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Addressing the Threat of Climate Change to Agriculture Requires Improving Crop 

Resilience to Short-Term Abiotic Stress 

 

Abstract: Climate change represents a serious threat to global agriculture, necessitating the 

development of more environmentally-resilient crops in order to safeguard the future of food 

production. The effects of climate change are appearing to include a higher frequency of 

extreme weather events and increased day-to-day weather variability. As such, crops which 

are able to cope with short-term environmental stress, in addition to those that are tolerant to 

longer term stress conditions are required. It is becoming apparent that the hitherto relatively 

little-studied process of post-stress plant recovery could be key to optimising growth and 

production under fluctuating conditions with intermittent transient stress events. Developing 

more durable crops requires the provision of genetic resources in which to identify useful 

traits through the development of screening protocols. Such traits can then become the 

objective of crop breeding programmes. Here we discuss these issues and outline example 

research in leafy vegetables that is investigating resilience to short-term abiotic stress. 

 

Keywords: Climate, weather, abiotic, stress, transient abiotic stress, resilience, recovery, 

leafy vegetables, lettuce, spinach, Lactuca sativa, Brassica oleracea, Spinacia oleracea 
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Introduction 

The effects of climate change represent a serious problem for the future of agriculture (Abou-

Hussain, 2012) and a risk to global food production systems and the availability of food 

(Wheeler and von Braun, 2013). It is expected that climate change will impact significantly on 

crop production (Rosenzweig et al, 2014) by altering plant physiology, reducing yield and 

negatively impacting product quality (Abou-Hussain, 2012; Bisbis et al, 2018; Collier et al, 

2014). Here we discuss leafy vegetable crops as an example. These crops are widely grown 

and constitute important commodities that represent a rich source of phytonutrients not 

supplied by cereals, with 71.3, 26.8 and 26.7 million tonnes of vegetable brassicas (Brassica 

oleracea), lettuce (Lactuca sativa) and spinach (Spinacia oleracea) produced globally in 2016, 

respectively (Food and Agriculture Organization of the United Nations, 2018). The high water 

content of some leafy crops (around 95%), means that a loss of around 5% fresh weight due 

to reduced water content can affect product appearance and saleability (Atkinson, 2010). 

These crops are therefore highly sensitive to variation in water availability and temperature 

and represent a key target for improvement in abiotic (environmental) stress resilience.  

Increasing crop stress resilience is critical for maintaining agricultural productivity (Zhu, 2016). 

Predicting the result of the effects of climate change on crop yields is difficult and depends on 

a number of factors including the crop simulation model used (Kumar, 2016), crop type, 

geographic region (Lizumi et al, 2017; Zhao et al, 2017) and abiotic stress type. However, a 

review of the effect of predicted climate change on future yields of vegetables and legumes 

(Scheelbeek et al., 2018) revealed expected average reductions in vegetable yields of 34.7% 

for a 50% decrease in water availability and yield reductions of 31.5% for a 4°C increase in 

temperature above a baseline of 20°C, despite potential beneficial effects arising from 

increased atmospheric CO2 concentration. Increasing crop abiotic stress resilience is 

therefore key in minimising future yield declines. 
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Increasing resilience to environmental conditions may be performed by genetic modification 

or, more commonly, through conventional breeding approaches, in order to generate or 

accumulate genetic components that heighten the resilience of a crop to one or more sources 

of abiotic stress (examples in Table 1.). The identification and selection of stress-resilient lines 

is therefore important for providing useful genetic material for breeding programmes 

developing cultivars with future durability (Bisbis et al, 2018). The relatively short production 

cycles of many vegetable crops, for example babyleaf spinach and kale (Brassica oleracea 

var. acephala), means that multiple plantings are made in a growing season and so early and 

late season plantings may experience contrasting growth conditions and so different sources 

of abiotic stress. Therefore, the development of lines that are resilient to multiple stresses 

would be additionally advantageous for providing good growth throughout the production 

season. 

Table 1. Examples of weather events/ patterns encountered by crops and their associated abiotic 

(environmental) stresses. 

Weather pattern / 
environmental event Associated abiotic stress 

High rainfall Waterlogging, nutrient leaching 

Low rainfall Drought, soil salinization, oxidative stress 

Snow Freezing, reduced irradiance, waterlogging during thaw 

Low temperature Freezing 

High temperature Heat stress, drought, oxidative stress 

Sea water ingress Salinization of root zone, waterlogging 

High light intensity Oxidative stress 

 

Short-Term and Long-Term Environmental Stress 

Global agricultural produce is not only subject to gradual long-term climatic changes and 

associated long-term, or chronic, sources of abiotic stress. Evidence is emerging that climate 

change is also altering day-to-day weather patterns (Medvigy and Beaulieu, 2011) meaning 

that crops are subject to larger short-term fluctuations in irradiance, temperature and water 

availability. More precipitation is now falling as part of intense single-day events (United States 
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Environmental Protection Agency, 2018).  An escalating frequency of extreme weather events 

such as drought, heatwaves and flooding caused by torrential rainfall are occurring (Huber 

and Gulledge, 2011), with unusually hot summer days and nights, flooding and tropical 

cyclones increasing in frequency and severity (United States Environmental Protection 

Agency, 2018). Extreme weather events and day-to-day weather variability have distinct 

impacts upon processes such as photosynthesis and it is thought that the effects of short-term 

weather variability could be as dramatic as those resulting from long term climate change 

(Medvigy and Beaulieu, 2011). In addition, certain weather types such as hail can have a 

catastrophic impact on crops such as vegetables and fruit. These challenges, together with 

additional sources of abiotic stress such as nutrient deficiency, are leading to large-scale crop 

losses and so causing unpredictability in production scheduling in a large range of crop 

species. Low abiotic stress resilience in existing crop varieties could lead to short-term 

variability in food supplies, placing food production systems at risk (Wheeler and von Braun, 

2013). It is important therefore to investigate means to increase crop resilience to short-term 

sources of stress arising from transient fluctuations in the growing environment of the crop. 

The response of the crop to a particular short-term abiotic stress will likely depend upon the 

severity and duration of the stress  and its interaction with crop growth stage (for example, 

see Fölster and Heinsch, 1987; Nobre et al, 2009), reflecting the differing ability of plants to 

cope with stress events depending on the respective growth and development stage. This 

necessitates the investigation of resilience to different degrees of abiotic stress applied at 

different stages in the crop growth cycle.  

An additional source of short-term environmental stress that is particularly relevant to many 

vegetable crops is that of transplantation into the field. In the UK and other countries, these 

crops are commonly sown indoors in multicellular trays to produce seedlings, which, together 

with the accompanying small volume of growth medium, are termed transplants. Once the 

seedlings reach the required growth stage, usually around the emergence of 3-4 true leaves, 

they are hardened off and planted in the field. Despite the best efforts of growers, 



6 
 

transplantation is an environmentally stressful stage for crop seedlings as they adapt to 

outdoor conditions and must become rapidly established in the field. 

 

Plant Stress Responses 

Plants respond to different sources of stress using a combination of unique and overlapping 

signalling mechanisms (recently reviewed by Zhu, 2016). These include primary stress signals 

responding to initial stress detection and secondary signals in response to the downstream 

effects of stress such as cellular damage. Signalling is initiated through the detection of 

changes in a number of different cellular components including cell walls, organelles, 

metabolites and protein misfolding. It is mediated via protein phosphorylation cascades, 

hormonal changes, lipids, calcium ions, nitric oxide and other signals and leads to changes in 

gene expression, metabolism and physiology, which in turn affect plant growth and 

development. Additional components of molecular stress response networks are regularly 

described. Recent studies have highlighted, for example, the role of SGT1 genes and 

carotenoid metabolism in B. oleracea stress responses (Kim et al, 2016; Shanmugam et al, 

2016). Such responses tend to occur very rapidly in order to allow the plant to quickly respond 

to changes in the growth environment. As organisms which cannot move to escape sources 

of stress, these rapid responses are essential for coping with environmental changes. Stress 

response signals can also lead to long term adaptation to a new set of environmental 

conditions, providing tolerance that is useful when a plant is encountering a long-term period 

of stress, for example activation of cold acclimation (Eremina et al., 2016). 

 

Response to Multiple Simultaneous Stresses 

In the field, multiple abiotic stress types may occur sequentially or simultaneously, generating 

an important challenge for crop production that requires the analysis of stress combinations 
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(Pandey et al, 2015). Indeed, some stresses can be hard to separate under field conditions, 

such as high temperature and water deficit (Georgii et al., 2017). This is another new and 

emerging area of research which now requires investigation in crop species (Pandey et al, 

2015).  

Responses to single stresses show a mixture of unique (e.g. the regulation of ice formation in 

chilling stress) and shared processes (for example, reactive oxygen species (ROS) 

production, calcium, phytohormone and MAP kinase signalling pathways), which underlie 

general physiological adaptations that can protect against multiple individual stresses, for 

example osmoprotectant accumulation, stomatal closure in response to drought or salinity and 

changes in transport and compartmentation of ions in response to heat or salinity stress. In 

addition to shared and additive responses, such as found for drought and salinity stress in 

cabbage (Sahin et al, 2018), responses to stress combinations can also be distinct from those 

for individual stresses (Pandey et al, 2015). For example, Arabidopsis accumulates sucrose 

under combined heat and drought stress rather than proline (Rizhsky et al, 2004). This 

generates difficulty in predicting the response of a particular plant to combinations of stresses 

(Shaar-Moshe et al., 2017). Responses to commonly occurring combined stresses such as 

heat and drought can also represent contrasting stress response requirements: stomatal 

closure to preserve leaf water content under drought stress would appear antagonistic to 

increased transpiration in order to cool leaves during heat stress. In this case, Arabidopsis 

plants close their stomata and instead regulate leaf temperature through changes in leaf 

orientation (Vile et al, 2012), while tomato plants show a predominant effect of drought over 

heat stress (Zhou et al.,2017). 

Different and overlapping sets of gene expression changes occur, for example, in response to 

heat, drought and a combination of the two (Rizhsky et al., 2004; Georgii et al., 2017; Jia et 

al., 2017). n Arabidopsis and Brachypodium dystachion, only 35-40% of differentially 

expressed genes from single stress responses can be identified in responses to combined 

stresses (Shaar-Moshe et al., 2017; Rasmussen et al., 2013), with transcriptome responses 
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to stress combinations appearing to be as unique as those to single stresses (Humbert et al., 

2013).  Genes expressed in a combination-specific manner are enriched for unique processes 

and genes of unknown function (Shaar-Moshe et al., 2017) indicating that the study of 

combined stress responses may provide a means to discover previously unknown stress 

response pathways. As many aspects of stress responses are under transcriptional control, 

transcription factors could represent good targets for improving crop stress resilience (Zhang 

et al., 2004). Cross talk and antagonism in plant hormonal responses to multiple stresses is 

also important (Nguyen et al, 2016). Abscisic acid (ABA) is a key regulator of abiotic stress 

responses due to its involvement in processes including stomatal closure, but interactions with 

a number of other hormones including jasmonic acid (JA) and salicylic acid (SA) are also likely 

to be important.  

 

Recovery from Stress Events 

Studies of plant stress are revealing that the recovery process is an important aspect of plant 

environmental responses. During drought stress, for example, many plants begin to close their 

stomata to preserve leaf water content, however, doing so limits gas exchange and impacts 

negatively upon photosynthesis. Such stress responses help plants to survive harsh 

conditions but usually do not allow optimal growth under normal conditions. For a plant subject 

to short-term stress events interspersed with more favourable growing conditions, the ability 

to not only respond rapidly to the onset of stress but also to return to normal growth behaviour 

in a timely manner when the stress event passes is necessary to maximise growth potential. 

Post-stress recovery, which has received relatively little attention to date (Crisp et al, 2016), 

requires tight control of protein, RNA and metabolite turnover, in order to rapidly alter signalling 

processes and obtain prompt recovery to allow continuous growth (Lyon et al, 2016). In 

Arabidopsis, for example, under transient excess-light stress, upregulated mRNAs show rapid 

recovery, with half-lives ranging from 2.7 to 60 min, termed “rapid recovery gene 
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downregulation” (RRGD, Crisp et al, 2017). Studies in Medicago indicate that drought stress 

recovery involves regulation of the proteome and metabolome via synthesis and degradation 

processes (Lyon et al, 2016). Plant hormones such as cytokinins and auxins may also have a 

key role in certain stress recovery processes (Nguyen et al, 2016). Optimising stress recovery 

may therefore represent a route to improving plant growth in highly variable conditions (Crisp 

et al, 2017).  

 

Improving Crop Stress Resilience 

Generating Resilient Lines 

In order to improve the resilience of crops to environmental stress, it is necessary to identify 

potential sources of genetic material with stress resilience traits which can be incorporated 

into commercial lines through breeding programmes or genetic modification to combine them 

with favourable agronomic characteristics. Breeding programmes require the identification of 

beneficial traits in compatible material, usually plants of the same or a closely-related species. 

For genetic modification (GM) approaches, such material can be obtained from heterologous 

organisms. However, public concerns surrounding such technology are currently limiting its 

uptake in commercial settings, although a recent study in the UK found similar levels of 

positive and negative attitudes towards genetic modification (Popek and Halagarda, 2017). 

The cultivation of GM organisms in the UK is likely also to be subject to political influences 

such as the relationship of the UK with the EU and other trade partners.  

Identifying traits of interest in plant material for the development of new varieties requires both 

the availability of a wide range of germplasm to test and reliable screening methods. The 

likelihood of identifying material with favourable stress resilience increases with the number 

and diversity of lines analysed. Seed collections held in genebanks, for example the UK 

Vegetable Genebank at the University of Warwick, provide a valuable resource of diverse 
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germplasm (Walley et al., 2012, Walley et al., 2017). To maximise the efficiency of screening, 

genebank collections can be selectively sampled to produce Diversity Sets (core collections), 

which aim to maximise genetic diversity by selecting accessions that best represent available 

morphological variation and eco-geographical origin in a smaller number of lines. For example, 

in the UK the Vegetable Genetic Improvement Network (VeGIN), a collaboration between the 

Universities of Warwick and Harper Adams, has developed such Diversity Sets for a number 

of crops including Brassica oleracea and lettuce. This concept has also been adopted to 

improve vegetable production for the organic sector. The Horizon 2020 project ‘Breeding for 

Resilient, Efficient and Sustainable Organic vegetable Production’ (BRESOV), led by the 

University of Catania, Sicily, is a collaboration between 22 European partners, including the 

University of Liverpool, UK. Core collections have been assembled as sources of genetic 

variation to improve the resilience of tomato, snap bean, and vegetable Brassica crops grown 

in organic production systems. Screening these Diversity Sets facilitates efficient, replicated, 

robust assays of diverse germplasm. Rapid screening of moderately high numbers of lines 

can help narrow selection for more detailed physiological investigation of underlying 

mechanisms (Knepper and Mou, 2015). With the development of robust, high-throughput 

genotyping technologies such as genotyping by sequencing (GBS) (Elshire et al., 2011), it is 

possible to assemble genome-wide genetic marker genotype data for entire diversity 

collections. This facilitates an assessment of the diversity captured, and the underlying 

population structure. When combined with phenotypic data, loci contributing to stress 

resilience can be identified via the use of genome-wide association studies (GWAS, Pereira, 

2016).   

Whilst early land plant evolution occurred in harsh environments with high levels of irradiance 

and temperature and low water availability, the domestication of crop varieties was performed 

in more favourable conditions (Pereira, 2016). Crop wild relatives can therefore provide 

another source of useful traits and frequently can be found to contain beneficial genetic 

material that has been lost through the process of crop domestication (Hajjar and Hodgkin, 
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2007, Walley and Moore, 2015). Novel genetic variation not present in domesticated crops 

can also be generated through chemical or radiative mutagenesis. This approach has been 

used to investigate traits including drought and salt stress resilience in cauliflower (for 

example, Fuller et al., 2006; Hadi and Fuller, 2013). In addition, genetic mapping populations 

that segregate for stress resilience traits can also be screened to locate Quantitative Trait Loci 

(QTLs), enabling the determination of chromosomal regions linked to traits of interest.  

Beneficial allelic variants can then be followed through breeding programmes with the 

assistance of genetic markers during the production of novel varieties.   

Developing methods to screen crop populations for sources of stress resilience represents a 

balance between providing both normal and stressed growing conditions close to those 

experienced by the crop in a commercial setting and maximising throughput, cost efficiency 

and obtaining detectable responses to treatments.  

 

Stress Priming 

Priming, whereby exposure to a stress allows a plant to cope with subsequent similar stress 

events, through the promotion of stress responses, may also help to improve growth during 

exposure to repeated short-term stress. The mechanistic detail of priming is an area in need 

of further investigation (Crisp et al, 2016), but the use of this approach has found success in 

a number of B. oleracea crops (for example: Atici et al, 2003; Bogdanova and Adritskaya, 

1976; Fuller, 1993: Kalisz et al, 2014; Rutherford and Whittle, 1981). Priming could, however, 

negatively impact on the stress recovery process by requiring the maintenance of some 

elements of stress responses in order to enable more rapid future responses. Further 

investigation is needed to determine if there is a trade-off between priming and stress recovery 

and of their relative benefits on ultimate crop performance and yield. 
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Studies in Leafy Vegetable Crops 

A series of short-term abiotic stress assays have recently been developed to screen B. 

oleracea lines for resilience to drought, waterlogging, high salinity, heat and freezing stress 

(Figure 1. and Beacham et al, 2017). This study used assay systems which aimed to provide 

a close approximation of transplant stress while allowing sufficient throughput for effective 

population screening. The stresses were applied for durations up to six days depending on 

the stress and imposed at the 3-4 true leaf stage. After treatment, plants were allowed to 

recover for a period of three weeks before recording of growth parameters. This approach 

identified resilience to multiple sources of short-term early stage stress in B. oleracea crop 

types. The study found that while some lines with resilience to multiple stress types could be 

identified, overall there was low correlation between the responses to the different stresses. A 

similar semi-high throughput screening assay for drought tolerance in lettuce and spinach has 

also been reported (Knepper and Mou, 2015). A short-term (one week) stress was applied to 

seedlings before re-watering and recovery, recording leaf water content, wilt and growth over 

the following 10 days.  

 

Figure 1. An example assay system for the investigation of short-term stress resilience in Brassica 

oleracea (Beacham et al, 2017). B. oleracea seedlings are grown in module trays to the 3-4 true leaf 

stage before the imposition of short-term (< one week) stress treatments. Seedlings are subsequently 
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transferred to pots, irrigated and grown for a further three weeks before recording growth parameters. 

Determination of growth response as a proportion of a control plant of the same line is used to compare 

lines when screening populations with a high level of underlying morphological diversity.  

A number of other studies have assessed the impact of transient abiotic stress on leafy crops. 

For drought stress, the effect of short- and long-term water deficit has been compared in 

cauliflower, with photosynthetic rate, transpiration rate and stomatal conductance decreasing 

with increasing stress duration (Hnilickova and Duffek, 2004). For waterlogging stress, the 

response of lettuce and broccoli (B. oleracea var. italica) to short term (6 h to 5 days) 

treatments was varietal-dependent and in lettuce was found to increase with treatment 

duration (Nobre et al, 2009; Higashio et al, 2012). Short-term (6 to 96 h) waterlogging 

treatments and their interaction with growth temperature has also been investigated in 

cabbage and cauliflower (B. oleracea var. botrytis) and determined a number of proteomic and 

metabolic stress responses (Chen et al., 2014; Lin et al, 2015).  

Short-term salinity stress has been used to investigate the response of a number of cultivated 

lettuce varieties (Bartha et al, 2010), affecting light use efficiency, total chlorophyll content and 

dry matter content. The extent of growth inhibition of cabbage seedlings by short-term (4 to 7 

days) salt stress, meanwhile, was found to be growth stage-dependent (Fölster and Heinsch, 

1987). 

Studies of temperature stress include an investigation of gene expression during the heat 

stress response of spinach plants exposed to short-term (30 min or 5 h) treatments, revealing 

a large number of differentially expressed genes belonging to candidate heat stress response 

pathways (Yan et al, 2016). In Brassica crops, heat tolerance in cabbage has been assayed 

using short-term treatments of 30 min to 2 h (Li et al, 1998), while a study of the interaction of 

growing temperature with a two-day waterlogging treatment in cabbage seedlings found 

cultivar differences in proline content and the activity of antioxidant enzymes (Chen et al, 

2014).  
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Many of these studies were restricted to investigations of limited germplasm and one or two 

stress types. There is therefore a need to expand stress screening to investigate larger scale 

genetic resources, additional and simultaneous stress types, the post-stress recovery process 

and different crop growth stages. 

 
In Conclusion 

Climate change is likely to profoundly alter crop growing conditions in the future, against which 

more resilient varieties must be developed in order to maintain global food production. The 

effects of climate change on short-term weather variability means that resilience towards 

transient phases of abiotic stress during production cycles should be addressed in order to 

maximise future crop productivity. Developing new varieties of crops with enhanced abiotic 

stress resilience requires investigation of the interlinked processes of response to and 

recovery from both single and multiple simultaneous stresses. The chance of identification of 

beneficial genetic material for incorporation into crop breeding programmes is greatly 

increased by the provision of diverse germplasm from both cultivated and wild species and 

through the development of methods to screen such material. By combining our understanding 

of the underlying genetic and biochemical processes associated with environmental stress 

with whole-plant physiological and morphological studies it is hoped that more durable crops 

can be produced in order for global food provision to be safeguarded for the future. 
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