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Multivariate discrete distributions via sums and shares

M.C. Jone§ Eric Marchan8

aSchool of Mathematics and Statistics, The Open Univeiigton Hall, Milton Keynes MK7 6AAJnited Kingdom
bDépartement de mathématiques, Université de SherbrdgtkerbrookeQuébeg Canada J1K 2R1

Abstract

In this article, we develop a sum and share decompositionddemmultivariate discrete distributions, and more
specifically multivariate count data that can be divided mthumber of distinct categories. From a Poisson mixture
model for the sum and a multinomial mixture model for the sbara rich ensemble of properties, examples and re-
lationships arises. As a main example, a seemingly new vaukite model involving a negative binomial sum and
Polya shares is considered, previously seen only in theribite case, for which we present two contrasting applica-
tions. For other choices of the distribution of the sum, redtbut novel discrete multivariate Liouville distributie
emerge; an important special case of these is that of Scmstarat distributions. Analogies and interactions with
related continuous distributions are to the fore throughou

Keywords: Liouville distribution, Multinomial mixture, Poisson niire, Pblya distribution, Schur constant
distribution.
2010 MSC: Primary 62E15, Secondary 62H05

1. Introduction

This article is concerned with hierarchical constructiforsmultivariate count data, thinking of total counts as
sumsand their separation into distinct categorieslaresof those sums. Such representations are plentiful in pecti
consisting, for instance, of events (accidents, insurataiens, occurrences of diseases, presence of a member of a
species, etc.) falling into @ierent geographical locations, types, time periods, etc.

Formally, letNy denote the set of non-negative integers dniénote dimensionality. We are concerned with joint
distributions for random variabledy, ..., Mg € No. For convenience, writdly = (M1,...,Mg), q = d -1 ord.

Our starting point is to transform linearly froMlg to (Mg-1, T), whereT = M; + - - - + Mg is the sum of the random
variables. Then, this article is concerned with the comrsion of multivariate discrete distributions in the followg
manner:

i) let the sumT have a distribution with probability mass function (p.mgx (t), t € No;

ii) conditionally onT = t, sharet out between values foky, i.e., let My_1|T = t have a distribution with p.m.f.
brg (M, . . ., My_1) on the discrete simplex defined W41 € {0, ..., t}% 1 such thaM; +- - - + Mg_1 € {0, ..., t}.

Of course, we have just rewritten the joint p.mg{my, . .., my), of any My € Ng in the equivalent form

p(My, ..., Ma) = Bmy+oemgg (M, - .., Ma—1) Pr(me + -+ - + mg), (1)

rather than making any reduction in generality.

Our aim in this article is to investigate certain familiesnadiltivariate discrete distributions which are especially
natural angbr attractive to define through this ‘sum and share’ conisacLet us cut straight to the chase. Sificis
a count random variable, the Poisson distribution is a ahfirst choice forpr; for a first choice of distribution with
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p.m.f. by (M, . .., mg_1) on the unit simplex, the multinomial distribution sprinigsmind. It is easy to see that the
resulting joint distribution is that afl independent Poisson random variables with parametetsiu, . .., rq = Aug,
whereA is the parameter of the Poisson distribution apnd. ., ug are the parameters of the multinomial distribution.
For greater generality and to induce correlation, we canrsitstead mixing these distributions over distributions f
A > 0 and forUy,...,Uq € (0,1) such thalU; + --- + Ug = 1. The resulting joint distributions are considered in
general terms in Sectidi 2.

We thenspecializeagain by making the natural choices/following a gamma distribution (so tha@itis negative
binomial) and ofU4, ..., Uq following a Dirichlet distribution (so thady_1|T = t follows a Dirichlet-multinomial,
or multivariate Polya, distribution). The resulting joalistribution is a multivariate extension of what in thedniate
case Laurenm6] called the Bailey distribution. It is ade®f this article, and is considered in detail in Sedfibrts. |
two main special cases are included in Sedfioh 3.1. Inferldesues are considered briefly in Secfiad 3.2 before we
present two rather flierent illustrative applications of this model in Sectibn3 8nd3.1L.

In Section, we look rather briefly at affirent ‘super case’ of the distribution of Sectidn 3, what \aé c
the multivariate discrete Liouville distribution. Proreint among this class of distributions are the Schur constant
distributions of Castafier et all[8], discussed in Sedidh We finish the article in Sectidd 5 with further brief
discussion.

2. Poisson mixtures for sums and multinomial mixtures for skares
Let us first consider takinky (m, . .., My-1) to be the p.m.f. of anultinomial mixturedistribution,viz.

Mga|T =t,Ug =Uq,...,Ug1 = Ug_1 ~ Multinomial(t, U, ..., Ud_]_),

where
Ug,...,Ug1~H on O<ug +---+Ug1 <1, independent of.

Next wetake pr(t) to be the p.m.f. of @oisson mixturalistribution,viz.
TIA = A~ Poisson{) , A ~ L on (Q o), independentoby, ..., Ug_1.

In this case,[{l1) becomes for absolutely continuous dessitior (U, ..., Uq_1) andf for A,

my + -+ my)!
p(my, ..., mg) = f - Wu’{h U= U — - = Ug-1)™h(Ug, . . ., Ug-1)dUy . .. dUgs
O<Up+-+Ug_1<1 v '
00 e*ﬂ/lm1+"'+nh
X —_——(Dda, (2
fo (Mg + - + my)! @) @)

forallm,...,mq € Ng. Alternatively, one can think of]2) as the result of miximglependent Poisson distributions
with parameters; = Auy, ..., rq = Aug over the distribution oRy = A Uy, ..., Ry = AUg, Where Ry, ..., Ry) follow
the continuouanalogof @) in whichA = R; + - - - + Ry plays the role off and Ry, .. ., Ry4-1) plays the role ofMq_1,

VIZ. 1
M1 lg-1
(rl 4o+ rd)dfl ( 4 > )Z(rl + + rd) (3)

f(ro,...,r
(ra a) ri+---+rqg Fi+---+rqg

forallrq,...,rq > 0.

The marginal distributions foMy, ..., Mg are Poisson mixture distributions but the marginal distidns of
R1,...,Rq, and hence oMy, ..., Mg, are not tractable in general. The momentd/Mf. .., My are readily available
in terms of those of\ andUy, ..., Uy, however. In particular, B(;) = E(A)E(U;) and

var(M;) = E(A%)var(U;) + var(A){E(U;)}? + E(A)E(U;).

Recall that Poisson mixture distributions are necessavigrdispersed, as is reflected in thésenulas Covariances
simplify because coW;, Mj|Ry, ..., Rq) = O for anyi # j so that

cov(M;, Mj) = cov(R, R)).
2



Therefore, for 1< (i # j) < d,
cov(M;, M;) = var(A)E(U;U;) + {E(A)}?cov(U;, U)).
In particular, for the bivariate version dil(2),
cov(My, My) = var(A)E{U (1 - U)} — {(E(A)}?var(U),
whereU = U; ~ H onthe interval(0,1). Clearly, this covariance is always negative for degateex (i.e., T
is Poisson distributed) and non-degenetateln contrastthe covariance is always positive for degenetaté.e.,
M1 = 1 — M3 is binomially distributed) and non-degenerate
3. Negative binomial sums and Blya shares
The most natural mixing distributions to employ fdrand A would seem to be

U ~ Dirichlet(a,...,aq), A ~ Gammag,b),

ai,...,aq,a,b> 0;writea, = a1 +---+ag > 0and 0< 8 = b/(1 + b) < 1. This gives aq + 2)-parameter family
whose p.m.f. is readily seen to be

_ (a)m1+-~-+md l—lidzl(a’i)m

- 93 1 _ 9 My +---+My 4
mg!---mg! (ao)r’r\l+-~-+m1 ( ) @

p(m]_,. . 9%)

forall my, ..., my € NJ. Here, @)m denotes the ascending factorigl + m)/I'(e). By construction, we have
Mqy_1|T =t ~ Polyaf; a1,...,ag) and T ~ NegativeBinomia(a, 6).

Whend = 2, this is the Bailey distribution of Laureril__[IlG] and thetdtsution in {@) thus represents its multivariate
extension.
Thedistribution of Ry, . .., Ry) associated with the distribution with p.m[i (4) has densit

f(re,...,rq) = M ﬁ rai-t (ri+---+rgq)?* g b(ri++ra) (5)
T @M M)

forallry,...,rq > 0. Of courseRy,...,Ry/A = 1 ~ A x Dirichlet(as, ...,aq) andA = Ry + - - - + Ry ~ Gamma#, b).
This ‘Dirichlet-gamma’ distribution has been used in loiénsional cases as a prior distribution in Bayesian analy-
sis, in the guise of a ‘beta-gamma’ distribution by, e.g.aB&charya et al%] wheth = 2 and by Pefia & Gupth [21]
whend = 3. Itis a particular continuous multivariate Liouville tfibution |[13].

Moments are readily available. Inserting the moments ofjimama and Dirichlet distributions into tifiermulas
in Sectior®, we find that, fare {1,...,d},

E(M) = SZ' var(M;) = % [@s{a+ 1+ (1 + @.)b} + (e — B)ai] ®6)
and, for 1< (i # j) < d, .
cov;, M) = 2~ A (7)

b2 a?2(1+ a.)
The signs of the covariances are the same fai;, alhnd depend directly on the sign @f — a. Covariances are zero
whena, = a, which corresponds to independendd: (5) reduces to thebdisbn of independent random variables

distributed as Gamma(, b), ..., Gammafyg, b), and hencel{4) to the distribution of independent randoralbbes
NegativeBinomialf1, 6), . . ., NegativeBinomialtg, 6).



In fact, independence holds il (4) (equivalently[ih (5))rtleonly if @, = a. This can be seen directly from the
density functions or from the product moments. For genaxadpct moments, lek = k; + - - - + kyg. Then, we have

d d d . d
E[l_l[ R|= E(AK)E{E[ Ui'“] = W = E{E[(Mi — ki + 1)K}.

The final equality holds because tkth descending factorial moment of the Poisson distributith parameten is
AX. Inter alia, this gives a formula fanarginal binomial moments. Namely, for ak {1, ..., d},

Marginal distributions are a little more tractable thanytheere in the more general case of Seclibn 2. In Ap-
pendix A, we show that the p.m.f. &, can be written

b? (@)m (@i)m 1
F a , Qe — i, Wo el I
1+ b)m (a.)mm!z 1la+ M, e — @; @e + M 1+b
Here,;F; is the Gauss hypergeometric function. A closely relatedesgion was given whesh= 2 in ﬂﬁ].
For a pair of random variables, alongside the covariancecanelation, it is also of interest to consideral
dependence which, in the case of discrete models, is meials&rtfe set of log cross-product ratios of adjacert2
cells in a (usually infinitely) large ordinal contingencjahalﬂ, |__Zb]. Forrfy, myp) € Ng, define

p(mg, mp)p(my + 1, mp + 1)}
p(my + 1, mp)p(my, mp + 1) |

PrMi =m) =

(M, mp) = In{

Whend = 2, {@) becomes

(Q'l)ml(a’z)mz (a)m1+mz 0 (1 _ e)mﬁmz
mtmp! (a1 + @2)my+m,

and hence the distribution has local dependence function

(1 + a2 +mg +mp)(a+ m1+mz+1)}

p(mg, mp) =

(my, mp) = |
(my, my) n{(al+a’2+ml+m2+1)(a+m1+mz)

This is a function only of = my + mp, @, = @1 + a2 anda; for fixedt, it is increasing inv, and decreasing ia. It

is necessarily zero for atlif and only if @, = a, previously established to be the case of independencelothe
dependence function is positive (negative) fot alhenag > (<) a (like the correlation). It is largest in absolute value
whent = 0 where it takes the value limj(a + 1)/{a(@. + 1)}] and tends to zero ds— .

3.1. Special cases
3.1.1. SpecialCase iy =---=aqg = L

The Dirichlet mixing distribution reduces to the continsouniform distribution on the simplex and so the
Dirichlet-multinomial distribution reduces to the dist@iniform distribution on the discrete simplex. We thenéhav
the ‘discrete Schur-constant’ distribution of Castartexlefg] with negative binomiaT , which has

DM my) = M g g e "
(d)m1+-~-+md

for all my,...,my € NJ. Notice that [B) depends am, ..., my only through the sunmy + --- + my. Similarly, the
underlying distribution of Ry, . . ., Rg) has density
ber'(d)
I'(a)
forallrq,...,rg > 0, which depends on, ..., rq only throughr; + - - - + rq. Immediately, ifa = d, @) reduces to the
distribution ofd independent geometrig(random variables anfl(9) to the distributiordahdependent exponential)(

random variables, respectively. Distributih (9) undesiihe ‘gamma-simplex copula’ of McNeil & Neéleho[lg]
in a sense to be explained in a more general discussion obdisons with uniform shares in Sectibn¥.1 to follow.

4
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3.1.2. Special Case 213, ...,aq — oo such thaty/(a1 +--- + aq) — ¢; foralli € {1,...,d}.
The Dirichlet mixing distribution becomes degenerate &ies @, .. ., ¢4 € (0,1) such thaty; + - - - + ¢4 = 1, SO
the Dirichlet-multinomial distribution reduces to the rimbmial distribution and we have

p(m,..., My) = M[ﬂqﬁ’“]eﬁu 6™

formy,...,mq € Ng. In this case, it is not diicult to show that, for Xk (i # j) < d,

¢ 9
¢i+b¢j+b

corr(M;, Mj) = >0,

whereb = 6/(1 - 6). The amount of correlation varies monotonically from 0 taslb decreases fronv to 0, or
equivalently a® decreases from 1 to 0. Wheln= 2, we have, for aling, mp € N2,

( )m1+mz m
e d;"dy” (10)

whereq; = ¢1(1 - 6), g2 = (1 — ¢1)(1 — 6). This has marginals that are NegativeBinonaad( (6 + q;)) fori € {1, 2},
and local dependence function

p(my, mp) =

O(my,mp) = In(@a+m +mg +1)—In(@+ mg + my) > 0.
The latter depends only anrather than oo andg;.

3.2. Inference

Let (Myg,...,Mg1),..., (Mmn, ..., Myn) be a sample of independent observations taken from thebdiom with
density [#); also letj = my;j + - - - + mgj, with j € {1,..., n}, be the sample totals.

Likelihood inference for the parametexs) associated with the distribution afand for the parameteuss, .. ., aq
associated with the distribution &f proceeds as two separate problems. The R) x (d + 2) Fisher information
matrix associated with distributiofl (4) will therefore Imetivo blocks, one of size:22, the othed x d, and maximum
likelihood (ML) estimators o andé will be asymptotically independent of ML estimatorsaf . . ., aq

The problem of estimatingandd is the standard one of ML estimation of the parameters of dgative binomial
distribution when both are unknown; for early references, Section 5.8.3 of Johnson et m[14]. The cross-term in
the 2x 2 Fisher information submatrix is1/6, meaning that the asymptotic correlation between the Mimedées of
aandd is positive.

The problem of estimatings, ..., aq is one of ML estimation of the parameters of the Polya distion based
on independent data withftirent, known, values df The score equations reduce to

wherey is the digamma function, which is an increasing functiongositive values of its argument. Tlkex d
submatrix of the observed information matrix has all iisdiagonal elements the same and equal to

D W (@ +t) — ¢/ (@) <0
=1

It follows that the corresponding block of the asymptoticretation matrix is of equicorrelation type, the correbais
between ML estimates dlie as being positive.

A full exploration of the many inferential issues, both fueqtist and Bayesian, for the models of this paper in
their full breadth and generality is deferred to further kvdn the next two sections, we present two, rathdiedent,
applications of mode[d4) wheah = 2.



3.3. Application: Data on shunter accidents

We consider a historical bivariate data set due to AdelitE]nTable 11A) (also Arbous & KerriclﬂS], Table I)
consisting of i, ) pairs denoting the numbers of accidents for the period3498342 and 1943-1947, respectively,
for each ofn = 122 (human) shunters on South African Railways. See Elsar[é]@] and the references therein.
Adelstein [2] showed that a Poisson distribution was anegaate model for the total number of accidents per shunter,
while a negative binomial distribution was adequate. (Deleait) Poisson distributions are, perhaps arguably in the
first period, adequate models for the marginals, thoughtivegiainomial distributions might be preferred for them,
too. Fitting a model like ours with a negative binomial tobait less directly specified marginals therefore seems
like an interesting exercise to perform. Specifically, werfidel [3) which, in addition to a negative binomial sum,
employs a bivariate Polya sharing distribution.

ML parameter estimates for modEl (4) were evaluated nuralgrigielding

a=3419 6=0604 a1 =384, &, =500.

The above estimates far and  were obtained by focussing on solving the score equatiohdewa plot of the
likelihood on a fine grid withr; < 50, a; < 50 yielded the estimates fag anda,. The precise values of thgs have
a negligible &ect on the fitted model when they are large, and rela@pecial Case th Section 3.1, as discussed
in the following paragraph. Our model fits the data well (asadwmber of other models; see Table 9 of Sellers et
al. [22]): see Table 1 for a comparison of observed and erpemimbers of accidents; a chi-squared test based on
an admittedly arbitrary combination of cells with small egped frequencies led to a test statistic smaller than the
degrees-of-freedom of the asymptotic chi-squared nuttidigion. The empirical correlation is 0.29; the estintate
correlation in our fitted model is 0.23.

So, how is the negative binomial distribution of the sum stlayut by our model? Well, botw ‘anda;, are large.
For largeay, az, p.m.f. [@) withd = 2 is approximated by{10) with; = a1/a. andg, = az/a., i.e.,

F@a+m+m) afay®

L@ m! my! (a1 + az)Mm+m

p(my, mp) = 63 (1 — )™+,

Table 1: Observed (O) and expected (under our fitted modeluBpers of accidents among= 122 shunters.

m | m— 0 1 2 3 4 5 6 #  Total
0 O 21 18 8 2 1 0 0 0 50
E 2171 16.65 832 343 127 0.44 0.14 0.07 52.03
1 O 13 14 10 1 4 1 0 0 43
E 1278 1252 759 366 155 0.60 0.22 0.11 39.03
> @) 4 5 4 2 1 0 1 0 17
E 493 586 416 230 109 046 0.18 0.11 19.09
3 O 2 1 3 2 0 1 0 0 9
E 158 220 178 111 058 0.27 0.12 0.08 7.72
4 @) 0 0 1 1 0 0 0 0 2
E 045 072 066 045 0.26 0.13 0.06 0.04 277
5 O 0 0 0 0 0 0 0 0 0
E 012 022 022 0.17 0.10 0.06 0.03 0.02 0.94
6 O 0 0 0 0 0 0 0 0 0
E 003 006 007 006 004 002 001 0.01 0.30
74 @) 0 1 0 0 0 0 0 0 1
E 001 002 003 003 002 001 000 0.00 0.12
O 40 39 26 8 6 2 1 0
Total E 4161 3825 2283 1121 491 199 0.76 0.44"22



This is the basic bivariate negative binomial distributpmoduced by mixing independent Poissons with the same
mean over a gamma distribution for that mean, whichutdized by Arbous & Kerrich ES] for these data. Itis still the
case thal ~ NegativeBinomialg, 6), but we also have here thist; ~ NegativeBinomialg, 6(a1+a2)/(a1+6a2)) and

M2 ~ NegativeBinomiala, 8(a1 + a2)/ (a2 + 8a1)) ; inter alia, EM1) = a1 E(T)/(a1+a2) and EM2) = a2 E(T)/(az1+

az). Our model is broadly similar, but not the same; either nhpdavides an adequate description of the data. Given
the adequacy of these models based on basic distributingaddients, it is unclear what value is added by other,
more exotic, distributions that have also been fitted todluzga.

3.4. Application: Karl Broman'’s socks

Sum and shares distributionfer potentially useful benchmarks in eliciting prior dibtrtions for discrete-valued
parameters, such as population sizes. Here is an iIILmnnaﬁaathEb] addressed the following problem as tweeyed b
Karl Broman:

Given a sample of eleven orphan (that is, unpaired) sockg,rhany socks does Karl Broman have in
total?

A Bayesian model, describing uncertainty with regardséadhial number of socks, as well as the proportions of socks
in pairs and orphan socks, is put forth by Baath, and falldy the implementation of an approximate Bayesian
computation algorithm to obtain posterior distributiorach as for the total number of socks. We expand here on
the prior construction, which can naturally be linked to g.iffl), and how related properties can enhance the prior
construction and aid in analytical posterior computatjos requiring simulation.

Suppose that, initially, there afle= M; + M, pairs of socks and thafl, socks are now missing. In other words,
2M; + M, remain,M; of which are orphans and\; of which are paired. As irﬂ6], suppose that a prior distridvit
for (M1, My) is elicited starting with a Negative Binomial, M1, M,|T = t, p distributed as Multinomiat(p, 1 — p),
andp as Betags, a,). This is exactly the distribution in Sectih 3 whdn= 2, with p.m.f. given in[(4). Posterior
distributions are of interest foM3, M), as well as for the total number of socBs= 2M; + Ma.

The distributional properties dfl(4) aid here in prior efition for this problem, as well as other problems where
the unknowns M, ..., Mg) are population sizes modelled as sums and shares. As atration, the choices
a = u?/(c? - ), = u/o? are necessary for the prior mearand standard deviatiom to be matched by the
prior onT. The choice of ¢1, a2) may be elicited in a familiar fashion with a prior mean andiamace for the Beta
distributedp. Furthermore, the plausibility of an assigned choice &t ¢2) can be further evaluated by the corre-
sponding covariance or correlation, which are availaldenf{@) and[[F7), assuming, of course, that one can elicit such
guantities.

Turning now to the posterior evaluation, consideiraws from thes socks and denote asthe number of paired
socks among those drawn. With the prior p.m.f. fist;( M,) explicitly given by [4), one requires the probabilities
Pr(X = XMy = k, Mz = ¢) to infer the posterior distribution folM1, M2). Focussing on the case= 0, that is, fom
draws producing orphan socks, a combinatorial argument yields

nA¢l
Pr(x = Ol Ml = k, M2 = [) = Z (5)( k )Zn] /(2k+ 5) .
j JAn—| n
j=(n-k)vO0

for ¢ + k > n, and 0 otherwise. We thus obtain fog + m, > n, that PriM; = my, M, = mp|X = 0) is given by
Pr(X = O[My = my, Mz = mp) p(my, mp)/Pr(X = 0)

— 1 (@) (@1)m (@2)m, o nAMy, (T) on-j
K e @rmone Y 2 o m e

Pr(M1 = my, M = mp|X = 0)

j=(n-mm)v0

with K = Pr(X = 0) andt = m; + mp. We do not have a closed-form formula fér but we can approximate it rather
nicely, by summing the above probabilities over the pairg ) such thatmy + mp > n. Finally, the p.m.f. for the
total number of socks is obtained as

PiS=y)= > PrMi=kM;=y-2K
O<k<[(y-1)/2]

7
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Figure 1: Posterior p.m.f.s for: (&Ji1; (b) M2; and (c)S. Panel (d) is a plot of P§ = 2k + 1|X = 0) — Pr(S = 2k|X = 0) as a function ok.

forallye {n,n+1,...}.

The above development capitalizes on an explicit form fer phior p.m.f. paired with a closed form for the
likelihood function atX = 0. Furthermore, as motivated above, the prior is nicelyitelicas a sum and shares
distribution.

Now, Baath Eb] used a Negative Binomial prior for the tataimber of socks 2(; + M,) — which does not take
account of the parity of this number — while we assume a Negd&inomial prior for the total number of pairs of
socksT = My + M,. Matching the moments used by Baath, consider a meai5 and standard deviation of= 7.5
for T yieldinga = 60/11 ~ 5.455 andd = 4/15 ~ 0.267. Furthermore, consider the choice of a BetaZ)prior
for the proportion of socks that are pairs, i@;,= 15 a2 = 2. In terms of prior elicitation, we point out that this
combination of &, 6, a1, ) implies a correlation of @895.

Forn = 11, Figurdd gives the corresponding posterior p.m.f.s(@ythe number of pairs of paired sochd(;
(b) the number of orphan sockM§); and (c) the total number of sockS (= 2M; + My). Figure[1(d) is related
to Figure[1(c). The observed = 0 has pushed the posterior distributions away from 0. Fdeite, the prior
expectations are B{(;) = 225/17 ~ 13235 and EM,) = 30/17 = 1.765, while the posterior expectations are
E(M1)X = 0) ~ 21.3 and EM3|X = 0) ~ 2.82. There is an unusual oscillation in the posterior p.nf.Savith its
parity determined by that d¥l,, and a quite subtlbehaviorof Pr(M; is evenM, = k, X = 0) as a function ok. See
Figureld(d) which represents theffidirences Pg = 2k + 1|X = 0) — Pr(S = 2k|X = 0) as a function ok.

As it happens, the true collection of socks that Karl Bromad bomprised; = 21 pairs of socksM, = 3
orphan socks, and hene= 2M; + M, = 45 socks in total. The estimates given by the posterior meaMy and
M,, as well as the estimate §K = 0) ~ 45.42, are thus remarkably accurate.



4. Super case: The multivariate discrete Liouville distritution

Super cases of the distribution on which we focussed in @i} and4 abound, of course, by makinfjedient
choices of distributions fof and My_1|T = tin @). A super case of particular interest might be that inclvhthe
sharing distribution remains the Dirichlet-multinomialia SectiofiB but a general distribution is allowedTorather
than the negative binomial. This results in

_(mut e mg)! TTE (@m

m,..., = m+---+ . 11
p(my, ..., Mq) ol (@) pr(my Mq) (11)
Note that[TIl) can be written as
Hidzl(a’i)m
p(my, ..., my) = mT(m1+“'+md)- (12)

where# (t) = t! pr(t)/(e.):.. The form of [I2) is a discret@nalogof the continuous multivariate Liouville distribution
[13], which has p.d.f.

d
f(ry.....ra) = {]_[ ri"il] F(ry +- - +Tq), (13)
i=1

forallry,...,rg > 0, or suitabldf. More strikingly, perhaps, it has a Poisson mixture distribution with general (not
necessarily gamma) mixing densitythen the distribution ofRy, . . ., Ry) associated witH{11) — the special case of
@) with Dirichleth — has the form

d o1
I'(a.) i1 i

%, T(a) (ro+ -+ +ra)e?

f(rl,...,rd)z f(rl"'"""rd)

which is indeed a continuous Liouville distribution of forf@3). In the discrete case, our preferred formulation is
(D) rather tharl{12) because the rolegfin the former is much clearer than that®fin the latter.

In the literature, the name multivariate discrete Liowvdistribution was used by Lingappaiﬂ[l?] for the distri-
bution having p.m.f. of form

d gm
(m )—hg(m 4o+ )
plmy, ..., M) = el ! il Ma).
Rearranging appropriately, this can be written
(e mg)! [ b m
PM, - Mg) = ]:l[ G ran) [ Pr(mit e m). (14)

This is none other than distributio](1) with general disition for T and multinomial] Multinomial(t,
01/ Zidzl O,...,04-1/ Zidzl 6;), conditional distribution forMgy_1|T = t. It follows that the new multivariate discrete
Liouville distribution at [TLL) is a mixture ove®,/ 9,0 ++,0q-1/ 9,0 ~ Dir(as. ..., aq) of Lingappaiah’s
multivariate discrete Liouville distribution di{IL4), ahénce is more general than it.

4.1. Special case: Schur constant distributions

The special cases of our multivariate discrete Liouvillgribution [T1) witha; = -+ = ag = 1 are the Schur
constant distributions of Castarier et Al. [8]. A speciakcaf this observation was made in Secfian 3.1 above. This
multivariate discrete distribution is of considerableeépéndent interest. As well as listing a few of the particular
properties of this distribution, we would like to stressatsalogwith the continuous case. All but two of the obser-
vations in this subsection can also be foundln [8]; the tww nbservations are both in the fourth paragraph of this
subsection. Castafier et al. provide various applicatiomsurance for a related counting process.

From [I1), the p.m.f. in this case has the simple form

m+---+myg+d-1\

p(ml,...,rm)zpT(m1+---+md)/( d-1 :
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this reduces in the bivariate case (see also Ait Aoudia & Mand EB]) top(my, mp) = pr(mg + mp)/(my + ).
Notice that the p.m.f. is constantom + - - - + my = k for each constant value &fe Ny hence the name given to the
distribution. This is a consequence of the sharing distigioubeing uniform on the discrete simplex.

For Schur constant distributions, univariate marginatitistions are all the same and can be written in terms of
pr as

= (t—m + 1)y
=d-1 ———pr(t 15
ps(m) = ( )Zm ., PO (15)
(multivariate marginals can be written in rather similastfeon); conversely,
t+d-1)\ S (d-1)
= - ] i
r0=( 232" v (16)
In fact, the joint p.m.f. can be written in terms pf as
4141 .
pms ) = 3 (7 Je-Dps(m oy an
=0
and the survival function simply as
Pr(My > my,..., Mg > my) = Ps(my + - - + my), (18)

wherePs is the survival function associated wiflis. While pr can be specified arbitrarily oNo, (I8) and [II7)
show thatps has to be a discretel - 1)-monotone distribution oly. Independence in Schur constant distributions
corresponds tps being geometric. Aninteresting example[afl(17) occurgtpa Poissont) p.m.f., wherer € (0, 1].
Such an example, as well as Dirichlet Poisson mixturesssds the distribution of counts of Bernoulli success séring
in recent work of Ait Aoudia et al [[4].

The most convenient form for multivariate moments of Schamstant distributions — which appears not to be

in [B] —is d
el el T

whereT ~ pr. See Appendix B for a proof of this result. Inter alia, fordny i # j < d,

cov(Mi, M;) = [dvar(r) ~ (E(T))? - dE(T)| = 3 [var(M) - (EM)P ~ EM))].

_ 1
d?(d+1)
It follows that corr(Vi, M;) < 1/2. Pairs of random variables are positively correlated if

var(T) > E(T){E(T)/d + 1},

a requirement becoming closer and closer to overdispersfothe distribution of T as d increases. Also,
corr(M;, Mj) > -1 implies that, forM; following a distribution oriNg with decreasing p.m.f.,

var(M;) > % E(M){E(M;) + 1}.

This inequality is the discret@nalogof the result varX) > {E(X)}?/3 for X following a unimodal continuous distri-
bution with mode at 0 given by Johnson & Rogers [15]: it is eislly the casea = 0, @« = 1 of Theorem 3.1 of
Abouammoh, Ali & Mashhour [1]. In particular, a univariatslibution with decreasing p.m.f. dNp is guaranteed
to be overdispersed if its mean is greater than 2.

Schur constant discrete distributions are dilmtalogsof the continuous distributions underlying Archimedean
copulas; see, e.g., NeIsdE[ZO]. Those distributions ads@ lsurvival functions of the forni_{1L8) which, along with
their densities, are constant on planes of the form - - - + rq = k > 0 and have equaontinuouqd — 1)-monotone
marginal distributions of*, theanalogof relationship[[Ib) being the so-called Williamson tramsi; see especially
McNeil & Neslehoval[18]. Independence corresponds tmesptial marginals.

10



4.2. Special case: The multivariate generalized Waringrithistion

The multivariate generalized Waring distribution![23, 24ihe multivariate discrete Liouville distribution of thi
section with general Dirichlet-multinomial sharing distrtion and beta-negative binomial (or generalized Waring
distribution for the sunT. We will say no more about this distribution here partly hesmathe distribution is well
known and partly because it is a case where the distributtbisand My_1|T = t have a parameter in common
(one of the parameters of the beta mixing distributioais- - - - + ag) SO that there is not the inferentially desirable
separation between sum and share parameters in this case.

5. Concluding remarks

The findings of this article expand on a sum and share decdtigro® modeld—variate discrete distributions
and more specifically multivariate count data that fall iddistinct categories. From a simple Poisson mixture model
for the totalT with mixing density¢ and a sharing distribution mechanidim= M1 + - - - + Mg with My, ..., My_4]
T,Uq,...,Uq-1 multinomially distributed withUs,...,Uq-1 ~ h, a rich ensemble of properties, examples and rela-
tionships arises. As a main example, in further studyingciee of a negative binomial sum and Polya shares, we
obtained a seemingly new model as the joint distributior\y,( . ., Mg), previously arising in the bivariate case as a
Bayesian predictive distributioﬂlG]. Two contrastinghlgpations of the latter model were investigated.

We have addressed the equivalent scheme for generatingsthbudtions above consisting in decomposihg
>i R with R = AU; and theU; as above. This yieldM;i|Ry, ... Ry, withi € {1,...,d}, as independently distributed
PoissonR). Thus, as is well illustrated by the identity cé M;) = cov(R,R;) in Section[®, the dependence
structure of the discreti!;s is induced by that of the continuously distribufed, and vice versa.

Finally, for other choices of the distribution @f, continuous multivariate Liouville distributions emerfpe the
distribution of theR;s, as well as discretanalogsfor the distribution of thevljs. Moreover, the latter include the
important special case of Schur constant distributiEhSA{I&}:h are expanded upon in Sectignl4.1. Consideration
of the correlations in such distributions led us to a prestaxg but not well known variance-mean inequality for
univariate discrete distributions with decreasing pralitglmass functions (the distributions’ univariate margis).

In summary, we feel that our findings provide considerabsgint and appealing analytics for generating and
understanding multivariate discrete distributions vimsand share decompositions.
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Appendix A: Marginal p.m.f. associated with {8)
One can recover the marginal p.m.f.s through their relatignwith the binomial moments:
PrMi =m) = > (-1 Jm(J)E{( ')}
(Mi = m) sz( '™ B

This gives

S, () @j@)) 1 S (@t m)(e +m) (1)
Pr(M; =m) = ,-;(_1)' m(m) (@), 1Bl = mibn g (@0 + M)k (_B)

 (@n (@)
= {@o)m I D7 ZFI(

a b2 (@m (@i)m
= [+ b (an)y mIbT

using a standard transformation formula for the hypergénafenction.
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Appendix B: Product binomial moments for Schur constant digributions

(10 5 50 (e
b 1l D e

t=my -+ Mg +Ky d-1

Using, for example, (3.3) of Goulfl [1.2], it is the case that

t_mz_"'_"“1_""(m1)(t—mz—m—md1—m1)=(t—mz—~~—md1+1)
aks ky kg ki+kg+1 ’
that foralli € {2,...,d -2},
B Y LTI I A I | PR T
ki\kp+--+k1+kg+i—-1) \ ki+ - +k+kqg+i /)

m=k
and that

tha= ook (mdl)( t—myq+d-2 ) _ ( t+d-1 )

My_1=Kg_1 kd—l kl+"'+kd—2+kd+d_2 k1+"'+kd+d—1

It then follows that

4 M & t+d-1 pr(t) 1 > t
E{n ( K )} - t=k;+kd (kl bt kg +d— 1) (tgci—:l-l) - (k1+~-~;|_<..1+d—1) Z (kl et kd)pT(t),

i=1 t=ky+-+ky

as required.
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