
1 

Submitted to Engineering Geology 1 
 2 
 3 
Reliability Sensitivity Analysis of Geotechnical Monitoring Variables Using 4 

Bayesian Updating 5 
 6 

 7 

Dian-Qing Li, State Key Laboratory of Water Resources and Hydropower Engineering 8 

Science, Institute of Engineering Risk and Disaster Prevention, Wuhan University; 8 9 

Donghu South Road, Wuhan 430072, P. R. China. Email: dianqing@whu.edu.cn 10 

Fu-Ping Zhang, State Key Laboratory of Water Resources and Hydropower Engineering 11 

Science, Institute of Engineering Risk and Disaster Prevention, Wuhan University; 8 12 

Donghu South Road, Wuhan 430072, P. R. China. Email: fupingzhang@whu.edu.cn 13 

Zi-Jun Cao, State Key Laboratory of Water Resources and Hydropower Engineering Science, 14 

Institute of Engineering Risk and Disaster Prevention, Wuhan University; 8 Donghu 15 

South Road, Wuhan 430072, P. R. China. Email: zijuncao@whu.edu.cn  16 

Xiao-Song Tang, State Key Laboratory of Water Resources and Hydropower Engineering 17 

Science, Institute of Engineering Risk and Disaster Prevention, Wuhan University; 8 18 

Donghu South Road, Wuhan 430072, P. R. China. Email: xstang@whu.edu.cn  19 

Siu-Kui Au, Institute for Risk and Uncertainty, University of Liverpool; Harrison Hughes 20 

Building, Brownlow Hill, Liverpool, L69 3GH, United Kingdom. Email: 21 

siukuiau@liverpool.ac.uk 22 

 23 

Corresponding author: Zi-Jun Cao 24 

Tel: (86)-27-6877 4036 25 

Fax: (86)-27-6877 4295 26 

E-mail: zijuncao@whu.edu.cn  27 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/161817557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

Abstract  28 

Determining the sensitivity of monitoring variables is essential to field monitoring design for 29 

effectively monitoring the safety and reliability levels of geotechnical structures in uncertain 30 

environment. Reliability sensitivity analysis of monitoring variables provides a rational 31 

approach for identifying sensitive monitoring variables and is capable of accounting for 32 

geotechnical uncertainties. It, however, can be computationally expensive, especially when 33 

sophisticated numerical models (e.g., finite difference model, FDM) are involved and repeated 34 

simulation runs are required. This paper proposes a reliability sensitivity analysis method that 35 

leverages on the robustness of direct Monte Carlo simulation (MCS) and the Bayesian 36 

Updating with Structural Reliability Methods. The proposed approach allows performing the 37 

reliability sensitivity analysis of a monitoring variable by a single run of direct MCS, avoiding 38 

repeated simulation runs for different possible observational values of a given monitoring 39 

variable. Illustrative examples demonstrate the capability of the proposed approach in 40 

identifying the most sensitive monitoring variables among candidates. It is possible to achieve 41 

a significant reduction in the number of evaluations of numerical models for reliability 42 

sensitivity analysis of monitoring variables using the proposed approach.  43 

 44 

Keywords: Monitoring design; Reliability analysis; Bayesian updating; Direct Monte Carlo 45 

simulation46 
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1 Introduction 47 

Geotechnical structures are frequently constructed and operated in highly uncertain 48 

environments due to the variability of load conditions and geo-materials that are affected by 49 

various geological processes and have undergone complex geological histories. For safety 50 

control and risk mitigation, field monitoring can be adopted in the field of engineering geology 51 

and geotechnical engineering to acquire information (e.g., displacement and groundwater level) 52 

reflecting safety and reliability levels of geotechnical structures by in-situ instrumentation 53 

(Juang et al., 2013; Schweckendiek and Vrouwenvelder, 2013; Peng et al., 2014; Yu et al., 54 

2014; Kelly and Huang, 2015; Zhang et al., 2015; Camós et al., 2016; Ering and Babu, 2016; 55 

Li et al., 2016c, d; Hong et al., 2017; Xu et al., 2018; Zheng et al., 2018). Proper instrumentation 56 

is crucial to cost-effective field monitoring and rational assessment of geotechnical safety and 57 

reliability, which is usually accomplished through monitoring design. Monitoring design aims 58 

at identifying monitoring variables sensitive to the safety and reliability level of the subject 59 

geotechnical structure amidst various geotechnical uncertainties (such as those in soil/rock 60 

parameters and loads).  61 

Reliability sensitivity analysis (Au, 2005; Sudret, 2008; Wang, 2012) provides a 62 

rigorous and rational framework for identifying sensitive monitoring variables from a pool of 63 

candidates (e.g., displacements at different locations of a slope). Under a reliability sensitivity 64 

analysis framework, the sensitivity of the reliability of a geotechnical system (e.g., slope) to a 65 

monitoring variable Z can be quantitatively reflected by the variation of failure probability, PF, 66 

of the geotechnical system as a function of Z, which is referred to as the ‘failure probability 67 
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function’ (FPF) with respect to the monitoring variable (i.e., FPFwMV) in this study.  68 

Determining FPFwMV for the monitoring design, during which no monitoring 69 

information has been obtained, requires one to calculate PF for different prescribed values of 70 

the monitoring variable concerned. This is a nontrivial task at least for two reasons. First, the 71 

monitoring variable (e.g., displacements at some locations of a slope) may not be identical to 72 

the design performance (e.g., safety factor of slope stability, FS) of geotechnical structures, 73 

and they are usually linked through mathematical models, such as finite element model (FEM) 74 

and finite difference model (FDM), in an implicit and indirect manner. For practical 75 

applications, the model can be very complex and its evaluation is a computationally expensive 76 

task. Second, incorporating the monitoring information into evaluation of PF is frequently 77 

performed under a Bayesian framework, in which the probability distribution of x is updated 78 

based on monitoring information and PF is re-evaluated using the updated probability 79 

distribution (e.g., Hsiao et al., 2008; Straub, 2011; Papaioannou and Straub, 2012; 80 

Schweckendiek and Vrouwenvelder, 2013; Wang et al., 2012; Zhang et al., 2013; Peng et al., 81 

2014; Li et al., 2016 b, c, d). By this means, determining FPFwMV often necessitates repeated 82 

Bayesian analyses and reliability assessments of geotechnical structures for different values of 83 

the monitoring variable concerned. This can be computationally prohibitive as complex models 84 

are involved.  85 

The above computational difficulty becomes more profound as the FPFwMV is evaluated 86 

through simulation-based methods that are generally applicable to complex models, such as 87 

Monte Carlo simulation (MCS) (e.g., Ang and Tang, 2007; Zhang et al., 2014, 2017; Li et al., 88 
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2015; Gong et al., 2017, 2018; Xiao et al., 2018; Qi and Li, 2018), Markov Chain Monte Carlo 89 

simulation (MCMCS) (e.g., Zhang et al., 2010, 2012; Wang and Cao, 2013; Cao and Wang, 90 

2014), and Subset simulation (e.g., Au and Wang, 2014; Li et al., 2016a; Xiao et al., 2016; 91 

Jiang et al., 2018). Previous studies (e.g., Au, 2005; Ching and Hsieh, 2007; Wang et al., 2010; 92 

Wang, 2012; Yuan, 2013; Li et al., 2015) have developed several MCS-based methods for 93 

efficient reliability sensitivity analyses. These methods provide the reliability sensitivity on 94 

uncertain model parameters x (e.g., shear strength parameters) or design geometry parameters 95 

(e.g., slope height and angle), which are directly used as input to evaluate the design 96 

performance (e.g., FS) concerned. However, how to make use of MCS methods (e.g., direct 97 

MCS) to efficiently evaluate the reliability sensitivity of geotechnical structures with respect 98 

to monitoring variables, which are often implicit functions of x, remains an open question.  99 

This paper develops a MCS-based method for reliability sensitivity analysis of monitoring 100 

variables for geotechnical structures, which leverages on the robustness of direct Monte Carlo 101 

simulation (MCS) and the recently established analogy between reliability and Bayesian 102 

updating problem, i.e., the BUS (Bayesian Updating with Structural Reliability Methods) 103 

framework (Straub and Papaioannou 2015). The proposed approach evaluates the FPFwMV 104 

by a single run of direct MCS, avoiding repeated simulation runs for different possible 105 

observational values of a given monitoring variable. This allows performing reliability 106 

sensitivity analysis for identifying sensitive monitoring variables with complex computational 107 

models, which accounts for various geological factors (e.g., geological discontinuities) in a 108 

more detailed and realistic manner for the real world engineering problems, prior to the 109 



4 

monitoring. Moreover, if observational data are obtained during the monitoring, the updated 110 

reliability of geotechnical structure concerned can be directly read from the FPFwMV for real-111 

time risk-based decision making, which is a nontrivial task because the posterior reliability 112 

analysis is often involved. The paper starts with the description of a general framework for 113 

reliability sensitivity analysis of monitoring variables, followed by development of the 114 

proposed approach. To improve the accuracy of the estimated FPFwMV, a modified rejection 115 

sampling principle is also developed. Finally, the proposed approach is illustrated using two 116 

geotechnical monitoring examples. 117 

 118 

2 General framework for reliability sensitivity analysis of monitoring variables 119 

Consider a geotechnical environment where one wants to determine a set of quantities for 120 

monitoring purpose. Fig.1 illustrates schematically the proposed reliability sensitivity analysis 121 

framework for monitoring variables. It starts with determining a number, M, of candidate 122 

monitoring variables Zk (k = 1, 2, …, M) (e.g., displacements and groundwater level) based on 123 

site conditions and equipment availability. To effectively monitor the change in the reliability 124 

level of geotechnical structures (e.g., levee and slope), one needs to identify sensitive 125 

monitoring variables to guide in-situ instrumentation, which can be achieved by comparing the 126 

FPFs of candidate monitoring variables. For a given monitoring variable Zk, the corresponding 127 

FPF is obtained by calculating failure probabilities PF(Zk = zk,l) of the geotechnical structure at 128 

a number, Nk, of possible observational values (POVs), zk,l, l = 1, 2, …, Nk, of Zk. Herein, failure 129 

is defined in terms of the design performance (e.g., FS of slope stability) of the geotechnical 130 
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structure, which need not be the same as the monitoring variables. Note that, at the 131 

instrumentation design stage, monitoring information is not available, and some POVs of 132 

monitoring variables are prescribed for the reliability sensitivity analysis. For a given POV zk,l 133 

of Zk, its corresponding PF (Zk = zk,l) can be calculated through two steps: (1) determine the 134 

conditional probability distribution of uncertain model parameters x, which are directly used 135 

to evaluate the geotechnical design performance, given Zk = zk,l; and (2) evaluate PF (Zk = zk,l) 136 

based on the conditional probability distribution of x, which are provided as below.  137 

Using the Bayes’ Theorem, the conditional probability density function (PDF) f(x|zk,l) of 138 

x given Zk = zk,l, often referred as the ‘posterior PDF’, can be expressed as:  139 

, , ,( | ) ( | ) ( ) / ( )k l k l k lf f f fz z zx x x   for k = 1, 2, …, M and l = 1, 2, …, Nk              (1) 140 

where f(x) is the prior PDF of x and it reflects the knowledge on x in monitoring design stage 141 

where the monitoring information has not been obtained; f(zk,l|x) is the likelihood function that 142 

quantifies influence of x on Zk; and , ,( )= ( | ) ( )k l k lf z f z f d x x x  is the normalizing constant 143 

independent of x. The formulation of the likelihood function is pivotal to evaluating the f(x|zk,l) 144 

in Eq. (1). It necessitates a mathematical model (e.g., FEM and FDM) to link x to Zk. For a 145 

given mathematical model, the POV (i.e., zk,l) of Zk is modeled as:  146 

,z ( )k l k kM  x                                                            (2) 147 

where Mk(x) is the model prediction of the monitoring variable, referred as the monitoring 148 

performance function (MPF) of Zk in this study; εk is assumed to be a Normal random variable 149 

with a mean value of μk and a standard deviation of σk, and it represents the model uncertainty 150 

associated with the mathematical model used to predict the value of Zk. Using Eq. (2), the 151 



6 

likelihood function f(zk,l|x) is given by:  152 
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Based on Eq. (3) and prior PDF of x, f(x|zk,l), is obtained using Eq. (1). Then, PF (Zk= zk,l) is 154 

calculated as:  155 

 , , ,( )= ( ( )| = (0) | )k k l k k l kF lZ zP P F I fz g dZ z   x x x                              (4) 156 

where g(x) is the design performance function (DPF) of a geotechnical structure (e.g., g(x) = 157 

FS-1) and it is used to assess whether the performance (e.g., slope stability) of the geotechnical 158 

structure is satisfactory or not; and I[] is an indicator function. I[] is equal to 1 if the 159 

performance of the geotechnical structure is unsatisfactory, i.e., g(x) ≤ 0, otherwise, it is equal 160 

to zero.  161 

    Note that the model uncertainties associated with the MPF and DPF affect the posterior 162 

distribution of uncertain model parameters (see Eqs. (1)-(3)) and posterior reliability analysis 163 

(see Eq. (4)), future studies on which are warranted. This is, however, out of the scope of this 164 

study. The values of model uncertainties in the illustrative examples later are simply adopted 165 

from those used in the literature to enable a consistent comparison with previous studies.  166 

The calculation of PF (Zk= zk,l) involves a number of evaluations of the MPF (for Bayesian 167 

analysis) and DPF (for the reliability analysis), which requires mathematical models to predict 168 

the monitoring variable and design performance given x. Consider, for example, using direct 169 

MCS or MCMCS to evaluate f(x|zk,l) in Eq. (1) and to calculate PF (Zk = zk,l) in Eq. (4) by 170 

generating Nmcs random samples of x (Beck and Au, 2002; Robert and Casella, 2004; Li et al., 171 

2016c). This requires Nmcs evaluations of MPF and DPF (i.e., Nmcs evaluations of their 172 
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corresponding mathematical models), respectively. A direct way to obtain the FPF with respect 173 

to Zk is repeatedly performing simulation runs at its Nk POVs to calculate their corresponding 174 

PF (Zk = zk,l) values. By this means, Nmcs  Nk evaluations of MPF and DPF are needed. This is 175 

often computationally expensive, particularly for complex numerical models (e.g., FEM and 176 

FDM). The next section proposes an efficient method for evaluating FPFwMV, which only 177 

requires a single run of direct MCS. 178 

 179 

3 Reliability sensitivity analysis of monitoring variables using direct MCS and BUS  180 

3.1 Bayesian updating with structural reliability methods (BUS) 181 

The proposed approach first evaluates the conditional PDF f(x|zk,l) given by Eq. (1) using a 182 

Bayesian updating technique recently developed by Straub and Papaioannou (2015), so-called 183 

Bayesian updating with structural reliability methods (BUS). BUS converts Bayesian updating 184 

problems into equivalent reliability analysis problems by constructing an observational failure 185 

domain (OFD) using the likelihood function. Reliability analysis methods (e.g., direct MCS) 186 

can then be used to evaluate the posterior distribution (e.g., Eq. (1)). In the context of BUS, the 187 

OFD in this study is defined as (Straub and Papaioannou, 2015; Cao et al., 2018):  188 

,U |( )kl k lf zc   xΩ                                                      (5) 189 

where Ωkl represents the OFD for Zk= zk,l; c = a positive scalar constant ensuring cf(zk,l|x) ≤ 1 190 

and it is taken as the reciprocal of the maximum value of the likelihood function f(zk,l|x) given 191 

by Eq. (3), i.e., c = 2 k ; and U = a uniform random variable ranging from zero to unity and 192 

it is independent of x. Substituting Eq. (1) into Eq. (5) gives:  193 
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where [cf(zk,l)]-1 is a constant independent of x. The f(x|zk,l) and f(x) in Eq. (6) can be, 195 

respectively, viewed as the target and sampling distributions according to rejection sampling 196 

principle (Au and Wang, 2014; Straub and Papaioannou, 2015; Cao et al., 2018). It is reasoned 197 

that random samples of x generated from f(x) and satisfying Ωkl follow f(x|zk,l). In other words, 198 

the x samples distributed as f(x|zk,l) can be obtained by simulating conditional samples from 199 

f(x) satisfying Ωkl defined by Eq. (5). For example, a direct MCS run is performed to generate 200 

Nmcs random samples of x from f(x). The probability of each x sample falling into Ωkl is equal 201 

to cf(zk,l|x). The conditional samples of x satisfying Ωkl are selected from Nmcs unconditional 202 

samples by simulating Nmcs values, Ui, i = 1, 2, …, Nmcs, of U and comparing the Ui value with 203 

cf(zk,l|x) for the i-th sample. If Ui ≤ cf(zk,l|xi), the sample falls into Ωkl and is accepted as the 204 

conditional sample of x given Zk= zk,l; otherwise, it is rejected. By this means, a number, Na,l, 205 

of x samples distributed as f(x|zk,l) are obtained, where Na,l < Nmcs, and these samples are used 206 

to evaluate the FPF with respect to Zk.  207 

 208 

3.2 Calculating FPFwMV using direct MCS and BUS 209 

The conditional samples (i.e., xj, j = 1, 2, …, Na,l) of x obtained from direct MCS and BUS 210 

represent f(x|zk,l) numerically, and they are used in Eq. (4) to evaluate PF (Zk= zk,l): 211 

,
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A straightforward way to obtain FPF with respect to monitoring variable Zk is to perform 213 

repeated runs of direct MCS and BUS for the Nk POVs (i.e., zk,l, l = 1, 2, …, Nk) of Zk to obtain 214 

their corresponding failure probabilities. By this means, Nk direct MCS runs are needed, and 215 

the total computational efforts include Nmcs  Nk evaluations of the MPF in Bayesian analysis 216 

and ,
1

kN

a l
l

N

  evaluations of the DPF, which remains a computationally expensive task.  217 

Alternatively, this study proposes a sample-based strategy to select conditional samples 218 

of x given different POVs of Zk based on the same set of unconditional samples generated from 219 

f(x) using direct MCS, by which the FPF with respect to Zk is evaluated by a single direct MCS 220 

run. Under the BUS framework, selection of the conditional samples of x from direct MCS 221 

samples depends on the likelihood function and the POV (i.e., zk,l) of Zk (see Eq.(5)). As zk,l 222 

changes from zk,1 to zk,Nk, the likelihood function changes, so does Ωkl. On the contrary, direct 223 

MCS samples simulated from f(x) are independent of zk,l. Based on these observations, the 224 

respective conditional samples of x given different POVs of Zk can be identified from the same 225 

set of direct MCS samples generated from f(x) to calculate their corresponding failure 226 

probabilities without the need of performing repeated simulation runs for different POVs of Zk. 227 

The implementation procedure is summarized in Fig. 2:  228 

(1) Determine Nk POVs (i.e., zk,l, l = 1, 2, …, Nk) of Zk for reliability sensitivity analysis;  229 

(2) Generate Nmcs samples (i.e., x1, x2, …, xNmcs) of x from f(x) by direct MCS;  230 

(3) Calculate respective values of the likelihood function f(zk,l |x) (see Eq. (3)) for zk,l 231 

given x1, x2, …, xNmcs, and their corresponding acceptance probabilities cf(zk,l|x) as conditional 232 

samples of x given Zk = zk,l; 233 
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(4) Generate Nmcs random numbers (i.e., U1, U2, …, UNmcs) from a uniform distribution 234 

ranging from zero to unity, each of which corresponds to one x sample generated in step (2) 235 

and is used to determine whether the x sample satisfies Eq. (5) or not. This step selects Na,l 236 

conditional samples of x from Nmcs unconditional samples generated in step (3);  237 

(5) Evaluate PF (Zk= zk,l) by Eq. (7) based on the Na,l conditional samples of x obtained 238 

in step (4);  239 

(6) Repeat steps (3)-(5) Nk times for zk,l, l = 1, 2, …, Nk, to obtain their corresponding 240 

values of PF (Zk= zk,l).  241 

The values of PF (Zk= zk,l) obtained from the above procedure provide a discrete 242 

approximation of the FPF with respect to Zk. During the calculation, direct MCS samples 243 

generated in step (2) remain unchanged. Hence, the MPF values (i.e., Mk(x1), Mk(x2), …, 244 

Mk(xNmcs)) needed for evaluating the likelihood function in step (3) are the same for different 245 

POVs of Zk. Only Nmcs evaluations of MPF are needed in Bayesian analyses with different 246 

POVs of Zk, leading to significant reduction in computational efforts. Specifically, Nmcs  (Nk−1) 247 

evaluations of MPF are avoided in comparison with using repeated simulation runs. For 248 

different POVs, their corresponding OFDs (i.e., kl, l = 1, 2, …, Nk) may share some 249 

conditional samples because the OFDs of different POVs of Zk may intersect and their 250 

conditional samples are selected from the same set of direct MCS samples. As a result, using 251 

the sample-based strategy proposed in this study, the number of evaluations of DPF needed in 252 

reliability analyses (i.e., step (5)) is less than ,
1

kN

a l
l

N

 . The computational effort for evaluating 253 

FPF with respect to Zk is further reduced.  254 
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In the above procedure, determining conditional samples for different POVs of Zk (see 255 

steps (2)-(4)) follows the original rejection sampling (ORS) principle (e.g., Au and Wang, 2014; 256 

Straub and Papaioannou, 2015), by which each unconditional sample of x has a probability of 257 

cf(zk,l|x) to be accepted as the conditional sample. The expected number E(Na,l) of conditional 258 

samples given Zk= zk,l is equal to ,1
( | )mcs

k l i
N

i
cf z

 x . However, due to random fluctuation in 259 

simulating U1, U2, …, UNmcs in step (4), the Na,l value determined from a given set of direct 260 

MCS samples can be either less or greater than E(Na,l). This subsequently results in the 261 

fluctuation of estimated PF (Zk= zk,l) in step (5) of the proposed sample-based strategy. More 262 

importantly, the number Na,l of conditional samples obtained in step (4) may not be sufficient 263 

to give an accurate estimate of PF (Zk= zk,l) for different POVs. To address these issues, this 264 

paper proposes a modified rejection sampling (MRS) principle in the next section and combines 265 

the MRS principle with the sample-based strategy developed in this section to improve the 266 

accuracy of estimated PF (Zk= zk,l). 267 

 268 

4 Modified rejection sampling principle  269 

As mentioned above, the unconditional sample generated by direct MCS is accepted or rejected 270 

as the conditional samples based on a probabilistic criterion (see Eq. (5)) according to the ORS 271 

principle. An unconditional sample xi (i = 1, 2, …, Nmcs) is accepted as the conditional sample 272 

if the random number Ui is less than the acceptance probability cf(zk,l|xi) of xi; otherwise, it is 273 

rejected. In other words, for a given POV (e.g., zk,l) of Zk, the acceptance or rejection of xi as 274 

the conditional sample depends on the random sample Ui of U ranging zero and unity. Due to 275 
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the randomness in U, the xi may or may not be the conditional sample in different simulation 276 

runs that generate different U values, resulting in random fluctuation of conditional samples of 277 

x determined using ORS based on the same set of unconditional samples.  278 

With the understanding of the random mechanism of determining conditional samples by 279 

ORS, the MRS principle is proposed in this study, which consists of a number, Nr, of ORS runs 280 

based on the same set of direct MCS samples (e.g., x1, x2, …, xNmcs) to reduce the random 281 

fluctuation of conditional samples. As for the sample-based strategy described in the preceding 282 

subsection, this means repeatedly performing step (4) Nr times based on the same set of 283 

unconditional samples generated in step (2), as shown in Fig. 2 by dashed lines. Each run 284 

provides a set of conditional samples, which is denoted by Ωkl,m, m = 1, 2, …, Nr. According 285 

to the ORS principle, the conditional samples in Ωkl,m follow the target PDF, e.g., posterior PDF 286 

f(x|zk,l) of x under the BUS framework. Hence, the conditional samples in Ω = [Ωkl,1, Ωkl,2, …, 287 

Ωkl,Nr] obtained in the Nr runs of ORS (i.e., MRS) also follow the posterior PDF of x. These 288 

conditional samples of x are subsequently used to evaluate PF (Zk= zk,l) in step (5) of the 289 

proposed sample-based strategy and to obtain the FPF with respect to Zk in step (6).  290 

Using the MRS principle, the unconditional samples (e.g., x1, x2, …, xNmcs) generated from 291 

f(x) using direct MCS represent the f(x) numerically and remain unchanged in different runs of 292 

ORS for determining conditional samples. Each unconditional sample xi is considered Nr times 293 

by generating Nr samples of U, during which its acceptance probability cf(zk,l|xi) is fixed for a 294 

given Zk = zk,l, and the expected times of xi to be accepted as conditional samples is equal to 295 

cf(zk,l|xi) Nr. As Nr increases, the frequency of xi (i = 1, 2, …, Nmcs) among conditional samples 296 
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in Ω obtained from the MRS principle converges to cf(zk,l|xi) Nr, indicating that the random 297 

fluctuation in conditional samples of x obtained using MRS is minimal for large values of Nr. 298 

Correspondingly, the number of conditional samples in Ω converges to ,1
( | )mcsN

i ri k lcf z N
 x , 299 

which increases with the increase of Nr. Both the increase in the number of conditional samples 300 

of x and the reduction in random fluctuation of the conditional samples contribute to 301 

improvement of the accuracy of estimated PF (Zk= zk,l). Such an improvement is at the expense 302 

of ignorable additional computational costs in comparison of using ORS in the proposed 303 

sample-based strategy because the unconditional samples (e.g., x1, x2, …, xNmcs) and their 304 

corresponding likelihood functions f(zk,l|xi) for a given Zk = zk,l are fixed in the Nr runs of ORS.  305 

Determinating Nr is essential to the MRS principle. Since increasing Nr leads to ignorable 306 

additional computational effort, a relatively large value (e.g., Nr > 50) of Nr is suggested. On 307 

the other hand, as Nr increases, the frequency of xi (i = 1, 2, …, Nmcs) among conditional 308 

samples in Ω converge to cf(zk,l|xi)Nr, leading to a stationary distribution of conditional 309 

samples of x, and the convergence in estimated PF (Zk= zk,l). In such case, it is not necessary to 310 

further increase Nr. This study suggests determining the Nr adaptively based on the converge 311 

check of estimated PF (Zk= zk,l), which is demonstrated using the illustrative example in the 312 

next section.  313 

 314 

5. Illustration and validation of FPFwMV using a levee head monitoring example 315 

With a complex numerical model (e.g., FDM and FEM), it is computationally prohibitive to 316 

validate the FPFwMV obtained from the proposed approach. To illustrate and validate the 317 
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proposed approach for evaluating FPFwMV, this section uses a levee head monitoring example 318 

with explicit MPF and DPF. The next section illustrates the application of the proposed 319 

approach in the displacement monitoring design of a rock slope based on FDM.  320 

The levee head monitoring example concerns about the occurrence of uplift on the 321 

downstream side of the levee shown in Fig. 3. The example was used to illustrate reliability 322 

updating with hydraulic head monitoring data under a Bayesian framework by Schweckendiek 323 

and Vrouwenvelder (2013) and Schweckendiek (2014). As shown in Fig. 3, there is an aquifer 324 

underlying the levee with a blanket layer on the downstream side with low permeability. The 325 

hydraulic head exitat the potential exit location in the aquifer just under the lower blanket 326 

boundary is monitored in this example. The MPF is given by (Schweckendiek and 327 

Vrouwenvelder 2013): 328 

= + +exit p ph h h  （ ）                                                        (8) 329 

where hp = phreatic surface in or above the blanket layer at the monitoring location, assumed 330 

to be equal to water level hs at the downstream surface; h = upperstream water level, taken to 331 

be 3.9 m for a 100 year return period; λ = a damping factor for predicting the head difference 332 

in the aquifer at the potential exit point; ε = a Normal variable with mean με=0 and standard 333 

deviation σε =0.1 m, modeling the error between the monitoring value and model prediction of 334 

exit, which are adopted from those used by Schweckendiek and Vrouwenvelder (2013) to 335 

enable a consistent comparison. Uplift occurs as the hydraulic head difference  between exit 336 

and hp exceeds the hydraulic resistance that is represented by the critical uplift head difference 337 

c. The uplift DPF is given by (Schweckendiek and Vrouwenvelder 2013): 338 
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 = 'DPF cg    x                                                          (9) 339 

where  and c are, respectively, calculated as: 340 

 exit p ph h h                                                           (10) 341 

 ' / 1c u sat wm d                                                         (11)342 

and mu = a model factor quantifying the uncertainty associated with the estimated critical uplift 343 

head difference; d = the blanket layer thickness at the monitoring point; γsat and γw are the 344 

saturated volumetric weight of the blanket layer and the volumetric weight of water, 345 

respectively. Using Eqs. (9)-(11), the levee uplift reliability in this example depends on h, hp, 346 

d, mu, λ, and γsat. The distribution types and statistics of these uncertain parameters are 347 

summarized in Table 1. Assuming no correlation based on prior information, the prior 348 

distribution is the product of marginal distributions of uncertain model parameters (e.g., Cao 349 

et al., 2016).  350 

 351 

5.1 Computation steps for evaluating FPF with respect to exit  352 

This section focuses on the validation of FPFwMV obtained from the proposed approach, 353 

where only one monitoring variable is considered, i.e., Z = exit. To evaluate the FPF of exit, 354 

the six steps of the proposed approach described in Subsection 3.2 are implemented as follows: 355 

    (1) For determining the POVs of exit, the statistical information of uncertain model 356 

parameters summarized in Table 1 is used to generate 1,000,000 unconditional samples of 357 

uncertain model parameters by direct MCS. These samples are used to predict exit, yielding 358 

1,000,000 estimates of exit. Using these estimates, the mean value μ and standard deviation 359 
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σ of exit are calculated as 3.18 m and 0.36 m, respectively. A series of POVs of exit ranging 360 

from μσ (i.e., 2.1 m) to 3.9 m are considered, as shown in Table 2. The lower bound (i.e., 361 

2.1 m) of the range of exit is determined as its lowest conceivable value based on the three-362 

sigma rule (e.g., Duncan, 2000), and its upper bound is considered not exceeding a 100-year 363 

upperstream water level h=3.9 m in this example. Correspondingly, the normalized POVs 364 

(exitμσ of exit in this example vary from 3.0 to 2.0 with an increment of 0.5, which are 365 

summarized in Table 2. Note that although the POVs of exit are determined through direct 366 

MCS in this example, this is not necessary for implementing the proposed approach because 367 

POVs of monitoring variables can also be determined or selected by engineering experience 368 

and judgments;  369 

    (2) If direct MCS is performed to determine POVs of exit in step (1), the 1,000,000 370 

unconditional samples generated in step (1) are used in this step; otherwise, a direct MCS run 371 

is performed to generate unconditional samples from the prior distribution;  372 

    (3) For each POV of exit shown in Table 2, the respective values of likelihood function 373 

for different unconditional samples of uncertain model parameters generated in step (1) or (2) 374 

are calculated by:  375 

 
2

2

[ ( )]1| exp
22

exit p p
exit

h h h
f



 




      
  

x                              (12) 376 

and the acceptance probability of unconditional samples is calculated as cf(exit|x), where c is 377 

taken as equal to 2 0.25   in this example;  378 

    (4) Generate 1,000,000 random numbers uniformly distributed from zero to unity, each of 379 

which corresponds to one unconditional sample generated in previous steps and is used to 380 
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determine whether the sample is accepted as a conditional sample according to its acceptance 381 

probability calculated in step (3);  382 

    (5) By the MRS principle, step (4) is repeatedly performed Nr times to reduce the random 383 

fluctuation in selected conditional samples, which are subsequently used to evaluate the 384 

conditional uplift failure probability given a POV of exit. Here, the Nr is gradually increased 385 

until the estimated uplift failure probability converges. For example, Fig. 4 shows the variation 386 

of the uplift failure probability PF (exit=2.1 m) given exit = 2.1 m with the increase of Nr. As 387 

Nr increases from 1 to 20, the estimated PF (exit=2.1 m) value gradually converges to 0.0020. 388 

A relatively large value (i.e., 100) of Nr is adopted in the MRS principle to ensure the 389 

convergence of the uplift failure probability;  390 

    (6) Repeat steps (3)-(5) for each POV of exit shown in Table 2 to obtain their 391 

corresponding conditional uplift failure probabilities, which provide a discrete approximation 392 

of the FPF with respect to exit.  393 

 394 

5.2 FPF with respect to the hydraulic head at the monitoring location  395 

Fig. 5 shows the FPF with respect to exit obtained from the proposed approach by a line with 396 

circles. As the normalized POVs of exit increases from −3 to 2 (i.e., exit increases from 2.1 to 397 

3.9 m), the uplift failure probability increases by two orders of magnitude from 0.0020 to 0.19. 398 

Monitoring the hydraulic head effectively senses the variation of the occurrence plausibility of 399 

uplift. Moreover, the FPF with respect to exit provides an overview of the variation of the uplift 400 

reliability as a function of exit prior to monitoring instrumentation. Based on the FPF with 401 
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respect to exit, the uplift failure probability can be determined directly from the observational 402 

value of exit during monitoring, which facilitates real-time risk-based decision making. For 403 

example, as the observational value of exit is equal to 2.3 m, the corresponding uplift failure 404 

probability reads as around 0.0042 from the FPF shown in Fig. 5, which is consistent with the 405 

value (0.0048) reported by Schweckendiek and Vrouwenvelder (2013).  406 

 407 

5.3 Results comparison  408 

For further validation, the uplift failure probabilities given different POVs are also calculated 409 

using a total of 11 runs of MCMCS. In each run, 1,000,000 MCMCS samples are generated to 410 

numerically represent the posterior distribution given by Eq. (1) and to evaluate the uplift 411 

failure probability given by Eq. (4) for a POV of exit. Fig. 5 also includes the FPF with respect 412 

to exit obtained from repeated MCMCS runs by a line with squares. The lines with circles and 413 

squares are close to each other. This indicates that the two sets of results obtained from the 414 

proposed approach and repeated MCMCS runs are in a good agreement. This validates the 415 

proposed approach. It is should be noted that only one direct MCS run is used to evaluate the 416 

FPF with respect to exit by the proposed approach, avoiding performing repeated simulation 417 

runs for different POVs of exit.  418 

For a given POV of exit, using the MRS principle in the proposed approach needs to re-419 

run Nr (e.g., 100) times of ORS for selection of conditional samples of uncertain model 420 

parameters based on the same set of unconditional samples. The computational effort needed 421 

in the proposed approach with MRS is, however, comparable with those needed for using the 422 
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proposed approach with ORS (i.e., Nr = 1) because the additional computational effort needed 423 

for re-running ORS based on the same set of unconditional samples is negligible. For 424 

comparison, Fig. 5 shows the FPF with respect to exit obtained from the proposed approach 425 

with ORS by a line with triangles. When the uplift failure probability is greater than 0.01, the 426 

FPF obtained from the proposed approach with ORS agrees well with that obtained from the 427 

proposed approach with MRS and repeated MCMCS runs. The agreement deteriorates as the 428 

uplift failure probability is less than 0.01. The FPF obtained using ORS is not accurate at low 429 

failure probability levels, while using the MRS in the proposed approach provides consistent 430 

results.  431 

Fig. 6 compares the coefficient of variation (COV) of the uplift failure probability at the 432 

same POV of exit obtained from the proposed approach with ORS and MRS (see triangles and 433 

circles, respectively). The COV value at a given POV of exit in Fig. 6 is calculated from 100 434 

estimates of the uplift failure probability at the POV obtained from 100 runs of the proposed 435 

approach with ORS or MRS. As shown in Fig. 6, for a given POV of exit, the triangle always 436 

appears above the circle. Using the MRS principle in the proposed approach leads to reduction 437 

in COV of the estimated uplift failure probability. These observations demonstrate the benefit 438 

of using the MRS principle in the proposed approach, particularly in relatively low failure 439 

probability regime.  440 

 441 

6. Reliability sensitivity analysis for rock slope displacement monitoring using FDM 442 

The proposed approach with MRS is next applied to analyzing the reliability sensitivity on 443 
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surface displacements monitored at different locations of a rock slope example (Li et al., 2016c). 444 

As shown in Fig. 7, the rock slope has a height of 12 m and a slope angle of 60°. There is a 445 

joint extending from the slope toe to the height of 7.65 m in a direction at an angle of 35° to 446 

the horizontal. It intersects a vertical tension crack that locates behind the slope crest at a 447 

distance of 4 m and has a depth of 4.35 m. The groundwater condition is also shown in Fig. 7, 448 

and is characterized by the ratio rw of water depth Dw over the crack depth Dc, i.e., rw = Dw/ Dc, 449 

which is represented by a truncated exponential variable ranging from 0 to 1 and having a mean 450 

of 0.1 (Li et al., 2016c). In addition to rw, the cohesion cJ, friction angle J, and Young’s 451 

modulus E of the joint and the surcharge load p are represented by Normal random variables. 452 

Their statistics are summarized in Table 3, which are consistent with those adopted by Li et al. 453 

(2016c). In addition, as shown in Fig. 7, the slope is reinforced by four rows of rock bolts. For 454 

the sake of conciseness, more details on the rock bolts and the properties of rock masses are 455 

referred to Li et al. (2016c).  456 

The FS of rock slope stability and the surface displacements are evaluated using FDM 457 

through a commercial software FLAC 7.0 (Itasca, 2014). Fig. 8 shows dimensions of the FDM 458 

that is discretized into 782 elements. The rock mass and the joint are modeled as elastic-459 

perfectly plastic materials based on the Mohr-Coulomb strength criterion, and the rock bolts 460 

are modeled through cable elements. The bottom boundary is fixed in both horizontal and 461 

vertical directions and the right vertical boundary is constrained in horizontal direction. 462 

Moreover, the groundwater condition is considered through a groundwater table. The set-up of 463 

the FDM in this study is generally consistent with that adopted by Li et al. (2016c), which 464 
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provides more details on development of the FDM of the rock slope for interested readers.  465 

For validation, the FS and surface displacements at two different points (i.e., A and B 466 

shown in Fig. 7) are calculated using the FDM developed in this study under different surcharge 467 

loads and groundwater levels, and the results are compared with those (including FS, vertical 468 

displacement (VA) at point A, and horizontal displacement (HB) at point B) reported by Li et al. 469 

(2016c). Fig. 9(a) shows the FS, VA, and HB calculated under different surcharge loads in this 470 

study and Li et al. (2016c) by solid and dashed lines, respectively. The results obtained from 471 

this study are consistent with those reported by Li et al. (2016c). Similar observations can also 472 

be obtained from the FS, VA, and HB calculated under different groundwater levels, as shown 473 

in Fig. 9 (b). This validates the FDM developed in this study. The FDM is subsequently used 474 

in the proposed approach to evaluate FPF with respect to surface displacements for reliability 475 

sensitivity analysis. This is different from Li et al. (2016c), where surrogate models (i.e., 476 

second-order polynomial response surfaces) are used to back analyze model parameters (e.g., 477 

rw, cJ, J, E, and p) for assessing slope stability safety and reliability based on monitoring 478 

information under a Bayesian framework. The surrogate model is adopted to reduce 479 

computational efforts needed in the back analysis, safety assessment, and reliability analysis 480 

so that repeated simulation runs for different values of monitoring variables are tractable. 481 

However, it shall be noted that the accuracy of surrogate model is problem-dependent. Future 482 

studies on surrogate model-based Bayesian analyses, where the probability space of uncertain 483 

parameters is updated with acquired information, are warranted, which is out of scope of this 484 

study. Alternatively, this study tackles the computational difficulty arising from sophisticated 485 
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numerical models in evaluating FPFwMV through developing an efficient reliability sensitivity 486 

analysis method, where repeated simulation runs are avoided, as illustrated below.  487 

 488 

6.1 Computation steps for evaluating FPFwMV in the rock slope example  489 

For the purpose of reliability sensitivity analysis of monitoring variables, two additional 490 

monitoring locations (i.e., points C and D shown in Fig. 7) are considered besides points A and 491 

B in this study, whose horizontal and vertical displacements are also taken as monitoring 492 

variables. As a result, there are a total of eight monitoring variables Zk, k = 1, 2, …, 8 (i.e., 493 

horizontal displacements HA, HB, HC, and HD, and vertical displacements VA, VB, VC, and VD), 494 

of points A to D. Then, the proposed approach with the MRS principle is applied to evaluating 495 

the FPF of each monitoring variable concerned (i.e., HA, HB, HC, HD, VA, VB, VC, and VD), which 496 

is described as follows:  497 

(1) The implementation starts with prescribing POVs of monitoring variables. In this 498 

example, 13 POVs varying from 1 to 13mm at an interval of 1mm are considered for each 499 

monitoring variable;  500 

(2) A direct MCS with 15,000 samples is simulated from the prior distribution of 501 

uncertain model parameters (i.e., rw, cJ, J, E, and p). Herein, assuming no correlation among 502 

uncertain model parameters based on prior information, the prior distribution is the product of 503 

their marginal distributions summarized in Table 3. Using 15,000 samples to evaluate the 504 

failure probability of the rock slope stability based on the prior distribution and FDM, where 505 

the model error in FS calculated by FDM is considered as a Normal distribution with a mean 506 

of 0 and standard deviation of 0.05 (Li et al. 2016c). The resulting failure probability is 25.5%, 507 
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which agrees well with the value (i.e., 24.9%) reported by Li et al. (2016c). This further 508 

validates the uncertainty model and FDM developed in this study;  509 

(3) For a given POV of the monitoring variable concerned, the values of the likelihood 510 

function for the 15,000 unconditional samples are calculated using Eq. (3), where the MPF is 511 

calculated using the FDM, and the acceptance probability of a given sample is evaluated as the 512 

product of the constant 2 k  and the likelihood function for the sample. In this example, 513 

the prediction model error k in surface displacements is represented by a Normal random 514 

variable with a mean of 0 and standard deviation (i.e., k ) of 1 mm, which follow those 515 

adopted by Li et al. (2016c);  516 

(4) Generate 15,000 random numbers uniformly distributed from zero to unity, each of 517 

which corresponds to one unconditional sample for selecting conditional samples;  518 

(5) Step (4) is repeatedly performed 100 times (i.e., Nr = 100) to reduce the random 519 

fluctuation in conditional samples, which are subsequently used to evaluate the conditional 520 

failure probability of the rock slope stability given the POV of the monitoring variable 521 

concerned by Eq. (7);  522 

(6) Repeat steps (3)-(5) for each POV of the monitoring variable concerned to obtain 523 

their corresponding conditional failure probabilities of the rock slope stability, which provide 524 

a discrete approximation of the FPF of the monitoring variable.   525 

 526 

6.2 FPFs with respect to surface displacements 527 

Fig. 10 shows the FPFs with respect to horizontal displacements (i.e., HA, HB, HC, and HD) and 528 

vertical displacements (i.e., VA, VB, VC, and VD) by solid and dashed lines, respectively. As the 529 
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surface displacement increases, the slope failure probability increases by two to three orders of 530 

magnitude. This means that the reliability level of the rock slope stability is generally sensitive 531 

to surface displacements, particularly as the surface displacement is relatively small (say less 532 

than 7 mm in this example). It is also observed that the reliability sensitivity of the rock slope 533 

stability depends on the monitoring location because different FPFs are obtained for surface 534 

displacements at different locations. Comparing FPFs with respect to the eight monitoring 535 

variables reveals that the horizontal displacement HB at point B (i.e., the slope toe) is the most 536 

sensitive monitoring variable while its vertical displacement VB is the least sensitive one. It 537 

shall be emphasized that calculations of the FPFs of the eight monitoring variables are based 538 

on the same set of unconditional samples using the proposed approach. This avoids repeatedly 539 

performing direct MCS runs for different monitoring variables and for different POVs of a 540 

given monitoring variable in this example. The number of evaluations of numerical models 541 

needed for evaluating the FPFs is reduced considerably, leading to significant computational 542 

saving.  543 

 544 

6.3 Reliability sensitivity to surface displacements at different locations 545 

For detailed examination of the reliability sensitivity on different monitoring variables, a 546 

reliability sensitivity index (RSI) is defined in this example, and it is written as:  547 

,max ,min

,max ,min

ln ( ) ln ( )
= F k k F k k

k
k k

P Z POV P Z POV
RSI

POV POV
  

                                (13) 548 

where Zk, k = 1, 2, …, 8, are the eight monitoring variables; POVk, min and POVk, max are the 549 

minimum and maximum POVs of Zk, and they are, respectively, taken as 1 mm and 13 mm in 550 
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this example; lnPF (Zk = POVk, min) and lnPF (Zk = POVk, max) are logarithms of the conditional 551 

failure probability of the rock slope stability given Zk = POVk, min and POVk, max, respectively. 552 

The RSIk represents the increasing rate of the rock slope failure probability as the surface 553 

displacement increases from POVk, min to POVk, max, and reflects the reliability sensitivity of the 554 

rock slope stability with respect to Zk ranging from POVk, min to POVk, max. It provides a measure 555 

to, quantitatively, compare the reliability sensitivity on different monitoring variables. The 556 

greater the RSIk is, the more sensitive to the reliability of the rock slope stability is. Table 4 557 

summarizes the RSIk values of the eight monitoring variables. The HB has the maximum RSI 558 

value (i.e., 0.58) among the eight monitoring variables while VB has the minimum RSI value 559 

(i.e., 0.36), which indicates that HB and VB are the most and least sensitive monitoring variables, 560 

respectively. This is consistent with the observation obtained from the FPFs shown in Fig. 10. 561 

Moreover, as shown in Table 4, the reliability sensitivity of the rock slope stability to horizontal 562 

displacements (i.e., HA, HC, HD, and HB) increases with the decrease of the elevation from point 563 

A to point B. In contrast, the reliability sensitivity of the rock slope stability to vertical 564 

displacements (i.e., VA, VC, VD, and VB) decreases with the decrease of the elevation from point 565 

A to point B. This suggests that the instrumentation shall be installed to monitor the horizontal 566 

displacement (i.e., HB) at slope toe and the vertical displacement (i.e., VA) at the top of tension 567 

crack with the first priority.  568 

 569 

7 Summary and conclusions  570 

This paper proposed a reliability sensitivity analysis method that leverages on the robustness 571 
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of direct Monte Carlo simulation (MCS) and the recently established analogy between 572 

reliability and Bayesian updating problem, i.e., the BUS (Bayesian Updating with Structural 573 

Reliability Methods) framework. It allows one to use a single run of direct MCS to obtain 574 

failure probability functions (FPF) with respect to different monitoring variables (FPFwMV) 575 

for determining the most sensitive monitoring variables during monitoring design, where no 576 

monitoring information is available. To reduce the random fluctuation of conditional samples 577 

obtained from BUS, this study proposed a modified rejection sampling (MRS) principle that 578 

consists of multiple runs of the original rejection sampling (ORS) based on the same set of 579 

direct MCS samples.  580 

The proposed approach has been illustrated and validated using a levee head monitoring 581 

example with a single monitoring variable and explicit performance functions and a rock slope 582 

example with multiple monitoring variables and implicit performance functions evaluated 583 

through the finite difference model (FDM). Results showed that the proposed approach 584 

efficiently generates the FPFwMV for monitoring design in the sense that it only needs a single 585 

run of direct MCS and avoids repeated simulation runs for evaluating failure probability at 586 

different possible observational values of a given monitoring variable. This leads to significant 587 

reduction in computation efforts for reliability sensitivity analysis of monitoring variables, 588 

particularly when sophisticated numerical models (e.g., FDM) is involved. Using the MRS 589 

principle improves the accuracy of FPFs at the expense of ignorable additional computational 590 

efforts in comparison with using ORS. In the rock slope example, the reliability sensitivity of 591 

slope stability to vertical and horizontal surface displacements has opposite trends. As the 592 
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elevation of the monitoring location increases, the sensitivity to the horizontal displacement 593 

decreases, but the sensitivity to the vertical displacement increases. As a result, the horizontal 594 

displacement at the slope toe and the vertical displacement at the top of slope are the most 595 

critical monitoring variables, where monitoring instruments shall be installed with the first 596 

priority.  597 

With the FPFwMV obtained prior to monitoring, in-situ instrumentation can be arranged 598 

in a cost-effective manner, and determining the real-time reliability level of geotechnical 599 

structures during monitoring is a trivial task. This is of great significance to practical 600 

monitoring problems in real word, where complex numerical models are often involved for 601 

detailed and realistic modeling of geotechnical structures concerned.  602 

   603 
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Table 1. Summary of distribution types and statistics of uncertain model parameters in 
the levee monitoring example (after Schweckendiek and Vrouwenvelder 2013) 

Model parameters Distribution type 
Statistical parameters 

Mean Standard deviation

Water lever h (m) Gumbel 2.67 0.38 
Surface level at the potential exit point hp (m) Normal 0.3 0.1 
Blanket layer thickness d (m) Lognormal 3.0 0.5 
Model factor mu Lognormal 1.0 0.1 
Saturated volumetric weight of the blanket layer  
γsat (kN/m3) 

Normal 20.0 1.0 

Damping factor λ Lognormal 0.8 0.1 

 
 
 
 

Table 2. Summary of possible observational values of the hydraulic head in the aquifer 

Possible observational 
valueexit (m) 

2.10 2.28 2.46 2.64 2.82 3.00 3.18 3.36 3.54 3.72 3.90 

Normalized value 
(exit－)/ 

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 

 
  



37 

Table 3. Prior distribution of uncertain model parameters of the rock slope example 
(after Li et al. 2016c) 

Parameter Distribution type Mean value Coefficient of variation 

Young’s modulus E (MPa) Normal 50 0.2 
Cohesion cJ (kPa) Normal 20 0.3 
Friction angle J (º) Normal 32 0.2 
Surcharge load p (kPa) Normal 200 0.1 
Groundwater level ratio rw Truncated exponential 0.1 1 

 
 
 
 

Table 4. Reliability sensitivity index of different monitoring variables 

Monitoring location Monitoring variable RSIk Rank 

 

Z1: HA 0.40 7 
Z2: HB 0.58 1 
Z3: HC 0.42 6 
Z4: HD 0.51 3 
Z5: VA 0.55 2 
Z6: VB 0.36 8 
Z7: VC 0.47 4 
Z8: VD 0.43 5 

 

  



38 

Captions of Figures 

Fig. 1. Reliability sensitivity analysis framework for monitoring variables 

Fig. 2. Implementation procedure of the proposed sample-based strategy for evaluating 

FPFwMV 

Fig. 3. The levee head monitoring example (after Schweckendiek and Vrouwenvelder 2013) 

Fig. 4. Variation of the uplift failure probability given exit = 2.1 m with the increase of Nr 

Fig. 5. Comparison of uplift failure probability functions obtained by different methods 

Fig. 6. Coefficients of variation of uplift failure probabilities calculated by the proposed 

approach with ORS and MRS 

Fig. 7. Illustration of the rock slope example (after Li et al. 2016) 

Fig. 8. The finite difference model for the rock slope example in FLAC 7.0 

Fig. 9. Factor of safety and surface displacements at points A and B under different surcharge 

load and groundwater levels 

Fig. 10. Failure probability functions with respect to different monitoring variables in the rock 

slope example 
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Fig. 1. Reliability sensitivity analysis framework for monitoring variables 

 

  



40 

 
Fig. 2. Implementation procedure of the proposed sample-based strategy for evaluating 

FPFwMV 
  

Determine a number, Nk, of POVs (i.e., zk,l, l = 1, 2, …, Nk) of Zk 
for monitoring sensitivity analysis 

Start 

  End 

Plot PF(Zk= zk,l) for k = 1, 2, …, Nk as a discrete approximation of 
FPF with respect to Zk 

Generate Nmcs samples (i.e., x1, x2, …, xNmcs) of x from f(x) by 
direct MCS, and set l = 1 

Generate Nmcs random samples (i.e., U1, U2, …, UNmcs) of U, each of 
which corresponds to one x sample and is used to determine 

whether the x sample satisfies Eq.(5) or not, resulting in a number 
of conditional samples of x in Ωkl,m 

Calculate respective values of the likelihood function f(zk,l|x) by Eq. 
(3) for zk,l given x1, x2, …, xNmcs, and their corresponding cf(zk,l|x) 

values, and set m = 1 

Evaluate PF(Zk= zk,l) by Eq. (7) based on the Na,l conditional 
samples of x in Ω = [Ωkl,1, Ωkl,2, …, Ωkl,Nr] 

m < Nr 

 

Yes, m=m+1 
No  

 

Yes, l+1 

No 

l < Nk 

 

Nr = 1, original rejection sampling 
Nr > 1, modified rejection sampling 
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Fig. 3. The levee head monitoring example (after Schweckendiek and Vrouwenvelder 
2013) 
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Fig. 4. Variation of the uplift failure probability given exit = 2.1 m with the increase of 
Nr 
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Fig. 6. Coefficients of variation of uplift failure probabilities calculated by the proposed 
approach with ORS and MRS  
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Fig. 8. The finite difference model for the rock slope example in FLAC 7.0 

  

17.2 m

12
.0

 m
 



47 

0 50 100 150 200 250 300 350
0

5

10

15

20

25  HB, this study
 VA, this study
 HB, Li et al. 2016c
 VA, Li et al. 2016c

Su
rfa

ce
 d

isp
la

ce
m

en
t (

m
m

)

Surcharge load, p (kPa)

0.0

0.5

1.0

1.5

2.0 FS, this study
 FS, Li et al. 2016c

Fa
ct

or
 o

f s
af

et
y,

 F
S 

 

(a) Different surcharge load 
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(b) Different groundwater levels 

Fig. 9. Factor of safety and surface displacements at points A and B under different 
surcharge load and groundwater levels 
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Fig. 10. Failure probability functions with respect to different monitoring variables in 
the rock slope example 

 

 


