic were highlighteere.

[11] investigated the dynamic inelastic responsel an Praveen and Reddy [18] analyzed the geometrically

reinforced
the effect

buckling of a metal matrix

composite  plate  under of

laminated nonlinear static and dynamic response of the fanetly
the graded plates subjected to the temperature loagiiban

thermo-mechanical coupling by the finite difference the von Karman theory. Duc et al. [19-23] conducéed

spatial

domain method and Runge—Kutta methodseries of nonlinear mechanical, vibration and bagkl

Matsunaga [12] presented a two-dimensional globalanalysis of the functionally graded circular, cahiand

higher-order deformation theory

to solve natural elliptical cylindrical shells in thermal environntewith

frequencies and critical temperatures of the simplyand without considering the elastic foundationse Vbn
supported multilayered plates subjected to thermaKarman nonlinearity, Galerkin method, fourth order

loading. Li and Li [13] investigated the effectstbérmal
environments on the vibration and sound
characteristics of an asymmetric laminated platel a
obtained the natural frequencies, resonant ampki@hd
sound pressure levels base on the FEM and the BEM.

radiationnatural

Runge—Kutta method, etc. were employed to calculate
frequencies, nonlinear frequency—amplitude
relation and dynamic response of the shells, ard th
nonlinear relationship between material properaesl

thermal load were also discussed. Wang et al. [24]

In addition, several experimental studies in thérma investigated the nonlinear large-amplitude respergea
environment on the dynamic characteristics of thefunctionally graded material plate by considerirge t

fiber-reinforced composite plates were also repbrte
Melo and Radford [14] measured the
temperature dependence of the viscoelastic pregedti

the composite plate using dynamic mechanical aizalys orthotropic plate under

thermal effect and the longitudinal velocity bagsedthe

time andD'Alembert's principle. Gao et al. [25] establishibe

nonlinear dynamic response equations of composite
thermal environment. The

equipment. The results showed that a decreaseein thGalerkin method and Airy’s stress function are

storage moduli and an increase in loss factors asmplemented

temperature increased. Also, the measured chandessi
factors with the temperature between 20 °C and 20
were much larger than changes in storage modutig ¥a
al. [15] experimentally investigated the effect ibie
varying thermal conditions on the modal parametdrs
the composite laminate plate by the stochastic pades
identification method. It was found that the freqcies
and damping ratios had strong negative correlatigh
temperature, but no clear correlation of modal skap
with temperature changes could be observed. Sedtati
[16] experimentally studied the temperature effacthe
bending modulus and damping the glass fiber composite

to obtain the natural
frequency-amplitude curve and nonlinear dynamic
responses. Thanh et al. [26] studied the nonlinear
dynamic response and vibration of functionally ged
carbon nanotube-reinforced composite cylindricallsh
thermal environment. The influences
temperature-dependent material properties
nonlinear vibration were also analyzed.

Up to date, it is clear that the research on nealin
dynamic modelling techniques is still limited fohet
analysis of fiber-reinforced composite thin plates
thermal environment, especially less attention dpgiaid
to the damping modelling in the high temperature

frequency,

of

on the

beam. The results showed that the dynamic propertieenvironment. Besides, most of research studiessftioel
were appreciably kept up to the temperature ofsglasgeometric nonlinearity of the composite plates Hase

transition, where damping increased sharply intte i
interval of temperature. Wu et al. [17] established

the Von Karman strain-displacement relationshigsictv
are in lack of the experimental verification in rimal

thermal/vibration test system of composite platés aenvironment. Therefore, it is still necessary to @fforts



to study the nonlinear dynamic problems of such
composite plate structures, especially to estabésh
appropriate mathematical model to describe theimesu
dynamic phenomenon with temperature dependence. Gy, (AT) =G2,+C,(AT)+C,(AT)* +C(AT)’ +--+C, (AT)"

Vi, (AT) =V2,+D, (AT)+D,(AT)" +D (AT)’ +--- +D, (AT)"

E, (AT) = ED+A (AT ) +A,(AT)" +A,(AT )"+ +A (AT)"
E, (AT) = E2+B, (AT ) +B,(AT)" +B,(AT)’ +--+8, (AT)"

2. Establishment of the nonlinear dynamic , ,
1, (AT) =7} +F, (AT) +F,(AT)" +F,(AT) +--- +F, (aT)®
model of FCTP in thermal environment

2.1 A nonlinear dynamic model of FCTP in thermal . , .

_ 1, (AT) =n5+H, (AT) +H (AT )" +H ,(AT) " +---+H, (AT)"

environment ' L ) X .
Assume that a fiber-reinforced composite thin plate 72 (AT) =/7+P,(AT)+P,(AT)" +P(AT) +--- 4R, (4T)

which is made of the fiber and matrix material with (1)
layers, is under a uniform thermal environmenseen in  where E’,E,G.Vo.nn 902 represent elastic moduli,

Fig.1. Firstly, set up the coordinate systef at the  Ppojsson's ratios and loss factors of the compdbite
middle surface, and suppose the length, width andjate under normal temperature,

thickness are expressed @&s,b and h, and the fiber A,.B..C, D, .F. H, P

. . o ) . i n, are the fitting coefficients of
direction wM_un a layer is deflngd a8 from thex-axis the composite thin plate in all directions of tieef when
of the coordinate system. In this theoretical mpdakth

) ) the high temperature environment is considereg,is
layer of the composite plate is located fat and h,

L . i the maximum of the polynomial order, aril is the
along thez-axis with the equal thickness, “1 representst ; h lative to th |t )
the direction parallel to the fiber, “2" represerttse emperalre change relative 1o the normal tempreratu

direction perpendicular to the fiber and “3” remeis the envsagpent.

direction perpendicular to the 1-2 surface. In &adj the \ Then, conS|de.r the influence  of d|ﬁ§rent fiber
plate is under cantilever boundary condition, whish directions, the elastic modulus of the composite fiate

subjected to the pulse excitation forét) in the point ~ ¢&n be expressed as

relationship of the stress and strain in thermal
environment can be expressed as

Re (X%, Yy), W) is the vibration displacement in any B (AT)=E,(AT) @+ in)

point R (X,Y,), P is the density, andr, @, are the E, (AT) =E,(AT)@+in,)

thermal expansion coefficients parallel and perjrrar G, (AT)= G;Z(AT)(1+ ifliz) 2

to the fiber direction. where E’, E! represents the complex moduli paralleled
. y« | and perpendicular to the fiber in thermal environtne

i SSS Z,< FO) W % SS&E respectively, G, represents the complex shear modulus
s g # = A g in the 1-2 surface, an&,,E,,G,, represents the real
|E g 52/ 2:?11 g %: part of complex moduli E', E/, G} in thermal
:ﬁ 3 Xo—p; | /&@i A - E: environment, respectively.

3 X, = ) /‘0/ X :: By referring to the literature [9], the generalized
: SSS SS§: Duhamel-Neumann form of Hooke's law for the
: . :

|

Fig. 1 Theoretical model of FCTP in thermal enviramtn
Considering the influence of the high temperature
environment on the fiber-reinforced material partars

&=S,0+¢ (i,j=126 (3)

where, the stresses are denoted &y=0, o, 50, ,
the polynomial method can be employed to estaltlish 0, =0, the strains are denoted by, and the thermal
nonlinear relationships between the material patrarse expansion strains are denoted by

of fiber composite and temperature change value in  The inverted form of the Eq. (3) is
different fiber directions [27, 28].

0,=Q,(¢-5) (i.i=12§ 4

where Q; is the stiffness matrix, it contains the
following matrix elements



(_gllellCOé‘@ +2Q.,+ @Ba)siﬁ@ CO?SQ< +Q,, 5‘,]‘}'&<
612 = (Q11+Q22—4Q66) sir’ g, cos g, +Q12( sing, + Co‘§9k)
Q, =Qusin’ g + 2Q,+ ) sif g, codf, +Q,, cdg],
Qi =(Q1, = Q1= 2Q,) sinf, cos g,

+(Qy, —Q,, +2Qg) sin’ 6, cod,
=(Q,~Qp,—2Qyy) sir’ §, cod,

+(Q, —Qu+ 2Qq,) sing, cod 6,
= (Qu,+Q,,—2Q,,— 2Q () sirf 6, codé,

+Qyo (sin” g, + cod 6,

E,

1-v, W,

(32 6
666

- ViE ,

Q = 1= 2
. 1_V1y 21

12
e
: ®)
1-v,v,
Since Q; consists of the real and imaginary part, it
can be expressed as the following form

. E
Q= v Q=G 1 Vu=Vy; E*z

) )

Qij = Qij + jQij

(6)

where @, and Q, are the real and imaginary parts of
the complex stiffness matrix coefficients.

(11)

[24

yia

w , are the coefficients of thermal
thex, y and shear directions,

where a, ,

expansion along

respectively.
From the classical laminated plate theory

aw o'w
ox ox?

0 ov° 9°w
= — , k=- 12
¢ ay ayZ ( )

o’ av° 9*w

- 4+ 2
| Oy  OX | | 9xdy |

where, u°® andv® are mid-plane displacements in the
X, Y directions, respectively, awdis the displacement
in thez direction.

By referring to the dynamic equations in the

literature [9], the equation of vibration displacam of

According to the assumption of the laminated plateFCTP in thermal environment can be deduced and

theory, the total strain of FCTP is

g=&(xyt)+&K(xyt) (=126 ()

where t denotes the timeg’ are the mid-plane strains,
and k; are the plate curvatures.

The plate forceN and moment resultants
defined in the usual manner, i.e.

(N.M)=["0 (8)

Substitution of Eq. (7) into Eq. (4) and taking E8).
into account, leads to plate constitutive relatians
thermal environment

o(l,z2) (i=12%

N- = A Bk N|
AJ i 1177 ( :1, 2, 6) 9)
M, =B’ + Dk, - M,
where
h/2
AJ’ i D Ihlz IJ(l,Z,ZZ)(i
— — hi2 — —
(N, Mi):j_h/ZQ”gJ (1,2) & (10)

are the thermal internal force and
the thermal moment.

where, N; and M

where T is the
corresponding

general case¢ =&(xy, zt,T),
temperature value the
and for the uniform temperature,
thermal expansion strain is

in
environment,

are

expressed as
2,,0

o°u ow ow
u+2 +LV-L,—-L,—
L1 A&e X0 2 4 ax say
ONx 0Ny _ o 0°u°
ox oy ot?
o%v° aw ow
uw+LV0+2 —-L,—
Lz Azea 0y s ox 7 0y
_0Ny _ON, _ 0%
ox oy ot?
a'w 9w a'w  ou®  au’
4DleT+ 4D26—3 2~ a4 4, Lso
ox° oy oxay oy ox oy
0 0 Ve VY VY
_Leal_ 7ﬂ+ si\gv 0 ,\/2|X-|.2a MXy-}-a sz
0X oy ox OX oxoy oy
o°w — w — 0w — dw
R =q(t) -N 22 - 2Ny X N, 22 (13)
o’ ox° oxoy oy*
where R is the integral of mass density through the

plate thickness, L, are the operatorg(t) is a
distributed pressure over the surface of the coit@os
plate.

Because the concerned composite plate is a

symmetric laminated structure, there is no coupling

It should be noted that for thebetween the tensile and bending loads. The in-plane

displacement and surface displacement is decoupled.

thermalThen, according to the small deflection theoryhef thin
thecomposite plate,

the principle of minimum potential
energy and the Ritz method are combined to solee th



strain energyU,, the following equation can be obtained
2\ 2001 A2 2
Unor =%J.A{D11(g_\;vj +2D12(;_V2VZ_V2V+D22[%QI] (K —w'M )a:O (21)
X X oy
, where K and M represent the stiffness matrix and
9°w ﬂer 92w i"’+ ( 0 2Wj A (14) mass matrix of the system, respectively, and
16 26 66
oxay ox* oxay dy’ oxay a:(awaw...qm)T is the eigenvector.

where A represents the area of the composite thin plate. By s.olvmg Eq. (21), the nf':ltural frequencies of ":(_:T
L . in the high temperature environment can be obtained
Considering the influence of the thermal

. i i _ T
environment, the potential energy,, of the system Then, by substituting the eigenvecter=(auay an)

induced by the thermal internal force can be exgg@ss related with the .certaln natural frequency into Etﬁ)’_
, the corresponding modal shape can be obtained.
2
v _1IA[NX[6W] +Ny[awj +2ny0—""0‘—"’}& (15) Repeating these steps above, all the concerned moda

2 0x oy ox 0y shapes can be obtained.

The kinetic energyT, of the system in thermal 2.3 Solutions to the dynamic response in thermal

environment can be expressed as environment

T, =% phwz.[szdA (16) After the natural frequencies and modal shapes of
FCTP are solved, assume that the pulse excitalidt)

where w represents the excitation circular frequency.

. . . is exerted on the poi , which is perpendicular
2.2 Solutions to the inherent characteristics in termal P rIRe(xO,yo) perp

. to the plate surfaceF(t) can be described by Dirac
environment

Furth the vibration displ n(x y,t) UnKImeS
urthermore, the vibration displacemen(X,y,
. . : . F(t) = f(t) a(x=%)o(y -~ ¥o)
of the composite thin plate in thermal environmént ¢ sintat). 0<t<t 27
assumed to be f(t)= osin(at), 0=t=t, (22)
0 , t>t

w(x,y,t) =W (x,y)e (17)  where w is excitation circular frequency,t, is

excitation time.
On the basic of the mode superposition principle, t

dynamic responsesv(t) can be expanded in terms of the

where, w(x,y) represents the modal shape function
which can be defined as

M N .
W(x,y)= a_ X (x)Y, (18) mode functions as follows
i ;; e H=3 3w Ton (t (23)
where M and N represent the half wavenumber of the wt) _mzan; (X Y)Ton (1

modal shapes along and Y directions respectively, here, W._(xy) is modal shape functionT is

M andN are the maximum values oM and N, and  moedal component.

8y is the coefficient. BesidesX,(x) an¥(y) are  supstituting the dynamic responss(t) and the

the modal functions alongX and Y directions  modal shape functioW,, into Eq. (13), the following

respectively, which can be expressed by the fixed-f equation can be derived after the simplification

beam function and free-free beam function. .
Then, according to the Ritz method and neglecting >

the influence of the harmonic componedit , the T

Lagrange energy functidm can be defined as Then, multiply W, (x,y) (k,1 =1,2,310) at both

sides of Eq. (24) and perform the integral operasitong
thex-y surface, the following equation can be obtained

dszn 2 _
ph dtz +ph(w) Tmn Wmn =F (24)

M=Uy +Ve — T, (19)

"

By minimizing the partial derivative of the Lagrag « « 42T ,
energy function I with the respect toa, in the ;n:l”;\[ph dt;"‘ +ph(w) TnanmWHdA:”AFW“dA (25)
following equation
or =0,m=12;-M n=12,- N (20) Further, by using the orthogonality of modal shape
0a, of the plate with the following form
By substituting Egs. (14), (15) and (16) into E2P)(




[[ AW, W, dA = O(m # kskn #1) (26) u, = %gjfzojfzojhh; T ¥, dxdydz

. . . . . . 2 2
The generalized vibration differential equation U, :}J- N X(G_Wj N y(a_WJ +9N xya—wa—w @
without damping can be expressed as 2°A ox ox 0y
2
d Tmnz(t) + (a))szn (t) - Pmn (t) (27) o .
dt M where, o,,0,,0, Nx,Ny,Ny can be obtained by

where B, (t) and M, are the generalized force and solving the real part of complex stiffness matrix
generalized mass, respectively, which have thewatig coefficients 6",' in Egs. (4), (6) and (10).

form The total dissipated energy of FCTP in thermal
P (t) = f ()W, (%, 1) environment can be expressed as
, AU =AU, +AU +AU, +AU (33)
M, :”‘Aph(wmn (x,y)) dA (28)
- . where
Similarly, under the assumption of the small N
damping, the generalized vibration differential aiipn AU, =y [ [ [ oredxdydz
with damping can be expressed as ke T A
Py o &a o pbophe
e (V) s 20,0%m s (@)1, ()= "=l (29) e NG L L
mn Doeaeboeh
where ¢, is the modal damping ratio at the mode of AU, =1y, J.x=oJ.y=oJ’h T Vyydxdy dz
k=1 KL

the composite plate. 2 2
—n aW —n aW —n aW 6W
At the zero-initial condition, the solution of EQ9) AU = ﬂJ.A(N X(&j +N y(a—y] +2N xy——JdA
can be expressed as Duhamel integral form, whistthe
following expression

Tn-r, (t) - Wmn (X:I.’ yl)
QM .,

where AU, , AU, AU, represent the dissipated energy
along the X, Y, and x-y directions respectively, and
AU, is the dissipated energy induced by the thermal
internal forces. Beside§,.d,.0,. N', N', N, can be
obtained by solving the imaginary part of complex
stiffness matrix coefﬁcientséij' in Egs. (4), (6) and

j; f ()€ singy, ¢-7)dr  (30)

where «) is the circular frequency of the damped
system, which can be expressed@s=+/1-{’w
Eqg. (30) can be solved using Simpson numerical

integration technique, and by substituting the ltssato (10).Then the dambing ratio of ECTP can be obtained as

Eq. (23), the dynamic respons&(t) of the composite follow ' ping

thin plate under the pulse excitation can be obthibhy AU

the modal shape superposition method. ¢ = 47J (34)
W(t) = 37 D" Wi, (%, V)T (8) (31) 3. Determination of fitting coefficients of

m=1n=1

2.4 Solutions to the damping in thermal environment ~ the fiber-reinforced composite in thermal

Based on the strain energy method, the total strairenvironment
energy U of FCTP in thermal environment can be

3.1 Measurements of the frequency response function
expressed as

(FRF) in thermal environment
U=U, +Uy+ny +U ., (32)

) = _ Pi(.:king _ Excitation poi
where, U,, U ,U, represent the strain energy along the Laser vibrometer Ivnbra/tlon point
|

<
A

X,y, and xy directions respectively, and ., is the %
potential energy induced by the thermal internetés

NV

N R Heating
Ui s 2kZ:;J’xz°J.y=°J’“kfl 7, £y device
Force sensor Excitation
_1& pa b, % .
U, = E; J.Xzo,[y:gj. o, €,dxdydz L—Data acqui

he sition Computer device
h analyzer J\: % j
) Y




Fig.2 Schematic of FRF measurement of FCTP in thermal ~ parameters of fiber composite, such as elastic odu
environment Poisson's ratios and loss factors, can be itetgtive

In most cases, the hammer excitation is the bespbtained by the FRF approximation method (its
choice to measure the FRFs of the plate structires identification principle will be introduced latet}.should
experiment. Yet in the thermal environment it ifficilt ~ b€ noted that the accuracy of these determinedrimate
for us to hold the hammer. Also, for the sake efgafety ~ Parameters at certain temperature condition hasngpto
do with the above ignoration. As long as the thiécak
FRF data and experimental FRF data are close, the
calculated material parameters can represent thealac
material parameters, which already reflect theugrice
rof certain high temperature on the fiber material.

of the instrument and operator, an alternative taon
method needs to be considered. Assuming that thse pu
excitation of force sensor driven by the aerodymaload
can be realized in the real test, and the dynaespanse
of FCTP can be measured by the laser Dopple
vibrometer, then we can use the data acquisition The identification principle of FRF approximation
instrument to record the pulse excitation signaltiueé method is simple yet useful. Fig. 3 gives the
force sensor and the laser response signal. Iméjsthe corresponding identification schematic of material
goal of the FRF measurement under high temperatur@arameters of fiber-reinforced composite in thermal

environment can be turned into reality, whose setiem €nvironment.  Firstly, the experimental FRF and
can be seen in the Fig. 2 (the detailed experimeraek  theoretical FRE with the two methods describedhe t
will be introduced in the case study). above are obtained and plotted on the same graph as
shown in Fig. 3. Then, the whole concerned frequenc
range is divided into multiple frequency ones. brle
frequency range, 2~3 modes of composite thin Eate
included. Finally, the iteration calculation teciumés are
employed to construct the frequency relative error

function €, between the experimental and the

3.2 Identification principle of composite material

parameters in thermal environment

Because at the beginning we don't know the
nonlinear relationship between temperature and nahte
parameters. In order to determine the assumeahdfitti
coefficients in this nonlinear model, the influenoé
temperature chang@T on the material parameters in theoretical natural frequencies in each frequerange,
Eq. (1) is temporarily neglected. In this way, the Which is expressed as the following form

theoretical FRF can be sequentially obtained, dred t R, |Af.| 2

concerned material parameters of fiber composite in ere:Z(le (36)
different thermal environments can also be idesifin A

the iterative calculation process. where R, represents the number of modes in the whole

In order to calculate the theoretical FRF, the samerequency range Af, represents the difference between
amplitude of excitation forceF (t) with the experiment in  theith natural frequency obtained by the experiment and
time domain is simulated, and then the dynamicamsp  theoretical calculation,ﬁ is the ith natural frequency
signalX(t) in any point of FCTP can be calculated by obtained by the experiment.
the self-written MATLAB program. Consequently, deet By taking the elastic coefficients at normal
Fast Fourier transformation (FFT) operation to thetemperature as the center, such B$E?,GS,vY, and
excitation and response signal, the original sigofl with the consideration of parameters errB, =50%
F(t) and X(t) can be transformed as the Fourier caysed by the temperature change, the range of thes
function F(&) and X(«). According to the definition - ig) parameters under certain temperature tondi

of frequency response function, the theoretical FRFCan be determined as the follows.
H(w) can be expressed as

x(w) Elo(l_ Rerr)S EllS E$(1+ Rerr)
R 5) £ (1-R,) S B, EY(1+R.) -
As the measured FRFs of FCTP under different G2 (1-Ry) s Gl GL(1+R,)
temperature conditions are already obtained (inti@ec Vi (1-R,,) =V, < Vi (1+R,)

3.1), we can compare the theoretical FRF with the Further, select an appropriate step sige(for

measured FRF under certain thermal condition.df thre .
i . exampleg=1%) in the above range, and construct the
very close to each other, the composite material



iteration vectors of elastic coefficients,
E, .E, .G},,V,, under certain
which can be expressed as

El’ =[E' E E®-

E |
. E';]
’ GTZ]
Vi, Vi Vi V]

Erl EIZ Er3

: =
[Gilz G
 =[ v

1 13
G12 G 12°

such as

By iteratively calculating theses elastic coeffiti®e

temperature condition, in a permutation and combination manner, the vabfes

E ,E, .G,,,V,, under a certain temperature condition
can be obtained when the frequency relative error
function &€, reaches the minimum value.

(38)
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Fig. 3 The identification schematic of materparameters of fiber-reinforced composite in theramalironment

Similarly, by extracting the multiple resonant pgak |AHi,| represents the difference of amplitude between

from the experimental FRF data and the theoreB&dF
data, the admittance relative error functi€. can be

obtained, which has the following form

2

theith experimental FRF and theoretical FRF.

Next, assume the maximum loss facipr0.04 and
construct the iteration vectors of loss factorghsas 7,
n, and n, with an appropriate step siggfor example

€oc = z |AH | (39) 0=1%) in a range of 05, which can be expressed as
r=l ‘ H — 1 2 n
Ui _[’71 ’71""71}
where S_ is the nuAmber of approximation points on the n =[,71 ,72.”,7n] (40)
ith resonant peakL H. | represents the amplitude of the 2 2 2

ith experimental FRF at the approximation point

2= |:’712 ’752' ) "722]



where 7; =077 =97, /7 = (- 1)g77 . as normal condition have been determined. Furter,
By iteratively calculating the loss factors in a choosing the temperature chang& as the independent

permutation and combination manner, the valuesvariable, and the elastic moduli, Poisson's radiod loss
n. .1, 1., under certain temperature conditions can befactors along different fiber directions as the etegent
obtainedwhen the admittance relative error functiag, =~ Variables respectively, the concerned fitting dogfits,
gets to the minimum value. Finally, by repeating th SUch asA,B,.C,.D,.F,H, and F, can be determined by
above process, the material parametersthe curve fitting technique. In this way, the unkmo

E E, G, V7, /,/, under different temperature coefficients in the Eq. (1) are obtained completellyich

conditions can be obtained. It should be noted that 'eflects the influence of the high temperature be t

FRF approximation method can also be used to oltain fiber-reinforced  composite. By referring to  the

material parameters under normal temperature, sisch conclusions in the literature [27-29], the cube & is
S E2,GO,V,707 875, as long as the experimental FRF accurate enough to determine the fitting coeffitseso,
SN the corresponding maximum value of the polynomial

result is obtained. It is suggested that the FRF ] )
order in Eq. (1) is recommendedrgs3. When all the
measurements under normal temperature should be mad

o . . . redetermined coefficients are obtained, the nhtura
by the hammer excitation, since it is more convanand P o i ]
characteristics, dynamic response and damping bmisav

with considering the temperature dependent propeaty

be predicted and analyzed. The analysis flow of the
nonlinear dynamic characteristics of FCTP in thérma
environment can be seen in Fig. 4.

faster than the excitation of force sensor driventhe
aerodynamic load.

3.3 Determination of the fitting coefficients

Once the material parameters of fiber-reinforced
composite under different temperature conditionsvel

Identify j=j+1 Solve th(? n?tural
sl — characteristics by
Solve the the Eq. (21)
theoretical N
FRES Ll A Solve the
Cons'truct the error e <10% AR pa,rarrllete'rs ||| vibration response
Obtain the function &oand &g y I.El' F72 '(,;12,' by the Eq. (31)
experimental Vio /2 The
FRFs N
! Solve the modal
_ Ide_“t‘fY N, =i+l L+ damping ratio by
E'.E; .Gy the Eq. (34)

Fig. 4 The analysis flow of the nonlinear dynantiaacteristics of FCTP in thermal environment
4. A case study transverse elastic modulus of 7.92GPa, shear msdilu

5.28GPa, Poisson's ratio of 0.32 and density of

In this section, a TC500 carbon/epoxy composite
. 1780kg/mi under normal temperature. The thermal
thin plate was made to carry out a case study. lIts

. , (Fxpansion coefficients parallel and perpendicutathie
nonlinear natural frequency, dynamic response and o
fiber direction are -0.15x10° /C and 1.3x10°/C

damping results were measured under different )
" . i respectively.
temperature conditions, which were used to verifg t
practicability and reliability of the establishedniinear

model of FCTP in thermal environment.

In order to ensure the experimental reliability in
thermal environment, three composite thin plateh wie
same material parameters yet different sizes, namel
composite plateA, B and C, were used in the test, as
shown in Fig. 5. The length, width and thicknesshaim
were 260mmx 175mnx  2.36mi ,

4.1 Test object and test system

The TC500 carbon/epoxy composite thin plate was
symmetrically laid, made by Jiangxi Jiujiang Diwei
composite materials Co.Ltd. It has total 21 layeith 155mmx 90mmx 2.36mr and
laminate - configuration of{(0/80),/0 /(%0 /031, and " 5300 130mmx 2.36mr , respectively. Then, the
each layer has the same thickness and fiber volum(\e/

ibration test system in thermal environment wasuge
fraction with longitudinal elastic modulus of 132&P



as shown in Fig. 6, to measure the nonlinear nlaturathe constraint end, while the horizontal distaneeMeen
frequencies, modal shapes, dynamic responses arttlis point and the left free edge of the threegdavas
damping parameters of the plates. In the experinteat 20mm. Also, the excitation point was located atuai43
clamp fixture and M8 bolts were used to clamp tledep  of the length of the three plates above the coim$temd,
specimens firmly to simulate the cantilever bougdar while the horizontal distance between this poird &me
condition. The laser measuring point was 60mm aboveight free edge was 20mm.

175mm

. 130mm R
90mm
§ A
= e
: s
=]
O
wn
2
=
Composite Composite
plate A plate B plate C
__I 4 y v
Fig. 5 The three different TC500 carbon/epoxy coritpdhin plates
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y

~ Electromagnetic
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device sensor

Fig. 6 Test system of FCTP in thermal environment

The instruments used in the test system were agsemperature glass on the top of the box (Fig. 6)that
follow: (I) Lianneng JZK-100 electromagnetic excitsd  the laser Doppler vibrometer could be used to nreasu
YE5878 power amplifier; (ll) Lianneng force sensor the response signal of the plate specimens through
CL-YD-301; (lll) OTS 1500x4-160L air compressor jIV  penetrating the glass. Besides, the motion of |asant
Polytec PDV-100 laser Doppler vibrometer; (V) was powered by the two-dimensional laser scanning
Two-dimensional laser scanning device based omdevice controlled by LabVIEW software. Both the gaul
LabVIEW control software; Yongyang PT100 excitation and base excitation in thermal tempeeatu
thermocouple; (VI) Changbai Heating box T-500 andwere used in the experiment, where the change of
temperature control device C-500; (VII) LMS SCADAS temperature degree was measured by two thermomuple
16-channel data acquisition instrument and Delebobk  (one was to measure the temperature value, the wiee
computer (with Intel Core i7 2.93 GHz processor 8@ employed as the feedback signal to the temperature
RAM to operate LMS Test.Lab 10B software). control device). For the pulse excitation load, thece

In the test set-up, the heating box was used tcsensor driven by the aerodynamic load, which was
provide the required temperature, and there wagyla h provided by the air compressor, was used to exbie



plate specimens. For the base excitation load, they 2 |dentification of the fitting coefficients in thermal
electromagnetic exciter and power amplifier weredut®

produce vibration excitation energy to the platbege
vibration and temperature signals were all recorded

stored by LMS SCADAS 16-channel data acquisition FRFs o.f FCTP in thermal environment were obtairzed,
shown in Fig. 7. Then, the FRFs can be calculatexd

on the theoretical model, and the results are plistied

environment

Based on the established test system in Fig. 6, the

instrument and the notebook computer.

in Fig. 7.
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Fig. 7 The FRFs of FCTP under different temperatures
Next, using the FRF approximation method, the both plateA andB at the following seven temperatures,
material parameters of the composite thin platedeun i.e. 20 (normal temperature), 60, 80, 120, 160, 200
different temperature environments can be ideutifie 250C
Table 1 shows the identified material parameteueslof

Table 1. The identified material parametaiues of bothA andB plates under different temperatures

Material ) TemperatureC)
Object
parameters 20 60 80 120 160 200 250
PlateA 128.41 125.37 123.40 120.06 116.41 111.72 104.54
E,(GPa) PlateB 129.12 126.08 124.19 120.46 116.08 110.74 103.48
Average 128.77 125.73 123.80 120.26 116.25 111.23 04.01
PlateA 8.08 7.91 7.68 7.39 7.04 6.45 5.68
E»(GPa) PlateB 8.13 7.82 7.54 7.32 6.96 6.30 5.56
Average 8.11 7.87 7.61 7.36 7.00 6..38 5.62
PlateA 5.40 5.23 5.12 4.95 4.76 4.53 4.11
G1,(GPa) PlateB 5.48 5.28 5.19 5.03 4.80 4.49 4.08
Average 5.44 5.26 5.16 4.99 4.78 4.51 4.10
PlateA 0.332 0.331 0.330 0.331 0.330 0.333 0.332
Vi PlateB 0.334 0.332 0.329 0.330 0.330 0.331 0.333
Average 0.333 0.332 0.330 0.331 0.330 0.332 0.333
PlateA 0.682 0.713 0.765 0.814 0.864 0.927 0.996
n, (%) PlateB 0.667 0.725 0.784 0.831 0.892 0.958 1.123
Average 0.675 0.719 0.775 0.823 0.878 0.943 1.060
PlateA 0.793 0.821 0.864 0.912 1.027 1.145 1.312
1, (%) PlateB 0.765 0.806 0.853 0.936 1.083 1.177 1.296
Average 0.779 0.814 0.859 0.924 1.055 1.161 1.304
PlateA 0.855 0.958 1.036 1.124 1.257 1.413 1.602
n,, (%) PlateB 0.883 0.956 1.051 1.153 1.295 1.406 1.624
Average 0.869 0.957 1.044 1.139 1.276 1.410 1.613

It can be seen from Table 1, the change of Posson'the influence of temperature on the Poisson's iobe
ratio v; is very small as the temperature rise, and hencégnored. Then, the average results of compositeniaht



parameters in Table 1 under different temperatames  of fiber-reinforced composite in thermal environrmean
brought into Eq. (1), and the concerned fittingftioents be obtained as follows

E (AT)=128.77- 7.79% 10(AT)- 2.44 T{AT) - 4.88 ifnT)’
E,(AT)=811- 6.95% 18(AT) +1.28 1YAT)*- 7.985 iT)’
G, (AT)=5.44- 476% 18(AT) +7.56 1UAT)’- 5.286 i(AT)’
n,(AT)=0.675+1.824 18(AT)- 5072 TgAT)” +1.9%6 A@T)’
n,(AT)=0.779+2.56&% 10(AT) +1.597 f¢AT)*- 3.185 4@T)’
m,(AT) =0.869+2.44 18(AT) +2.786 TYAT)" +2.883 inT)’

Fig. 8 and Fig. 9 show the fitted curves of thestita  temperature, the elastic moduli of FCTP decreasellin
moduli E, E,, G, and loss factorsy,, 7,, 77,  directions, but the material loss factors show the
under different temperatures when the cubic polyimbm increasing tendencies in different degrees (Fig. 9)
is employed. It can be seen that with the increafse
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Fig. 8. The fitted curves off, ,E, and G,, of fiber-reinforced compositender different temperatures

Material loss factor (%)

0 50 100 150 200 250
Tempeture/'C

Fig. 9. Thefitted curves of77,, 77, and n, of fiber-reinforced compositender different temperatures
4.3 Comparison and verification of the inherent Table 3. It should be noted that the excitatiorelewsed
in this measurement need be controlled at the rorma
level, so as to avoid the overload phenomenon sdrla
Doppler vibrometer, and also to prevent the composi
plate specimen producing large deformation, whigth w
lead to the geometrically nonlinear vibration
phenomenon.

characteristics in different thermal environments

In order to verify the correctness of the theosdtic
model and study the effect of different temperaguoe
the dynamic characteristics of FCTP, the compqsiée
C was taken as the research object. By identifyimg t
measured FRF re§ults, the first 6 natural frequsnof Finally, by substituting the material parameteuesl
the plateC are obtained at the temperatures of 20, 50, 100, . . - .

_ _ obtained from the fitting curves under different
and 200°C, as shown in Table 2. Also, in order to study . .
. _ temperatures into the theoretical model, the
the effect of high temperature environment on trozlah . . .
o _ corresponding natural frequencies and modal shajiks
shapes of FCTP, the base excitation technique was .. .
_ _ . . considering the temperature dependence can bdataidu
employed in the established test system (Fig. @xwte which were also listed in Table 2 and Table 3.dditon,
the pla.te ét different resonanf:e state. Then, ! in order to compare the effects on the naturalueegies
shape in different thermal environments can be oreds

. . . with and without considering the temperature
by the laser linear scanning method [30], as shawn



independence, the natural frequencies and thelependence were also given in Table 2.
corresponding errors without considering the terafjee
Table 2. The experimental and calculated natuegjiUfencies ofhe composite plat€ under different temperatures as well as the

corresponding calculation errors with and withoorigidering the temperature dependence

Temperature Modal order
(C) Tye 1 2 3 4 5 6
Experimental tesf/Hz 46.2 94.1 288.0 3715 783.4 890.2
Temperature dependenBéHz 47.6 98.5 298.0 385.3 832.9 853.4
20 Temperature independenCéHz 47.6 98.5 298.0 385.3 832.9 853.4
Errors (%) A-B|/ A 3.0 4.7 34 37 6.3 4.1
Errors (%) A-C|/ A 3.0 4.7 3.4 3.7 6.3 4.1
Experimental tesf/Hz 43.2 88.4 284.5 363.2 772.1 879.6
Temperature dependenBéHz 45.6 93.0 293.1 378.4 822.1 842.0
50 Temperature independenCéHz 46.20 94.51 296.83 383.74 832.73 852.70
Errors (%) A-B|/ A 5.6 5.2 3.0 4.2 6.5 4.3
Errors (%j A—C\ /A 6.9 6.9 4.3 5.6 7.8 3.0
Experimental tesf/Hz 40.6 79.5 277.1 358.8 765.5 870.8
Temperature dependenBéHz 42.2 83.3 285.6 368.1 806.4 824.8
100 Temperature independenCéHz 44.0 88.5 292.1 378.8 828.5 847.8
Errors (%) A-B|/ A 3.9 4.8 3.1 2.6 5.3 5.3
Errors (%) A-C|/ A 8.3 11.3 5.4 5.5 8.2 2.6
Experimental tesf/Hz 35.5 63.6 266.2 345.8 745.5 848.3
Temperature dependenBéHz 37.2 67.5 275.0 354.6 786.1 802.5
200 Temperature independenCéHz 38.5 71.3 289.2 373.5 825.0 844.5
Errors (%) A-B|/ A 4.8 6.1 3.3 25 5.4 5.4
Errors (%] A—C\ /A 8.5 12.1 8.6 8.0 10.7 4.5

Table 3. The experimental and calculated modaleshafthe composite plat€ under different temperatures with considering the

temperature dependence

Modal Theoretical Experimental Theoretical Experimental
Order (20 C) (20 C) (200 C) (200 C)
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It can be seen from Table 2 and Table 3 that theWhat's more, the higher the temperature, the grahte
thermal environment has a great influence on theralh  error. For example, when the temperature rise 002
frequencies of FCTP between the temperatures ffdto 2 the maximum calculation error of the first 6 natura
200 C. The natural frequency results decrease with thdrequencies is 12.1%, yet the maximum error with
increase of temperature, e.g., when the temperature considering the temperature dependence is 6.5%.
raised from 20 to 200C, the 1st and 2nd natural Therefore, this nonlinear dynamic model can imprthes
frequencies have the larger reduction rate compaittd  calculation accuracy of natural frequencies (sih¢akes
other modes. The calculated reduction rates ar@ 2. into account of the material nonlinearity inducedtbe
and 31.5% respectively, while the measured reductio high temperature).
rates are 23.2 % and 324 % respectively. Thisq 4 Comparison and verification of the dynamic
phenomenon is mainly due to the reduction in tlasted

modulus and the structural stiffness matrix at high .
. Here, the dynamic responses under the temperatures
temperature. Moreover, there is a good agreement

between the calculated and measured inheren_?f 20, 50, 100 and 200C were measured when an

characteristics, since the maximum calculation reo® |mpuls§ e>$C|tat|on was applied to the plate. The
. . . Y theoretical impulse responses were calculated based
the first 6 natural frequencies with consideringe th

temperature dependence is less than 6.5 %. From botthe self-written MATLAB program. Taking 100 as an

theoretical and experimental results, it can ben dbat example, Fig. 10 shows the time-domain waveforms of

the high temperature environment has little effactthe the exc.ltatlon S|gna_l and the respons?e signal @f.th
modal shapes of FCTP, composite plateC. Fig. 11 shows the first 4 dynamic

.. . _ .. responses obtained from theoretical calc i
In addition, it can be seen from Table 2 tha ulation - and

natural frequencies of the composite thin plateldate ratures
without considering the temperature dependence:
larger error compared with the experimental re

responses in different thermal environments
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Fig. 10 The time domain waveform of excitation sigand response signal under the temperature of@00
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Fig. 11 The dynamic responses of the composite Qlatbtained by theoretical calculation and experimkteist under the temperature
range of 20-200C

It can be seen from Fig. 11 that the dynamic by the thermal expand stresses produced in thdreants
response of FCTP increases with the rise of tenyera end of FCTP, while the responses in the higher made
and the calculation errors under different thermalcomparably insensitive to the expansive deformation
environments are within 9 %, which is within an thermal environment.
acceptable range. The first dynamic response result 45 Comparison and verification of the damping
greatly affected by the temperature, e.g. the dogsi of
the measured response increases from 0.68 mm &t 20

to 0.92 mm at 200C, with an increase of 35.3 %. )
Besides, the measured response amplitudes in tte 2nthe composite plate under the ten.ﬁpera_tu.res of 20, 50,
100 and 200C were obtained by identifying the FRFs

3rd and 4th modes increase by 20, 13 and 12.3 %, . -
respectively. From which we can see that with theWIth the half power bandwidth method, as shownig F

. . 2. For the convenience of comparison, the caledlat
increase of the mode order, the dynamic response od . I dth g e
FCTP becomes increasingly insensitive to the high amping results and the corresponding scatterg °

temperature. The reason for this nonlinear phenomen composite plat€ are also displayed in the same figure.

may be that the first dynamic response is gredtgcted

results in different thermal environments
In this section, the first 6 modal damping ratids o
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Fig. 12The scattergram of the modal damping ratios ottiraposite plat€ obtained by theoretical calculation and experiraktetst under



the temperature range of 20-200
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Fig. 13 The rising rate of modal dampirajios of the composite pla@at different temperaturesbtained by theoretical calculation and
experimental test
It can be seen from Fig. 12 that the increasedrtakr results, which validates the proposed nonlinearadyn
environment for the temperature range of 20-Z0O0 model of FCTP with temperature dependence in thierma
leads to a rise in each damping ratio of FCTP, whth  environment.
errors of the calculated damping being within 5.6 %
under different temperatures. In addition, the wdalked
rising rates in the first 6 damping ratios are 48.8.4, In this paper, a nonlinear dynamic model of FCTP in
34.5, 33.6, 29.3 and 28.7 % respectively, while thethermal environment has been established, whiclsésl
measured rising rates are 52.6, 71.0, 36.9, 3.8, &nd  to investigate the influence of thermal environmamthe
28.1 % respectively. In order to visualize the efief the  nonlinear dynamic characteristics of the compo#tiia
increased temperatures on damping propénty, rising  plates. Based on the theoretical and experimeasailts,
rates of modal damping ratios of the compositeeplaat the following conclusions can be drawn:
50, 100 and 200C are plotted in Fig. 13. From which (1) As the temperature increases, the elastic modul
we can see that the increased temperature hasatemgre of FCTP decrease in all directions, but the lossofs of
effect on the damping characteristics in the lomedes the material show the increasing trends in differen
of the composite plate, such as the 1st and 2ngidgm degrees.
ratios. However, high-order damping property of the (2) The natural frequencies of FCTP decrease with
composite thin plate seems to be insensitive to thdhe increase of temperature. By taking the experiaie
increased temperature. For example, the increasadsl results as an example, the measured natural fremsein
of damping ratios in 5th and 6th modes are onlyuabo the first 6 modes decrease by 4.7 % - 32.4 % when t
half that of the first 2 damping ratios. The reagamthis temperature is raised from 20 to 200 ‘C. However,
maybe related with the energy dissipation capaoity the high temperature has little effect on the matiapes.
interfacial friction in the composite plate. Becaus high (3) The dynamic responses of FCTP increase with
temperature environment, the microscopic interfacethe increase of temperature, especially the fitstation
friction phenomenon in the high-order vibration acg as  response results with the largest rising about 35%.
violent as those in low-order vibration, which demseen  However, with the increase of the mode order, the
from high-order damping ratio results (they are dow response becomes increasingly insensitive to tigh hi
than the first 2 damping ratios). Therefore, theréased temperature.
temperature has less effect on high-order damping (4) The temperature contributes a rise in each
property. damping ratio of the composite thin plate. However,
Finally, it can be seen from the above resultstiiiat high-order damping property of the composite thigteg

calculated errors on the natural frequencies, dymam seems to be insensitive to the increased temperatur
responses and modal damping ratios are less than 9%
which are quite reasonable. Also, the calculatedlaho Acknowledgment
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