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Multivariate discrete distributions via sums and shares

M.C. Jonesa, Éric Marchandb

aSchool of Mathematics and Statistics, The Open University,Walton Hall, Milton Keynes MK7 6AA,United Kingdom
bDépartement de mathématiques, Université de Sherbrooke, Sherbrooke,Québec, Canada J1K 2R1

Abstract

In this article, we develop a sum and share decomposition to model multivariate discrete distributions, and more
specifically multivariate count data that can be divided into a number of distinct categories. From a Poisson mixture
model for the sum and a multinomial mixture model for the shares, a rich ensemble of properties, examples and re-
lationships arises. As a main example, a seemingly new multivariate model involving a negative binomial sum and
Pólya shares is considered, previously seen only in the bivariate case, for which we present two contrasting applica-
tions. For other choices of the distribution of the sum, natural but novel discrete multivariate Liouville distributions
emerge; an important special case of these is that of Schur constant distributions. Analogies and interactions with
related continuous distributions are to the fore throughout.

Keywords: Liouville distribution, Multinomial mixture, Poisson mixture, Pólya distribution, Schur constant
distribution.
2010 MSC:Primary 62E15, Secondary 62H05

1. Introduction

This article is concerned with hierarchical constructionsfor multivariate count data, thinking of total counts as
sumsand their separation into distinct categories assharesof those sums. Such representations are plentiful in practice,
consisting, for instance, of events (accidents, insuranceclaims, occurrences of diseases, presence of a member of a
species, etc.) falling into different geographical locations, types, time periods, etc.

Formally, letN0 denote the set of non-negative integers andd denote dimensionality. We are concerned with joint
distributions for random variablesM1, . . . ,Md ∈ N0. For convenience, writeMq = (M1, . . . ,Mq), q = d − 1 or d.
Our starting point is to transform linearly fromMd to (Md−1,T), whereT = M1 + · · · + Md is the sum of the random
variables. Then, this article is concerned with the construction of multivariate discrete distributions in the following
manner:

i) let the sumT have a distribution with probability mass function (p.m.f.) pT(t), t ∈ N0;

ii) conditionally onT = t, sharet out between values forMd, i.e., letMd−1|T = t have a distribution with p.m.f.
b[t](m1, . . . ,md−1) on the discrete simplex defined byMd−1 ∈ {0, . . . , t}d−1 such thatM1+ · · ·+Md−1 ∈ {0, . . . , t}.

Of course, we have just rewritten the joint p.m.f.,p(m1, . . . ,md), of anyMd ∈ N
d
0 in the equivalent form

p(m1, . . . ,md) = b[m1+···+md](m1, . . . ,md−1) pT(m1 + · · · +md), (1)

rather than making any reduction in generality.
Our aim in this article is to investigate certain families ofmultivariate discrete distributions which are especially

natural and/or attractive to define through this ‘sum and share’ construction. Let us cut straight to the chase. SinceT is
a count random variable, the Poisson distribution is a natural first choice forpT ; for a first choice of distribution with
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p.m.f. b[t](m1, . . . ,md−1) on the unit simplex, the multinomial distribution springsto mind. It is easy to see that the
resulting joint distribution is that ofd independent Poisson random variables with parametersr1 = λu1, . . . , rd = λud,
whereλ is the parameter of the Poisson distribution andu1, . . . , ud are the parameters of the multinomial distribution.
For greater generality and to induce correlation, we consider instead mixing these distributions over distributions for
Λ > 0 and forU1, . . . ,Ud ∈ (0, 1) such thatU1 + · · · + Ud = 1. The resulting joint distributions are considered in
general terms in Section 2.

We thenspecializeagain by making the natural choices ofΛ following a gamma distribution (so thatT is negative
binomial) and ofU1, . . . ,Ud following a Dirichlet distribution (so thatMd−1|T = t follows a Dirichlet-multinomial,
or multivariate Pólya, distribution). The resulting joint distribution is a multivariate extension of what in the bivariate
case Laurent [16] called the Bailey distribution. It is a focus of this article, and is considered in detail in Section 3. Its
two main special cases are included in Section 3.1. Inferential issues are considered briefly in Section 3.2 before we
present two rather different illustrative applications of this model in Sections 3.3 and 3.1.

In Section 4, we look rather briefly at a different ‘super case’ of the distribution of Section 3, what we call
the multivariate discrete Liouville distribution. Prominent among this class of distributions are the Schur constant
distributions of Castañer et al. [8], discussed in Section4.1. We finish the article in Section 5 with further brief
discussion.

2. Poisson mixtures for sums and multinomial mixtures for shares

Let us first consider takingb[t](m1, . . . ,md−1) to be the p.m.f. of amultinomial mixturedistribution,viz.

Md−1|T = t,U1 = u1, . . . ,Ud−1 = ud−1 ∼ Multinomial(t, u1, . . . , ud−1),

where
U1, . . . ,Ud−1 ∼ H on 0< u1 + · · · + ud−1 < 1, independent ofT.

Next wetakepT(t) to be the p.m.f. of aPoisson mixturedistribution,viz.

T |Λ = λ ∼ Poisson(λ) , Λ ∼ L on (0,∞), independent ofU1, . . . ,Ud−1.

In this case, (1) becomes for absolutely continuous densitiesh for (U1, . . . ,Ud−1) andℓ for Λ,

p(m1, . . . ,md) =
∫

0<u1+···+ud−1<1

· · ·

∫

(m1 + · · · +md)!
m1! · · ·md!

um1
1 · · ·u

md−1

d−1 (1− u1 − · · · − ud−1)mdh(u1, . . . , ud−1)du1 . . .dud−1

×

∫ ∞

0

e−λλm1+···+md

(m1 + · · · +md)!
ℓ(λ)dλ, (2)

for all m1, . . . ,md ∈ N
d
0. Alternatively, one can think of (2) as the result of mixing independent Poisson distributions

with parametersr1 = λu1, . . . , rd = λud over the distribution ofR1 = ΛU1, . . . ,Rd = ΛUd, where (R1, . . . ,Rd) follow
the continuousanalogof (1) in whichΛ = R1+ · · ·+Rd plays the role ofT and (R1, . . . ,Rd−1) plays the role ofMd−1,
viz.

f (r1, . . . , rd) =
1

(r1 + · · · + rd)d−1
h

(

r1

r1 + · · · + rd
, · · · ,

rd−1

r1 + · · · + rd

)

ℓ(r1 + · · · + rd) (3)

for all r1, . . . , rd > 0.
The marginal distributions forM1, . . . ,Md are Poisson mixture distributions but the marginal distributions of

R1, . . . ,Rd, and hence ofM1, . . . ,Md, are not tractable in general. The moments ofM1, . . . ,Md are readily available
in terms of those ofΛ andU1, . . . ,Ud, however. In particular, E(Mi) = E(Λ)E(Ui) and

var(Mi) = E(Λ2)var(Ui) + var(Λ){E(Ui)}2 + E(Λ)E(Ui).

Recall that Poisson mixture distributions are necessarilyoverdispersed, as is reflected in theseformulas. Covariances
simplify because cov(Mi ,M j |R1, . . . ,Rd) = 0 for anyi , j so that

cov(Mi ,M j) = cov(Ri,Rj).
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Therefore, for 1≤ (i , j) ≤ d,

cov(Mi ,M j) = var(Λ)E(UiU j) + {E(Λ)}2cov(Ui ,U j).

In particular, for the bivariate version of (2),

cov(M1,M2) = var(Λ)E{U(1− U)} − {E(Λ)}2var(U),

whereU ≡ U1 ∼ H on the interval(0, 1). Clearly, this covariance is always negative for degenerateΛ (i.e., T
is Poisson distributed) and non-degenerateU. In contrast, the covariance is always positive for degenerateU (i.e.,
M1 = 1− M2 is binomially distributed) and non-degenerateΛ.

3. Negative binomial sums and Ṕolya shares

The most natural mixing distributions to employ forU andΛ would seem to be

U ∼ Dirichlet(α1, . . . , αd), Λ ∼ Gamma(a, b),

α1, . . . , αd, a, b > 0; writeα• = α1 + · · · + αd > 0 and 0< θ = b/(1+ b) < 1. This gives a (d + 2)-parameter family
whose p.m.f. is readily seen to be

p(m1, . . . ,md) =
(a)m1+···+md

m1! · · ·md!

∏d
i=1(αi)mi

(α•)m1+···+md

θa(1− θ)m1+···+md (4)

for all m1, . . . ,md ∈ N
d
0. Here, (α)m denotes the ascending factorialΓ(α +m)/Γ(α). By construction, we have

Md−1|T = t ∼ Pólya(t;α1, . . . , αd) and T ∼ NegativeBinomial(a, θ) .

Whend = 2, this is the Bailey distribution of Laurent [16] and the distribution in (4) thus represents its multivariate
extension.

Thedistribution of (R1, . . . ,Rd) associated with the distribution with p.m.f. (4) has density

f (r1, . . . , rd) =
baΓ(α•)

Γ(a)
∏d

i=1 Γ(αi)

















d
∏

i=1

rαi−1
i

















(r1 + · · · + rd)a−α• e−b(r1+···+rd) (5)

for all r1, . . . , rd > 0. Of course,R1, . . . ,Rd|Λ = λ ∼ λ × Dirichlet(α1, . . . , αd) andΛ = R1 + · · · + Rd ∼ Gamma(a, b).
This ‘Dirichlet-gamma’ distribution has been used in low-dimensional cases as a prior distribution in Bayesian analy-
sis, in the guise of a ‘beta-gamma’ distribution by, e.g., Bhattacharya et al. [7] whend = 2 and by Peña & Gupta [21]
whend = 3. It is a particular continuous multivariate Liouville distribution [13].

Moments are readily available. Inserting the moments of thegamma and Dirichlet distributions into theformulas
in Section 2, we find that, fori ∈ {1, . . . , d},

E(Mi) =
aαi

bα•
, var(Mi) =

aαi

b2α2
•(1+ α•)

[α•{a+ 1+ (1+ α•)b} + (α• − a)αi ] (6)

and, for 1≤ (i , j) ≤ d,

cov(Mi ,M j) =
a(α• − a)αiα j

b2α2
•(1+ α•)

. (7)

The signs of the covariances are the same for alli, j and depend directly on the sign ofα• − a. Covariances are zero
whenα• = a, which corresponds to independence: (5) reduces to the distribution of independent random variables
distributed as Gamma(α1, b), . . . ,Gamma(αd, b), and hence (4) to the distribution of independent random variables
NegativeBinomial(α1, θ), . . . ,NegativeBinomial(αd, θ).
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In fact, independence holds in (4) (equivalently in (5)) if and only if α• = a. This can be seen directly from the
density functions or from the product moments. For general product moments, letK = k1 + · · · + kd. Then, we have

E

















d
∏

i=1

Rki
i

















= E
(

ΛK
)

E

















d
∏

i=1

Uki
i

















=
(a)K

∏d
i=1(αi)ki

bK(α•)K
= E















d
∏

i=1

(Mi − ki + 1)ki















.

The final equality holds because thekth descending factorial moment of the Poisson distributionwith parameterλ is
λk. Inter alia, this gives a formula formarginal binomial moments. Namely, for alli ∈ {1, . . . , d},

E

{(

Mi

ki

)}

=
(a)ki (αi)ki

ki ! bki (α•)ki

.

Marginal distributions are a little more tractable than they were in the more general case of Section 2. In Ap-
pendix A, we show that the p.m.f. ofM1 can be written

Pr(Mi = mi) =
ba

(1+ b)a+mi

(a)mi (αi)mi

(α•)mi mi !
2F1

(

a+mi , α• − αi ;α• +mi ;
1

1+ b

)

.

Here,2F1 is the Gauss hypergeometric function. A closely related expression was given whend = 2 in [16].
For a pair of random variables, alongside the covariance andcorrelation, it is also of interest to considerlocal

dependence which, in the case of discrete models, is measured by the set of log cross-product ratios of adjacent 2× 2
cells in a (usually infinitely) large ordinal contingency table [10, 11, 25]. For (m1,m2) ∈ N

2
0, define

θ(m1,m2) ≡ ln

{

p(m1,m2)p(m1 + 1,m2 + 1)
p(m1 + 1,m2)p(m1,m2 + 1)

}

.

Whend = 2, (4) becomes

p(m1,m2) =
(α1)m1(α2)m2

m1! m2!
(a)m1+m2

(α1 + α2)m1+m2

θa (1− θ)m1+m2

and hence the distribution has local dependence function

θ(m1,m2) = ln

{

(α1 + α2 +m1 +m2)(a+m1 +m2 + 1)
(α1 + α2 +m1 +m2 + 1)(a+m1 +m2)

}

.

This is a function only oft = m1 + m2, α• = α1 + α2 anda; for fixed t, it is increasing inα• and decreasing ina. It
is necessarily zero for allt if and only if α• = a, previously established to be the case of independence. Thelocal
dependence function is positive (negative) for allt whenα0 > (<) a (like the correlation). It is largest in absolute value
whent = 0 where it takes the value ln[α•(a+ 1)/{a(α• + 1)}] and tends to zero ast→ ∞.

3.1. Special cases
3.1.1. Special Case 1:α1 = · · · = αd = 1.

The Dirichlet mixing distribution reduces to the continuous uniform distribution on the simplex and so the
Dirichlet-multinomial distribution reduces to the discrete uniform distribution on the discrete simplex. We then have
the ‘discrete Schur-constant’ distribution of Castañer et al. [8] with negative binomialT, which has

p(m1, . . . ,md) =
(a)m1+···+md

(d)m1+···+md

θa (1− θ)m1+···+md (8)

for all m1, . . . ,md ∈ N
d
0. Notice that (8) depends onm1, . . . ,md only through the summ1 + · · · + md. Similarly, the

underlying distribution of (R1, . . . ,Rd) has density

f (r1, . . . , rd) =
baΓ(d)
Γ(a)

(r1 + · · · + rd)a−d e−b(r1+···+rd) (9)

for all r1, . . . , rd > 0, which depends onr1, . . . , rd only throughr1 + · · · + rd. Immediately, ifa = d, (8) reduces to the
distribution ofd independent geometric(θ) random variables and (9) to the distribution ofd independent exponential(b)
random variables, respectively. Distribution (9) underlies the ‘gamma-simplex copula’ of McNeil & Nešlehová [19]
in a sense to be explained in a more general discussion of distributions with uniform shares in Section 4.1 to follow.
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3.1.2. Special Case 2:α1, . . . , αd → ∞ such thatαi/(α1 + · · · + αd)→ φi for all i ∈ {1, . . . , d}.
The Dirichlet mixing distribution becomes degenerate at values 0φ1, . . . , φd ∈ (0, 1) such thatφ1+ · · ·+ φd = 1, so

the Dirichlet-multinomial distribution reduces to the multinomial distribution and we have

p(m1, . . . ,md) =
(a)m1+···+md

m1! · · ·md!

















d
∏

i=1

φ
mi
i

















θa(1− θ)m1+···+md

for m1, . . . ,md ∈ N
d
0. In this case, it is not difficult to show that, for 1≤ (i , j) ≤ d,

corr(Mi ,M j) =

√

φi

φi + b

φ j

φ j + b
> 0,

whereb = θ/(1 − θ). The amount of correlation varies monotonically from 0 to 1asb decreases from∞ to 0, or
equivalently asθ decreases from 1 to 0. Whend = 2, we have, for allm1,m2 ∈ N

2
0,

p(m1,m2) =
(a)m1+m2

m1! m2!
θaqm1

1 qm2
2 , (10)

whereq1 = φ1(1− θ), q2 = (1− φ1)(1− θ). This has marginals that are NegativeBinomial(a, θ/(θ+ qi)) for i ∈ {1, 2},
and local dependence function

θ(m1,m2) = ln(a+m1 +m1 + 1)− ln(a+m1 +m2) > 0.

The latter depends only ona rather than onb andφ1.

3.2. Inference

Let (m11, . . . ,md1), . . . , (m1n, . . . ,mdn) be a sample of independent observations taken from the distribution with
density (4); also lett j = m1 j + · · · +md j, with j ∈ {1, . . . , n}, be the sample totals.

Likelihood inference for the parametersa, θ associated with the distribution ofΛ and for the parametersα1, . . . , αd

associated with the distribution ofU proceeds as two separate problems. The (d + 2) × (d + 2) Fisher information
matrix associated with distribution (4) will therefore be in two blocks, one of size 2×2, the otherd×d, and maximum
likelihood (ML) estimators ofa andθ will be asymptotically independent of ML estimators ofα1, . . . , αd.

The problem of estimatinga andθ is the standard one of ML estimation of the parameters of the negative binomial
distribution when both are unknown; for early references, see Section 5.8.3 of Johnson et al. [14]. The cross-term in
the 2× 2 Fisher information submatrix is−1/θ, meaning that the asymptotic correlation between the ML estimates of
a andθ is positive.

The problem of estimatingα1, . . . , αd is one of ML estimation of the parameters of the Pólya distribution based
on independent data with different, known, values oft. The score equations reduce to

∀i∈{1,...,d}

n
∑

j=1

{ψ(αi +mi j ) − ψ(αi)} =
n

∑

j=1

{ψ(α• + t j) − ψ(α•)},

whereψ is the digamma function, which is an increasing function forpositive values of its argument. Thed × d
submatrix of the observed information matrix has all its off-diagonal elements the same and equal to

n
∑

j=1

{ψ′(α• + t j) − ψ′(α•)} < 0.

It follows that the corresponding block of the asymptotic correlation matrix is of equicorrelation type, the correlations
between ML estimates oftheαsbeing positive.

A full exploration of the many inferential issues, both frequentist and Bayesian, for the models of this paper in
their full breadth and generality is deferred to further work. In the next two sections, we present two, rather different,
applications of model (4) whend = 2.
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3.3. Application: Data on shunter accidents

We consider a historical bivariate data set due to Adelstein([2], Table 11A) (also Arbous & Kerrich [5], Table I)
consisting of (m1,m2) pairs denoting the numbers of accidents for the periods 1937–1942and 1943–1947, respectively,
for each ofn = 122 (human) shunters on South African Railways. See also [9]and [22] and the references therein.
Adelstein [2] showed that a Poisson distribution was an inadequate model for the total number of accidents per shunter,
while a negative binomial distribution was adequate. (Dependent) Poisson distributions are, perhaps arguably in the
first period, adequate models for the marginals, though negative binomial distributions might be preferred for them,
too. Fitting a model like ours with a negative binomial totalbut less directly specified marginals therefore seems
like an interesting exercise to perform. Specifically, we fitmodel (4) which, in addition to a negative binomial sum,
employs a bivariate Pólya sharing distribution.

ML parameter estimates for model (4) were evaluated numerically yielding

â = 3.419, θ̂ = 0.604, α̂1 = 38.4, α̂2 = 50.0.

The above estimates fora and θ were obtained by focussing on solving the score equations, while a plot of the
likelihood on a fine grid withα1 ≤ 50, α2 ≤ 50 yielded the estimates forα1 andα2. The precise values of theαishave
a negligible effect on the fitted model when they are large, and relate toSpecial Case 2in Section 3.1, as discussed
in the following paragraph. Our model fits the data well (as doa number of other models; see Table 9 of Sellers et
al. [22]): see Table 1 for a comparison of observed and expected numbers of accidents; a chi-squared test based on
an admittedly arbitrary combination of cells with small expected frequencies led to a test statistic smaller than the
degrees-of-freedom of the asymptotic chi-squared null distribution. The empirical correlation is 0.29; the estimated
correlation in our fitted model is 0.23.

So, how is the negative binomial distribution of the sum shared out by our model? Well, both ˆα1 andα̂2 are large.
For largeα1, α2, p.m.f. (4) withd = 2 is approximated by (10) withφ1 = α1/α• andφ2 = α2/α•, i.e.,

p(m1,m2) =
Γ(a+m1 +m2)
Γ(a) m1! m2!

α
m1
1 α

m2
2

(α1 + α2)m1+m2
θa (1− θ)m1+m2.

Table 1: Observed (O) and expected (under our fitted model; E)numbers of accidents amongn = 122 shunters.

m1 ↓ m2→ 0 1 2 3 4 5 6 7+ Total

0
O 21 18 8 2 1 0 0 0 50
E 21.71 16.65 8.32 3.43 1.27 0.44 0.14 0.07 52.03

1
O 13 14 10 1 4 1 0 0 43
E 12.78 12.52 7.59 3.66 1.55 0.60 0.22 0.11 39.03

2
O 4 5 4 2 1 0 1 0 17
E 4.93 5.86 4.16 2.30 1.09 0.46 0.18 0.11 19.09

3
O 2 1 3 2 0 1 0 0 9
E 1.58 2.20 1.78 1.11 0.58 0.27 0.12 0.08 7.72

4
O 0 0 1 1 0 0 0 0 2
E 0.45 0.72 0.66 0.45 0.26 0.13 0.06 0.04 2.77

5
O 0 0 0 0 0 0 0 0 0
E 0.12 0.22 0.22 0.17 0.10 0.06 0.03 0.02 0.94

6
O 0 0 0 0 0 0 0 0 0
E 0.03 0.06 0.07 0.06 0.04 0.02 0.01 0.01 0.30

7+
O 0 1 0 0 0 0 0 0 1
E 0.01 0.02 0.03 0.03 0.02 0.01 0.00 0.00 0.12

Total
O 40 39 26 8 6 2 1 0

122
E 41.61 38.25 22.83 11.21 4.91 1.99 0.76 0.44
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This is the basic bivariate negative binomial distributionproduced by mixing independent Poissons with the same
mean over a gamma distribution for that mean, which wasutilizedby Arbous & Kerrich [5] for these data. It is still the
case thatT ∼ NegativeBinomial(a, θ), but we also have here thatM1 ∼ NegativeBinomial(a, θ(α1+α2)/(α1+θα2)) and
M2 ∼ NegativeBinomial(a, θ(α1 + α2)/(α2 + θα1)) ; inter alia, E(M1) = α1 E(T)/(α1+α2) and E(M2) = α2 E(T)/(α1+

α2). Our model is broadly similar, but not the same; either model provides an adequate description of the data. Given
the adequacy of these models based on basic distributional ingredients, it is unclear what value is added by other,
more exotic, distributions that have also been fitted to these data.

3.4. Application: Karl Broman’s socks

Sum and shares distributions offer potentially useful benchmarks in eliciting prior distributions for discrete-valued
parameters, such as population sizes. Here is an illustration. Bȧȧth [6] addressed the following problem as tweeted by
Karl Broman:

Given a sample of eleven orphan (that is, unpaired) socks, how many socks does Karl Broman have in
total?

A Bayesian model, describing uncertainty with regards to the total number of socks, as well as the proportions of socks
in pairs and orphan socks, is put forth by Bȧȧth, and followed by the implementation of an approximate Bayesian
computation algorithm to obtain posterior distributions,such as for the total number of socks. We expand here on
the prior construction, which can naturally be linked to p.m.f. (4), and how related properties can enhance the prior
construction and aid in analytical posterior computations, not requiring simulation.

Suppose that, initially, there areT = M1 + M2 pairs of socks and thatM2 socks are now missing. In other words,
2M1 + M2 remain,M2 of which are orphans and 2M1 of which are paired. As in [6], suppose that a prior distribution
for (M1,M2) is elicited starting with a Negative BinomialT, M1,M2|T = t, p distributed as Multinomial(t, p, 1− p),
and p as Beta(α1, α2). This is exactly the distribution in Section 3 whend = 2, with p.m.f. given in (4). Posterior
distributions are of interest for (M1,M2), as well as for the total number of socksS = 2M1 + M2.

The distributional properties of (4) aid here in prior elicitation for this problem, as well as other problems where
the unknowns (M1, . . . ,Md) are population sizes modelled as sums and shares. As an illustration, the choices
a = µ2/(σ2 − µ), θ = µ/σ2 are necessary for the prior meanµ and standard deviationσ to be matched by the
prior onT. The choice of (α1, α2) may be elicited in a familiar fashion with a prior mean and variance for the Beta
distributedp. Furthermore, the plausibility of an assigned choice for (α1, α2) can be further evaluated by the corre-
sponding covariance or correlation, which are available from (6) and (7), assuming, of course, that one can elicit such
quantities.

Turning now to the posterior evaluation, considern draws from theS socks and denote asX the number of paired
socks among those drawn. With the prior p.m.f. for (M1,M2) explicitly given by (4), one requires the probabilities
Pr(X = x|M1 = k,M2 = ℓ) to infer the posterior distribution for (M1,M2). Focussing on the casex = 0, that is, forn
draws producingn orphan socks, a combinatorial argument yields

Pr(X = 0 | M1 = k,M2 = ℓ) =
n∧ℓ
∑

j=(n−k)∨0

(

ℓ

j

)(

k
n− j

)

2n− j

/(

2k+ ℓ
n

)

,

for ℓ + k ≥ n, and 0 otherwise. We thus obtain form1 +m2 ≥ n, that Pr(M1 = m1,M2 = m2|X = 0) is given by

Pr(M1 = m1,M2 = m2|X = 0) = Pr(X = 0|M1 = m1,M2 = m2) p(m1,m2)/Pr(X = 0)

=
1
K

(a)t

(α1 + α2)t

(α1)m1(α2)m2

(t +m1 − n+ 1)n
θa(1− θ)t

n∧m2
∑

j=(n−m1)∨0

(

n
j

)

2n− j

(m2 − j)!(m1 − n+ j)!
,

with K = Pr(X = 0) andt = m1 +m2. We do not have a closed-form formula forK, but we can approximate it rather
nicely, by summing the above probabilities over the pairs (m1,m2) such thatm1 +m2 ≥ n. Finally, the p.m.f. for the
total number of socks is obtained as

Pr(S = y) =
∑

0≤k≤⌊(y−1)/2⌋

Pr(M1 = k,M2 = y− 2k)
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Figure 1: Posterior p.m.f.s for: (a)M1; (b) M2; and (c)S. Panel (d) is a plot of Pr(S = 2k + 1|X = 0)− Pr(S = 2k|X = 0) as a function ofk.

for all y ∈ {n, n+ 1, . . .}.
The above development capitalizes on an explicit form for the prior p.m.f. paired with a closed form for the

likelihood function atX = 0. Furthermore, as motivated above, the prior is nicely elicited as a sum and shares
distribution.

Now, Bȧȧth [6] used a Negative Binomial prior for the totalnumber of socks 2(M1 + M2) — which does not take
account of the parity of this number — while we assume a Negative Binomial prior for the total number of pairs of
socksT = M1+M2. Matching the moments used by Bȧȧth, consider a meanµ = 15 and standard deviation ofσ = 7.5
for T yielding a = 60/11 ≈ 5.455 andθ = 4/15 ≈ 0.267. Furthermore, consider the choice of a Beta(15, 2) prior
for the proportion of socks that are pairs, i.e.,α1 = 15, α2 = 2. In terms of prior elicitation, we point out that this
combination of (a, θ, α1, α2) implies a correlation of 0.2895.

For n = 11, Figure 1 gives the corresponding posterior p.m.f.s for:(a) the number of pairs of paired socks (M1);
(b) the number of orphan socks (M2); and (c) the total number of socks (S = 2M1 + M2). Figure 1(d) is related
to Figure 1(c). The observedX = 0 has pushed the posterior distributions away from 0. For instance, the prior
expectations are E(M1) = 225/17 ≈ 13.235 and E(M2) = 30/17 ≈ 1.765, while the posterior expectations are
E(M1|X = 0) ≈ 21.3 and E(M2|X = 0) ≈ 2.82. There is an unusual oscillation in the posterior p.m.f. of S with its
parity determined by that ofM2, and a quite subtlebehaviorof Pr(M1 is even|M2 = k,X = 0) as a function ofk. See
Figure 1(d) which represents the differences Pr(S = 2k+ 1|X = 0)− Pr(S = 2k|X = 0) as a function ofk.

As it happens, the true collection of socks that Karl Broman had comprisedM1 = 21 pairs of socks,M2 = 3
orphan socks, and henceS = 2M1 + M2 = 45 socks in total. The estimates given by the posterior meansof M1 and
M2, as well as the estimate E(S|X = 0) ≃ 45.42, are thus remarkably accurate.
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4. Super case: The multivariate discrete Liouville distribution

Super cases of the distribution on which we focussed in Sections 3 and 4 abound, of course, by making different
choices of distributions forT andMd−1|T = t in (1). A super case of particular interest might be that in which the
sharing distribution remains the Dirichlet-multinomial as in Section 3 but a general distribution is allowed forT, rather
than the negative binomial. This results in

p(m1, . . . ,md) =
(m1 + · · · +md)!

m1! · · ·md!

∏d
i=1(αi)mi

(α•)m1+···+md

pT(m1 + · · · +md). (11)

Note that (11) can be written as

p(m1, . . . ,md) =

∏d
i=1(αi)mi

m1! · · ·md!
F (m1 + · · · +md). (12)

whereF (t) = t!pT (t)/(α•)t. The form of (12) is a discreteanalogof the continuous multivariate Liouville distribution
[13], which has p.d.f.

f (r1, . . . , rd) =

















d
∏

i=1

rαi−1
i

















F(r1 + · · · + rd), (13)

for all r1, . . . , rd > 0, or suitableF. More strikingly, perhaps, ifT has a Poisson mixture distribution with general (not
necessarily gamma) mixing densityℓ, then the distribution of (R1, . . . ,Rd) associated with (11) — the special case of
(3) with Dirichleth — has the form

f (r1, . . . , rd) =
Γ(α•)

∏d
i=1 Γ(αi)

∏d
i=1 rαi−1

i

(r1 + · · · + rd)α•−1
ℓ(r1 + · · · + rd)

which is indeed a continuous Liouville distribution of form(13). In the discrete case, our preferred formulation is
(11) rather than (12) because the role ofpT in the former is much clearer than that ofF in the latter.

In the literature, the name multivariate discrete Liouville distribution was used by Lingappaiah [17] for the distri-
bution having p.m.f. of form

p(m1, . . . ,md) =

∏d
i=1 θ

mi
i

m1! · · ·md!
G(m1 + · · · +md).

Rearranging appropriately, this can be written

p(m1, . . . ,md) =
(m1 + · · · +md)!

m1! · · ·md!















d
∏

i=1

(

θi

θ1 + · · · + θd

)mi














pT(m1 + · · · +md). (14)

This is none other than distribution (1) with general distribution for T and multinomial, Multinomial(t,
θ1/

∑d
i=1 θi , . . . , θd−1/

∑d
i=1 θi), conditional distribution forMd−1|T = t. It follows that the new multivariate discrete

Liouville distribution at (11) is a mixture overΘ1/
∑d

j=1Θ j , . . . ,Θd−1/
∑d

j=1Θ j ∼ Dir(α1, . . . , αd) of Lingappaiah’s
multivariate discrete Liouville distribution at (14), andhence is more general than it.

4.1. Special case: Schur constant distributions

The special cases of our multivariate discrete Liouville distribution (11) withα1 = · · · = αd = 1 are the Schur
constant distributions of Castañer et al. [8]. A special case of this observation was made in Section 3.1 above. This
multivariate discrete distribution is of considerable independent interest. As well as listing a few of the particular
properties of this distribution, we would like to stress itsanalogwith the continuous case. All but two of the obser-
vations in this subsection can also be found in [8]; the two new observations are both in the fourth paragraph of this
subsection. Castañer et al. provide various applicationsin insurance for a related counting process.

From (11), the p.m.f. in this case has the simple form

p(m1, . . . ,md) = pT(m1 + · · · +md) /

(

m1 + · · · +md + d − 1
d− 1

)

;
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this reduces in the bivariate case (see also Ait Aoudia & Marchand [3]) to p(m1,m2) = pT(m1 +m2)/(m1 + m2).
Notice that the p.m.f. is constant onm1 + · · · +md = k for each constant value ofk ∈ N0 hence the name given to the
distribution. This is a consequence of the sharing distribution being uniform on the discrete simplex.

For Schur constant distributions, univariate marginal distributions are all the same and can be written in terms of
pT as

pS(mi) = (d− 1)
∞
∑

t=mi

(t −mi + 1)d−2

(t + 1)d−1
pT(t) (15)

(multivariate marginals can be written in rather similar fashion); conversely,

pT(t) =

(

t + d− 1
d− 1

) d−1
∑

j=0

(

d− 1
j

)

(−1) j p(t + j). (16)

In fact, the joint p.m.f. can be written in terms ofpS as

p(m1, . . . ,md) =
d−1
∑

j=0

(

d− 1
j

)

(−1) j pS(m1 + · · · +md + j) (17)

and the survival function simply as

Pr(M1 ≥ m1, . . . ,Md ≥ md) = PS(m1 + · · · +md), (18)

wherePS is the survival function associated withpS. While pT can be specified arbitrarily onN0, (16) and (17)
show thatpS has to be a discrete (d − 1)-monotone distribution onN0. Independence in Schur constant distributions
corresponds topS being geometric. An interesting example of (17) occurs forpS a Poisson(α) p.m.f., whereα ∈ (0, 1].
Such an example, as well as Dirichlet Poisson mixtures, arises as the distribution of counts of Bernoulli success strings
in recent work of Ait Aoudia et al. [4].

The most convenient form for multivariate moments of Schur constant distributions — which appears not to be
in [8] — is

E















d
∏

i=1

(

Mi

ki

)















= E

{(

T
k1 + · · · + kd

)}

/

(

k1 + · · · + kd + d− 1
d− 1

)

whereT ∼ pT . See Appendix B for a proof of this result. Inter alia, for any1 ≤ i , j ≤ d,

cov(Mi ,M j) =
1

d2(d+ 1)

[

d var(T) − {E(T)}2 − dE(T)
]

=
1
2

[

var(Mi) − {E(Mi)}2 − E(Mi)
]

.

It follows that corr(Mi ,M j) < 1/2. Pairs of random variables are positively correlated if

var(T) > E(T) {E(T)/d+ 1} ,

a requirement becoming closer and closer to overdispersionof the distribution of T as d increases. Also,
corr(Mi ,M j) ≥ −1 implies that, forMi following a distribution onN0 with decreasing p.m.f.,

var(Mi) ≥
1
3

E(Mi){E(Mi) + 1}.

This inequality is the discreteanalogof the result var(X) ≥ {E(X)}2/3 for X following a unimodal continuous distri-
bution with mode at 0 given by Johnson & Rogers [15]: it is essentially the casea = 0, α = 1 of Theorem 3.1 of
Abouammoh, Ali & Mashhour [1]. In particular, a univariate distribution with decreasing p.m.f. onN0 is guaranteed
to be overdispersed if its mean is greater than 2.

Schur constant discrete distributions are directanalogsof the continuous distributions underlying Archimedean
copulas; see, e.g., Nelsen [20]. Those distributions also have survival functions of the form (18) which, along with
their densities, are constant on planes of the formr1 + · · · + rd = k > 0 and have equalcontinuous(d − 1)-monotone
marginal distributions onR+, theanalogof relationship (15) being the so-called Williamson transform; see especially
McNeil & Nešlehová [18]. Independence corresponds to exponential marginals.
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4.2. Special case: The multivariate generalized Waring distribution
The multivariate generalized Waring distribution [23, 24]is the multivariate discrete Liouville distribution of this

section with general Dirichlet-multinomial sharing distribution and beta-negative binomial (or generalized Waring)
distribution for the sumT. We will say no more about this distribution here partly because the distribution is well
known and partly because it is a case where the distributionsof T andMd−1|T = t have a parameter in common
(one of the parameters of the beta mixing distribution isα1 + · · · + αd) so that there is not the inferentially desirable
separation between sum and share parameters in this case.

5. Concluding remarks

The findings of this article expand on a sum and share decomposition to modeld−variate discrete distributions
and more specifically multivariate count data that fall intod distinct categories. From a simple Poisson mixture model
for the totalT with mixing densityℓ and a sharing distribution mechanismT = M1 + · · · + Md with M1, . . . ,Md−1|

T,U1, . . . ,Ud−1 multinomially distributed withU1, . . . ,Ud−1 ∼ h, a rich ensemble of properties, examples and rela-
tionships arises. As a main example, in further studying thecase of a negative binomial sum and Pólya shares, we
obtained a seemingly new model as the joint distribution of (M1, . . . ,Md), previously arising in the bivariate case as a
Bayesian predictive distribution [16]. Two contrasting applications of the latter model were investigated.

We have addressed the equivalent scheme for generating the distributions above consisting in decomposingλ =
∑

i Ri with Ri = λUi and theUi as above. This yieldsMi |R1, . . .Rd, with i ∈ {1, . . . , d}, as independently distributed
Poisson(Ri). Thus, as is well illustrated by the identity cov(Mi ,M j) = cov(Ri ,Rj) in Section 2, the dependence
structure of the discreteMis is induced by that of the continuously distributedRis, and vice versa.

Finally, for other choices of the distribution ofT, continuous multivariate Liouville distributions emergefor the
distribution of theRis, as well as discreteanalogsfor the distribution of theMis. Moreover, the latter include the
important special case of Schur constant distributions [8]which are expanded upon in Section 4.1. Consideration
of the correlations in such distributions led us to a pre-existing but not well known variance-mean inequality for
univariate discrete distributions with decreasing probability mass functions (the distributions’ univariate marginals).

In summary, we feel that our findings provide considerable insight and appealing analytics for generating and
understanding multivariate discrete distributions via sum and share decompositions.
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Appendix A: Marginal p.m.f. associated with (4)

One can recover the marginal p.m.f.s through their relationship with the binomial moments:

Pr(Mi = mi) =
∞
∑

j=mi

(−1) j−mi

(

j
mi

)

E

{(

Mi

j

)}

.

This gives

Pr(Mi = mi) =
∞
∑

j=mi

(−1) j−mi

(

j
mi

)

(a) j (αi) j

(α•) j j! b j
=

1
mi ! bmi

∞
∑

k=0

(a+mi)k (αi +mi)k

(α• +mi)k k!

(

−
1
b

)k

=
(a)mi (αi)mi

(α•)mi mi ! bmi
2F1

(

a+mi , αi +mi ;α• +mi ;−
1
b

)

=
ba

(1+ b)a+mi

(a)mi (αi)mi

(α•)mi mi ! bmi
2F1

(

a+mi , α• − αi ;α• +mi ;
1

1+ b

)

,

using a standard transformation formula for the hypergeometric function.
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Appendix B: Product binomial moments for Schur constant distributions

E















d
∏

i=1

(

Mi

ki

)















=

∞
∑

m1=k1

· · ·

∞
∑

md=kd

(

m1

k1

)

· · ·

(

md

kd

)

pT(m1 + · · · +md)
(

m1+···+md+d−1
d−1

)

=

∞
∑

m1=k1

· · ·

∞
∑

md−1=kd−1

(

m1

k1

)

· · ·

(

md−1

kd−1

)

×

∞
∑

t=m1+···+md−1+kd

(

t −m1 − · · · −md−1

kd

)

pT(t)
(

t+d−1
d−1

) .

Using, for example, (3.3) of Gould [12], it is the case that

t−m2−···−md−1−kd
∑

m1=k1

(

m1

k1

)(

t −m2 − · · · −md−1 −m1

kd

)

=

(

t −m2 − · · · −md−1 + 1
k1 + kd + 1

)

,

that for all i ∈ {2, . . . , d− 2},

t−mi+1−···−md−1−k1−···−ki−1−kd
∑

mi=ki

(

mi

ki

)(

t −mi − · · · −md−1 + i − 1
k1 + · · · + ki−1 + kd + i − 1

)

=

(

t −mi+1 − · · · −md−1 + i
k1 + · · · + ki + kd + i

)

,

and that
t−k1−···−kd−2−kd

∑

md−1=kd−1

(

md−1

kd−1

)(

t −md−1 + d− 2
k1 + · · · + kd−2 + kd + d− 2

)

=

(

t + d − 1
k1 + · · · + kd + d− 1

)

.

It then follows that

E















d
∏

i=1

(

Mi

ki

)















=

∞
∑

t=k1+···+kd

(

t + d− 1
k1 + · · · + kd + d− 1

)

pT(t)
(

t+d−1
d−1

) =
1

(

k1+···+kd+d−1
d−1

)

∞
∑

t=k1+···+kd

(

t
k1 + · · · + kd

)

pT(t),

as required.

References

[1] A. Abouammoh, A. Ali, A. Mashhour, On characterizationsand variance bounds of discreteα-unimodality, Statist. Pap. 35 (1994) 151–161.
[2] A. Adelstein, Accident proneness: A criticism of the concept based upon an analysis of shunters’ accidents (with discussion), J. R. Stat. Soc.

Ser. A 115 (1952) 354–410.
[3] D. Ait Aoudia, E. Marchand, On a simple construction of a bivariate probability function with a common marginal, Amer. Statist. 68 (2014)

170–173.
[4] D. Ait Aoudia, E. Marchand, F. Perron, Counts ofBernoulli success strings in a multivariate framework, Statist. Probab. Lett. 119 (2016)

1–10.
[5] A. Arbous, J. Kerrich, Accident statistics and the concept of accident-proneness, Biometrics 7 (1951) 340–432.
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