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Abstract 30 

Streptococcus pneumoniae (the pneumococcus) is a major cause of mortality and morbidity 31 

globally, and the leading cause of death in under-five year olds. The pneumococcal cytolysin 32 

pneumolysin (PLY) is a major virulence determinant, known to induce pore-dependent pro-33 

inflammatory responses. These inflammatory responses are driven by PLY-host cell membrane 34 

cholesterol interactions, with binding to a host cell receptor not previously demonstrated. 35 

However, here we discovered a receptor for PLY, whereby pro-inflammatory cytokine 36 

responses and TLR signaling are inhibited upon PLY binding to the Mannose-Receptor C type 37 

1 (MRC-1) in human dendritic cells (DCs) and murine alveolar macrophages, along with 38 

upregulation of the cytokine suppressor SOCS1. Moreover, PLY-MRC-1 interaction mediates 39 

pneumococcal internalization into non-lysosomal compartments and polarizes naive T cells into 40 

an IFN-γlow, IL-4high and FoxP3+ immunoregulatory phenotype. In mice, PLY-expressing 41 

pneumococci co-localize with MRC-1 in alveolar macrophages, and induce lower pro-42 

inflammatory cytokine responses and reduced neutrophil infiltration, compared to a PLY-43 

mutant. In vivo, MRC-1-inhibition using blocking antibodies or MRC-1 deficient mice, show 44 

reduced bacterial loads in the airways. In conclusion, we show that pneumococci use PLY-45 

MRC-1 interactions to downregulate inflammation and enhance bacterial survival in the 46 

airways. This has important implications for future vaccine design. 47 

  48 

 49 

50 
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Main Text 51 

Streptococcus pneumoniae is a common colonizer of the upper respiratory tract of healthy 52 

children, but also a major cause of life-threatening diseases such as pneumonia, septicaemia 53 

and meningitis, resulting in death of over 800,000 children annually1. The cholesterol-binding 54 

pore-forming toxin pneumolysin (PLY) is expressed by most disease-causing isolates and is 55 

required for virulence2,3 and host-to-host transmission4. PLY is a multi-functional protein, 56 

which at sublytic doses can activate complement5, re-arrange cytoskeleton of host cells6, and 57 

induce pro-inflammatory cytokine responses7. PLY is released during bacterial autolysis, but 58 

has also been shown to be localized on the pneumococcal cell wall, thereby accessible to 59 

extracellular proteases8. The surface localization of PLY allows for speculation of a non-60 

cholesterol receptor on host cells.  61 

Alveolar macrophages and dendritic cells (DCs) are the major resident immune cells in alveoli 62 

and mediate protection from pathogens. The mannose receptor, MRC-1 (CD206), is a M2 63 

phenotype marker9 and a phagocytic receptor10  that is mostly expressed by tissue macrophages, 64 

including alveolar macrophages11. MRC-1 binds to endogenous and microbial antigens such as 65 

capsular polysaccharides12,13. Furthermore, studies have demonstrated that MRC-1 influences 66 

pneumococcal uptake by Schwann and olfactory cells, but they did not show co-67 

localization14,15. It is not clear which macrophage receptors recognize pneumococci in the 68 

nasopharynx and lungs and what bacterial properties interacts with the receptors mediating 69 

pneumococcal uptake. Here, we discovered a role for PLY in driving anti-inflammatory 70 

responses and lysosomal escape in macrophages and DCs by directly binding to MRC-1, 71 

thereby promoting pneumococcal internalization and survival in the host. 72 

We first compared the cytokine response induced by PLY by infecting different immune cells, 73 

primary human monocyte-derived dendritic cells (DCs), neutrophils and THP-1 monocyte-74 

derived macrophages, with a low dose (MOI of 1) of the pneumococcal strain T4R (expressing 75 
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PLY), or its isogenic PLY mutant T4R∆ply. The non-encapsulated strain T4R (isogenic 76 

capsular mutant of the encapsulated serotype 4 strain T4) was used for the in vitro experiments 77 

to increase bacterial uptake since the capsule impedes bacterial adhesion to host cells16. We 78 

found lower secretion of the pro-inflammatory cytokines TNF-α, IL-1β and IL-12 from DCs 79 

challenged with PLY-proficient T4R compared to the mutant T4R∆ply, which was in contrast 80 

to THP-1-derived macrophages and neutrophils (Fig.1a, Supplementary Fig.1a-b). This PLY-81 

dependent inhibition of cytokine responses was also observed using the encapsulated strains T4 82 

and T4∆ply (Fig.1b). The cytokine inhibition was independent of cell death as determined by 83 

measuring LDH release (Supplementary Fig.1c), but dependent on bacterial uptake since 84 

secretion of TNF-α was reduced by blocking phagocytosis using cytochalasin D and 85 

wortmannin (Supplementary Fig.1d). Treatment with cytochalasin D, an inhibitor of actin 86 

polymerization, inhibited cytokine production by DCs and THP-1 macrophages in a PLY-87 

independent manner. Pre-treatment with purified endotoxin-free PLY at 100 ng/ml inhibited 88 

IL-12 production by ~50% from DCs infected with T4R∆ply in a dose-dependent manner, 89 

independent of cell death (Supplementary Fig.1e). To study strain dependency and the influence 90 

of the challenge dose we then infected DCs, THP-1 macrophages, neutrophils and bone-marrow 91 

derived macrophages (BMDMs) with the pneumococcal strains D39 of serotype 2, or its 92 

isogenic PLY mutant, D39Δply, at different MOIs and measured IL-1ß release and cell death 93 

(Supplementary Fig.1f-i). We observed that at lower infection doses (MOI of 0.1 or 1), the 94 

mutant D39Δply induced higher levels of IL-1ß in DCs and BMDMs (but not in neutrophils 95 

and THP-1 macrophages), independent of cell death. However, at MOI of 10, the pattern was 96 

reversed and wild-type D39 induced higher IL-1ß release, but this was also accompanied by ~2 97 

fold higher cell death.    98 

We then performed a TLR signalling q-PCR array using RNA from DCs infected for 9hrs with 99 

T4R or T4R∆ply. Expression of all genes, except IFNβ1, was upregulated following infection 100 
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with T4RΔply compared to T4R infected cells (Supplementary Fig.1j), indicating that PLY-101 

expression has a general inhibitory effect on cytokine induction and inflammatory signalling in 102 

DCs. 103 

To explore mechanisms behind this inhibitory effect of PLY on DCs, we measured expression 104 

of the negative regulators of NF-κB, AP-1 and STAT1 pro-inflammatory signalling pathways. 105 

We identified upregulation of Suppressor of Cytokine Signalling 1, SOCS117,  mRNA in DCs 106 

infected with T4R, but not with T4R∆ply (Fig.1c). Kinetic analysis revealed that SOCS1 mRNA 107 

increased 6hrs post infection (pi) and peaked at 9hrs (Supplementary Fig.1k). Concurrent with 108 

mRNA, protein levels of SOCS1 were higher in DCs at 9hrs pi with T4R compared to T4R∆ply 109 

(Fig.1d). However, SOCS1 expression remained unaffected in THP-1 macrophages, 110 

(Supplementary Fig.1l), confirming the cell-type specific effect. 111 

Since SOCS1 is a known inhibitor of STAT signalling18, we measured phosphorylated STAT1 112 

and found delayed phosphorylation in T4R-infected DCs as compared to T4RΔply (Fig.1e). 113 

Pre-treatment with the STAT inhibitor stattic inhibited secretion of TNF-α, IL-1ß and IL-12 114 

(Supplementary Fig.1m-o). Besides STAT1, we also found lower levels of NF-κB in T4R-115 

infected DCs compared to T4RΔply (Fig.1f). Together, our data suggest that PLY-expression 116 

inhibits pro-inflammatory signalling via STAT1 and NF-κB in DCs, possibly via induction of 117 

the cytokine suppressor, SOCS1. 118 

To identify the host receptor interacting with PLY, we performed a pull-down assay using 119 

purified PLY. We identified 32 proteins exclusively from DC lysates of which three were 120 

surface proteins, Integrin alpha-M, Mannose Receptor C type 1 (MRC-1), and Galectin-1 121 

(Supplementary Table 1).  We further investigated the lectin receptor MRC-1, since it has 122 

previously been reported to have immunosuppressive properties19. To confirm the interaction 123 

between MRC-1 and PLY, we performed immunoprecipitation of MRC-1 from native DC 124 
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lysates using anti-PLY coupled beads (Supplementary Fig.2a). To assess whether MRC-1 125 

binding to PLY was mediated via glycan recognition, we performed enzymatic deglycosylation 126 

of PLY to remove bound glycans as evident by slightly higher electrophoretic gel mobility 127 

(Supplementary Fig.2b). Importantly, MRC-1 co-immunoprecipitated with both native and 128 

deglycosylated PLY from native DC lysates (Supplementary Fig.2c). We found that MRC-1 129 

was selectively expressed by DCs and M-CSF derived macrophages (M2 polarized), but not by 130 

THP-1, neutrophils or GM-CSF derived macrophages (M1 polarized) (Supplementary Fig.2d-131 

e). Interestingly, DCs upregulated MRC-1 expression upon infection with T4R, compared to 132 

T4RΔply (Supplementary Fig.2f). Similar to human DCs, BMDMs isolated from wild-type, but 133 

not MRC-1-/- mice, upregulated the MRC-1 protein upon infection with strain D39 as compared 134 

to its isogenic PLY-deficient mutant, D39Δply (Supplementary Fig.2g). The capsular mutant 135 

(D39Δcps) induced lower upregulation of MRC-1 than D39 (Supplementary Fig.2h). Analysis 136 

of MRC-1 expression at different MOIs revealed that DCs and BMDMs upregulated MRC-1 in 137 

a dose-dependent way in response to D39, as compared to D39Δply, and the difference was 138 

significant at MOI of 1 (Supplementary Fig.2i-l). Neutrophils and THP-1 macrophages showed 139 

very low MRC-1 expression that did not change significantly upon infection. Surface plasmon 140 

resonance analysis confirmed the PLY-MRC-1 interaction showing a KD value of 4.5x10-8 M 141 

(Fig.2a). The interaction was also verified in the reverse orientation (Supplementary Fig.2m), 142 

and the specificity was shown using control proteins (Supplementary Fig.2n). To study the 143 

specific interaction of MRC-1 with PLY versus capsular polysaccharides, we performed ELISA 144 

to measure binding of immobilized MRC-1 with PLY dose-dependently in the presence or 145 

absence of purified serotype 2 or 4 capsules. We found that MRC-1 binds to the type 2, but not 146 

the type 4 capsule (Supplementary Fig.2o). Importantly, MRC1 still binds to PLY even in the 147 

presence of capsule although to lesser extent (Supplementary Fig.2o). To identify the region of 148 

interaction, we performed a solid-phase binding assay using purified PLY domains and an Fc-149 



7 
 

construct containing the mannose-binding C-type lectin-like carbohydrate recognition domains 150 

of MRC-1 (CTLD4-7-Fc). We found that domain 4 of PLY is key to MRC-1-PLY-interaction 151 

as purified domain 4, but not domains 1-3, bound the CTLD4-7-Fc construct (Fig. 2b). The 152 

non-pore-forming PLY mutant (PdB)20 showed reduced binding compared to cytolytic PLY 153 

(Fig.2b), indicating that active PLY is required for MRC-1 binding. 154 

Next, we investigated the localization patterns of MRC-1 and PLY in DCs using 155 

immunofluorescence microscopy. Wild-type DCs or MRC-1-deficient DCs (treated with MRC-156 

1 siRNA), were incubated for 45 min with recombinant active PLY. PLY co-localized with 157 

MRC-1 and the early endosomal antigen EEA-1, indicating uptake by DCs (Fig.2c). In contrast, 158 

PLY-binding was reduced in MRC-1-deficient DCs. In addition, the non-pore- forming PLY 159 

mutant (PdB) did not co-localize with MRC-1 (Fig.2c). At 90 min post pneumococcal 160 

challenge, internalized T4R co-localized with MRC-1, but did not co-localize with lysosomes, 161 

while the converse was observed for T4RΔply (Fig.2d). To test whether bacterial internalization 162 

via MRC-1 inhibits fusion of pneumococcal-infected vacuoles with lysosomes, we used 163 

antibody-opsonized pneumococci as a control to engage Fc gamma receptor-mediated 164 

phagocytosis21. Strikingly, opsonized T4 did not co-localize with MRC-1 and co-stained with 165 

lysosomes in contrast to the non-opsonized control (Supplementary Fig.2p). Moreover, 166 

opsonized T4 elicited similar levels of TNF-α and IL-1β from DCs as T4∆ply (Supplementary 167 

Fig.2q). To explore whether active PLY is required for interaction with MRC-1 in clinical 168 

pneumococcal isolates, we used a serotype 1 strain expressing non-haemolytic PLY (BHN31 169 

of ST306) and the clonally related haemolytic strain (BHN32 of ST228)22. We found that the 170 

non-haemolytic strain did not co-localize with MRC-1, but co-stained for lysosomes 171 

(Supplementary Fig.2r), and elicited higher cytokine production from DCs (Supplementary 172 

Fig.2s) as compared to the haemolytic strain. Together, our data suggest that pneumococcal 173 

internalization, due to interaction between active PLY and MRC-1, inhibits fusion of vacuoles 174 
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containing pneumococci with lysosomes. This is supported by previous findings that MRC-1 175 

regulates phagosomal trafficking following phagocytosis and limits fusion with lysosomes10,23.   176 

Furthermore, we found that uptake of PLY-proficient T4R, but not T4R∆ply, was reduced by 177 

50% in MRC-1 depleted DCs (Fig.3a and Supplementary Fig.3a). Also, depletion of MRC-1 in 178 

DCs led to significantly higher levels of IL-12, TNF-α and IL-6 upon T4R-infection (Fig.3b), 179 

and abrogated SOCS1 expression (Supplementary Fig.3b). This suggests that activation of 180 

MRC-1 by PLY triggers upregulation of SOCS1 in DCs, thereby reducing secretion of 181 

inflammatory cytokines.  182 

Since DCs are professional antigen-presenting cells, we investigated the role of MRC-1 in DC-183 

primed CD4+ T-helper cell cytokine responses after pneumococcal challenge. We found that 184 

DCs depleted of MRC-1 using siRNA and infected with T4R (in contrast to T4RΔply), elicited 185 

higher IFN-γ (Th1 cytokine) and lower IL-4 (Th2 cytokine) levels from naive T-helper cells in 186 

co-culture, compared to DCs treated with control siRNA (Fig.3c-d). A similar trend was 187 

observed in DCs stimulated with purified PLY. To further characterize the phenotype of T cells 188 

co-cultured with DCs, we measured FoxP3, a regulatory T cell marker24 and found that DCs 189 

infected with T4R (but not with T4RΔply) and those treated with purified PLY, induced higher 190 

FoxP3 expression in naive T helper cells upon co-culture (Fig.3e, Supplementary Fig.3c). 191 

FoxP3 upregulation in T cells was abolished when co-cultured with DCs treated with MRC-1 192 

siRNA. Similar to human DCs, murine BMDMs from WT mice that were infected with D39 193 

(in contrast to D39Δply) and co-cultured with CD4+ murine T cells, resulted in higher regulatory 194 

(FoxP3, IL-10 expressing) T cells and lower Th1 cells (T-bet, IFN-γ expressing) as compared 195 

to BMDMs from MRC-1-/- mice (Fig.3f, Supplementary Figs. 3d-f). Our data are in agreement 196 

with earlier findings showing that MRC-1 expression in DCs inhibits CD45 and induces T-cell 197 

tolerance25, and that PLY is required for robust regulatory T cell induction in vivo26.   198 
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To verify our findings in vivo, we challenged wild-type C57BL/6J mice intranasally with 106 199 

CFU of wild-type T4 or the mutant T4Δply. At 6hrs post infection (pi), bronchoalveolar lavage 200 

fluids (BALF) were collected and lung alveolar macrophages isolated. We observed 201 

intracellular co-localization of strain T4 with MRC-1, but not with lysosomes (Fig.4a). In 202 

contrast, intracellular T4Δply did not co-localize with MRC-1, but co-stained with lysosomes 203 

(Fig.4a, Supplementary Fig.4a). Ex vivo, murine alveolar macrophages secreted lower levels of 204 

pro-inflammatory cytokines upon infection with T4R compared to T4RΔply. This difference 205 

was reduced by pre-treatment with anti-MRC-1 (Supplementary Fig.4b-c). In agreement with 206 

these results, T4Δply infected mice had higher levels of pro-inflammatory cytokines, TNF-α, 207 

IL-12 and IL-1β, and lower levels of anti-inflammatory cytokines, IL-10 and TGF-β, in the 208 

BALF, compared to mice infected with T4 (Fig.4b, Supplementary Fig. 4d). In addition, T4Δply 209 

infected mice had higher numbers of neutrophils and monocytes in the BALF (Supplementary 210 

Fig.4e). The enhanced inflammation and higher infiltration of phagocytes were concurrent with 211 

the higher clearance of T4Δply compared to T4 from the airways of infected mice (Fig.4c). 212 

Mice pre-treated with antibodies to block MRC-1 prior to infection with T4 had significantly 213 

higher levels of TNF-α and IL-12, and lower levels of IL-10 in BALF at 6hrs pi as compared 214 

to isotype antibody-treated controls (Fig.4d, Supplementary Fig.4f). Anti-MRC-1 treated mice 215 

had 50% lower bacterial counts in the lower airways compared to controls (Fig.4e), and 216 

intracellular bacteria did not co-localize with MRC-1 in alveolar macrophages (Supplementary 217 

Fig.4g). Importantly, MRC-1-/- mice also had significantly decreased bacterial numbers in the 218 

nasopharynx at 7 and 14 days post challenge compared to wild-type mice in a pneumococcal 219 

carriage model with strain D39 (Fig.4f). In wild-type mice, MRC-1+ macrophages were found 220 

to rapidly accumulate in the nasopharynx following pneumococcal colonization 221 

(Supplementary Fig.5a-b). Similar to anti-MRC-1 treated mice, MRC-1-/- mice had higher 222 

levels of pro-inflammatory cytokines, TNF-α and IL-6, and lower levels of anti-inflammatory 223 



10 
 

IL-10 and TGF-β in the nasopharynx compared to WT mice at 6hrs and 1 day pi (Supplementary 224 

Fig.5c-f).  225 

MRC-1 mediated phagocytosis is of particular significance in the lungs, as MRC-1 is 226 

abundantly expressed by alveolar macrophages. A previous study by Dorrington et al. 227 

highlighted the crucial role of the scavenger receptor MARCO in anti-pneumococcal immunity 228 

in the nasopharynx and suggested a minimal role for MRC-127. However, the authors in that 229 

study used a 100-fold higher infection dose (1x107 CFU) for colonization compared to our study 230 

and we have previously shown that in contrast to high-density infection, low density 231 

pneumococcal carriage induces immunoregulatory responses characterized by sustained 232 

elevation of nasopharyngeal TGF-β1, regulatory T cells and MRC-1 expressing macrophages26. 233 

In the current study, we demonstrate that the infection dose determines the nature of cytokine 234 

response to PLY, where lower infection doses eliciting cytokine inhibition. Hence, our results 235 

suggest that the infection dose is critical when studying host responses to pneumococcal 236 

infections. 237 

PLY is not a typical adhesin and has previously been considered to be cytosolic and released 238 

only upon bacterial lysis. However, recent data using transmission electron microscopy28 show 239 

that pneumolysin can be surface localized, suggesting that is can be available for interactions 240 

with host receptors. The above data support our discovery that PLY interacts with MRC-1 241 

which is a finding that represents a conceptual change in our current understanding. Our results 242 

suggest that MRC-1-PLY interaction is not mediated by glycan recognition, since MRC-1 also 243 

binds to deglycosylated PLY, and the interaction is specifically mediated by C type lectin 244 

domains 4-7 of MRC-1 and domain 4 of PLY.  245 

In conclusion, we discovered a significant role for PLY, whereby MRC-1 acts as a receptor for 246 

PLY, enabling pneumococci to invade MRC-1-proficient immune cells including DCs and 247 
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alveolar macrophages in the airways, thereby dampening cytokine responses to establish 248 

intracellular residency of pneumococci. Whilst MRC-1 has previously been demonstrated to 249 

bind pneumococcal capsular polysaccharides12,13, we show here that it can also directly bind to 250 

PLY. This is a hitherto unknown survival mechanism for the pneumococcus and has important 251 

implications for future vaccine design against infection. The potential mechanisms involved are 252 

summarized in Fig.4g.  253 

      254 

255 
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Methods 256 

Pneumococcal strains used 257 

The encapsulated S. pneumoniae serotype 4 strain TIGR4 (T4; ATCC BAA-334) as well as its 258 

non-encapsulated isogenic mutant, T4R, and their isogenic PLY-deficient mutants T4∆ply and 259 

T4R∆ply were used in this study. Clinical isolates of serotype 1 pneumococci expressing non-260 

hemolytic PLY (BHN31 of ST306) or clonally related strain expressing haemolytic PLY, 261 

(BHN32 of ST 228) were also used22. Bacteria were grown on blood agar plates at 37°C and 262 

5% CO2 overnight. Colonies were inoculated into C+Y medium and grown until exponential 263 

phase (OD620 = 0.5). For opsonisation, pneumococci were incubated with 5% Type 4 anti-serum 264 

for 30 min at 37°C (Statens Serum Institut).  265 

S. pneumoniae serotype 2, strain D39 (NCTC 7466), was obtained from the National Collection 266 

of Type Culture, London, UK. The pneumolysin-deletion D39 mutant D39Δply was kindly 267 

provided by Prof. Tim Mitchell (University of Birmingham). Capsular-deficient D39-J 268 

(D39Δcps) and the double mutant in PLY and the capsule DKO (double knock out) 269 

(D39ΔcpsΔply) were kindly provided by Dr. Lucy Hathaway (University of Bern). D39 was 270 

cultured on blood agar base with 5% v/v horse blood, or in brain heart infusion broth (BHI; 271 

Oxoid, Basingstoke, UK) with 20% v/v FBS (Sigma), Supplementaryemented with 20 mg/ml 272 

spectinomycin (Sigma) for DKO. 273 

Pneumolysin (PLY) 274 

Recombinant PLY, mutant (PdB) or PLY domains (D1-3, D4), were expressed in E. coli and 275 

purified as previously described7. PLY D1-3 and D4 were kindly provided by Prof. Tim 276 

Mitchell (University of Birmingham). Haemolytic activity of PLY was 100,000 HU/mg. 277 

Purified toxin was passed six times through an endotoxin removal column (Profos AG, 278 

Germany) and absence of detectable LPS was confirmed with PyroGene Recombinant Factor 279 

C assay (Lonza; detection limit 0.01 EU/ml).  280 
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Cell isolation from buffy coats, cell-culture and infection  281 

Monocytes were purified from buffy coats of healthy donors (Karolinska University Hospital 282 

and Uppsala University Hospital) using the RosetteSep™ monocyte purification kit (Stem Cell 283 

Technologies) and Ficoll-Paque Plus (GE Healthcare) gradient centrifugation. For 284 

differentiation into DCs, monocytes were cultured in R10 (RPMI 1640, 2 mM L-glutamine, 285 

10% FBS) Supplementaryemented with GM-CSF (40 ng/ml) and IL-4 (40 ng/ml) from 286 

Peprotech for 6 days. DCs were verified by flow cytometry to be >90% CD1a+ CD11c+. In co-287 

culture experiments, at 24 hrs post infection, DCs were washed and incubated with naïve CD4+ 288 

T cells in a 1:10 ratio (DC: T cells) at 37°C. Supernatants were collected 5 days later for 289 

cytokine measurements by ELISA. Cytokine values were subtracted from control wells 290 

containing DCs alone. For infection, DCs were incubated with pneumococci at a multiplicity 291 

of infection (MOI) of 1 and extracellular bacteria were killed with 200 µg/ml gentamicin after 292 

2 hrs of infection. Cytochalasin D (0.5 mM), wortmannin (0.1 mM) (Sigma) or stattic (5 μM) 293 

(Tocris Biosciences) were added to cells 15 min prior to pneumococcal infection. In some 294 

experiments, DCs were incubated with endotoxin-free PLY at 0.2 μg/ml diluted in R10 295 

medium.  296 

Human monocytic leukemia THP-1 cells (ATCC TIB-202) were cultivated in R10. For 297 

differentiation into macrophages, THP-1 cells were treated for 48 hrs with 20 ng/ml of phorbol 298 

myristate acetate (PMA) (Sigma). 299 

Neutrophils were isolated from whole blood upon lysis of RBCs and enriched using the 300 

EasySep human neutrophil enrichment kit (StemCell Technologies) according to the 301 

manufacturer’s instructions. Purified neutrophils were verified to be ~99% CD66b+CD16+. 302 

Human naive T cells were purified from fresh PBMCs using the EasySep™ Human Naive 303 

CD4+ T Cell Isolation Kit (Stem cell Technologies) and were verified by flow cytometry to be 304 

>95% CD3+CD4+. All cells used in this study were mycoplasma tested. 305 
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Isolation of mouse bone-marrow derived macrophage (BMDM) and culture 306 

Bone-marrow cells were flushed from murine femurs and tibia. Macrophages were grown from 307 

bone marrow cells in Dulbecco’s Modified Eagle’s Medium (Sigma, UK) 10% v/v foetal calf 308 

serum (FCS; Sigma), 100 U/ml penicillin, 100 mg/ml streptomycin, and 100 mM L-glutamine 309 

(Sigma) Supplementaryemented with 20 ng/ml macrophage colony-stimulating factor (M-CSF; 310 

R&D systems). Cultures were maintained in a humidified atmosphere (5% CO2) at 37°C, and 311 

medium was replaced on days 3 and 6. On day 6, cells were plated for use in assays. 6.25x105 312 

BMDM were cultured alone (untreated) or infected with D39, D39Δply, D39Δcps or DKO 313 

(D39ΔcpsΔply)(1 macrophage: 10 bacteria) or stimulated with purified PLY (4 μg/ml). After 314 

24 hrs incubation, supernatants were collected and used to assess cytokine production by ELISA 315 

or determine density of infection by Miles and Misra dilution.   316 

BMDM-T cell co-culture 317 

Naive CD25-CD4+ T cells were purified from spleen of C57BL/6 or MRC-1-/- mice by negative 318 

selection (Miltenyi Biotec). Non-CD4+ T cells and CD44+ memory T cells were labelled with 319 

biotinylated antibodies, before addition of anti-biotin microbeads and magnetic separation. 320 

CD4+ T-cell purity was >90%. Purified T-cells were added to 24 hrs pneumococcal stimulated 321 

BMDM at a ratio of 15:1 for 5 days. Culture supernatants were collected for ELISA and cells 322 

were stained for flow cytometry. 323 

Cell viability assays 324 

Cytotoxicity was determined in the culture supernatants by measuring the release of the enzyme 325 

lactate dehydrogenase (LDH) compared to a 100% lysis control using the Cytotoxicity kit 326 

(Roche) according to manufacturer’s instructions. 327 

 328 
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Real time quantitative PCR (qPCR) 329 

Total cellular RNA was extracted from cells using the RNeasy Kit (Qiagen). The concentration 330 

and purity of isolated RNA was determined spectrophotometrically with the Nanodrop ND 331 

1000. cDNA was synthesized from the isolated RNA using the High Capacity cDNA Reverse 332 

Transcription kit (Applied Biosystems). The qPCR was performed using the iTaq Universal 333 

SYBR Green Supermix (BioRad) according to manufacturer’s instructions. The following 334 

primers were used: Hs_SOCS1_1_SG, Hs_MRC1_1_SG and Hs_GAPDH_1_SG. Each primer 335 

pair was validated for specificity by performing melt curve analysis of the PCR product to 336 

ensure the absence of primer dimers and unspecific products. The mRNA expression level was 337 

normalized to the level of GAPDH and relative expression was determined with the ΔΔCT 338 

method. The TLR Signaling qPCR array (Qiagen) was performed according to the 339 

manufacturer’s instructions and analysed with the GeneGlobe Data analysis Center (Qiagen).  340 

Mouse experiments and isolation of alveolar macrophages 341 

All mice experiments were performed in accordance with the local ethical committee 342 

(Stockholms Norra djurförsöksetiska nämnd). Six- to seven- weeks old male wild-type 343 

C57BL/6J were used. Sample size was chosen to generate statistically significant data and based 344 

on pilot experiments to calculate variation within and between the experimental groups and 345 

probable degrees of freedom necessary to validate conclusions. Experiments with MRC-1-/- 346 

mice were done at the University of Liverpool with the approval of the UK Home Office and 347 

the University of Liverpool ethics committee. MRC-1-/- mice29 were generated on a mixed 348 

129SvJ and C57BL/6 background, and then backcrossed to C57BL/6 strain for at least 7 349 

generations. Homozygous knockout mice were bred and maintained at the University of 350 

Nottingham and were a generous gift of Dr. Luisa Martinez-Pomares (University of 351 

Nottingham). WT and MRC-1-/- mice used for infection were sex and age matched and no more 352 

than 12 weeks of age at the start of the experiment. WT and MRC-1-/- mice were randomised 353 



16 
 

independently to time points by technical staff with no role in study design. Researchers were 354 

blinded to the experimental group until the data analysis stage. For experiments with MRC-/- 355 

mice, sample size calculations were not performed due to limited mice availability from our 356 

collaborators. 357 

Pneumococcal nasopharyngeal carriage model 358 

For induction of pneumococcal nasopharyngeal carriage, mice were lightly anaesthetized and 359 

10 μl PBS containing 1x105 CFU D39 was administered into the nostrils. The dose was 360 

confirmed by viable count following infection. At pre-chosen time intervals following 361 

infection, mice were sacrificed and nasopharynx, draining cervical lymph nodes and lungs were 362 

collected, passed through a 30 μm cell strainer or homogenized with an Ultra-Turrax T8 363 

homogeniser (IKA, Germany). Bacterial counts were determined from tissue homogenates by 364 

viable count on blood agar plates. 365 

Invasive pneumococcal disease model  366 

Mice were sedated by inhalation of 4% isofluorane and 50 µl PBS containing 106 CFU of wild-367 

type T4 or the PLY mutant, T4∆ply was administered into the nostrils. To block MRC-1, 20 µl 368 

of 0.1 mg/mL monoclonal anti-MRC-1 (Abcam) or isotype matched control (Abcam) was 369 

administered intranasally 30 min before infection. Post sacrifice, the lungs were perfused twice 370 

with ice-cold PBS containing 1 mM EDTA to collect the bronchoalveolar lavage fluid (BALF). 371 

To determine viable bacterial counts, serial dilutions of BALF were plated on blood agar plates 372 

followed by colony counting. Aliquots of BALF were frozen at -80°C for cytokine 373 

quantification by ELISA. To isolate alveolar macrophages, BALF was spun down at 400 g for 374 

7 min at 4°C, resuspended in R10 medium (RPMI 1640 containing 2 mM L-glutamine and 10% 375 

foetal bovine serum (FBS)) and plated on coverslips for 1 hr to allow cells to attach. Unattached 376 

cells were removed by washes with PBS. Macrophages were verified phenotypically by flow 377 
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cytometry (CD11c+ Siglec F+). The percentage of neutrophils (CD11bhi Ly6Ghi) and monocytes 378 

(CD11bhi Ly6Chi) in the BALF was quantified by flow cytometry upon gating for viable cells 379 

stained using fixable viable dye eFluor 780 (Thermo Fisher Scientific).  380 

MRC-1 knockdown using siRNA  381 

DCs (6 x 106) were electroporated with 5 µM siRNA from Life Technologies against MRC-1 382 

(s53926, s53927, s53928) or scrambled control siRNA (4390843, 4390846) on day 4 of DC 383 

differentiation. The cells were electroporated with the Bio-Rad gene pulser (square wave, 500V, 384 

0.5 ms with a single impulse) and immediately resuspended in fresh R10 medium. The cells 385 

were used 48 hrs post siRNA electroporation. Treatment with siRNA reduced MRC-1 protein 386 

expression by ~80% as evaluated by western blotting (Fig. S3A). 387 

Flow Cytometry 388 

Cells were fixed with 4 % PFA and stained with a mouse anti-MRC-1 (Abcam) and a goat-anti 389 

mouse Alexa Fluor 488 secondary antibody (Life Technologies). For intracellular staining, cells 390 

were fixed with 4% PFA and permeabilized with ice cold methanol. Cells were stained with 391 

phospho-STAT1 (Tyr 701) Alexa Fluor 488 conjugated rabbit antibody (Cell Signalling), rabbit 392 

anti-SOCS1 (ab135718) and assessed by flow cytometry using the Gallios Flow Cytometer. In 393 

addition, the following antibodies from Biolegend were used in this study : CD3 (100235), CD4 394 

(100405), CD8a (100707), CD11b (101207), CD19 (152403), CD45 (103111), CD69 (104507), 395 

CD115 (135523), CD206 (MRC-1) (141707), F4/80 (123107), FOXP3 (126403), GATA3 396 

(653805), Gr-1 (108411), MARCO (BioRad ED31), RORγt (654301), T-bet (644809). 397 

Antibodies were conjugated to fluorescein isothiocyanate (FITC), phycoerythrin (PE), PE-Cy7 398 

or allophycocyanin (APC) and appropriate isotype controls were included in all experiments. 399 

Quantification of cytokines 400 

For cytokine measurement, cell-free culture supernatants were harvested 18 hrs pi and frozen 401 

at -20°C. The levels of human TNF-α, IL-12p70, IL-1ß, IFN-γ and IL-4, using the OptEIA™ 402 
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ELISA kit (BD Biosciences). The levels of mouse TNF-α, IL-12p70, IL-1ß, IL-10 and TGF-ß 403 

in the mouse BALF was measured using the respective mouse ELISA kits (BD Biosciences). 404 

Enzymatic deglycosylation of PLY 405 

PLY was deglycosylated under native conditions using the Protein Deglycosylation kit (Sigma) 406 

following the instructions of the kit. Briefly, 10 μg of recombinant PLY was incubated with 1 407 

μl each of Peptide:N-glycosidase F, O-Glycosidase, Sialidase A, ß-(1-4)-Galactosidase and ß-408 

N-acetylglucosaminidase in 50 μl reaction buffer for 3 days at 37°C.  The extent of 409 

deglycosylation was assessed by mobility shifts on SDS-PAGE gels.   410 

Pull-down of PLY-interacting proteins and Co-IP with MRC-1  411 

To identify proteins interacting with PLY, pull-down was performed on DC and THP-1 native 412 

cell lysates using recombinant PLY as the bait. Cells were lysed with native lysis buffer 413 

(Abcam) containing 1x protease inhibitors (Roche) on ice for 15 min. Briefly, lysate 414 

corresponding to 0.8 mg protein was precleared by incubating with Protein G-agarose beads 415 

(Pierce) for 30 min at 4°C. Subsequently, the precleared lysate was incubated with 1 μg PLY 416 

(Cusabio) for 1 hr at 4°C and then incubated with Protein G beads conjugated to mouse anti-417 

PLY (Abcam) with gentle rotation overnight at 4°C. As a control, lysates were incubated with 418 

isotype antibody or beads alone to distinguish non-specific interactions. The beads were washed 419 

thrice with PBS and the bound proteins were eluted by boiling in NuPAGE LDS sample buffer 420 

for 5 min at 95°C. The eluted proteins were identified using mass spectrometry at the Science 421 

for Life Laboratory in Uppsala, Sweden. The protein identifications were based on at least two 422 

matching peptides of 95% confidence per protein. To confirm the interaction between PLY and 423 

MRC-1, western blotting was performed on the eluate. MRC-1 was detected using rabbit anti-424 

human MRC-1 (Abcam) and HRP-conjugated secondary goat anti-rabbit (GE Healthcare).  425 

 426 
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Surface plasmon resonance analysis 427 

Surface plasmon resonance experiments were run on Biacore 3000 and T200 instruments (GE 428 

Healthcare) at 25°C with 10 mM HEPES Supplementaryemented with 2 mM CaCl2 and 0.1 % 429 

(v/v) Tween 20 as running buffer. Pneumolysin (PLY; Causabio) and mannose receptor C type 430 

1 (MRC-1; R&D Systems) were diluted to 10 μg/mL in 10 mM NaOAc pH 4.5 and immobilized 431 

on CM5 chips by amine coupling to immobilization levels of 2200 and 12000 RU, respectively. 432 

PLY was buffer-exchanged into running buffer using a 3 kDa MWCO Amicon centrifugal filter 433 

device prior to injections. Human serum albumin was immobilized at 11000 RU in a separate 434 

flow cell as a negative control. Analytes were injected at 30 μl/min and surfaces were 435 

regenerated using 10 mM HCl. Sensorgrams were double referenced using a blank flow cell 436 

and a buffer injection. Data for injections of PLY over MRC-1 were fitted to a Langmuir 1:1 437 

interaction using BiaEval 4.1 software and the dissociation equilibrium constant was calculated 438 

from average association and dissociation rate constants obtained from three separate dilution 439 

series analyzed on two different sensor chips. Human serum albumin, bovine serum albumin 440 

and Trastuzumab (Herceptin®) were injected at 1 μM as negative controls for non-specific 441 

binding. The influence of mannose on MRC-1 binding was evaluated by pre-incubating 100 442 

nM of MRC with 0.5 mM D-mannose or D-glucose (Sigma) for 1 hr in running buffer prior to 443 

injection of the mixed samples over the PLY immobilized chip. 444 

ELISA to measure MRC-1-PLY binding  445 

Briefly, 96-well flat-bottomed plates (Sigma, UK) were coated overnight with 1.25-10 μg/ml 446 

of mannose receptor, full-length (2534-MR-050) or truncated constructs CTLD4-7-Fc, CR-447 

FNII-CTLD1-3-Fc30, a generous gift from Dr Luisa Martinez-Pomares (University of 448 

Nottingham, UK), in the presence or absence of galactose or mannose (Sigma, UK) in coating 449 

buffer (15 mM Na2CO3, 35 mM NaHCO3, pH 9.6). Wells were blocked with 200 μl of 20% 450 

(v/v) FBS in PBS for 2 hrs, and then washed three times with 250 μl PBS, 0.05% (v/v) Tween 451 
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20 (Sigma, UK). 10 μg/ml of PLY, PdB, PLY domains 1-3 or PLY domain 4 was added and 452 

incubated at 37ºC for 1 hr. Wells were washed again with PBS and bound proteins were detected 453 

using PLY polyclonal antibody (Abcam ab71811) in blocking buffer. Plates were incubated 454 

with anti-rabbit IgG alkaline phosphatase (Abcam ab6722) in blocking buffer. Bound 455 

antibodies were detected in using the chromogenic substrate p-nitrophenylphosphate (pNPP) 456 

for 30 min. 1M NaOH was added to all wells and the absorbance was measured at 405 nm.  457 

To study the specific interaction of MRC-1 with PLY versus capsular polysaccharides, 458 

immobilized MRC1 was incubated with PLY (0-5 μg/ml) in the presence or absence of 2.5 459 

μg/ml of purified serotype 2 or type 4 capsules (SSI Diagnostica). Bound PLY in the presence 460 

or absence of capsule was detected using mouse anti-PLY and anti-mouse IgG-HRP. Binding 461 

of purified capsule to MRC-1 was detected using rabbit anti-capsule and anti-rabbit IgG-HRP. 462 

Bound antibodies were detected using the chromogenic substrate, tetramethylbenzidine (TMB). 463 

1M phosphoric acid was used as stop solution and absorbance was measured at 450 nm.                           464 

Immunofluorescence microscopy 465 

Briefly, cells were fixed with 4% paraformaldehyde buffered in PBS for 10 min. Subsequently, 466 

the cells were permeabilized using PBS containing 0.5% Tween20 for 15 min. To block non-467 

specific interactions, cells were incubated with 5% FBS in PBS for 1 hr. Lysosomes were 468 

stained using lysotracker deep red (Thermo Fisher Scientific) prior to fixation. Early endosomes 469 

were stained using Alexa 647conjugated anti-EEA1 (Abcam). PLY was stained using mouse 470 

anti-PLY (Abcam) and Alexa488-goat anti-mouse secondary antibody (Thermo Fisher 471 

Scientific). MRC-1 was detected using rabbit anti-MRC-1 (Abcam) and Alexa 555-goat anti-472 

rabbit secondary antibody (Thermo Fisher Scientific). Pneumococci were stained using rabbit 473 

anti-pneumococcal anti-serum (Eurogentec) labeled with Alexa 488 using Zenon rabbit IgG 474 

labeling kit (Thermo Fisher Scientific). Type 1 clinical strains were stained using anti-serum 475 

Type 1 (Statens Serum Institut). Samples were washed twice with PBS between the antibody 476 
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incubations and mounted on slides using ProLong Diamond antifade reagent containing DAPI 477 

(Thermo Fisher Scientific). Images were acquired using the Delta Vision Elite microscope 478 

under the 100x objective (GE Healthcare).  479 

Immunohistochemistry 480 

Draining cervical lymph nodes were snap frozen in liquid nitrogen and 7 μm sections were cut.  481 

Staining was performed with fluorochrome conjugated MRC-1 (biotin 647, BD biosciences) 482 

and appropriate isotype matched controls.  Sections were mounted in ProLong Gold 483 

(Invitrogen) and images were taken using a Zeiss Axioplan LSM 510 confocal microscope as 484 

single optical slices of between 0.8 and 1.0 μm.  Images were analyzed using Zeiss LSM image 485 

browsing software v4.   486 

Western blotting 487 

Cells were lysed with RIPA buffer containing 1× protease inhibitors (Roche) on ice for 15 488 

minutes. Cell debris and nuclear material were pelleted by centrifuging at 13000 rpm for 15 489 

min. Lysate corresponding to 25 µg protein was boiled for 5 min at 95°C in NuPAGE LDS 490 

sample buffer and resolved on 4-12% Bis-Tris gel (Invitrogen). Proteins were transferred to 491 

polyvinylidene fluoride (PDVF) membrane and blocked with 5% skim milk powder in PBS 492 

containing 0.1% Tween-20. Proteins were detected using the following antibodies: mouse anti-493 

human MRC-1 (Abcam), SOCS1 antibody, NFκB(p65) antibody (Santa Cruz) and a phospho-494 

IκBa (Ser32) (Santa Cruz). Rabbit anti-GAPDH (Sigma) and Rabbit Histone H2A2.Z (Cell 495 

signaling Technologies) was used as a loading control. Anti-rabbit IgG or anti-mouse IgG 496 

conjugated to horseradish peroxidase (GE Healthcare) were used as secondary antibodies. Blots 497 

were developed with Amersham™ ECL Plus Western blotting detection system (GE 498 

Healthcare), using a ChemiDoc™ XRS+ (Bio-Rad Laboratories). 499 

Statistical analysis 500 
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Data were statistically analysed using GraphPad Prism 5.04. Data of immune cells prepared 501 

from human donor blood were analysed with a Wilcoxon matched-pairs signed rank test. Data 502 

from THP-1 macrophages were analysed with a Mann Whitney test. Comparison between 503 

groups was done with a one-way or two-way ANOVA followed by a Bonferroni or Tukey’s 504 

post-test as indicated. Normalized data was analysed with an unpaired t-test. Differences were 505 

considered significant at *P < 0.05, **P < 0.005 and ns denotes not significant. 506 

Life Sciences Reporting Summary 507 

Further information on experimental design is available in the Life Sciences Reporting 508 

Summary. 509 

Data availability 510 

The data that support the findings of this study are available from the corresponding authors 511 

upon reasonable request. 512 

513 
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Figure legends         622 

Fig. 1. Pneumolysin inhibits cytokine responses and inflammatory signalling in DCs by 623 

upregulating SOCS1. (a) TNF-α secretion from human dendritic cells (DCs) (N=6), THP-1 624 

macrophages (N=4), and primary neutrophils (N=4) upon infection with wild type strain T4R 625 

or its isogenic pneumolysin (PLY) mutant T4R∆ply. Data are mean±SEM. *P < 0.05 by 626 

Wilcoxon matched-pairs signed (two-tailed) rank test. (b) TNF-α secretion from DCs infected 627 

with encapsulated strains, T4 or T4∆ply (N=3 donors). Data are mean±S.E.M. P < 0.05 by 628 

Wilcoxon matched-pairs signed (two-tailed) rank test. (c) SOCS1 mRNA levels in T4R or 629 

T4R∆ply infected DCs at 9 hrs post infection (pi) (N=3 donors). Data are mean±S.E.M. P < 630 

0.05 by paired two-tailed t test. (d) Flow cytometry histogram plot showing SOCS1 protein 631 

levels in T4R or in T4R∆ply infected DCs at 9 hrs pi. Percentage of SOCS1+ cells is indicated 632 

within the parenthesis. (e) STAT1 phosphorylation in T4R or in T4R∆ply infected DCs at 3-5 633 

hrs pi. Data in d,e are representative of 3 independent experiments. (f) Western blot showing 634 

the levels of nuclear NF-κB (p65) in T4R or T4R∆ply infected DCs at 4 hrs pi. Histone H2A 635 

served as loading controls. Blots are representative of data from 2 independent experiments. 636 

Fig. 2. MRC-1 co-localizes with pneumolysin and intracellular pneumococci in DCs. (a) 637 

Representative sensorgram of three independent surface plasmon resonance experiments 638 

showing the dose-dependent binding profile of recombinant PLY (12.5-200 nM) over 639 

immobilized MRC-1. (b) ELISA showing the binding of immobilized MRC-1 constructs, 640 

CTLD4-7-Fc or CR-FNII-CTLD1-Fc (1.25-10 μg/ml) with full-length pneumolysin (PLY), 641 

toxoid PdB, PLY domains 1-3 and domain 4. Mannan (Man) was used as a specific ligand for 642 

CTLD4-7 to block interaction with PLY, and galactose (Gal) was used as a negative control for 643 

the blocking assay. Bound PLY was detected using anti-PLY antibodies. Data are mean±S.E.M 644 

of two independent experiments, each containing 3 replicates per condition. (c) Wild type (WT) 645 
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DCs or MRC-1 siRNA treated DCs were incubated with purified active PLY or mutant PLY 646 

(PdB) (200 ng/ml) for 45 min. Immunofluorescence staining show that active PLY co-localizes 647 

with MRC-1 and EEA-1 (early endosomes) in contrast to the non-pore forming mutant PLY 648 

(PdB). (d) DCs were infected with T4R or T4R∆ply for 90 min. Immunofluorescence staining 649 

showed that intracellular T4R co-localizes with MRC-1, while T4R∆ply does not co-localize 650 

with MRC-1, but with lysosomes (lysotracker) (white arrows). All scale bars, 5 μm. Data in c,d 651 

are representative of three independent experiments. 652 

Fig. 3. Depletion of MRC-1 abolishes pneumolysin induced cytokine inhibition and 653 

enhances T cell activation. (a) Uptake of T4R and T4RΔply by WT and MRC-1 siRNA treated 654 

DCs (N=3 donors). The uptake was expressed as a percentage relative to untreated DCs. Data 655 

represent mean ± S.E.M. **** denotes P<0.0001 by two-way ANOVA with Bonferroni post-656 

test. (b) Wild type DCs (control) or MRC-1 siRNA treated DCs were infected with T4R and 657 

secretion of IL-12, TNF-α and IL-6 was measured in culture supernatants (N=3 donors). Data 658 

represent mean ± S.E.M. **** denotes P<0.0001 and ** denotes P<0.01 by two-way ANOVA 659 

with Bonferroni post-test. (c-d) Wild type or MRC-1 siRNA treated DCs were infected with 660 

T4R, T4R∆ply or recombinant PLY (rPLY) (200 ng/mL) for 24 hrs and co-cultured with naïve 661 

CD4+ T cells for 5 days. Secretion of (c) IFN-γ and (d) IL-4 was measured in culture 662 

supernatants (N=5 donors). Data represent mean ± S.E.M. **** denotes P<0.0001, ** denotes 663 

P<0.01, * denotes P<0.05 by two-way ANOVA with Bonferroni post-test. (e) FoxP3 expression 664 

in human naïve CD4+ T cells upon co-culture with DCs (control or MRC-1 siRNA treated) 665 

infected with T4R or T4R∆ply. Data are representative of three independent experiments. (f) 666 

Percentage FoxP3+ CD4+ T cells upon co-culture with murine BMDMs (from wild type or 667 

MRC-1-/- mice) that were infected with heat-killed strain D39 or mutant derivatives lacking 668 

capsule (D39Δcps), PLY (D39Δply) or a double mutant (D39ΔcpsΔply) or purified PLY. Data 669 
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represent mean ± S.E.M. N=3, two way-ANOVA with Bonferroni multiple comparison test. * 670 

P < 0.05; **P< 0.01. 671 

Fig. 4. MRC-1 mediates pneumolysin-induced suppression of early inflammatory 672 

responses in vivo. (a) Primary alveolar macrophages were isolated from C57/BL6J mice 673 

infected with T4 or T4Δply at 6 hrs pi. Immunofluorescence staining showed that PLY 674 

proficient pneumococci (T4) co-localize with MRC-1 unlike T4Δply that co-localizes with the 675 

lysosome marker (lysotracker). Scale bars, 5μm. Images are representative of data from 5 676 

mice/group. (b) TNF-α levels (N=12) and (c) bacterial count (CFU/mL) (N=13) in BALF from 677 

mice infected with either T4 or T4Δply at 6 hrs pi. Data are mean ± S.E.M of three independent 678 

experiments. **P< 0.01 by Mann-Whitney (two-tailed) test. (d) Levels of TNF-α (N=8), and 679 

(e) bacterial count (CFU/mL) (N=9) in BALF of mice pretreated with anti-MRC-1 (0.1 mg/mL) 680 

or isotype antibody and infected with strain T4 for 6 hrs. Data are mean ± S.E.M of three 681 

independent experiments. **P< 0.01 by Mann-Whitney (two-tailed) test. (f) Bacterial count 682 

(CFU) per mg nasopharyngeal homogenates of wild type or MRC-1-/-mice infected with strain 683 

D39 over a 14 day carriage experiment. N=6 per data point, data represent mean ±S.E.M. and 684 

analyzed by two-way ANOVA with Tukey’s post-test. (g) Model suggested for PLY-mediated 685 

immunomodulation. PLY-proficient pneumococci induce internalization into alveolar 686 

macrophages and DCs via interaction with MRC-1. PLY-expressing pneumococci co-localize 687 

with MRC-1 in non-lysosomal compartments and block inflammatory cytokine secretion by 688 

upregulating SOCS1, thereby promoting regulatory T cell responses and bacterial survival in 689 

the airways. **P< 0.01, *** P< 0.001. 690 

691 
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