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Abstract

A suite of early Cretaceous vo1canic rocks (Puerto GOmez and Arequita FIm.) are
preserved within the N60° E trending Santa Lucia Basin, southern Uruguay which lies at
the southern margin of the Parana - Etendeka continental flood basalt province. New Ar-
Ar ages of the basalts range from 134 to 130 Ma while ages from the rhyolites range
from 130 to 124 Ma. This magamtism was contemporaneous with the main flood basalt
event, although rhyolite activity continued after rifting (127 - 126 Ma). The province
therefore contains unique information about melting conditions at the periphery of the
influence of the Tristan da Cunha plume.
The volcanic rocks of southern Uruguay are bimodal in silica, and the majority of basalts
of the Puerto G6mez Fm., herein termed the Treinte Y Tres magma type, have major-,
trace- element and initial isotope ratios similar to the low -TiIY Gramado -Tafelberg
magma types of the Paranl- Etendeka. There are also a number of unique basalt samples
termed the Santa Lucfa magma type. which have low LaINb, and are considered to have
been generated by mixing between lithosphere - and asthenosphere - derived melts.
These magmas represent the first sampling of true plume material in this CFB province.
The rhyolites of the Arequita Fm. are relatively evolved with variably sized euhedraI to
anbedral quartz phenocrysts, and ignimbritic textures that are the first described from this
province. The rhyolites have lower magmatic temperatures (8S0 - 950°C) than those of
the Parana - Etendeka, and are divided into two geochemical series, the Lascano Series
and the Aigtia Series. The rhyolites of the Lascano and AigUa Series are not related to
the Puerto G6mez Fm. basaks, but rather they originated from separate sources in the
mid to lower crust. where melting was facilitated by mid-crustal level intrusions of
basaJtic material as recognised from a large gravity anomaly. Melt production rates in
southern Uruguay were low (0.01 Jan3 yrl) similar to the rates ca1cuIated for the waning
stages of magmatism on the Serra Geral escarpment, southern Brazil. These rates are
consistent with the notion that by this time the principal melt production was located in
the newly forming ocean with Uruguay at the margins of the influence of the plume.
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Chapter 1.

Introduction to Concepts & Regions.

1.1 Thesis Outline.

The early Cretaceous volcanic rocks of southern Uruguay are considered to be

linked to tectonic processes related to the fragmentation of Gondwana, and the opening

of the South Atlantic. The relationship of these Uruguayan rocks to the main Parana -

Btendeka Continental Flood Basalt (CFB) province of South America and Africa is

investigated in this work. with petrogenetic. geochemical and geochronological

evidence applied to certain models to provide greater insight into the processes of rifting

and magmatism.

The thesis is comprised of five chapters, commencing with a basic introduction

to some of the concepts and theories necessary to gain insight into magmatism and

rifting (Chapter 1).More specifically, this first chapter introduces the mechanisms of

rifting; the definition of lithosphere and asthenosphere; and the characteristics, models

of origin and potential sources of continental flood basalts. In addition, the history of

the Gondwana supercontinent and particularly the background geology and details of

the volcanics of the Parana - Btendeka province are discussed. Finally the Uruguayan

province is introduced with an account of its geological setting and fieldwork

undertaken there.

Chapter 2 consists of a detailed account of the petrology, geochemistry and

petrogenesis of the basalts, andesites, dacites and rhyolites of the Uruguayan province.

Contemporaneous alkaline magmatism, particularly a Uruguayan syenite is also briefly

considered. Chapter 3 considers thermometry and its applicability to Mesozoic rocks,

together with a mode of origin for the Uruguay rhyolites. Chapter 4 is a geochronology
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chapter, which reviews all previous dates for the Parana-Etendeka province, it

introduces and presents the new data produced in the course of this project. These Ax-Ax

dates are then used to constrain the timing of rifting in relation to magmatism in the

South Atlantic, with the aid of dyke data. Finally Chapter 5 summarises all previous

chapters and concludes with a model for constraining the rate and direction of rifting in

this region.

1.2 General Introduction.

The concept of continental drift has been controversial ever since its

description by Wegener in 1912. Palaeomagnetic studies of the ocean floor by Vine &

Matthews (1963) were virtually a corollary of the theory of ocean floor spreading and

magnetic reversals. Blocks of normal and reversely magnetized crust drifting away from

the ridge axis, that Vine & Matthews speculated to be associated with sea floor

spreading, are accepted as such today. Yet, the mechanics and driving forces that

underlie plate movements and culminate in the break-up of continents remain a subject

of debate (cf. William Smith Lecture to the Geol. Soc. Lond., 1992 given by P.

Ziegler).

Particularly relevant in the context of this work is the break-up of the

Gondwana supercontinent which once included Africa, South America, India,

Antarctica, Australia and Madagascar (Fig. 1.1), and more specifically the rifting of

South America from Africa and the opening of the South Atlantic Ocean. The

relationship between one of the world's largest preserved Continental Flood Basalt

(CFB) province, located on the South American and African continents, the Parana-

Etendeka, and the rifting process remains controversial. The relationship of the Parana -

Etendeka CFB to the southern Uruguay volcanics remains unresolved. The processes of

rifting and magmatism are undoubtedly linked, but the question as to how remains, and

is central to this thesis.

In the next three sections the driving mechanisms that result in plate

fragmentation and reorganisations will be discussed and summarised. A brief
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description of the forces involved is followed by a more detailed look at the two main

models for rifting in Section 1.3.3.

Fig. 1. 1 Reconstruction of Gondwana (after Smith, 1992).

GONDWANALAND

1.3Dispersal of Continents.

The continents are thought to be dispersed by a number of different forces

including ridge push (FRP), slab pull (Fsp) and continental drag (FeD) (Fig. 1.2). Lateral

variations in potential energy distribution across the plate may also have a role.

According to some au~':ors the principle driving forces are edge forces such as ridge

push and subduction pull (Jurdy & Stefanick. 1991; Bott, 1993). Others have favoured

frictional drag forces caused by convection in the mantle (Ziegler, 1993), or argued that

the forces of ridge push and slab pull and/or frictional drag are not sufficient, or always

present, to divide continents (Sandiford & Coblentz, 1994; Richards et al., 1991).

Alternatively, Sandiford & Coblentz (1994) and Richards et al., (1991) have invoked

lateral variations in potential energy, contributing to deviatoric stresses in the
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lithosphere, and active upwelling of mantle material in the form of plumes or hot spots,

respectively (Fig. 1.2).

1.3.1 Origin of Forces.

The principal driving mechanisms resulting in plate re-ordering are briefly

described as follows:

Ridge Push (FRP):

The presence of hot, low density upwelling asthenosphere and consequently

warmed lithosphere results in elevation of the ridge relative to the cold ocean floor. The

resultant stresses include local tensional stress regimes within the ridge due to buoyant

loading (Bott, 1993). However, the main stresses in young oceanic crust are focused in

the zone of weakness directly beneath the ridge, where the plates divide, and as this

region cannot support deviatoric stresses the consequent intraplate stresses result in a

ridge push force.

Slab Pull (Fsp) & Trench Suction (FTS):

Oceanic lithosphere thickens with age, becomes cooler and more dense, and

eventually it reaches a state of negative buoyancy and descends back into the

asthenosphere at destructive plate boundaries (Condie, 1989). At subduction zones (e.g.

Peru-Chile Trench), a different stress regime to that at mid ocean ridges is operable. The

dynamics of subduction forces include local compression in the trench-arc region from

the downward motion of the slab and its surface flexure; with local tension in the back

arc region perhaps produced by low density mantle material and, in the arc due to

crustal thickening (Whittaker et al., 1992). The subduction process gives rise to the slab

pull force due to negative buoyancy with only the leading edge of the overriding plate

being a site of compressional tectonics, (Fig. 1.2 Fsp), which may be coupled with the

trench suction force to pull the subducting plate toward the subduction zone.
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Fig. 1.2. Forces acting on lithospheric plates, including driving and resistive forces, which result

in plate dispersal (after Forsyth & Uyeda, 1975).
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Ridge Push FRP Transform Fault FTF

Drag Forces, Potential Energy Variations & Plumes:

Drag forces exerted on the base of the lithosphere by the convecting mantle, in

addition to plate boundary forces, govern the motion of lithospheric plates according to

Ziegler (1993). In fact the shear-traction exerted by the convecting mantle may be a

dominant factor in the movement and rifting of plates, as in the past subduction zones

have migrated at the trailing edge of drifting continents and are therefore not

responsible for plate motion (Ziegler, 1993). Sirnilar arguments regarding the absence

of subduction zones have been used by Sandiford & Coblentz (1994) in suggesting that

growth and ageing of oceanic lithosphere alters the potential energy across individual

plates. A build up in potential energy and consequently the intraplate stress fields

contributes to deviatoric stresses in the lithosphere and helps to fragment continents and

more importantly in the case of Gondwana supercontinents.

Richards et al., (1989) consider a model whereby active impingement of a

mantle plume on the base of the crust may in certain circumstances initiate rifting,

following thermal dorning, and so is independent of the result that the forces already
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described. Melting at the base of the lithosphere occurs due to the excess temperature of

the hot mantle diapir, and this accelerates thinning and possibly destabilisation leading

potentially to an active rift scenario.

1.3.2 Summary.

Some of the mechanisms of continental dispersal have only briefly been

summarised here, without any definitive answers as to which mechanisms are primarily

responsible for rifting. It appears obvious that there is no one, unique model for all rift

scenarios but it is the intention of this project to develop a consistent model for break-up

and the formation of the South Atlantic and the generation of the associated magmatism

in the Parana - Etendeka CFB province, taking into account as many variables as

possible.

Rifting as a process is recognised world wide, and is important in the

development and positioning of the continents as they are observed. Magmatism can be,

but is not always, associated with the processes whereby continental lithosphere is

thinned and fractured. The origin of this magmatism, where it is observed, tends to

fascinate geochemists and geophysicists alike. Where does the magma originate? In the

asthenosphere or in the lithosphere? The large volume of magma, generally associated

with CFB provinces, implies the presence of a mantle plume. If so, how does this affect

rifting models?

Magma that originated in the asthenosphere has distinctive geochemical and

isotopic signatures akin to Ocean Island Basalts (OIB) or Mid Ocean Ridge Basalts

(MORB). If,however this is not the case, then an origin in the lithosphere of some if not

all of the characteristics is surmised. One solution is to mobilise small degree melts

from the lithosphere for mixing models, so that the volume of magma is generated in

the asthenosphere, but the trace element and isotopic characteristics are lithospheric in

origin. Alternatively it has been suggested that the lithosphere melts, which evokes

numerous questions as to how vast quantities of magma are generated in the rigid outer

layer of the Earth, and whether or not it is possible to melt such large amounts of the

lithosphere.
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These are some of the multitude of questions that this project hopes to address,

but first it is important that the main arguments are introduced prior to developing a

model based on aspects of the previous models for large igneous province generation

associated with continental rifting.

1.3.3 Rifting • Passive and Active Models.

The two fundamental concepts for rifting are well established. The first

involves tectonic movements, regardless of their origins, stretching the crust, eventually

fracturing it and allowing the underlying mantle to rise diapirically to the surface (Fig.

1.3(a)). In such models, tensional failure is typically concentrated along pre-existing

stresses in the lithosphere. In the second model (Fig. 1.3(b», rift zones are produced by

asthenospheric upwelling, doming and splitting the continent along pre weakened zones.

The former is referred to as the 'passive' model, the latter the 'active' model (Sengor &

Burke, 1978; Keen, 1985). Leading exponents of passive models have included Profs.

White and McKenzie. In Scientific American (1989), they modelled magma generation

at rifts and argued that the vast quantities of magma generated at oceanic and

continental rifts were generated passively, because 'extensive melting does not begin

until the mantle has upwelled above the base of unrifled lithosphere'. However, in many

cases, the initiation of a mantle plume may be a deciding factor in initiating rifting by

doming and increasing the driving forces by adding gravitational forces. The presence

of a plume is necessary for the generation of the vast quantities of magma observed in

flood basalt provinces.

In principle, it should be possible to distinguish between these two

mechanisms on the basis of the timing of rifting and volcanism; the active case being

doming - volcanism - rifting, while the sequence for the passive case is rifting - doming

- volcanism (Keen, 1985; Wilson, 1989). However, nature is rarely so simple, and

discriminating between the two processes is often not easy (Table 1.1).

Chapter 1 7 Introduction



Fig. 1.3. Simplistic overview of models for passive and active rifting (after Keen, 1985; Wilson,

1989).
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Having examined the basic models of rifting and the consequent potential for

melt generation via decompression of asthenosphere, the characteristic features of

continental flood basalts are described. Furthermore the models to explain the origin and

potential sources of CFB are introduced in the following sub-sections.
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Table 1.1. Arguments for and against the model for the generation of CFB by the
decompression of anomalously hot asthenosphere as a passive response to
continental stretching and rifting.

Arguments For: Arguments Against

(i) Stretching of continents results in (i) Not all CFB are associated with

crustal subsidence and the formation rifting events (e.g. Columbia River

of sedimentary basins (e.g. The North Basalts (Carlson et al., 1981; Hooper,

Sea (White & McKenzie, 1989»; 1982);

(ii) Significant underplating beneath (ii) Dyke swanns associated with

the continental margins is observed to Deccan and Karoo are randomly

occur (e.g. Hatton Bank); oriented and distributed over broad

cratonic areas (Eales et al., 1984;

Richards et al., 1989);

(iii) In many cases rifting was

preceded by the main flood basalt

eruptive period (e.g. Parana (Piccirillo

et al., 1989; Stewart et al., 1996);

1.4 Characteristic Features of Continental Flood Basalt Provinces

Continental Flood Basalt (CFB) provinces consist of massive subaerial sheet

flows which erupted episodically, with variable eruption timescales, but ultimately in

great volumes onto the continental crust. Individual flows are thick (10 - 15 m on

average for the Columbia River) and can sometimes be traced for tens (e.g. Deccan;

Etendeka) to hundreds (e.g. Columbia River) of kilometers, although exposure is rarely
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good. Extrusion rates are thought to have been rapid, in that, for example -1()6 km3 of

Deccan basalt was erupted in less than 4 Ma (Courtillot et al., 1986). However, the

Parana - Etendeka is thought to have been active for up to 10 Ma (Turner et al., 1994),

and so its average eruption rate is comparatively low.

Lavas with basaltic compositions dominate the sequences, although rhyolites,

picrites and nephelinites occur locally in some provinces (Cox, 1980). The basalts are

relatively evolved (Si02 - 49-55 wt%, with relatively low magnesium-iron ratios (Mg#)

(45-60) in comparison to primitive magmas (Mg# = 70-75». Phenocrysts are rare in

most units « 10%). Typical phases are clinopyroxene and plagioclase, while olivine

and orthopyroxene are less common. Abundances of incompatible elements and Sr, Nd

and Pb isotopes vary widely, from being similar to oceanic basalts, to highly enriched

similar to that of for example,lamproites (Foley, 1991).

Another feature of CFB, and particularly those associated with the

fragmentation of Gondwana, is that subgroups of magma types can be mapped out over

large areas on the basis of TiIY ratios. Etendeka CFB, for example, is divided into a

Northern Etendeka Province and a Southern Etendeka Province on the basis of variation

in Ti contents (a detailed description of the chemistry of the Parana-Etendeka CFB is

given in Section 1.13). Characteristically the majority of CFB are relatively enriched

relative to primitive mantle in all incompatible elements, except for Nb and Ta (the

Deccan CFB excepted, with negligible Nb-Ta anomalies), while isotopic compositions

are also distinctive.

1.4.1 Models for the origin of Continental Flood Basalts.

The sheer volume of magma in Continental Flood Basalt (CFB) provinces and

the rate at which this magma is erupted requires anomalously hot temperatures in the

mantle (White, 1989; White &McKenzie, 1995). Moreover, many Mesozoic CFB

appear to be linked to hot spot traces on the adjacent ocean floor (Richards et al., 1989;

Leeman et al., 1994). However, the nature of the association between CFB and mantle

plumes continues to be a matter of great debate. The situation is complicated by

variation of the chemical signatures of the magmas with time, linked by some to
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changes in source region from lithospheric to asthenospheric (or vice versa) (Antarctica

- Storey & Alabaster, 1991; Siberia - Lightfoot et al .• 1993; Parana - Peate &

Hawkesworth, 1996). Individual CFB also have variable major-. trace-element and

isotopic signatures and are considered to contain significant contributions from different

sources. The conclusion drawn by several authors is that magmas in different CFB

provinces may have been triggered by different processes (Peate et al.• 1990; Turner et

al.• 1995).

In order to gain an understanding of CFB provinces two fundamental problems

require attention: (i) the processes which have potentially altered the magmas

(crystallisation. melting. contamination). and (ii) the nature and source characteristics of

the magmas. Mid-ocean ridges are the primary sites of magma generation today. Here

diapiric upwelling of upper mantle material induces partial melting by adiabatic

decompression to form basaltic magma - MORB (Mid Ocean Ridge Basalt). MORB are

compositionally fairly uniform. although heterogeneities do occur (le Roex, 1987).

Normal ocean ridge is characterised by N-type MORB and anomalous ocean ridge by E-

type MORB. The different types of MORB are distinguished on the basis of

incompatible trace and rare earth elements. particularly Zs, Nb, Y and La (Fig. lA). The

trace element and isotopic geochemistry of MORB is distinctive also. with the source of

MORB considered to be in a depleted layer of the upper mantle.

In contrast, Ocean Island Basalts (OIB) exhibit wide ranging compositional

diversity from tholeiitic to potassic - alkalic. and most are directly associated with hot

spots/plume magmatism (Morgan. 1983; Sleep. 1990). The source reservoir of om.

which varies for different om, is considered to be isolated from the MORB source

reservoir, and potentially consists of primordial mantle with subducted components (e.g.

Cohen & O'Nions. 1982). Chondrite normalised Rare Earth Element (REB) patterns of

OIB are distinct from MORB in that the light-REB tend to be enriched relative to the

heavy-REE (Fig. 1.4).
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Fig. 1.4. Chondrite normaUsed Rare Earth Element patterns of average om and MOD (data

and nonnaUsing values from Sun & McDonough, 1989). E-type MORB - enriched mantle by

compared with normal (N-type) MORB.
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1.4.2 Source compositions.

Inprinciple, isotopic compositions of melts are inherited directly from the

source, although they may have been subsequently modified by other components, as

during crustal contamination. The concentrations of trace elements are affected by the

source composition, the conditions under which melting occurs i.e. water present or

absent, and the degree of partial melting in addition to subsequent fractional

crystallisation processes. Major elements depend on bulk composition, temperature,

pressure and the types and abundances of volatile phases at the site of melting.

A wide range of potential source components have been invoked for CFB, and

these may usefully be subdivided into primary sources and contaminants. Primary

sources include: (i) mantle plumes; magma derived from a mantle plume is likely to be

compositionally similar to plume-derived rocks in oceanic settings (cf. Iceland); and (ii)

continental mantle lithosphere; kimberlite composition or basalt-borne mantle xenoliths.

also lherzolites and harzburgites are characteristic. Contamination of magmas may then
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occur with material from (i) upper continental crust - estimated from samples of

granitoids and sediments (Cohen & O'Nions, 1982; Taylor and McLennan, 1985); and

(ii) lower crust - from high-pressure granulite terrains and xenoliths (see Rudnick and

Presper, 1990). There may be complications, in that sediment subduction at destructive

plate margins for example, is considered by some (Cohen & O'Nions, 1982; White &

Hofmann, 1982) to enrich locally the mantle in incompatible elements. One

consequence is that magmas derived from such sources may have some geochemical

features of crustal rocks, even though they have not experienced crustal contamination

on route to the surface.

In detail, a number of models have been developed to account for the

individual geochemical characteristics of different CFB, Le. Nb-Ta anomalies. The main

models are as follows:

(i) Plumes from the core-mantle boundary with minimal involvement of lithospheric

mantle or the crust - (Richards et al., 1989; Campbell & Griffiths, 1990 and Sharma et

al., 1991; 1992).

(ii) Melting in the lithospheric mantle - arguments for Karoo, Parana, Ferrar and the

Siberian Traps - (Hergt et al., 1989; Gallagher & Hawkesworth, 1994).

(iii) Contamination of plume derived melts (either active or passive) by small-degree

melts from enriched sub-lithospheric shallow mantle (Ellam & Cox, 1988; Arndt &

Christensen, 1992; Kerr, 1994).

(iv) Contamination of mantle derived magma with material from the continental crust

(Carlson et al, 1981).

Large volumes of magma and high Mg picrites imply anomalously hot

sources, and hence the presence of mantle plumes. However, as noted by Hawkesworth

& Gallagher (1993) this does not require that melt generation was confined to within the

plume. Conversely, the presence of Om-like magmas (considered to have originated in

the asthenospheric mantle) is not necessarily evidence for a mantle plume, as it might

simply reflect small degrees of melting in the asthenospheric upper mantle

(Hawkesworth & Gallagher, 1993). Melting of the lithosphere and contamination of
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asthenospheric melts were surmised as potential alternatives that would result in the

observed, 'non OIB-like' geochemical compositions.

In summary each model appears to be incomplete in that it cannot account for

certain specific CFB characteristics, for example in the Richards et al (1989) model it is

difficult to generate the distinctive minor and trace element compositions of some CFB.

It is here accepted that no one model will be suitable to all CFB provinces, however a

model most appropriate to the Parana - Etendeka province will be discussed later, after a

brief discussion on lithosphere and asthenosphere terminology and a more indepth

review of source models and controls on melt generation.

1.5 Terminology.

Prior to entering into a discussion of the relative merits of each of the main

source models, it is important to define what is meant by the lithosphere, as it is viewed

differently in various fields of the Earth Sciences. The asthenosphere is also briefly

described.

1.5.1. The Lithosphere.

The lithosphere is, in general terms, the rigid outer layer of the Earth that

moves around as tectonic plates, and it includes both the Earth's crust and some material

in the underlying mantle. For geochemists, it is the layer of shallow level material that

has retained its identity for long periods of time in order to develop distinctive

radiogenic isotopes. The term lithosphere, as used by Hawkesworth and Gallagher

(1993) and others, is linked to strength and, due to the thermal dependence of mantle

rheology it is also linked to temperature. In the lithosphere, heat is transferred by

conduction, unlike in the asthenosphere where heat is transferred primarily by

convection.
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Fig. 1.5. Idealised sketch of the lithosphere and the asthenosphere on the basis of geophysical

and thermodynamic constraints. The curved solid line is the horizontally averaged thermal

structure of old oceanic lithosphere over normal temperature asthenosphere (Potential

temperature (Tp) = 1280°C). The dotted line is the adiabatic upwelling curve in the absence of

melting (after White, 1988; Jordan, 1988). CBL - continental boundary layer; MBL • mechanical

boundary layer; TBL - thermal boundary layer.
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The lithosphere is taken to consist of the Mechanical Boundary Layer (MBL)

and the upper part of the Thermal Boundary Layer (TBL). The MBL is the rigid, non-

convecting, upper layer which consists of the crust, mantle probably depleted by melt

extraction, and mantle which has simply cooled conductively without changing its

composition from that of the underlying convecting upper mantle (Hergt &

Hawkesworth, 1992). The TBL is the transition zone between the lithosphere and the

asthenosphere. The upper TBL although it lacks long term strength, is usually included

in the lithosphere. Mantle flows readily at temperatures above 650°C (White, 1988)

and, although the base of the lithosphere is usually taken to have temperatures of -1280

"C. Anderson (1994) goes further and argues that only mantle colder than 600°C

qualifies as elastic lithosphere in the rheological sense, with material above 650 °C

regarded as the transient part of the plate. However, in general the lithosphere is
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considered to be 120-150 km thick, although within cratonic provinces the thickness

may vary (Jordan, 1988), but the fact remains that temperatures at such depths are

considerably higher, in the order of 1000 °C (McKenzie & Bickle, 1988). Magmas from

the lithosphere are often inferred to have trace-element characteristics distinct from

MORBorOm.

In summary, the lithosphere is here considered to be that part of the Earth that

is affected by tectonic processes and extends to a depth of 120 - 150 km (this varies with

extension and compression). It consists of the crust and that part of the mantle that is

distinguishable from the convecting upper mantle on the basis of trace element and

isotopic ratios.

1.5.2 The Asthenosphere.

The asthenosphere consists of the weaker part of the mantle, characterised by

lower seismic velocities and low viscosity. MOR basalts are depleted relative to bulk

earth. and thought to originate from shallow levels in the asthenosphere. Magmatic

suites from the asthenosphere are inferred to have trace element and isotopic signatures

similar to oceanic basalts.

1.6. Lithospheric Source Regions.

Melt generation at the anhydrous peridotite solidus, cannot take place within

the continental mantle lithosphere according to most geophysical models (Arndt &

Christensen, 1992). However if the lithosphere is hydrous and the underlying

asthenosphere is anhydrous then significant amounts of melt can be produced in the

lithosphere before any melt is produced in the asthenosphere (Gallagher &

Hawkesworth, 1992). This occurs with only modest increases in the temperature of the

lower lithosphere and in the absence of significant extension.

Chemical observations for many CFB are consistent with an origin in the sub-

continental lithospheric mantle. These include the fact that the distinctive trace element

and isotopic signatures of such CFB are restricted to the continents, and if the source

Chapter 1 16 Introduction



region is in the convecting upper mantle basalts with similar compositions should be

erupted in oceanic settings. Also the major-element compositions of at least some CFB

suggest that the source is both depleted inmajor elements and relatively shallow,

consistent with the basalt-depleted nature of the sub-continentallithospheric mantle

(Erlank et al., 1984; Hergt et al, 1991; Lightfoot et al., 1993; Peate & Hawkesworth,

1996). Furthermore, the isotopic ratios observed suggest old, trace-element-enriched

source regions in the upper mantle, and these are unlikely to be preserved in the

convecting mantle (Hergt & Hawkesworth, 1992).

Apparently uncontaminated basalts from provinces including the Parana -

Etendeka CFB have distinctive trace element signatures (low Nb/Ba; Nb/La) and

enriched isotopic ratios for Sr, Nd and Pb. Since these are thought to have been derived

from within mantle lithosphere Gallagher and Hawkesworth (1992) suggested melting

took place at the hydrous solidus.

1.6.1 GalJagber & Bawkeswortb model.

Important features of the Gallagher and Hawkesworth (1992) model include:

(i) Melting in the hydrous lithosphere with no melting in the anhydrous asthenosphere is

favoured at low degrees of extension, and a thicker MBL. Melting in the asthenosphere

with no melting in the lithosphere occurs when the MBL is thinner, or at low values of

the mantle potential temperature provided the stretching factor (~) is high.

(ii) Where partial melting occurs in both the lithosphere and asthenosphere, the

lithosphere will melt at lower values of ~.

(iii) For a given MBL thickness, lower values of the mantle potential temperature (Tp)

require more extension to initiate melting in the asthenosphere, as do greater thicknesses

of the MBL at a particular Tp.

(iv) Partial melting in the absence of extension requires higher Tp or a thinner MBL.

A number of arguments against a volatile-bearing lithosphere have been put

forward including those of Arndt & Christensen (1992). Objections include (i) hydrous,

metasomatized peridotites are rare in xenolith suites from kimberlites and alkali basalts.

(ii) Melting of a hydrous source produces water-rich magmas. However, CFB have low
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water contents, hydrous minerals are virtually absent and explosive volcanism is rare;

(iii) Certain mismatches occur between the likely compositions of partial melts of

hydrous lithosphere and those of CFB. It seems unlikely that hydrous melts would have

highly magnesian compositions similar to the picrites found in many flood volcanic

sequences (Ellam & Cox, 1991), but such compositions are not found in the Parana.

Hydrous metasomatized lithospheric peridotites also appear to lack the negative Nb-Ta

anomalies characteristic of most CFB.

The conclusion by many, therefore, is that the continental lithosphere is too

cold and too dry and does not have an appropriate trace element signature to be a major

source for CFB. Nonetheless, some interaction between plume derived magmas and the

continental lithosphere probably occurs as the magma moves from the asthenosphere

through the lithosphere to the surface. The level and nature of this interaction is

uncertain.

1.7 Asthenospheric Sources.

Models that propose asthenospheric sources for CFB, and in particular the

arrival of a mantle plume to generate large volumes of magma and initiate rifting

include those of Richards et al. (1989) and Campbell & Griffiths (1990). Melting occurs

in response to decompression within the mantle plume, and in some circumstances

mantle plumes may be responsible for crustal extension. The magmas are generated in

the plume and so they should be similar to plume related OIB. A plume initiation model

provides a plausible explanation for the high eruption rates for flood basalts compared

to those for the associated hotspot tracks. In such models, flood basalts represent plume

heads, while hotspots represent continuing magmatism from plume tails, and in the

model of Richards et al. (1989) a thin conduit connects the head to the source. An

intrinsic assumption is that the plume has much lower viscosity than the surrounding

material, with the temperature of plume material being several hundred degrees hotter.

The size of the flood basalt province is then a function of the feed rate, and the

instability initially originates at the core-mantle boundary.
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Plume impaction models such as Kent et al. (1992) and Campbell & Griffiths

(1990) try to explain the different styles of intraplate volcanism. Campbell and Griffiths

(1990) suggest voluminous magmatism will occur quicldy but -lOMa after the plume

head impinges on the base of the lithosphere. The mantle plume has a central tailor

conduit made up of material derived directly from the plume source, and a large head,

comprising a mixture of source material and entrained upper mantle. The lithosphere is

thinned rapidly by small-scale secondary convection in the plume head. A longer time

scale is suggested by the Kent et al. (1992) model in which the plume can incubate

beneath thick (15Okm) lithosphere for up to 150Ma before the lithosphere thins enough

to allow voluminous basalt production.

An alternative to the theme of a primary asthenospheric source for CFB, is that

melts from the asthenosphere mix with small degree melts (lamproites) from the

lithosphere (Ellam & Cox, 1991). In this model the distinctive trace element and

isotopic signatures are derived from the lithosphere, but the main mass of magma is

from the underlying hotter asthenosphere. The problem is that the plume-derived melts

would need to have very low trace-element contents of Ti in particular in order to

generate the eruptive composition of CFB, and yet plume-derived oceanic basalts tend

to have relatively high Ti. Arndt & Christensen (1992) suggest that plumes are the

source of> 95 % of the CFB, but they interact with the mantle lithosphere where phases

such as amphibole and oxides scavenge elements - Nb and Ti, for example. out of the

melt to explain their low abundances. The resultant melt may then assimilate continental

crust to attain other more extreme chemical and isotopic signatures.

1.8 Controls on melt generation.

The composition of liquids produced by decompression melting of mantle

peridotite are controlled primarily by the bulk composition. the degree of partial

melting. and the nature and composition of the starting and residual minerals. The latter

depend on the temperature of the source and pressure/depth at which melting occurs.

Pressure has a direct control on melt composition. and with increasing pressure the
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aluminous phase changes from plagioclase to spinel to garnet. Also the stability fields of

olivine and pyroxene change with pressure, and so with decreasing pressure the melt

becomes increasingly olivine rich (Cox, 1980).

The volume of melt produced by upwelling of mantle material depends on the

thickness of the MBL and the temperature of the upwelling mantle material and on the

volatile content (McKenzie & Bickle, 1988; Gallagher & Hawkesworth, 1994). Typical

asthenospheric temperatures are of the order of 1280 °C; relatively high temperatures of

1480 °C represent plume conditions.

The compositions of CFB are controlled by lithospheric thickness, which

influences the depth and degree of mantle melting of a mantle plume. Partial melting of

peridotite at sub-lithospheric depths results in highly magnesian (20 - 25 wt% MgO)

liquids with variable trace element contents. Thick lithosphere implies that the source

melts at high pressure, garnet is a residual phase at least at small degrees of melting.

Such melts would be depleted in Y and HREE, and have high incompatible-trace-

element contents. If the lithosphere is thin, the plume ascends to shallower levels, the

degree of melting is greater for the same potential T, trace element concentrations are

lower and there is more likely to be residual spinel rather than garnet in the source.

Melting at shallower depths as a result of lithospheric thinning by erosion of the base

andlor melting of hotter upwelling mantle will, in general, result in more extensive

degrees of melting.

Hot mantle plumes ascending from depth are hotter than the ambient mantle as

discussed before, and so they will intersect the solidus at greater depths, and they also

require less extension to produce large volumes of melt (McKenzie and Bickle, 1988).

The amount of extension will greatly affect the thickness of the lithosphere, and

consequently the greater the J3 (stretching) factor the greater the proportion of melt from

the asthenosphere (McKenzie & Bickle, 1988; Kerr, 1994), although this will depend on

the initial thickness of the lithosphere (Gallagher & Hawkesworth, 1992).

The compositions of CFB also depend on the processing of magmas in crustal

level chambers that are periodically replenished and tapped, while continuously

fractionating and assimilating the wall rocks. The composition thus becomes far
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removed from the inferred parental picritic magmas. Major elements in CFB reflect

olivine, pyroxene and plagioclase fractional crystallization, which places the chambers

at relatively low pressures within the crust (Cox, 1980; Wilson, 1989).

Fig. 1.6. Maude-1IOI'IIUIUseddiagram or Jacompatible elements showing anomalous Nb • Ti values

associated with some CFB (Gramado • Panmai); also shown are a small degree mafic potassic melt

and bulk continental crust (Data from McCulloch & Bennett, 1994; Gibson et al., 1995 and Peate

& Rawkeswortb, 1996) and the asthenosphere derived Deccan CFB (Mahoney, 1988). Normalised

to primitive mantie usiag data from Sun & McDonough (1990).
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1.9 Small degree melts.

Lamproites are small degree melts from the lithospheric mantle that have high

incompatible-trace-element concentrations, higher than those in the continental crust.

They are ultrapotassic, magnesian rocks with K20INa20 > 5 (Bergman, 1987).

Lamproites occur close to cratonic margins, commonly as dykes and flows. Their

minor- and trace-element signatures are also very different to oceanic basalts. Inmany

cases they have enriched isotopic ratios which imply the source regions were relatively

enriched in trace elements for long periods of time. High eNd values and low SmlNd

ratios suggest old sub-continental mantle which has been preserved in the non-

conducting part of the upper mantle for a billion or so years. Unlike lamproites,
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however, CFB have trace element abundances that are low enough to be influenced by

crustal contamination and thus will be examined next (Fig. 1.6).

1.10. Continental Crust & Contamination

The trace-element and isotopic compositions of some continental basalts are

similar to those compositions of granitoids and sedimentary rocks. Therefore, in some

cases it is possible to conclude that the magmas were derived from the asthenospheric

upper mantle, but that they were subsequently contaminated by crustal rocks.

Continental crust has higher Si02 and K20 contents, higher Rb/Sr and lower SmlNd

than melts from the asthenosphere. Old continental crust tends to have high 87Srf86Sr

ratios, radiogenic Pb isotopic compositions and low eNd values. The lower crust may

have low eNd values and combined with unradiogenic Sr and Pb isotopic compositions.

Negative Nb-Ta anomalies (low NblLa ratios) are found in almost all rocks of

the continental crust, and peridotite xenoliths from the continental mantle lithosphere

and most rocks from oceanic regions have NblLa ratios similar to or greater than

chondritic ratios (Arndt & Christensen, 1992). Comparison of the chemical and isotopic

compositions of continental flood basalts with those of likely mantle and crustal

reservoirs has therefore been used to suggest that the continental crust is the source of

the distinctive chemical features observed in some CFB such as low NblLa ratios

(Carlson et al., 1981; Hawkesworth et al., 1984; Arndt et al., 1993).

Objections to crustal contamination models tend to be centred around the

difficulty of generating the compositions and chemical variations of CFB by simple

assimilation and fractional crystallisation models. Even if highly magnesian parental

magmas are invoked, as suggested by partial melting at sub-lithospheric depths it has

proved difficult to reconcile the negative Nb-Ta anomalies in particular with simple

AFC models (Turner & Hawkesworth, 1995; Turner et al., 1996). Thus this feature is

often attributed to processes in the lithospheric mantle which may then either be the

bulk source of CFB, or a contaminant into asthenosphere-derived melts. The amount of

crustal contamination required to produce the trace-element signatures observed in some
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CFB may be as much as 25 - 30 %, however it would be difficult to retain a basaltic

composition in the resultant lavas.

1.11 Summary.

It appears therefore that unlike the model of White & McKenzie (1989) which

aptly describes the situation at mid-ocean ridges, no one model consistently describes

the origin and source of aU continental flood basalts. In this thesis it is hoped to develop

a suitable model to describe fully the dynamics that lead to the formation of the

Uruguayan volcanics and to expand this model in relation to the evolution of the South

Atlantic rift system. First however the tectonic history of the Gondwana supercontinent

is addressed in order to understand the kinematic regimes active in the region pre-, syn-,

and post-rifting. Following this discussion will be a brief introduction to the Parana -

Etendeka CFB with the main geochemical features of the province summarised in order

to provide the basis for a detailed comparison with the Uruguayan volcanics in Chapter

2.

1.12. Case ofGondwana.

In the case of the disintegration of Gondwana. according to Storey (1995),

plumes are not the ultimate driving force for break-Up; instead break-up can be linked to

changes in plate boundary forces and the tectonic regime (the kinematics operating in

the area of the South Atlantic at this time are briefly described in a following

subsection). Nonetheless, hotspot activity is known to have occurred in the region as a

number of current hotspots can be retraced to their positions in the JurassiC/Cretaceous

periods. These include Tristan da Cunha and St. Helena in the South Atlantic.

The timing and direction of rifting once initiated, and the temporal relationship

between rifting and the products of volcanic activity need also to be understood. In the

South Atlantic, seafloor spreading appears to have begun in the south and propagated

northwards (Uchupi, 1989). Magnetic anomaly MlO (> 133 Ma) has been described by

Martin (1987) at a triple junction near the tip of the Falkland plateau, which is close to
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the age of the main CFB. First oceanic crust was recognised in the vicinity of the

Tristan da Cunha plume at M4 (127 - 126 Ma, Kent & Gradstein, 1985), almost 10Ma

after the main magmatic event. The timing and duration of magmatism in this region

remains a subject of debate with some published data suggesting that the entire province

was erupted in 1 - 2 my (Renne et al, 1992), while others including Turner et al. (1994)

suggest that magmatism occurred between 137 - 128 Ma, with the main eruptive phase

at - 133 Ma. It is with these thoughts of trying to add to the understanding of the

tectonic processes that operated in the South Atlantic pre-, syn- and post- rifting and to

add constructively to the debate regarding timing of magmatism that this project was

undertaken.

1.12.1 History of Gondw8D8 prior to break-up in the Cretaceous.

Gondwana was assembled during the latest Precambrian and earliest Cambrian

Pan African orogenic cycle (Fig. 1.7a). The formation of the megacontinent Laurussia

(from Laurentia-Greenland & Fennoscandia-Baltica) was accompanied by rifting along

the northern margin of Gondwana and the successive detachment from it of different

continental terranes (Ziegler, 1992). The 'SWEAT' hypothesis of Moores (1991)

suggests the juxtaposition of the southwest United States and East Antarctica (SWEAT)

prior to the opening of the Pacific during the Neoproterzoic (1000 - 540 Ma; Dalziel,

1997). The SWEAT hypothesis questions traditional geographic reconstructions in the

latest Proterozoic, with rapid motion of Laurentia to equatorial latitudes occurring

during the Cambrian (Dalziel, 1997). In Ordovician and Silurian times Gondwana

drifted over the South Pole in a sinistral, rotational fashion (Fig. 1.7b), and a number of

basins were formed including the Parana (Unternehr et al., 1988).

In the Late Silurian - Early Devonian, reorganization of the plates occurred

and Gondwana began to converge with Laurussia through clockwise rotation. The

beginning of the Hercynian orogenic cycle was marked by the collision of Gondwana

with Laurussia. coupled by their joint clockwise rotation and northward drift (Ziegler,

1992). The results ranged from the formation of a fold belt to shear systems;

lithospheric thickening and intraplate compressional deformation and new arc-trench
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systems in one segment of the globe. While elsewhere, orogenic activity ceased and

rifting phases commenced.

In the late Carboniferous and Early Permian the long standing subduction

systems were abandoned (Ziegler, 1993). Activity, however, increased along the

subduction system at the Pacific margin of the newly accreted Pangea supercontinent

(Fig. 1.7c). In the Late Permian and Triassic, 40° counterclockwise rotation of Pangea

occurred around a pivot in the Gulf of Mexico (Ziegler, 1992) (Fig. 1.7d), and

northward drift of Pangea commenced in the early Jurassic. Meanwhile, rifts propagated

both in the north-east resulting in the separation of Cimmeria, and also southward into

areas between Africa & Madagascar and India & Australia. In southern Africa, in

particular, numerous dyke swarms trend in a variety of directions. Furthermore, the

basalts and dolerites of the Southern Africa (Karoo) and Antarctica, Australia & New

Zealand (Ferrar Dolerites and Kirkpatrick Basalts) were erupted as a precursor to the

separation of Africa from Antarctica and the formation of the Indian Ocean (Cox,

1978). Magmatism is also evident in Argentina related to subduction along the Pacific

margin and the development of the Chon-Aike, Tobffera and Marifil formations

(Pankhurst & Rapela, 1995).

The interior of Pangea was further dismantled by westward and southward

propagating rift systems to form the Tethys and Norwegian-Greenland Sea respectively.

In the Late Triassic and Early Jurassic, crustal distension in the Gulf of Mexico -

Central Atlantic - Tethys Rift zone, accompanied by extrusion of basalts in the Central

Atlantic domain, culminated in a discrete divergent/transform plate boundary between

Laurussia and Gondwana (Ziegler, 1992). This reorganization resulted in a new

kinematic regime which influenced further break-up of Gondwana and the newly

assembled Laurasia megacontinent until crustal separation of these two megacontinents

took place in the Late Jurassic.
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Fig. 1.7 a & b Continent configurations and subduction zone locations during the early

Proterozoic (a) Cambrian & (b) Silurian (after Ziegler, 1992).

Fig.1.7a.

LATE CAMBRIAN

Fig. 1.7b

MIDDLE SILURIAN
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Fig.l.7c & d. Configuration of newly accreted Pangea supercontinent during the Carboniferous

and its migration thereafter through the Permian.

Fig.1.7c
LATE CARBONIFEROUS

TEniYS OCEAN

Fig.1.7d
TRIASSIC
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Fig. 1.8 Positioning of-the major continents following fragmentation of Pangea during the

Jurassic and Cretaceous.

LATE CRETACEOUS

During the Late Jurassic and Early Cretaceous Gondwana remained more or

less stationary but it was deformed internally by rift systems and extensional tectonics

(Fairhead, 1988). These systems included one that was paving the way for the opening

of the South Atlantic ocean. The first step in the break-up of the Gondwana

supercontinent was the Late Jurassic split into a western half. consisting of Africa and

South America. and an eastern half comprising India. Madagascar. Antarctica, Australia

and New Zealand. Also at this time Africa and South America were dissected by wrench

faults and rift systems, such as the Amazon fracture system (Nurnberg and MUller.

1991).

In the South Atlantic the oldest clearly identifiable magnetic anomaly on the

oceanic crust is M4. which is estimated at 126-127 Ma (Kent and Gradstein, 1985).

Rabinowitz and LaBrecque (1979) have noted M12 (135.6 Ma) on the continental

margins of both continents, with the generation of flood basalts on continental crust

prior to onset of rifting.
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Fig. 1.9. Structure of the South American & African continents prior to and during break-up in

the Cretaceous showing basins, including the Parana - Etendeka CFB province.

Structures:
1.Andean Arch
2.Asunci6n Arch
3.Ferrer Arch
4.Goiania

Dyke swarm I-=- ,
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Seafloor spreading is therefore thought to have commenced in mid Lower Cretaceous

and to have propagated northwards thereafter (NUmberg & MUller, 1991) with evidence

for the first segment of oceanic crust in the south near the Falkland Plateau between 136

and 132 Ma, and in the vicinity of the Tristan da Cunha hotspot at 124 Ma.

The relative ages of extrusives along the South Atlantic margins is one of the

main aims of this thesis (see Chapter 4). For example Zeigler (1992) suggests seafloor

spreading commenced in the south during the Barremian (125 Ma) and propagated

northward during the Aptian (119 - 113 Ma), however this is younger than proposed

from the presence of anomaly M4 (126-127 Ma, Kent & Gradstein, 1985). Crustal

separation of Africa from South America, along the equatorial transform fault system

was achieved shortly thereafter and the seafloor spreading axes of the Central and South

Atlantic coalesced (Fairhead, 1988) (Fig. 1.8). There appears to have been some

intracontinental deformation on both the African and South American plates during the

initial opening of the South Atlantic (Untemehr et al., 1988; Fairhead, 1988), although

it appears to have been restricted to belts of limited extension (Untemehr et al., 1988).

Strike slip movement is thought to have occurred in the Benue TroughlNiger Rift, the

Central African Shear Zone and the Parana and Chacos Basin shear zones (Fairhead and

Okereke, 1987; Fairhead, 1988) (see Fig. 1.9 for the main basin and structural features).

It is evident, therefore, that the events culminating in the development of the South

Atlantic Ocean are diverse and include a series of plate boundary re-organizations which

incorporate a broad spectrum of geodynamic processes. Prior to continuing with this

discussion of the evolution of the South Atlantic the magmatic products associated with

its inception are investigated in order to achieve a greater insight into the link between

rifting and magmatism.

A brief summary of the pre-Cretaceous geology and structures that remain in

the vicinity of the Parana Basin and Etendeka volcanics is given in the next two

sections. The aim is to provide an overview of what resulted locally from the formation

and reorganization of the Gondwana & Pangea supercontinents. The chemistry of the

lavas is also summarized so that a comparative study with the geographically proximal

Uruguayan volcanics may be undertaken in Chapter 2.
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1.13. The Panuui Basin.

1.13.1 Background geology and structural features.

In Brazil the basement to the Parana CFB ranges in age from Archaean to late

Proterozoic. There is no dominant regional fabric in the Archaean rocks as the outcrops

are fragmented and appear as discrete blocks. The Transamazonian Ribeira belt occurs

in the central and eastern part of the basin with metavolcanics and metasediments which

are highly fractured (Mantovani et al.; 1991) (See Fig. 1.10 for major mobile belts and

cratons during the Proterozoic). The NW-SE structures are known to have been

reactivated during a 1.1-1.0 Ga orogenic collision (Porada, 1989) and later in the Pan

African (Brasiliano) orogeny . NW-SE dextral shear zones also developed along the east

coast to accommodate intraplate rotation during the Pan African collision (Unternehr et

al.• 1988). Extension is thought to have occurred later. during Gondwana break up.

across these shear zones giving rise to many of the present basins including Punte del

Este, Salado, Colorado and Valdes in Argentina (NOrnberg & Milller, 1991; Fig. 1.9).

The NW-SE trend is also highlighted by dyke swarms, faults. and drainage systems,

namely the Paranaiba Arch (antiform structure) and the Ponta Grossa Arch (Fig. 1.9),

which is the ooland continuation of the Rio Grande Rise.

The Proterozoic Brasiliano mobile belt (Fig. 1.10) which is a result of the Pan

African orogenic event (750-500 Ma, Porada, 1989) outcrops in the Parana basin also.

Associated granitoids intrude regional metasediments. The structural trend is similar to

that of the CicIo Orogenico observed in Southern Uruguay (i.e. NE-SW).

The Parana basin has had a long history since it was formed by active rifting

during Ordovician - Silurian times. The Devonian phase is marked by tectonic

quiescence and transgressive marine sequences (Milani. 1992). During the

Carboniferous and Permian faults were reactivated and sedimentation patterns changed

(Milani. 1992). Continental aeolian sedimentation of Jurassic age, the Botucatu

Formation (Zalan et al., 1987) preceded the extrusion of the voluminous Parana -

Etendeka CFB in the early Cretaceous. Little sedimentation has occurred since although

minor aeolian sands are preserved in the northern part of the basin overlying some
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basalts. The three dimensional structure of the basin is well known from oil exploration

boreholes and detailed mapping. In the north in the deepest part of the basin between

1.5 and 1.7 km of basaltic rocks are preserved (Peate et al., 1992), but the better

exposures are along the Serra Geral escarpment and they have been the subject of many

of the more detailed studies. Contemporaneous alkaline magmatism, including

carbonatites, syenites, phonolites and granites, is noted around the margins of the basin

(Ulbrich & Gomes, 1981; Milner et al., 1995). Mention of al.ka1ine complexes will be

given greater attention in Chapter 2 when the Uruguayan syenite is described.

1.13.2 The Parana . Etendeka CFB Province.

The areal and volumetric distribution of the Parana- Etendeka CFB is highly

asymmetric, with most of the outcrop preserved on the South American continent (Fig.

1.9). The province is here described in two geographical sections, the Parana Province

in South America, and the Etendeka Province in southern Africa, both for convenience

and because they have often been described separately in the literature. The Parana

CFB is a sequence of - 790,000 km3 (Bellieni et al.; 1986), occurring principally in

southern Brazil and extending into northern Uruguay, Paraguay and Argentina,

predominantly within the Parana sedimentary basin. Parana magmatism is dominated

(- 90 %) by tholeiitic basalts and basaltic andesites, with volumetrically less significant

rhyolites overlying the basalts at the top of the sequence, particularly in SE Brazil. The

sequence is bimodal in silica, with rocks of intermediate composition rare. The

preserved thickness of the basaltic sequence is variable with 1723 m recorded in a

borehole in the north of the basin (Peate, 1989).

1.13.3 Parami Basalts.

As with many CFB the basaltic rocks of the Parana are virtually aphyric to

subaphyric with phenocrysts and microphenocrysts of pyroxene and plagioclase

feldspar, and some scarce Mg - Olivine. The pyroxenes are principally augite and

pigeonite, with pigeonite dominating the pyroxene compositions in the south of the

province while augite is more common in the north (Comin-Chiaramonti et al., 1988).

Ti-magnetite and ilmenite are ubiquitous.
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Fig.l.10. Structural outline of South America and Africa during the Proterozoic.

Rio de la Plaia
Massif

Mobile Belts: ..'--.. __-... '
1.Namaqua Belt 6.Brasilia Belt
2.0amara Belt 7.Paraguay Belt
3.West Congolian Belt 8.Tocantins Belt
4.00n Feliciano Belt 9.Rokelides Bell
5.Ribeira Belt

Massif:
A.Luis Alves Massif
B.Sao Francisco Massif
C.Salvador Median Massif
O.Goiano Massif

Studies of the chemistry of the Parana CFB initially allowed Bellieni et al.,

(1984) and Mantovani et al., (1985) to subdivide the basalts into two distinct groups on

the basis of Ti abundances. The groups are also distinct geographically with the high- Ti

magma types (> 2 wt% Ti02) occurring principally in the north of the basin, and Low
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Ti magma types « 2 wt% Ti~) in the south. The north-southlhighTi-lowTi

geographical division has now become somewhat arbitrary, with high- Ti flows in the

south distinct from those in the north (Bellieni et al., 1984). Peate (1989) subdivided

the basalt groups into six distinct chemical units on the basis of incompatible element

and isotopic ratios. It was unwise to base the classification on the abundance of a single

element and so Peate & Hawkesworth (1996) grouped the magma types on a number of

major, trace element and isotopic characteristics, while acknowledging that the magma

types could still be regarded as broadly high or low- Ti. Thus the high- Ti basalts were

divided into the Pitanga, Paranapanema, Urubici and Ribeira units, while the low- Ti

basalts were encompassed by the Gramado and Esmeralda units (Fig. 1.11). The low- Ti

magmas have low TiIY ratios (<310) similar to or less than MORB, and this value has

been widely used to distinguish high and low Ti magma types in the Mesozoic CFB

found throughout Gondwana (Hergt et al., 1991).

1.13.3.1 IDgh.Ti (HTi) basalt units: Pitanga, Urubici, Paranapanema & Ribeira.

In the high-Ti basalt (TiIY > 310) groups (HTi) there is a division into rocks

with genuinely high TiIY (> 5(0) and those with more intermediate (350 - 410) values

(Peate, 1996) (Fig. 1.11). There is also a regional division in the truly HTi groups, with

the HTi group in the south having higher SiCh, K20, Rb, Sr, Ba, U, Th, and lower Fe

than that in the northern group (Marques et al., 1988). In Peate (1989) the southern

HTi group is termed the Urubici, and the northern HTi group the Pitanga magma type.

Pitanga magmas occur extensively north of latitude 27 "S, while Urubici magma types

are spatially restricted to the northern edge of the Serra Geral escarpment, north of 29

"S, and also in the central region along the eastern margin of the province, east of 52

ow (Piccirillo & Melfi, 1988). Both groups have similar Ti02, MgO contents and Y

and Yb abundances. However, Sr is lower « 600 ppm) in the Pitanga magma type and

so it is used to distinguish these two magma types, as is the relative enrichment of some

incompatible elements in the Urubici magma type over the Pitanga magma type (Peate,

1989) (Fig. 1.12).
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Fig. 1.11. Magma types of the Parana CFB illustrated OD a diagram of TiIY • MgO (Data from

Peate, 1989).
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Fig. 1.12. A compatible (Sr) v incompatible (Zr) element diagram that distinguishes between the

high TiIY magma types (data from Peate, 1989).
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The Paranapanema and Ribeira magma types have similar LILE

concentrations to the Pitanga magma type shown in Fig. 1.13. Isotopic abundances

cannot be used to discriminate between these magma types as the range in values is

restricted relative to other Parana magma types (Peate, 1989). Exposures of the

Paranapanema occur in the west in Paraguay and this magma type forms the upper
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most stratigraphic unit of the lavas in the north of the basin (Bellieni et al., 1986). Thus

the Paranapanema lavas tend to overlie Pitanga lavas and together they constitute - 20

% of the total volume of the province. Ribeira lavas are less widespread, (- 5 %), but

they are generally considered to have a similar surface distribution to the

Paranapanema (Petrini et al., 1987). Peate et al., (1992) have, however discovered

Ribeira samples at the bottom of one of the central Parana boreholes.

Fig. 1.13. PrimItive mande normalised trace element diagram of the high TiIY PitaDga and

ParauapaDema magma types, & low TVY Gramado & Esmeralda magma types, showing the

distinctive dUferences in LIL and BFS element abUDClauces (Normalising values from Sun &

McDonough, 1990; Data from Peate, 1989).
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1.13.3.2 Low-Ti (LTi) magma types: Gramado & Esmeralda.

Low- Ti (LTi) magma types contain < 2 wt % Ti02 and are divided into the

Gramado & Esmeralda units (Fig. 1.11). These magma types are concentrated

principally in the south of the Parana basin and they have been distinguished on the

basis of Fe, TiIZr & Ba (Fodor et al., 1985). The Esmeralda magma type has lower

Si~ and AhDJ, and higher Ti02 and Fe203(t), than the Gramado magma type (peate

et al., 1992). The incompatible elements Zr, Nb & Ba are lower in the Esmeralda unit,

while Y is slightly enriched and TiJZr is higher than in the Gramado type. The
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Esmeralda magma type also displays a range in certain incompatible element ratios (i.e.

SmlNd). ratios that remain virtually constant for all other magma types in the Parana.

The Gramado is the most voluminous magma in the south of the basin, while

Esmeralda magmas tend to be confined to the top of the lava pile. The trace element

pattern of the Gramado unit is very distinctive with anomalous depleted values at Nb,

Ta and Ti on a mantle trace element normalised diagram (Fig. 1.13). High 87Srf86Srj

(0.7075-0.7167) and low £Ndi (-8 to -3) relative to bulk earth also characterise the

Gramado rocks (Peate et al., 1992). Esmeralda rocks have more uniform isotopic

compositions with lower 87SrJ86Srj(0.7046-0.7086) and higher eN~ (-4 to +3).

1.13.4 Potential sources for the P8I'8U basalts.

Geochemical evidence suggests that the different Parana magma types cannot

be related to one another by simple fractionation and assimilation processes (Mantovani

et al., 1985; Peate et al., 1992; Peate & Hawkesworth, 1996). The evolved nature of

the majority of Parana magmas (MgO 3.0-6.5wt%) indicates a high level of

differentiation from melts in equilibrium with mantle peridotite. In addition, it has been

argued that equilibration of the major elements in the Parana magmas occurred at

shallow levels in the upper crust (Thompson et al., 1983; Peate & Hawkesworth,

1996).

The variability of the isotope ratios and of the incompatible element

abundances in the low-Ti basalts indicates the importance of open system fractionation

and crustal assimilation (Harris et al., 1989; Mantovani & Hawkesworth, 1990).

However, contamination models cannot explain all the data, and Peate & Hawkesworth

(1996), for example, have argued that the variation between the two 10w-Ti magma

types, Gramado and Esmeralda, is not simply due to variations in crustal input as

previously thought (Petrini et al., 1987). Instead two distinct parental magmas are

required, with the Gramado magma type dominated by crustal assimilation and

fractional crystallisation, but with a parental magma derived from the continental

mantle lithosphere. The Esmeralda magma type, in contrast, appears to reflect mixing
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between an asthenospheric melt and a Gramado-type magma (Peate & Hawkesworth,

1996).

Thus in the debate over the sources of the different Parana-Etendeka CFB

magma types there is a possible shift from lithospheric to asthenospheric with time in

the evolution of the province (Peate & Hawkesworth, 1996). The presence of a plume

is considered essential to generate such large volumes of magma (Morgan, 1981;

Turner et al., 1994) and the Tristan da Cunha hotspot is known to have been in the

region during the Cretaceous. The late stage Esmeralda basalts contain the only

asthenospheric component recognised in the surface flows, and are volumetrically

extremely small (Peate & Hawkesworth, 1996).

Overall the lithosphere is generally agreed to play an important role in the

variability of chemical signatures observed in CFB (Ellam & Cox, 1991; Gallagher &

Hawkesworth, 1992; Arndt et al., 1993). As discussed previously the lithosphere is

potentially a source (Section 1.6) (Gallagher & Hawkesworth, 1992; Turner et al.,

1996), with lithospheric thickness having an important control on melt composition

(Section 1.8) (Arndt et al., 1993). In the case of the Parana both the high TiIY Pitanga,

Paranapanema & Ribeira and the low TiIY Gramado magma types are considered to

have a source within the continental mantle lithosphere (Hergt et al., 1991; Turner &

Hawkesworth, 1995; Garland et al., 1996).

1.13.5 Parana Rhyolites.

The Parana rhyolites top the basalt sequences particularly in the SE of the

Parana province and overall cover an area of - 17,000 km2• They were subdivided

chemically into the Chapec6 rhyolite group and the Palmas rhyolite group on the basis

of Ti concentration (Mantovani et al., 1985; Bellieni et al., 1986). These rhyolite

groups also show a provinciality with the high-Ti Chapec6 rhyolites occurring in the

centre and north of the basin, and the low-Ti Palmas rhyolites outcropping in the south.

Peate et al., (1992) and Garland et al., (1995) further subdivided the rhyolite groups

into three low Ti and two high Ti subgroups based on trace and rare-earth-element
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chemistry and 87SrJ86Sri ratios (Table 1.2). These subgroups were also found to be

distinct in the field.

Table 1.2. Subdivision of Panuui Rhyolites from the classifications of Piccirillo et
al., (1988); Peate et al., (1992) & Garland et al.; (1995).

Piccirillo et al., (1988) Peate et al., (1992) Garland et al., (1995)

low Ti: Palmas (PAY) low Ti: Caxias do SuI; low Ti: Caxias do SuI

Santa Maria; Santa Maria;

Anita Garibaldi

high Ti: Chapec6 high Ti: Guarapuava; high Ti: Guarapuava;

(CAY) Ourinhos; Ourinhos;

Many of the present-day outcrops of the rhyolites are preserved on the

continental margins, with rhyolites also outcropping extensively in the Etendeka

province. Peate (1997) suggested that this implied that the generation of the rhyolites

was in some way closely linked to the rifting of the South Atlantic.

1.13.5.1mp- n Chapec6 Rhyolites.

The Chapec6 rhyolites of the northern Parana are volumetrically less

significant than the Palmas rhyolites forming 0.6 % vol. of the total outcrop of the

Parana CFB (Piccirillo et al.• 1988). The maximum thickness observed is 200 m, and

there are local intercalations with tholeiitic basalts (Bellieni et al.• 1985).

Petrographically the group is more phenocryst rich (10-15 % phenocrysts) than the

Palmas, with phenocrysts predominantly of plagioclase. pyroxene and magnetite

(Bellieni et al., 1986b). The group is enriched in incompatible elements relative to the

Palmas group (Bellieni et al., 1986), with consistently higher abundances of high field

strength elements (HFSE) such as Zs, Nb, P. Ti Ta & Hf, Temperatures obtained for the

Chapec6 rhyolites from pyroxene thermometry are in the range of 1000 - 1100 °C

(Whittingham, 1991; Garland, 1994).
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The Chapec6 rhyolites may be subdivided into the Guarapuava and the

Ourinhos subgroups. The Ourinhos is the most northerly rhyolite outcrop, and it has

higher silica and large-ion-lithophile (LIL) elements then the Guarapuava subgroup.

Fresh hand specimens yield plagioclase phenocrysts, unlike the Guarapuava in which

alteration is more common and pyroxene phenocrysts are abundant.

The outcrop of the Guarapuava subgroup is more extensive, being mainly in

the centre of the basin but with isolated outcrops in the north and occasional acid dykes

intruding the basement to the east (Regelous, 1993). Guarapuava flows tend to overlie

Gramado basalts in the south, whereas the isolated outcrops in the north are surrounded

by Pitanga & Paranapanema basalt units (Piccirillo et al., 1987; Garland, 1994). Overall

the subdivision of the Chapec6 rhyolites is best seen on a diagram of LILE vs. HFSE

such as Rb vs. Zr (Fig. 1.14), simply because the Ourinhos subgroup has higher Si~,

LIL and lower HFS than the Guarapuava (Peate et al., 1992).

1.13.5.2 Low- Ti Palmas Rbyo6tes.

As noted in Table 1.2 the low Ti Palmas rhyolite group was subdivided most

recently by Garland et al. (1995) into three units, namely the Caxias do SuI, the Santa

Maria and the Anita Garibaldi. Volumetrically the Palmas rhyolites are much more

significant than the Chapec6 rhyolites and they are characteristically aphyric, < 5 %

phenocrysts of plagioclase, pyroxene & titanomagnetite, and lower incompatible

element concentrations (Peate et al., 1992). Palmas rhyolite pyroxene temperatures are

in the range 950 - 1050 °C, slightly lower than the Chapec6 rhyolites (Garland et al.,

1995).

The Caxias do SuI subgroup is the more dominant Palmas-type rhyolite. It is

stratigraphically the lowest unit and outcrops principally in the SE comer of the Parana

basin (Garland, 1994). It is characterised by having 3 - 5 % phenocrysts, with

plagioclase dominant over pyroxene, and an occasional speckled appearance in hand

specimen indicative of a devitrified matrix.
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Fig.1.14. Subdivision of the Parana rhyolites on the basis of Large-Ion-Lithophile v High-

Field-Strength element abundances (Data from Peate, 1989; Garland, 1994).

900
High-Ti

800 Rhyolites

700

600-E 500a.a.-.. 400 Low-Ti RhyolitesN

300
200 Anita Garibaldi

Caxias do Sui
100

0
0 100 200 300 400

Rb (ppm)

The Anita Garibaldi subgroup occurs in a distinct geographic region to the

north of the main Palmas rhyolites and they are characterised by their glassy,

vesiculated appearance in the field.

The Santa Maria rhyolites outcrop stratigraphically above the Caxias do SuI,

separated by a thin basalt flow (Garland, 1994). They are characterised by a sugary

texture in hand specimen and a virtual lack of phenocrysts. Chemically they have higher

radiogenic 87Sr/86Srj (0.723-0.728) than the Caxias do SuI, 87Sr/86Srj (0.718-0.722).

1.13.6 Origin of the rhyolites.

High- Ti rhyolites- Chapeco.

Garland et al. (1995) argued that the Chapeco rhyolites could not be related to

the Palmas by low-pressure fractionation of the observed fractionating assemblage. The

Fe- Ti oxide abundances in the fractionating assemblage would have to be unrealistically
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high to achieve a petrogenetic link, for example, between the Guarapuava subgroup and

the Santa Maria. Independent parental magmas are inferred because of the much higher

abundances of for example Zr and Nb in the Chapec6 relative to the Palmas (Garland et

al., 1995).

The relationship of the Parana rhyolites to the Parana basalts has resulted in

considerable debate over the roles of extensive fractional crystallisation with or without

crustal assimilation, and partial melting of underplated basalts and basement lithologies

(Bellieni et al., 1986b; Garland et al., 1995). Crustal granulites were proposed as a

source for the High- Ti Chapec6 rhyolites by Bellieni et al., (1986b) and Harris et al.,

(1990; 1997). However, Garland et al. (1995) demonstrated that the high- Ti Pitanga

basalts were a more plausible source material for the Chapec6 rhyolites. In detail, the

Chapec6 rhyolites could be formed by 70 % fractional crystallisation or 30 % partial

melting of a Pitanga magma source (Bellieni et al., 1986b; Garland et al., 1995).

However, the presence of a silica gap favours the latter partial melting model.

Low-Ti rhyolites - PaImas.

In contrast to the Chapec6, the Palmas rhyolites are considered not to be

crustal melts primarily because of the fact that the Parana basement has lower Nd

isotope ratios than the rhyolites (May, 1990; Garland et al., 1995). In addition the upper

crustal sources implied by Sr & Pb isotopic values would appear to be in conflict with

the high eruption temperatures and major-element compositions which indicate that

these magmas were derived from lower crustal sources (Bellieni et al., 1986b; Garland

et al., 1995). Variation diagrams such as Rb vs. MgO; Y vs. Zr are consistent with

liquid lines of descent from the associated Gramado basaltic magma type suggesting a

role for fractional crystallisation (Bellieni et al., 1986b). and Garland et al. (1995)

obtained good fits for open system fractionation of low- Ti Gramado magma with

assimilation of upper crustal material. The silica gap between the two magma types was

attributed to the onset of magnetite fractionation as it rapidly increases the SiCh content

of a melt with a small degree of fractionation (Garland et al., 1995). Compositional
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differences between the Palmas subgroups were accounted for by regional variations in

the extent and nature of assimilation, and the fractionating crystal assemblage.

1.14 South west Africa· Etendeka province.

1.14.1 Geological background and structural features.

The lavas of the Etendeka formation conformably overlie the laterally

impersistent deposits of Karoo sediments. However, they are also observed to lie

unconformably on basement of mid-early Proterozoic (2100 - 1050 Ma) and Pan

African age. The older basement rocks are Transamazonian in age, - 1.7 - 2.0 Ga and

form part of the Congo Craton (Fig. 1.10). whereas the Pan African (460 - 840 Ma)

Damara rocks crop out in the west and south-east (Miller. 1983).

The main system underlying the Karoo sequence in north western Namibia is

the coastal limb of the Damara Orogen which is chiefly composed of metasedimentary

rocks (Fig. 1.15, Photo 1). In the south between the Etendeka and Goboboseberge lava

fields, at least two phases of deformation are evident with the first giving rise to north-

south trending isoclinal folds. Syn- and post- tectonic granites occur principally in the

south although scattered intrusions are evident in the Kaoko Belt to the north. The

Karoo sedimentary sequence consists of a number of formations including the Etjo;

Gai-as; Prince Albert and Dwyka Formations. The sediments of the Gai-as Formation

are Carboniferous to Jurassic in age and are currently preserved close to rivers as

sedimentation was strongly influenced by the Pre-Karoo glacial topography (Milner.

1988). The older Permian sediments of the Dwyka Formation. (a tillite. only locally

preserved) and the Prince Albert Formation (carbonaceous muds. siltstones and

sandstones) form the base of much of the sequence (de Beer. 1992). Aeolian deposits of

the Etjo Formation form the uppermost unit, and can be seen to overstep the older

sediments to lie directly on basement. This sandstone can also be seen to be interbedded

with the Cretaceous lavas of the Etendeka, and in some areas lavas are preserved

flowing around massive dune structures (Fig. 1.15. Photo 2).
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Fig. 1.15. Photo 1. Metasediments deformed by the Damara orogen.

Fig. 1.15. Photo 2. The association of lavas and dune structures in the Etendeka.

Exposed, rubble material in the foreground forms part of a Sm high dune structure, with

Interbedded basalts and quartz ladtes are exposed in the upper 20m.
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Thus similar rock types are found in the basement on both continents, indicating

potentially similar environments of deposition and possibly tectonic stresses and strains

prior to the fragmentation of Gondwana and more specifically Pangea. The intercalation

of dune sands with the basal Parana - Etendeka lavas on both continents is also important

for later discussions on the timing of magmatism and rates of eruption.

1.14.2 The Etendeka CFB province.

The Etendeka CFB outcrops in Namibia, Angola and S. Africa. It was once

thought to be the youngest part of the Karoo CFB (Eales et al., 1984), but since then

the Etendeka Formation has been promoted to Group status by Mihler et al. (1994). It is

now known to be intrinsically linked to the Parana province on the basis of chemistry,

geochronology and plate reconstruction. Most plate tectonic reconstructions place the

Etendeka province adjacent to the south-east comer of the Parana during the Early

Cretaceous (de Wit et al., 1988) (Fig. 1.9).

Remnants of the Etendeka occur within an area of 78,000 km2 , the main

outcrop is between Cape Cross and Cape Fria (Fig. 1.16), and the main lava field spans

an area of 12,000 km2 (Milner, 1988). Individual flow thicknesses vary from < 10 cm to

> 1.5 ID, and the maximum observed thickness of lavas is - 900 to 1000 m at the coast.

The Etendeka forms only - 6 % of the volume of the entire Parana - Etendeka CFB, and

within it two distinct provinces are recognised, the Northern Etendeka Province and the

Southern Etendeka Province, with remnants outside the Etendeka region at Erongo.

These provinces are primarily recognised on the basis of chemistry, as in the north the

basalts & quartz latites have high TiCh and 'ZI, while in the south the lavas have lower

concentrations.

Overall the Etendeka CFB consists of basic to intermediate lavas (51-59 % SiCh)

interbedded with more acid quartz latite (QL) units (66 - 69 % SiCh). In marked

contrast to the Parana the QL units comprise more than SO % of the preserved outcrop

thickness in some areas (Milner et al., 1995). Dykes and sills associated with the

sequence are seen to intrude the Damara granites (Erlank et al., 1984). The basalts are

tholeiitic, and tend to be aphyric to subaphyric with phenocrysts of plagioclase,

clinopyroxene or more rarely pseudomorphosed olivine. The quartz latite term was
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initially introduced by Erlank et al. (1984) and is compositionally equivalent to dacite,

trachydacite and rhyolite on a TAS diagram (Le Maitre et al., 1989; Milner et al.,

1992). Locally preserved pyroclastic textures has led to the quartz latites being termed

rheomorphic ignimbrites by Milner et al., (1992).

The basic to intermediate rocks are subdivided on the basis of incompatible

element abundances, mainly Ti and Zr, and in the next two sub-sections they are

compared with the Parana magma types.

Fig. 1.16. Map of the distribution of the Etendeka volcanics, showing the type areas for different

stratigraphic sections (after Milner, 1988; 1994). The Ambrosius Berg Fault Zone (ABFZ) divides

the main lava field into two sections with >1000 m of volcanics preserved in the coastal succession.

Brandberg and Messum intrusive complexes also included. Messum complex is the proposed

eruption centre for the Awahab Fm. rhyolites.
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1.14.3 High- Ti basalts: Khumib.

The division into northern and southern provinces is based on geochemistry,

with high Ti02 (> 2.5 wt %), Zr (> 250 ppm) and P mafic lavas occurring in the north.

These northern lavas are generally enriched in high field strength elements (HFSE), and

were termed the HTZ (high Ti & Zr) basalts by Duncan et al., (1990). Similar values of

Sr, Fe and Ti imply close links with the Parana, high- Ti Urubici magma type (Fig. 1.8)

(Peate et al., 1992). There are both aphyric and sparsely porphyritic samples, with

phenocrysts of plagioclase, pyroxene, magnetite and occasionally olivine. LTZ Tafelberg

lavas are interbedded with the HTZ Khumib lavas in the northern part of the main lava

field but thin out and disappear to the south. The Khumib remnant is found outcropping

north oflatitude 19°30' S and, on closing the South Atlantic, the Khumib and Urubici

magma types are geographically adjacent to each other. However together they form < 5

% of the total volume of lava erupted in the Parana-Etendeka province (Peate, 1996).

Fig.1.17.

Duncan, 1987).

The bigh and Low Ti magma types of the Etendeka CFB (data from Milner &
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By comparison with those in the north the lavas in the south of Namibia are

much more voluminous and have lower concentrations ofTi, Zr and P, and are termed

the LTZ basalts, or low-Ti basalts (Fig. 1.17). These lavas together with the associated

QL were investigated in a field trip to the Huab Basin, between the Huab and the Ugab

rivers, and also to the Messum Complex in February 1996 (Fig. 1.16). These are

Chapter 1 47 Introduction



described in the next sub-section, with slightly more detail than given for the Parana

equivalents.

1.14.4 Low Ti (LTZ) basalts & associated quartz latites.

The Southern Etendeka Province is divided asymmetrically into two by the

Ambrosius Berg Fault Zone (ABFZ) (Fig. 1.16). West of the ABFZ the Coastal

succession outcrops in tilted fault blocks in which up to 1000 m of basalts and quartz

latites are preserved. Using the recently published stratigraphic framework of Milner et

al. (1994) this succession is included in the Tafelberg Formation as a lateral facies

variant. In the eastern part of the lava field the Tafelberg Fonnation consists of, from the

base to the top of the sequence, the WSreldsend Member, the Grootberg Member and

the Beacon Member.

The Tafelberg Formation disconformably overlies the Awabab Formation

which includes the Tafelkop basalts at the base, the Goboboseb Quartz Latite Member,

the Messum Mountain Basalt Member, and the Springbok Quartz Latite Member. A

detailed description follows of observations made in the field of the two type sections of

these formations.

Awahab Formation.

In the Awahab type section (14° 09' 20" E 20° 38' 43" S) the basal Tafelkop

basalts are highly vesiculated, very altered and consist of thin (< 1 - 3 cm thick) multiple

flows with minute chilled margins. In hand specimen olivines are altered to an orange

colour, while phenocrysts of feldspar are fresh. These basalts are interbedded with

sandstones of the Etjo Formation with which they have a close temporal relationship, i.e.

the sand dunes are considered to have been unconsolidated when the lavas flowed over

them. The eruption of the lavas in a desert environment has implications for the timing

and duration of magmatism. Climatic conditions appear to have remained remarkably

constant from Lower to Upper Cretaceous with tropical to subtropical flora preserved

(Riccardi, 1988), and aeolian sands are preserved both at the beginning and end of the
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the beginning and end of the sequence. The lack of palaeosols and entablature are also

attributed to this arid environment.

Table 1.3. Nomenclature of the Southem Etendeka Province (after Milner et al.,
1994)

Southern Etendeka Province

Succession Member Formation

Upper:

Middle:

(Interbedded) Lower: Tafelberg

Coastal Gemini QL (western area)

Wereldsend QL

Beacon QL

Grootberg QL

Tafelberg Bergsig QL Tafelberg

Wereldsend QL (eastern area)

Springbok QL

Messum Mountain Basalt

Springbok Goboboseb QL Awahab

Tafelkop Basalt
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Fig. 1.lS. Photo 3. Migration of sand down tbrough cooUog fractures,

Etendeka.

Fig.l.lS. Photo 4. Shards from pyroclastic explosion of rhyolites, Uruguay.
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These basal basalts have previously been omitted from descriptions of the

basaltic successions, as their relationship to the main lava had not been studied. Sand is

seen to have migrated down between fractures and cracks in the basalts and forms

lenses 10 cm thick (Fig. 1.18, Photo 3). The tops of the basalt flows are often

brecciated with angular lava fragments encompassed by sand. Finely laminated dune

structures 1 - 1.5 m high are evident between lava flow sequences. The overall

thickness of this member at Krone Farm is 130 m, and this estimate does not include all

the basal lavas due to the quantity of sediment involved.

Overlying this interbedded sandstone and basalt unit is the Goboboseb QL

Member which consists of pitchstones and quartz latites. Dark black glassy pitchstone

lenses are 50 cm thick, with thin lamellar devitrified quartz latite units. The lamellar

banding is seen to be contorted close to the base. The pitchstones vary up to 2 m thick

in this section and are vaguely amygdaloidal. A brecciated quartz latite (QL) unit

follows in which variably sized pumice-like angular clasts of QL are encompassed in a

QL matrix (Photo 4), this unit is only 1.5 m thick. This QL is followed by a 10 m thick

basalt unit, which in turn is overlain by a pitchstone unit, -2 m, which passes upwards

into a thick 5 m QL of the Springbok Member. The upper part of the Springbok

Member, which forms the cliff faces in this area, consists of massive, columnar jointed

QL with no particular textural variability.

The stratigraphic disconformity between the Springbok Member of the

Awahab Fm. and the Wereldsend Member of the Tafelberg Formation is traversed in a

stream section 6 km west of Fonteine Farm (13° 57' OO"E 20° 16' 00" S). The

Springbok Member at this locality consists of large angular, well jointed pitchstone

blocks with highly vesiculated very altered QL infilling the spaces between the blocks.

The overlying basalt unit displays characteristic spheroidal weathering and is dark

green - grey in colour. Calcite veining is common in the basalt. The entire unit is about

30m thick. Between the basalt and the next obvious QL unit is a zone of colluvial

breccia with blocks of QL surrounded by vesicular basalt, which marks the top surface

of the Springbok Member. 10m along section QL blocks are set in a fine grained red

coloured matrix of sedimentary material. There is no clear contact with the overlying

Chapter 1 51 Introduction



QL, which forms a massive, jointed unit 60 - 70 m thick; this is the base of the

Wereldsend Member.

Vesicles and amygdales within the Springbok QL Member vary in size from

lcm at the base to > 50 cm at the top, while the frequency of amygdale occurrence also

increases up through the unit. Amygdales vary from agate to quartz to zeolites to

calcite, and the shapes also vary from roughly circular to ovoid. The very top of the

unit is brecciated with blocks and fragments of QL, and bright red material in the

spaces, similar to the lower brecciated unit described from the base of the section.

Overlying this QL is a thick basalt unit 75 m thick, which is jointed and has a slightly

coarser texture than the basalt lower down the sequence, but the contact is poorly

exposed.

Tafelberg Formation.

Apart from the Wereldsend quartz latites at Krone Farm the main Tafelberg

Formation is best described from the Coastal Succession which was not examined on

the February 1996 field trip. Three other low Ti or LTZ basaltic lava types, in addition

to the basal Tafelkop basalts, were identified on the basis of geochemistry and/or

petrology by Erlank et al (1984). These are the Albin, Tafelberg and Huab magma

types, which include those lavas with up to 58 wt% Si02.

The Albin magma type occurs in the lowermost part of the volcanic sequence

in the coastal region and is seen to be interbedded with the Tafelberg magma type.

Erlank et al., (1984) describe the Albin basic lavas as fine to medium grained

porphyritic rocks, that are volumetrically minor by comparison with the aphyric

Tafelberg. Plagioclase is the dominant phenocryst phase and it occurs as glomerophyric

intergrowths up to 7 mm in length. This has lead to speculation that they are enriched

variations of the less evolved Tafelberg group (Peate, 1989). Clinopyroxene occurs as

augite with pigeonite cores. In the groundmass subhedral plagioclase, pyroxene, Ti-

magnetite and glass phases coexist. Alteration is common. Chemically the Albin and

Tafelberg basalt types are similar, with the Albin plotting at the high end of the

negative correlations of Al203 and MgO with Si02 (Milner & Duncan, 1987). The
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Albin group also plots at lower levels of Ti02, Fe203, K20 and P20S when plotted

against Si02 than most of the rocks in the Tafelberg field (Fig. 1.19).

The Tafelberg lavas are the most extensive basalt unit forming the main part

of the Etendeka lava field. They have variable mineralogy but uniform textures. Most

are fine grained equigranular samples, with very sparse phenocrysts of plagioclase,

pseudomorphed olivine and clinopyroxene; Ti-magnetite is also present. Euhedral

plagioclase laths form an interlocking framework with granular pyroxene. For a more

detailed description see Erlank et al., (1984). The presence of phenocrysts appears to

be a function of where in the stratigraphic succession the lavas are located. In the

stratigraphically higher Springbok basalts lower MgO abundances are observed.

Tafelberg compositions range between 48.9 wt % and 57.8 wt % Si02 with initial

87SrJ86Srratios ofO.7078 - 0.7135 (Erlank et al., 1984).

The Huab basalts are considered to be a more basic variant of the Tafelberg

type but they have, for example, higher eNd values (Milner et al., 1990). They are

volumetrically minor, with fine grained intergranular textures, but they have not been

extensively described in the literature.

Following on from the descriptions of the principle magma types and their

origins in the Parana-Btendeka CFB province, southern Uruguay is now examined in a

similar context. By characterising the chemistry and petrogenesis of the Uruguayan

magma types, and undertaking a detailed dating program, it was hoped to obtain greater

insight into the possible relationships between age, volume and percentage melting with

distance across a plume. A detailed comparison therefore between different aspects of

the magmas from all regions will occur in the following chapters, but first an

introduction to Uruguay, its geological background and volcanic province.
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Fig.l.19. Etendeka low-Ti magma types. The basal Tafelkop basalts of the Awahab type

section are seen to span the entire compositional range. The Albin and Tafelberg magma types

appear genetically related with the Albin possibly being less fractionated and plotting at lower

Si021eveis (data courtesy of Milner & Duncan).
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1.15. Introduction to the Geology of Uruguay.

Northern Uruguay is located at the southern edge of the present day

asymmetric province of Parana - Etendeka CFB (Fig. 1.20). The geology further south

in Uruguay is comparatively less well described, and it is here at the periphery of the

inferred thermal influence of the Tristan da Cunha plume that further information is

being sought regarding the relationship of magmatism and rifting during the Cretaceous.

On the "Carta Geologica del Uruguay" the extrusive and intrusive rocks of

interest in this study are shown to have Jurassic to Cretaceous ages, and unconformably

overlie late Precambrian to early Cambrian rocks. As the geology of Uruguay is little

known outside South America a brief introduction to the lithologies and structures of

importance follows.
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Fig. 1.20. Tbe location of tbe Uruguayan volcanic province associated with tbe opening of

the South Atlantic and its relation to the Parana-Etendeka Province. Tbe inferred position of the

Tristan da Cunha plume at 130 Ma is also shown (after Garland, 1994).
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1.15.1Background geologyand basement structures.

The Proterozoic of Uruguay divides the country structurally with the

Transamazonian domain in the west and Brazilian orogenic belt in the east (Fig. 1.21).

According to Dalla Salda et al. (1988) the Precambrian and some of the lower

Palaeozoic units of south-western Gondwana comprise four main lithological groups.

The first occurs in the Rio de la Plata craton which encompasses much of southern
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Uruguay. The craton is divided into two domains by an east-west trending fault that

runs from Fray Bentos to Valentines (inset Fig. 1.21). Each of the domains is

characterized by different lithologies with an ENE-WSW regional schistose fabric well

developed in the Second Transamazonian Domain. This area occurs west of the main

extrusive outcrops of interest, however, and the most westerly outcrop of volcanic

material, north of Minas comes into contact with granites and migmatites of the Second

Transamazonian Domain (Fig. 1.21).

The second group encompasses the Ciclo Orogenico of Uruguay (900 - 500

Ma) which is the main outcrop of the Brazilian orogenic belt in Uruguay. This area in

conjunction with others in southern Brazil and the Tandilia and Ventana hills in

Argentina. forms part of a late Precambrian belt that evolved in a convergent plate

tectonic setting on the South American and African platforms (Porada. 1979). Group

three occurs only in Argentina. while group four is mainly sedimentary and is evident in

Argentina. Africa and possibly Uruguay (Barriga de Negra Group) (Fig. 1.21).

The late Precambrian, NNE-SSW trending Brasiliano orogenic belt outcrops in

Eastern Uruguay (CicIo Orogenico). It is with rocks of this age that the majority of the

younger extrusives are in contact. From west to east the Precambrian groups vary with

the metamorphic grade increasing towards the central region where syntectonic granites

and migmatites occur (Table 1.4). Two deformation phases are noted, the first resulting

in NNE - SSW axial planar fabrics, and the second one trending WNW - ESE. This

produced a dome and basin pattern and strike-slip shearing and thrusting parallel to the

first set of axial planes (Dalla Salda et al., 1988).

The basement rocks are not only important structurally but also chemically in

providing possible contaminants to alter the trace element and isotopic compositions of

mantle derived melts. Basement that was once part of a mobile belt and has been

thinned will potentially allow more melt generation for similar mantle temperatures than

thickened crust, and so may be an important control in the evolution of the magmatic

province. Provinciality of basement has, for example, also been invoked by Gibson et

al. (1995) to explain the provinciality of, and difference between high and low-Ti mafic

Mesozoic potassic magmas in Brazil. The geographical provinciality of the high- and
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low- Ti basalts has been considered to result from variable degrees of melting beneath

the province (Fodor, 1987), also spatial heterogeneities within the lithosphere (Arndt et

al., 1993). Both such models are contentious as incompatible element variations are not

explained. A major compositional discontinuity in the lithospheric mantle is favoured

by a number of authors as the division into geographically distinct high- and low- Ti

provinces is widespread throughout Gondwana (Erlank et al., 1984; Hergt et al., 1991).

Fig.l.2l. Outline of the Proterozoic of Uruguay which forms part of the Rio de la

Plata cratonic region of South America, with outcrop regions of the main structural events (after

Dalla Salda et al., 1988). Main map is of the area south of the Fray Bentos - Valentines fault.

Mesozoic volcanics of interest occur in the area east of Minas and are underlain principally by

the Brasiliano orogenic belt.
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Table 1.4. Detailed division of the Precambrian/Cambrian and Cretaceous rock

types of Uruguay, with the rock types of the interim ages also briefly described,

after Preclozzi et al, 1988; Dalla Salda et al., 1988).

Age: Formation: Rock types

Cretaceous-Upper Migues Formation continental sediments

Guichon Formation arid sedimentation

Mercedes Formation fluvio-continental sed.

Ascencio Formation arid sedimentation.

Cretaceous-Lower Arapey Formation tholeiitic lavas & aeolian

( = Puerto G6mez Formation) ssts.

La California Conglomerate syenites & trachytes

Valle Chico Formation rhyolite, dacite & dykes

Arequita Formation

Jurassic basic lavas, mainly sub-

aquatic flows.

Triassic flood plain fluvial -

continental desert.

effusive hyperbyssal rocks;

dykes and sills

Permian fluvio-estuarine

epicontinental

sedimentation

Carboniferous fluvio torrential and glacial

deposits

Devonian fluviatile - marine

sedimentation
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Table 1.4. cont.

Silurian

Ordovician sandstones; quartzites;

conglomerates and

limestones

Cambrian syenites; rhyolites;

trachytes

Cambrian- Barriga de Negra Group sedimentary sequence

PreCambrian. post tectonic granites,

leucogranites

Upper Sierra Ballfna Formation:

Lavalleja-Rocha Group metamorphosed marble

Carape Group metabasites, phyllites &

Rocha Group schists

Paso del Dragon Formation migmatic gneissic complex

Middle: Paso Severino and late post-tectonic

Cerros de San Juan Formations; granitoids.

Arroyo Grande Formation; sedimentary volcanic

San Jose Formation; sequence: phyllites;

Montevideo Formation; schists; amphibolites;

Valentines Formation; orthogneisses; migmatites

Pavas Formation; and syn- and post- tectonic

Basal Complex JUanites

1.15.2 Field Work and Background Geology.

Trending parallel to the present coastline. from Piriapolis to Cbo Polonia, the

volcanic rocks under study in this project outcrop in isolated areas from Minas to 18 de
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Julio, a distance of over 175 km, and as far north as Treinte Y Tres (Fig. 1.22).

Exposure is discontinuous and rather sparse in areas with outcrops separated by

Precambrian and Cambrian basement west of Aigiia, while to the east Pliocene and

Pleistocene sediments dominate the landscape with the volcanics forming outliers.

The areas sampled were chosen from the Uruguayan Geological Survey (UGS)

1: 500,000 geological map and from observations made while in the field. There has

been no obvious post-extrusional deformation although some units appear tilted.

Heights are rarely in excess of 300 m today, implying minimal uplift post extrusion or

latter stage subsidence. Weathering of the region has been extensive although no

constraints can be placed on the volume of erosion that has occurred. The result being

that the best exposures are located adjacent to roads, as it was only in the vicinity of

such road cuttings that the soil cover was removed and fresh rock exposed. Much of the

sampling was done along routes 8, 13, 14, 15, & 19 (Fig. 1.23), and adjacent tracks.

The outcrops from which samples were collected are concentrated into five

principal regions on the uas geology map (Figs. 1.22, 1.23). From the south-west to

the north these are:

(i) Arequita, 6km north north-west of Minas, is a steep-sided. flat-topped mesa of

rhyolitic material, covering an area of 12.5 km x 4.5 km and reaching a maximum

height of 100m with identifiable flow units 1 - 2 m thick;

(ii) 15 km east north east of Minas town, between the Arroyo Juan Jose and

Route 8 (Fig. 1.23), lies a region of fragmental, angular brecciated, material, together

with highly vesiculated basaltic outcrops. The upper reaches of the hillside have a thin

rhyolitic cover, with evidence of flow. Layering of the rhyolitic material tends to be

steep and is thought to be syn- rather than post- extrusive as it is characteristic of this

upper layer only. The stratigraphic relationship between the basalts and the rhyolites

appears undisturbed.

(iii) at Puente de Marmaraja Route 13 branches off from Route 8 and marks

the beginning of a large area of volcanic and plutonic rocks. 15 km eastwards along

Route 13 is the town of Aigua which is at the southern margin of a faulted volcanic

region which stretches east for 25 km into the Paso de los Talas region. Samples
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collected were principally rhyolitic and appear oxidised, with individual flow

thicknesses of -Jm, and aligned feldspar phenocrysts. Off the road in the Parque

Municipal de Salamanca and between the Cerro de las Cuentas and Cerro de Cabrera

Hills there is good exposure of rhyolitic material.

At the edge of the Paso de los Talas region is the margin of a syenite intrusion which

covers an area of over 200 km2 from north-east of Mariscala to Cerro Partido and to

Alferez. Syenite outcrop is limited as it is weathered into a flat lying scarp with no

obvious structural or emplacement features. Dykes of a felsic nature and up to 2 m wide

intrude the syenite at Alferez, close to Rinc6n de Mariscala, and trend in a NW-SE

direction. The adjacent rocks are volcanic and highly weathered.

2 km north of Mariscala along Route 8 is the Cerro Partido region where the

unconformable contact between the Cambrian granites and the volcanics can be

observed. The contact is distinct and undulating, tilting by 10 degrees to the north. The

volcanic material is well weathered and oxidised, predominantly in the form of dykes 2

- 3 m wide. Texturally the dykes vary from saccroidal to phenocrystic. These dykes,

unlike those seen to intrude the syenite, trend in an east-west direction. 18 km further

north along Route 8 is Piraraja, where dark grey, basaltic material with no obvious

phenocrysts outcrops.

(iv) Lascano is a region at the same latitude as Piraraja but 35 km to the east

on Route 15. The outcrop has an unusual Y shape appearance and is 20 km long by 6

kmwide at most. There are also a number of much smaller outliers adjacent to the main

one. The outcrop is predominantly rhyolitic flows, which display ignimbritic flow

textures with flattened pumice fragments. However there is also basaltic material that is

spheroidally weathered and is feldspar phyric. There is no clear contact between the

basalts and the rhyolites. Some of the rhyolites are fragmented with pumice fragments

incorporated in a rhyolitic matrix, and there is some interaction between the lavas and

syn-depositional sediments.

In addition some flow textures in the lavas is seen as it forms curves in the

apparent bedding pattern. Scattered rhyolitic outcrops span the distance between
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Lascano and 18 de Julio at the coast. The rhyolite is quartz rich and very similar to that

observed at Lascano.

Fig.lo22. Major locations of volcanic outcrops in southern Uruguay.
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Fig.1.23. Location map with major infrastucture, drainage and regions.
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Cv)The most northern outcrop of volcanic material sampled was at Treinte Y

Tres. Here, basaltic material occurs without any rhyolite covering. The samples tend to

be vesiculated and have calcite amygdales, or are phenocryst rich, all are quite

weathered.

From field evidence it appears that the rhyolites stratigraphically overlie the

basalts which rest unconformably on Cambrian and Precambrian basement, commonly

granite. The rhyolites form the topographic highs of the region. Drill core from the UGS

provides an important vertical section through the basalt - rhyolite sequence to a depth

of 1002 m, and is consistent with field observations. This borehole (DDH 502) is

located in eastern Uruguay at approx. 053.51033.3 (Fig. 1.22). The timing of the

intrusion of the syenite member, which itself is intruded by numerous extrusive dykes,

is mapped by the Uruguayan Geological Survey (UGS) as being younger than the

surrounding basalts, although possibly not the rhyolites, but this is not certain.

In conclusion therefore it is considered that there are at least four separate

stratigraphic groupings, which may ultimately be linked by a common thread. The first
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is the stratigraphically lowest basic to andesitic outcrops, the second is the more evolved

acid compositions, the third is the intrusive syenite and finally the dykes as these occur

not only inland but also outcrop on the coast.

In accordance with the structure of this thesis these topics will be dealt with in

Chapter 2, with a detailed look at the petrology, geochemistry and isotopic compositions

of the basalt, andesites, dacites, rhyolites, alkaline intrusions and dyke samples.

1.16 Aims and Objectives of project.

Finally to recap on the aims and objectives of this project:

(i) to introduce the geology of Uruguay particularly the volcanic rocks of the early

Cretaceous;

(ii) to characterise these extrusive basalts and rhyolites and to establish a model for their

origin using petrography, geochemistry and geochronology;

(iii) to date precisely the extrusive volcanics and evaluate the relationship between the

Uruguayan rocks and those of a similar age and composition in the Parana CFB;

(iv) to provide greater insight into the processes of rifting and magmatism in a

continental setting by understanding the petrogenesis of the rocks at the surface;

(v) to add to the understanding of the tectonic processes that operated in the South

Atlantic region pre-, syn- and post- rifting by obtaining absolute ages for the coastal

dykes on both sides of the present day ocean and estimating the amounts of extension at

particular times leading up to the opening of the South Atlantic.
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Chapter 2.

Magmatism associated with the opening of the South Atlantic insouthern

Uruguay.

2.0 Abstract.

Early Cretaceous volcanics of southern Uruguay range in composition from basalts

(Puerto G6mez Fm.) to rhyolites (Arequita Fm.) and are associated with a major gravity

anomaly. The position of these outcrops at the margins of the Parana-Btendeka province,

one of the most voluminous continental flood basalt (CFB) provinces preserved today.

provides an opportunity to investigate possible lateral variations across an area of plume

related magmatism.

The mafic lavas of the Puerto G6mez Formation have been divided geochemically

into two distinctive magma types; the more voluminous Treinte Y Tres magma types,

which have similar TiIY and NbILa ratios to the low TiIY Gramado magma type of the

Parana province. and the Santa Lucia magma type. a distinct and rare basalt type with a

predominantly asthenospheric signature.

The overlying rhyolites of the Arequita Formation are also examined, both

mineralogically and chemically. Unlike the main Parana - Etendeka rhyolites they are

occasionally alkali feldspar and quartz phyric, and are considered to be unrelated to the

basaltic lavas. These rhyolites are further characterised by distinctly low 143Ndll44Ndi and

variable 87SrJ86Srj, very different to the low- Ti and high- Ti rhyolites of the Parana -

Etendelca. The rhyolites were generated by melting mafic lower crust, and variously

contaminated by an upper crustal component, with high alSo values similar to those

observed in the rhyolites.
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2.1 General Introduction.

Mesozoic magmatism associated with the break-up of the Gondwana supercontinent

is widespread throughout South America, southern and equatorial Africa, and Antarctica.

Associated magmatic events range in age from the early Jurassic to late

CretaceouslTertiary. Early Jurassic flood basalt sequences include the Ferrar magmatic

province and the Karoo igneous province. The Ferrar tholeiitic basalts and dolerites extend

from the Transantarctic Mountains to New Zealand (Elliot, 1992). while Karoo vo1canism

occurs in southern Africa (Erlank, 1984; Cox, 1992). Extrusion of the extensive Parana lava

field in South America, and the less voluminous Etendeka lavas of Namibia, which together

once formed a single continental flood basalt (CFB) province prior to opening of the South

Atlantic (Erlank etal., 1984; Bellieni et al., 1986). occurred during the early Cretaceous.

This large igneous province is linked to the Tristan mantle plume via the Rio Grande Rise

and the Walvis Ridge (O'Connor & Duncan, 1990) (Fig. 2.1). Small volume late Cretaceous

alkalic provinces are also common in Brazil, Paraguay, Angola and Namibia.

Volumetrically less significant tholeiitic magmatism is also evident in southern

Uruguay, and these vo1canics are now known to be broadly contemporaneous with the main

Parana - Etendeka province (Stewart et al., 1996; Chapter 4). This magmatic province of

southern Uruguay is situated at the edge of the extensive Parana-Etendeka CFB province,

and it is therefore of considerable interest in attempts to establish the lateral variations in

source compositions and degrees of partial melting across an area of plume-related

magmatism.

The Mesozoic vo1canic rocks of southern Uruguay extend from the Santa Lucia

tectonic basin to the Laguna Merin basin (Fig. 2.1). The Santa Lucia tectonic basin

(Ricardi, 1988; also known as the Canelones Basin, Urien & Zambrano, 1973) lies in a

system of faulted basement blocks in southern Uruguay trending approximately N60oE.

This basin together with the similarly oriented Laguna Merfn Basin, and the ESE trending

Salado and Colorado Basins of Argentina were successively infilled with vo1canic and

sedimentary sequences during the Late Jurassic and Early Cretaceous (Riccardi, 1988) (Fig.

2.1). The Santa Lucfa and Laguna Merfn regions are underlain by a gravity anomaly of +90

mGal, with a mass excess which has been ca1culated by Hallinan (unpublished data) as ME =

7±2 X 1015 kg, given a density contrast of 200 kg/m3 with a volume of 35,000 kJn3

Geochemistry 66 Chapter 2



interpreted as a large mafic body. The shape is a crude oblong 100 km long and, assuming

the density contrast is effective over 15 km of crustal thickness, the width (extension) is -23

km (Fig. 1.22). It is orientated in a rough E-W direction similar to many of the other

structural features related to the internal deformation of the South American plate during

the Jurassic (Niirnberg and Mi.iller, 1991).

Fig.2.1. Cretaceous basins of South America, including the Santa Lucia tectonic graben and

the Laguna Merfn Basin of southern Uruguay. Inset figure shows the present day relationship

between the Parana- Etendeka province, the fossil plume trace of the Rio Grande Rise and the

Walvis Ridge, and the Tristan da Cunha plume.

Rivera Craton

o·
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This chapter is concerned with describing the basalts and rhyolites of southern

Uruguay and determining the relationship between these basalts and rhyolites. Comparisons

are made with the different rock types of the main Parana - Etendeka CFB province in order

to determine possible petrogenetic links between these geographically adjacent magmatic

provinces. Thus constraints are established on the lateral extent of similar magma types, and

consequently the degrees of melting at the margins of a plume. Information regarding

discrete source regions in the area is also presented. It is proposed to extend the Parana -

Etendeka province by a further 20,000 km2 in southern Uruguay implying even greater

volumes of magma erupted in this province during the Cretaceous. The aim of this chapter

is therefore to compare this Early Cretaceous magmatic province of southern Uruguay with

the contemporaneous flood basalt province of the Parana-Etendeka, in order to gain further

insight into the relationship between magmatic products on both sides of the South Atlantic

and the extent of plume involvement.

2.2 Background Geology & Field Relations.

The Mesozoic magmatic rocks of Uruguay may be divided into two principal

regions (Fig. 1.22). The main Parana basalt lava field extends into north-western Uruguay,

covering an area of 100 x 200 km, and reaching as far south as the E-W trending Fray

Bentos - Valentines fault. These basalts are intercalated with aeolian sandstones, and are

referred to as the Arapey Formation (Caorsi & Gofii, 1958; Bossi & Navarro, 1988). They

are mapped as the equivalent of the Parana CFB, and are discussed later in this context.

Drill hole material recovered from western Uruguay contains similar lavas to those in the

Parana basin, with basalts of the low TifY Gramado magma type overlying high TiN

Paranapanema magmas.

These southern Uruguayan volcanic rocks are diverse in composition and include

basalts, trachytes, rhyolites and syenites. The rocks have been studied for their apparent

association with the break-up of Gondwana since 1927 when Walther investigated and

subdivided the rhyolites, trachytes and syenites into the AigUa and Lascano series. Table 2.1

contains a summary of the previous nomenclature and that applied in this study. Formations
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are mappable units. in accordance with the definition of Whittaker et al .• (1991). while

magma types are identified on the basis of geochemical differences.

Most of the samples collected are rhyodacite - rhyolite. perhaps because of the poor

preservation potential of the basaltic rocks in this area. Thus. it is likely that the surface

expression of the basalts was originally more extensive. similar to the area underlain by the

large positive Bouguer gravity anomaly. Stratigraphically the rhyolites overlie the basalts.

consistent with the age data (basalts - 134 to 130 Ma; rhyolites - 132 to 124 Ma), or

overstep them to lie directly on basement. Rhyolite exposures dominate the landscape.

forming topographic highs from Arequita in the far south to Lascano (Fig. 1.22). Nowhere

in the region is there a clear contact between the mafic and acidic rock types. and only at

Treinte Y Tres in the north do mafic lavas outcrop without associated rhyolites. In addition.

a 1 km long intersection of mafic material has been recovered from borehole DDH 502 in

eastern Uruguay (GR053.5 033.3), with the shallowest basalts recovered from a depth of

267 m below the surface.

Rhyolite outcrops consist either of a number of individual flow units with ignimbritic

flow textures. which give a layered appearance in the field. or more featureless. massive

units. Weathering is common, with alteration of feldspars to clay minerals. and oxidation is

extensive particularly in phenocryst rich outcrops. Phenocrysts. when present. are primarily

of feldspar and quartz; they vary in size from < 1 mm to 1 cm, and tend to be aligned

parallel to the flow direction. Individual flows are up to 1 m thick, with highly weathered

bases. Locally flows are highly vesiculated with late stage mineralisation. mainly zeolite and

calcite. infilling cavities. Brecciated rhyolite samples with melted sandstone matrices were

also identified, consistent with eruption of the basalts and rhyolites in an aeolian

environment, as seen elsewhere in the Parana-Etendeka province (Riccardi, 1988; Mizusaki

et al .• 1992; Milner et al .• 1992). Local continental aeolian Jurassic sediments in southern

Uruguay are described by Bossi (1966).
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Fig.2.2. Mesozoic magmatic provinces of southern Uruguay, showing the close geographic

relationship of this region to the main Parana Continental Flood Basalt Province.
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Two characteristic rhyolite sequences are recognised in the field principally in the

Lavalleja and Maldonado Departmentos on the basis of mineralogy and texture. The first

type consists of some of the less evolved samples and flow features are common with

oriented feldspar. Feldspar is the dominant mineral phase, forming - 60 % of the rock.

Rhyolites of this type occur principally in the Minas, Aigtia, Cerro Partido and Paso de los

Talas regions (Fig. 1.22). These are referred to as Type 1. The second type, Type 2, are

recognised primarily on the presence of variably sized, euhedral to anhedral quartz

phenocrysts. Ignimbritic textures are common but not ubiquitous. The two types also share

a number of features, particularly at Aigiia where the rhyolites tend to be layered and

vesiculated.

In the field the type locality for Type 1 is in the Parque Municipal de Salamanca, in

Paso de los Talas (Fig. 1.22), where a 10 m thick sequence of rhyolite is exposed. Thin

lamellae flows at the base, -1m thick, are overlain by more massive units which have a

tendency to pinch out whilst others flow undisturbed to infill the spaces. At the top of this

unit is an undulating surface with brittle lamellae of fragile material overlain by a massive

distinctly layered unit. The regional dip of the rhyolites is 200 to the south-west. The size of

phenocrysts evident in hand specimen varies between units in certain individual sequences.

For example in some sequences, the phenocrysts are 1 - 2 mm at the base of the exposure,

and much more variable from 2 mm to 1 cm in the next 10 ID, and then uniformly 5 mm at

the top of the sequence. There is also evidence of effusive rhyolite flow in the area, with

flow folds identified in some outcrops and silicic dyke intrusions.

The type locality for the Type 2 rhyolites is at Aigua (Fig. 1.22) in the Maldonado

region, where phenocryst-rich rhyolite flows with eutaxitic textures overlie vent material in

which angular vo1canic fragments « 5 em in size) are encompassed in a rhyolitic flow and

highly vesiculated basalts. The regional dip of the outcrops is 200 which is considered to be

post-extrusive. At Lascano (Fig. 1.22). there are ignimbrites with numerous quartz

phenocrysts, up to 6 mm in size. The size and frequency of these quartz phenocrysts varies

throughout the area, with very splintery, gJassy, phenocryst free rhyolites also occurring.

Again brecciated material is identified with large angular pumice and sandstone fragments

incorporated by a siliceous flow which suggests a local source for these rhyolites. Rhyolites
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of both types are encountered in all the main exposures throughout the region, and so they

do not appear to represent mappable units confined to particular areas.

Table 2.1. Summary of nomenclature applied to the southern Uruguay Cretaceous
volcanics. Exposure of rhyolites is not continuous therefore the stratigraphical
relationship between Type 1 and Type 2 cannot be detennined.

Literature Source Basalts & Andesites Rhyotites, Dacites & S_.!_enJ~
Walther (1927) Aigiia & Lascano Series
Jones (1956) Treinte Y Tees &

Canelones Fm

Caorsi & Gom Puerto G6mez Fm AigUa & Lascano Series
(1958)

Bossi (1966) Puerto G6mez Fm ArequitaFm

Ferrando & Valle Chico Fm
Fernandez (1971)

Preciozzi et al. Puerto G6mez Fm ArequitaFm
(1980; 1985)

This study (1997) Puerto G6mez Fm ArequitaFm

-Santa Lucia - Lascano Series
magma type - AigUa Series

-Treinte Y Tres Valle Chico Fm
magma tYJ)e -Alferez syenite

An intrusive syenite plug and ring dyke complex forms the VaIle Chico Fm and

span the regions of Cerro Partido, Alferez, Paso de los Talas and Mariscala. Representative

samples were collected from southern Alf6rez and in northern Paso de los Talas and

Marisca1a (Fig. 1.22). The syenite outcrops are extensively weathered. with the result that

exposures are featureless flat scarp areas with no obvious structures. Similar alkalic

complexes, broadly contemporaneous with the main flood basalt event, occur both in South

America and in Africa (Toyoda et al.; 1994; Milner et al., 1995). InBrazil these include the

Jacupiranga and AnitapoIis carbonatites (132 Ma and 131 Ma respectively, Renne et al.,

1993). InAfrica, the complexes are predominantly concentrated along a north-east trending

broad belt in the DamaraIand province, and include Messum, Okenyenya and Cape Cross

(Milner et al., 1995). The VaIle Chico syenite has been dated at 132 :t 2 Ma (Chapter 4).
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2.3 Petrology.

2.3.1 Syenite Petrography.

Inhand specimen the Alferez syenite of the Valle Chico Fm. contains large glassy

quartz and feldspar phenocrysts up to lcm, together with interstitial platy biotite and

granular hornblende. Leucocratic minerals form -65% of the bulk rock, and alteration gives

an overall green tinge to some samples.

Inthin section the mineralogy is alkali feldspar, quartz, plagioclase, hornblende,

biotite, pyroxene, apatite and alteration products of chlorite, sericite and iron oxides. The

mineral proportions and the degree of pseudomorphism vary between samples. Texturally

the rocks are inequigranular with mafic minerals occurring interstitially or poikilitically

enclosed by the much larger felsic minerals. Intergrowths of quartz and alkali feldspar give

rise to granophyric textures. Alkali feldspar dominates the mineralogy and occasionally

solution rims and consertaI textures are evident. Alteration of the larger phenocrysts is

common, undulose extinction patterns are noted in some quartz phenocrysts, and the a1ka1i

feldspars are zoned. Pyroxene phenocrysts are characterised by herring bone textures

reflecting exsolution from pigeonite, and indicating an inversion temperature in the region

of - 900 °C. Apatite needles are the principal accessory phase.

The chemistry of the Alferez syenite is not considered further in this paper, but its

contemporaneous occurrence with the Parana - Etendeka intrusive complexes, principally

the syenites, granites and granodiorites of the mobile Damara belt inNanubia is noted. The

Awahab Formation and the lower flows of the Tafelberg succession of the Etendeka have

been centred at the Messum volcanic complex (Milner et al., 1992; 1995), which is a large

alkalic complex with intrusive nepheline syenites; gabbros and granodiorites. The

occurrence of an intrusive syenite together with evidence of vent material in the Alf6rez

region potentially suggests that the source of the Uruguay rhyolites was close at hand.

2.3.2 Basalt petrography.

The main basalt outcrops occur in the north at Treinte Y Tres and Piraraja, although

there are limited exposures at Aigfia, Lascano and Paso de los TaIas (Fig. 1.22). Inkeeping

with previous nomenclature these lavas are termed the Puerto G6mez Formation. In the

field basalt outcrops are limited, but a number of individual, massive flows are evident.
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Most of the fresh samples are from relatively isolated outcrops and so the field relationships

between the basalts and rhyolites are not clear. However, the rhyolites form the topographic

highs of the region and since there is no obvious post extrusion deformation, the basalts are

presumed to be older, confirmed by Ar - Ar dating. At Treinte Y Tres, the basaltic samples

are dark grey, feldspar phyric, and are often vesiculated with zeolites and calcite amygdale

infilling. The percentage of feldspar phenocrysts is variable (5 - 30 %), as is the size of the

phenocrysts which may be up to 1cm long. Samples in which pumice fragments are

incorporated in a basaltic matrix, suggest explosive eruption, although these are relatively

rare. The fragments are angular, highly vesiculated and variable in size, but no vent was

recognised in the field. Such features have not previously been recognised in the Parana

where there is no evidence of an eruption center for the basalts preserved.

The basaltic samples have an anhydrous mineralogy of clinopyroxene and

plagioclase feldspar together with iron oxides ± olivine and with phenocrysts forming up to

40 % of the section. Most of the samples are porphyritic, and contain variably scaled

intergrowths of lamellar twinned plagioclase (1 - 3 mm), with pyroxene phenocrysts.

Samples from the DDHS02 borehole are broadly similar in appearance, being highly

vesiculated with calcite arnygdales, and plagioclase phyric. Extensive veining and oxidation

are also common. Simple twinning is evident in the pyroxene phenocrysts, and common

textures include glomerophyric intergrowths of feldspar and pyroxene, sub-ophitic

enclosure of feldspar by pyroxene, and vice versa, and trachytic alignment of plagioclase

phenocrysts. The occurrence of such a high proportion of phenocrysts in most samples

suggests large scale cooling either in a higher level magma chamber or on the way to the

surface prior to eruption. The large scale positive gravity anomaly underlying this region,

which has been modelled at depths of up to 15 km, is potentially the site of much of this

crystallisation.
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2.3.3 Basalt Mineral Compositions.

Pyroxene, feldspar and iron oxide compositions were analysed by microprobe for

major elements, and the trace elements Cr, Ba, Ni, V & Zn where appropriate for seven

basaltic samples (Table 2.2). In each section a number of phenocrysts were probed to

ascertain any compositional variability, and in zoned phenocrysts a number of analyses were

taken across the crystal face. Only analyses that totall00 ± 0.5 wt% were used. (See

Appendix B for running conditions.)

Fig.2.3. Or-Ab-An ternary diagram for basalt and rhyolite feldspars. There is an apparent

geographical control on the distribution of the plagioclase in the Lascano Series rhyolites with more

sodic plagioclase occurring in the Paso de los Talas region.
Or

Key to symbols:
Basalts D

Rhyolites-
Lascano Series •
Aigtia Series 0

Ab Paso de los Talas
region

An
Lascano region

Basalt feldspars

Feldspar:

Euhedral feldspar phenocrysts contrast with the more subhedral, smaller phenocrysts

(0.2 - 0.8 mm) of pyroxene. The anorthite content of the majority of mafic plagioclase
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phenocrysts analysed varies from An50-An82 (labradorite/bytownite), while andesine (An30-

Anso) is common in the more evolved andesitic lithologies (Fig. 2.3).

Pyroxene:

Pyroxene microprobe analyses generally gave rise to both low and high totals due to

varying amounts of alteration with the result that relatively few analyses were usable. The

compositions are principally augite which vary from ferroan to sub calcic (Fig. 2.4).

Olivine:

Fresh olivine is evident in the more primitive samples. Generally highly cracked with

iron oxides infilling, the compositions vary from Fo 71-77. These relatively evolved values

are not unusual for CFB and are well within the range of olivine compositions reported

from the Etendeka ofFo 84-48 (Erlank et al., 1984). Alteration is common.

Wo

o Augite

D8J~ 0r:g 0

o

En Fs

Fig.2.4. Ca-Mg-Fe+ (molecular %) plot of pyroxene compositions of the basaltic samples.
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Table 2.2. Selected microprobe data from basaltic and rhyolitic samples wbich are

used to coostrain the proportions of fractionating phases.

Oxide Olivine Plagioclase K-feldspar Clino-px. Magnetite
Sample 92Ull 'lUll 93L36 93L93 93L53
Si02 38.0 51.0 66.7 52.4 0.2
Ti02 0.03 0.06 0 0.5 14.9
A1203 0.03 30.4 18.7 1.6 2.2
FeO 25.5 0.5 0.1 11.1 67.8
MnO 0.4 0.25 0.5
MgO 36.3 0.1 16.9 0.7
CaO 0.3 13.9 0.16 17.0 0.02
Na20 3.6 5.25 0.17
K20 0.2 9.3

Accessory minerals and matrix:

Matrices are microcrystalline and are composed of laths of feldspar, having a

uniform equigranular appearance and variable amounts of pyroxene and olivine. Alteration

to iron oxides is common, as is iron oxide infilling cracks in the phenocrysts. Alignment of

the feldspar laths gives rise to the trachytic texture observed in some samples.

Mineralogically samples have> 45% feldspar, and between 0 and 10 % pyroxene and

olivine.

Iron oxide grains form between 3 and 8 % of the modal composition. The grains are

rarely homogenous with growth textures, exsolution and complex lamellae all identified

using back-scattered-electron images. Titano-magnetite, magnetite and ilmenite occur as

both primary and secondary minerals.

2.3.4 RhyoBte petrograpby.

The mineralogy of both types ofrhyoJite is anhydrous, consisting primarily of

plagioclase, aJkali feldspar, pyroxene and iron oxide, with quartz present primarily in the

evolved high silica rhyolites. Accessory minerals include zircon and apatite, while glass is

evident, in varying proportions, but usually less than 5%. Disequilibrium in the feldspars is

marked by sieve and skeletal textures. Phenocrysts are mainly discrete (up to 15 %) but

some intergrowths ofpJagiocJase and alkali feldspar occur. Devitrification has resulted in a
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cryptocrystalline matrix for most samples, with occasional granophyric intergrowths of

quartz and alkali feldspar (see Appendix C for selected photomicrographs of some of these

textures).

Rhyolites of the second type descnbed in the field, Type 2, are readily distinguished

in thin section as (a) they commonly contain pristine, quartz phenocrysts. up to 5 mm in

size, which are euhedral to anhedral and, occasionally embayed; (b) the amount of

plagioclase is less than that of alkali feldspar, and (c) matrix flow and wrap-around textures

are common (Appendix C).

True ignimbritic textures have only occasionally been recognised in the rhyolitic

outcrops of the Parana - Etendeka province (Milner et al., 1992; Garland, 1994). This has

been attributed primarily to the high temperatures of eruption involved, with the result that

the Parana - Etendeka rhyolites are often interpreted as rheoignimbrites (Milner et al.,

1992). Some of the rocks of Type 2 are unusual in that they do preserve ignimbritic textures

(Appendix C). Flattened pumice fragments and glass shards are evident, as are phenocrysts

of quartz and alkali feldspar set in a fine matrix, within which a regular alignment of

flattened fragments gives rise to a eutaxitic texture. Fiamme are stretched and illustrate

secondary mass flowage of the tuff, termed rheomorphism Phenocrysts are predominantly

subhedral although embayments are common. Quartz phenocrysts are of two principal

types: (i) small, euhedral to subhedral with small hairline type fractures. The bipyramidal

shape of these phenocrysts suggests that these are low pressure, high temperature j3-form

quartz. (ii) Larger embayed phenocrysts with rounded edges, slightly strained extinction and

a greater degree of fracturing, although this is not extensive. Apparent rotation due to mass

flowage is evident particularly in some of the smaller phenocrysts, while pressure fractures

are relative rare (Appendix C).

2.3.5 RbyoUte Mineral Compositions.

The Uruguayan rhyolites were initially subdivided into two types on the basis of

petrography, and primarily on the presence or absence of variably sized and rounded to 13-

form quartz phenocrysts. These divisions are however not characterised by different major

and trace element compositions, except that the more quartz rich samples tend to be IDOre

evolved. Instead the rhyolite data from southern Uruguay are used to define two
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geochemical series, the Lascano Series and the AigUa Series which are not equivalent to the

previously defined rhyolite types from petrography. Any differences that are evident in the

mineral compositions of either series are noted. The use of the term series in the key to

Figure 2.4 therefore refers to the divisions realised from chemical investigations as

described in Section 2.11 rather than petrological Types 1 and 2.

Plagioclase:

Plagioclase is common both as larger phenocrysts (megacrysts) (1 cm) and smaller

phenocrysts (0.5 - 2 mm) particularly in the low SiCh rhyolites of both rhyolite series (Fig.

2.3). Euhedral tabularllath forms give way to more rounded phenocrysts, with sieve and

skeletal textures implying disequilibrium (Barker, 1989). Twinning in the plagioclase is

lamellar and asymmetric. Plagioclase compositions vary between labradorite, andesine and

oligoclase (An30 - Anoo) and show a slight provinciality in the Lascano Series with sodie

plagioclase phenocrysts being primarily from the Paso de los Talas region and more calcic

plagioclases being concentrated in the Lascano region (Fig. 2.3).

Alkali feldspar:

Ingeneral the abundance of alkali feldspar increases with increasing silica content

and it is therefore one of the prime modal components in the more evolved high-silica

rhyolites. Phenocrysts of alkali feldspar, up to 5 mm in size, occur both discretely and

intergrown with plagioclase, and range in composition from anorthoclase to sanidine in the

low silica rhyolites. The alkali feldspar compositions of the high-silica rhyolites tend

towards sanidine with in general higher potassium abundances, and tend to be discrete or

form glomerophyric intergrowths with quartz. There is a regional variation in the alkali

feldspar composition of some of the rhyolite, with alkali feldspars from the A.igUa Series

being more sodic, and those from the Lascano Series (Fig. 4). Similar disequilibrium

textures to those shown by plagioclase in both series are noted. Inaddition to perthitic

textures, there are also granophyric intergrowths of groundmass quartz and K-feldspar in

both rhyoJite series. Such textures have previously been recognised in old (>100 Ma)

devitrified glassy rocks where the quartz and feldspar have re-crystallised (Cas & Wright,

1988). Evidence of dissolution includes rims around some feldspar phenocrysts.
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Pyroxene:

Clinopyroxenes of augite composition are present in the less evolved trachydacite

rock types of both series, and there are also rare pigeonitic orthopyroxenes. In general the

pyroxenes are altered and replaced predominantly by iron oxides. Some zoning and

twinning are noted, as is the herring bone structure of pigeonite. Locally the pyroxene is

poikilitically encompassed by feldspar.

Oxides & Accessory phases:

Iron oxides are ubiquitous, both as a primary phase and also as secondary phases as

replacement minerals after pyroxene. The compositions range between magnetite and

titanomagnetite with rare ilmenite occurrences. Similar disequilibrium textures to those

noted in the basalts are evident. Zircon and apatite are the main accessory phases.

Matrix:

The matrix varies from microcrystalline to cryptocrystalline. Where

distinguishable, it is composed of feldspar, quartz, iron oxides and devitrified glass.

Trachytic alignment of groundmass feldspars is noted in some samples, paralleled by

larger phenocrysts, but more often the matrix is aphanitic, spherulitic and devitrified.

It is useful to compare the petrology of the southern Uruguay rhyolites with that of

the Parana - Etendeka province in order to constrain possible similarities. The rhyolites

from the Parana province, are divided into two compositional groups, the low-Ti Palmas

group from the south and the high-Ti Chapec6 group in the north, and these are also

distinct petrographically. The Palmas rhyolite group are virtually aphyric « 5 %

phenocrysts), in contrast to the plagioclase - rich Chapec6 rhyolites « 25 % phenocrysts)

(Garland et al., 1995). The quartz latites of the Etendeka are sparsely porphyritic « 10 %

phenocrysts) with a basic mineralogy of plagioclase. pyroxene and iron oxides, primarily

titanomagnetite and more rarely ilmenite (Milner et al., 1992). The Parana rhyolites have a

similar anhydrous mineralogy. Units of the Palmas rhyolite group of the southern Parana

are equivalent to the low-Ti Etendeka rhyolites (Milner et al, 1995), and they both lack the
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main components of the more evolved Uruguayan rhyolites, namely alkali feldspar and

quartz. In the Parana-Etendeka province true ignimbritic textures, such as those described

from Uruguay are very rarely seen. However, there is local preservation of pyroclastic

textures. possibly of ignimbritic origin, particularly in the Etendeka and so the quartz

latites have been considered as high temperature, low viscosity welded ignimbrites (Milner

et al.• 1992).

2.4 Geochemistry.

Major and trace element abundances were determined by X-ray Fluorescence

(XRF) analysis, and rare earth and other trace element concentrations by Instrument

Neutron Activation Analysis (INAA) (Details in Appendix B). Given the petrographic

evidence for alteration, screening was required in order to remove any bias that might be

due to alteration processes. Milner & Duncan (1987) using adjacent pitchstone and

crystalline samples remarked on the relationship between K20 and Loss On Ignition (LO!)

in samples from the Etendeka and concluded that H2Q+ was the principal exchange

component for K+ in glass in the more evolved compositions, and that this resulted in a

reduction inK20 in the pitchstone samples. Low temperature, post-extrusion interaction of

available groundwater with the lavas is considered to have been important in rocks with

relatively high LOI values. Samples with an LOI of> 3 % were therefore discarded, and

the compositions of the remaining samples were recalculated on a volatile-free basis

(Selected analyses are presented in Table 2.3). The mobility of certain trace elements. such

as Rb and Ba within the Large Ion Lithophile Elements (LILE) was also monitored.

The bulk rock compositions are illustrated on a total alkalis - silica diagram in

Figure 2.6. The most salient feature is that although there is no clear silica gap in the

samples analysed, they do plot in two distinct fields on the total alkalis - silica diagram.

The more mafic rocks vary from basalt to andesite and include a few trachybasalts and

basaltic trachyandesites using the classification scheme of Le Maitre et al., (1989).

Following other studies in the Parana (Bellieni et al., 1986; Peate et al.• 1992) it is still

convenient to subdivide the Uruguay rocks into 'basalts' with < 60 wt% Si02, and

'rhyolites' with> 60 wt% Si~.
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Fig. 2.5. Total alkalis versus silica classification diagram of Le Maitre et al., (1989). Open

squares are mafic samples; Filled circles are rhyolites from Uruguay. Grey fields in the background

are for the basalts and rhyolites of the Parana CFB province, data from Peate, (1989) and Garland,

(1995).
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The rhyolitic rocks plot as trachytes or trachydacites and rhyolites in Figure 6. A

few of the less evolved samples are trachytic (on the basis of CIPW normative calculations

with Q > 20 %), but most are trachydacites (Q < 20 %). The subdivision of volcanic rocks

into alkaline and subalkaline series using the boundary lines of either Kuno (1966) or Irvine

& Barager (1971) place the majority of the Uruguay basic rocks in the subalkaline/tholeiitic

field, although a few plot clearly in the alkaline series. The bimodal nature of the mafic lavas

and rhyolites primarily on the basis of total alkalis (basalts < 61 wt% Si02 and K20 + Na20

<7%; rhyolites> 61 wt% Si02 and > 7 wt% K20 + Na20) is unique to this area, as

elsewhere in the Parana-Etendeka province the lavas are bimodal in silica abundances with a

gap at 60 - 64 wt% Si02 , but overlap in total alkalis (Fig. 2.5) (Piccirillo et al., 1988; Peate

et al., 1992). An important implication therefore is that the petrogenetic relations between

the basalts and rhyolites may be different inUruguay.
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TiIY ratios have been widely used to characterise CFB (e.g. Hergt et al, 1991 -

Ferrar magmatic province; Peate et al., 1992 - Parana; Erlank et al., 1984; Milner et al.,

1992 - Etendeka) and a plot ofTiIY v Si02 also shows the gap between the basalt and

rhyolite rock types from Uruguay (Fig. 2.6). The mafic rocks appear to plot in two groups

(Treinte Y Tres and Santa Lucia magma types), both of which have lower TiIY than the

high TiIY magmas of the northern Parana, and are more closely associated chemically as

well as geographically with the low TiIY Gramado and Esmeralda magma types of the

southern Parana. The volumetrically minor Santa Lucia magma type, plots at lower Si02

and higher Ti02 and Fe203 than the Treinte Y Tres magma type, the main group of basalts

(Table 2.3). Nb & Ni may both be used to distinguish between the Treinte Y Tres and Santa

Lucia basalts, since the Treinte Y Tres basalts tend to have lower Nb and Ni abundances at

low Si02 and Zr contents (Fig. 2.7). The two basaltic magma types may also be

distinguished on the basis of initial isotopic ratios in that the Santa Lucia basalts have lower

87Sr/86Srj (0.7046 to 0.7085) and higher 143Ndll44Ndi (0.5124 to 0.5122) than the Treinte

Y Tres rocks (0.7089 - 0.7201 and 0.5122 to 0.5119).

Fig.2.6. Incompatible trace element ratio of TiIY v SiDz comparing the main Parana mafic

and silicic magma types with the volcanics of southern Uruguay. Data from Peate, 1989; Garland, et

al. (1995) and current study. Low TiIY is less than 310, high TiIY is above this value.
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Fig.2.7. Major and trace element variation diagrams distinguishing between tbe Treinte Y

Tres and Santa Lucia basalts and the different higb and low TiIY magma types of tbe Parana. Data

. from Peate (1989); Garland (1995) and this study. Open symbols for the Santa Lucia magma type,

closed for tbe Treinte Y Tres,
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Fig. 2.7. cont.
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Sr and Nd isotopic data further highlight the relationships between the basalts and

rhyolites of southern Uruguay and those of the Parana province (Fig. 2.8). All the initial Sr
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and Nd isotopic ratios are calculated back to 130 Ma, and Figure 2.9 illustrates a number of

important features of the southern Uruguay rocks. The rhyolites do not lie on a continuous

Nd - Sr isotope trend with the basalts and that may be further evidence that the basalts and

rhyolites in southern Uruguay are not simply related (see also TiIY vs. Si02 in Fig. 2.6).

As discussed previously the rhyolites are divided chemically into two series, the Lascano

Series and the Aigua Series. The division is based primarily on the behaviour of the trace

elements Nb, Zr, Ti and Sr, with the Lascano Series plotting at higher TilZr and Sr vs.

Si02, and in general forming a tight array for Nb and Zr vs. Si02 when compared with the

Aigua Series (Figs. 2.18,2.19).

Fig.2.8. Variation in initial Sr and Nd isotopic data for the basalts and rhyolites of southern

Uruguay compared with those of the Parana CFB province. Average Archaean lower crust and

Proterozoic upper crust are also plotted. Data from Taylor &McLennan, (1981); Rogers &

Hawkesworth, (1982); Weaver & Tarney, (1984); Mantovani et al.(1987); Peate, (1989); Garland,

(1994).
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The Lascano Series range in 87Sr/86Srj from 0.7084 to 0.7248 and in eNdj from -13.3 to -

4.7, while the AigUa series forms a much tighter array at low 87Sr/86Srj and very low eNdj
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(Fig. 2.8). The variations particularly in eNdj of the rhyolites are distinct in relation to the

Parana province and shall be discussed later with regard to the petrogenesis of the rhyolites
of southern Uruguay (Section 2.14).

2.5 Basalt Geochemistry.

All the basaltic samples analysed are relatively evolved with MgO varying from> 2

to 7 wt%, and Ni and Cr being 139 ppm & 150 ppm respectively in the most primitive

sample. On major and trace element variation diagrams (Fig. 2.7), two distinct magma types

emerge as previously described for Figures 2.7 and 2.9. The main magma type, herein

termed the Treinte Y Tres magma type includes the majority of the lavas, and it is broadly

similar to the low TiIY Gramado magma type in the Parana. The Santa Lucia magma type

tends towards lower Si~ but with high Ti~, Fe203 and P20S while MgO, Al203, CaO &

K20 ranges are broadly similar to the Treinte Y Tres rocks. There is no apparent

geographic significance in the distribution of the two magma types, with samples from the

Santa Lucia magma type spread from Minas in the south-west to Lascano (Fig. 1.22). All

samples from the exclusively basaltic region of Treinte Y Tres in the north are stereotypical

of the second magma type, which is named after this region, even though the magma type is

widespread throughout southern Uruguay.

The High Field Strength (HFS) elements (Zr, Y, Ti and Nb) are relatively immobile

during alteration and when plotted versus Si~ highlight similar groups to those of the

major oxides. The Santa Lucia basalts have higher Nb (> 11 ppm) and Ti at Si~ values of

47 to 50 wt%, and a sharp increase in Y from 28 ppm to 47 ppm for a similar range in Si~

(Fig. 2.7). The Treinte Y Tres lavas show a constant linear relationship between Nb, Y and

Zr versus Si~. Binary plots of Nb vs. Zr and Y vs. Zr (Fig. 2.7) show broadly constant

trace element ratios possibly reflecting crystal fractionation processes within the Treinte Y

Tres lavas. The Santa Lucia basalts form a clearly separate field in for example diagrams of

Nb - Zr and Nb - Si~ and appear unrelated to the main volume of lavas. Using more

mobile elements such as Sr, Ba & Rb and plotting them against Si~ the general trends are

maintained although they are more scattered (Fig. 2.7), due in part to plagioclase

accumuJation (in the case of Sr) and alteration.
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Table 2.3. Selected chemical analyses or the Uruguay mafic and acid volcanics,
subgroup names are as described in the text.

Magma type: Santa Treinte
Lucia YTrbi

Sample: 93lA7 92-U12 93Ll06 93L27 93L96 502-936 93LI24

(wt%)

Si<>2 47.99 48.19 49.81 48.52 51.44 52.33 53.93

Ti<>2 1.63 1.88 1.91 1.20 1.23 1.20 1.32

Al20J 17.86 16.99 15.7 17.75 16.77 14.35 15.48

Fe203 12.8 12.3 14.03 11.77 10.89 11.51 11.28

MnO 0.14 0.18 0.15 0.22 0.17 0.36 0.17

MgO 5.27 6.44 5.13 6.57 5.6 6.86 4.45

CaD 10.27 8.57 9.84 10.97 10.58 7.61 9.14

Na20 2.84 3.78 2.25 2.4 2.29 3.86 2.46

K2D 0.92 1.14 0.87 0.43 0.9 1.81 1.62

P2D5 0.28 0.52 0.32 0.17 0.14 0.13 0.16

LOI 1.86 0.86 1.52 2.00 1.46 2.15 0.41

Rb 18 22 22 6 22 70 55

Sr 344 596 285 281 248 257 202

Y 29.7 30 47 29 32 32 37

Zr 138 154 190 97 138 137 158

Nb 17 28 16 6 7 7.9 8

Ba 392 551 401 309 257 608 381

Ni 139 76 75 27 72 89 46

Cu 92 66 71 70 88 158 98

La 16.4 27.3 10.4 15.4 17.2

Ce 34.7 57.7 23.5 34.5 34.8

Nd 20.1 27.2 14.9 18.8 17.6

Srn 4.22 6.2 3.4 4.45 4.61

Eu 1.57 2.07 1.24 1.35 1.16

Tb 0.78 0.93 0.72 0.91 0.88

Yb 2.85 2.5 2.64 3.21 2.85

Lu 0.43 0.37 0.43 0.47 0.44

87Sr~Srm 0.70636 0.70480 0.71111 0.71705

143Ndll~dm 0.!H247 0.51207 0.51223 0.51229

87Sr/86Srj 0.70608 0.70460 0.71063 0.71559

tNdj -2.4 -10.1 -7.1 -3.4
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Table 3: continued.

Magma type: Trefnte Lascano
YTres

Sample: 92-U17 502-306 93LI25 93L78 931.64 93L76 93LI15

SiD2 54.22 58.31 60.39 61.19 66.50 73.74 69.78

TiD2 1.25 1.49 1.88 1.52 1.15 0.48 0.64

Al2<)3 15.68 13.9 12.66 14.77 13.22 12.66 12.45

Fe2<>3 10.74 11.46 12.14 9.35 7.54 3.41 6.44

MnO 0.15 0.19 0.18 0.15 0.13 0.05 0.18

MgO 4.82 3.16 2.02 0.78 1.07 0.20 0.38

Cao 10.18 7.92 6.07 3.26 2.30 0.73 2.24

Na20 1.71 2.56 2.53 3.87 4.3 2.97 2.71

K20 1.10 0.81 1.93 4.48 3.39 5.65 5.06

P205 0.15 0.20 0.21 0.64 0.39 0.10 0.12

LOI 0.58 1.92 1.82 1.10 2.22 1.17 2.06

Rb 27 88 107 122 95 209 176

Sr 238 144 205 313 168 113 134

Y 36 43 49 112 52 54 105

Zr 146 207 227 491 373 492 367

Nb 10 13 16.2 53.2 43 54 29

Ba 409 361 509 2776 1172 805 1192

Ni 57 26 7 7 3 4 14

Cu 66 77 94 9 12 13 9

La 27.3 30.7 142 57.4 85.9

Ce 56.9 65 211 120 138

Nd 28.2 33.3 115 52.2 73.9

Sm 6.71 7.73 20.5 9.81 15.1

Eu 1.49 1.87 5.44 2.66 3.45

1b 1.12 1.38 3.01 1.41 2.65

Yb 3.76 4.65 8.84 4.88 8.21

Lu 0.6 0.69 1.38 0.72 1.19

87Srll6Srm 0.72254 0.71965 0.71101 0.71179 0.72330

143Ndll~dm 0.51229 0.51216 0.51204 0.51189 0.51226

87Sr,t86Srj 0.71922 0.71685 0.70892 0.70878 0.71628

eNdi -6.0 -8.5 -10.1 -13.3 -6.2
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Table 3: continued.

Magma type: Lascano

Sample: 92-U15 93Ll27 93LI02 93Ll28 93LI09 93L99 92-Ul4

SiOz 71.27 71.62 72.90 72.57 73.48 76.30 76.54

TiOz 0.66 0.60 0.57 0.59 0.43 0.33 0.31

AI203 12.77 12.27 11.59 12.46 12.50 11.63 11.58

Fe203 6.22 5.65 5.35 5.70 4.42 3.10 2.72

MnO 0.16 0.12 0.07 0.Q7 0.05 0.02 0.02

MgO 0.20 0.66 0.39 0.36 0.18 0.11 0.08

Cao 1.15 1.92 1.30 1.09 0.84 0.27 0.50

Na20 2.79 2.69 1.87 1.97 2.12 1.66 1.63

K20 4.65 4.36 5.84 5.09 5.85 6.51 6.56

P205 0.12 0.11 0.12 0.12 0.12 0.06 0.06

LOI 1.39 1.13 1.43 2.07 1.28 1.59 0.92

Rb 168 172 148 185 200 212 209

Sr 134 125 94 122 l18 61 72

Y 99 57 53 65 63 55 62

Zr 365 354 333 469 389 327 304

Nb 28 28 2S 27 23 20 21

Ba 1285 754 827 1218 1527 1226 1270

Ni 8 5 3 6 6 4 5

Cu 13 14 14 l1 8 7 7

La 47.7 64.9 71.7 66.2 65.7

Ce 102 148 154 132 138

Nd 46.4 65.3 68.8 57.6 60.6

Sm 9.55 12.7 12.9 10.9 11.6

Eu 1.99 2.30 2.30 1.64 1.6

Th 1.52 1.88 1.89 1.54 1.65

Yb 5.48 6.28 5.79 5.38 5.77

Lu 0.8 0.92 0.83 0.79 0.82

87Sr~6Srm 0.72710 0.72947 0.74110 0.73828

143Ndll~dm 0.51199 0.51201 0.51199 0.51206

87Srt86Sri 0.71898 0.72039 0.72241 0.72262

ENdi -11.3 -11.0 -11.1 -9.9
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Table 3: continued:

Magma type: Aigiia

Sample: 93LI26 931.86 93LI8 93LA8 93LA6 93L22 93L36

SiD2 78.88 61.74 64.76 67.37 73.00 77.15 76.46

TiD2 0.33 0.43 0.70 0.55 0.30 0.19 0.10

Al20J 9.80 17.1 15.61 14.51 13.05 12.09 12.36

FClOJ 3.10 7.15 5.70 6.46 4.10 1.56 2.04

MnO 0.06 0.21 0.13 0.08 0.07 0.01 0.02

MgO 0.29 0.29 0.63 0.32 0.14 0.05 0.05

Cao 0.22 0.7 2.2 1.54 0.65 0.34 0.10

Na20 0.70 5.79 3.93 3.04 2.74 3.05 3.44

K20 6.56 6.45 6.25 6.00 5.88 5.52 5.41

P205 0.05 0.10 0.13 0.14 0.05 0.04 0.03

LOI 1.75 1.06 6.41 1.39 1.37 0.82 0.71

Rb 164 188 164 145 174 164 584

Sr 35 16 264 197 59 25 324

y 42 95 87 94 58 31 7

Zr 285 lOOS 955 1047 620 391 136

Nb 17 191 136 40 SI 33 333

Ba 776 162 935 2291 705 262 167

Ni 1 4 3 4 3 3 4

Cu 4 9 6 12 10 10 5

La 44.5 133 llO 91.8 95.2 48.5 79.6

Cc 91.9 245 214 170 196 92.2 172

Nd 40.4 98.8 86.5 88.8 86.6 43.5 60.7

Sm 7.9 17.2 15.2 16.5 13.6 7.74 14.4

Eu 1.34 2.01 2.21 4.46 2.35 0.7 0.24

Tb 1.17 2.59 2.29 2.34 1.64 0.9 3.24

Yb 3.89 10.9 9.27 8.ll 6.43 4.42 12.8

Lu 0.57 1.59 1.34 1.25 0.94 0.64 1.73

87Sr~6Srm 0.74128 0.71471 0.71238

143Ndll44Ndm 0.51206 0.51215 0.5ll91 0.5ll91 0.5117 0.51184

87Srt86Slj 0.71650 0.71138 0.70846

ENdi -10.1 -8.0 -12.6 -12.8 -17.6 -14.8
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Fig. 2.9. Mantle normalisedincompatibleelement diagram comparing the Treinte YTrn and

Santa Lucia magma types. The Treinte Y Tr6I samples are distingulsbed by low NbILa. These

samples are also compared with samples considered to be derived from the asthenosphere including

the Talelkop magma type of the Etendeka. Data from Ie Roex et oJ., (1989); Peate, (1989); SIDl &

McDonough, (1989); Ewart et oJ., (1997).

The differences between the Treinte Y Tres and Santa Lucia lavas are most striking

on a mantle-normalised incompatible element diagram (Fig. 2.9). The Santa Lucia basalts

are characterised by reJatively smooth incompatible element signatures, similar to those of

asthenosphere-derived ocean island basalt (Om). This is unusual for any basalts associated

with the Parana province, although Milner & le Roex (1996) recently reported basalts in the

Etendeka with incompatible trace element and isotopic compositions similar to recent

basalts associated with the Tristan plume (Fig. 2.9). Prior to break-up the Etendeka

province would have been spatially close to Uruguay and these Tafelkop basalts have TiIY

ratios> 500 and NbILa - 1, broadly similar to the Santa Lucia rocks albeit at lower

concentrations. The Treinte Y Tres lavas have very different mantle-normalised patterns

with distinctive negative anomalies at Nb, P and Ti inparticular, and at least in tholeiites

these are generally thought to be unrelated to the degree of melting (e.g. Hawkesworth et

al., 1988). On mantle-normalised plots. magmas derived by partial melting of

asthenospheric upper mantle should define more or less smooth profiles, with the degree of
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compatibility of these elements in the melt increasing from Ba through to Yb. The observed

pattern for the Treinte Y Tees lavas is more akin to the main volume of lava in the south of

the Parana basin, the low TiIY Gramado magma type which is also characterised by low

NbILa ratios.

Both Uruguay basalt magma types are LREE enriched relative to HREE, with the

LREE abundances being slightly lower in the Treinte Y Tres rocks. Negative Eu anomalies

develop with increasing SiOz and are associated with increasing plagioclase fractionation.

Sr &Nd isotopes:

The Treinte Y Tees and Santa Lucia magma types have different Sr and Nd isotopic

ratios (Fig. 2.8), with the Treinte Y Tees magma type having a much wider range in eNdj

from -3.4 to -10.6. These extend to lower values than those reported from the Gramado

rocks of -1.3 to -8.7 (Bellieni et al., 1986; Peate et al., 1992; Peate & Hawkesworth,

1996). The range of eNdj for the Santa Lucia basalts varies from -2.4 to -5.4. Initial Nd

isotopic ratios for Tristan da Cunha, Walvis Ridge and Inaccessible Island are -3.3 to -0.9, -

4.5 to 1.5 and -1.9 to 0.2 respectively (Humphris & Thompson, 1982; le Roex et al., 1990;

Cliff et al., 1991). Therefore the Santa Lucia data may indicate a degree of mixing between

an asthenospheric component, as indicated by the smooth incompatible element diagram

(FIg. 2.9), and an older presumably lithospheric component which results in a shift to lower

eNdi values. On a plot of 87Srf86Srj vs. SiOz the Treinte Y Tees magma type ranges from

0.7089 to 0.7210 as SiOz increases from 52 to 60 wt% (Fig. 2.10), while in the Santa Lucfa

basalts 87Srf86Srj = 0.7046 to 0.7085 at lower SiOz contents. The range in initial Sr isotope

ratios is broadly similar to that described for the Gramado rocks of the Parana in which

87Srf86Srj= 0.706-0.715 (Bellieni et al., 1986; Piccirillo et al., 1988; Peate and

Hawkesworth, 1996). These variations in Sr and Nd isotope compositions and also in highly

incompatible element ratios indicate the importance of open system behaviour particularly

with regard to the evolution of the Treinte Y Tees magma type. The increase in 87Srf86Srj

with increasing SiOz is consistent with an AssimiIation and Fractional Crystallisation (AFC)

style of crustal contamination where the assimiIant has higher SiOz and high 87Srf86Srj than

the parental basalts (Fig. 2.10).
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Fig. 2.10. Variation in initial Sr isotope ratios with Si02 for the different types of Uruguay

basalts and rhyolites, as compared with certain Parana magma types. Vectors refer to open system

fractionation (AFC), and closed system fractionation (FC).
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There are a number of obvious affinities between the Treinte Y Tres and the

Grarnado magma types in terms of major, trace-element and isotope compositions, whereas

the distinctive Santa Lucfa basalts are relatively rare. The petrogenetic histories of the

Uruguayan magmas have been modelled using major, trace, REE and isotope data and

further compared with the low TiIY Grarnado magma type of the Parana in particular.

2.6 Fractional Crystallisation & Assimilation.

Neither the Santa Lucia nor the Treinte Y Tres lavas represent primary mantle melts

as indicated by the minor modal percentage of olivine, and the low magnesian numbers

(Mg# = 24 to 54) and Ni (7 to 139 ppm) concentrations. In general the Mg# is insensitive

to the degree of partial melting, but it is highly sensitive to the amount of fractional

crystallisation, particularly of olivine. In the Treinte Y Tres samples there is strong evidence

Geochemistry 94 Chapter 2



for open system behaviour, as in the marked increase in 87Srf'86Srjwith increasing SiCh

(Fig. 2.10). This next section is concerned with resolving the effects of different high level

magma chamber processes such as fractional crystallisation, magma mixing and crustal

contamination in the petrogenesis of these rocks from southern Uruguay.

The porphyritic nature of the samples in thin section suggests at least some crystal-

liquid fractionation, possibly by a mechanism of simple gravitational crystal removal, prior

to extrusion. Major element trends indicate that gabbroic fractionation (olivine,

clinopyroxene and pJagioclase) had a major control on the evolution of the system (Fig.

2.11). Using Pearce element ratio plots the mineral assemblages are recognised by the slope

of the trends, since the slopes of the trends are sensitive to the stoichiometry of the

crystallising and segregating phases (Russell & Nicholls, 1988). These ratio plots (Fig.

2.11) show primary control by both olivine and clinopyroxene on the Fe and Mg

abundances, while pJagioc1ase fractionation affects the Na, Ca and AI abundances. Gabbroic

fractionation should buffer SiCh with decreasing MgO contents (Cox, 1980), however SiCh

(wt%) ranges from 41 to 60 and that may in part be due to assimi1ation of crustal material.

Least squares analyses were initially undertaken to assess qualitatively the

proportions of the different phases involved in fractional crystallisation and the fraction of

mek remaining at the end of each fractionation increment (F value). There is concern

however about the possible effects of crustal contamination being reflected in the results of

such least squares modelling with the result that the proportions of high Si02 minerals such

as feldspar calcuJated may be too high. Least squares modelling clearly provides only an

estimate of the phases involved with the reJationsbip between parent and daughter

assembJages assumed to be closed system. and so the affects of any assimi1ation was not

taken into account.
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the phases that are fraetlonating. Plot (I) distinguishes between p1agiodaseicUnopyroxene and olivine,

plot (H) plagiodase and clinopyroxene and plot (UJ) compares ferromagnesJan minerals and

0.01

plagioclase. Vectors are after Nicholls (1988) and Russell &: Nicholls (1988).

The phases were constrained both from the mineralogy observed in thin section. and

from other studies of tholeiitic magmas (Cox, 1980). The presence of nonnative diopside,

olivine, hypersthene and quartz suggest that these rocks last equilibrated relatively shallow

at low pressures of - 1 atm (Thompson et al., 1983). Table 4 summarises the proportions
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of the mineral phases used in the least squares calculations. The results for the Treinte Y

Tres magma type are broadly similar to the ratios of the phenocryst phases observed in thin

section. but with more olivine predicted than observed. Decreases in MgO accompanied by

increases inFe203 and Na20, and decreases in CaO and Al203 are consistent with gabbroic

fractionation involving olivine-plagioc1ase-clinopyroxene-magnetite extraction (Cox, 1980),

in the proportions of approximately 15 : 55 : 25 : 5. F is the amount of crystal fractionation

and it is calculated from the amount of liquid remaining after the best fit of the data has

been achieved and as can be seen in Table 4 is variable from 60 to 80 %. Contamination is

however an important factor in the petrogenesis of the Treinte Y Tres basalts in particular

(Fig. 2.10) and so the results of the least squares modelling are only used as a qualitative

guide to the fractionating assemblage. Nonetheless as MgO decreases from 6.57 to 2.02

wt% the amount of fractional crystallisation, F is calculated to be approximately 80 %.

The phase proportions as calculated from least squares analyses were used to

calculate the bulk distribution coefficients for different trace elements, and the values of F

from the major element modelling were used initially to constrain F for the models of the

trace element variations in both closed and open systems. Contamination is known to play

an important role in the evolution of the system (e.g. Fig. 2.10) and it is seen to exert a

major control on the variation of more mobile elements including Rb and Sr.

Table 2.4. Fractionating assemblages generated using the Mix 'n' Mac 2.6L program
(D.R.Mason, 1987) for the mafic Treinte Y Tres suite of lavas. Phase compositions
and abbreviated as follows: Olivine. 01; Plagioclase • PIag; CUnopyroxene • Cpx and
Magnetite - Mt. Erl indkates how good the fit Is for the fractionation model with
values < 1 considered vaUdeF (%), the amount of fractional crystaDisation = (1 •

Uquid) *100.

Parent Daughter F(%) 01 PIag Cpx Mt Er2
(%) (%) (%) (%)

93L27 502-936 66.8 4 41.7 16.8 5.2 0.32

93L27 92U17 60.4 7.8 37.4 10.5 4.4 0.20

93L27 93L98 74.9 8.7 44.4 14.7 6.7 0.18

93L27 93L125 81.4 8.6 49.3 17.6 6.1 0.09
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Table Z.5. Partition coeftlcients for basaltic melts.

Element Olivine elino-pyx. Plagioclase MagIl_etite
Rb 0.001 0.03 0.07
Nb 0.01 0.005 0.01 0.4
Sr 0.014 0.06 1.8-3.3
Nd 0.0066 0.3 0.085 2.0
Zr 0.012 0.1 0.048 0.1
Ti 0.02 0.4 0.04 7.5
Y 0.01 0.9 0.03 0.2
Yb 0.02 0.6 0.06 1.5
Ba 0.009 0.026 0.23

The bu1k D values were calculated according to the proportion of phases calculated

from the major elements, and reported partition coefficients between liquid and crystals

(Table 2.5). The mineral partition coefficients were taken from a variety of sources

including Pearce & Norry (1979), McKenzie & ONions (1991), Thirlwall et al. (1994) and

Rollinson (1993), and while there is considerable variation in the quoted distribution

coefficients for each element, the Ko values used were for rocks of between 48 and 60 wt%

SiCh. The results reflect crude groupings of the parameters likely to affect trace element

partitioning, such as temperature, pressure and bulk composition (Bloody & Wood, 1991).

Particular attention was given to the behaviour of Sr partitioning into plagioclase

feldspar, as the DSr (& DsJ in plagioclase feldspar has been shown to be controlled by

crystal chemistry (Blundy & Wood, 1991). Over a range of temperatures there is a

relationship between Dsr (& Dsa.> and the mole fraction (XAn), and plots of lnDsr versus

XAn yield linear arrays with negative slopes. Microprobe data on feldspar composition was

used to determine XAn and hence to calculate the DSr for the Treinte Y Tres lavas

according to the model of Blundy &Wood (1991). The calculated DSr values for the

Treinte Y Tres samples varied from 3.3 in Labradorite at T = 1333 OK and XAn = 0.5, to

1.95 in Labradorite at T = 1460 OK and XAn = 0.7. Furthermore using the Blundy & Wood

(1991) equations, Sr is inferred to be ahnost 3 to 4 times more compatible in Albite (XAn =
0) than in labradorite (XAn = 0.5) due largely to the inferred differences in temperature, and

this clearly has a considerable effect on any potential modelling involving Sr. A number of
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different partition coefficients for Sr were evaluated for the Treinte Y Tres data and an

average value of DSr = 2.4 was used for modelling. This implies that in terms of the Blundy

& Wood (1991) model the plagioclase is primarily labradorite (XAn - 0.6) with an estimated

temperature constraint in the order of 1450 OK (1177 "C). This temperature is slightly lower

than the experimental temperature assumed for labradorite crystals in perfect equilibrium

with the melt of 1285 DC however the content of water in the system might lower the

temperature (Deer, Howie & Zussman, 1966).

Fig.2.12a. Evolution of the Treinte Y Tres (filled squares) and Santa Lucia (open squares)

magma types, modelled for both closed and open system fractionation. See text for details. Gramado

data from Peate, (1989), is represented by field of vertical lines.
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The trace element variations in the Treinte Y Tres and Santa Lucia basalts were

initially modelled by closed system fractionation involving olivine, clinopyroxene,

plagioclase and magnetite in the proportions 01: cpx: plag: mag = 15: 25: 55: 5. This

assemblage is the same as that suggested from the major element modelling. The most

primitive samples in the Treinte Y Tres and Santa Lucia magma types, 93L27 and 93L47

respectively, were chosen as Co. The results of the modelling show that the differences in

Nb/Zr between the two magma types (0.04 to 0.18) is not due to fractional crystallisation.

The variation in Zr data in the Treinte Y Tres magmas particularly between samples 93L27

and 93L125 can be modelled by 60% fractionation using the calculated bulk DZr ofO.06
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(Fig. 2.12b), which is significantly less than that inferred from the major element modelling

(80 %, Table 2.4). 25% fractionation is required to model the variation in Zr within the

Santa Lucia rocks (Fig. 2.12a). Zr increases with increasing 87Sr/86Srj suggesting that

assimilation or mixing was an important process in the evolution of the Santa Lucia basalt

system.

Fig.2.12h.

o 93L27
• 93L125

Rb Ba Nb La Ce Sr Nd P Srn Zr Ti Y Yb Lu

Comparison of trace and rare earth element data of the least evolved sample (93L27)

and most evolved basaltic sample (93L125). Negative anomalies are evident for Ti and Nb in both

samples suggesting that these are source features.

Open system fractional crystallisation and assimilation (AFe) was modelled for the

Treinte Y Tres basalts using the equations of De Paolo (1981). One of the more primitive

Treinte Y Tres lavas was again used as the starting composition (93L27) (Co), with olivine,

clinopyroxene, plagioclase and magnetite involved in the fractionating assemblage in the

same proportions as above. The ratio of the rate of assimilation to the rate of fractional

crystallisation, r, was fixed at 0.25 for the vector shown in Figure 2.13a, although this value

was varied slightly to give a better fit to the data set. The choice of assimilant was

constrained from the compositions of the basalts to have low Ti02 at high Si02 and

87Sr/86Srj, and 11 ppm Nb and Zr = 60 ppm. These concentrations are similar to those

described for foliated granites and leucogranites from Brazil (May, 1990). Another

distinctive feature of the inferred contaminant is that it has Rb/Ba (2.8) much higher than
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estimates of the average lower and upper continental crust (0.16 and 0.046 respectively,

Taylor & McLennan, (1985)). The assimilant is therefore considered to have been derived

from the upper crust, but as a partial melt in order to have the high Rb/Ba ratios, since

fractionation of Rb from Ba only occurs during partial melting of crust by incongruent

melting of micas (Harris & Inger, 1991; Garland et al., 1995). A Brazilian leucogranite

(RSM2B) was chosen to represent the crustal component from data compiled by May

(1990) (Fig. 2.13).

Fig.2.13. AFC trend for the variation in the Treinte Y Tres and Santa Lucia basalts illustrated

on a diagram of Sr versus RblBa. The modelled assimilant is a Brazilian leucogranite (RSM2B) May

(1990). Upper continental crust from Taylor & McLennan (1981); lower crust from Weaver &

Tarney (1984).
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In summary Nb & Zr are both highly incompatible in basaltic melts with Nb slightly

more so than Zr, therefore the ratio is relatively unaffected by fractionation and by partial

melting, except when the amounts of melting are small. As long as F»D the incompatible

element ratio Nb/Zr should not change. Plotting Nb/Zr v Zr (Fig. 2.12) the overall trend of

the Treinte Y Tres magma type can be explained by varying degrees of fractionation and

assimilation from the least evolved sample, although this composition is also removed from

that of a primary basaltic liquid. The ratio of Rb/Ba is sensitive to contamination and so the
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effects of APC are well illustrated on a diagram of Sr vs. Rb/Ba (Fig. 2.13). Assuming a

constant rate of assimilation of 35 % of an upper crustalleucogranitic component (RSM2B)

the amount of fractional crystallisation required to explain the variation in the data set is

-50 % (Fig. 2.13). AFC processes are therefore considered to control the evolution of the

Treinte Y Tres lavas, however the amount of assimilation appears to be quite high. The

differences between the Treinte Y Tres and the Santa Lucia lavas are addressed further

when the depths of melting and source constraints are examined.

2.7 Mixing.

The Santa Lucia magma type contains some of the most primitive rocks associated

with the Parana CFB province. In addition, the smooth primitive mantle-normalised

incompatible element signature of this magma type is similar to those of oceanic basalts and

is therefore indicative of magmas from the asthenospheric upper mantle. However, their

initial Sr and Nd isotope ratios are more enriched than most OIB, and would therefore

appear to reflect a contribution from old enriched material, presumably from the continental

lithosphere. Figure 2.15 illustrates a possible mixing of components between an

asthenosphere-derived OIB from Tristan (TDC-92, le Roex et al., 1990) and the Treinte Y

Tres magma type (93L95) on a plot of€Ndi vs. Nb/La. The modelled curve for mixing is

not exactly linear due to a slight difference in relative abundances of Nd and La, however it

demonstrates that simple magma mixing can produce the variation in Nb/La and €Ndi

evident in the Santa Lucia magma type. Mixing with an already contaminated component

(Treinte Y Tres basalt) implies that this process is relatively shallow.

Variations within the Esmeralda magma type of the Parana CFB were similarly

modelled by mixing of an asthenospheric melt and the Gramado magma type by Peate and

Hawkesworth (1996). In this case though, the asthenospheric component was characterised

by a relatively depleted incompatible element signature similar to MORB. As can be seen in

Figure 2.15 such a component would not be suitable for the Santa Lucia magma type which

might suggest that these lavas in southern Uruguay were erupted prior to the Esmeralda

magma type while the plume still had a major influence prior to the movement of South

America away from the site of the hotspot.
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Fig.2.14. ENdj vs. NblLa illustrating the difference between the Santa Lucia and Treinte Y

Tres basalts and the main low Ti magma types of the Parana and the Tafelkop basalt from the

Etendeka. The Treinte Y Tres lavas have a similar range in NblLa to the Gramado magma type

extending to slightly lower ENd;, while the Santa Lucia basalts lie on a mixing line between Tristan

plume data (TDC-91, le Roex et al., 1990) and the Treinte Y Tres magma type (502-936). Data from

Richardson et al. (1982); Humphris & Thompson (1982); Thompson & Humphris (1982); Sun &

McDonough (1989); Peate (1989); Ewart et al. (1997). Filled circles indicate mixing trend between the

two end members using simple mixing equations (Langmuir et al., 1978).

2.8 Depths of Melting and Source Constraints.

The Treinte Y Tres lavas are chemically and isotopically distinct from the Santa

Lucia basalts and show an affinity with the low TiIY Parana basalts. The evolution of the

Treinte Y Tres basalts has been shown to be dominated by shallow level processes, but the

question of the nature of the source for these and the Santa Lucia basalts remains. In this

section mantle melting and in particular the depth at which melting occurred is addressed

primarily through the use of rare earth element data in order to evaluate whether the

differences between the two magma types in southern Uruguay are primary (source related)

or secondary (process related).
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Fig.2.15. Variation in TblYb v LalYb for samples with> 5 wt% MgO assessing the depth of

melting for the Uruguayan magmas. See text for details of modal compositions and phase proportions.

Dark grey shaded area for high TiIY Parana basalts and lighter shaded area for low TiIY Gramado

field, data from Peate (1989). Filled squares = Treinte Y Tres magma type; Open squares = Santa

Lucia magma type.

Both modal and non-modal melting models have been explored. The modal

compositions and the phase proportion entering the melt (01: opx: cpx: sp - 20: 20: 55: 5

and 01: opx: cpx: gnt - 20: 20: 30: 30) are taken from EI1am (1992) for both spinel and

garnet lherzolite. Using these data and a primitive mantle source from Sun and McDonough

(1989) an assessment of the residual mineralogy was made on the basis of TblYb vs. LaIYb

(Fig. 2.15). Only the more primitive samples (> 5 wt% MgO) were used in order to

minimise fractionation and crustal assimilation effects. The plot of TbIYb vs. LaIYb follows

Thirlwall et al., (1994) who pointed out that such a figure readily distinguished melts from

garnet and spinel peridotite and mixtures between them. Strong fractionation of REE

occurs in the presence of residual garnet, since Yb is highly compatible into garnet and Tb

has a KD in garnet of between 0.7 and 1 (Irving & Frey, 1978). La is highly incompatible

during melting in both the garnet and spinel stability fields, and so melting in the garnet and

spinel peridotite zones may be distinguished by the fractionation of TbIYb relative to

LaIYb. There is relatively little variation between the TbIYb and LaIYb ratios in both the

Treinte Y Tres and Santa Lucia magma types, and they plot close to but just above the

curve for melting in the spinel stability field. The data plot to the right of the spinel curve
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which suggests that the source was LREE enriched as indicated 'by the low Nd initial ratios.

The data array may however be modelled if the source is enriched in La/Yb by between 3.5

to 4. Moreover there is no correlation between TbIYb and 87Srf86Srj in these rocks to

suggest that this variation might be the result of crustal assimilation processes. Following

White & McKenzie (1995) the data were modelled using primitive mantle values, even

though these magma types have enriched Nd isotope ratios. Their Nd model ages suggests

stabilisation of their source regions from a depleted mantle reservoir between 1.8 and 1.1

Ga (using the depleted mantle 143Ndll44Nd and 147Smll44Nd values of Allegre et al.,

(1983». The data therefore have lower SmlNd ratios than primitive mantle, but the choice

of mantle REE patterns does bot significantly affect the arguments concerning the slope of

the data arrays in Figure 16.

The data from the Parana magma types of the Gramado and Esmeralda were also

plotted to evaluate any variation in the inferred source ratios and depths of melting.

However the Gramado and Esmeralda data plot very close to the fields for both the Treinte

Y Tres and Santa Lucia magma types suggesting similar depths and degrees of melting in

the spinel stability field. This magmatism in southern Uruguay occurs over an area of>

20,000 km2 from the edge of the Parana basin, in which> 200,000 km3 of low TiIY basalt

was erupted (Stewart et al., 1996).

2.8.1 Major Element Regression.

Klein & Langmuir (1987) evaluated variations in MORB extrapolated back to 8

wt% MgO and interpreted the results in terms of depths and degrees of partial melting.

Certain major elements including Sis and Fes (subscript 8 denotes extrapolation back to 8

wt% MgO) are pressure dependent (Hirose & Kushiro, 1993), and there is a negative

correlation between Fes and Nag in MORB which Klein & Langmuir (1987) attributed to

differences in the pressures and degrees of melting. Higher degrees of melting at higher

pressures are indicated by low Nag and high Fes, and lower degrees of partial melting at

lower pressures are indicated by low Fes and high Nag. Na is incompatible except at high

pressures and temperatures, and so it reflects the degrees of partial melting with high

abundances in small degree melts, and lower abundances as the degree of melting increases.

In addition, source fertility and water contents may be reflected in both Fes and Sis, in that
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a source that has undergone previous melt extraction events will be depleted in elements

such as Fe, Na and Ti (Turner & Hawkesworth, 1995), while melts of hydrous peridotite

will tend to have higher Si and lower Fe due to incongruent melting of orthopyroxene

(Kushiro, 1968). Ti abundances may also ret1ect previous melt extraction events, since it is

highly incompatible in basaltic melts (Garland et al.• 1996). As noted by Hergt et al. (1991)

low Ti Gondwana CFB in general are displaced to lower Feg and Nag than the MORB array

of Klein & Langmuir (1987) which has a broad negative slope. Turner & Hawkesworth

(1995) noted that the low Ti Gondwana CFB tend to form sub-horizontal arrays on plots of

Nag vs. Fe*g. Tig v Sig and Mg#g v Sig.

Kinzler and Grove (1993) derived equations in terms ofFeg and Nag for calculating

the pressures and hence the depths of melting for the generation of MORB, and these have

since been applied to extrapo1ated Parana data to constrain the depths of melting for the

different magma types (Garland et al., 1996). These equations are also utilised at the end of

this section to estimate the depths of melting for the Treinte Y Tres and Santa Lucia magma

types.

The Treinte Y Tres magma type is characterised by low NbILa and eNdj and high

g7SrJ86Srj with re1atively high Si02 but low Ti~, CaOIAh03. Fe203 and Na20. The Santa

Lucia basalts in contrast have higher NbILa, and tend to have lower 87SrJ86Srh Si~ and

higher eNdj. Ti~ and Fe203. As previously discussed the chemical variations within the

Treinte Y Tres basalts are primarily controlled by AFC processes. The combined effects of

gabbroic fractionation and crustal assimi1ation may be at least partially corrected for by

extrapo1ation of the major elements back to 8 wt% MgO (Klein & Langmuir, 1987, 1989;

Turner & Hawkesworth, 1995). Samples with < 56 wt% Si~ and > 5 wt% MgO were

regressed by initially calculating the slope of the best-fit line and then correcting the

individual analyses back to 8 % MgO. The compositions at 8 % MgO have lower Si~,

higher Fe203 and higher Mg# than the erupted lavas, and they are plotted on Figure 2.17.

Separate regressions were performed for the Treinte Y trees and Santa Lucfa datasets as the

data form two subparallel arrays particularly for Ti02 and Fe203 vs. MgO (Fig. 2.7)

suggesting there is no common liquid line of descent for the two groups.

High Fes combined with low Sig is characteristic of melts produced at higher

pressures, while low Fes and high Sig are characteristic of low pressure melts (Hirose &
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Kushiro, 1993). There is little difference between the two magma types with Sis in the

Treinte Y Tres magma type varying from 45.6 to 50.8 wt% and in the Santa Lucia magma

type from 46 to 47.5 wt%, while the variation in Fes and Nag between the two magma types

is also not significant (Fig. 2.16). The data set tends to define a horizontal array for Fes vs.

Sis similar to that described for other low-Ti CFB by Turner and Hawkesworth (1995). Nag

vs. Fes plot at the end of the MORB array with a similar range inNas (Fig. 2.16).

In addition the Sis - Fes data for the Uruguayan rocks, Fig. 2.16 also shows

similarly corrected results for the Ambenali lavas of the Deccan igneous province, which are

considered to originate in the asthenosphere (Mahoney, 1988), and the low-Ti Parana

basaltic rocks. The Treinte Y Tres and Santa Lucia samples and the low- Ti Parana are

displaced to lower Fe*s relative to the Deccan basalts. As indicated above, low Fe*s

reflects either lower pressures or a source that has been depleted in a previous melt

extraction event.

A plot of Nas vs. Fe*s shows that the Uruguay data overlap with the high Fes and

low Nag end of the MORB array and are displaced to lower Nag than Tristan data (Fig.

2.16b). The relatively depleted Fe*s contents ofthe Treinte Y Tres and Santa Lucia basalts

are similar to that described from the low-Ti Parana Gramado magma type (Turner &

Hawkesworth, 1995), while the Ferrar CFB data of Hergt et al., (1991) are displaced

further from the MORB array to low Fes of - 9.01 and low Nag of - 1.7. The Fes and Nag

contents of the Treinte Y Tees magma type overlap the recent South Atlantic MORB data

but it is unlikely that they were generated at similar pressures due to the thick lithosphere

through which the CFB were erupted. Thus, the low Fe*s observed is interpreted as a

source feature. Both Hergt et al. (1991) and Turner & Hawkesworth (1995) concluded that

the magmas were generated from a source depleted in Fe from previous melt extraction

events which they argue to be in the continental lithospheric mantle.

Lower crustal assimilation would result in the increases in Sis. observed, while Fes

would vary little. However the low Tis and CaOIAl203 trends for the Treinte Y Tres basalts

are not easily explained by APC processes or mixing between asthenospheric OIB-like

material and crustal components. The Uruguay magmas are therefore considered to be

derived from a similar source in the sub-continentallithospheric mantle to other low Ti CFB

on the basis of their Fes, Sis and Nag data.
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Fig.2.16. Major element data corrected to 8 wt% MgO. Vector indicates the effect of

increasing pressure on (i) FeBafter Klein & Langmuir (1987); Turner & Hawkesworth (1995);

Garland et al., (1996); Tristan data from Weaver et al. (1987); Deccan data are from the Ambenali

Formation (Mahoney, 1988). Lower crust from Weaver & Tarney (1981), upper crust is reproduced

from Turner & Hawkesworth (1996).
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The average pressures and hence depths of melting were estimated from the Feg and

Nag values using the equations of Kinzler & Grove (1993). For the Treinte Y Tres lavas

these yield relatively low pressures of 12-18 kbar and depths of 35 to 58 km. Such depths

are too shallow to be realistic in continental areas, but the calculations do assume normal Fe

contents in the mantle source regions. We suggest that the Uruguayan rocks were actually

generated at deeper levels in relatively Fe-poor mantle within the mantle lithosphere. These

results are akin to those described by Garland et al. (1996) for the low TiIY Gramado

magma type of the Parana province where magma generation was also considered to have

taken place within the lithospheric mantle.

2.9 Origin of the UnJgWly basaltic magmas.

A number of chemical and isotopic differences have been highlighted between the

two basaltic magma types identified in southern Uruguay, and between these and oceanic

basalts. Differences in trace-element compositions are best seen on mantle normalised trace

element diagrams (Fig. 2.9). The smooth pattern of the Santa Lucia basalts is similar to the

smooth signatures of asthenosphere derived magmas including MORB and OIB, while the

Treinte Y Tres lavas are distinguished by their negative Nb and Ti anomalies. On a diagram

of NbILa v ENdi (FIg. 2.14) the Santa Lucia basalts have high NbILa ratios (0.8 - 1.1)

similar to primitive mantle values of -1 (Sun & McDonough, 1989). These NbILa ratios are

also similar to those described for the Tafelkop basalts in Namibia (0.65 to 0.88) (Milner &

le Roex, 1996; Ewart et al., 1997) and the low TiIY Esmeralda magma type of the Parana

(0.5 - 0.96) (Marques et al., 1989; Peate et al., 1992). This latter magma type has been

modelled by Peate & Hawkesworth (1996) as a mixture of the low TiIY Gramado magma

type and an asthenospheric component with incompatible element and isotopic

characteristics similar to MORB. The overall trace element characteristics of the Esmeralda

are however very different from those of the Santa Lucia basalts.

The ENdi values in the Santa Lucia basalts are much lower than MORB, and they

therefore plot closer to the Tristan field in Figure 14 since that has a range in initial Nd

isotope values of -3.3 to -0.9 (le Roex et al.; 1990). However the Santa Lucia basalts

extend to lower ENdi values of -5.5 which is closer to the values reported for the Walvis
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Ridge of -4.5 to 1.5 (Richardson et al., 1982). These values are much lower than average

values reported for typical OIB of +8 (Sun & McDonough, 1989), and for example the

Hawaiian islands have values in the region of +6.1 (White & Hofmann, 1982). N-type

MORB have higher eNdi values of +13 (Sun & McDonough, 1989) which is broadly similar

to the values for the Mid Atlantic Ridge of +12.3 (White & Hofmann, 1982). The range in

NbILa and eNdi in the Santa Lucia basalts is therefore considered indicative of varying

degrees of mixing between an asthenosphere derived melt such as described from Tristan

TDC-91 (le Roex et al., 1990) with a magma characterised by low NbILa and eNdi such as

the Treinte Y Tres basalts (Fig. 2.14). As seen in Fig. 2.14 both MORB and om (Tristan)

have similar NbILa ratios, but MORB are characterised by less radiogenic Nd. Mixing

between MORB and a lithospheric component has been proposed for the low TiIY

Esmeralda magma type of the Parana (Peate & Hawkesworth, 1996). As is evident in Fig.

2.14 for the Esmeralda data array there is a positive correlation between NbILa and eNdi in

the direction of the MORB end member. The Santa Lucia data however trend towards an

enriched mantle source (Tristan) which is characterised by more radiogenic initial Nd.

The Santa Lucia basalts have unusual major, trace element and isotopic

compositions compared to the other magma types previously described in the Parana

province, apart from the Tafelkop. The Treinte Y Tres lavas have much lower NbILa ratios

of between 0.4 and 0.5, similar to the lower end of the data range for the Gramado rocks,

and extending to lower eNdj values. The slight variation in trace elements and the isotopic

differences between the Gramado magma type and the Treinte Y Tres magmas appear to be

regionally significant and potentially related to slight differences in their lithospheric source

regions.

In summary, two distinct compositional magma types are recognised within the

Puerto G6mez Formation of southern Uruguay. These magmas are termed the Santa Lucia

and Treinte Y Tres magma types. It is argued that the Treinte Y Tres magmas were derived

from source regions in the sub-continentallithospheric mantle primarily because they have

trace element and isotopic compositions that are difficult to model by simple AFC processes

contaminating asthenosphere-derived melts. The Santa Lucia basalts are however, unique

compositionally when compared with the main volume of magma, the Treinte Y Tres

magma type. The Santa Lucia basalts are considered to originate in the asthenosphere on
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the basis of trace-elernent geochemistry and their similarity with om, particularly the

Walvis Ridge and Tristan basalts. In detail mixing of an asthenosphere derived melt with a

magma characterised by low NbILa and eNdj such as the Treinte Y Tres, is required in

order to explain the differences between the Santa Lucia basalts and the Walvis Ridge and

Tristan plume data fields.

2.10 Rbyo6te Chemistry.

1be Uruguayan rhyolites have been divided into two geochemical series, the

Lascano Series and the AigUa Series on the basis of different major and trace element

trends, and these are different to the rhyolite types recognised on the basis of petrography.

As noted previously the division into two series is based primarily on differences between

the trace elements Nb,a,Ti and Sr, with the Lascano Series having higher TiIZr and Sr vs.

Si02, and in general forming a tight array for Nb and a when compared with the Aigua

Series (Figs. 2.18, 2.19a & b). The Lascano Series have a wider range in 87Srf86Srj and in

£Ndi. while the Aigtia Series forms a much tighter array at low 87SrJ86Srjand particularly

low eNdj (Fig. 2.8).

On major element variation diagrams the rhyolites show general decreases in CaO,

Na20, A1203, P20S, Ti~, & Fe203 with increasing Si~, used here as an index of

fractionation. while K20 is more scattered (Fig. 2.17). These trends are broadly consistent

with fractionation of an assemblage consisting of plagioclase, alkali feldspar, pyroxene and

iron oxide ± quartz. The Lascano and AigUa Series have broadly similar ranges of Si02

concentrations, ranging from 61 to 78 wt% and 61 to 81 wt% respectively (Fig. 2.17). The

Lascano Series extends to higher Ti~, CaO, FCl03 and lower Al203 and Na20 than the

Aigila Series, in addition to having lower Nb, 'II and Rh and higher Sr and Ti (Fig. 2.17).

Therefore these two series may be further characterised on the basis of such trace elements

as Sr, Rh, Nb, 'II and Y. Two broad trends are outlined on a plot of Sr v Si~ with a clear

negative correlation between Sr and Si~ in the Lascano Series while the AigUa Series

extends to lower Sr concentrations at high Si~ (Fig. 2.18a). Such very low Sr contents can

only be obtained by extensive fractionation of a feldspar dominated assemblage, irrespective

of whether the parental magma was a basalt or a crustal melt.
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Fig.2.17. Variation in major and trace element cbemistry of the Uruguay rbyolites resulting in

their division into two series, the Lascano Series and tbe Aigiia Series. Parana data from Garland

(1994), change in symbol for low - Ti rhyolites is for clarity of illustration.
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Fig. 2.17 cont.
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The high-silica rhyolites (76.8 - 77.9 wt% Si02) of Glass Mountain, California the

o

65 80 85

precursor lavas to the Bishop Tuff, have Sr concentrations as low as 1ppm, with associated

high Rb/Sr ratios which have been modelled by extensive fractional crystallisation (e.g.

Christensen & Halliday, 1996). Since the lowest Sr concentrations are coincident with the

highest Si02 values observed in these rhyolites the high Si02 values observed are deemed to

be the result of fractionation in both series of rhyolite. Si02 concentrations of> 78 wt% are

highly unusual in igneous rocks with the most evolved rhyolites previously described from.

for example, Glass Mountain containing 77.6 wt% Si02 while granitic compositions are

more typically less than 76 wt% Si02 (Cox, Bell & Pankhurst, 1979). Therefore the very

high silica concentrations measured in some of the most evolved Uruguay rhyolites

presumably reflect accumulation of quartz phenocrysts in the final stages of their
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petrogenetic history. Three samples from the Aigiia Series have relatively high Sr which

may be due to xenocrysts of feldspar entrained on the way to the surface.

Fig.2.18a. Variation in Sr v Si02 in both the Lascano and Aigiia rhyolite Series. Lascano Series

are considered to originate from a source with high Sr contents, while the Aigiia Series is

characterised by residual feldspar giving rise to very low Sr concentrations.
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Fig.2.18b. TilZr vs. Si02 (wt%) indicates the importance of magnetite fractionation and clearly

distinguishes between the rhyolites of the Lascano and Aigiia Series. Part of Caxias do Sui & Anita

Garibaldi fields plotted only, data from Garland (1994).
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The two series are also clearly distinguished on a plot ofTilZr vs. Si02 with the

Lascano Series extending to higher TilZr than the Aigua Series, broadly similar to the

Caxias do SuI and Anita Garibaldi sub-groups of the low- Ti Palmas rhyolites of the Parana

(Fig. 2.18b). The trace-element abundances of the Lascano Series are broadly similar to

those described for the Lebombo rhyolites, southern Africa (Cleverly et al., 1984), while

the majority of the Uruguayan rhyolites plot at lower TilZr than either the Parana or

Etendeka rhyolites.

Fig. 2.19 a & h. (a) REE chondrite-normalised spidergram comparing the rare earth element

behaviour between the two rhyolite series. (b) Variation in Ce vs. Zr suggesting a close correlation

between accessory phase and REE behaviour.
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2.11 Rare Earth Elements.

The rare-earth-element abundances are highly variable (Table 2.3) and appear to

have been affected by fractionation of accessory minerals such as monazite, zircon and

apatite. The behaviour of the LREE is erratic in a number of samples, but overall both

rhyolite series are enriched in LREE relative to HREE (Fig. 2.19a). In general the REE

have a constant valency of three, although Eu and Ce occur in the 2+ state in natural
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reducing systems (Henderson, 1984). The REE are also relatively immobile during

hydration processes (Cameron & Cameron, 1986) however Eu anomalies in igneous rocks

and minerals arise when Eu3+ is partly reduced to Eu2+, similarly for Ceo On plotting Ce vs.

Zr, although the data are highly scattered there appears to be a positive correlation between

the behaviour ofLREE (Ce) and zirconium (Zr) (Fig. 2.19b).

Fig.2.20.

fractionation and oxygen fugacity on the evolution of the rhyolite series.

Variation in EulEu* vs. Si02 and vs. Sr/Eu* indicating the effects of both
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Eu anomalies are highlighted on achondrite-normalised REE diagram (Fig. 2.19a)

with negative Eu anomalies evident for many samples particularly from the AigUa Series.

Feldspar, clinopyroxene, garnet and amphibole fractionation can all contribute to produce

negative anomalies particularly in felsic melts, as can partial melting of a source containing

residual feldspar (Ragland, 1989). However, Eu anomalies are not evident in all of the

samples from the Lascano Series which might reflect feldspar accumulation, alternatively

this may be related to oxygen fugacity which can affect the size of an Eu anomaly (Cameron

& Cameron, 1986). Plotting EulEu· vs. Si~ (Fig. 2.20a) the AigUa Series rhyolites are

displaced to lower BulEu· ratios than the Lascano Series.

2.12 Isotope data.

Sr & Nd isotopes

Sr and Nd isotope ratios have been determined on selected samples from each of the

two rhyolite series, and the initial values were calculated for an eruption age of 130 Ma.

The correction yields anomalously low values of initial Sr isotopes for four samples with

exceptionally low Sr contents from the AigUa Series. The precision of the data in low Sr

rocks is clearly at the detection limits of the XRF technique and samples with such low Sr

contents are also potentially more susceptible to alteration. Thus, samples with calculated

initial Sr ratios < 0.7025 have been disregarded. In general, the results on samples with < 50

ppm Sr were treated with caution because of the analytical precision at these abundances

and the possibility of secondary alteration.

87SrJ86Sri varies between the different rhyolite series (Fig. 2.10), in that for the

Lascano Series initial Sr ratios increase with increasing SiCh from 0.7084 to 0.7248, with

one sample 93L122 (not shown) having an 87SrJ86Srj= 0.7545 at 74.6 wt% Si02. In the

Aigila Series there is much less variation with the majority of samples having 87SrJ86Srj

ranging from 0.7054 to 0.7084, and although one sample plots at 0.7114, the increase in

87SrJ86Sri is Dot simply related to increasing SiCh abundances. There is also considerable

variation in initial Nd isotope ratios between the two series with the Lascano Series ranging

ineNdj from -13.3 to -4.7, and the AigUa Series from -17.7 to -11.2 (Fig. 2.8).
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Oxygen isotopes

Oxygen isotope ratios have been measured on quartz phenocrysts from both the

. Lascano and AigUa Series by Chris Hanis at the University of Cape Town using

conventional fluorination techniques (see Hanis & Erlank, 1992; Harris, 1995). NBS28 was

run with each batch of 8 samples and used to correct the sample analyses to the SMOW

scale, assuming a value of9.64 for NBS28. Repeated analyses ofNBS28 varied by <O.IS

%0. All samples were duplicated with the variation in result indicated in brackets except

where stated in Table 2.6, and for sample 93LSI, two different mineral separates were

analysed, labelled i and ii.Mineral separates were better than 9S% pure, and the results are

presented in Table 2.6 along with some average results for both Parana and Etendeka silicic

volcanics from Harris et al., (1990).

Table 2.6. Isotopic compositions of silicic volcanic rocks together with a mafic sample
from Uruguay and a local basement sample.

Sample Rock type 0018 (%0) Separate Location
92U12 Basalt (SL) 7.2 (0.10) Plagioclase Uruguay

93L20 Basement 10.0 (0.08) Quartz Uruguay

92U14* Rhyolite (L) 10.8 Quartz Uruguay

93L123* Rhyolite (L) 10.6 Quartz Uruguay

93L28 Rhyolite (A) 9.1 (0.05) Quartz Uruguay

93L49 Rhyolite (A) 10.0 (0.01) Quartz Uruguay

93L51 (i) Rhyolite (A) 9.6 (0.11) Quartz Uruguay

93L51 (ii) 9.7 (0.05)

SFI Rhyolite 10.0 Pyroxene S. Parana

SMl64 Rhyolite 9.0 Pyroxene S. Etendeka

P20 Rhyolite 6.3 Pyroxene N. Parana

SM115 Rhyolite 6.6 Pyroxene N. Etendeka

* Samples not duplicated. L = Lascano Series rhyolites; A =AigUa Series.
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Fig. 2.21. Rhyolite variation in oxygen isotope analyses with Parana fields for comparison.

Oxygen isotope data on quartz phyric rhyolites from Uruguay.

Magma 8180 values are considered to have been about 1 per mil lighter than the

quartz values, as quartz tends to concentrate 180. The fractionation factor between mineral

and melt (drnineral-rnelt), was taken to be -0.2 and + 1.0 for dplag-melt and dquartz-rnelt

respectively. Variations in ~)180values can be attributed to three principal factors; (i)

different sources, (ii) contamination by continental crust and (iii) alteration since eruption.

This latter effect has been examined extensively in the Parana and Etendeka mafic and silicic

volcanics, and many of the bulk rock 8180 values are higher than those of the separated

minerals. This has been attributed to secondary post-eruptive hydrothermal exchange

processes resulting in bulk rock 8180 values of +15 to +19 %0 (Harris et al., 1989; Iacumin

et al., 1991). The use of quartz phenocryst separates however limits this effect as quartz

can be effectively cleaned and it is immune from exchange with fluids at temperatures less

than 300°C (Hildreth et al., 1991; Harris, 1995). 8180 values of - +10 %0 have been

measured on quartz separates from a representative basement rock from southern Uruguay.

This 8180 value is broadly similar to some of the measured values particularly for the

Lascano Series, suggesting a significant crustal contribution was involved in the generation

of these rhyolites. An alternative source for the rhyolites is melting of altered underplated
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basalt, with oxygen isotopic compositions for the Parana and Etendeka basaltic rocks

having a range in ()lSO values from +6.0 to +12.8 %0 (Iacwnin et al. 1991; Harris et al.

1989). The latter values overlap with those determined for the associated Parana rhyolites

(+9.8 to + 17.9 %0) and are similar to the ()lSO values determined for the Uruguay rhyolites.

The single basalt sample from Uruguay successfully analysed in order to estimate a ()lSO

value for potentially locally underplated basalts has a ()lSO value of +7.2 %0,much lower

than those measured for the rhyolite samples.

In summary, two series of rhyolites are distinguished on the basis of major, trace

and rare-earth-element and isotope variations. The division into two series is based

primarily on differences between the trace elements Nb, Zr, Ti and Sr, with the Lascano

Series having higher TiIZr and Sr vs. Si02, and in general forming a tight array for Nb and

ZJ: when compared with the AigUa Series. The Lascano Series have a wider range in

87Srj86Srj and in eNdj, while the AigUa Series forms a much tighter array at low S7SrJ86Srj

and unusually low eNdj, there is also - 1 %0 difference in ()180 values between the two

series. The within series variations are considered to be related to high level processes

including fractional crystallisation and assimilation, while the differences between the series

particularly at low Si02 concentrations potentially reflect source heterogeneities and/or

different conditions of partial melting. These variations are investigated in the next section

where the petrogenesis of the series are evaluated.

2.13 Petrogenesis.

There are two main points which need to be addressed regarding the petrogenesis of

the Uruguay rhyolites (i) the intra suite variations and the extent to which they may be

modelled by closed/open system fractionation from the least evolved samples, and (ii) the

generation of the least evolved magmas with regard to (a) potential links with the basalts of

the Puerto G6mez Fm and (b) partial melting of particular crustal rocks.

As illustrated in Figure 2.18 the major and trace element variations in the two

rhyolite series are qualitatively consistent with fractional crystallisation of the observed

phases. However, in the Lascano Series S7Srf86Srj increases from 0.7084 to 0.7248 with

increasing Si~, and this is inferred to reflect the effects of combined assimilation and

fractional crystallisation (AFC). In the Aigtia Series 87Srf86Srj varies over a smaller range
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(0.7054 - 0.7084) and shows no clear correlation with SiCh, and so compositional

variations within this series are more dominated by closed system fractional crystallisation.

Table. 2.7a. Closed system fractionation.

Co BuJkD Evolved sample CL
(AigUa Series- (93L21) (F= 0.5)

93L18)

Nb 135 3.07 32 32
Zr 955 2.69 382 827
Rb 124 0.69 155 153
Sr 264 3.57 39 44
K 51881 1.26 43491 43315
Ti 4193 2.98 1075 1060
Ba 935 2.47 329 337
Ce 214 0.34 176 338
Eu 2.21 2.74 0.6 0.6
Yb 9.27 1.37 7.2 7.2
87Srt86Sr 0.70715

• Calculated assuming a fractionating assemblage of clinopyroxene: plagioclase : alkali feldspar :

titanomagnetite : quartz: apatite: zircon of 5 : 44 : 35 : 15 : 1 : 0.5 : 0,1.

Table. 2.7b. Assimilation and Fractional crystaUisatlon.

Co BuJkD Evolved Contaminant CL
(Lascano Series sample (RSM2B) (F=0.6;

-93L78) (93L99) r= 0.25)
Nb 53 2.32 20 29 21
'h: 491 1.41 327 64 323
Rb 122 0.31 212 252 215
Sr 313 3.10 61 72 69
K 40509 0.56 54026 39264 53129
Ti 9113 3.06 1999 1738 2038
Ba 2776 l.92 1226 219 1268
Ce 211 0.34 132 86 294
Eu 5.4 2.57 1.6 0.9 1.6
Yb 8.8 1.47 5.4 1.3 5.5
87Srt86Sr 0.70892 0.72241 0.85233 0.72246

• Calculated assuming a fractionating assemblage of clinopyroxene: plagioclase: alkali feldspar :

titanomagnetite: quartz: apatite: zircon of5: 48: 29: 15: 2: 0.5: 0.1.
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Aigiia Series Closed System Fractionation:

The amount of fractionation within each series can be illustrated in terms of a

number of elements including Rb, Sr, Ti, Nb, Zs and Eu (Figs. 18 - 21; Table 7). One of the

most primitive samples in the series, 93L18 (Si02 = 64.7 wt %) was chosen as Co, the

minerals in the fractionating assemblage were constrained from least-squares modelling of

the major-element variations. Most of the mineral partition coefficients used to calculate the

bulk distribution coefficients (Table 7) were taken from Rollinson (1993) and references

therein for rhyolitic magmas. However certain assumptions were had to be made regarding

the behaviour of Zr in zircon. Ti and Nb in titanomagnetite and Kin a1ka1i feldspar.

Zirconium is an essential structural constituent in zircon (Sun and Hanson, 1975) and

therefore its behaviour is not simply governed by Rayleigh fractionation. In order to

calculate an effective D value certain assumptions were made. The amount of zirconium in

zircon = 484,430 ppm (Watson and Harrison, 1983), with [~]melt assumed proportional

to the dissolved zirconium concentration. If we assume the initial magma had a 'b:

concentration of 400 ppm and that the temperature remained constant at between 850 and

950 DC (Chapter 3), the Dzr was calculated as approximately 1000, which is the value

assigned for this modelling. The behaviour of Zr is markedly different between the two

series. Zr initially increases in the AigUa Series until the point of saturation, this occurs

between 72 and 75 wt % Si02 and then decreases as zircon crystallises. In the Lascano

Series Zs decreases with increasing Si02 which suggests that the melt has been saturated in

zirconium and so the Zs abundance decreases systematically. However it is difficult to

explain the continuous crystallisation of Zr in the Lascano Series which is either a function

of temperature or the addition of the upper crustal material with high Si~ and low Zs « 60

ppm).

Assumptions were also made regarding the distribution coefficients of Nb and Ti in

the iron oxides. Microprobe data demonstrated that the most of the iron oxides are

titanomagnetite with some ilmenite. The analyses showed that both minerals contain

between 20 and 50 % more Ti than the magnetite in Deer, Howie and Zussman, (1966), and

so the distribution coefficients used are higher than found elsewhere at Dn = 20 ; l>Nb = 10

for titanomagnetite. Finally potassium was assigned a Ko in alkali feldspar of 1.5.
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The liquid composition (CO after 50 % fractionation is shown in Table 2.7a where it

is compared with one of the more evolved samples in the Aigtla Series, 93L21.1n general

there is reasonable agreement between the calculated composition and sample.93L21 which

suggests that closed system fractionation is the primary control on the within suite variation

in the Aigua Series. However Zr abundances have not been modelled successfully as

fractionation of zircon would result in a rapid decrease in Zr and would not reflect the trend

observed. Ce has been modelled with a bulk distribution coefficient of 0.34, which suggests

it is incompatible in all phases and therefore Ce increases in the model. Ce decreases in

abundance between samples 93L18 and 93L21 indicating control by an accessory phase not

included in the modelling possibly monazite, which is Ce selective (Rapp and Watson,

1986).

Lascano Series Open System Fractionation.

The effects of open system fractionation were modelled for the Lascano Series as

assimilation of a high SiCh, high 87Srf86Srj component is indicated by the within suite

variations, for example Fig. 2.10. A similar fractionation assemblage of clinopyroxene,

plagioclase, alkali feldspar, titanomagnetite, quartz, apatite and zircon was predicted from

major element modelling but with a higher proportion of plagioclase to alkali feldspar.

Clinopyroxene: plagioclase : alkali feldspar: titanomagnetite : quartz: apatite : zircon of 5

: 48 : 29 : 15: 2 : 0.5 : 0.1. The least evolved sample in the Lascano Series, 93L78, was

chosen as Co and a similar array of trace elements including Rb, Ba, Sr, Ti and Nb was

modelled. The assimilant used was an upper crustal leucogranite from the Pelotas Batholith,

southern Brazil (RSM2B; May, 1990). The same mineral partition coefficients were used as

for the Aigiia Series, although as noted previously the behaviour of Zr is different between

the two series. Overall the within-suite trace-element variation in the Lascano Series data

array can be modelled by 40% fractionation and 25% assimilation of upper crustal material

(Table 2.Th).

The variation of 87Srf86Srj and 143Ndll44Ndievident within the Lascano Series is

also consistent with fractionation and assimilation of crustal material with high 87Srf86Srj

and 143Ndll44Ndi (Fig. 2.22). The proposed APC curve is for the ratio of the rate of

crystallisation I rate of assimilation (r) of 0.25. In this model between 40 and 45%
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fractionation and contamination is required from a starting composition of 93L 78 in order

to fit much of the data however, three samples plot at higher 143Nd/l44Ndj which are not

easily modelled via APe equations. All three samples are from the same geographical area

and so the variation is potentially due to localised differences in the contaminant.

0.5122

Average Cascata
leucogranite at 130 Ma

- 0.5120
1:'
~.,...
;:;

0.5118Z
CO).,...

0.5116

0.705 0.71 0.715 0.72 0.725 0.73 0.735 0.74

Fig.2.22. AFC modelled for the Lascano Series assuming an r value = 0.3. The assimilant is

an upper crustal average Cascata leucogranite from Brazil (May, 1990). Aigiia Series show no upper

crustal signature.

Generation of the least evolved rhyolitic magmas.

The least evolved magmas in each of the series are very different particularly with

regard to Ti/Zr, Sr and Eu/Eu* implying separate parental magmas which are now

addressed in the following sections.

Relationship between Puerto Gomez Fm. and the Arequita Fm.

A number of interesting points emerge from a plot of 87Sr/86Srj versus Si02 which

help to constrain the relations between basaltic and rhyolitic rocks in Uruguayan (Fig. 2.10).

Firstly the Uruguayan mafic and acid volcanics share a similar range in initial Sr isotope

ratios over a range in Si02 values. This appears to strengthen the argument for a genetic

link between the basalts and rhyolites of the Puerto G6mez Formation and the Arequita
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Formation. The initial Sr isotope data appear to support either closed system fractionation

across a gap in SiCh in order to maintain similar ratios at different degrees of fractionation

(Si<h contents) or remelting of underplated basalt. Closed system fractionation across a gap

in silica is feasible (Bonnefoi et al., 1995), and it is also possible that there was a sampling

bias in the field which lead to possible intermediate compositions not being recognised.

However when the initial Nd isotopic ratios of the basalts and rhyolites are compared both

rhyolite series contain samples which plot at significantly lower 143Ndll44Ndi than the

basalts. The Lascano Series rhyolites overlap the basalt range with 143Nd/l44Ndj = 0.5117

to 0.5122, and the Aigiia Series have 143Ndll44Ndj= 0.5115 to 0.5118 (Fig. 2.22). Thus, it

is concluded that neither the Lascano Series nor the Aigua Series rhyolites were generated

either by fractional crystallisation from the associated basaltic magmas, nor by remelting of

underplated Mesozoic basalts.

Different Sources.

Different sources and/or different melting conditions may also be inferred from the

behaviour ofTifZr, BulEu'" and BulSr in the two series. The Lascano Series is characterised

by high TiIZr and the Aigua Series by low TiIZr at SiCh contents of between 62 to 65 wt %

(Fig. 2.18). The difference between Eu/Eu* in the two series suggests a different bulk D for

Eu which might be related to different amounts of plagioclase in the source of the parental

magmas and/or to different redox conditions and therefore different Eu3+lEu2+. SrlEu* vs.

EutEu* clearly indicates that the low EutEu* calculated ratio for the Aigtla Series and the

higher Eu/Eu* of the Lascano Series (Fig. 2.2Ob) may be linked to residual feldspar in the

source of the parental magma to the AigUa Series which results in low SrlEu*.

The difference in isotope ratios between the two series (eNdi = -15 in the Aigi1a

Series and eNdi = -12 in the Lascano Series at low Si<h and similar 87Srf86Sri , Fig. 2.8)

also implies different source regions.

Production of the least evolved rhyolitic melts.

Melting models were used in order to constrain the generation of the least evolved

rhyolites in each of the series with a proposed source from the lower crust illustrated in

Figure 2.24. Partial melting is considered to have occurred in the mid to lower crust under
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fluid absent conditions and at temperatures between 850 and 950°C (Chapter 3). Such

temperatures are lower than those determined for the Parana - Etendeka rhyolites (950 -

1100 QC. Bellieni et al., 1986; Whittingham, 1991; Garland et al., 1995) which have been

taken for evidence for fractionation from basaltic magmas (Garland et al.• 1995). The lower

temperatures determined for the southern Uruguay rhyolites therefore probably preclude an

origin by direct fractionation from basaltic magmas. However they are well within the

experimental fields for partial melting of amphibolites, pelites and tonalites (Rushmer, 1991;

Skjerlie et al., 1993). In addition the parent/daughter element ratios were constrained by the

inferred source age and the initial Sr and Nd isotope ratios. The composition and

petrogenesis of the lower crust has been investigated by Rudnick and Taylor (1987). Using

the major-element compositions of lower crustal xenoliths of Rudnick and Taylor (1987),

phase proportions were estimated from the normative mineralogies of possible source

rocks. Bu1k D values were calculated assuming 55 % plagioclase + 30 % orthopyroxene +

10 % Clinopyroxene + 5 % titanomagnetite in the source residue with mineral melt partition

coefficients taken from Rollinson (1993). Modelling was performed in order to determine

the approximate composition of a source (Co) assuming the least evolved sample in each of

the series (CO was produced by - 30 % partial melting which is that required for a granitic

melt to separate from its source (McKenzie, 1985). The results of the modelling are

illustrated on a primitive mantle normalised incompatible element diagram (Fig. 2.23) on

which a lower crustal mafic xenolith (85-120, Rudnick and Taylor, 1987) is also plotted for

comparison.

There is broad agreement between the trace element abundances calculated for a

source Co which produced sample 93L18 (CO after 20 % partial melting and the mafic

xenolith (85-120) (Fig. 2.23). Rb, Sr and Ti are however markedly different. The Aigua

Series because of their higher average incompatible trace element concentrations could

reflect lower degrees of partial melting than the Lascano Series. A source for the Lascano

Series, similar in composition to that described by Rudnick and Taylor (1987) for mafic

lower crust, was modelled by 30 % partial melting (Fig. 2.23). Rb, Sr and Ti were again

very different and suggest that residual biotite, plagioclase and titanomagnetite may be

important.
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Fig.2.23. Partial melting models for the generation of the least-evolved rhyolites in both

series. The Lascano Series is considered to be generated from a larger degree of melting than the

Aigiia Series. Modelling was performed by assuming the least-evolved sample as CLwith F varied

between 0.1 and 0.4 as suggested by partial melting experiments. Co was then calculated from the

results and compared with a mafic melt composition, 85·120 from Rudnick and Taylor (1987).

The Aigiia Series have been modelled as smaller degree melts than the Lascano

Series however they have lower Sr and Ti/Zr (Fig. 2.18) which cannot be related to

differences in the degree of melting. Thus, if the parental magmas to the two rhyolites

series simply reflect different degrees of partial melting Ti concentrations would have to
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decrease with the degree of partial melting. Since both Ti and Zr tend to be incompatible

and On > Dzr normally, this decrease is difficult to model. Qualitatively, this might be

resolved if titanomagnetite is residual at low degrees of partial melting. However Figure

25 shows the relationship of Ti to Zr with melting curves calculated for partial melting of

a source with (i) no titanomagnetite, and (ii) 10 % titanomagnetite and a On = 7.5. The

source modelled is the same as in Figure 2.24 and as discussed previously the Ti and Zr

concentrations of this source are not suitable for the generation of the Uruguay rhyolites.

The least-evolved samples from each of the rhyolite series were also plotted. The data

appear to suggest that there is not a common source to the rhyolite series as a negative

relationship between Ti and Zr is not obtained by varying the amount of residual

titanomagnetite in the source.

The sources modelled for each of the rhyolite series varied slightly but both were

mafic in composition. Nd isotopic data for the crust in Uruguay is limited, however many

of the Proterozoic mobile belts and cratonic areas of SE Brazil are represented in Uruguay.

Therefore the Nd isotope data for cratonic gneisses, granulites and migmatites together

with schist belt granitoids reported by Mantovani et al. (1987) were recalculated to 130

Ma and used as an estimate of the lower crustal composition. Cratonic regions gave low

eNdj values of between -29.94 and -25.38. Schist belts ranged in ENdj from -20.78 to -

11.85 and granitic belts from -13.11 to -10.24. Estimates of the Sr isotopic compositions

of Proterozoic lower crustal granulites were calculated using the data of Rogers &

Hawkesworth (1982). Melting of mafic mid to lower crust with low 87Srf86Srj and eNdj is

proposed in order to generate the low eNdj observed in the rhyolites of the AigUa Series.

Typical Damaran basement 8180 values range from 6.5 %0 to 15.2 %0 with the

majority> 10 %0, the Damara S-type granite averages at 11.4 %0 (Haack et al., 1983),

while lower crust have a180 values of 10 - 12 %0 (Feeley and Sharp, 1995). The

geographical positioning of the Damara crystalline basement adjacent to the Uruguay

province during the Mesozoic suggests the potential for melting of anellor contamination

by such material. The quartz-bearing rhyolites of both series have similar alSO values to

both the low-Ti rhyolites of the Parana and the Etendeka (Fig. 2.21). The difference

between the Lascano Series and the AigUa Series is approximately 1%0, which can be

accounted for by different degrees of assimilation of upper crust in the Lascano Series,
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while the generation of the Aigua Series from direct melting of mid to lower crustal

granulites gives rise to slightly higher 0180 values.
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Fig. 2.24. Partial melting of the same source is shown to have not occurred for the Lascano

and Aigiia rhyolite series. The Aigiia Series are smaller degree melts than the Lascano Series yet they

have lower Ti indicating residual titanomagnetite in the source. Vectors shown indicate melting paths

for (i) no titanomagnetite, and (ii) 5 % titanomagnetite with a DTi = 7.5 from a mafic lower crustal

source.

Petrogenesis of the Parana - Etendeka rhyolites.

In the Parana, the low Ti Gramado magma type has been related to the low- Ti

Palmas rhyolites by open system fractionation and crustal assimilation (Garland et al.,

1995). In contrast, partial melting of underplated high- Ti Parana basalts is the widely

accepted origin of the high-Ti Chapec6 rhyolites (Piccirillo et al., 1987; Garland et al.,

1995; Harris & Milner, 1997). Similarly in the Etendeka the high-Ti Sarusas rhyolites,

which have slightly higher 0180 values than the corresponding high- Ti rhyolites of the

Parana, are considered to have been derived by partial melting of underplated basalts

which had undergone as much as 35% assimilation (Harris et al., 1989). The origin of the

more voluminous low- Ti Palmas rhyolites remains more controversial (Garland et al.,

1995, 1997; Harris & Milner, 1997).

Garland et al. (1995; 1997) invoked fractional crystallization from low-Ti Parana

basalt magmas, combined with assimilation, to explain some key observations in the low-
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Ti Palmas rhyolites. These include similar incompatible element ratios in the basalts and

rhyolites, and the upper crustal characteristics of some trace element ratios such as RblBa

and RblZr. The high calculated magmatic temperatures of 950°C - 1100 °C for the

rhyolites, (Bellieni et al., 1986; Whittingham, 1991; Milner et al., 1992 and Garland et al.,

1995) also suggest a close link between the rhyolites and associated basalts. Fractionating

across the silica gap between the Parana basalts and rhyolites was considered unlikely by

Bellieni et al., (1986) and Harris et al. (1989) among others, and so they preferred models

in which the rhyolites were generated by crustal melting. However, on the basis of the

high magmatic temperatures, the trace-element ratios, and the observation that the Nd

isotopic ratios were higher than in the crustal basement beneath the southern Parana Basin

Garland et al., (1995) concluded that the latter was unsuitable for the generation of the

rhyolites via bulk melting. Instead the low- Ti Palmas rhyolites were modelled as the

products of AFC processes from low- Ti basaltic magmas, with the onset of major

magnetite fractionation coincident with the start of the silica gap at - 56 wt % Si~. In

such models the silica gap therefore reflects a rapid change in the liquid line of descent in

response to a change in the composition of the fractionating assemblage.

Alternative models invoke partial melting of underplated basalt or granulite

(Piccirillo et al., 1987; Harris et al., 1990). Melting of pre-Mesozoic middle to lower crust

with similar isotopic compositions to the basement beneath the Etendeka rhyolites was

proposed by Harris and Milner (1997), with the caveat that the source had been previously

affected by a dehydration episode to explain the anhydrous nature of the rhyolites. The

southern Etendeka rhyolites have high 5180 values and so they are thought to have been

derived from a source of mafic to intermediate composition, possibly similar to that of the

Damara granites, or the restite phase thereafter (Milner, 1988; Harris et al., 1989) (Fig.

2.21). Oxygen isotopic data and in particular high 5180 values are important factors for

the crustal melting models (Harris et al., 1990; Harris & Milner, 1997). Whilst there may

be no explicit line of evidence for or against either model for the Palmas rhyolites, the

rhyolites of southern Uruguay are chemically distinct from those of the Parana - Etendeka

rhyolites and therefore shed additional light on the origins of rhyolitic magmas in this CFB

province.
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Comparison of the Uruguay rhyolites with those of the Parana - Etendeka.

The variations between and within the two Uruguay rhyolite series suggest that

there were two separate parental magmas for the AigUa and Lascano Series. The parental

magma of the Lascano Series is characterised by high TiIZr, Sr and Eu/Eu* and relatively

low Nb, Zr, 87SrJ86Sr and 143Ndll44Nd. The parental magma to the AigUa Series is inferred

to have been generated from a melt in equilibrium with residual plagioclase and Ti-

magnetite in order to model the low Sr and Eu contents with low TiIZr. The within series

variations of the two series is governed by fractional crystallisation with open system

fractionation important in the Lascano Series, and closed system fractionation primarily

controlling the variations in the AigUa Series.

The lower crust suggested as the source of the Parana rhyolites (Piccirillo et al .•

1987; Harris et al .• 1990; Harris & Milner, 1997) must be different to the lower crust

beneath Uruguay due to the isotopic differences observed primarily in eNdj. 0180 values

and 87SrJ86Srj. The rhyolites in southern Uruguay show the first unambiguous evidence of

crustal melting associated with the Parana - Etendeka province and are considered to have

formed at relatively shallow depths in the continental crust.

2.14 Conclusions· Basalts & Rhyolites.

Basalts:

Two distinct magma types are recognised within the Puerto G6mez Fonnation of

southern Uruguay. These magma types named the Santa Lucia basalts and Treinte Y Tres

lavas are distinguished both from elements and isotopes. The magmas were erupted

contemporaneously with the main volume of the Parana-Etendeka CFB province and there

are distinct similarities between the low TiIY Gramado magma type. which is chemically

linked to the Tafelberg member of the Etendeka, and the Treinte Y Tres magma type of

southern Uruguay. A common source is proposed for the Gramado and Treinte Y Tees in

the sub-continentallithospheric mantle due to trace element and isotopic ratios that are

difficult to explain by simple AFC processes contaminating an asthenospheric melt.

The Santa Lucia basalts are however, unique and bear little resemblance to any

previously described magma types in the province. They are considered to originate in the

asthenosphere on the basis of trace-element geochemistry and their close links with om
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fields on discriminant diagrams in particular that of Tristan. Mixing however of the Santa

Lucia basalts with a magma characterised by low NblLa and eNdj such as the Treinte Y

Tres, is required in order to explain the differences between these basalts and those of the

Walvis Ridge (Tristan-like) and Tristan. This is the first documented occurrence of similar

basalts to Tristan contemporaneous with the main flood basalt event. The Santa Lucfa

basalts are derived from the asthenosphere and in particular highlight the involvement of

the Tristan da Cunha hotspot in the generation of this part of the CFB province.

Lateral variations in source compositions and degrees of partial melting across an

area of plume related magmatism were highlighted in the introduction to this chapter. The

occurrence of asthenosphere derived alB-like magmas in southern Uruguay suggests

greater amounts of decompression melting of the asthenosphere at this latitude. These

basalts are contemporaneous with the low- Ti Esmeralda magma type of the Parana which

have been modelled as mixing between MORB and lithospheric mantle melts (Peate &

Hawkesworth, 1996) which suggests that the plume may have been beneath southern

Uruguay at this time (-133 Ma) instead of its previously considered position. Alternatively

the lithosphere may be thinner in southern Uruguay thereby allowing for rapid

decompression melting.

Rhyolites:

There is no apparent genetic relationship between the mafic lavas of the Puerto

G6mez Fm. and the more voluminous acid flows of the Arequita Formation. The Arequita

Fm. is subdivided into two types on the basis of petrography. Type 1 consists of some of

the less evolved samples, while flow features are common with oriented feldspar. Feldspar

is the dominant mineral phase, forming - 60 % of the rock. Type 2 is the most

voluminous, these rhyolites are recognised primarily on the presence of variably sized,

euhedral to anhedral quartz phenocrysts. Ignimbritic textures, although common are not

ubiquitous. Such ignimbritic textures are unusual when compared with the rest of the

Parana-Etendeka province.

The types are not distinguished by the geochemical data and so they have been

divided into two series, the Lascano Series and the Aigiia Series. These series are

primarily recognised on the basis of trace element (Zr, Nb, Sr and Ti ) and isotopic
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behaviour but are both considered to have originated via melting of two different mid to

lower crustal sources. The Lascano Series is considered to have originated from a parental

magma characterised by high TiJZr and Sr. The petrogenesis of these rhyolites is

controlled by open system APC processes, and the assimilant is considered to be

leucogranitic in composition. The parental magma of the Aigiia Series of rhyolites is

characterised by low TiJZr and very low Sr which is thought to reflect residual plagioclase

and titanomagnetite. Closed system fractionation is important in the evolution of the Aigiia

Series rhyolites.

Uruguayan rhyolites as a whole are distinct from the rhyolites of the Parana-

Etendeka on the basis of petrology and chemistry. In addition the Uruguay rhyolites range

in age from 132 to 124 Ma and are therefore later than the Parana rhyolites (Chapter 4).

The differences between the two rhyolite provinces are potentially related to changes in

stretching factors allowing the ponding of basalts in the mid crust and consequently

melting. The lower temperatures observed (850 - 950 "C) in the two rhyolite series

(Chapter 3) are consistent with this model.
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Chapter 3.

Basalt & rhyolite temperatures related to changing thermal & tectonic

regimes.

3.1 Introduction.

Early Cretaceous volcanic rocks of the Parana Basin (South America), and the

Etendeka province (Namibia) have been previously linked with extension across the

Tristan da Cunha mantle plume (Hawkesworth et al., 1992; Milner et al., 1995). The

close spatial and temporal relationship of the Puerto G6mez Formation (Fm.) and the

Arequita Fm. (southern Uruguay), with the Parana - Etendeka Continental Flood Basalt

(CFB) province may potentially give insight into changing mantle potential temperatures

during rifting of the South Atlantic.

High basalt magma temperatures are not necessarily indicative of plume

involvement (Ceuleneer et al., 1993) in a province however, high rhyolite temperatures

are of considerable interest. The occurrence of high temperature rhyolites in the Parana -

Etendeka province is well documented (Bellieni et al., 1986; Garland et al., 1995). The

calculated temperatures are in the order of 950 - I 100°C, and potentially provide

information regarding the origin of the rhyolites which is highly contentious (Garland et

al., 1995, 1997; Harris & Milner, 1997).

The rhyolites of southern Uruguay are distinct in appearance and in chemistry

from those of the Parana - Etendeka CFB province with unique textures and a more

evolved phenocryst assemblage (Chapter 2, Appendix C). The difference in appearance is

potentially due to different modes of origin and localised variations in mantle

temperatures such as might be related to plume involvement. Both rhyolite exposures are

considered to be linked to the opening of the South Atlantic.
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3.2 Background Geology.

The Parana - Etendeka CFB are strongly bimodal with a clear compositional

division between basalts and rhyolites. The flood basalts show wide chemical diversity

and were subdivided on the basis of chemistry, namely TiIY and 87Srf86Sr initial ratios

into a number of groups (Bellieni et al., 1984; Mantovani et al., 1985; Peate et al., 1992).

The division into high and low TiIY groups which are broadly geographical remains valid

although the number of groups has been expanded, see Peate & Hawkesworth (1996) for

most recent subdivisions. Division into high and low TiIY magma types (>310. MORB <

310 respectively) has been used extensively to distinguish compositionally distinct

magmas associated with the break-up of the Gondwana supercontinent during the

Mesozoic (Hergt et al., 1991; Peate et al., 1992).

The mineralogy of the Parana basalt groups is essentially anhydrous, consisting of

augite, plagioclase, pigeonite and iron oxides, both Ti - magnetite and ilmenite, and rare

Mg - olivine microphenocrysts. The basalts range from aphyric to porphyritic; the

hypocrystalline groundmass consists of the same phenocryst phases, although quartz may

also be present. Bellieni et al., 1988 calculated magmatic temperatures (0C) of 1100 to

1250 from the compositions of early crystallised pyroxene and plagioclase for the basalts

and are considered to be quenching temperatures. Furthermore crystallisation occurred at

low pressures in water undersaturated conditions (Bellieni et al., 1988). The presence of

plagioclase in the phenocryst assemblage implies crustal depths and pressures of < 10

kbar.

The basalts of southern Uruguay, Puerto G6mez Fm. are Early Cretaceous in age

(Chapter 4) and are considered to be part of the main melting event that resulted in the

formation of the Parana - Etendeka province (Chapter 2).

These basalts have been subdivided into two groups. the Treinte Y Tres and the Santa

Lucia magma types on the basis of geochemistry, each with a distinct source. The

voluminous Treinte Y Tres magmas have been shown to be chemically similar to the low-

Ti Gramado magma type of the Parana, and consequentially the Etendeka equivalent, the

Tafelberg magma type (Chapter 2). The mineralogy of the two southern Uruguay magma

types is anhydrous, with olivine, pyroxene, plagioclase and iron oxides present. Olivine is

preferentially preserved in the rare Santa Lucia magmas.
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A similar division into high and low- Ti groups is also applied to the acid volcanics

of the Parana, namely the low- Ti Palmas magma type and the high- Ti Chapec6 (Piccirillo

et al., 1988). These groups have been further subdivided on the basis of their chemistry

(Garland et al., 1995). Palmas acid volcanics occur principally in the south of the Parana

basin and are closely associated with the low TiIY basalts. Chapec6 type acid volcanics

occur in the north of the basin, where they are closely associated with the high TiIY basalt

magma types. The acid volcanics also have an anhydrous mineralogy consisting of

plagioclase, augite, opaques and pigeonite phenocrysts with apatite as a common

accessory in the high- Ti rhyolites (Comin-Chiarmonti et al., 1988). The high- Ti Chapec6

rhyolites of the Parana are comparatively phenocryst rich (10 - 15 %) with plagioclase

dominating over pyroxene and iron oxides. The low- Ti Palmas rhyolites of the Parana are

predominantly hyaline, with the majority containing < 5 % phenocrysts. Phenocrysts

where evident tend to be discrete and consist of plagioclase, augite, orthopyroxene,

opaques. Apatite is rare, and pigeonite is mainly confined to the matrix. The matrix

ranges from glassy to crystalline; devitrification is common. Detailed work on the rhyolite

petrography and chemistry has been used to subdivide the high- and low- Ti rhyolite

groups further and to correlate the Parana and Etendeka silicic volcanics (Whittingham,

1991; Milner et al., 1995; Garland et al., 1995).

A number of authors have calculated high temperatures of crystallisation (950 °C -

1100 °C), from pyroxene, feldspar and iron oxide geothermometry, and these are

considered representative of magmatic conditions (Bellieni et al., 1986; Whittingham,

1991; Milner et al., 1992 & Garland et al., 1995). The origin of the Parana rhyolites

remains contentious due to a number of reasons. Partial melting of underplated high TiIY

Parana basalts is the widely accepted origin of the high- Ti Chapec6 rhyolites and the

temperatures obtained for the eruption of these rhyolites are slightly higher than those for

the Palmas rhyolites (Bellieni et al., 1986; Garland et al., 1995; Harris & Milner, 1997).

The origin of the more voluminous low- Ti Palmas rhyolites is more debatable

(Garland et al., 1995, 1997; Harris & Milner, 1997). Garland et al. (1995; 1997) propose

fractional crystallization from low TiIY Parana basalts. combined with assimilation, to

explain some key observations in the low- Ti Palmas rhyolites including the similar

incompatible element ratios of the basalts and rhyolites and the upper crustal
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characteristics such as high Rb/Ba and RbfZr. The high calculated magmatic temperatures

are also an intrinsic part of this argument. Partial melting of underplated basalt or

granulite has also been proposed as an origin for the Palmas rhyolites (Bellieni et al.,

1986; Harris et al., 1990). Melting of pre-Mesozoic middle to lower crust with similar

isotopic compositions to the basement beneath the Etendeka rhyolites is proposed by

Harris and Milner (1997) with the source affected by a previous dehydration episode to

explain the anhydrous nature of the rhyolites. Whilst there may be no explicit line of

evidence for or against either of the above models for the Palmas rhyolites, the rhyolites

of southern Uruguay are chemically distinct and are considered to have undergone a

separate petrogenesis (Chapter 2).

The Parana - Etendeka rhyolites, although contemporaneous with the Uruguay

rhyolites, are distinct in terms of petrology and chemistry. The origin of the Uruguay

rhyolites is thought to be linked to changing thermal regimes and principal tectonic stress

regimes. The southern Uruguay rhyolites have been divided into two main types, Type I

and Type 2 on the basis of petrology. However these types were not distinguished on the

basis of chemistry with the result that the rhyolites were instead divided into two series,

the Lascano Series and the Aigiia Series (Chapter 2). Rhyolites of the Type 2 petrological

type contain variably sized, euhedral to anhedral quartz phenocrysts. Ignimbritic textures,

although common are not ubiquitous.

True ignimbritic textures have previously been little recognised in rhyolitic

outcrops associated with the Parana - Etendeka province. This was considered to be

primarily due to the high temperatures of eruption involved, with the result that the

Parana - Etendeka rhyolites are often referred to as rheoignimbrites (Milner et al., 1992).

Type 2 rhyolites as discussed in Chapter 2, are often characterised by ignimbritic textures

(Fig. 3.1). Flattened pumice fragments containing euhedral quartz phenocrysts and glass

shards are evident, as are phenocrysts of quartz and alkali feldspar around which a fine

matrix flows, this regular alignment of flattened fragments gives rise to a eutaxitic texture

(Appendix C - Photomicrographs). Fiamme are stretched and illustrate secondary mass

flowage of the tuff, indicative of elevated temperatures and/or low viscosities.

Phenocrysts are predominantly subhedral although embayments are common. Quartz

phenocrysts are of two principal types: (i) small, angular to sub-rounded with small
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hairline type fractures, the bipyramidal shape of these phenocrysts suggests that they are

low pressure, high temperature J3-form quartz; and (ii) larger embayed phenocrysts with

rounded edges, slightly strained extinction and a greater degree of fracturing, although

this is not extensive.

The rhyolite mineralogy tends to be anhydrous, consisting primarily of

plagioclase, alkali feldspar, pyroxene and iron oxide, with quartz indicating the more

evolved lithologies. Accessory minerals include zircon and apatite. Original glass is

evident, but is mainly devitrified.

3.3 Equilibrium or Disequilibrium in southern Uruguay volcanics?

Evidence of equilibrium between co-existing phenocrysts and between phenocryst

phases and the melt is a prerequisite in the use of geothermometers. Phenocrysts of

plagioclase, pyroxene. alkali feldspar and iron oxides were examined for textural evidence

of equilibrium, both with other phenocrysts and with the melt. The choice of phenocrysts

described is primarily a function of the thermometers already in use in determining

temperatures of the Parana - Etendeka province (Bellieni et al., 1986; Whittingham, 1991;

Garland et al., 1995). Phenocryst appearance is broadly similar between the basalts and

rhyolites and so they are discussed together in the following section. Compositionally the

basalts are characterised by Ca-rich plagioclase and more magnesian pyroxene

phenocrysts, iron oxide is primarily titanomagnetite while alkali feldspar and quartz are

not present in basalt thin sections. Microprobe analyses were made either on a Cambridge

Instruments Microscan 9 or on a Cameca SXlOO wavelength dispersive electron

microprobe. Running conditions involved an accelerating voltage of 20kV and variably

focused 20nA beam with 0 to 20J.lIDspot size depending on phenocryst size (Appendix

B).
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Fig.3.1.

Thermometry

Ignimbritic texture in rhyolite of petrologic:al Type 1.
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Plagioclase:

Plagioclase is common both as megacrysts (lcm) and smaller phenocrysts (0.5-

2mm). Plagioclase ranges from Anso to AnS2 in the basalts, and from An2S to Anss in the

rhyolites (Table 3.1). Euhedral tabularllath forms give way to more rounded phenocrysts,

with sieve and skeletal textures. Twinning in the plagioclase is lamellar and asymmetric.

The majority of rhyolitic samples are porphyritic with glomerophyric intergrowths of

plagioclase ± pyroxene ± alkali feldspar common. Trachytoid textures are evident in the

intermediate rocks. Ophitic and sub-ophitic enclosure of olivine and pyroxene in

plagioclase. and plagioclase in pyroxene is noted in the more primitive basaltic samples.

Pyroxene:

Clinopyroxene, namely augite occurs in both the basaltic and the less evolved

silicic volcanic, mainly the trachydacites (Table 3.2). Clinopyroxene is virtually absent in

the more evolved rhyolites. Pigeonite is rarely present, while orthopyroxene is absent. In

general the pyroxenes are altered and pseudomorphed, predominantly by iron oxides.

Some zoning and twinning is noted, as is the herring bone structure of pigeonite

(Appendix C). Pyroxene may be poikilitically encompassed by feldspar. Phenocrysts are

euhedral to anhedral often with chloritized rims. Pyroxene is a common groundmass

constituent in the basalts. The Mg# test for phenocryst-melt equilibrium was applied to

the pyroxene analyses to check if the phenocrysts are in equilibrium with the groundmass.

The experimental Fe-Mg exchange distribution coefficient was taken to be 0.23 after

Grove & Bryan (1983). The calculated Mg#liquid with which the pyroxenes were in

equilibrium with was found to be consistently lower than the Mg#Augite.This suggests that

these are partially inherited pyroxenes that crystallised at an earlier, more mafic stage in

the liquid line of descent of these magmas and that they have not fully equilibrated with

the melt.

Alkali feldspar:

Alkali feldspar is more abundant than plagioclase in the high silica samples.

Phenocrysts of alkali feldspar. up to 5mm, occur both discretely and intergrown with

plagioclase. Composition ranges from anorthoclase to K-rich sanidine. Perthitic textures
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formed by the intergrowth of Na- and K- feldspar occur, particularly in the samples from

Mariscala (93IA8; 93L81- AigUa Series) (Fig. 1.22) (Table 3.1).ln addition granophyric

intergrowths of groundmass quartz and K-feldspar are also evident in some samples. Such

textures have previously been recognised in old devitrified glassy rocks where the quartz

and feldspar have intergrown either during devitrifcation or slow cooling. Evidence of

dissolution includes rims around some feldspar phenocrysts preventing interaction with

the matrix. Embayed alkali feldspars phenocrysts occur together with euhedral phenocryst

and sieve and skeletal textures are also recognised (Appendix C).

Iron oxides:

Iron oxides are ubiquitous in both the mafic and felsic rocks. Both primary and

secondary iron oxides are identified, the latter being the primary alteration mineral for

pyroxene. Compositions are similar for both the basalts and rhyolites with magnetite and

titanomagnetite dominating, ilmenite is least common and only found in the rhyolite

assemblages (Table 3.3). The complexity of textures of iron oxides within the basalt and

rhyolite suites could be the subject of a separate study of oxidation exsolution. Both

coarse and fine lamellae of ilmenite are seen to be in sharp contact with titanomagnetite

hosts (Fig. 3.2; Appendix C). Such characteristics are noted in several iron oxides using a

scanning electron microprobe (SEM).

Matrix:

The matrix in basalts and rhyolites varies from microcrystalline to

cryptocrystalline. The principal constituents vary from olivine. pyroxene. plagioclase and

iron oxide microphenocrysts in the mafic rocks to feldspar, quartz, iron oxides and

devitrified glass complete with accessory minerals including zircon and apatite in the

evolved rhyolites. The matrix of the mafic assemblages is basically a much finer grained

equivalent of the principal phenocrysts evident. Trachytic alignment of groundmass

feldspars is noted in some samples, paralleled by larger phenocrysts, but more often the

matrix is aphanitic, spherulitic and devitrified for rhyolitic samples. Many of the

spherulites consist of a dense mass of very fme intergrown needles of quartz and alkali
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feldspar radiating from a central nucleus. Euhedral zircon and apatite crystals are evident

both as inclusions and as groundmass phenocrysts in the evolved rhyolite lithologies.

Table 3.1. Feldspar compositions for both the basalts and rhyolites.
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Table 3.1. Continued.
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Table 3.2. Selected pyroxene analyses from mafic assemblages.
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Table 3.3. Selected iron oxide analyses.

Thermometry
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Fig.3.2.

Thermometry

LameUae in iron oxides due to exsolntion.
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Fig. 3.3.

Thermometry

Brecciated slllcic volc:anic:sindicating explosive origins for rhyolites.
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3.4 Origin of rhyolite textures.

The intratelluric phenocryst assemblage consists of plagioclase, olivine and

pyroxene for the mafic assemblages, while that of the silicic suite is of plagioclase, alkali

feldspar ± pyroxene ± quartz. Textural evidence suggests that at least some of the

phenocrysts were in equilibrium as they have maintained euhedral forms and are found in

gIomerophyric intergrowths. Embayments such as those evident in some alkali feldspar

and quartz phenocrysts are interpreted as resorption features, although they may also be

due to rapidly growing crystals enclosing the groundmass. Quenching textures such as the

skeletal growth of phenocrysts and the presence of glass in the rhyolites suggest rapid

eruption and cooling. Careful selection was therefore required in choosing samples for

thermometry, this was initially done via petrological evidence and the Mg# test for

pyroxenes, and as shall be seen for iron-oxide thermometry the samples were checked via

Mg - Mo partitioning in co-existing magnetites and ilmenites,

Outcrops containing sharp irregular fragments together with ignimbritic textures

suggest an explosive origin for many of the rhyolites (Fig. 3.3), consistent with eruption

from a vent. The welded nature of the ignimbrites suggests little loss of heat on eruption

and hence low collapse heights, this in turn is indicative of low gas contents and low gas

velocity (Cas & Wright, 1988). However no caldera structure has been recognised in the

region. Not all the rhyolites have these distinctive textures and the origin of some of the

more featureless rhyolites is debatable, with a lack of pyroclastic textures suggesting a

passive mode of effusion from dyke-like fissures. A few E-W trending acid dykes were

noted in the Cerro Partido region.

The style of eruption of the rhyolites of southern Uruguay appears to be unusual

with regards to the main Parana province and is discussed in greater detail later when

better constraints can be placed on the temperatures, viscosity and water contents at the

time of eruption. The eruption of the Etendeka province is also distinct with each unit

divided into an basal, main and upper zone, with the basal and upper parts characterized

by flow banding, pitchstone lenses and breccia with rare pyroclastic textures (Milner et

al., 1992). The large lateral extent of the Etendeka silicic rocks and the local preservation

of pyroclastic textures including fiamme and eutaxitic textures resulted in classification of
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these rocks as rheoignimbrites, high temperature ignimbrites that have undergone

secondary mass flowage (Milner et al., 1992).

3.5 Thermometry.

The Uruguay rhyolites are either peraluminous or sub-aluminous rocks based on

Ca + AI ::t: Na ::t: K according to the classification system of Carmichael et al. (1967), with

normative quartz (q), orthoclase (or), albite (ab), anorthite (an) and corundum (c). The

applicability of certain thermometers to rocks of this age and composition is dealt with in

the next section and the reliance of accessory phase thennometers is discussed. The

limited assemblage of minerals within the rhyolites did not lend them to many

geothermometers.

Pyroxene, feldspar and iron oxide thermometers have previously been applied to

the Parana - Etendeka province (Bellieni et al., 1986; Whittingham, 1991; Garland et al.,

1995). The more commonly used thermometers including the pyroxene quadrilateral

(Kretz, 1982; Lindsley, 1983) and ternary feldspars (Ghiorso, 1984; Price, 1985; &

Fuhrman & Lindsley, 1988) were therefore initially investigated. Pyroxene thermometry

was primarily used to place a temperature constraint on the basalts, while feldspar

thermometry was applied to the rhyolites. Iron-titanium oxide thermometry (Buddington

& Lindsley (1964); Powell & Powell (1977) & Ghiorso & Sack (1991» was also

attempted as both titanomagnetite and ilmenite coexist in some the rhyolites. Finally

accessory-phase thermometry including the apatite solubility thermometers of Watson &

Harrison (1984) and Pichavant et al., (1992), the zircon thermometer of Watson &

Harrison (1983) and the monazite thermometers ofRapp & Watson (1986) and Montel

(1993) were applied. The presence of only one pyroxene in most samples and two

feldspars in the rhyolites required use of different thermometers to those applied to Parana

samples, some of the main thermometers are reviewed initially for comparison purposes.
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3.6 Pyroxene tbennometry.

The use of pyroxene thermometry is predominantly precluded by the absence of

two coexisting pyroxenes. The thermometers of Kretz (1981) and Lindsley (1983) are

based on mutual solution between Ca-rich clinopyroxenes and orthopyroxene or

pigeonite. Microprobe analyses of Ca- rich augite phenocrysts have been used to

determine minimum temperature estimates (Fig. 3.4). One-pyroxene thermometers based

on the Ca content of augite give minimum temperature estimates. Temperatures of

between 950°C and 1250 °C are estimated for the more mafic assemblages with an

average crystallisation temperature in the order of 1150 °C, this temperature range is

comparable with those described for the Parana basalts (Picirrillo et al., 1988). In the

more evolved lithologies, there are Ca - rich pyroxenes but poor totals on the microprobe

analyses indicate that they are too altered to be reliable.

Although commonly used to estimate temperatures the one pyroxene

thermometers or two-pyroxene solvus thermometers may be considered relatively

inaccurate in this instance due to a lack of quality data. This is due in part to the use of

electron micro probes in determining the Fe content of minerals and having to calculate

Fez+/Fe3+ ratios based on stoichiometry. Comparison of resultant temperatures with non-

ferric iron dependent thermometers was therefore undertaken to substantiate results.

3.7 Feldspar thennometry.

The thermometers of Kudo &Weill (1970) and Mathez (1973) which were

applied to the Parana rhyolites (Bellieni et al., 1986; Whittingham, 1991), are based on

equilibria between plagioclase and hydrous silicate melts and are not applicable to the

rhyolite exposures of southern Uruguay. Therefore ternary feldspar thermometry was

applied due to the co-existence of plagioclase and alkali feldspar. In the ternary feldspar

system, (NaAIShOs - KAlSi30S - CaAlzSi20S), at high temperatures and low pressures

there is complete solid solution on the Ab - Or and Ab - An binaries, but limited solid

solution between Or - An. Ternary feldspar thermometry is based on the partitioning of

the albite component between plagioclase and alkali feldspar, although similar equations

can be written for Or and An components in two co-existing feldspars (Ghiorso, 1984;
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Fuhrman & Lindsley, 1988). The compositions of co-existing feldspars and in particular

the effects of cation ordering are strongly influenced by temperature, pressure, melt

composition and water content (Ghiorso, 1984; Carpenter & Ferry, 1984; Marsh et al.,

1990; Housh & Luhr, 1991).

FIg.3.4. The pyroxene quedrI ...... l, showing Iso1herms (CC)on the C.
pyrox ... slope of the solvus SI.II'fKe, after Kretz (1982). BuIlt d ..... plotted end
show tefI1*IIIU ... ln the range of 1100 and 1200CC.

Ca

Mg 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Fe2+

X(Atomlc%)

Table 3.4. Feldspar crystallisation temperatures for Uruguay rhy06tes calculated
from the thermometer as indicated. Temperatures are in degrees Celsius.

Thermometer 93IA4 93LI05 (i) 93LIOS (Ii)

Rhyolite series: AlgOa Laseaao
Series Series

Stormer 774 788 772

Powell & Powell 710 701 712

Whitney & Stormer 944 888 865

Haselton et al. 888 845 861

Price 764 652 723
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Temperatures from co-existing feldspar pairs are considered by Ghiorso (1984) to

be minimum estimates of phenocryst crystallization in the rhyolites as a result of

overestimation of feldspar miscibility in the original experiments of Seck (1971).

Equilibrium between the feldspar pairs is critical, as for any of the feldspar thermometers

the calculated temperatures are reliant on this thermodynamic state being achieved. A

number of disequilibrium textures have already been described for Uruguay rhyolite

samples and so relatively few feldspar temperatures are available.

Using the solution models proposed by Ghiorso (1984) temperature estimates in

the order of 700 °C to 900 °C were calculated for the majority of the rhyolites (Fig. 3.5).

Such values are semi-qualitative because of the sparsity of suitable data and other

methods of geothermometry are investigated in order to constrain the temperatures

further. Using the thermometers of Stormer (1975); Powell & Powell (1977); Whitney &

Stormer (1977); Haselton et al. (1983) and Price (1985) with data for two specific

samples with coexisting plagioclase and alkali feldspar, a range in temperatures was

calculated (Table 3.4) suggesting that care must be applied in making comparisons

between temperatures. The difference in temperature estimates is potentially due to

preferences in the developmental procedure. For example the early thermometers such as

that of Stormer (1975) do not take into account the effects of K- substitution in high

temperature plagioclase.

The within-sample differences evident for sample 93LI05 are potentially due to a

lack of precision in analyses and for most of the thermometers the variation is 10 - 15°C,

except the Price (1985) thermometer which differs by over 70°C. This is potentially due

to multicomponent solid solutions, such as substitution by Ba in alkali feldspar or the

inclusion of H20 in the system. During the course of calculating temperatures from

feldspar thermometry pressure was assumed to be 1kbar and 1wt % H20 was included in

the system.
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Fig. 3.5. Proposed compositional sections through the solvus as a function of
temperature after the theoretical calculations of Ghlorso (1984~Uruguay rhyolite data
plot between the 500 and 1000"C contours.

An

Ab Or

3.8 Fe-Ti oxide thermometry.

Buddington & Lindsley (1964) first proposed a thermometer for the FeD - Fe2D3 -

Ti02 system. The formation of co-existing pairs of titanomagnetite and ilmenite can also

be used to determine oxygen fugacities. llmenite - magnetite trellis intergrowths such as

those seen in the rhyolites from southern Uruguay are considered the result of sub solidus

oxidation (Fig. 3.2). Only ilmenite-titanomagnetite pairs that appeared to be in

equilibrium were used. These data were then further tested for equilibrium using the

equations of Bacon & Hirschmann (1988) for the partitioning of Mg and Mn between co-

existing phases. The partitioning of these elements is considered to be independent of bulk

composition, temperature or pressure and is therefore independent of the major unknown
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variables. The test is valid for fresh volcanics but in the case of the Uruguay rhyolites few

of the analyses are close to equilibrium when plotted on a log (MglMn)mt v log (MglMn)il

diagram (Fig. 3.6). This may be due to the highly oxidised nature of the rhyolites or it is

discriminating between multiple populations of oxides. Pairs that survived the selection

process however still gave rise to widely varying temperatures using the thermometer of

Ghiorso & Seck (1991), ranging from 900 to 650°C in one sample alone. The calculated

temperatures are potentially magmatic but they are only useful in the context of the other

methods applied.

Fig.3.6. Establishing equilibrium conditions between co-existing magnetite and ilmenite

using tbe criteria of Bacon and Hirschmann (1988). Slope of solid line equals equilibrium conditions,

dashed line shows partitioning devised by Lindsley at 1100 QC.
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As with the pyroxene thermometry questions are also raised regarding the

calculation of the ferric iron content from the measured ferrous ratio. The measured

analyses have to be recalculated and this in itself could potentially produce a large error

prior to temperature estimation, a magmatic FeOIFe203 = 0.85 is assumed throughout

these recalculations. Furthermore the measuring of the vanadium content of the oxides is
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also prone to error due to the overlap of the V and Ti peaks on a wavelength dispersive

spectrometer. In this case the overlap is considered to be up to 50 % on the V peak.

In summary, these thermometers are considered to give approximate temperatures

for the eruption of the basalts and rhyolites, however the results are not conclusive in

distinguishing within the rhyolite series temperature variations due to the paucity of

appropriate data. The average basalt temperature is 1150 QC.while the rhyolites are range

in temperature from 700 to 900 QC. These latter temperatures are consistent with the

preservation of the textures described but further constraints are considered important in

order to contribute to previous geochemical arguments for the origin of these rhyolites.

Therefore accessory phase thermometry. which is widely applied to the intrusive

equivalents of these rhyolites, was investigated.

3.9 Chemical evidence for accessory phase saturation.

The chemistry of the Uruguay basalts and rhyolites has been discussed in Chapter

2. However prior to calculating temperatures (primarily for the rhyolites). the behaviour

of the Zs, P and the light rare earth elements (LREE) is discussed. The behaviour of these

elements is primarily controlled by accessory minerals. Accessory phase thermometry is

potentially of use in determining temperatures for these samples where the more

conventional thermometers such as those already discussed fail to provide a clear

estimate. However the potential problems contributed by halogens and inheritance must

be considered. The amounts of fluorine and chlorine in these rocks is not known but the

presence of either can result in considerable distortion of the aluminosilicate structure

within the melt (Collins et al .• 1982). The resultant effect of high F relative to water in the

volatile content on the melt structure, allows large cations, including Zs, Nb and REB. to

enter the melt phase thereby increasing the solubility of zircon (White et al., 1982).

Inherited zircon is also potentially a problem.
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Fig. 3.7 a, b & c. Essential structural constituents (ESC) behaviour, Zr - zircon;

P20S - apatite; LREE • monazite. Open circles represent Aigiia Series rhyolites; Filled circles the

Lascano rhyolite Series.
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The majority of Uruguay rhyolite samples contain apatite and zircon, while

monazite is inferred from the chemistry, particularly thorium contents and LREE

behaviour (Chapter 2). The transition of Zr, P and the LREE from incompatible elements

to essential structural constituents (ESC) marks the onset of crystallisation of the

accessory phases of interest. Essential structural constituent behaviour was proposed by

Sun & Hanson (1975) with the aim of identifying the point at which a melt is saturated

with respect to the ESC. ESC - saturated melts are distinguished from undersaturated

melts by plotting the variation of the ESC (Zr - zircon; P - apatite; LREE - monazite)

versus an index of differentiation (Fig. 3.7). Saturation however depends both on

temperature and the melt composition (Watson & Harrison, 1983). In the Aigua Series

saturation occurs at between 72 and 75 wt% Si02 as zirconium decreases thereafter (Fig.

3.7a). As previously discussed in Chapter 2 the Zr content of the Lascano Series decreases

consistently suggesting either a lower saturation point or different temperature/melt

composition of the parental magma. P20S depletion is considered to reflect apatite

fractionation (Chapter 2).

All rhyolite samples are light rare-earth-element enriched relative to heavy REE,

with just a couple of notable exceptions, namely 93L29, 93L39 and 93L87 of the Aigiia

Series. Europium forms negative anomalies on chondrite normalised REE plots (Fig. 3.8),

with the effects of plagioclase fractionation also being mirrored in the behaviour of Sr

(Fig. 3.8). The affect is less extreme in quartz phyric samples from the Lascano Series
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than from the AigUa Series which was considered a source feature from previous

discussion in Chapter 2. The behaviour of the LREE and Th in both rhyolite series

appears to suggest control by monazite fractionation, however phenocrysts of monazite

have not been recognised petrographically (Fig. 3.7c).

In summary therefore the behaviour of the trace, P, Zr and Th, and the LRE

elements (La, Ce) suggests important control by accessory phases on the melt

composition. These phases can therefore provide important temperature constraints on

crystallisation.

3.10 Accessory phase thermometry.

Accessory phases have an important role in controlling the trace-element

chemistry of felsic melts with the rare earth elements (REE) particularly concentrated by

ESC behaviour. Zircon, apatite, monazite and sphene dominate the behaviour of many

trace elements including Zr, Hf, Ti, P, U and Th and the light rare earth elements (LREE).

Experimental investigations of the solubility of these accessory phases has led to the

development of thermometers based on zircon, apatite and monazite (Green & Watson,

1982; Watson & Harrison, 1983, 1984; Harrison & Watson, 1983, 1984; Rapp & Watson,

1986; Montel, 1986, 1993). The resultant temperatures are considered magmatic, in that

they are the temperatures at which the accessory mineral crystallized from the melt.

Melt composition and particularly the alkali content has a strong effect on the

distribution of accessory minerals such as zircon, apatite and monazite, for example

monazite is much more soluble in peralkaline melts than in metaluminous melts (Montel,

1986). The apatite thermometers of Hanison & Watson (1984) and Pichavant et al.,

(1992) are better suited to metaluminous and peraluminous melts respectively.

Thermometers based on accessory mineral solubility only work properly if three

main criteria are satisfied: (i) chemical equilibrium prevailed during crystallisation; (ii)

the accessory mineral controls the behaviour of the element concerned; and (iii) the whole

rock analyses represents a liquid composition (Montel, 1993). Bearing these difficulties in

mind temperatures were calculated and compared with previous temperature

determinations.
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Fig. 3.8. Trace-element and rare-earth-element behaviour of selected Uruguay rhyolites

indicating series variations. Normalising values for primitive mantle from Sun & McDonough (1989)

and for REE of chondrites from Sun (1981).
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Zircon is a ubiquitous accessory phase in the high-silica rhyolites of southern

Uruguay. Zircon saturation temperatures have therefore been calculated for the Uruguay

rhyolite series. This thermometer is based on the investigations of Watson (1979, 1980);
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Watson & Harrison (1983, 1984) and Harrison & Watson (1983,1984) into zircon

saturation, the kinetics of zircon dissolution and zirconium diffusion. The thermometer is

valid for peraluminous and metaluminous melts and shows a strong dependence on

magma alkalinity as estimated from the Na +K + 2CaI(Si * AI) cation ratio (M factor in

the equations of Harrison & Watson, 1983; Watson & Harrison, 1984). Zr is considered to

act as an 'essential structural constituent' (ESC) for zircon as defined by Sun & Hanson

(1975).

The temperature estimates obtained (Table 3.5) assume that the melts are saturated

in zircon, which is of magmatic rather than restitic origin. The Uruguay samples have

therefore been carefully selected and the results from those samples with Zr > 600 ppm in

the AigUa Series should be treated with caution. The experiments of Watson & Harrison

(1983) on peraluminous and metaluminous glasses (SiCh 59 to 76 wt%) were run at

temperatures between 720 and 1020 °C and at pressures of 1.2 - 6.0 kbar which

encompass the likely conditions of crystallisation of the Uruguay rhyolites. Low water

contents (= 2 wt%) have important effects on the temperature estimates from this

thermometer (Tucker Barrie, 1995), and so care is needed in the interpretation of results.

The effect of residual zircon on the calculated TZr°C is discussed in the next section.

Table 3.5. Results of zircon thermometry. Classification system is as outlined in
Chapter2.

Classiftcation Sample Classification SiOl T(OC) Zr(ppm)
(wt%)

Lascano Series 93L78 Metaluminous 61.2 829 491

Lascano Series 93L66 Metaluminous 62.5 825 459

Lascano Series 93L114 Peraluminous 70.7 861 372

Lascano Series 92U16 Peraluminous 71.3 854 362

Lascano Series 92U14 Peraluminous 76.5 854 304

Lascano Series 93L99 Peraluminous 76.3 865 327

AigUa Series 93L86 Metaluminous 61.7 921 1008

AigUa Series 93L70 Peraluminous 64.6 875 536

AigUa Series 93L48 Peraluminous 67.4 956 1047

AiJZUaSeries 93L46 Peraluminous 73 920 620
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The temperature variation evident from zircon saturation thermometry is within

the range calculated from feldspar thermometry. This implies that the Zr concentrations

primarily reflect magmatic zircon crystallisation. Results suggest however, that inherited

zircon must be considered to have an affect particularly in samples from the Aigiia Series

which tend to have elevated Zr concentrations, occasionally in excess of 1000 ppm. The

affect of halogens and of water contents are also potentially important as noted above.

When the same zircon saturation thermometer of Watson & Harrison (1983) was

applied to rhyolites of the Parana province much lower temperatures of between 800 and

890 DCare calculated over a range in Si~ and Zr concentrations than from pyroxene and

feldspar thermometers (Bellieni et al.• 1986; Garland et al., 1995). This is considered to

be possibly a function of halogen involvement where Zr is increased and Zr crystallisation

has not occurred. The lower concentrations of Zr in the Parana rhyolites as compared with

the Uruguay rhyolites is also possibly related to varying concentrations of alkalis. Alkali

excess favours the development of alkali-zircono-silicate complexes, increasing the Zr

concentration in the melt (Collins et al., 1982) but inhibiting the precipitation of zircon.

In order to assess these results further apatite thermometry is examined as apatite is

known to occur as an accessory mineral both in the Parana rhyolites and in the rhyolites

of southern Uruguay.

Apatite:

Uruguayan rhyolites are silica over-saturated and in terms of the parallel concept

of alumina saturation may be considered peraluminous or metaluminous. This division is

important specifically in terms of apatite thermometry. The solubility and dissolution

kinetics of apatite inmetaluminous and peralkaline felsic melts has been investigated by

Harrison &Watson (1984). More recently Pichavant et al. (1992) looked at apatite

solubility in peraluminous liquids. Combining the results of these two experiments.

apatite saturation in felsic melts is shown to be dependent on temperature. Si~ content

and on the ratio of AI/(Na+K+2Ca+Li) (AlCNK. molar). Pressure and water content of

the melt are independent variables (Watson & Harrison. 1984; Pichavant et al., 1992).

The apatite thermometers are considered valid for rocks between 45 wt% and 75 wt%

Si~. 0 - 10% water and for a range of crustal pressures. Apatite phenocrysts are all
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considered to be magmatic as for apatite to be restitic and hence xenocrystic the

concentration of P20S in the melt should be greater than 1 wt% (Pichavant et al., 1992).

A number of the low-Si<h rhyolites from both the Lascano and AigUa Series are

metaluminous (Table 3.5), and contain high concentrations of P20S (= 0.5 wt%), much

higher than those considered by the Watson & Harrison (1984) thermometer. Therefore,

in drawing any conclusions regarding temperature variation caution must be applied with

particular attention to both the mineralogy and chemistry. Apatite dissolution experiments

were used by Harrison & Watson (1984) to resolve the temperature dependence of apatite

solubility and dissolution rate. The ability to calculate temperatures is an extension of that

work. Apatite saturation is dependent on the amount of dissolved P20S in the melt that is

inequilibrium with apatite, with the level of dissolved P20S for apatite saturation

dependent on temperature and silica content of the melt (Harrison & Watson, 1984;

Pichavant et al., 1992). 42% of apatite is considered to be P20,. P20,· is therefore the

P20S (wt%) concentration in the magma that is in equilibrium with apatite and is

calculated assuming temperature constraints, therefore there is a inbuilt assumption in the

temperature calculations.

The equations of both Watson & Harrison (1984) and Pichavant et al., (1992)

were used to calculate apatite saturation temperatures (T(AP)HW - Harrison & Watson;

and T(AP)PMR - Pichavant et al. (Table 3.6». Pressures are considered to be in the order

of 1 to 2 kbar, while for the calculated P20, • a temperature of between 850 and 1000 °C

was assumed for all Uruguay and Parana samples. Variations in pressure expected in the

crust are considered not to have significant affects on the results, while temperatures of

crystallisation can range from 850 to 1500 °C (Harrison & Watson, 1984).

Parana rhyolites contain apatite as an accessory phase in both the low-Ti Palmas

group and in the high- Ti - Chapec6 group. Apatite is more abundant in the high- Ti

Chapec6 group (Garland et al., 1995). When data from both rhyolite groups were

analysed using the two apatite thermometers discussed above the temperatures obtained

using the Harrison & Watson (1984) thermometer were consistently similar to previously

published temperatures using pyroxene and feldspar thermometers, ranging from 972 to

1010 QC.The thermometer of Pichavant et al. (1992) gave consistently lower and widely

varying temperatures. The evidence from both studies therefore suggests that water
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content could have an important effect on zircon temperatures. however as apatite

solubility is insensitive to variations in water content, apatite thermometers are potentially

more reliable.

Table 3.6. Apatite and monazite thermometry for the same samples as inTable 3.2.

Sample *AlCNK P2<>s T(AP)HW T(AP)PMR T(M)RW
(wt%) eC) eC) (OC)

93L78 0.64 0.64 1037 600 806
93L66 0.64 0.5 1018 576 761
93L86 0.89 0.95 807 518 852
93L70 0.98 0.12 865 805 829
93L114 0.93 0.13 942 658
92U16 0.87 0.13 944 565 837
93IA8 0.85 0.14 913 546 862
93IA6 0.99 0.52 873 773 905
92U14 1.0 0.06 914 1736 880
93L99 1.08 0.06 913 887

*AlCNK =A1J(Na+K+2Ca) molar, T(AP)BW, T(APfMR, T(M)RW are the temperatures calculated using

the formula of Harrison & Watson (1983); Pichavant et al., (1992) and Mantel (1993) respectively.

Montel (1993) is based on monazite saturation, while Harrison & Watson (1983) and Picbavant et al.,

(1992) are based on apatite solubility.

Monazite:

Monazite is a rare-earth phosphate that incorporates Ce in its crystal structure, and

also variable amounts ofTh (2 - 30 %) and U (Rapp &Watson. 1986). Crystallisation of

monazite is proposed as a possible cause of the LREE variation seen within the Uruguay

rhyolites. The solubility of monazite is most affected by water content, temperature and as

mentioned previously the melt composition; pressure has little effect (Rapp & Watson.

1986; Montel, 1993). Equation (1) of Montel (1993). was used to calculate the

temperatures in Table 6, XREEP04the sum of the mole fractions of REB phosphates is

assigned the value of 0.83. an average for peraluminous granites. Calibration of this

thermometer is considered valid for both peraluminous and peralkaline melts. provided

that the compositions are Ca -, Fe - and Mg - poor. Ca is known to destabilise monazite to

allanite. thus Ca-rich assemblages are considered to have> 1.8 wt% CaO. and Ca-poor
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assemblages <0.7 wt% Cao (Rapp &Watson, 1986). Cao (wt%) varies within the

rhyolite series with only the quartz-bearing assemblages of the Lascano and AigUa Series

considered Ca - poor, ranging from 0.03 to 1.5 wt%.

The monazite thermometer also utilises the concept of ESCs which for monazite

are the LREE as a group and P. The other common associated elements, Th, Ca, Si, are

either in abundance or are not essential for monazite to be present. Monazite temperatures

were calculated using the Rapp &Watson (1986) thermometer and show a similar

variation in temperature from 800 to 950 DC,as does the zircon saturation thermometer of

Watson & Harrison (1983). These temperatures are similar to those calculated from

apatite thermometry, although the apatite thermometer is more applicable to a greater

number of samples at which extreme temperatures in the region of 1000 DCare calculated.

3.11 H20 content and viscosity.

The presence of water in a melt system has a direct effect on the crystallisation

sequence, water also tends to depress liquidus temperatures. A drop in pressure as a

water-saturated acid magma approaches the surface results in devolatisation and

crystallisation, hence constraining the amount of water in the system, can aid the

understanding of the crystallisation history of the system. Water is also a primary control

on the solubility of a number of silicates including zircon. The eruption mechanism of

rhyolitic magmas is also strongly controlled by the water content and viscosity of the melt

with welding of hot pumice fragments to form an ignimbrite controlled by glass viscosity

in addition to the lithostatic load (Cas & Wright, 1988).

The phenocryst assemblage is anhydrous in the basalts suggesting low volatile

contents, and this is further supported via the presence of olivine, which is suppressed in

water-present conditions in favour of orthopyroxene (McCarthy & Pati~o, 1997).

However up to 3-4 wt% H20 can be accommodated in a melt before amphibole forms

(Green & Ringwood, 1967; Sturn & Wyllie, 1978).

The lack of primary hydrous phases in the Uruguay rhyolites suggests a low water

content, < 4 wt% for the rhyolitic magma. The presence of quartz in the more evolved

lithologies constrains the water content to between 2 and 4 wt% according to the
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experiments of Clemens et al., (1986). Further estimates of water content were made

using the equations of Housh & Luhr (1991), which are based on the exchange of Ca and

Na between plagioclase and the melt. Using plagioclase compositions from microprobe

analyses and assuming a temperature of 900 QC.values of - 3 wt% were calculated.

Water solubility decreases with pressure at P = 3 kbar (Holtz et al., 1996).

Temperature and composition have important effects on the pressure at which water

solubility is constant. This pressure is 5 kbar for Ab melts, close to 2 kbar for Or melts

and between 1.5 and 2.5 kbar for pure silica melts (Paillet et al., 1992; Holtz et al., 1996).

Normative calculations for Q, Ab and Or components of the high silica Uruguay rhyolites

suggest that they formed at low pressures. Water content also has a direct effect on

viscosity with an increase in water content resulting in a decrease in viscosity (Carmichael

et al., 1974; Clemens, 1984).

The viscosity of the melt was estimated from Holtz et al., (1996) with values of

log 11 (poise) of between 6 and 7. using Shaw (1972) curves, and between 6.5 and 7.5

using Scaillet et al., (1996). assuming a water content of 3 wt% and a temperature of

between 800 °C and 900 QC.Rhyolites and ignimbrites commonly have viscosities

between 10 and 1000 poise (Sparks, 1976; Cas & Wright, 1988). Using the iron oxide

geothermometer I geobarometer of Ghiorso & Seck (1991) the oxygen fugacity of the

system was estimated. Results suggest the log! <>2 is between -15 and -13. This is

consistent with a range in temperature of 800 °C - to 950°C between the quartz -

magnetite - fayalite (Q.M.F) and hematite - magnetite (H-M) buffers.

3.12 Discussion.

3.12.1 Temperature Results.

Calculation of accurate temperatures for the Uruguay rhyolites has proved to be a

difficult task due to the evidence for disequilibrium between co-existing phenocrysts and

between phenocrysts and the melt. Accessory phase thermometers including the apatite

thermometers ofHanison & Watson (1984) and Pichavant et al. (1992) give widely

varying results with up to 300 °C difference in the temperatures obtained for the same
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sample using these two thermometers. The thermometer of Pichavant et al. (1992) gives

consistently lower values for the peraluminous rocks for which it was calibrated. This

may reflect late stage P-rich fluids as the thermometer is very sensitive to water contents.

Monazite temperatures are remarkably similar (± 35 CC)to those calculated from

zircon thermometry. apart from those samples with excess zirconium. Temperatures

calculated from zircon-saturation thermometry are considered sensitive to water contents

however. and potentially underestimate the true temperature as appears to be the case with

the Parana rhyolites. where temperatures are up to 200 cC cooler than estimated from

other thermometers including pyroxene. feldspar and apatite (Bellieni et al .• 1986;

Garland et al .• 1995).

Table 3.7. SlImmary of intensive parameters determined for each of the main rock
types. RbyoUte subgroups are largely indistinguishable from each other on the basis
of temperatures obtained. Panuui temperatures from BeWenf et al. (1986);
Whittingham (1991) and Garland et al (1995); water contents from Garland et al
(1995).

Rock Basalts Iascano Series Aigiia Series Chapec6 Palmas
type

Sub- Trachy. Rhyolite Trachy- Rhyolite Rhyolite

IrDDP dadte dadte
Temp. 1150- 900- 850- 950 850 - 950 800 - 900 1000- 950-
(CC) 1250 1000 1100 1050
P <10 1-3 1-3 1-3 1 -3
(kbar)
Hz{) 0- 0.04 2-4 2-4 2-4 2-4 2-3 2

(wt"')

Temperatures from southern Uruguay are in general lower than those calculated

for the Parana rhyolites independent of most thermometers apart from zircon thermometry

which results in similar temperatures. These lower temperatures from zircon thermometry

as discussed above are considered to be affected by water contents and possibly halogens

and are not true magmatic temperatures. Trachydacites of the Lascano Series yield the

highest temperatures from apatite thermometry while the rhyolites are indistinguishable

from the Aigtia Series on all thermometers. with temperatures in the region of 850 ± 100
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DC.Elevated temperatures within the Aigua Series on the use of zircon saturation

thermometry were attributed to the affects of the inheritance of zircon.

Fig.3.9. Eruption models for Uruguay rhyolites. (a) Classic ignimbrite forming eruption

with relatively small column length. (b) Cartoon of events leading to the formation of the Uruguay

rhyolites.
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magma

Basaltic intrusion
in the lower crust
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Meltingofmafic Tower crust -

The temperatures calculated for both the Lascano Series and Aigua Series

rhyolites are consistent with the model proposed for the origin of these rhyolites of

melting of mafic lower crust in Chapter 2. The temperature range for partial melting of

mafic amphibolites in the deep crust under fluid-absent conditions is between 850 and
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1000 °C (Rushmer, 1991). The amount of hydrate present in the rock, the feldspar/quartz

ratio and the melt water content are the dominant controls on the amount of melt

produced, with compositions of high silica and/or alkali contents melt at lower

temperatures (Rushmer, 1991).

3.12.2 Mode of Eruption.

Temperature estimates from a number of different geothermometers appear to

indicate that the Uruguay rhyolites were erupted at lower temperatures than the

geographically adjacent rhyolites of the Parana - Etendeka (Table 3.7). An extensive

trans-Atlantic comparison of the eruptive sequences of the Parana - Etendeka rhyolites

was described by Milner et al. (1995). The Etendeka province has been divided into high

and low- TiIZr units similar to the divisions in the Parana, the high- TiIZr units are termed

the Sarusas quartz latites and are mainly located north of the main Etendeka lava field.

The low- TiIZr group is subdivided into a number of successions including the Tafelberg,

Springbok, Coastal and Goboboseb. The Tafelberg Formation disconformably overlies the

Awahab Formation, which is considered to have been erupted from the Messum complex

(Milner & Ewart, 1989). The site of eruption of the Tafelberg Formation is not known.

The Etendeka rhyolites are high temperature (1000 - 1100 QC)rheoignimbrites, with

localised development of pyroclastic textures (Milner et al., 1992). The basal Awahab

Formation which includes the Goboboseb and Springbok members was compared

favourably with the lower most units of the Palmas rhyolites of the southern Parana using

a variety of geochemical and petrological critera, including rare occurrences of pyroclastic

textures at the margins of flows which in general tend to be rewelded due to very high

eruption temperatures (Milner et al., 1995). The upper Palmas flows were also correlated

with part of the Tafelberg Formation in the Etendeka.

The mode of eruption and emplacement of such high-temperature rhyolites as

these is controversial particularly when associated with continental hotspot tracks (Honjo

et al., 1992; Manley, 1995). The possibility of emplacement by effusion with sufficiently

low viscosities, as potentially lowered by halides and/or water content (Holtz & Johannes,

1994), is considered a viable alternative in sourcing some of the large silicic lavas such as

those of the Parana. instead of the more traditional interpretation of secondary viscous
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flow as rheomorphism (Garland et al., 1995). The lack of caldera structures, the high

eruption temperatures and sparsity of textural evidence reinforces this idea. particularly

for the high-Ti Chapec6 rhyolites which show scant evidence of being fully vitrified and

have clear, well preserved, unfractured phenocrysts implying little explosive activity

(Garland et al .• 1995). Acid dykes of Chapec6 composition have also been recognised

from the Ponta Grossa region (Regelous, 1993). Similar arguments were proposed for the

Owyhee Plateau in south-western Idaho by Manley (1995) with low water contents cited

as an important factor in preventing a large pyroclastic eruption.

The development of the ignimbritic textures previously described from the

Uruguay rhyolites suggests that at least some of these rhyolites are associated with

pyroclastic activity. No caldera structure has however been recognised in the region, and

due to the distinctive chemistry of these rhyolites when compared with those of the Parana

- Etendeka province it is unlikely that they were sourced in the Messum complex. The

source has therefore not yet been identified due perhaps to Mesozoic/Cenozoic erosion

combined with the present day sedimentary cover, or was located closer to the final rift

and is now located off-shore.

Those rhyolites that lack eutaxitic textures are considered to be silicic lavas. due to

a number of features typical of felsic lavas including trachytic alignment, flow banding

and flow folding. Passive effusion of silicic lava via acid dykes is considered to have

occurred contemporaneously with the main explosive event as all the rhyolites are

considered to have been erupted in a similar timespan (Chapter 4). Figure 3.10 is a

cartoon model of proposed eruptive history.of the Uruguay rhyolites. beginning with the

intrusion of a large volume of hot mafic material in the lower crust. The resultant lower

crustal melt has an andesitic composition and is characterised by low eNdi and 87Srf86Sri

values.
The Lascano Series and the Aigiia Series rhyolites are considered to originate from

separate sources. with the parental magma to the Lascano Series distinguished by low

TiIZr, lower Nb and Zr and higher Sr and EulEu* from that of the AigUa Series. The

andesitic magma generated by melting the source of the Lascano rhyolites undergoes

fractionation and assimilates upper crustal material (e.g. Cascara leucogranite of the

Pelotas batholith (May, 1990), Chapter 2) en route to the surface, with the ultimate
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extrusion of this magma aided by increased extensional forees associated with the

incipient opening of the South Atlantic (Chapter 4). The AigUa Series is considered to

originate from a slightly different source in the lower crust possibly more reducing

(Chapter 2) which is similarly fractionated to the Lascano Series (- 50%) but there is no

evident of upper crust having been assimilated. The extensional forces invoked would also

allow for the passive effusion of felsic lavas from dykes, which trend parallel to the main

rift and. for drop in pressure and rapid release of volatiles associated with pyroclastic

eruptions.

3.13 Conclusions.

The best temperature estimates are from the accessory phases particularly the

apatite thermometer Harrison & Watson (1984). Zircon saturation thermometry (Watson

and Harrison, 1983) and monazite saturation thermometry (Rapp and Watson, 1986) are

in good agreement with each other however the low results calculated for the Parana

rhyolites appears to indicate that these thermometers are highly sensitive to water

contents. Therefore using an overall average temperature calculated for each sample the

apparent magmatic temperatures are between 800 °C and 950°C, at least 100°C cooler

than the temperatures calculated for the Parana - Etendeka (Bellieni et al., 1986; Milner et

al., 1992; Garland et al., 1995). Distinction of temperature control of the individual series

was however impossible due a lack of suitable data. The overall data do however suggest

that some of the rhyolites were erupted as lava flows with high gas contents, as indicated

by the vesiculated nature of some samples and are not simply rheoignimbrites. Average

water contents of between 2 and 4 wt% were calculated however there is no constraint on

C02 or other gaseous contents of the magmas. The water solubility model for felsic

magmas (Burnham, 1979) suggests that vapour saturation would occur at crustal depths of

1 - 4 km if unimpeded during ascent. The temperatures are consistent with an origin for

the rhyolites in melting mafic lower crust as proposed Chapter 2. with the presence of the

Tristan da Cunha plume initially generating the temperatures required for melting within
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the lower crust following advection of heat from the emplacement of a large volume of

mafic material.

The presence of a large positive gravity anomaly underlying the region of interest

which defines a crude oblong shape 100 km long and assuming a density contrast of 200

kglm3 effective over 15 km of crustal thickness with a width of 23 km.Advection of heat

by magma responsible for such a body of material would be a sufficient source to melt the

lower crust. Extension leading to the opening of the South Atlantic is considered to have

aided the upward migration and ultimate explosive eruption of the magma by decreasing

pressures and allowing expansion of the volatiles. In addition this relationship to the

opening of the South Atlantic is reinforced as shall be evident in Chapter 4 by the timing

of eruption of the Uruguay rhyolites which is synchronous with increased stretching in

this region.
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Chapter4.

Early Rifting of the South Atlantic, Parana - Etendeka

magmatism and sediment interactions.

4.1 Introduction.

Continental Flood Basalts (CFB) contribute significantly to the generation of new

continental crust and are often linked with continental rifting and break-up (White &

McKenzie, 1989). Links between CFB magmatism and rifting are both variable and

difficult to ascertain. Nonetheless, information regarding the timing and duration of

magniatism in the Parana ~Etendeka CFB province, and of the dyke intrusions along the

margins of the African and South American continents provides useful constraints on the

amount and orientation of extension with time. This extension, which ultimately resulted

in the opening of the South Atlantic and the separation of Africa and South America. was

responsible for the formation of hydrocarbon-bearing sedimentary basins and the

generation of the associated magmatic rocks. In principle. melt generation rates inferred

from estimated eruption rates and amounts of extension can be used to evaluate the role of

the mantle plume. and hence the likely effect on the thermal gradients through

sedimentary basins. In extreme cases rapid eruption rates and short durations of

magmatism can only be accounted for by rapid decompression of a mantle plume. Slower

rates of eruption allow for the possibility of melt generation in the sub-continental

lithospheric mantle in response to the conduction of heat from a mantle plume.

This chapter presents new Ar-Ar ages on Parana - Etendeka basalts and rhyolites

from a section in southern Uruguay. and on selected dykes from southern Africa. These

are combined with published ages on the lavas and dykes associated with the opening of

the South Atlantic in a review of the timing. erupted volumes and dyke orientations in

both South America and southern Africa. Other data which are considered include
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palaeomagnetic results on the Parana - Etendeka lavas which further constrain the

duration of magmatism, and the relationship between sediment deposition, magmatism

and rifting. Finally the changing tectonic stress regimes, as indicated by dyke swarms of

different orientations, are discussed and related to the 3-D chemical stratigraphy of the

Parana lavas that is available through the use of borehole material and surface mapping.

Age constraints.

Age determinations for CFB provinces have become progressively more accurate

and precise with the development of 40Arf39Ar dating techniques, and a number of studies

have been undertaken on the Parana - Etendeka (Hawkesworth et al., 1992; Renne et al.,

1992; 1996b; Turner et al., 1994; Stewart et al., 1996). Nonetheless, different approaches

have been applied and in particular the age range of the Parana - Etendeka CFB province

remains contentious. A review of previous K-Ar and 4OArf39Ardates is given prior to

introducing new age dates for mafic and silicic lavas in Southern Uruguay, and along the

South Atlantic margin. The lavas in Southern Uruguay have close genetic and evolutionary

ties with the main Parana - Etendeka CFB and the main volume of mafic lava. Treinte Y

Tres magma type in southern Uruguay is chemically similar to the low- Ti Gramado

magma type of southern Brazil (Chapter 2). The rhyolites of Southern Uruguay are

however, mineralogically and chemically different from those of the Parana - Etendeka,

and they also appear to differ in age.

The calculated eruption rates of continental flood basalt (CFB) provinces are

highly variable with magmatic activity spanning from one to a 10's of.millions of years.

CFB such as those in the Deccan province are thought to have been erupted rapidly, with

-1 ()6 km3 of basalt erupted in less than 4 Ma, and the principal activity lasting 1 to 2 Ma

(Courtillot et al., 1986; Duncan & Pyle, 1988). The average eruption rate for the Deccan

Traps is therefore 1.5 km3/year (Richards et al., 1989), and this is similar to the rates

proposed for oceanic plateau such as Ontong Java and Kerguelen (Heimann et al., 1994).

The age range in the Parana - Etendeka CFB is more controversial and there is some

evidence that magmatism persisted for longer than in the Deccan (Bellieni et al., 1984;

Renne et al., 1992; 1996; 1996b; Turner et al.; 1994; Stewart et al., 1996). The debate

centres around the duration of magmatism before and after the principal eruptive phase
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which is dated at between 130 and 134 Ma. Renne et al., (1992) proposed that eruption of

the entire province occurred in 1-2 my, but there are data from other studies which

suggest that magmatism lasted for up to 10 my and that the rate of magmatism increased

with time and the proximity of the South Atlantic rift system (Turner et al., 1994; Stewart

et al., 1996).

The rate of magma production was calculated from estimates of the erupted

volumes of lavas of different ages using both surface and borehole data in the Parana

province by Stewart et al. (1996). The volume of each of the different magma types of the

Parana was combined with the duration of each magma type estimated from the range of

40Arf39Ax ages and the resultant eruption rates were in the range of 0.03 km3 yr ·1 from

138 to 135 Ma, they increased to 0.21 km3 yr -1 from 133 to 131 Ma, and then decreased

from 131 Ma until the point of generation of ocean crust at -127 Ma.

Mantle plumes.

The association of large igneous provinces with present day hot spots together

with their anomalous occurrence and large volumes has been used to invoke plume

involvement in the generation of CFB (Morgan, 1983; Richards et al., 1989). Melting

occurs in response to the emplacement of the mantle plume, but in some models it is

envisaged that the mantle plumes are responsible for regional uplift and extension (Hill,

1990; Sleep, 1990), while in other models (White & McKenzie, 1989) CFB are generated

in response to extension over areas of anomalously high mantle temperatures. The nature

of the association between CFB and mantle plumes is therefore a matter of debate, both

over whether melting is triggered by extension or the emplacement of a mantle plume,

and whether melt generation necessarily occurs within the mantle plume (e.g.

Hawkesworth & Gallagher, 1993). Melting in the sub-continentallithospheric mantle has

been one of the more controversial proposals (DePaolo &Wasserburg, 1979) which has

been invoked in order to explain the variation in the chemical signature of the CFB, the

thermal feasibility of which has been modelled by Gallagher & Hawkesworth (1992). The

model requires a relatively long period of incubation (-10 - 15 Ma) in order to generate

the large quantities of basalt involved in CFB provinces (Turner et al., 1996).
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Mantle plumes ascending from depth are hotter than the ambient mantle. They

will therefore intersect the solidus at greater depths. and so more melt is generated for a

given amount of extension (McKenzie & Bickle. 1988). The amount of extension affects

the thickness of the lithosphere, and so the greater the J3 (stretching) factor the thinner the

lithosphere and the greater the amount of melt which will be derived from the

asthenosphere (McKenzie & Bickle. 1988). Inprinciple the amount and orientation of the

extension direction can be estimated from the numerous dyke swarms. Thus constraints

can be placed on the value of J3 at different times leading up to continental separation. and

once the first magnetic lineament is developed on the ocean floor. J3 is inferred to be

infinite,

In the case of Gondwana it is often difficult to establish the roles of mantle

plumes in continental break-up, but in practice changes in plate boundary forces are often

invoked as the prime reasons for rifting (e.g. Storey. 1995). Nonetheless, hotspot activity is

known to have occurred in the area of the South Atlantic as a number of current hotspots

can be retraced to positions in the Jurassic and Cretaceous. and these include those

presently beneath Tristan da Cunha and St Helena A link between the two models for

continental break-Up and melt generation rates might potentially provide the key to

understanding the dynamics of the evolution of the South Atlantic.

Sediments & Magmatism.

The interaction of rift related sediments with large scale CFB magmatism has

implications for the thermal history and possible maturation of hydrocarbon source rocks.

The affect of magmatism on sediments may be considered both locally and regionally.

Regionally. the extensional processes may generate basins within which sediments

accumulate. or they may fracture pre-existing reservoirs. Hydrocarbon generation and

migration may be affected by the impingement of a mantle plume both in terms of regional

uplift altering the sedimentation record and thermally with increased geothermal gradients

perhaps over distances of > 1000 km. The effect of underplating, which is assumed to be at

least equal to the surface expression of the lavas (Cox. 1993). on the local sedimentary

sequence is also briefly assessed. Locally, the advection of heat from rising magmas within

the rift basins, the extrusion of these lavas on the surface and the high level intrusion of
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dykes and sills will modify the primary characteristics of the sediments and possibly the

hydrocarbon potential.

In summary. this chapter briefly introduces the magmas of the Parana - Btendeka

province and links the chemistry of these lavas to the main intrusive dyke swarms. The

orientations of these dykes, which act as feeder systems to the main CFB, are then used to

assess the amount and orientation of extension during the generation of different magma

types. which also have different erupted volumes. The timing and duration of magmatism

is then assessed through detailed Ar-Ar dating of the lavas and dykes in order to evaluate

the timing and amounts of extension leading up to continental separation.

4.2. The Parana - Etendeka ProVince.

The Parana - Btendeka province is linked to the Tristan da Cunha plume via the

hot spot traces of the Rio Grande Rise and the Walvis Ridge respectively. The Parana

basin was formed during active rifting in the Ordovician to Silurian (Zalan et al., 1987)

with progressive sedimentation from the Devonian to the Jurassic. The voluminous

extrusion of the Parana - Etendeka CFB province during the Early Cretaceous occurred

directly on continental aeolian sandstones and locally on to the underlying basement.

The areal and volumetric extent of the province is highly asymmetric with most of

the outcrop preserved in the Parana basin. on the South American continent. The Parana

CFB is a sequence of 790,000 km3 of primarily mafic material that outcrops principally in

Brazil but also extends into northern Uruguay, Paraguay and Argentina. Parana

magmatism is dominated by tholeiitic basalts and basaltic andesites with volumetrically

less significant rhyolites (- 5 %) at the top of the sequence particularly close to the coast

in SE Brazil. The preserved thickness of the basaltic sequence is variable with a

maximum of 1723 m recorded in a borehole in the north of the basin. The basalts were

initially divided into high- and low- Ti provinces (Bellieni et al., 1984: Mantovani et al.,

1985) similar to those subsequently described by Hergt et al. (1991) using TiIY ratios for

the classification of other Gondwana flood basalts. Peate et al. (1990; 1992) expanded the

initial classification of the Parana basalts into six basaltic magma types. The four bigh-

TiIY magma types of the Pitanga, Paranapanema, Urubici and Ribeira outcrop in the
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north and central parts of the basin. while the two 10w-TiIY « 310) Gramado and

Esmeralda magma types occur in the south of the basin. These magma types have been

used to investigate the internal structure of the Parana lava pile by Peate et al. (1992).

The Etendeka province stretches from Angola into Namibia covering an area of

78,000 km.2. Rhyolites (locally known as quartz latites) form over 50% of the preserved

outcrop. in sharp contrast to the Parana. The rhyolites of the Awahab and lowest

Tafelberg units of the Etendeka have been correlated with the Palmas rhyolites of the

Parana. and it has been argued that they were all erupted from the Messum volcanic centre

in Namibia (Milner & Ewart. 1989; Milner et al .• 1995).

4.3. Dykes and dyke orientations.

Intrusive activity associated with the main Parana - Etendeka CFB province

includes extensive dyke and sill provinces both in South America and Africa (Fig. 4.1).

Sills varying in thickness from 2 to 200 m have been described interleaved with

Palaeozoic sediments from the Parana basin. and in the northern part of the basin these

sills have a combined thickness of over 1000 m (Bellieni et al., 1984). Such dykes and

sills are chemically similar to. and are therefore inferred to have acted as feeders to the

lavas of the Parana - Etendeka CFB province (Bellieni et al .• 1984; Peate et al.• 1992;

Regelous, 1993). North of 26 oS the compositions are similar to the Pitanga and

Paranapanema magma types, whereas further south the dykes and sills have a different

orientation and are similar to the Gramado magma type (Peate et al., 1992).

There are two main dyke orientations associated with Parana - Etendeka

magmatism. The first is coast perpendicular. mainly NW -SE trending. in the Ponta Grossa

dyke swarm in Parana State, northeastern Brazil and in Eastern Paraguay (Fig. 4.1). This

dyke swarm is associated with the Ponta Grossa Arch and represents limited extension (10

%) along zones of crustal arching (Sial et al., 1985). The dykes typically dip vertically

and are seen to intrude Precambrian crystalline basement, Palaeozoic sediments and

locally the overlying volcanics (Comin - Cbiarmonti et al .• 1983). Their compositions are

similar to the more northerly magma types of the Pitanga and the Paranapanema, and so

the age range of those magma types is taken to reflect the duration of the extensional

regime responsible for the NW -SE trending dykes (Regelous, 1993).

Chapter 4 177 Geochronology



500W

,

Brazil

.. ry,
Paraguay

..

Argentina

Fig.4.1(a) Parana province with two distinct dyke

orientations after Riccardi, (1988); Peate et al., (1992);

Regelous (1993).
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Dykes of a different

orientation which roughly

parallel the coast line and also

the regional structural

lineaments in the underlying

basement occur along the Serra

do Mar between Florianopolis

and at Rio de Janeiro (Fig.

4.1a). Moreover, this was the

principal dyke orientation in

Namibia associated with the

Etendeka CFB, where dykes

are more readily visible

because of the thin soils and

sparse vegetation (Fig. 4.1b).

These dykes are subvertical to

vertical, are of variable size

and they intrude the local

basement, the Karoo

sedimentary sequence and the overlying basalts. In detail, coastal dyke swarms are well

preserved along the north Namibia coast in pre-Karoo basement from the Kuiseb River

north to the Huab River, and further south in the Cape Peninsula (Marsh et al., 1991; Reid

& Rex, 1994). Figure 4.1c illustrates a particular area of the Cape Province, near Cape

Town, South Africa from where two dykes of the False Bay dolerite dyke swarm were

dated.

In a recent study Lord et al. (1996) compiled a dyke lineament map of the Central

Zone of the Damara Orogen in Namibia from Landsat imagery. 413 linear dykes were

identified with a dominant NNE-SSW trend (Fig. 4.1 d), roughly parallel to the plate

margin during the Early Cretaceous.
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Chemically, the coast parallel

dykes in Brazil and Namibia typically

have compositions similar to the low-

Ti/Y magma types of the Gramado

and the Tafelberg respectively

(Erlank et al., 1984; Bellieni et al.,

1984; Milner & Duncan, 1987; Peate

et al., 1990; Regelous, 1993). Thus, it

is again inferred that the range in the

ages of both the intrusive and erupted

rocks of those magma types reflects

the timing of the extension

responsible for the coast-parallel

dykes. In addition, there is also a

group of MORB-like. Horingbaai

dykes which intrude basement rocks

and the overlying Etendeka lavas in

(b)

I

,III'"
II I

\ III IIII,

Southern
. Etendeka
Province

Cape Cross

Fig.4.1(b) Etendeka province with coast parallel

dyke swarms after Milner et al., (1992).

the coastal region from Cape Cross to

the Huab River, and these are

compositionally distinct from the known Etendeka lavas (Erlank et al., 1984; Duncan et

al., 1990). The Huab sill complex which underlies the southern part of the main Etendeka

lava pile consists of another three magma types geochemically distinct from the

Tafelberg-type basalts (Duncan et al., 1989).
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Fig. 4.1(c). Cape Province and

False Bay dykes associated with

the opening of the South Atlantic

(after Lord et al., 1996).
(c)

In southern Uruguay the dominant fault direction and dyke orientation is

approximately coast parallel, but the principal NE strike direction of the faults appears to

be basement controlled (Gierloff-Emden et al., 1984). Dyke samples were collected from

a number of localities ~n the coast stretching

from Piriapolis, east of Montevideo (Fig.

4.1a) and these also strike NNE to ENE.

Compositionally the mafic dykes are similar

to the Santa Lucia magma type of southern
E

100 Uruguay (Appendix A) with high Nb (18-

25 ppm) and TiN (262 - 296). The acidic

dykes range in Si02 from 66 to 74 wt% and

S

Fig.4.1(d)

are chemically similar to the Aigua series

Rose diagram of 413 dykes rhyolites with high Zr and Nb and low- Ti

in Namibia showing the predominant NE·SW (Appendix A). The age of these dykes is
orientation after Lord et al.; (1996).

however controversial as they are mapped by

the u.G.S. as Cambrian.
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4.4. Geochronology: Previous studies.

(i) P8I'8IUi:

Dating of the Parana province began in earnest in the 1960s with Amaral et al.

(1966) reporting potassium - argon (K-Ar) dates for 20 basalts from southern Parana. The

results showed the province to be Early Cretaceous in age contrary to the previous

assignment of a Jurassic age to the province. K-Ar ages have since been reported by a

number of authors including Melfi (1967), Siedner &Mitchell (1976), Fodor et al. (1983)

and Piccirillo et al. (1987) and the main magmatic event was constrained to have occurred

at 130 ± 10 Ma. Associated dykes yielded similar K-Ar age ranges of 125 - 138 Ma, but

the alkalic provinces of Jacupiranga, Anitapolis, Minas Gerais, Goias and Sio Sebastiio

yield ages that vary from late Jurassic to Tertiary (Hen, 1977; Ulbrich & Gomes, 1981).

Rb-Sr isochron ages of 135 ± 3 Ma for the northern Parana rhyolites were reported

by Mantovani et al. (1985), and Alberti et al. (1992) reported similar ages for the Giraul

volcanics in southern Angola, which are geochemically equivalent to the Chapec6

rhyolites of northern Parana. K-Ar data on plagioclase separates for similar rocks yield

consistently younger ages, and so Piccirillo et al. (1987) were concerned in case K had

been mobilised after eruption. More recently detailed 40Ar - 39Ar studies have been

undertaken particularly by groups at the Open University and Berkeley (Renne et al.,

1992; 1996; Hawkesworth et al., 1992; Turner et al., 1994; Stewart et al., 1996) (Fig.

4.2). The results all suggest that the peak magmatic activity in the Serra Geral escarpment

region occurred between 134 and 130 Ma (Hawkesworth et al.. 1992; Renne et al., 1992;

Turner et al., 1994; Stewart et al., 1996), but Turner et al., (1994) and Stewart et al.,

(1996) also reported ages from the north and west of the Parana basin which suggest that

magmatic activity commenced there between 138 and 135 Ma (Fig. 4.2). Regelous (1993)

studied the geochemical and Ar-Ar age relationships of the dolerites of the Ponta Grossa

and Sao Paulo dyke swarms. The results of this study suggested that the Ponta Grossa

dykes acted as the feeder system to the basalt lava flows of the north namely the Pitanga

and Paranapanema magma types of Peate et al. (1992), while the dolerites of Sao Paulo

State are unrelated to the CFB province by any simple petrogenetic processes. The dating

of dykes related to both the Paranapanema and Pitanga magma types suggested that the
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Pitanga magmas were older (134.1 ± 1.3 Ma) than the Paranapanema magma type (130.5

± 2.9 - 133.9 ± 2.5 Ma) (Regelous, 1993). This is consistent with the chemical

stratigraphy defined by Peate et al. (1992), but subsequent dating by Turner et al. (1994)

yielded older ages (139 to 133 Ma) for Pitanga and Paranapanema samples from the north

and west of the lava field, and a 138 Ma age for a Paranapanema dyke in Paraguay.

Recent AI-AI ages for the Ponta Grossa dyke swarm yield younger ages of between 129 -

132 Ma (Renne et al., 1996), suggesting that these dykes are contemporaneous with the

main phase of volcanism. Taking the ages of the lavas and all the dykes of similar

composition, the age span for the stress system responsible for the NW trending dykes

would be from 138 Ma to 129 Ma.

(H) Etendeka:

Potassium - argon (K-AI) and argon - argon (Ar-Ar) studies similar to those of the

Parana province have also been undertaken for the Etendeka province northwestern

Namibia, and for the dykes along the South Atlantic coast and particularly around Cape

Town including the False Bay dolerite dykes (Fig. 4.1).

Some of the earliest reported ages range from 196 to 114 Ma (Siedner & Miller, 1968),

reflecting in part the widespread affect of the older Karoo volcanism which extended from

southeast Africa as far as NW Namibia. K-Ar ages of 121 Ma were reported for the

Kaoko basalts of Namibia and the Serra Geral basalts of Brazil by Siedner and Mitchell

(1976). However the main volcanic suite of the Etendeka formation was considered to

have been active from 135 to 130 Ma by Erlank et al., (1984).
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Milner et al. (1995) further constrained the timing of Mesozoic igneous activity in

northwestern Namibia to between 137 and 124 Ma using Rb-Sr internal isochrons and Ar-

Ar release spectrum ages. The main volume of magma is thought to have been erupted in

1 - 2 Ma, but activity among the Damaraland intrusive complexes continued until after the

onset of seafloor spreading at - 129 Ma (Milner et al., 1995); for example, Paresis (Rb-

Sr: 132 ± 4 Ma; Manton & Siedner, 1967); Okenyenya (Rb-Sr: 128.6 ± 1 to 123.4 ± 1.4

Ma; Milner et al .• 1993); and Messum (Rb-Sr: 126.8±1.3 Ma; Milner et al., 1993). Ar-Ar

ages for the intrusive complexes of Damaraland have yielded a wider range in ages from

137.0 ± 0.7 Ma (comendite from Paresis, Milner et al., 1995b) to 129.3 ± 0.7 Ma

(nepheline syenite from Messum, Renne et al., 1996b). These latter ages are considered to

be closer to the true age range of the Damaraland intrusive complexes in view of the

greater accuracy of the method. The MORB-like Horingbaai dykes appear to be younger

(-125 Ma), than the main coast parallel dyke swarms such as the False Bay dolerites from

Cape Town (132 ± 2 Ma; Reid et al.; 1991). K-Ar ages for coast parallel linear dyke

swarms of 134 ± 5Ma were also reported by Siedner & Mitchell (1976).

Recent Ar-Ar ages on Etendeka volcanics. dyke swarms and intrusive complexes

are included in studies by Reid & Rex (1992), Renne et al., (1996b) and Stewart et al .•

(1996). Significantly. the ages reported are within error of each other, between 134 and

129 Ma, for both plagioclase and hornblende separates from the Etendeka rhyolites and

associated dykes and the Messum intrusive complex. This suggests that differences in

ages are not significant with regard to either the dating procedure or the phase analysed,

and we note that similar ages are obtained when adjacent road sections are analysed by

different techniques in the Parana (Table 4.1, Fig. 4.3).

Chapter4 184 Geochronology



TabJe 4.1. Comparison of a seJected number of pubUshed ages for two diff'erent
Parana magma types.

Msu,."ulI. type Lon~tude Ladtude RS Age (Ma) Author

Gramado 53.75 29.25 Cl 132.9 ±0.6 Renne etal.

(1992)

Gramado 51.02 29.47 MG 132.4 ± 1.4 Turner et al.

(1994)

Gramado 52.71 26.38 133.1 ± 1.0 Stewart et al.

(1996)

Urubici 49.83 28.45 GB 132.4 ±0.7 Renne etal.

(1992)

Urubici 49.46 28.12 SM 132.3 ± 0.8 Turner et al.

(1994)

* RS = Road Section name from Serra Geral escarpment correlates with labels on Figure 3.

Combining the data from each of these studies the question remains as to the

actual duration of magmatism in one of the worlds largest CFB provinces. the Parana -

Etendeka (Fig. 4.2). Was it all extruded within the space of a few million years as has

been argued for similar sized CFB such as the Deccan (Courtillot et al.• 1986; Duncan &

Pyle. 1988) and for this province by Renne et al. (1992; 1996b)? Or are there different

controls operating which determine the rate of melting. as indicated by Stewart et al.

(1996)? In order to add to the understanding of the relationship between the timing of

magmatism and rifting a new dating programme was initiated on the volcanic rocks from

southern Uruguay. Etendeka lavas. Namibia. and dyke exposures along the African

margin as far east as Suurberg. eastern Cape Province (Fig. 4.1). Preliminary results were

reported in Stewart et al. (1996). and those data are combined with new results in the next

section.
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Table 4.2. Correlation chart for the Lower Cretaceous rocks of the principal basins
of concern in this study, after Riccardi (1988). Unconfonnities are indicated by
dotted lines.

Epoch Age Salado Basin Santa Lucia Parana Basin

Basin

Albian

Aptian Migues Formation Caiua

Formation

Barremian Castellanos

Formation

Lower Hauteri-vian Serra Geral Serra Geral

Cretaceous Formation Formation

Valangi-nian Serra Geral

Formation

Berriasian SerraGeral Arequita & Puerto Serra Geral &

Formation G6mez Formation Botocatu

Formation

The position of the Tristan plume is bighly debated (Duncan, 1989; Van Deccar,

1995) with Uruguay considered to lie at the periphery of the inferred influence of the

Tristan da Cunha plume in the Early Cretaceous. However the occurrence of

asthenosphere-derived magmas, Santa Lucia magma type in southern Uruguay, suggests a

greater influence of the plume in this region. The mafic lavas of the Arapey Formation in

northern Uruguay were contemporaneous with the widespread Serra Geral of the southern

Parana basin (Renne et al., 1992). Moreover, the lavas of the Puerto G6mez Formation in

the Santa Lucia basin of southern Uruguay have been shown to be similar both chemically

and isotopically to those of the low- Ti Gramado magma type of the southern Parana

(Chapter 2). The eruption of these basalts in what may

have been separate basins has led to different terms being proposed for what appear to be

very similar rock units (Sprechmann et al.; 1981; Riccardi, 1988). Table 4.2 summarises

Cbapter4 186 Geochronology



the correlation of formations between the main basins which contain significant amounts

of Late Jurassic and Cretaceous volcanic rocks.

Fig. 4.3. Comparison of ages obtained along road sections in the Serra Geral escarpment.

Names of road sections are from Peate et al. (1992), note SJ & SM of Renne et al. (1992). Ages in

bold are from Turner et al. (1994) other age data are from Renne et al. (1992).

Parana rhyolites

Low -Ti basalts - Gramado
& Esmeralda types

SM
High -Ti Parana basalts - Urubici

Height (m)

cv

1500

1000-

31.
±1.6
132.
±1.2

sea
level

4.5. Argon Dating.

The 40AI_39 AI dating technique is based on the decay of a naturally occurring

isotope of potassium 40K to an isotope of argon, 40AI. The calculated 'age'is the time

since argon became trapped in the mineral or rock. This is termed 'closure' and in

individual minerals it is controlled by composition, temperature, grain size and cooling
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rate (Dodson, 1973). In volcanic rocks cooling is rapid and so for fresh rocks the

measured age is taken to be that of eruption. The isotopic composition of argon in an

igneous rock that has remained closed to argon since its crystallisation consists of two

components, the initial trapped argon and the radiogenic component formed by the decay

of 40K and by the irradiation of 39J(. All Ax - Ax ages are calculated from the estimated

4OAr*f39Ar ratio with the results presented either on isochron correlation plots of

36Arf40Ar vs 39Arf40Ar, or as plateau ages described from plots of age vs cumulative 39Ar

release used particularly in the interpretation of stepped beating data.

For all the southern Uruguay volcanics and the other samples listed in Table 4.3

feldspar phenocrysts were separated, apart from sample 93L59 for which biotite separates

were used. Samples were irradiated for either 60 brs at the Ford reactor, Michigan, or 18

hrs. at Oregon State University (OSU). Tinto biotite (Rex & Guise, 1995) and 85GOO3

sanidine from the Taylor Creek rhyolite (Dalrymple & Duffield, 1988) were analysed as

standards. The argon procedure operating at the Open University follows the technique

detailed in Kelley (1995). Argon was extracted from individual grains by step laser

beating using a Nd-doped yttrium aluminium garnet continuous wave laser. Step laser

beating was preferred over spot analysis due to the use of a continuous wave laser system

and because the mineral absorption coefficients of feldspar are low (Girard & Onstott,

1991). The laser power is absorbed in the top few tens of micrometers of the sample but

temperature variations across single grains are negligible (Hall, 1990). The samples were

beated in a number of 'steps' in order to release the maximum amount of Ar from the

phenocrysts. During the course of analyses either a single grain. particularly of sanidine,

or a number of grains (15 - 20 depending on their size and K contents) of plagioclase

were heated. All the analyses were corrected for blank levels. 37Ax decay and neutron

interferences. The dimensionless parameter J used in age determinations was calculated

from the standards (Tinto biotite and 85GO(3).

lsochron correlation plots of 36Arf40 Ax v 39Ar/40 Ar were used to identify

contributions from excess argon and to determine the intercept on the 39Ar/40 Ar axis from

which the ages are calculated (Fig. 4.4). The atmospheric ratio of40ArJ36Ar is 295.5 and

so data that intersect the y-axis either above this point indicate the presence of a non-

Cbapter4 188 Geochronology



atmospheric component (excess 4OAr) in the sample. Such effects can be corrected for and

meaningful ages obtained.

Plateau ages are another way of interpreting stepped heating data and are

described from plots of age v cumulative 39Ar release. The ages obtained are defined by

the weighted mean of the data and require three consecutive steps to contain more than

50% of the argon released and to be within a 2a error of the weighted mean age of the

plateau (Lanphere & Dalyrmple, 1978). Laser step-heating 4OArf39Ar spectra are similar

to age spectra derived from more traditional heating methods (Hall. 1990). The number of

stages for each analysis was varied depending on the composition of the phenocrysts

being ablated, with K-rich feldspar requiring a greater number of 'steps' than plagioclase.

Sample 93L36. for example, was analysed using the laser step-heating technique in 24

stages on a single sanidine phenocryst. The temperature was increased by varying the

current in incremental steps of 0.1 to 0.4 A from a starting current of 11.7A to total fusion

at 15.7A. The resultant age spectrum yielded an age of 123.9 ± 0.8 Ma. This age is

younger than anticipated as most of the Parana - Etendeka rhyolites have apparent ages of

- 132 Ma, but the data are considered to reflect the true crystallisation age of this sample.

The isochron correlation and plateau age approaches were both used. and for most

samples two ages are reported in Tables 4.3 and 4.4. Age ranges that were found to be

internally consistent and with a MSWD between 1 and 2.5 were considered most reliable.

In all 13 samples were analysed from southern Uruguay, 6 mafic samples. 1

syenite and 6 rhyolites (Table 4.3). The results that are considered reliable are

highlighted in Tables 3 and 4. the relatively large quoted errors on some samples tend to

be due to samples clustering either at the atmospheric end of the array or at the radiogenic

end with little mixing in between. Straight line mixing between radiogenic and

atmospheric argon results in small errors on the ages obtained. The young age of sample

93L47 is considered a function of loss of radiogenic Ar with the small MSWD = 0.1018

implying a large underestimate of the error involved (Table 4.3). Similarly low MSWD

were also seen in samples 93L97 and 93Ll25 again implying an underestimate in the

error on the age (Table 4.3).

The intercept ages yielded from isochron correlation plots of 36ArJ40Ar vs

39Arf40Ar were equally effected by excess argon in samples 93L53 and 93L93. and while
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these samples yielded more reliable plateau ages the calculated errors remain large.

Sample 93L42 gave the most precise age determination with over ten 'steps' analysed and

both the intercept and plateau ages falling within error of each other (Table 4.3). Overall

the basaltic samples yielded relatively imprecise ages, with the more reliable age range

being from 130 ± 2 to 134 ± 5 Ma, which is effectively indistinguishable from the main

phase of magmatism in the Parana - Etendeka (Fig. 4.5, Renne et al .• 1992; 1996b; Turner

et al .• 1994; Stewart et al., 1996).

The biotite separate analysed from the Valle Chico Formation syenite of southern

Uruguay yielded similar plateau and intercept ages which are well within error of each

other at 132.0 ± 3 Ma and 132.3 ± 1.2 Ma respectively (Table 4.3). Six rhyolite samples

from the Arequita Formation in southern Uruguay were also analysed. These ages were

determined on multiple grains of alkali feldspar ablated at the same time. and because of

the large amounts of argon gas released the ages were determined by step heating.

Typically between 10 and 24 steps were required before total fusion occurred, and the

resultant age spectra were consistently younger than those of rhyolites associated with the

main Parana - Etendeka event. However, there is no apparent relationship between the

calculated age and radiogenic argon loss, except in sample 93L19, which yielded an

exceptionally young age and has a low MSWD (Table 4.3).

Plateau ages are considered the best way of presenting the data in view of the

number of steps involved in each analysis, although there is good agreement between

plateau and intercept ages (Fig. 4.6a). The first step in all analyses was omitted from the

final plateau age. principally as this step is most sensitive to any alteration not removed

during the cleaning process (Fig. 4.6b). All the rhyolite ages are assumed to be true

'closure' ages although the range in age from 131.9 ± 0.5 to 123.9 ± 0.4 Ma is large and

difficult to explain in relation to the timing of the opening of the South Atlantic.

Fourteen new samples were analysed from the lavas of the Etendeka province in

northwestern Namibia and a number of dyke localities extending to Suurberg, South

Africa These samples were analysed with varying success and both excess argon and

contamination by host rock feldspar are shown to have contributed to some of the ages

obtained (Fig. 4.6c). Six samples including basalts, andesites and rhyolites yielded Early

Cretaceous ages, and again those that are regarded as reliable are highlighted in Table 4.4,
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internally consistent ages and a close correlation between both the intercept age and the

plateau age together with reasonable MSWD were again the criteria used for acceptance

of an age.

Fig. 4.4. A plot or J6Ar"'Ar vs ~ Ar"'Ar after Kelley (1995) used to distiDguisb

excess argon. The plot illustrates the potential end member compositions: Radiogenic argon

(intercept A ODthe ~Ar'" Ar axis; atmospheric argon CB ODthe 36Ar"'Ar axis) and excess argon (~

at the origin). Simple QSeS exhibit mixtures between atmospheric and radiogeaic argon, yielding a

precise age from the ~Ar"'Ar intercept. Mixtures of radiogeDk argon and a component with

36Ar"'Ar ratios less tban atmospheric (0.003384) reflect addition or-Ar.
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Fig. 4.5. Frequency of published ages for the Parana - Etendeka. Data from Turner

et aL, (1994); Stewart et al., (1996); Renne et al., (1992;1996b). New age data from Uruguay and the

Etendeka from present study also included for comparison.
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Fig.4.6a. Intercept age for rhyolite sample 93L28 from southern Uruguay.
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Fig.4.6c. Mixing of older and younger plagioclase which results in the variation of 37ArP9Ar

evident with age.
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Table 4.3. Results of samples analysed from Uruguay. Both potassium feldspar and
plagioclase were analysed with M (multigrain) indicating where more than one grain
was analysed at the same time, S (single) indicates the use of a single pbenocryst.
Ages which are assumed to reflect crystallisation ages are in bold type.

Sample Rock Phase Plateau Intercept MSWD

type analysed Ages· Ages·

92U14 Rhyolite K-spar. (M) 128.2:1:0.7

93L19 Rhyolite K-soar. (M) 1l1.7±4.2 0.358

93L22a Rhyolite K-spar. (5) 130.9:1:0.7 129.7±2.1 0.878

93L22b 131.9:1:0.5

93L28a Rhyolite K-spar. (5) 124.3:1:0.7 126.4%1.2 1.059

93L28b 123.9:1:0.4

93L36 Rhyolite K-spar. (M) 123.9:1:0.4 123.9%1.4 1.083

93L42 Andesite Plag. (M) 131.8:1:0.9 132.9:1:0.9 1.020

93L47 Basalt Plag. (M) 128.0±3 125.8±5.1 0.101

(SL)

93L53 Basalt Plag. (M) 134.0±5 0.913

(SL)

93L59 Syenite Biotite (M) 132.0:1:3 132.3%1.2 0.195

93L93 Basalt Plag. (M) 130.0%2 136.1±3.2 1.183

(TIT)

93L97 Basalt Plag. (M) 118.0±6 109.6±32.8 0.358

(TIT) .
93L107 Rhyolite K-spar. (M) 127.6:1:0.6 127.7±1.6 0.857

93L125 Andesite Pla2. (M) 124.5±12 0.237

* Errors quoted are 2a. SL = Santa Lucia magma type; TYT = Treinte Y Tres magmatype.

Chapter4 195 Geochronology



Table 4.4. Results or age dating from the Etendeka and related dykes in South
Afriea. M (multlgrain) indicating where more than one grain was analysed at the
same time, S (single) Indicates the use of a single phenocryst. Ages which are

assumed to reflect crystaDisation ages are in bold type and rely on coDSistency

between the plateau and intercept ages, little evidence of an excess argon component
and acceptable MSWD between 0.8 and 2.5.

Sample Rock Phase Plateau Ages· Intercept MSWD

type analysed Ages·

CP3 Basalt Plag. (M) 141.9:t: 10.2 141.7:t: 10

LBI Basalt PI~ (M) 125.4 :t:6.8 125.4 :t:3.4 1.282

KK-119 Dolerite Plag. (M) 1623.2 ± 7.4

KLS230 Basalt P~(M) 272.3 :t:2.2 236.2 :t:2.8 6.458

KLS327 Quartz Plag. (M) 128.6 ± 1.4 129.0 ± 1.0 1.165

latite

KLS348 Basalt Plag. (M) 132.4 ± 2.3 132.5 :!:2.4 1.256

KLS488 Basalt Plag. (M) 130.5 ± 0.8 131.0:!: 1.9 0.617

SM60 Quartz Plag. (M) 129.1 ± 1.8 129.1 :!:1.1 0.923

latite

SMl72 Quartz Plag. (M) 128.2 ± 2.2 128.1 :!:1.1 1.307

!atite

KU-66 Basalt Plag. (M) 1780.6 :!:11.6

KU-82 Basalt Plag. (M) 129.5 ± 1.5 128.9% 4.4 0.524

DRL507 Basalt Plag. (M) 214.9 :!:2.2 141.0:!: 1.5 1.158

DRLS08 Basalt Plag. (M) 117.2 ± 1.4 111.1 ± 0.9 0.784

TKI-47 Basalt P_Blg.1_M) 194.4 :!:11.9

* Errors quoted are la. CP3 et LBI - Cape Town dykes; KK-119, KLS230, KLS327, KLS488, SM60,

SM172, KU-66, KU-82 - Blendeka basalts and rhyolites (= quanz latites); DRL507 et DRL 508 -

Mehlberg dyke; TKl-47 - Suurberg basalt.
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The older Archaean! Precambrian ages of samples KK-119 and KU-66 appear to

reflect the presence of xenocrysts as these dykes intrude basement gneisses and granites of

similar ages. Furthermore a plot of age versus 37Arf39AI preserves a mixing may

between younger and older components. with older phenocrysts having lower CalK than

the younger feldspars (Fig. 6c). The old age recorded by sample KLS230 is due to excess

argon which results in a classic saddle shaped plateau age that is very unreliable (Fig. 6d).

Excess argon in both the Cape Town dykes analysed resulted in poor ages, and the

samples of the Mehlberg dyke gave widely varying results (Table 4) perhaps reflecting

post-intrusion alteration processes. These samples intrude sandstone (DRLS07) and

granite (DRL508) which have very different K and Ca contents, and these may have

influenced gain of K and/or loss of Ar (D. Reid, pers. com.) and therefore contributed to

the range of ages obtained. Sample TKI-47 yielded a Jurassic age which is considered to

be a true 'closure' age.

The two basalt samples (KLS 348, KLS 488) analysed give slightly older ages

than the rhyolites (Table 4.4) consistent with their position at the base of the stratigraphic

sequence. These ages are similar to those reported elsewhere for Etendeka basalts (e.g.

Renne et al, 1996b). The rhyolites principally form tight clusters of data points close to

the radiogenic axis on the isochron correlation diagram, apart from KLS327 which shows

some mixing with atmospheric argon. All rhyolite ages are considered true 'closure' ages

(Table 4.4). These ages are approximately a million years younger than many reported for

the Etendeka province (Renne et al., 1996b), but they define a much narrower age range

for the province than the K-AI dating technique.

The ages obtained therefore suggest that magmatism in southern Uruguay spanned

10million years from 134 to 124 Ma. The Uruguay basalts range in age from 134 to 130

Ma which was contemporaneous with the main phase of Parana - Etendeka flood

volcanism (132 ± 2 Ma; Renne et al., 1992; 1996b; Stewart et al.• 1996). The ages

obtained for the Treinte Y Tres and Santa Luda magma types are however not

distinguishable from each other therefore it is difficult to determine a stratigraphical

relationship. Nor can the timing of the increase of plume involvement in the province be

therefore determined precisely. However since the magmatism is contemporaneous with
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the main Parana - Etcndeka volcanism as implied from the age data. the position of the

Tristan plume may be located further south than previously supposed.

The rhyolites from southern Uruguay range in age from 132 to 124 Ma. The

majority of these ages are younger than those reported for the Parana - Etendeka rhyolites

which range from 132 to 129 Ma (Renne et al., 1996b; Stewart et al., 1996). The age

range of the rhyolites is also younger than the ages reported for the southern Uruguay

basalts suggesting bimodal activity. Furthermore activity in southern Uruguay continued

after final continental separation which suggests a local source for the rhyolites as

proposed inChapter 3 from the presence of brecciated volcanics.

4.6. Palaeomagnetism.

The Early Cretaceous is known to be a period of high frequency reversals and

short polarity intervals of less than a million years (Bellieni et al., 1983; Kent &

Oradstein, 1985), before the quiet period of no magnetic reversals from 124 to 83 Ma in

the mid-Cretaceous (Larson & Olson, 1991; Larson & Kincaid, 1996). Thus, the number

of reversals in a stratigraphic sequence from the Early Cretaceous can potentially provide

important constraints on the timing of events. Reversals are however difficult to correlate

from one area to another and so they can only be used with any confidence over relatively

small areas. Palaeomagnetism is also used to investigate both crustal rotations and hence

the responses to tectonic stress, and the duration of magmatic events (Cox & Hart, 1986).

Recent studies of the magnetostratigraphy of the Parana - Etendeka province by

Emesto & Pacca, (1988), Milner et al. (1995) and Renne et al., (1996b) indicate at least

two reversals during the eruption of the main volume of magma, although up to seven

reversals have been measured in flows from some areas suggesting longer periods of

eruption (Peate et al., 1992). Palaeomagnetic studies of the NW and NE trending Ponta

Grossa dyke swarm by Raposa & Ernesto (1995) showed that the majority of dykes are of

normal polarity and, although reversed polarity dykes do also occur, there is no link

between polarity and dyke orientation. Coast-parallel dykes have not been studied in

detail but some at least in the Awahab section of the Etendeka have reversed magnetic

polarity, and two reversals have been recorded in three different sections of the Etendeka

lavas (Renne et al., 1996b). Although the Early Cretaceous was a period of high reversal
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frequency, with 26 reversals recorded between 144 and 121 Ma (Gradstein et al., 1994),

the duration of each reversal period is highly variable. For example, there was only one

reversal between 133 and 132 Ma, while three reversals have been recorded between 132

and 131 Ma (Gradstein et al., 1994). Therefore, depending on exactly when in the

Cretaceous the Parana - Etendeka lavas were erupted the presence of three reversals might

imply rapid extrusion of the province in 1 - 2 my. Palaeomagnetic variations in the Parana

- Etendeka have been taken to imply high rates of eruption (700 m in < 1 my), and to

indicate the simultaneous eruption of mafic and acid lavas in different regions (Bellieni et

al., 1983; Ernesto & Pacca, 1988). However, such conclusions rely on the successful

correlation of individual magnetic reversals over relatively large distances (> 1000 km).

Therefore palaeomagnetic data appear to suggest short time scales for eruption in the

Parana - Etendeka of between 1 and 2 my, however the data require independent

corroboration.

Interestingly a number of models exist which suggest a relationship between large

scale plume-related basaltic magmatism and disruption of the magnetic reversal process

(Larson & Olsen, 1991; Larson & Kincaid, 1996). There may be an inverse relationship

between the frequency of magnetic reversals, heat removal due to plume formation and

hence the rate of production of oceanic and continental flood basalts (Larson & Olsen,

1991). The removal of large quantities of basalt during the Mesozoic may have altered the

stability of the D" layer at the core/mantle interface, and consequently lead to the

magnetic quiet period later in the Cretaceous.

4.7. Rifting.

The fit of the continents around the South Atlantic was first modelled in detail by

Bullard et al. (1965) with varying success for the degree of fit at particular points. The

misfit of pre-drift reconstructions led to suggestions of intraplate deformation and plate

rotations (Untemehr et al., 1988; Fairhead, 1988; MUller et al., 1993). The major sites of

intraplate deformation are considered to be the Benue Trough, a sinistral wrench fault

zone; the Central Africa shear zone, and the Parana and Chaco basins in South America

(Untemehr et al., 1988; Fairhead, 1988). The Atlantic Mesozoic rift system consists of a

number of different segments, such as the Equatorial Atlantic, between the Equatorial
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Fracture zone and the Walvis Ridge, and the South Atlantic between the Walvis Ridge

and the Agulhas Fracture zone (Uchepi, 1989) (Fig. 4.7). The opening of the Equatorial

Atlantic occurred after the opening of the South Atlantic Ocean (Fairhead, 1988).

The large scale rifting which resulted in the first oceanic crust in the South

Atlantic started during the Valanginian (137.5 -133 Ma; Kent and Gradstein, 1985), with

the ocean between Argentina and South Africa beginning to open about 130 Ma (Scotese

et al., 1988). North of 33 "S, rifting leading to the development of oceanic crust began in

the late Hauterivian, and using the timescale of Kent and Gradstein (1985) that was

around 127-126 Ma. North of the Walvis Ridge - Rio Grande Rise the first oceanic crust

is late Aptian in age (- 119 Ma. Mascle et al., 1986).

Stretching of the Gondwana land mass resulted in the formation of a number of

basins including the Pelotas, Campos and Santos basins of Brazil, the Santa Lucia and

Punte Del Este basins of Uruguay, and the Salado and Colorado basins of Argentina

during the Mesozoic (Fig. 4.7). The orientation of these basins is parallel to that of the

early dyke swarms of the Ponta Grossa and eastern Paraguay, indicating that the principle

extensional stresses were NE-SW. These basins contain rift related sediments and

Cretaceous basalts similar to the onland Parana magma types which have been described

from several areas including the Campos, Santa Lucia and Salado basins.

Varying amounts of syntectonic sedimentation in extensional tectonic regimes

occurred in basins throughout South America from the Middle Triassic to the Late

Cretaceous (Uliana et al., 1989), with some of the earliest rift related sedimentation in

South America and Africa being Late Jurassic in age. Much of the early faulting follows

the Palaeozoic structural grain in both Africa and South America (Cox, 1978), and there

are typically three depositional sequences characterised by different facies and tectonic

styles. These are best known from the East Brazilian rift system including the Campos

basin along the eastern continental margin of Brazil (Chang et al. 1992) where syn-rift

sediments have been described from three periods.

Chapter4 200 Geochronology



Fig.4.7. Magnetic anomalies of the South Atlantic, after Austin & Uchupi (1982), with

reinterpretation of the data of Rabinowitz & LaBrecque (1979).
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The oldest Syn-rift 1 sequence is Jurassic in age and it consists of coarse-grained fluvial

and alluvial fan deposits with minor evaporites and aeolian sands, which are a feature of

the African - Brazilian Depression. Late Jurassic extensional faulting has been described

in many of these basins (Riccardi, 1988; Chang et al., 1992). Syn-rift sequences II and ID

include Berriasian to Barremian sediments which are intercalated with volcanics in basins

from the Campos, in eastern Brazil to the Colorado in Argentina (Riccardi, 1988). Rifting

had commenced by the end of the Valanginian (133 Ma), with mature passive continental

margins developed by Aptian times. This is marked in the sedimentary record by a

transition from fluviatile to marine deposits (Dingle et al., 1983). Transitional marine
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sequences of Aptian age (121 - 113 Ma) overlie the rift sediments unconformably in many

of these rift related basins indicating significant uplift and erosion at that time.

The Parana - Etendeka rhyolites range in age from 132 to 128 Ma (Fig. 4.2; this

study; Renne et al., 1996b). Eruptive sequences within the province have been correlated

on the basis of their bulk chemical compositions, phenocryst assemblages and mineral

compositions by Milner et al. (1995). Specifically, silicic units of the Awahab Formation

in the Etendeka which are centred in the Messum complex have been correlated with

individual units in Brazil which implies that at least some of the units extended for

distances of> 340 km from their source (Milner et al., 1995). This has important

implications for the timing of rifting in the South Atlantic since, if such correlations are

correct, final separation presumably cannot have occurred until after the eruption of these

magmatic units.

In Uruguay the Punte del Este basin forms a continuation of the northwest -

southeast trending Salado basin (Fig. 4.7). Jurassic extension appears to have spawned the

development of both these basins along pre-existing structures and they may reflect a

different principal stress regime to that which eventually lead to continental separation.

The Punte del Este basin is characterised by a three stage evolution process (Stoakes et

al., 1991). The initial rift sedimentation is preserved in asymmetric graben structures of

Neocomian age (- 144 to 127 Ma). These are overlain unconformably by Aptian to

Maastrichtian continental and marine deposits, with varying amounts of basaltic material

preserved which have been related to the main Parana - Etendeka flood basalt sequence

(Riccardi, 1988).
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Table 4.5. Time • event chart for the development of the South Atlantic Ocean. The
ages in millions of years are from Kent and Gradstein (1985). Summary of dates
from text.

Aptian Mature passive continental margins, marine

(121 - 113 Ma) sedimentation. Oceanic crust in Equatorial

Atlantic.

Barremian M4-127Ma First oceanic crust developed at latitude of the

(127 - 121 Ma) Parana - Etendeka _l)I'ovince.

Hauterivian 127Ma Magmatism ceased.

(133 - 127 Ma) 133 -127 Ma Continued Parana-Etendeka CFB magmatism

assoicated with both NW-SE trending and coast-

.parallel dykes (Fi2S. 4.2 and 4.5).

Valanginian 134Ma Main phase of activity commenced.

(137.5 - 133 Ma) CFB Parana magmatism. associated with the NW-

SE trending dykes and coast parallel to lesser

extent (Fig. 4.2).

136Ma Seafloor spreadin_g commenced at 36 "S.

Berriasian 138.4Ma Oldest basalt from west of province (Fig. 4.2).

(144 - 137.5 Ma)

Tithonian Rift related sedimentation in South American

(150 - 144 Ma) basins includin_g_Campos, Salado & Colorado.

4.8. Magnetic anomalies· evidence from ocean Ooor.

The earliest evidence of seafloor spreading is provided by magnetic anomalies on

the ocean floor, and correct identification of these anomalies provides important

information regarding the timing and duration of rift propagation. However, there has

been considerable uncertainty over the age of individual anomalies. as illustrated by the

summary of the time scales used by different authors in Table 6. and so the absolute ages
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of these anomalies have to treated with caution. In this study the timescale of Kent and

Gradstein (1985) bas been used since it is in good agreement with that of Harland et al.

(1982) for the age of magnetic anomalies.

The opening of the South Atlantic has been described as an unzipping process with

rifting commencing in the south and propagating northwards as far as the Rio Grande Rise

- Walvis Ridge (Rabinowitz and LaBrecque, 1979; NUrnberg and Milller, 1991; Turner et

al., 1994). North of the Rio Grande Rise - Walvis Ridge system the age of the oldest

magnetic anomalies decreases northwards, implying that rifting propagated northwards

(Martin, 1987). Moreover, the oldest anomaly is MO (118 to 121 Ma, Kent and Gradstein,

1985) and that is younger than the oldest anomaly identified further south. The oldest

magnetic anomaly recognised south of Cape Town is Mil by Rabinowitz & Lafsrecque

(1979), which is - 133 Ma using the timescale of Kent & Gradstein (1985). However, in

a seismic reflection study of the continental - oceanic transition off southwest Africa

Austin & Uchupi (1982) argued that the critical older magnetic anomalies occur on

thinned continental crust. Instead, they suggested that M9 was the oldest magnetic

anomaly on true oceanic crust and that seafloor spreading therefore commenced at - 129

Ma, or 4 Ma after the Valanginian age previously ascribed using the timescale of Kent &

Gradstein (1985). A sequence of northwest trending magnetic anomalies were described

by Larson & Ladd (1973) from west of Cape Town, with the oldest lineations being Ml2

(which is equivalent to M4 of Kent & Gradstein, 1985). Magnetic anomaly M4 _(-127) has

also been identified further north in the vicinity of the Walvis Ridge and as far south as

the Agulhas fracture zone (Cande et al., 1989) (Fig. 4.7).

A number of questions remain unanswered even in the light of all the available

palaeomagnetic data, including when exactly did the transition from continental to

oceanic crust take place and how much did its timing vary with latitude along the South

Atlantic. Anomaly M4 is recognised from the Walvis Ridge south to the Falkland

plateau, indicating that seafloor spreading was well under way in the southern South

Atlantic by 127 Ma. However, the presence of anomalies M9 and M7 off southern Africa

suggests rifting started earlier in the south. Nonetheless, it remains difficult to tie down

the age of these anomalies directly, and so there still appears to be a subjective element in

the interpretation of the magnetic lineament data. Relative ages can be established, and
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using the timescale of Kent and Gradstein (1985) adopted in this study the age of the

oldest ocean floor rocks is taken to be 129Ma off southern Africa and 127 Ma further

north in the vicinity of the Walvis Ridge.

Table 4.6. Comparison of some magnetic anomalies with M12 highlighted in bold for
clarity of comparison of the published corresponding ages.

MAGnetic anomaly Age(Ma) Author

~25;M12;~9;~7;~4. 156.5-157.8; 135.5-136.6; Kent & Gradstein, 1985

129; 127.9 - 128.3; 126-

127.

~5;~2;~I;AfI2; 160; 156; 153-145;137; Harland et al., 1982

~11; M9; ~4;~. 133; 130; 127; 123-114.

~9;M4. 126; 123-117. Austin & Uchupi, 1982

after van Hinte (1976)

MI2;M4;~. 127; 116; 112. Larson & Ladd, 1973

4.9. Sediments and Magmatism.

The relationship between the extrusive volcanics and the sedimentary lithologies is

of interest for a number of reasons not least of which is the hydrocarbon potential. In this

section the possible interaction of rift related sediments and magmas is examined and the

thermal implications are assessed briefly on both a regional and a local scale. The effects

of magmatic underplating, high level intrusions and surface extrusion of large volumes of

flood basalts on sediments are briefly addressed in view of the presence of volcanic

material in many of the basins along the South American margin, e.g. the Campos, Ponte

del Este, Santa Lucia and Salado basins. Due to the large volume of both sediments and

magma preserved in the Parana basin it is an idea11oca1ity to consider some of the

interactions that occur both regionally and locally.
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The Parana basin contains over 5000 m of sediments and volcanics of Palaeozoic,

Mesozoic and Cenozoic age and it is floored by Precambrian and Palaeozoic rocks (Zalan

et al., 1987; Riccardi, 1988). Sedimentation in the period leading up to eruption of the

flood basalts and associated rhyolites is represented by continental aeolian deposits, and

similar sediments have

been reported from other basins in the region including the Campos Basin (Chang et al.,

1992). These sandstones are referred to as the Botucatu Formation in the Parana, which

are correlated with the Etjo Sandstone Formation of Namibia, and they are considered to

be Jurassic to Early Cretaceous in age (Amaral et al., 1966; Riccardi, 1988). These

aeolian sandstones are underlain by fluviatile or fluvio-Iacustrine sediments and are

intercalated with basaltic flows at the top of the sequence. The relationship between the

sandstones and basalts is best preserved in the Etendeka where basalt flows wrap around

well preserved dune structures (Fig. 4.8a, Photo 1), and sediments are seen infilling

cooling fractures on the basalt surfaces (Fig. 4.8b, Photo 2). Similar interactions between

sediments and magmatism are inferred for the marginal basins on a local scale.
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Fig. 4.8a.

Fig.4.8b.

and deposition.

Cbapter4

Photo 1. Relationsbip between the basalts and local dune deposits, EteDdeb.

Photo le Sediments hdlUing cooling fractures indicating contemporaneous eruption
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Fig.4.9. Effect of magmatic underplating 10 km of basaltic material on the regional

geothermal gradient, after Brown et al., (1994).The model takes into account the conductive and

advective transfer of heat within the lithosphere and also accommodates transient thermal

anomalies. It is a numerical solution that assumes constant temperature boundary conditions at the

surface and the base of the numerical grid and involves a heat production term (1 x 10.6W m_3) in

order to obtain a near-surface steady state thermal gradient of 25°C km-'. Lower thermal boundary

layer was kept at a constant temperature of 1350 QC.The lithosphere and crust have a combined

thickness of 120 km (80 km and 40 km respectively). Density was assumed to be temperature

dependent.
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The sediments have undoubtedly been affected thermally both by the extrusion of

the main Parana - Etendeka CFB and associated lavas in the Early Cretaceous, and the

associated magmatic underplating and high-level emplacement of dykes and sills. Such

Chapter4 208 Geochronology



thermal consequences of magmatic activity have previously been discussed by Brown et

al. (1994) (Fig. 4.9), and although the details of their model are not repeated here, a

number of their fmdings are important to this discussion. A simple shear extension model

produced 100 km of extension over 10 my and this was shown not to elevate near surface

temperatures significantly with a maximum sub-surface heating of - 10°C at 4 to 5 km,

but rather to concentrate excess heat at depths of between 60 and 100 km. Magmatic

underplating, which at a minimum can be considered to be at least equal to the volume of

material extruded at the surface (Cox, 1993), was shown to have a much greater effect

than extension by altering the regional geothermal gradient particularly if underplating

occurs at depths of 10 - 15 km. The Uruguay gravity anomaly is located at a depth of 15

km (Chapter 2). Sub-surface heating increased temperatures by 5 to 10°C at depths of - 1

km and 40 to 50 °C at depths of -5 km (Brown et al., 1994) (Fig. 4.9).

At shallow levels lava extrusions are reported to increase surface temperatures by

as much as 25 °C, and to affect a zone up to five times the thickness of the individual

flow. However, this is a short-lived effect (Brown et al., 1994). Finally high-level

intrusions including dykes and sills predominantly affect the surrounding country rocks in

immediate contact during cooling by conduction of heat. These characteristics should

therefore be considered when prospecting at rifted continental margins, particularly where

there is evidence for extensive magmatism and plume involvement. Significant variations

in palaeo-temperature along the South Atlantic margin are implied by the localised

concentration of magmatism in the Parana - Etendeka province. This suggests that the

sediments in this region in particular those in the vicinity of extensive basaltic magmatism

and intruded by associated dykes and sills will be affected on a local scale of up to 5 times

the thickness of the flow. Individual basalt flows in the Parana province are between 5 cm

and 1.5 m implying that the sediments within an immediate zone of 7.5 m of the thickest

flows would have been affected by temperature changes of> 25°C. Such an immediate

effect combined with the relatively low thermal conductivity of basalt could potentially

prolong the effect particularly if significant burial occurred with the result that

hydrocarbon source rocks and reservoirs would be destroyed. The effects of magmatism

on sediments is therefore immediate primarily within the top 2 km of the surface.
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4.10. Lava Stratigraphy & its Relationship to dyke composition and orientation.

As discussed earlier, the relationship of the surface lavas and the dykes is of prime

importance in understanding the relationship between rifting and magmatism in the South

Atlantic, and the timing of the different extension episodes. A 3D stratigraphy of the

different magma types in the Parana lava pile is available through the use of borehole

material and surface mapping (Peate et al. 1990, 1992). The high-TiIY magmas include

the Pitanga, Paranapanema, Urubici and Ribeira magma types and are characterised

chemically by negative Nb- Ta anomalies relative to the light rare earth (LRE) and large

ion lithophile (LIT..) elements, and a restricted range in isotope ratios (87Sr,J86SrI30=
0.7048 - 0.7065; 206PbP04Pb = 17.46-18.25) (Peate et al., 1992; Peate & Hawkesworth,

1996). The low- TiIY Gramado and Esmeralda magma types have a greater relative

enrichment of large ion lithophile (LIL) and light rare earth (LRE) elements than the

high- TiIY magma types, and they have prominent negative Ti anomalies when normalised

to primitive mantle (Peate et al., 1992; Peate & Hawkesworth, 1996). These features, and

in particular the negative Ti and Nb-La anomalies, are not characteristic of oceanic basalts

normally associated with mantle plumes, and instead they widely attributed to source

regions within the continental lithosphere (Hawkesworth et al., 1988; Hergt et al., 1991;

Peate et al., 1992).

The units of different magma types in the Parana CFB province were found to step

up in a northward direction (Peate et al., 1992). The association between the different

magma types and dykes is evident in Figure 4.10, which is of a sketch map of the Parana -

Etendeka province with a schematic profile through the Parana lava pile along a north-

south section after Hawkesworth et al., (1992). The similarity between the major and

trace-element chemistry of the Ponta Grossa dolerite dykes and the Pitanga and

Paranapanema magma types of the Parana suggested that these coast perpendicular dyke

suites acted as feeders to the high- TiIY magmas of the north of the basin (Regelous,

1993). The dykes of the Ponta Grossa region trend NW - SE (Piccirillo et al., 1990) (Fig.

4.10), and in recent studies by Regelous (1993) and Renne et al. (1996) were found to be

of a similar age to some of the basalts. Dykes of both normal and reverse polarities have

been recorded by Ernesto & Pacca (1988) therefore the dykes are considered to have been
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intruded over a period of at least 0.8 Ma. The high- TiIY magmas and the associated dykes

are therefore considered to have a bimodal age distribution with some of the lavas

particularly those related to the eastern Paraguay dykes slightly older than the main pbase

of activity. The stretching factor (Ii) during this early magmatic stage has been measured

as 1.1 (Oliveira, 1989).

The stretching factor (P) increased towards infinity as oceanic magmatism

proceeded. with an average crustal P factor of 2.16 calculated on the Brazilian continental

shelf by Chang et al. (1992) which increased almost linearly to P = 5.8 at the ocean-

continent boundary (ibid). The coast-parallel dykes (Fig. 4.10) which are chemically

similar to the more voluminous low TiIY magma types. indicate a change in the principal

stress regime and an increase in Ii to - 1.4 at 133 Ma. The amount of crustal extension is

constrained by the lateral extent of the rhyolites (calculated at between 240 and 500 km.

Milner et al., 1995) which succeded the eruption of the majority of the basalts. These

rhyolites had to be erupted prior to major crustal extension otherwise the lateral extents

would have to be the much greater than previously realised for similar extrusives.

Therefore the main phase of extension parallel to the final rift commenced at 134 Ma

when the orientation of the principle stress regime changed from NE - SW to roughly E -

W, and this coincides with the eruption of the main volume of lava between 134 and 130

Ma.
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Fig. 4.10. (a) N-S section through the Parana lava pile illustrating the internal stratigraphy

based on the chemical divisions of Peate et al., (1990; 1992). (b)Map of chemical association of dykes

and lava flows as defined by Peate et al., (1992).
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4.11. Discussion of Magmatism and Rifting.

During the course of this study new age data from southern Uruguay. the Etendeka

and the African coast have been presented and a number of important features have been

highlighted and summarised in order to constrain the rift history of the South Atlantic.

The importance of understanding the relationship between rifting and magmatism and the

effects each of these processes has on sediment properties has also been stressed. In this

final section all the different strands of evidence from palaeomagnetism, argon dating,

lava and dyke chemistry are discussed in terms of the overall rift process.

(i) There are two principal dyke orientations are associated with the Parana-

Etendeka CFB province. each of which is associated with a different magma type.

(li) The duration of magmatism in the Parana - Etendeka province is -10 my, with

a peak in magmatism between 130 and 134 Ma. This is further reflected by

palaeomagnetic studies which indicate between two and seven reversal events (- 4 my).

(iii) Rhyolites in southern Uruguay range in age from 124 to 130Ma therefore the

majority are younger than those of the Parana - Etendeka (132 to 130 Ma; Renne et al ..•

1996; Stewart et al., 1996).

(iv) Continental separation did not occur until after the eruption of the

lithochemical correlated units of the Parana - Btendeka rhyolites which were centred at

Messum, Namibia otherwise individual units would have travelled distances of> 340 km.

(v) The effect of magmatism on sediments is considered more important on an

immediate rather than regional level potentially destroying both hydrocarbon source rocks

and reservoirs.

The association of the Parana - Btendeka CFB province with the Tristan da Cunha

hot spot via the Rio Grande Rise and Walvis Ridge has long been recognised (Morgan.

1971) (Fig. 7). Whether CFB magmatism is primarily related to rifting or the

emplacement of a plume remains contentious and it may well be different in different

places (White &McKenzie, 1989; Richards et al., 1989). Furthermore the question of

whether magmatism is a response to the impingement of a mantle plume thinning the
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lithosphere, and rising adiabatically, or whether magmatism is related to changes in the

overall stress regime and absolute plate motions needs to be addressed.

Stretching of the lithosphere can occur via a variety of different active and passive

mechanisms including impingement of a mantle plume (Bott, 1993), changing the

distribution of gravitational potential energy (Sandiford & Coblentz, 1994), ridge-push

and ridge-pull forces (Whittaker et al., 1992) and shear traction (Pavoni, 1993). Given the

large areal extent of the Gondwana supercontinent prior to break-up in the

Jurassic/Cretaceous the build up of such passive forces as described by Pavoni (1993) and

Sandiford & Coblentz (1994) among others cannot be ruled out considering the potential

for plate edge effects and changes in the global tectonic perspective.

The timing and duration of the main Parana - Etendeka magmatic event suggests

that magmatism preceded large-scale rifting, with the majority of the basalts and rhyolites

erupted prior to the first occurrence of a magnetic anomaly on new ocean floor. The onset

of magmatism appears to correlate with extension normal to the orientation of the Ponta

Grossa dyke swarm, and with a number of basins in Uruguay and Argentina including the

Colorado and Salado basins which have been linked with internal deformation and

rotation (Niirnberg & Miiller, 1991). Magmatism in the north of the basin occurred from

138 to 132 Ma according to recent Ar-Ar dating on both dykes and surface extrusions

(Turner et al., 1994; Stewart et al., 1996) and thus can be closely linked with the internal

deformation of South America (Regelous, 1993).

An increase in magmatic activity from 134 to 129 Ma, corresponds to a change in

the principal dyke orientation, from NW - SE to roughly N-S, parallel to the newly

forming Cretaceous continental margin. Considerable overlap occurs in the ages of

specific magma types which suggests simultaneous eruption, for example Pitanga lavas

were erupted from 138 to 134 Ma in the north of the basin, meanwhile Gramado magmas

were erupted in the south of the basin from -134 Ma (Turner et al., 1994; Stewart et al.•

1996). At 133 Ma Paranapanema magmas were erupted in the north while Gramado and

Urubici type magmas were erupted on the Serra Geral escarpment (Fig. 4.2). Magmatism

in southern Uruguay appears to continue after the main CFB eruptive phase has ceased

with the eruption of silicic volcanics which have been dated in this study at between 130

and 123 Ma. Increased deviatoric stresses associated with final continental separation are
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considered responsible for the arrival of these crustal melts at the surface by lowering the

confining pressures.

Conclusions.

Firstly that there is no simple association between magmatism and rifting, but the

duration of the magmatic event can place constraints on the origin of the magmas as rapid

eruption rates are proposed to involve large scale decompression melting of a mantle

plume. The age of the Parana - Etendeka province has been constrained to within ten

million years, the spread in this data from 138 to 127Ma is important for any proposed

interpretation on the association between rifting and magmatism. The main eruptive phase

is centred between 134 and 130 Ma according to the frequency of ages obtained (Fig.

4.5).

Plume involvement in the province is recognised in order to generate such large

volumes of magmas. The regional affect of such a plume on sedimentation is considered

minimal. However high-level intrusions such as sills and dykes are considered to have an

immediate affect on the local scale, and may be important when investigating the potential

of offshore hydrocarbon resources in or close to a large volume igneous province.

Changes in the orientation of the regional stress field in the Parana - Etendeka are

linked with changes in the rate at which magma reaches the surface which suggests that

increased regional extension factors are important in the generation of large-volume

igneous provinces.
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Chapter 5.

Summary: Melt production inUruguay.

5.1. Introduction.

Basaltic and rhyolitic magmatism of Cretaceous age is found in southern Uruguay

where it is associated with a major positive gravity anomaly (Fig. 1.22). Previous work on

the southern Uruguay exposures is limited and this thesis presents the first major

geochemical and geochronological study of the Puerto G6mez Formation basalts and the

Arequita Formation rhyolites. Inparticular new geochemical and geochronological data

provides new insights into the relationship of this magmatism to that of the Parana -

Etendeka flood basalt province and the Tristan plume, and to the opening of the South

Atlantic.

The aim of this final chapter is to summarise the conclusions drawn from the

previous chapters and to address the initial aims of this research which were outlined in

Chapter 1. These aims were;

(a) to introduce the geology of Uruguay particularly the volcanic rocks of the Early

Cretaceous;

(b) to characterise these extrusive basalts and rhyolites and to establish a model for their

origin using petrography, geochemistry and geochronology;

(c) to date precisely the extrusive volcanics and to evaluate the relationship between the

Uruguayan rocks and those of a similar age and composition in the Parana - Etendeka;

(d) to provide greater insight into the processes of rifting and magmatism in a continental

setting by understanding the petrogenesis of the rocks at the surface;

(e) to add to the understanding of the tectonic processes that operated in the South Atlantic

region pre-. syn- and post-rifting by obtaining absolute ages for the coastal dykes on both
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sides of the present day ocean and estimating the amounts of extension at particular times

leading up to the opening of the South Atlantic.

5.2. Petrogenesis of the Puerto GOmez Formation.

The basalts and andesites of the Puerto G6mez Formation are tholeiitic and

composed predominantly of clinopyroxene, plagioclase, iron oxides :f: olivine :f: pigeonite.

The normative mineralogies of diopside, olivine, hypersthene and quartz suggest they

were last in equilibrium at -1 atm pressure in the plagioclase stability zone indicating

differentiation at relatively shallow levels in the crust. Chemically and isotopically the

Puerto G6mez Formation can be divided into two magma types. the more voluminous

Treinte Y Tres magma type and the rare Santa Lucia magma type (Chapter 2).

The Treinte Y Tres magma type shares many chemical similarities with the low Ti

Gramado magma type of the parana, and its compositional equivalent (Tafelberg

member) in the Etendeka. Detailed chemical modelling indicates that the Treinte Y Tres

and the Gramado magma types have a common source, inferred to be in the sub-

continental lithospheric mantle. The parental magmas were subsequently affected by

shallow level assimilation of upper crustal components and extensive fractional

crystallisation, resulting in a wide range of evolved compositions (Mg #, 34 to 70) and Sr

isotopic ratios (0.7089 - 0.7210).

The Santa Lucia magma type is unique and bears little resemblance to basalts

previously described from the Parana province. The Santa Lucia basalts are considered to

be asthenospheric melts on the basis of their smooth primitive mantle-normalised

incompatible element patterns and in having trace-element ratios similar to those of

Tristan. Furthermore the Santa Lucia basalts have relatively unradiogenic 143Ndll44Ndi

values (0.5124 to 0.5122) and so mixing between a Tristan end member (143Ndll44Nd =

0.5126 - 0.5124) and magma with more enricbed isotope ratios has been proposed. In fact,

simple magma mixing of a Treinte Y Tres basalt and a Tristan basalt reproduces the

observed variation within the Santa Lucia magma type. This is the first documented

occurrence of basalt similar to those on the Tristan bot-spot being contemporaneous with
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the main Parana flood basalt event and potentially marks the transition from lithospheric

to asthenospheric-derived melts in the Parana province.

5.3. Petrogenesis of the Arequita Formation.

The Arequita Formation consists of trachydacites and rhyolites with an anhydrous

mineralogy of plagioclase, pyroxene, alkali feldspar, iron oxides ± quartz. The Arequita

Formation rhyolites have been divided into two types on the basis of petrology. Type 1

contains the least evolved samples which are predominantly trachydacites with orientated

feldspar phenocrysts. Type 2 is the more voluminous rhyolite type, and it is characterised

by the presence of variably sized rounded to euhedral quartz phenocrysts and frequently

preserved ignimbritic textures. The occurrence of such textures is highly unusual in

rhyolites associated with the Parana - Etendeka province even though a number of authors

have inferred the rhyolites to be ignimbrites (Whittingham, 1991; Milner et al., 1992;

Milner et al., 1995). The lack of well preserved pyroclastic textures elsewhere in the

province has been attributed in part to the high temperatures associated with the Parana -

Etendeka rhyolites of between 950 and 1050 °C, which have resulted in rewelding of the

original ignimbritic textures (Bellieni et al., 1988; Milner et al., 1992; Garland et al.,

1995).

The two rhyolite types recognised petrologically do not define distinct

compositional groups based on major- and trace- element data, although the more quartz-

rich rocks tend to be more evolved. Instead the rhyolite data from southern Uruguay have

been divided chemically into two series, the Lascano Series and the AigUa Series, which

are not equivalent to the rhyolite types previously described on the basis of petrology.

These series were identified on the basis of trace element and isotopic data with the

Lascano Series characterised by high Sr, TiIZr, EulEu* and lower Nb and Zs, and a wide

range of initial Sr and Nd isotope ratios. The Aigiia parental magma is characterised by

low Sr contents with low Ti/Zr, EulEu*. LoweNdj and 87SrJ86Srjratios are also

diagnostic of the AigUa Series.

The source of the Lascano Series is also considered to be lower crustal but with

notable high-level contamination by upper crustal components in order to generate the
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wide variation in 87Srf86Srj and RblBa evident within the series. The Lascano source is

characterised by higher TiIZr and EulEu· than the AigUa Series.

Uruguayan rhyolites as a whole are distinct from the rhyolites of the Parana-
Etendeka in terms of both petrology and composition. The differences are potentially

temperature related, as suggested in Chapter 3 and summarised below. The timing of the

rhyolitic magmatism (Chapter 4 and Stewart et al., 1996) is seen to post-date much of the

earlier basaltic volcanism and is more closely related to the formation of the first oceanic

crust at M4 (126 - 127Ma, Kent & Gradstein, 1985),suggesting that increased extension

facilitated the melting and extrusion of these rhyolites.

5.4. Temperature variations and the Origin of the Rhyolites.

Calculation of accurate temperatures for the Uruguay rhyolites bas proved to be

difficult in view of the evidence for disequilibrium between co-existing phenocrysts and

between phenocrysts and the melt. Temperatures from southern Uruguay are however

consistently lower than those calculated for the Parana rhyolites independent of the

thermometer applied. Trachydacites of the Lascano Series yielded the highest

temperatures from apatite thermometry (900 - 1037°C) while the rhyolites of the Lascano

Series are indistinguishable from those of the Aigtia Series on all thermometers, with

temperatures in the region of 850 ± 100 °C.

An extensive trans-Atlantic comparison of the eruptive sequences of the Paran4 -

Etendeka rhyolites by Milner et al. (1995). suggested that the Awahab Formation low Ti

rhyolites correlated with the lower most units of the Palmas group of the Parana. and

erupted from the Messum alkalic complex in the Etendeka (Milner & Ewart. 1989).The

rhyolites of the Tafelberg member were correlated with some of the uppermost Palmas

units and while the centre of eruption for these rhyolites bas not been recognised it has

been inferred from stratigraphy to be closer to Brazil (Milner et al., 1995; Garland et al.•

1995).

Temperature estimates from a number of different geothermometers appear to

indicate that the Uruguay rhyolites were erupted at lower temperatures than the

geographically adjacent rhyolites of the Parana - Etendeka. The Etendeka rhyolites are
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high temperature (1000 - ll00°C) rheoignimbrites. with localised development of

pyroclastic textures (Milner et al .• 1992). The development of the ignimbritic textures

previously described from the Uruguay rhyolites suggests that at least some of these

rhyolites are associated with pyroclastic activity. No caldera structure has however been

recognised in the region. and in view of the distinctive chemistry of these rhyolites when

compared with those of the Parana - Etendeka province it is unlikely that they were

sourced in either the Messum complex or from a similar complex to that proposed for the

Upper Palmas units and Tafelberg rhyolites.

The rhyolites from southern Uruguay that lack eutaxitic textures are considered to

be lavas. since they are characterised by a number of features typical of felsic lavas

including trachytic alignment. flow banding and flow folding. Effusion of silicic lava via

acid dykes is considered to have OCCUlTedcontemporaneously with the main explosive

events as the rhyolites of both petrologic types have been shown to be related via

assimilation and/or fractional crystallisation processes within the two geochemically

defined series.

5.5. Age of the Uruguay magmatic event.

The age of the volcanic rocks of southern Uruguay has been established by a

detailed Ax - Ar dating study of 13 samples (6 basalts. 1 syenite and 6 rhyolites). The

relatively phenocryst-rich nature of all the samples made them ideal for mineral

separation with argon release from individual phenocrysts assuring minimum groundmass

interference and hence a true 'closure' age for the sample. The stratigraphy of the lava pile

suggested that the rhyolites were younger than the basalts and this was found to be the

case with the basalts ranging in age from 134.0 ± 0.5 to 130.0 ± 2 Ma and the rhyolites

from 130.9 ± 0.7 to 123.9 ± 0.4 Ma. The basalt age range is similar to that described for

the lavas of the Serra Geral escarpment of the southern Parana (Renne et al .• 1992. 1996;

Turner et al .• 1994; Stewart et al .• 1996) which is mainly composed of the Gramado and

Esmeralda magma types. This is therefore consistent with the conclusion from Chapter 2

that the main volume of basaltic lava in southern Uruguay was derived from similar
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source regions to the Gramado magma type. The age range of the rhyolites ismuch larger

than anticipated from the rhyolite activity in the Parana - Etendeka (predominantly 132 to

130 Ma, Stewart et al., 1996; Renne et al., 1996b); but there is no evidence to suggest that

the ages are unreliable particularly as the plateau age was averaged over 10 to 20 'steps'

for many of the samples (Chapter 4).

An intrusive syenite of the Valle Chico Formation was dated by laser step heating

of biotite separates at 132.0 ± 0.3 (plateau age). This is contemporaneous with similar

intrusive complexes in the Damaraland province which have been dated between 137.0 ±

0.7 (Paresis. Milner et al., 1995b) and 129.3:t: 0.7 Ma (Messum, Renne et al., 1996b;

Stewart et al., 1996).

5.6. Duration of magmatism.

The dating of the Parana - Etendeka province and hence the duration of

magmatism bas been the centre of much debate recently. In particular Renne et al. (1992)

proposed that the entire Parana - Etendeka volcanic province was erupted in less than one

million years, while Turner et al., (1994) and Stewart et al., (1996) proposed a much

longer time frame of between 10 to 12 my. More recently the duration of the extrusive

and intrusive activity was inferred by Renne et al, (l996b) to be between 129 and 133 Ma

with an overall 3 to 4 my duration, however this is still shorter than that proposed by

Turner et al.• (1994) and Stewart et al .• (1996). These latter studies have published age

ranges from the north-western part of the Parana basin of between 138 and 132 Ma, with

basalts and rhyolites further south ranging from 133 to 127 Ma. The protracted eruption

time scale is thought to be supported by the intercalation of sand dunes and lavas at the

base of the formation and by the recognition of at least one erosional surface (Milner et

al.• 1995; Stewart et al. 1996).
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represents the proposed temperature and melt-production rate assuming decompression melting as
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The debate over the duration of magmatism is important for a number of reasons.

An implied mean eruption rate on the order of 1.5 km3yrl (Renne et al.• 1992) can be

explained by rapid decompression melting within a mantle plume (White & McKenzie,

1995) and hence a mantle plume origin. This is because the eruption of large volumes of

basalt (typically lOS - 1()6km3) in 1 to 2 my require very high melt-production rates, and

these are readily achievable during decompression of mantle with anomalously high

temperatures. The amount of melt generated in the case of Hawaii is in the order of 0.16

km3yrl (Fig. 5.1). The volume of melt produced can be increased either by increasing

mantle temperatures or by increased amounts of stretching and thinning (White &

McKenzie, 1995). However the total melt volume may also be at least a factor of two

greater than that observed on the surface when the probable lower crustal intrusives and

underplating are taken into account together with fractionation (Cox, 1993).

Slower eruption rates, and hence by implication lower melt generation rates would allow

for generation of large volumes of basalt by alternative models including conductive

heating and dehydration melting within the sub-continentallithospheric mantle (Gallagher

& Hawkesworth, 1992; Turner et al., 1996).

Understanding the temporal evolution of a province can provide a possible key to

the tectono-thermal conditions of melt production, but in general melt production rates

within CFB are not well constrained. Calculations of melt production rates can be made

from an estimate of the total volume and the duration of activity as measured from Ar -

AI dating. In southern Uruguay the volume was estimated using the present areal surface

exposures which is therefore a minimum. For the basalts of the Puerto G6mez Formation

two different thicknesses were used, the first was taken from the borehole section

(DDHS02. Fig. 1.22) where the total thickness of mafic material encountered was 0.7 km,

while the second is simply the basalt thickness at the surface (- 5 m). To these values

were added the volume estimated from the gravity anomaly (35,000 km3) that underlies

the surface exposures, which was doubled assuming 50% underplating (Cox. 1993). The

total was divided by the duration of activity for the Uruguay basalts. which was inferred

from Ar - Ar dating results to be 4 my. The thickness of the basalts has only a limited

effect on the overall calculated eruption rate because the total volume is dominated by the
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large volume of mafic material inferred to lie in the middle crust (Table 5.1). Melt

production rates are assumed to be twice that of the eruption rate since the lavas are

highly evolved and it is often inferred that 50% of the magma would be underplated (Cox,

1993. Table 5.1 contains the calculated areas, eruption rates and volumes for the basalts of

southern Uruguay and the Parana.

Table 5.1. The calculated volumes and average eruption rates for the Uruguay lavas

as compared with those of the Parana from Stewart et al. (1996).

Age Range Magma Thickness Volume (km'') Production rate

(Ma) (km) (km3vrl)

134 to 130 P. Gomez 0.77 71,300 0.017

134 to 130 P. Gomez 0.05 70,100 0.017

133 to 131 *PitlPar/Gra 424,000 0.21

IUrulEsm

131 to 127 GralUrulEsm 32,000 0.01

* Pit = Pitanga; Par = Paranapanema; UI1l = Urubici; Ora = Gramado; Esm = Esmeralda;

The calculated melt production rates for southern Uruguay are low between

0.0178 km3 yrl (assuming a thickness ofO.7 km) and 0.0175 km3 yr -1 (0.05 km) (Table

5.1). These rates are similar to those published for the Serra Geral escarpment lavas in the

Parana over the period 131 to 127 Ma (Stewart et al., 1996) (Table 5.1). Stretching

factors (13) related to the coast-parallel dykes are assumed to be between 1 and 1.1 at the

time of production of the thickest lava sequences (Oliveira, 1989). Extension increased

towards infmity (e) at final rifting (126 - 127 Ma), and by 131 Ma it is assumed that p e 2

assuming a linear relationship between stretching and time (Fig. 5.2). Therefore assuming

an initial lithospheric thickness (Z}o) of 160 km the attenuated lithosphere would be 80 km

(zr) at 131 Ma. If the melt is produced from decompression melting in the asthenosphere

and the mantle potential temperature (Tp) was 1480 °C as proposed by Gallagher &

Hawkesworth (1994), the melt production rate for 80 km thick lithosphere would be e
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0.001 km3 yr1 (Fig. 5.1) (White & McKenzie, 1994). It is therefore impossible to

produce the volume of melt evident by decompression melting, without a large degree of

attenuation at similar temperatures. Large scale extension was therefore clearly important

in the generation of the flood basalts of the Parana province.
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Fig.5.2. Magma eruption/production rates versus time during the evolution of the Parana

province and the associated oceanic trace. M4 marks the age of the oldest magnetic anomaly found

in the South Atlantic at the latitude of the Parana (Niirnberg & Milller, 1991). The shaded area

represents the calculated eruption rates and the open column is the amount assumed to be

underplated (Cox, 1980). The dashed curve represents the melt production rates in the

asthenosphere predicted by back tracking the plume (Tp = 1490 0c) beneath the continent and

assuming the extension rate rapidly decreases both on moving onland and with increasing age.

Diagram from Stewart et al., (1996).

Evidence in support of melting eventually occurring by decompression of the

asthenosphere instead of by conduction in the lithospheric mantle is best observed in

southern Uruguay where for the first time there is evidence of mixing between an

asthenosphere-derived Tristan magma type and a melt of lithospheric mantle (Chapter 2).

This observation has important implications regarding the positioning of the associated

plume during the early Cretaceous. Southern Uruguay, according to current models of the
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plume position during the Early Cretaceous, lay at the periphery of the influence of the

plume. However, the presence of asthenosphere-derived melts in southern Uruguay is

therefore highly unusual as greater degrees of melting are expected where the plume is

hottest, at the centre rather than on the margins.

5.7. Model for rifting in the South Atlantic.

Magmatism in the Parana - Etendeka province is considered to be bimodal with

the main volume of lava erupted between 131 and 133 Ma prior to the onset of seafloor

spreading in the South Atlantic at 126 Ma. An earlier phase of magmatic activity between

138 and 135 Ma has been highlighted by the work of Turner et al. (1994) and Stewart et

al. (1996). These older dates are primarily for samples of the Pitanga and Paranapanema

magma types in the northwest of the Parana province. These magma types have been

chemically linked to the Ponta Grossa dyke swarm in the Parana State, northeastern Brazil

(Regelous, 1993) and the dyke swarm of eastern Paraguay. The Ponta Grossa dyke swarm

and similarly orientated dykes in eastern Paraguay together with the Mesozoic Salado,

Colorado, Santa Lucfa and Punte del Este basins of Argentina and Uruguay have been

linked to internal deformation and clockwise rotation of southern South America with a

predominant NE - SWextensional direction (Martin, 1987; Niirnberg & Miiller, 1991;

Chang et al., 1992).

An increase in magmatic activity from 134 to 129 Ma, corresponds to a change in

the principal dyke orientation, from NW - SE to roughly N-S, parallel to the newly

forming Cretaceous plate margin. Coast-parallel dykes, which are also parallel to the

regional structural lineaments in the underlying basement, are seen in Brazil, in particular

along the Serra do Mar between Florianopolis and Rio de Janeiro. NE-SW trending dykes

are also evident in the Sao Paulo and Rio de Janeiro States (Fig. 5.3). Moreover, this was

the principal dyke orientation in Namibia and South Africa prior to break-up, where there

is dense intrusive activity of similar age to the main flood basalt event (Fig. 5.3).

Chemically, the coast-parallel dykes are similar to the 10w-TiIY Tafelberg and Gramado

magma types of the Etendeka-Parana (Erlank et al., 1984).
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Considerable overlap occurs in the ages of specific magma types which suggests

simultaneous eruption of different magma types, for example at 133 Ma Paranapanema

magmas were erupted in the north while Gramado and Urubici type magmas were erupted

on the Serra Geral escarpment (Turner et al., 1994; Stewart et al., 1996). Magmatism in

southern Uruguay appears to coincide initially, but to continue after the main CF8

eruptive phase has ceased with the eruption of silicic volcanics which have been dated in

this study at between 130 and 124Ma. Increased deviatoric stresses associated with final

continental separation are considered responsible for the arrival of these crustal melts at

the surface by lowering the confining pressures.

The recognition of magnetic anomalies M9 and M7 off the southern tip of Africa

and nowhere else along the margin suggests that initial seafloor spreading occurred in this

region first and paved the way for the fmal rift stretching from the Falkland plateau to the

Rio Grande Rise - Walvis Ridge. However from the dating project undertaken in this

study of Uruguay lavas, Etendeka lavas and coast-parallel dykes in southern Africa there

is little evidence to support a correlation between magmatism and an unzipping model of

rifting in the southern South Atlantic as the study failed to detect any variation in the age

of dykes along the South Atlantic margin.

The stretching factor (Ii) increased towards infinity as oceanic magmatism

proceeded, with an average crustal ~ factor of 2.16 calculated on the Brazilian continental

shelf by Chang et al. (1992) which increased almost linearly to Ii = 5.8 at the ocean -

continent boundary (ibid). The coast parallel dykes (Fig. 5.3) indicate a change in the

principal stress regime, with ~ increasing to a value of - 1.4 at 133 Ma. The amount of

crustal extension is constrained by the lateral extent of the rhyolites (calculated at between

240 and 500 km, Milner et al.• 1995) which succeded the eruption of the majority of the

basalts. These rhyolites had to be erupted prior to major crustal extension otherwise their

lateral extent would have to be much greater than previously realised for similar

extrusives. The main phase of extension parallel to the final rift is herein considered to

have commenced at 134 Ma. when the orientation of the principal stress regime changed

from NE - SW to roughly E - W. and this coincides with the eruption of the main volume

oflava between 134 and 130Ma.
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The opening of the South Atlantic during the Early Cretaceous is considered to be

a rather complex process which occurred due to a combination of changing tectonic stress

regimes and the presence of a mantle plume. Initial rifting occurred off the southern tip of

Africa as indicated by the magnetic anomalies. There appears to be little evidence to

support a model of incremental rifting north of this region, as far as the Walvis Ridge -

Rio Grande Rise and so instantaneous collapse in this region is proposed. The propagation

of the rift north of the Walvis Ridge - Rio Grande Rise is considered to have been affected

by the thermal anomaly and voluminous magmatism associated with the presence of both

the Tristan plume and later the Trinidade plume.

The relationship between rifting and magmatism and in particular the role of the

Tristan plume in relation to the opening of the South Atlantic is speculative. However. it

can be inferred from the presence and orientation of the basins. and the change in

principle stress regimes as indicated from the associated dyke swarms that Gondwana was

undergoing considerable internal deformation. This deformation was probably due to a

number of factors including plate edge effects and lateral variations in potential energy

combined with increased activity along subduction margins resulting in large scale plate

rotations. Delamination by active upwelling plumes (including Tristan and Trinidade)

may also have contributed to lithospheric fracturing and crustal failure, but this process is

not considered to be important here. Furthermore from the dating project undertaken in

this study of Uruguay lavas. Etendeka lavas and coast-parallel dykes in southern Africa

there is little evidence to support a correlation between magmatism and an unzipping

model of rifting in the southern South Atlantic as the study failed to detect any significant

variation in the age of dykes along the South Atlantic margin.

The involvement of plumes in this region is irrefutable. however the role of the

plume with regard to the rifting process is considered minimal. rather it may have

hindered the northward progression of the rift. In balancing the evidence presented in this

thesis the conclusions drawn regarding the rifting of the South Atlantic must be that the

process was controlled by extension. This extension resulted in thinning of the lithosphere

which paved the way for asthenospheric (plume) material to ultimately reach the surface.
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Fig.5.3. Dyke orientations associated with magmatism of the Parana - Etendeka province.
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APPENDIX A

GEOCHEMICAL DATA

The following pages contain all the new data generated during the course of this

research into the chemistry of the volcanics of southern Uruguay. The samples are listed in

the magma types/series that they are ascribed to inChapter 2 with the abbreviations used in

brackets:

Puerto Gomez Formation:

Santa Lucia (Santa L) magma type

Treinte Y Tres (TYT) magma type

Arequita Formation:

Aigua Series

Lascano Series

Valle Chico Formation (Syenite).

All major element data are corrected for the individual loss on ignition values of each

sample.
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Name SantaL Santa L Santa L Santa L Santa L TIT
Sample' 93L47 9l-UU 93L104 93L53 93L106 93L27

sio, 47.99 48.19 48.63 48.85 49.81 48.52
rio, 1.63 1.88 1.52 1.76 1.91 1.20
Al203 17.86 16.99 16.19 18.05 15.71 17.75
F~03 12.80 12.31 13.59 11.93 14.03 11.77
MnO 0.14 0.18 0.16 0.14 0.15 0.22
MgO 5.27 6.44 6.61 4.77 5.13 6.57
CaO 10.27 8.57 10.31 9.98 9.84 10.97
Na20 2.84 3.78 2.23 3.05 2.25 2.40
K20 0.92 1.14 0.56 1.14 0.87 0.43
P20S 0.28 0.52 0.21 0.32 0.31 0.17
LOI 1.86 0.86 2.00 1.89 1.52 2.00
Total 101.92 100.24 100.39 100.26 100.65 100.57
XRF
Rb 18.10 21.90 10.00 28.70 21.70 6.10
Sr 344.10 596.80 280.40 326.30 285.00 280.90
y 29.70 30.30 36.30 34.30 47.40 29.20
Zr 138.00 154.00 128.00 177.00 190.00 97.00
Nb 17.50 27.80 11.80 17.40 16.40 5.60
Ba 392.00 551.00 401.00 439.00 401.00 309.00
Ph 4.00 4.00 5.00 4.00 7.00 3.00
Tb 3.00 3.00 4.00 4.00 5.00 2.00
U 3.00 2.00 0.00 0.00 0.00 0.00
Se 33.00 30.00 43.00 26.00 39.00 42.00
V 222.00 236.00 295.00 235.00 298.00 208.00
Cr 150.00 107.00 137.00 197.00 44.00 317.00
Co 51.00 52.00 49.00 38.00 48.00 51.00
Ni 139.00 76.00 110.00 75.00 75.00 27.00
Cu 92.00 66.00 56.00 67.00 71.00 70.00
Zn 98.00 88.00 115.00 103.00 119.00 102.00
Ga 19.00 19.00 20.00 20.00 21.00 20.00
Mo 0.00 0.00 0.00 0.00 0.00
As 2.00 0.00 2.00 1.00 3.00
S 87.00 156.00 81.00 71.00 165.00

INAA
La 16.40 27.30 14.30 21.60 10.40
Ce 34.70 57.70 27.70 39.10 23.50
Nd 20.10 27.20 16.90 22.00 14.90
Sm 4.22 6.20 4.20 5.05 3.40
Eu 1.57 2.07 1.38 1.73 1.24
Tb 0.78 0.93 0.90 0.91 0.72
Yb 2.85 2.50 3.48 3.07 2.64
Lu 0.43 0.37 0.52 0.51 0.43
Tb 1.76 2.29 1.63 1.83 0.89
U 0.50 0.60 0.50
Ta 1.19 1.56 0.77 1.15 0.37
Hf 3.30 3.44 3.31 4.10 2.47

Isotopes
87Sr/86 s-, 0.7061 0.7046 0.7085 0.7074

143Ndll44 Ndj 0.5124 0.5122 0.5122 0.5120

delta 018 7.20
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Name TIT TIT TIT TIT TIT TIT
Sample# 93L9S 502-875 93L96 93L94 502-992 502-936
Si~ 50.84 50.92 51.44 52.01 52.31 52.33
rio, 1.23 1.09 1.23 1.25 1.18 1.20
A1zD3 17.15 15.90 16.77 14.64 15.52 14.35
FezD3 10.97 lU9 10.89 11.53 11.38 11.51
MnD 0.17 0.21 0.17 0.18 0.21 0.36
MgO 5.76 6.51 5.60 6.11 6.65 6.86
CaD 11.13 8.89 10.58 9.91 7.29 7.61
NazO 2.20 3.84 2.29 2.43 4.00 3.86
K20 0.41 1.35 0.90 1.80 1.30 1.81
P20S 0.15 0.12 0.14 0.14 0.16 0.13
LOI 3.82 2.67 1.46 1.35 2.60 2.15
Total 100.21 99.93 100.22 100.58 100.14 100.02
XRF
Rb 9.80 78.30 22.10 40.80 50.50 70.10
Sr 576.70 160.80 247.70 283.90 298.70 256.80
Y 31.20 29.00 32.40 28.80 31.50 32.30
Zr 132.00 132.00 138.00 115.00 156.00 137.00
Nb 7.40 7.40 7.10 5.80 7.50 7.90
Ba 271.00 197.00 257.00 338.00 437.00 608.00
Pb 5.00 8.00 5.00 5.00 3.00 8.00
Tb 4.00 4.00 3.00 4.00 4.00 4.00
U 2.00 1.00 2.00 1.00 1.00 0.00
Se 40.00 40.00 35.00 46.00 41.00 45.00
V 248.00 263.00 257.00 299.00 264.00 295.00
Cr 185.00 167.00 180.00 280.00 172.00 298.00
Co 43.00 50.00 42.00 43.00 51.00 53.00
Ni 73.00 92.00 72.00 59.00 62.00 89.00
Cu 87.00 126.00 88.00 104.00 37.00 158.00
Zn 86.00 84.00 85.00 106.00 98.00 93.00
Ga 19.00 15.00 20.00 18.00 16.00 16.00
Mo 0.00 0.00 0.00
As 1.00 1.00 0.00
S 130.00 88.00 85.00
INAA
La 15.30 15.40 13.30 17.20
Ce 32.80 34.50 27.90 34.80
Nd 17.90 18.80 16.90 17.60
Sm 4.34 4.45 3.89 4.61
Eu 1.33 1.35 1.36 1.16
Th 0.88 0.91 0.74 0.88
Yb 3.10 3.21 2.78 2.85
Lu 0.47 0.47 0.42 0.44
Tb 3.34 3.50 2.03 5.11
U 0.50 0.70 0.65

Ta 0.41 0.44 0.27 0.40
Hf 3.53 3.59 2.99 3.35

Isotopes
87Sr/86 SIj 0.7102 0.7106 0.7089 0.7156

143Ndll44 Ndi 0.5120 0.5121 0.5121

delta D18
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Name TYl' TYf TYf TYf TYf TYf

Sample' 93L93 93L97 SOl-732 SOl-lOOS 93L124 SOl-703
sio, 53.17 53.24 53.49 53.52 53.93 54.05

rio, 1.22 1.35 0.93 1.17 1.32 0.87

A12~ 14.92 15.80 17.99 15.61 15048 17.84

Fe203 11.25 11.04 8.91 10.91 11.28 8.26

MoO 0.17 0.17 0.15 0.14 0.17 0.14

MgO 6.52 5.24 4.76 5.92 4.45 4.47

CaO 10.25 10.06 10.85 9.38 9.14 7.73

Na20 1.83 2.19 1.99 2.42 2.46 5.20

K20 0.51 0.74 0.82 0.78 1.62 1.34

P20S 0.15 0.17 0.11 0.16 0.16 0.10

LOI 1.76 0.65 0.92 1.08 0041 2.62

Total 100.95 100.10 100.35 100.15 99.32 100.67

XRF
Rb 10.00 53.20 25.30 15.80 55.30 53.50

Sr 285.70 199.20 160.20 190.40 201.50 202.50

Y 31.80 37.90 29.00 31.20 33.60 25.70

Zr 159.00 177.00 126.00 162.00 158.00 115.00

Nb 7.40 10.10 7.90 8.40 8.20 7.70

Ba 330.00 317.00 227.00 276.00 381.00 260.00

Pb 6.00 6.00 10.00 8.00 7.00 5.00

Tb 5.00 6.00 5.00 3.00 7.00 4.00

U 0.00 3.00 1.00 0.00 0.00 1.00

Se 43.00 38.00 29.00 41.00 36.00 31.00

V 266.00 263.00 202.00 264.00 270.00 174.00

Cr 193.00 123.00 118.00 251.00 56.00 99.00

Co 43.00 44.00 37.00 49.00 41.00 33.00

Ni 73.00 52.00 41.00 64.00 46.00 36.00

Cu 47.00 65.00 40.00 71.00 98.00 40.00

Zn 96.00 93.00 71.00 93.00 90.00 66.00

Ga 20.00 20.00 19.00 18.00 20.00 15.00

Mo 0.00 0.00 1.00

As 2.00 1.00 0.00

S 114.00 207.00 61.00

INAA
La 19.40 19.60

Ce 38.10 38.40

Nd 21.10 19.60

Sm 4.56 4.56

Eu 1.40 1.27

Tb 0.84 0.78

Yb 2.99 2.65

Lu 0.46 0.43

Tb 3.31 3.66

U 0.73

Ta 0.39 0.31

Hf 3.92 3.72

Isotopes

87Srf86 Slj 0.7116 0.7134 0.7117

143Ndll44 Ndj 0.5120 0.5120 0.5124

delta 018
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Name 1YI 1YI 1YI TYl' TYl' TYl'
Sample# 93L103 92-U17 502-334 502-657 582-_ 931.42
sio, 54.08 54.22 54.23 55.04 55.16 55.65
rto, 1.42 1.25 1.41 1.06 1.29 1.26
Al2D3 15.27 15.68 15.65 17.39 16.65 15.42
F~D3 11.66 10.74 12.20 9.00 10.02 10.77
MnD 0.16 0.15 0.17 0.13 0.17 0.15
MgD 4.87 4.82 4.08 3.47 3.66 4.12
CaD 7.81 10.18 8.08 9.16 9.18 9.27
Na2D 2.54 1.71 2.79 2.24 2.79 2.08
K2D 1.93 1.10 1.22 2.36 0.91 1.10
P20S 0.25 0.15 0.18 0.14 0.17 0.18
LOI 1.16 1.37 3.20 0.58 2.67 2.26
Total 100.21 99.94 98.87 100.21 100.08 99.56
XRF
Rb 65.80 26.60 63.10 88.70 84.60 38.30
Sr 254.10 237.70 152.50 170.00 195.40 412.00
Y 48.70 35.50 44.20 32.00 37.10 39.00
Zr 247.00 146.00 187.00 166.00 194.00 191.00
Nb 18.40 9.70 11.50 10.10 11.00 8.90
Ba 557.00 409.00 319.00 293.00 293.00 519.00
Ph 8.00 7.00 13.00 11.00 15.00 13.00
Th 10.00 5.00 8.00 6.00 8.00 9.00
U 1.00 0.00 2.00 2.00 1.00 0.00
Se 34.00 40.00 43.00 33.00 36.00 32.00
V 224.00 272.00 269.00 200.00 239.00 247.00
Cr 45.00 134.00 38.00 56.00 48.00 40.00
Co 40.00 43.00 51.00 35.00 40.00 36.00
Ni 64.00 57.00 31.00 22.00 28.00 31.00
Cu 53.00 66.00 57.00 39.00 52.00 69.00
Zn 109.00 83.00 116.00 87.00 91.00 89.00
Ga 18.00 18.00 25.00 19.00 19.00 20.00
Mo 0.00 0.00
As 0.00 0.00
S 58.00 68.00
INAA
La 22.00
Ce 45.50
Nd 22.10
Sm 5.14
Eu 1.26
Th 0.87
Yb 2.92
Lu 0.45
Th 6.91
U 1.17
Ta 0.47
Hf 3.99

Isotopes
87Sr;86 Sfj 0.7156

143Ndll44 Ndj 0.5121

de1ta°18
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Name TIT TIT TIT 1YI TIT TIT
Sample. 931A3 502-306 93L98 502-372 582·269 502-403
Si02 56.02 58.31 58.46 58.53 58.71 59.07
no, 1.29 1.49 1.16 1.11 1.37 1.18
AI203 15.50 13.90 15.04 15.66 14.34 15.27
Fe203 10.49 1l.46 9.69 8.84 10.94 9.16
MnO 0.14 0.19 0.11 0.14 0.15 0.14
MgO 3.84 3.16 3.12 3.18 2.85 2.82
Cao 8.05 7.92 8.87 7.38 7.72 7.10
Na20 2.18 2.56 1.76 2.51 3.01 2.52
K20 2.33 0.81 1.64 2.50 0.73 2.58
P20S 0.17 0.20 0.14 0.16 0.18 0.16
LOI 2.62 1.92 1.34 0.39 0.08 0.35
Total 100.05 100.62 99.96 100.35 98.96 99.83
XRF
Rb 63.30 87.70 41.70 107.50 101.20 112.20
Sr 1084.00 144.30 217.40 138.90 146.70 140.50
Y 34.90 43.30 32.00 35.60 40.40 38.30
Zr 183.00 207.00 133.00 174.00 201.00 190.00
Nb 8.60 12.90 8.30 1l.l0 12.10 12.00
Ba 520.00 361.00 721.00 341.00 356.00 362.00
Pb 11.00 17.00 6.00 13.00 15.00 16.00
Th 8.00 8.00 5.00 8.00 9.00 9.00
U 1.00 2.00 1.00 2.00 2.00 3.00
Se 36.00 37.00 37.00 34.00 33.00 34.00
V 231.00 264.00 233.00 210.00 231.00 203.00
Cr 32.00 37.00 121.00 48.00 27.00 45.00
Co 39.00 46.00 33.00 33.00 43.00 34.00
Ni 33.00 26.00 45.00 24.00 22.00 25.00
Cu 108.00 77.00 62.00 40.00 60.00 45.00
Zn 90.00 102.00 79.00 84.00 91.00 85.00
Ga 21.00 20.00 15.00 20.00 18.00 20.00
Mo 0.00 0.00
As 6.00 3.00
S 102.00 91.00
INAA
La 27.30 20.40 27.20
Ce 56.90 32.20 56.70
Nd 28.20 23.40 26.50
Srn 6.71 4.99 6.20
Eu 1.49 1.40 1.37
Tb 1.12 0.93 1.01
Yb 3.76 2.96 3.40
Lu 0.60 0.43 0.52
Th 8.42 3.55 8.44
U 2.34 0.50 1.73
Ta 0.73 0.47 0.68
Hf 5.02 3.55 4.68
Isotopes

87Srf86 SIj 0.7192 0.7115 0.7201

143Ndll44 Ndi 0.5120 0.5120 0.5123

delta 018
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Name TYI' Syenite Syenite Syenite Lascano Lascano
Sample' 93LUS 93L62 93L59 931.67 93L78 93L66
sio, 60.39 59.80 61.15 65.60 61.19 62.49
Ti~ 1.88 1.46 1.33 1.00 1.52 1.29
Al203 12.66 14.87 15.20 14.34 14.n 14.32
F~03 12.14 8.93 7.94 6.49 9.35 8.47
MnO 0.18 0.17 0.15 0.13 0.15 0.16
MgO 2.02 1.77 1.41 1.06 0.78 1.34
Cao 6.07 4.04 3.47 2.22 3.26 3.07
Na20 2.53 4.42 4.31 3.81 3.87 3.n
K20 1.93 3.96 4.56 4.99 4.48 4.58
P20S 0.21 0.58 0.49 0.36 0.64 0.51
LOI 1.82 0.27 0.33 1.44 1.10 2.12
Total 100.57 100.63 99.82 99.95 99.85 100.08
XRF
Rb 107.10 101.40 126.90 160.90 122.40 143.30
Sr 204.70 339.40 295.80 279.90 313.30 206.20
y 49.20 70.40 67.70 63.80 112.10 58.00
Zr 227.00 649.00 560.00 427.00 491.00 459.00
Nb 16.20 78.30 82.70 55.10 53.20 56.70
Ba 509.00 1312.00 1239.00 1363.00 2776.00 1198.00
Pb 13.00 12.00 18.00 19.00 14.00 16.00
Th 11.00 10.00 11.00 18.00 12.00 13.00
U 1.00 4.00 2.00 0.00 1.00 1.00
Se 29.00 15.00 16.00 14.00 23.00 18.00
V 288.00 83.00 SO.OO 30.00 30.00 37.00
Cr 7.00 9.00 9.00 10.00 6.00 7.00
Co 30.00 15.00 13.00 9.00 9.00 12.00
Ni 7.00 6.00 5.00 5.00 7.00 3.00
Cu 94.00 16.00 19.00 13.00 9.00 11.00
Zn 107.00 113.00 115.00 99.00 129.00 119.00
Ga 19.00 24.00 23.00 21.00 22.00 22.00
Mo 0.00 4.00 3.00 1.00 2.00 1.00
As 3.00 4.00 3.00 1.00 3.00 0.00
S 71.00 145.00 55.00 50.00 300.00 107.00
INAA
La 30.70 79.30 81.10 74.00 142.00 69.10
Ce 65.00 155.00 159.00 lSO.00 211.00 138.00
Nd 33.30 68.90 65.90 61.SO 115.00 61.90
Srn 7.73 12.90 12.SO 11.70 20.SO 11.60
Eu 1.87 3.29 2.90 2.31 5.44 2.86
Th 1.38 1.98 1.78 1.65 3.01 1.71
Yb 4.65 7.15 7.06 6.27 8.84 5.91
Lu 0.69 1.09 1.05 0.89 1.38 0.89
Th 9.84 8.68 11.00 14.68 9.65 11.60
U 1.70 2.80 2.20 2.20 1.70 2.30
Ta 1.16 5.06 5.24 3.74 3.51 3.77
Hf 5.96 15.80 13.SO 10.69 10.90 10.70

Isotopes

87SrJ86Sfj 0.7169 0.7067 0.7065 0.7089 0.7085

143Ndll44 Ndj 0.5120 0.5118 0.5118 0.5119 0.5118

delta 018
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Name LascQIW LascQIW LascQIW Lascano Lascano Lascano
Sample' 93L65 931.50 93L64 93L74 93L115 93Lll1
sto, 62.69 63.77 66.50 69.73 69.78 70.76
Ti02 1.24 1.20 1.15 1.15 0.64 0.69
Al203 14.39 14.62 13.22 12.17 12.45 13.11
F~03 8.05 8.05 7.54 7.12 6.44 5.58
MnO 0.16 0.14 0.13 0.07 0.18 0.05
MgO 1.18 0.94 1.07 0.45 0.38 0.28
CaO 3.10 3.47 2.30 1.87 2.24 1.71
Na20 4.14 3.00 4.30 2.77 2.71 2.41
K20 4.58 4.40 3.39 4.24 5.06 5.19
P20S 0.46 0.40 0.39 0.43 0.12 0.21
LO! 2.18 1.26 2.22 1.83 2.06 1.11
Total 99.70 100.25 100.08 100.18 99.31 100.24
XRF
Rb 136.20 98.60 94.80 120.10 175.50 188.50
Sr 343.50 247.20 168.10 211.90 133.90 128.00
Y 58.60 68.00 51.50 123.70 104.70 66.50
Zr 475.00 883.00 373.00 398.00 367.00 393.00
Nb 56.10 33.20 43.20 51.30 28.70 23.30
Ba 1623.00 2169.00 1172.00 2809.00 1192.00 1567.00
Pb 13.00 19.00 15.00 12.00 23.00 26.00
Tb 13.00 7.00 10.00 12.00 17.00 21.00
U 2.00 1.00 1.00 1.00 3.00 2.00
Se 20.00 19.00 18.00 15.00 14.00 10.00
V 32.00 118.00 40.00 41.00 9.00 51.00
Cr 8.00 10.00 7.00 7.00 9.00 9.00
Co 9.00 13.00 8.00 9.00 7.00 4.00
Ni 5.00 9.00 3.00 8.00 14.00 6.00
Cu 14.00 21.00 12.00 10.00 9.00 9.00
Zn 112.00 131.00 102.00 76.00 128.00 70.00
Ga 19.00 20.00 17.00 17.00 18.00 17.00
Mo 1.00 3.00 1.00 1.00 1.00 1.00
As 5.00 0.00 0.00 2.00 6.00 6.00
S 81.00 64.00 52.00 382.00 99.00 163.00
INAA
La 70.00 57.40 232.00 85.90 71.30
Ce 142.00 120.00 325.00 138.00 132.00
Nd 62.90 52.20 201.00 73.90 65.60
Sm 11.80 9.81 35.70 15.10 13.30
Eu 2.87 2.66 7.08 3.45 2.60
Th 1.72 1.41 4.48 2.65 1.95
Yb 5.93 4.88 9.58 8.21 5.51
Lu 0.91 0.72 1.36 1.19 0.80
Th 12.10 9.00 9.98 15.03 17.08
U 2.00 1.70 2.30 3.70 1.89
Ta 3.81 2.71 3.44 2.06 1.47
Hf 11.00 8.36 9.67 9.30 9.41
Isotopes
87Sr/86Srr 0.7085 0.7088 0.71628

143Ndll44 Ndi 0.5119 0.51216

delta 018
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Name Lascano Lascano Lascano Lascano Lascano Lascano
Sample# 93L114 93L119 92-U15 92-U16 93L116 93L117
Si~ 70.76 71.01 71.27 71.33 71.49 71.62
no, 0.67 0.68 0.66 0.63 0.67 0.60
Al2~ 12.90 13.11 12.77 12.63 12.80 12.27
F~~ 6.53 5.23 6.22 6.15 5.16 5.65
MnO 0.07 0.05 0.16 0.10 0.04 0.12
MgO 0.21 0.23 0.20 0.20 0.26 0.66
CaO 1.04 0.62 US 1.31 1.70 1.92
Na20 3.09 2.74 2.79 2.91 2.48 2.69
K20 4.57 6.15 4.65 4.62 5.20 4.36
P205 0.13 0.18 0.12 0.13 0.18 0.11
LOI 1.76 1.52 1.39 1.03 1.42 1.13
Total 99.72 l(lO.02 99.64 100.26 100.07 99.67
XRF
Rb 173.80 216.90 167.50 168.30 178.50 171.80
Sr 134.00 95.80 134.10 123.30 116.80 125.10
Y 120.70 64.60 99.10 97.60 62.70 56.SO
'h 372.00 380.00 365.00 362.00 394.00 354.00
Nb 28.70 22.40 28.00 27.90 23.00 27.60
Ba 1499.00 1308.00 1285.00 889.00 998.00 754.00
Pb 21.00 25.00 24.00 23.00 23.00 19.00
Th 17.00 21.00 14.00 16.00 20.00 18.00
U 3.00 4.00 1.00 3.00 1.00 4.00
Se 18.00 13.00 15.00 16.00 15.00 13.00
V 14.00 46.00 32.00 29.00 38.00 17.00
Cr 4.00 10.00 12.00 9.00 8.00 7.00
Co 6.00 9.00 19.00 14.00 5.00 1.00
Ni 4.00 13.00 8.00 7.00 6.00 5.00
Cu 11.00 15.00 13.00 12.00 16.00 14.00
Zn 104.00 101.00 94.00 91.00 84.00 81.00
Ga 18.00 16.00 19.00 19.00 17.00 18.00
Mo 1.00 1.00 1.00 1.00
As 7.00 6.00 8.00 4.00
S 161.00 164.00 58.00 60.00

INAA
La 84.2 55.50 56.9 47.65
Cc 137 114.00 119 102.40
Nd 8U 58.80 54.0 46.40
Sm 16.5 13.00 10.9 9.55
Eu 3.58 2.94 1.96 1.99

Tb 2.83 2.28 1.67 1.52

Yb 9.]] 6.69 5.79 5.48

Lu 1.35 0.95 0.84 0.80

Th 15.4 15.00 17.5 14.90

U 2.5 2.16 2.4 3.10

Ta 2.09 2.07 1.51 1.91

Hf 9.54 9.10 9.67 8.53

Isotopes
87Sr/86 Sri 0.71589 0.71769 0.72481

143Ndll44 Ndi 0.51211 0.51223 0.51195

delta 018
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Name Lascano Lascano Lascano Lascono Lascano Lascano
Sample# 93L88 93L128 93L113 93L102 93L107 93LllO
sio, 72.36 72.57 72.74 72.90 72.83 73.29
Ti02 0.59 0.58 0.60 0.57 0.50 0.48
Al203 13.30 12.46 12.13 11.59 12.95 12.41
Fe203 4.25 5.70 5.55 5.35 4.56 4.82
MnO 0.04 0.07 0.07 0.07 0.08 0.12
MgO 0.58 0.36 0.10 0.39 0.79 0.19
CaO 0.36 1.09 1.44 1.30 1.11 0.81
Na20 3.75 1.97 2.84 1.87 1.78 2.14
K20 4.61 5.09 4.41 5.84 5.27 5.60

P20S 0.17 0.12 0.12 0.12 0.14 0.13
LO! 1.41 2.07 0.81 1.43 2.72 1.19
Total 100.10 100.35 100.15 99.75 99.35 100.07

XRF
Rb 179.90 184.50 166.50 147.70 192.00 195.70
Sr 78.60 121.60 132.00 94.10 114.60 99.60
y 83.10 64.60 60.80 53.00 52.00 66.30
Zr 625.00 469.00 359.00 333.00 421.00 431.00
Nb 109.50 27.00 28.40 24.90 23.70 23.80
Ba 812.00 1218.00 806.00 827.00 1250.00 1300.00
Ph 4.00 25.00 23.00 20.00 25.00 27.00
Th 28.00 21.00 16.00 16.00 20.00 19.00

U 4.00 2.00 0.00 3.00 2.00 1.00

Se 4.00 14.00 14.00 13.00 13.00 8.00
V 70.00 39.00 28.00 13.00 12.00 37.00

Cr 8.00 7.00 9.00 10.00 10.00 9.00

Co 7.00 3.00 2.00 2.00 3.00 8.00

Ni 14.00 6.00 4.00 3.00 5.00 6.00

Cu 11.00 11.00 11.00 14.00 11.00 9.00

Zn 109.00 103.00 91.00 87.00 82.00 50.00

Ga 25.00 19.00 19.00 17.00 17.00 15.00

Mo 1.00 1.00 2.00 0.00 1.00 1.00

As 0.00 8.00 5.00 1.00 5.00 9.00

S 111.00 68.00 39.00 60.00 69.00 70.00

INAA
La 64.9 47.4
Ce 148 94.0
Nd 65.3 45.5
Srn 12.7 9.51
Eu 2.30 2.28
Th 1.88 1.60
Yb 6.28 5.86
Lu 0.92 0.87
Th 19.0 15.4
U 1.9 1.9
Ta 1.67 1.98
Ht 11.7 9.06
Isotopes

87Sr/86 Sij 0.71898

143Ndll44Ndj 0.51189

delta 018
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Name Lascano Lascano Lascano Lascano Lascano Lascano
Sample# 93L109 93L1l2 93LUI 93L1U 93L99 92-U14
sio, 73.48 74.60 74.93 75.57 76.30 76.54
no, 0.43 0.45 0.48 0.32 0.33 0.31
Al2~ 12.50 11.69 11.78 12.02 11.63 1l.58
F~~ 4.42 4.18 4.59 2.98 3.10 2.72
MnO 0.05 0.06 0.05 0.04 0.02 0.02
MgO 0.18 0.36 0.31 0.21 O.ll 0.08Cao 0.84 0.33 0.38 0.44 0.27 0.50
Na20 2.12 0.92 2.02 1.79 1.66 1.63
K20 5.85 7.27 5.33 6.57 6.51 6.56
P20S 0.12 0.15 0.13 0.06 0.06 0.06
LOI 1.28 1.67 2.00 1.30 1.59 0.92
Total 100.31 99.49 99.95 100.33 100.54 99.50
XRF
Rb 199.70 250.80 193.00 221.60 212.10 208.60
Sr 117.90 421.00 132.20 73.60 60.90 71.50
Y 63.20 76.00 61.10 56.20 54.90 62.40
Zr 389.00 349.00 417.00 303.00 327.00 304.00
Nb 22.80 20.60 22.40 20.30 20.00 21.30
Ba 1521.00 2004.00 1306.00 1536.00 1226.00 1270.00
Pb 28.00 24.00 24.00 29.00 21.00 31.00
Th 23.00 17.00 19.00 20.00 22.00 21.00
U 2.00 1.00 3.00 1.00 2.00 2.00
Se 9.00 7.00 9.00 7.00 6.00 8.00
V 23.00 25.00 14.00 9.00 17.00 13.00
Cr 10.00 8.00 8.00 5.00 6.00 8.00
Co 5.00 4.00 1.00 2.00 3.00 5.00
Ni 6.00 5.00 5.00 6.00 4.00 7.00
Cu 8.00 8.00 10.00 7.00 7.00 7.00
Zn 75.00 51.00 93.00 62.00 52.00 57.00
Ga 16.00 13.00 15.00 15.00 15.00 15.00
Mo 1.00 1.00 1.00 0.00 0.00
AI. 9.00 10.00 5.00 6.00 2.00
S 100.00 249.00 227.00 87.00 49.00
INAA
La 71.7 61.3 67.7 66.20 65.70
Ce 154 131 139 132.00 138.00
Nd 68.8 65.4 61.0 57.60 60.60
Srn 12.9 13.6 11.7 10.90 11.60
Eu 2.30 2.57 1.71 1.64 1.60
Th 1.89 2.08 1.72 1.54 1.65
Vb 5.79 6.92 5.60 5.38 5.77
Lu 0.83 1.03 0.80 0.79 0.82
Th 19.2 16.6 19.9 20.12 20.50
U 1.9 1.9 1.4 2.12 3.48
Ta 1.55 1.33 1.50 1.48 1.57
Ht 10.3 9.55 9.16 8.78 8.15
lsotopes
87Sr/86 Sfj 0.72039 0.75454 0.72241 0.72262

143Nd1144Ndj 0.51191 0.51199 0.51190 0.51197

delta 018 10.80
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Name Lascano Lascano Lascano Lascano AigiJa AigiJa
Sample' 93L118 93L101 93L120B 93L126 93L86 93L83
sio, 77.80 78.29 78.81 78.88 61.74 63.30
no, 0.17 0.47 0.28 0.33 0.43 0.58
Al203 11.14 9.43 9.76 9.80 17.10 15.97

Fe203 1.76 3.72 2.68 3.10 7.15 6.61
MnO 0.03 0.05 0.03 0.06 0.21 0.11
MgO 0.03 0.21 0.03 0.29 0.29 0.48
CaO 0.34 0.12 0.07 0.22 0.74 1.58
Na20 1.61 0.39 0.04 0.70 5.79 5.42

K20 7.08 7.26 8.25 6.56 6.45 5.80

P20, 0.03 0.06 0.06 0.05 0.10 0.14
LOI 0.78 1.26 0.72 1.75 1.06 1.11
Total 100.59 100.32 100.51 100.13 99.54 100.27

XRF
Rb 253.30 179.00 160.20 163.60 188.10 143.70
Sr 32.60 86.80 47.50 35.40 15.50 39.10
y 56.70 28.00 40.20 42.00 94.90 82.90
Zr 237.00 191.00 246.00 285.00 1008.00 954.00
Nb 20.60 12.70 13.50 17.00 191.30 114.10
Ba 387.00 588.00 505.00 776.00 162.00 327.00

Pb 28.00 25.00 12.00 23.00 17.00 12.00

Tb 31.00 10.00 10.00 16.00 22.00 25.00

U 1.00 2.00 1.00 1.00 1.00 4.00

Se 6.00 6.00 4.00 9.00 12.00 10.00

V 14.00 28.00 24.00 40.00 15.00 4.00

Cr 5.00 23.00 12.00 6.00 5.00 6.00

Co 2.00 2.00 3.00 2.00 2.00 2.00

Ni 3.00 11.00 4.00 4.00 4.00 5.00

Cu 9.00 9.00 5.00 7.00 9.00 8.00

Zn 41.00 51.00 27.00 62.00 162.00 154.00

Ga 16.00 11.00 11.00 10.00 32.00 31.00

Mo 0.00 0.00 0.00 1.00 8.00 12.00

As 11.00 6.00 6.00 4.00 4.00 0.00

S 38.00 51.00 34.00 67.00 43.00 54.00

INAA
La 76.5 36.8 44.50 133.00

Ce 163 61.8 91.90 245.00

Nd 68.7 27.5 40.40 98.80

Srn 12.6 5.03 7.90 17.20

Eu 0.93 1.04 1.34 2.01

Tb 1.77 0.77 1.17 2.59

Yb 5.84 2.64 3.89 10.90

Lu 0.81 0.41 0.57 1.59

Tb 26.7 8.08 13.55 17.50

U 2.2 1.6 1.60 1.30

Ta 1.67 0.92 1.17 11.40

Hf 7.31 4.88 6.75 20.40

Isoto!!!
87Sr/86 SIj 0.71650

143Ndll44 Ndi 0.51196 0.5121

delta 018

Appendix A 274 Geochemical data



Name AigiUl Aigila AigiUl Aigtia Aigtia Aiglla
SampIe# 'lL7I 'lL85 93L18 'lL70 'lIM 93UIsio, 63.58 63.65 64.76 64.60 67.31 67.06
Ti~ 0.67 0.62 0.70 0.59 0.55 0.69
Al2~ 15.86 15.01 15.61 16.62 14.51 14.93
F~~ 6.29 9.02 5.70 5.90 6.46 6.02
MnO 0.15 0.16 0.13 0.10 0.08 0.07
MgO 0.55 0.25 0.63 0.26 0.32 0.51Cao 2.35 0.80 2.16 0.44 1.54 1.70
Na20 4.87 4.60 3.93 5.42 3.04 3.05
K20 5.53 5.63 6.25 5.94 6.00 5.78
P20~ 0.16 0.24 0.13 0.12 0.14 0.19
LOI 2.38 1.59 6.41 1.48 1.39 1.91
Total 100.20 99.78 102.78 100.49 99.58 100.32
XRF
Rb 148.50 185.40 163.80 130.20 144.50 123.50
Sr 144.80 100.80 263.70 29.80 196.60 242.80
Y 95.60 88.90 86.50 47.10 94.00 56.90
Zr 1168.00 1046.00 955.00 536.00 1047.00 1259.00
Nb 128.30 123.50 135.80 92.50 39.70 33.80
Ba 946.00 2237.00 935.00 381.00 2291.00 2867.00
Pb 26.00 19.00 26.00 13.00 23.00 22.00
Tb 17.00 19.00 17.00 13.00 1200 10.00
U 4.00 3.00 2.00 2.00 1.00 1.00
Se 6.00 22.00 9.00 7.00 11.00 15.00
V 21.00 10.00 6.00 11.00 10.00 18.00
Cr 7.00 7.00 6.00 6.00 7.00 5.00
Co 6.00 3.00 2.00 3.00 3.00 3.00
Ni 5.00 5.00 3.00 3.00 5.00 4.00
Cu 10.00 13.00 6.00 11.00 11.00 12.00
Zn 149.00 147.00 142.00 90.00 120.00 118.00
Ga 27.00 27.00 27.00 27.00 20.00 20.00
Mo 4.00 7.00 7.00 4.00 3.00 3.00
As 0.00 1.00 3.00 4.00 2.00 2.00
S 49.00 520.00 68.00 129.00 58.00 63.00
INM
La 164.00 110.00 n.5O 91.80
Ce 236.00 214.00 127.00 170.00
Nd 117.00 86.50 54.10 88.80
Sm 19.80 15.23 9.06 16.50
Eu 2.92 2.21 1.12 4.46
Tb 2.63 2.29 1.31 2.34
Yb 9.00 9.27 5.58 8.11
Lu 1.28 1.34 0.81 1.25
111 16.50 14.09 11.70 10.90
U 3.50 3.13 1.80 1.60
Ta 7.28 7.80 5.72 2.14
Hf 21.50 19.65 11.40 22.60
IIotopes

87SrJ86 SCi 0.7076 0.7114 0.7054 0.70845

143Ndll44 Ndi 0.5117 0.5118 0.5119 0.51181

delta 018
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Name Aigiia Aigiia Aigiia Aigiia Aigiia Aigiia
Sample' 93LI6 93L37 93L129 931.51 93L46 93L76
sio, 69.82 70.82 72.46 72.88 73.00 73.74
no, O.SI 0.18 0.69 0.33 0.30 0.48
AI203 14.10 13.24 12.03 12.88 13.05 12.66
F~03 5.47 4.18 5.25 4.00 4.10 3.41
MnO 0.03 0.07 0.20 0.06 0.07 0.05
MgO 0.21 1.31 0.61 0.15 0.14 0.20
Cao 0.91 0.22 1.46 0.56 0.65 0.73
Na20 3.46 4.61 3.36 2.93 2.74 2.97
K20 5.40 5.34 3.76 6.17 5.88 5.65

P20~ 0.09 0.02 0.18 0.04 0.05 0.10
LOI 0.98 1.75 1.34 1.31 1.37 1.17
Total 99.85 100.02 99.76 100.62 100.12 99.92
XRF
Rb 118.00 303.80 154.40 174.80 173.80 209.00
Sr 159.20 23.20 117.50 55.00 59.10 112.70
Y 77.60 162.30 109.00 77.60 57.S0 53.40
Zr 749.00 1546.00 321.00 713.00 620.00 492.00
Nb 32.40 314.70 19.80 47.90 50.70 54.20
Ba 1788.00 84.00 885.00 748.00 705.00 805.00
Ph 20.00 44.00 17.00 30.00 34.00 22.00
Tb 13.00 53.00 13.00 14.00 15.00 21.00
U 3.00 9.00 3.00 1.00 2.00 2.00
Se 8.00 0.00 14.00 2.00 5.00 5.00
V 7.00 5.00 IS.00 7.00 4.00 22.00
Cr 6.00 4.00 7.00 3.00 4.00 6.00
Co 3.00 2.00 S.OO 1.00 2.00 3.00
Ni 3.00 2.00 4.00 4.00 3.00 4.00
Cu 11.00 5.00 11.00 10.00 10.00 13.00
Zn 136.00 255.00 107.00 127.00 118.00 75.00
Ga 27.00 37.00 18.00 21.00 21.00 19.00
Mo 4.00 2.00 0.00 2.00 2.00 3.00
As 3.00 3.00 9.00 2.00 0.00 2.00
S 100.00 66.00 73.00 49.00 60.00 61.00

INAA
La 193.00 95.20

Ce 375.00 196.00
Nd 133.00 86.60
Srn 24.20 13.60
Eu 0.74 2.35
Tb 3.95 1.64
Yb 17.06 6.43
Lu 2.22 0.94

Tb 49.20 14.70
U 10.10 1.90
Ta 19.10 2.83
Hf 37.70 16.30

Isotopes

87Sr#SIj
143Ndll44 Ndi 0.51177

delta 018 9.70
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Name Aigiia Aigiia Aigiia Aigiia Aigiia Aigiia
Sample' 93L60 93LS5 93L29 93IAI 931A4 93L22
sio, 73.81 74.23 74.61 75.26 75.80 n.15
no, 0.46 0.37 0.08 0.19 0.28 0.19
Al203 11.05 10.44 13.24 13.30 11.50 12.09
F~03 5.08 5.97 2.31 1.89 3.65 1.56
MnO 0.07 0.10 0.03 0.01 0.03 0.01
MgO 0.36 0.33 0.03 0.09 0.14 0.05
CaO 0.40 1.17 0.04 0.33 0.73 0.34
Na20 3.83 2.13 4.52 3.65 2.24 3.05
K20 4.82 5.26 5.12 5.24 5.57 5.52
P20, 0.11 0.01 0.03 0.03 0.05 0.04
LOI 0.60 2.28 0.40 1.35 1.23 0.82
Total 99.94 99.64 100.46 100.88 100.32 100.69
XRF
Rb 226.50 233.30 478.90 210.50 163.10 164.00
Sr 24.80 23.70 2.60 27.70 82.90 24.90
Y 176.SO 237.60 104.70 41.40 67.50 31.40
Zr 1628.00 1659.00 443.00 461.00 574.00 391.00
Nb 280.40 262.10 314.SO 102.30 44.80 33.20
Ba 130.00 399.00 32.00 540.00 742.00 262.00
Pb 45.00 42.00 18.00 20.00 28.00 26.00
Tb 35.00 41.00 49.00 32.00 13.00 15.00
U 6.00 8.00 9.00 5.00 4.00 1.00
Se 1.00 0.00 1.00 0.00 5.00 0.00
V 36.00 0.00 5.00 5.00 4.00 5.00
Cr 15.00 5.00 3.00 ·3.00 5.00 3.00
Co 4.00 2.00 3.00 1.00 1.00 0.00
Ni 6.00 9.00 2.00 4.00 3.00 2.00
Cu 14.00 9.00 3.00 7.00 10.00 5.00
Zn 183.00 303.00 95.00 57.00 130.00 62.00
Ga 31.00 33.00 43.00 27.00 17.00 25.00
Mo 4.00 3.00 2.00 6.00 1.00 2.00
As 0.00 0.00 8.00 2.00 2.00 2.00
S 46.00 72.00 34.00 152.00 62.00 41.00

INAA
La 52.80 48.SO
Cc 128.00 92.20
Nd SO.80 43.SO
Sm 15.40 7.74
Eu 0.36 0.70
Tb 2.91 0.93
Yb 14.20 4.42
Lu 1.84 0.64
Tb 45.60 13.70
U 8.20 1.60
Ta 18.80 2.22
Hf 20.00 11.40

Isotopes

87SrJ86 SCi 0.70560

143Ndll44 Ndi
0.51166

deltaOt8
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Name Aigiia Aigiia Aigiia Aigiia Aigiia Aigiia

Sample# 93L39 93L36 93IM 93L19 93IAS 93Lll
sio, 76.(1) 76.46 76.97 77.13 77.24 77.26

Ti02 0.09 0.10 0.08 0.19 0.26 0.18

Al203 12.40 12.36 12.16 11.90 10.79 11.16

Fe203 2.40 2.04 2.07 2.37 3.54 2.64

MnO 0.02 0.02 0.05 0.03 0.05 0.02

MgO 0.33 0.05 0.08 0.03 0.12 0.10

CaO 0.15 0.10 0.54 0.07 0.44 0.55

Na20 2.90 3.44 3.34 2.80 1.29 2.58

K20 5.61 5.41 4.70 5.45 6.24 5.24

P20S 0.01 0.03 0.01 0.02 0.03 0.27

LOI 1.41 0.71 1.34 0.73 0.96 1.45

Total 100.76 100.38 99.81 100.56 100.06 100.70

XRF
Rb 326.50 323.60 361.30 233.70 178.50 154.50

Sr 8.00 3.60 20.20 5.50 46.00 38.80

y 53.20 135.70 180.10 84.40 55.90 62.80

Zr 310.00 333.00 361.00 538.00 524.00 382.00

Nb 161.40 166.50 236.20 82.20 41.40 32.20

Ba 26.00 28.00 31.00 18.00 618.00 329.00

Pb 21.00 17.00 20.00 40.00 22.00 25.00

Tb 37.00 40.00 43.00 22.00 14.00 14.00

U 5.00 5.00 8.00 4.00 2.00 2.00

Se 0.00 1.00 2.00 0.00 4.00 1.00

V 8.00 10.00 6.00 8.00 15.00 7.00

Cr 4.00 3.00 4.00 5.00 6.00 4.00

Co 0.00 2.00 1.00 1.00 1.00 2.00

Ni 3.00 4.00 2.00 2.00 3.00 3.00

eu 5.00 5.00 4.00 7.00 6.00 9.00

Zn 120.00 85.00 182.00 109.00 80.00 112.00

Ga 30.00 29.00 36.00 25.00 18.00 22.00

Mo 2.00 1.00 0.00 2.00 1.00 1.00

As 2.00 6.00 1.00 7.00 2.00 4.00

S 47.00 33.00 46.00 37.00 48.00 210.00

INAA
La 14.00 79.60 95.20 52.30

Ce 25.90 172.00 181.00 176.00

Nd 11.20 60.65 90.78 47.30

Sm 2.65 14.42 15.39 9.27

Eu 0.10 0.24 2.17 0.64

Th 0.79 3.24 1.80 1.71

Yb 9.90 12.76 5.23 7.16

Lu 1.41 1.73 0.76 1.01

Tb 35.50 37.28 11.36 14.55

U 5.60 4.26 1.58 2.07

Ta 12.10 11.10 2.10 2.04

Hf 12.30 12.02 12.66 11.30

Isotoe!,!
87SrJ86Sl'i

0.70715

143Ndll44 Ndi 0.51171 0.51175 0.51157

delta 018
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Name Aigila Aigila Aigila Aigila Aigila Aigila
Sample' 93L87b 93L80 93U5 93L73 93L28 93U6
sio, 77.56 79.35 79.62 79.83 80.47 81.l5
rio, 0.10 0.18 0.17 0.18 0.09 0.17
Al2~ 11.48 10.09 10.29 10.16 9.30 9.50
F~03 2.53 2.30 2.43 2.15 1.97 2.06
MnO 0.01 0.04 O.ot 0.04 0.06 0.03
MgO 0.00 0.05 0.00 0.03 0.06 0.08
CaO 0.03 0.07 0.21 0.10 0.32 0.27
Na20 4.23 2.28 1.46 1.77 1.24 1.44
K20 4.04 5.62 5.75 5.68 6.30 5.28
P20S 0.02 0.02 0.05 0.06 0.20 0.02
LOI 0.83 0.62 1.22 1.05 0.98 1.06
Total 100.78 100.29 99.95 99.84 100.01 100.14
XRF
Rb 293.60 220.40 170.90 237.70 437.00 157.50
Sr 5.50 10.60 21.00 7.30 4.80 24.60
y 149.90 57.00 53.70 61.60 116.00 41.80
Zr 1121.00 637.00 373.00 599.00 464.00 367.00
Nb 214.20 82.60 29.60 83.30 166.00 25.80
Ba 16.00 56.00 229.00 17.00 38.00 310.00
Pb 43.00 31.00 25.00 21.00 16.00 16.00
Th 53.00 19.00 15.00 20.00 38.00 12.00
U 9.00 3.00 2.00 2.00 5.00 0.00
Se 0.00 0.00 2.00 0.00 0.00 0.00
V 3.00 23.00 11.00 14.00 8.00 11.00
Cr 16.00 7.00 8.00 5.00 7.00 12.00
Co 2.00 1.00 2.00 1.00 1.00 2.00
Ni 3.00 2.00 2.00 4.00 2.00 1.00
Cu 3.00 7.00 7.00 8.00 5.00 6.00
Zn 103.00 121.00 27.00 125.00 132.00 66.00
Ga 33.00 19.00 17.00 21.00 18.00 19.00
Mo 0.00 1.00 1.00 1.00 0.00 1.00
As 5.00 3.00 8.00 4.00 4.00 4.00
S 45.00 32.00 51.00 46.00 37.00 64.00
INAA
La 19.70 89.60 99.70 103.00 54.20
Ce 75.00 126.00 222.00 202.00 114.00
Nd 31.60 74.10 84.50 87.80 47.20
Srn 12.20 11.71 14.20 14.10 12.40
Eu 0.25 0.26 0.65 0.31 0.24
1b 3.33 1.60 1.53 1.76 2.69
Yb 16.90 7.09 4.82 6.84 11.80
Lu 2.19 1.00 0.68 0.96 1.56
Th 48.10 18.01 12.50 18.32 34.70
U 9.80 2.78 1.70 3.00 5.40
Ta 16.20 5.22 1.75 5.21 12.40
Hf 34.70 15.52 10.30 15.31 16.20
Isotopes
87Srt86SIj 0.70729

l43Ndll44Ndi 0.51177 0.51157

delta018 9.10
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Name Basement Basement Basement Basement Dykes Dykes
Sample' 93L20 93L58 93L24 93Ll2OA 93Ll2 93Lll
sto, 65.00 66.51 60.46 82.67 51.32 51.38
rio, 0.90 0.70 0.32 1.99 2.22
Al203 13.83 11.46 8.07 15.73 15.83
F~~ 4.14 4.19 2.56 11.94 12.19
MoO 0.05 0.06 0.04 0.19 0.20
MgO 2.15 8.40 0.22 5.31 3.93
CaO 2.92 10.64 0.12 7.24 7.12
Na20 3.55 0.11 0.48 3.50 3.61
K20 5.48 3.81 5.44 2.06 2.60
P20S 0.46 0.18 0.08 0.72 0.92
LOI 1.56 15.48 1.08 1.51 0.92
Total 98.95 86.57 98.66 99.56 99.61
XRF
Rb 110.00 117.00 88.40 118.30 38.90 47.20
Sr 309.00 1219.00 59.70 98.80 745.40 736.70
Y 0.90 20.60 18.80 46.90 41.00 44.80
Zr 91.00 325.00 151.00 218.00 280.00 367.00
Nb 3.70 14.40 13.20 12.10 18.40 25.90
Ba 830.00 2925.00 352.00 519.00 1363.00 1599.00
Pb 57.00 27.00 13.00 20.00 4.00 8.00
Th 18.00 13.00 8.00 12.00 4.00 4.00
U 1.00 2.00 1.00 2.00 0.00 3.00
Se 4.00 8.00 13.00 5.00 23.00 22.00
V 21.00 63.00 59.00 25.00 179.00 211.00
Cr 23.00 57.00 63.00 12.00 91.00 24.00
Co 5.00 13.00 9.00 3.00 41.00 35.00
Ni 19.00 34.00 22.00 7.00 61.00 22.00
Cu 31.00 15.00 11.00 12.00 32.00 25.00
Zn 25.00 81.00 55.00 34.00 121.00 130.00
Ga 15.00 19.00 12.00 11.00 20.00 21.00
Mo 0.00 0.00 0.00 0.00 1.00 1.00
As 2.00 2.00 3.00 8.00 1.00 4.00
S 26.00 37.00 30.00 41.00 615.00 276.00
INAA
La 15.00 48.20 72.09
Ce 21.40 103.00 145.00
Nd 7.40 52.50 66.58
Srn 0.99 10.10 11.95
Eu 0.61 2.93 3.36
Tb 0.13 1.33 1.39
Yb 0.14 3.61 3.67
Lu 0.02 0.55 0.54
TIl 17.60 3.21 4.33
U 1.00 0.70 0.82
Ta 0.12 1.18 1.35
Hf 3.29 6.42 7.54
Isotopes
87Sr/86Srj 0.70679

I43Ndll44 Ndj 0.51144

delta018 10.00
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Name Dykes Dykes Dykes Dykes Dykes Dykes
Sample# 93L9 93L2 'lL10 93L14 93L13 93L56
sio, 51.57 52.96 54.78 73.49 74.31 68.57
no, 1.03 2.38 1.60 0.25 0.22 0.61
Al203 21.32 14.75 16.03 12.38 12.86 13.53
F~03 6.65 11.63 9.48 3.50 2.51 7.54
MnO 0.11 0.19 0.15 0.10 0.08 0.02
MgO 3.75 3.58 4.16 0.03 0.10 0.02
Cao 10.06 6.66 6.88 0.46 0.73 0.04
Na20 3.47 3.60 3.41 4.87 4.19 3.89
K20 1.48 2.67 2.78 4.91 4.98 5.73
P20S 0.40 1.24 0.73 0.02 0.03 0.05
LOI 1.60 1.27 1.80 0.32 0.85 1.12
Total 100.41 100.13 100.36 100.73 99.99 100.18
XRF
Rb 57.90 171.10 145.10 181.90
Sf 777.00 4.90 28.20 11.00
Y 36.60 104.30 73.70 128.00
Zr 341.00 1353.00 585.00 1364.00
Nb 22.20 69.40 52.80 244.60
Ba 1538.00 11.00 154.00 73.00
Ph 6.00 36.00 21.00 28.00
Tb 7.00 22.00 19.00 27.00
U 0.00 2.00 1.00 5.00
Se 18.00 2.00 0.00 8.00
V 172.00 4.00 4.00 26.00
Cr 80.00 22.00 7.00 6.00
Co 28.00 2.00 3.00 1.00
Ni 33.00 2.00 3.00 4.00
Cu 17.00 3.00 3.00 10.00
Zn 112.00 168.00 100.00 109.00
Ga 18.00 28.00 24.00 34.00
Mo 1.00 7.00 3.00 2.00
As 2.00 1.00 1.00 4.00
S 361.00 37.00 45.00 54.00

INAA
La 75.80
Ce 156.00
Nd 65.87
Sm 11.13
Eu 2.96
Tb 1.25
Vb 3.11
Lu 0.46
Th 5.95
U 0.83
Ta 1.14
Hf 7.30
Isotopes

87Srt86Sfj
143Ndll44 Ndj
delta 018
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Name Dykes Mixedflows Mixedflows
Sample# 93LS7 93L82 93L49
Si02 66.07 49.61 64.73
no, 0.67 2.60 1.10
Al203 14.70 16.13 13.05
F~03 7.16 13.90 8.33
MnO 0.08 0.21 0.11
MgO 0.15 2.64 1.99
CaO 0.30 6.68 3.21
Na20 4.13 4.39 3.06
K20 6.68 2.72 4.19
P2O, 0.07 1.12 0.24
LOI 1.18 2.76 1.29
Total 100.49 100.50 100.94
XRF
Rb 139.10 48.10 96.30
Sf 84.70 714.70 123.60
y 6S.1O 46.S0 62.60
Zr 523.00 306.00 313.00
Nb 101.50 75.30 31.70
Ba 191.00 1711.00 462.00
Pb 14.00 7.00 20.00
Tb 11.00 6.00 10.00
U 4.00 2.00 2.00
Se 6.00 21.00 22.00
V 17.00 187.00 130.00
Cr 4.00 5.00 22.00
Co 0.00 35.00 27.00
Ni 2.00 15.00 49.00
Cu 9.00 38.00 50.00
Zn 137.00 122.00 123.00
Ga 25.00 IS.00 20.00
Mo 4.00 2.00 0.00
As 0.00 2.00 1.00
S 49.00 170.00 62.00
INAA
La 68.40
Ce 129.00
Nd 57.10
Srn 10.50
Eu 3.23
Tb 1.39
Yb 4.02
Lu 0.5S
Tb 5.61
U 1.60
Ta 4.30
Hf 6.45
Isotopes
87Sr/86 Sfi 0.70S06

143Ndll44 Ndi 0.51190

delta 01S 10.00
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APPENDIXB

ANALYTICAL TECHNIQUES

Dl. Sample Preparation

Samples were initially crudely broken using a hydraulic splitter. This resulted

in the removal of surface weathering and alteration, and allowed the retrieval of fresh

material, which where possible was devoid of amygdales. This material was then

reduced in size to less than 5mm in a hardened steel jaw crusher. The resultant chips

were sieved through to remove any possible sources of contamination by secondary

mineralisation. A 100 g fraction was then placed in an agate tema for at least 15 mins

in the case of the basalts, and 30-40 mins for the rhyolites. The resultant powder was

less than 200 mesh size. Carefully cleaning of equipment was carried out at each

stage to avoid possible outside contamination.

D2. X-Ray Fluorescence (XRF) Analysis

B2.1 Sample Preparation

Approximately 10-12 g of each sample was placed in a porcelain crucible and

was dried over night in an oven set at 105 °C to eliminate atmospheric moisture. For

major element analyses glass discs were made by mixing dried Flux l00B (lithium

tetraborate-metaborate) with rock powder in a 5: 1 ratio. -0.35 g of flux was weighed

into a platinuml5% gold crucible and 0.07 g of rock powder was mixed in using a

polythene mixing rod, this was then placed in an oven at 1100 °C for 15 mins,

swirling every 5 mins to ensure the dissolution of gas bubbles and complete mixing.

The molten glass was then poured onto a heated brass mould and pressed to form a

glass disc (elimates mineralogical and crystallinity defects in determination of the

light majors), which was allowed to cool slowly and then labelled.
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Loss On Ignition (LOI) values were calculated by weighing accurately 1-1.5 g

of rock powder into a pre-ignited silica crucible. This was placed in an oven at 1000

°C for 45 mins, then allowed to cool for 10 mins before re-weighing. The percentage

mass loss was then calculated which relates to the total volatile content of the rock.

For trace element analyses -8 g of rock powder was weighed into small

plastic bags. 6-7 drops of polyvinylpyrollidone (PVP) - methyl cellulose binder was

then added and mixed vigorously into the powder. This was then made into a pellet

by placing the mixture into a mould and exerting 10-15 ton per square inch of

pressure using a hydraulic press. The pellets were then labelled and dried overnight in

an oven at 105°C.

82.2 Element Analyses

All major and trace element analyses were carried out by Dr. J. Watson at the

Open University on an ARL 8420+ goniometer wavelength dispersive XRF

spectrometer. Two sets of standards to measure internal and external results these

included BHVO-l, a USGS standard used as the external monitor. The techniques

and running conditions for analysis are described in Potts et al (1984). Comparison

between calculated and expected standard results provides accuracy and internal

consistency of data. In all ten major elements and twenty trace elements were

analysed, which are listed in Appendix A.

D3. Instrumental Neutron Activation Analysis (lNAA).

Eight rare earth elements, as well as the abundance of Th, U, Ta, Hf, Cs, Rb,

Zn, Co, Cr and Se in selected samples were determined by Instrumental Neutron

Activation Analysis (INAA) at the Open University. Potts et al (1981, 1985) contain

full details of the analytical techniques employed.
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B3.1 Sample Preparation

Dried rock powder (0.3 g) was weighed into polythene vials, these were then

sealed using a soldering iron. Nine samples plus two standards AC-2 (Ailsa Craig

microgranite) and WS (Whin Sill dolerite) were then placed in cylindrical polythene

containers, each vial was separated from the next by an iron foil lacquered to a

polythene disc. These iron foils are used to monitor the neutron flux along the

cylinder during irradiation. Irradiation was carried out at the Imperial College

Reactor Centre, near Ascot in a thermal neutron flux of 5x1012n cm-2sec-1 for 24-30

hrs. Short lived radio-nuclides were allowed to decay during a period of 'cooling'

prior to counting at the Open University.

Two detectors were used in tandem to count the induced radioactivity: a

coaxial Ge(Li) detector and a planar low energy photon spectrometer (LEPS). Two

sets of counting were performed over a period of one month. The first 'short count'

lasted for 800secs, and this was followed by a 6-10 hour 'long count' two to four

weeks after irradiation. This second count ensures precision values for the longer

lived isotopes.

B4. Radiogenic Isotope Analysis

All isotope analyses were carried out in the clean chemistry laboratories in the

Earth Sciences Dept., Open University. The reagents used were either two-stage

quartz distilled (QD) or teflon distilled (TD) to reduce contamination. All addition of

acids to sample powders occurred within the laminar flow fume cupboards. All water

for cleaning and dilution purposes was reverse osmosis purified (RO). using a

Millipore system.

B4.1 Beaker Cleaning

15ml and 30ml teflon Savillex beakers were used for Strontium and

Neodymium chemistry respectively. Prior to beginning any analysis the beakers were

labelled and then rigorously cleaned. Initially rinsed with RO water. 5-10 mls of
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1.5M QD HN03 was then added and left overnight on a hot plate to dissolve any

remaining sample. The beaker was then rinsed with RO water. and placed in a large

beaker full of hot. concentrated HN03. After 24 hrs on the hot plate, the beakers were

removed. rinsed, and placed in a large beaker of hot RO water for another 24 hrs. The

contents of both large beakers were changed frequently to avoid residue build up.

The beakers were rinsed again using RO water and 10-15 ml of 6M QD HCI was

added, this was then heated under lamps in the fume cupboard for Ihr. Following

which the beakers were rinsed with RO water and placed upside down to dry.

84.2 Strontium Chemistry

Approximately 150 g of rock powder was weighed into a cleaned beaker for

each sample. to which a few drops of 15M ID HN03 was added. this wet the powder

prior to addition of <4 ml of ID HF (48%). -4 ml of saturated boric acid was also

added to the first few sets of samples dissolved, however. the acid was found to

contain an excess of Sr and so the stage was eliminated. The sealed beaker was then

allowed to stand on a hot plate overnight. The HP was then evaporated off slowly

under evaporating hoods with a continuous compressed air supply. When the solution

resembled wall paper paste, 2-3 mIs of 15M TO HN03 was added to prevent the

formation of fluorides. The solution was then evaporated down to dryness, 6 mI of

6M IDHCI was added to the residue and left to stand on a hotplate overnight before

being evaporated to dryness for a final time. The sample was then dissolved in 2 mI

of 205M QD HCI and transferred to centrifuge tubes that had been rinsed with 205M

QD HCI, and centrifuged at 4000 rpm for 5 mins. The sample was then ready for

loading onto the columns.

lmI of sample solution was loaded onto the resin bed of a preconditioned ion

exchange column for Strontium separation. Once absorbed by the resin the sample

was washed through by 2 x 1 ml 2.5M QD HCl. 36 m1 of 2.5M QD HCI was eluted

through the column to remove the Rb fraction before another 14mls was added from

which the Sr fraction was collected into a rinsed beaker. This was then evaporated

down to dryness and then loaded onto a single Ta filament for analysis.
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84.4 Neodymium Chemistry

The separation of the Nd fraction requires two stages, the first part continues

directly after the collection of the Sr fraction. Once the Sr was collected. the resin

was washed by 18 ml of 3M QD HND) to remove the Sm fraction. Followed by 14ml

of the same acid, to collect the Nd fraction, along with other MREE and Ba, into a

cleaned lSml beaker. This solution was evaporated down to dryness before being

dissolved in 1ml of O.2SM QD HCl and loaded onto a set of ion exchange reverse

chromatography columns. The sample was washed through by 2 x 1 ml O.25M QD

HCI initially. followed by 14 ml of the same acid. Finally 8 ml of O.2SM QD HCl

was eluted and collected in a clean beaker. This was then evaporated to dryness, and

loaded onto a double Re filament for analysis. Both sets of columns were cleaned

thoroughly using 6M QD HCt 2.5M QD HCl and RO water for the Sr columns; and

O.2SM QD HQ, RO water for Nd columns. Standards were run frequently including

BHVO-I and NBS 987 for Sr and the J&M standard for Nd.

84.s Sample Loading

Samples were loaded onto cleaned. outgassed filaments (single Ta for Sr; Re

double for Nd) by pipette in a filtered loading cabinet. 2J.1lof H3P04 was loaded onto

the filament and evaporated off at a current of 1.4 A. meanwhile the sample was

dissolved in 2J.11of TD water. This was then placed on the filament and the current

increased to - 2A, this allowed all excess to be removed, when the filament glowed

red the current was returned to O. Nd samples were loaded onto dry Re filaments.

after being dissolved in IJ.1l of ID water. the current was increased to O.8A and beld

there until the droplet had evaporated off.

84.6 Mass Spectrometry

All samples were analysed on either a Finnegan MAT261 or MAT262 multi-

collector mass spectrometer at the Open University. Blanks for Sr and Nd were in
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general below 5ng and so considered not to interfere with the isotopic results. During

a period of three months unacceptable blanks of> 30 ng and as high as 500 ng were

found to be a result of the use of contaminated boric acid after rigorous testing of

beakers, columns, acids and loading procedures. All samples analysed during this

period were re-evaluated and a second set of samples run as analyses were found to

vary in the fourth decimal place, with such errors deemed unacceptable.

Table Bl. Internal standards measured during run time of samples for Sr & Nd.

Official value is the machine number average to which individual analyses are

compared and corrected before being used in sample corrections.

From To Standard la
Sr NBS987

25-10-94 3-11-94 0.710294 11

12-12-94 18-12-94 0.710247 10

4-2-95 11-2-95 0.710275 10

12-2-95 17-2-95 0.710236 10

31-8-95 12-9-95 0.71024 10

24-8-96 31-8-96 0.71025 7

8-3-97 15-3-97 0.710145 6

Official value 0.710223 16

Nd J&M

4-2-95 15-2-95 0.511760 5

31-8-95 12-9-95 0.511773 5

11-10-95 17-10-95 0.511788 4

15-7-96 22-7-96 0.511788 4

24-8-96 31-8-96 0.511759 3

11-2-97 22-2-97 0.511762 7

Official value 0.511778 12
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Repeat analyses of Sr standard NBS987, and the Nd J&M standard were used

to standardise variations in machine running conditions. Table B I contains the mean

values used for corrections. All samples were age corrected to 130 Ma.

BS. Electron Microprobe

Mineral phase analyses were made using a wavelength dispersive electron

microprobe, initially a Cambridge Instruments Microscan 9. Polished thin sections of

certain samples were carbon coated, this was in order to reduce the build up of charge

across the section whilst under the electron beam. Diffracting crystals used to

calibrate elements were TAP, PET and LiF. The instrument was calibrated before

each session using mineral standards: Wollastonite (Si, Ca), Rutile (Ti), metal (Cr,

Mn, Ni), Jadeite (Al, Na), Fayalite (Fe) and Forsterite (Mg). The standard ABG (a

basaltic glass from the rim of a pillow lava in the North Atlantic, Tindle (1982» was

used to check accuracy, and run before and during every sample, if the analysed ABO

fell outside the 20 range the element(s) were re calibration prior to continuation of

analysis. Running conditions involved a 20kV, soft focused beam of 2OnA, 15JUl1in

diameter.

A new Cameca SX100 microprobe was installed late 1995 and so the majority

of analyses were made on this. Analyses were undertaken using a 20 nA beam

current, 20 kV accelerating potential. and a typical spot size of 20 1JIIl. For iron oxide

analyses, a reduced beam size of lum was used due to the small size of the crystals.

The SXlOO has four spectrometers, and major elements were analysed using the PET,

LiF and TAP diffracting crystals, calibrated using the following standards:

Si, Al, K fspr-In5 Fe hematite-ast3

Ti rutile-BM4 Mg forsterite-BM4

Mn,Ca bustamite-ast3 Na jadeite-BM4

P apatite-BM4 Cr crocoite-ast3

Cl sylvite-BM4 F LiF-4
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APPENDIXC

SAMPLE TEXTURES & MICROPROBE ANALYSES

A variety of textures are evident in the basalt - rhyolite suite of samples examined

from southern Uruguay. In order to highlight some of this textural diversity a number of

photomicrographs are including in this Appendix with a brief description of the textures.

Rhyolite names are as descnbed in the petrology section of Chapter 2.

The following pages also contain representative microprobe analyses for the

samples analysed. All analyses are expressed as weight percent oxides and formulas with

feldspars formulated for eight oxygens, pyroxene for six and iron oxides for twenty two.

Fe is presented as Fe2+. Running conditions for the microprobe are listed in Appendix B.
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Cl. Textural Details.

Plate 1. Sample 93L53. Santa Lucia magma type. Subophitic enclosure of lameUar

twinned plagioclase by clinopyroxene and highly fractured olivine in porphyritic basalt.

Crossed polarised light (XPL). PIan 2,5.

Plate 2. Sample 93L94. Treinte Y Tres magma type. Large porphyroblast of plagioclase

feldspar which is being resorpted into the matrix, together with phenocrysts of

clinopyroxene set in a microcrystalline matrix of similar composition. XPL. Plan 2.5.
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P1ate 3. Sample 93L96. Treinte Y Tres. Glomerophyric intergrowths of p1agioclase

feldspar set in a microcrystalline matrix with secondary iron oxides. Plane polarised light

(PPL). Plan 2,5.

P1ate 4. Sample 93L96. Treinte Y Tres. Showing top left hand section of P1ate 3 inXPL.

Porphyroblasts of lamellar twinned p1agioclase set in a matrix of p1agioclase 1aths,

anhedral clinopyroxene and both primary and secondary iron oxides. Plan 2,5.
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Plate 5. 93L83. Type 1 Rhyolite. Large phenocrysts of lamellar twinned plagioclase and

aIk1ai feldspar set in a microcrystalline matrix of feldspar primarily with < 10 %

pyroxene. A reaction rim is evident around the edge of the alkali feldspar in the lower

part of the photo suggesting disequilibrium at the time of cooling. Plan 2,5.

Plate 6. 93L81. Type 2 Rhyolite. Large skeletal a1kaIi feldpar phenocryst (7 mm) set in a

cryptocrystalline matrix. Sieve or skeletal textures are associated with resorption.

Magnification x 10/0,22.
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Plate 7. 93L22. Type 2 Rhyolite. Embayed quartz phenocryst indicating arrested

development. with two smaller alkali feldspar phenocrysts set in a cryptocrystalline

matrix. PJan 2.5.

Plate 8. 93L120. Interaction between lithic sandstone (right hand side) and rhyolite

(left). which suggests that the rhyolites were erupted onto an unconsolidated sandy

substrate.
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Plate 9. Type 1 93L87. XPL. Glomerophyric intergrowth (lcm) of feldspar set in a

microcrystalline matrix of plagioclase, alkali feldspar and quartz. Note perthitic textures

of feldspars. Magnification x 10/0,22.

Plate 10. Type 2 93LI29. XPL. Graphic or granophyric intergrowth of quartz and alkali

feldspar with some alteration to clay minerals evident. Texture such as this have been

reported from old devitrified glassy rhyolite systems where quartz and alkali feldspar

have intergrown either during slow cooling or devitrification. Magnification x 10/0.22.
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Plate 11. Type 2 93L57. Spherulitic devitrification of a glassy matrix in a fairly altered

sample as indicated by the green tinge in this view in plane polarised light. Plan 1,6.

Plate 12. Type 1 93L126. Extensive secondary alteration to chlorite. Magnification x

10/0,22.
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Plate 13. Type 2 93L28. Rhyolite. PPL view ofignimbritic texture rhyolite with P form

quartz evident together with equant feldspar phenocrysts aligned parallel to the flow

direction. Magnification x 10/0,22.

Plate 14. Type 2 93L99. Rhyolite. Flattened vesicle and a1kali feldspar phenocrysts with

flow evident around the phenocrysts. Magnification x 10/0,22.
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C2. Microprobe Data.

Name 92U12 92U12 92U12 92U12 92U12 92U12

Mineral Plaaioclase Plaaioclase Plaaioclase Plaaioclase Plaaioclase Plaaioclase

SI02 51.02 55.34- 52.15 52.58 51.80 51.88

Ti02 0.06 0.14 0.07 1.12 0.10 0.08

AI~ 30.31 27.60 29.76 27.80 29.95 30.01

MgO 0.11 0.12 0.13 0.22 0.11 0.12

CaO 13.96 10.46 13.13 11.04 13.52 13.44

MoO 0.00 0.01 0.01 0.01 0.02 0.01

FeO 0.53 0.76 0.61 1.57 0.60 0.56

BaD 0.03 0.04 0.04 0.05 0.04 0.00

N82D 3.63 5.37 4.07 4.99 3.80 3.88

K20 0.20 0.50 0.24 0.40 0.20 0.22

Total 99.86 100.34- 100.22 99.77 100.12 100.20

Formula Units 8 8 8 8 8 8

Si 2.33 2.50 2.37 2.41 2.36 2.36

Ti 0.00 0.01 0.00 0.04 0.00 0.00

AI 1.63 1.47 1.60 1.50 1.61 1.61

Mg 0.01 0.01 0.01 0.02 0.01 0.01

Ca 0.68 0.51 0.64 0.54 0.66 0.66

Mn 0.00 0.00 0.00 0.00 0.00 0.00

Fe 0.02 0.03 0.02 0.06 0.02 0.02

Ba 0.00 0.00 0.00 0.00 0.00 0.00

Na 0.32 0.47 0.36 0.44 0.34- 0.34

K 0.01 0.03 0.01 0.02 0.01 0.01

Total 5.02 5.01 5.02 5.03 5.01 5.01
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Name 92U12 92U12 93L125 93L105 93L105 93L105

Mineral Plaaioclase Plaaioclase Plaaioclase PlaaiocIase P Plaaioclase

Si02 51.76 SO.99 52.73 57.09 55.62 56.01

Ti02 0.08 0.09 0.02 0.03 0.03

AI:P3 29.79 29.74 28.47 26.39 25.73 27.14

MgO 0.13 0.27 0.02 0.01 0.01

CaO 13.06 13.21 12.08 9.42 8.92 10.23

MnO 0.01 0.00 0.00 0.00 0.01

FeO 0.53 0.82 1.03 0.35 0.52 0.27

BaO 0.02 0.02 0.00 0.08 0.11 0.11

Na:p 3.98 3.88 4.42 5.52 5.43 5.09

K:P 0.33 0.22 0.34 0.95 0.90 0.80

Total 99.70 99.24 99.07 99.83 97.27 99.71

Formula Units 8 8 8 8 8 8

Si 2.37 2.35 2.42 2.58 2.58 2.54

Ti 0.00 0.00 0.00 0.00 0.00

AI 1.61 1.61 1.54 1.40 1.41 1.45

Mg 0.01 0.02 0.00 0.00 0.00

Ca 0.64 0.65 0.60 0.46 0.44 O.SO

Mn 0.00 0.00 0.04 0.00 0.00 0.00

Fe 0.02 0.03 0.00 0,01 0.02 0.01

Ba 0.00 0.00 0.00 0.00 0.00

Na 0.35 0.35 0.39 0.48 0.49 0.45

K 0.02 0.01 0.02 0.06 0.05 0.05

Total 5.01 5.02 5.01 4.99 4.99 4.99
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Name 93L104 93L104 93L104 93L104 93L104 93L104

Mineral Plaaioclase Plaaioclase Plaaioclase Plaaioclase Plaaioclase Plaaioclase

Si02 50.39 49.55 SO.52 51.62 50.34 50.18

Ti02 0.06 0.07 0.09 0.61 0.06 0.02

AI~ 29.99 30.46 29.89 1.58 29.71 30.96

MgO 0.22 0.11 0.12 16.20 0.12 0.12

CaO 13.67 14.21 13.45 18.80 13.51 14.28

MnO 0.00 0.01 0.01 0.28 0.01 0.01

FeO 1.09 0.86 0.89 9.85 1.20 0.40

BaO 0.00 0.00 0.02 0.01 0.00 0.01

Na20 3.51 3.46 3.78 0.19 3.83 3.34

K~ 0.38 0.27 0.30 0.00 0.31 0.20

Total 99.31 99.01 99.07 99.27 99.09 99.51

Formula Units 8 8 8 8 8 8

Si 2.32 2.30 2.33 2.58 2.33 2.30

Ti 0.00 0.00 0.00 0.02 0.00 0.00

AI 1.61 1.65 1.61 0.09 1.60 1.66

Mg 0.02 0.01 0.01 1.21 0.01 0.01

Ca 0.68 0.71 0.67 1.01 0.67 0.70

Mn 0.00 0.00 0.00 0.01 0.00 0.00

Fe 0.04 0.03 0.03 0.41 0.05 0.02

Ba 0.00 0.00 0.00 0.00 0.00 0.00

Na 0.31 0.31 0.34 0.02 0.34 0.30

K 0.02 0.02 0.02 0.00 0.02 0.01

Total 5.01 5.02 5.01 5.36 5.02 5.00
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Name 93L47 93L47 93L47 93L47 93L78 93L78

Mineral Plagioclase Plaaioclase Plagioclase Plaaioclase Plaaioclase Plaaioclase

Si02 so.59 49.98 SO.98 49.00 59.40 60.24

Ti02 0.09 0.09 0.07 0.06 0.06 0.05

AI~3 30.62 30.66 30.20 31.49 24.60 24.25

MgO 0.16 0.14 0.14 0.18 0.03 0.02

cao 13.85 14.13 13.75 15.01 6.70 6.11

MnO 0.00 0.00 0.01 0.01 0.00 0.01

FeO 0.44 0.44 0.45 0.42 0.48 0.40

SaO 0.02 0.02 0.01 0.02 0.27 0.35

Na~ 3.49 3.43 3.64 2.94 7.28 7.34

K~ 0.21 0.21 0.23 0.16 0.71 1.13

Total 99.47 99.09 99.49 99.28 99.53 99.91

Formula Units 8 8 8 8 8 8

Si 2.32 2.30 2.34 2.26 2.68 2.70

Ti

AI 1.64 1.65 1.62 1.70 1.29 1.27

Mg 0.01 0.01 0.01 0.01 0.00 0.00

Ca 0.68 0.70 0.68 0.74 0.32 0.29

Mn 0.00 0.00 0.00 0.00 0.00 0.00

Fe 0.02 0.02 0.02 0.02 0.02 0.01

Ba 0.00 0.00 0.00 0.00 0.00 0.01

Na 0.31 0.31 0.32 0.26 0.64 0.64

K 0.01 0.01 0.01 0.01 0.04 0.06

Total 4.99 5.00 5.00 5.00 4.99 4.99
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Name 93L111 93L111 93L111 93L111 93L111 93L111

Mineral Plaaioclase Plagioclase Plaaioclase Plagioclase Plaaioclase Plaaioclase

Si02 57.37 56.45 57.84 57.87 56.84 56.26

1"102 0.01 0.05 0.02 0.03 0.03 0.01

AI2<l3 26.44 26.57 26.06 25.93 26.92 27.00

MgO 0.03 0.03 0.01 0.01 0.01 0.03

CaO 9.20 9.85 8.90 8.71 9.73 10.11

MnO 0.00 0.01 0.00 0.00 0.00 0.02

FeO 0.41 0.44 0.44 0.48 0.48 0.41

BaO 0.15 0.16 0.11 0.11 0.11 0.10

Na2<) 5.54 5.22 5.87 5.98 5.72 5.31

K2<l 0.95 0.84 0.92 0.94 0.63 0.75

Total 100.10 99.63 100.17 100.06 100.46 99.99

Formula Units 8 8 8 8 8 8

Si 2.58 2.56 2.60 2.60 2.55 2.54

n 0.00 0.00 0.00 0.00 0.00 0.00

AI 1.40 1.42 1.38 1.38 1.43 1.44

Mg 0.00 0.00 0.00 0.00 0.00 0.00

ca 0.44 0.48 0.43 0.42 0.47 0.49

Mn 0.00 0.00 0.00 0.00 0.00 0.00

Fe 0.02 0.02 0.02 0.02 0.02 0.02

Ba 0.00 0.00 0.00 0.00 0.00 0.00

Na 0.48 0.46 0.51 0.52 0.50 0.47

K 0.05 0.05 0.05 0.05 0.04 0.04

Total 4.99 4.99 4.99 5.00 5.00 5.00
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Name 93L97 93L97 93L97 93L125 93L125 93L125

Mineral Plaaioclase Plagioclase Plaaioclase Plaaioclase Plaaioclase Plaaioclase

Si02 48.65 47.71 49.05 63.05 52.22 53.88

Ti02 0.03 0.03 0.04 0.11 0.05 0.10

AI203 31.66 32.28 30.81 22.41 28.71 27.84

MgO 0.24 0.23 0.21 0.05 0.13 0.02

CaO 15.89 16.41 15.21 7.29 12.75 11.18

MnO 0.00 0.00 0.00 0.00 0.01 0.00

FeO 0.46 0.42 0.44 0.95 0.73 0.92

BaO 0.00 0.02 0.00 0.08 0.00 0.04

Na~ 2.50 2.15 2.82 5.74 4.13 5.11

K20 0.15 0.12 0.19 0.66 0.32 0.40

Total 99.58 99.37 98.76 100.33 99.05 99.48

Formula units 8 8 8 8 8 8

Si 2.24 2.21 2.28 2.79 2.40 2.46

Ti 0.00 0.00 0.00 0.00 0.00 0.00

AI 1.70 1.74 1.67 1.16 1.54 1.48

Mg 0.02 0.02 0.01 0.00 0.01 0.00

Ca 0.78 0.81 0.76 0.35 0.63 0.55

Mn 0.00 0.00 0.00 0.00 0.00 0.00

Fe2+ 0.02 0.02 0.02 0.04 0.03 0.04

Ba 0.00 0.00 0.00 0.00 0.00 0.00

Na 0.22 0.19 0.25 0.49 0.37 0.45

K 0.01 0.01 0.01 0.04 0.02 0.02

Total 5.00 4.99 5.00 4.87 5.00 5.01
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Name 93L53 93L53 93L53 93L125 93L125 93L125

Mineral Plagioclase Plaaioclase Plaaioclase Plaaioclase Plaaioclase Plaaioclase

5102 51.42 55.08 51.31 52.51 52.98 51.71

TI02 0.06 0.15 0.07 0.07 0.05 0.03

AI2<>3 30.41 27.78 29.86 28.64 28.53 29.17

MgO 0.13 0.08 0.13 0.11 0.11 0.13

CaO 13.89 10.65 13.49 12.67 12.62 13.59

MnO 0.01 0.01 0.00 0.01 0.00 0.01

FaO 0.50 0.64 0.48 0.81 0.80 0.84

sao 0.02 0.05 0.00 0.02 0.03 0.00

Na2<> 3.56 5.33 3.87 4.25 4.24 3.79

K20 0.23 0.52 0.29 0.34 0.31 0.28

Total 100.23 100.27 99.49 99.41 99.69 99.55

Formula units 8 8 8 8 8 8

5i 2.34 2.49 2.35 2.41 2.42 2.37

Ti 0.00 0.01 0.00 0.00 0.00 0.00

AI 1.62 1.46 1.60 1.53 1.52 1.56

Mg 0.01 0.01 0.01 0.01 0.01 0.01

Ca 0.68 0.52 0.66 0.62 0.62 0.67

Mn 0.00 0.00 0.00 0.00 0.00 0.00

Fe 0.02 0.02 0.02 0.03 0.03 0.03

Ba 0.00 0.00 0.00 0.00 0.00 0.00

Na 0.31 0.47 0.34 0.38 0.38 0.34

K 0.01 0.03 0.02 0.02 0.02 0.02

Total 4.99 5.00 5.00 5.00 4.99 5.00
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Name 93L104 93L104 93L104 93L104 93L47 93L47

Mineral Plaaioclase Plaaioclase Plaaioclase Plaaioclase Plaaioclase Plaaioclase

Si02 SO.39 49.55 SO.52 SO.34 SO.18 SO.59

Ti02 0.06 0.07 0.09 0.06 0.02 0.09

AI~ 29.99 30.46 29.89 29.71 30.96 30.62

MgO 0.22 0.11 0.12 0.12 0.12 0.16

CaO 13.67 14.21 13.45 13.51 14.28 13.85

MnO 0.00 0.01 0.01 0.01 0.01 0.00

FaO 1.09 0.86 0.89 1.20 0.40 0.44

BaO 0.00 0.00 0.02 0.00 0.01 0.02

Na2D 3.51 3.46 3.78 3.83 3.34 3.49

K20 0.38 0.27 0.30 0.31 0.20 0.21

Total 99.31 99.01 99.07 99.09 99.51 99.47

Formula units 8 8 8 8 8 8

Si 2.32 2.30 2.33 2.33 2.30 2.32

Ti

AI 1.61 1.65 1.61 1.60 1.66 1.64

Mg 0.02 0.01 0.01 0.01 0.01 0.01

Ca 0.68 0.71 0.67 0.67 0.70 0.68

Mn 0.00 0.00 0.00 0.00 0.00 0.00

Fe 0.04 0.03 0.03 0.05 0.02 0.02

Ba

Na 0.31 0.31 0.34 0.34 0.30 0.31

K 0.02 0.02 0.02 0.02 0.01 0.01

Total 5.01 5.02 5.01 5.02 5.00 4.99
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Name 93L27 93L47 93L47 93147 93178 93178

Mineral Plaaioclase Plaaioclase Plagioclase Plagioclase Plaaioclase Plaaioclase

SiD2 49.65 49.98 SO.98 49.00 60.24 59.40

Ti02 0.27 0.09 0.07 0.06 0.05 0.06

Ai203 24.66 30.66 30.20 31.49 24.25 24.60

MgO 3.95 0.14 0.14 0.18 0.02 0.03

CaO 14.83 14.13 13.75 15.01 6.11 6.70

MnO 0.06 0.00 0.01 0.01 0.01 0.00

FeO 3.42 0.44 0.45 0.42 0.40 0.48

Bao 0.02 0.02 0.01 0.02 0.35 0.27

N82C) 2.67 3.43 3.64 2.94 7.34 7.28

K20 0.13 0.21 0.23 0.16 1.13 0.71

Total 99.75 99.09 99.49 99.28 99.91 99.53

Formula units 8 8 8 8 8 8

Si 2.33 2.30 2.34 2.26 2.70 2.68

Ti 0.01 0.00 0.00 0.00 0.00 0.00

AI 1.35 1.65 1.62 1.70 1.27 1.29

Mg 0.28 0.01 0.01 0.01 0.00 0.00

Ca 0.74 0.70 0.68 0.74 0.29 0.32

Mn 0.00 0.00 0.00 0.00 0.00 0.00

Fe 0.13 0.02 0.02 0.02 0.01 0.02

Ba 0.00 0.00 0.00 0.00 0.01 0.00

Na 0.24 0.31 0.32 0.26 0.64 0.64

K 0.01 0.01 0.01 0.01 0.06 0.04

Total 5.09 5.00 5.00 5.00 4.99 4.99

AppendixC 306 Textures & Microprobe data



Name 93L97 93L97 93L97 93Ll25 93Ll25 93Ll25

Mineral Plaaioclase Plaaioclase Plaaioclase Plaaioclase Plaaioclase Plaaioclase

Si02 48.65 47.71 49.05 52.22 53.88 63.05

Ti02 0.03 0.03 0.04 0.05 0.10 0.11

AI~3 31.66 32.28 30.81 28.71 27.84 22.41

MgO 0.24 0.23 0.21 0.13 0.02 0.05

CaO 15.89 16.41 15.21 12.75 11.18 7.29

MnO 0.00 0.00 0.00 0.01 0.00 0.00

FeO 0.46 0.42 0.44 0.73 0.92 0.95

BaO 0.00 0.02 0.00 0.00 0.04 0.08

Na~ 2.50 2.15 2.82 4.13 5.11 5.74

K20 0.15 0.12 0.19 0.32 0.40 0.66

Total 99.58 99.37 98.76 99.05 99.48 100.33

Formula units 8 8 8 8 8 8

Si 2.24 2.21 2.28 2.40 2.46 2.79

Ti 0.00 0.00 0.00 0.00 0.00 0.00

AI 1.70 1.74 1.67 1.54 1.48 1.16

Mg 0.02 0.02 0.01 0.01 0.00 0.00

Ca 0.78 0.81 0.76 0.63 0.55 0.35

Mn 0.00 0.00 0.00 0.00 0.00 0.00

Fe 0.02 0.02 0.02 0.03 0.04 0.04

Ba 0.00 0.00 0.00 0.00 0.00 0.00

Na 0.22 0.19 0.25 0.37 0.45 0.49

K 0.01 0.01 0.01 0.02 0.02 0.04

Total 5.00 4.99 5.00 5.00 5.01 4.87

Appendix C 307 Textures & Microprobe data



Name 93L53 93L53 93L125 93L125 93L125 93L53

Mineral Plagioclase Plaaioclase Plaaioclase Plaaioclase Plaaioclase Plaaioclase

Si02 51.42 55.08 52.51 52.98 51.71 51.31

Ti02 0.06 0.15 0.07 0.05 0.03 0.07

Al2<)3 30.41 27.78 28.64 28.53 29.17 29.86

MgO 0.13 0.08 0.11 0.11 0.13 0.13

CaO 13.89 10.65 12.67 12.62 13.59 13.49

MnO 0.01 0.01 0.01 0.00 0.01 0.00

FeO 0.50 0.64 0.81 0.80 0.84 0.48

BaO 0.02 0.05 0.02 0.03 0.00 0.00

Na2<) 3.56 5.33 4.25 4.24 3.79 3.87

K20 0.23 0.52 0.34 0.31 0.28 0.29

Total 100.23 100.27 99.41 99.69 99.55 99.49

Formula units 8 8 8 8 8 8

Si 2.34 2.49 2.41 2.42 2.37 2.35

Ti 0.00 0.01 0.00 0.00 0.00 0.00

AI 1.62 1.46 1.53 1.52 1.56 1.60

Mg 0.01 0.01 0.01 0.01 0.01 0.01

Ca 0.68 0.52 0.62 0.62 0.67 0.66

Mn 0.00 0.00 0.00 0.00 0.00 0.00

Fe 0.02 0.02 0.03 0.03 0.03 0.02

Ba 0.00 0.00 0.00 0.00 0.00 0.00

Na 0.31 0.47 0.38 0.38 0.34 0.34

K 0.01 0.03 0.02 0.02 0.02 0.02

Total 4.99 5.00 5.00 4.99 5.00 5.00

Appendix C 308 Textures &Microprobe data



Name 93L105 93L125 93L125 93L125 93L125 93L125

Mineral Plaaioclase Plaaioclase Plaaioclase Plaaioclase Plagioclase Plaaioclase

Si02 56.45 53.63 53.55 53.08 52.25 52.47

Ti02 0.01 0.07 0.10 0.07 0.06 0.05

AI~3 27.04 28.73 28.57 28.65 29.11 28.12

MgO 0.02 0.12 0.12 0.11 0.10 0.10

CaO 10.17 12.49 12.47 12.62 12.99 12.04

MnO 0.00 0.02 0.02 0.00 0.01 0.02

FeO 0.34 0.84 1.08 0.80 0.86 0.79

N~ 5.16 4.38 4.47 4.35 4.09 4.41

K~ 0.78

Total 100.05 100.27 100.38 99.68 99.47 98.04

Formula Units 8 8 8 8 8 8

Si 2.54 2.43 2.43 2.42 2.39 2.43

AI 1.42 1.52 1.51 1.52 1.55 1.52

Mg 0.00 0.01 0.01 0.01 0.01 0.01

Ca 0.49 0.61 0.61 0.62 0.64 0.60

Fe 0.01 0.03 0.04 0.03 0.03 0.03

Ba 0.00 0.00 0.00 0.00 0.00 0.00

Na 0.45 0.38 0.39 0.38 0.36 0.40

K 0.04

Total 4.97 4.98 4.99 4.99 4.99 4.98

Appendix C 309 Textures &Microprobe data



Name 93L125 93L125 93L27 93L27 93L125

Mineral Plagioclase Plaaioclase Plaaioclase Plaaioclase Plaaioclase

Si02 52.78 52.55 51.40 49.83 52.30

Ti02 0.06 0.08 0.07 0.03 0.07

Ai203 28.15 28.40 30.12 31.12 28.32

MgO 0.13 0.13 0.20 0.17 0.11

CaO 12.46 12.71 13.49 14.78 12.56

MnO 0.02 0.02 0.00 0.01 0.02

FeO 0.95 0.81 0.88 0.59 0.95

Na2<) 4.40 4.33 3.87 3.29 4.25

Total 98.93 99.02 100.12 99.82 98.84

Formula Units 8 8 8 8 8

Si 2.43 2.41 2.34 2.28 2.41

AI 1.51 1.52 1.60 1.67 1.53

Mg 0.01 0.01 0.01 0.01 0.01

Ca 0.61 0.63 0.66 0.73 0.62

Fe

Ba 0.04 0.03 0.03 0.02 0.04

Na 0.39 0.39 0.34 0.29 0.38

Total 4.99 4.99 5.00 5.00 4.99

AppendixC 310 Textures & Microprobe data



Name 93L27 931105 93L83 93L83 93L83 93L83

Mineral Plagioclase Plagioclase Alkalifeld. Alkalifeld. Alkalifeld. Alkalifeld.

Si02 49.65 57.21 65.50 65.28 64.53 64.65

Ti02 0.27 0.01 0.09 0.04 0.06 0.50

AI203 24.66 26.11 18.61 20.47 19.04 18.74

MgO 3.95 0.02 0.14 0.17 0.14 0.02

CaO 14.83 9.32 0.25 1.58 1.31 0.42

MnO 0.06 0.00 0.00 0.01 0.04 0.01

FeO 3.42 0.34 1.95 0.28 1.29 2.11

BaO 0.02 0.08 0.02 0.11 0.06 0.00

Na20 2.67 5.52 6.30 7.92 7.23 7.34

K20 0.13 0.95 7.22 4.31 6.03 6.34

Total 99.75 99.56 100.09 100.18 99.73 100.13

Formula Units 8 8 8 8 8 8

Si 2.33 2.59 2.96 2.91 2.93 2.93

Ti 0.01 0.00 0.00 0.00 0.00 0.02

AI 1.35 1.39 0.98 1.06 1.01 0.99

Mg 0.28 0.00 0.01 0.01 0.01 0.00

ca 0.74 0.45 0.01 0.08 0.06 0.02

Mn 0.00 0.00 0.00 0.00 0.00 0.00

Fe 0.13 0.01 0.07 0.01 0.05 0.08

Ba 0.00 0.00 0.00 0.00 0.00 0.00

Na 0.24 0.48 0.55 0.68 0.64 0.64

K 0.01 0.06 0.42 0.25 0.35 0.37

Total 5.09 4.99 5.01 5.01 5.04 5.05

AppendixC 311 Textures & Microprobe data



Name 93L83 93L44 93L44 93L44 93L44 93L44

Mineral Alkali feld. Alkali feld. Alkali feld. Alkali feld. Alkali feld. Alkali feld.

5102 66.39 65.69 65.55 65.33 65.21 65.13

Ti02 0.07 0.01 0.02 0.02 0.04 0.00

AlA 18.08 19.14 18.99 19.21 19.07 18.98

MgO 0.15 0.00 0.00 0.00 0.00 0.00

caO 0.31 0.71 0.58 0.78 0.78 0.60

MnO 0.01 0.00 0.00 0.01 0.00 0.01

FeO 1.44 0.10 0.10 0.14 0.11 0.11

BaO 0.04 0.33 0.26 0.55 0.51 0.37

N820 6.47 3.95 3.88 3.91 3.97 3.78

K20 6.44 10.62 10.70 10.34 10.38 10.63

Total 99.39 100.55 100.06 100.28 100.07 99.60

Formula Units 8 8 8 8 8 8

5i 3.00 2.97 2.98 2.97 2.97 2.98

TI 0.00 0.00 0.00 0.00 0.00 0.00

Al 0.95 1.02 1.02 1.03 1.02 1.02

Mg 0.01 0.00 0.00 0.00 0.00 0.00

Ca 0.02 0.03 0.03 0.04 0.04 0.03

Mn 0.00 0.00 0.00 0.00 0.00 0.00

Fe 0.05 0.00 0.00 0.01 0.00 0.00

Ba 0.00 0.01 0.01 0.01 0.01 0.01

Na 0.57 0.35 0.34 0.34 0.35 0.34

K 0.37 0.61 0.62 0.60 0.60 0.62

Total 4.97 5.00 5.00 4.99 5.00 4.99

Appendix C 312 Textures & Microprobe data



Name 93L44 93L44 93L44 93L44 93L44 93L44

Mineral Alkali feld. AJkali feld. Alkali feld. AJkali feld. Alkali feld. Alkali feld,

Si02 65.21 65.69 65.55 64.12 62.14 65.61

Ti02 0.03 0.01 0.02 0.04 0.01 0.01

AI203 19.16 19.14 18.99 19.64 23.10 19.00

MgO 0.00 0.00 0.00 0.00 0.00 0.00

CaO 0.74 0.71 0.58 1.12 5.23 0.70

MnO 0.00 0.00 0.00 0.00 0.00 0.00

FeO 0.12 0.10 0.10 0.16 0.30 0.13

BaO 0.49 0.33 0.26 1.05 0.02 0.40

Na2C) 3.90 3.95 3.88 3.86 7.32 3.91

K2C) 10.38 10.62 10.70 9.96 2.07 10.45

Total 100.03 100.55 100.06 99.95 100.19 100.22

Formula Units 8 8 8 8 8 8

Si 2.97 2.97 2.98 2.93 zrr 2.98

Ti 0.00 0.00 0.00 0.00 0.00 0.00

AI 1.03 1.02 1.02 1.06 1.21 1.02

Mg 0.00 0.00 0.00 0.00 0.00 0.00

Ca 0.04 0.03 0.03 0.06 0.25 0.03

Mn 0.00 0.00 0.00 0.00 0.00 0.00

Fe 0.01 0.00 0.00 0.01 0.01 0.01

Ba 0.01 0.01 0.01 0.02 0.00 0.01

Na 0.34 0.35 0.34 0.34 0.63 0.34

K 0.60 0.61 0.62 0.58 0.12 0.61

Total 4.99 5.00 5.00 5.00 5.00 4.99

AppendixC 313 Textures &Microprobe data



Name 93L44 93L44 93L44 93L112 93Ll12 93L112

Mineral Alkali feld. Alkali feld. Alkali feld. Alkali feld. Alkali feld. Alkali feld.

SK>2 65.52 65.51 65.21 64.92 65.32 64.31

TI02 0.02 0.03 0.03 0.02 0.05 0.04

AlA 19.11 19.06 19.16 19.11 1B.74 1B.99

MgO 0.00 0.00 0.00 0.01 0.00 0.00

caO 0.72 0.66 0.74 0.43 0.33 0.36

MnO 0.00 0.00 0.00 0.01 0.00 0.00

FeO 0.12 0.10 0.12 0.09 O.OB 0.08

BaO 0.40 0.39 0.49 1.B2 1.00 2.32

Na2<) 3.B9 3.88 3.90 3.31 3.06 2.97

K~ 10.47 10.56 10.38 11.02 11.71 11.20

Total 100.25 100.20 100.03 100.73 100.29 100.25

Formula Units B 8 8 8 8 B

Si 2.97 2.97 2.97 2.97 2.98 2.96

Ti 0.00 0.00 0.00 0.00 0.00 0.00

AI 1.02 1.02 1.03 1.03 1.01 1.03

Mg 0.00 0.00 0.00 0.00 0.00 0.00

Ca 0.04 0.03 0.04 0.02 0.02 0.02

Mn 0.00 0.00 0.00 0.00 0.00 0.00

Fe 0.00 0.00 0.01 0.00 0.00 0.00

Ba 0.01 0.01 0.01 0.03 0.02 0.04

Na 0.34 0.34 0.34 0.29 0.27 0.27

K 0.61 0.61 0.60 0.64 0.68 0.66

Total 4.99 4.99 4.99 4.99 4.99 4.98

Appendix C 314 Textures & Microprobe data



Name 93L112 93L112 93L112 93L112 93L112 93L83

Mineral Alkali feld. Alkali feld. Alkali feld. Alkali feld. Alkali feId. Alkali feld.

Si02 65.31 65.33 63.37 65.90 64.44 65.41

TI02 0.02 0.04 0.03 0.01 0.02 0.04

AI2<)a 19.07 18.67 18.99 18.77 18.81 19.03

MgO 0.00 0.00 0.00 0.00 0.00 0.01

CaO 0.45 0.23 0.37 0.40 0.33 0.30

MnO 0.00 0.00 0.01 0.02 0.00 0.00

FeO 0.10 0.07 0.10 0.08 0.08 0.69

BaO 1.42 1.46 2.23 0.70 1.30 0.04

Na~ 3.34 3.11 3.06 3.20 3.08 6.90

K~ 11.04 11.38 11.26 11.45 11.51 7.06

Total 100.74 100.29 99.42 100.53 99.57 99.48

Formula Units 8 8 8 8 8 8

Si 2.97 2.99 2.95 2.99 2.97 2.96

Ti 0.00 0.00 0.00 0.00 0.00 0.00

AI 1.02 1.01 1.04 1.01 1.02 1.01

Mg 0.00 0.00 0.00 0.00 0.00 0.00

ca 0.02 0.01 0.02 0.02 0.02 0.01

Mn 0.00 0.00 0.00 0.00 0.00 0.00

Fe 0.00 0.00 0.00 0.00 0.00 0.03

Ba 0.03 0.03 0.04 0.01 0.02 0.00

Na 0.30 0.28 0.28 0.28 0.28 0.61

K 0.64 0.66 0.67 0.66 0.68 0.41

Total 4.98 4.98 5.00 4.98 4.99 5.03

Appendix C 315 Textures & Microprobe data



Name 93L.83 93L.83 93L.83 93L.83 93L.83 93L.83

Mineral Alkali feld. Alkali feld. Alkali feld. Alkali feld. Alkali feld. Alkali feld.

SI02 66.39 65.50 65.28 64.53 64.65 71.19

TI02 0.07 0.09 0.04 0.06 0.50 0.04

AI2<>3 18.08 18.61 20.47 19.04 18.74 15.93

MgO 0.15 0.14 0.17 0.14 0.02 0.00

CaO 0.31 0.25 1.58 1.31 0.42 0.24

MnO 0.01 0.00 0.01 0.04 0.01 0.00

FeO 1.44 1.95 0.28 1.29 2.11 0.77

BaO 0.04 0.02 0.11 0.06 0.00 0.01

Na2D 6.47 6.30 7.92 7.23 7.34 5.94

K20 6.44 7.22 4.31 6.03 6.34 5.85

Total 99.39 100.09 100.18 99.73 100.13 99.96

Formula units 8 8 8 8 8 8

Si 3.00 2.96 2.91 2.93 2.93 3.15

Ti 0.00 0.00 0.00 0.00 0.02 0.00

AI 0.95 0.98 1.06 1.01 0.99 0.82

Mg 0.01 0.01 0.01 0.01 0.00 0.00

Ca 0.02 0.01 0.08 0.06 0.02 0.01

Mn 0.00 0.00 0.00 0.00 0.00 0.00

Fe 0.05 0.07 0.01 0.05 0.08 0.03

Ba 0.00 0.00 0.00 0.00 0.00 0.00

Na 0.57 0.55 0.68 0.64 0.64 0.51

K 0.37 0.42 . 0.25 0.35 0.37 0.33

Total 4.97 5.01 5.01 5.04 5.05 4.85

Appendix C 316 Textures &Microprobe data



Name 93178 93L78 93L78 93L78 93L39 93L39

Mineral Alkali feld. Alkali feld. Alkali feld. Alkali feld. Alkali feld. Alkali feId.

Si02 59.68 62.25 62.60 61.81 66.98 67.07

Ti02

Ai203 24.47 22.81 22.61 23.40 19.00 19.13

MgO

CaO 6.63 4.53 4.26 5.28 0.21 0.28

MnO

FeO 0.46 0.32 0.34 0.53 0.15 0.14

sao 0.32 0.57 0.73 0.29 0.00 0.04

Na2<) 7.24 7.22 7.76 7.07 5.84 6.00

K20 1.09 2.76 2.22 2.35 8.57 8.28

Total 99.90 100.47 100.51 100.74 100.74 100.93

Formula units 8 8 8 8 8 8

Si 2.68 2.78 2.79 2.75 2.99 2.99

Al 1.30 1.20 1.19 1.23 1.00 1.01

Ca 0.32 0.22 0.20 0.25 0.01 0.01

Fe 0.02 0.01 0.01 0.02 0.01 0.01

Ba 0.01 0.01 0.01 0.01 0.00 0.00

Na 0.63 0.63 0.67 0.61 0.51 0.52

K 0.06 0.16 0.13 0.13 0.49 0.47

Total 5.02 5.01 5.01 5.01 5.00 5.00

AppendixC 317 Textures & Microprobe data



Name 93L39 93L39 93L39 93L39 93L39 93L39

Minerai Alkali feld. Alkali feld. Alkali feld. Alkali feld. Alkali feld. Alkali feld.

Si02 66.51 66.37 66.39 66.12 65.97 66.73

Ti02

AlA 18.82 18.87 18.87 18.95 18.81 19.15

MgO

caO 0.24 0.22 0.26 0.23 0.28 0.31

MnO

FeO 0.14 0.14 0.13 0.13 0.15 0.12

BaO 0.00 0.03 0.00 0.00 0.07 0.13

Na2D 5.67 5.91 5.92 5.92 5.86 6.09

K20 8.76 8.52 8.42 8.36 8.11 8.16

Total 100.13 100.06 99.98 99.71 99.24 100.69

Formula units 8 8 8 8 8 8

SI 2.99 2.99 2.99 2.99 2.99 2.98

AI 1.00 1.00 1.00 1.01 1.01 1.01

Ca 0.01 0.01 0.01 0.01 0.01 0.02

Fe 0.01 0.01 0.01 0.01 0.01 0.01

Ba 0.00 0.00 0.00 0.00 0.00 0.00

Na 0.49 0.52 0.52 0.52 0.52 0.53

K 0.50 0.49 0.48 0.48 0.47 0.47

Total 5.01 5.01 5.01 5.01 5.00 5.01

Appendix C 318 Textures &Microprobe data



Name 93L39 93L39 93L39 93L39 93139 93L39

Mineral Alkali feld. Alkali fald. Alkali fald. Alkali feld. Alkali 'eld. Alkali feld.

Si02 66.59 67.47 66.62 66.29 66.65 66.71

TI02

AlA 19.05 19.23 19.03 18.79 18.88 18.88

MgO

CaO 0.29 0.27 0.28 0.24 0.20 0.24

MnO
FaO 0.15 0.15 0.12 0.14 0.15 0.13

BaO 0.00 0.00 0.00 0.00 0.00 0.06

N82<) 6.12 6.01 6.01 5.91 5.83 5.84

K20 7.98 8.30 8.21 8.34 8.60 8.45

Total 100.17 101.42 100.27 99.71 100.32 100.29

Formula units 8 8 B B B B

Si 2.99 2.99 2.99 2.99 2.99 2.99

AI 1.01 1.01 1.01 1.00 1.00 1.00

Ca 0.01 0.01 0.01 0.01 0.01 0.01

Fe 0.01 0.01 0.01 0.01 0.01 0.01

Ba 0.00 0.00 0.00 0.00 0.00 0.00

Na 0.53 0.52 0.52 0.52 0.51 0.51

K 0.46 0.47 0.47 0.48 0.49 0.48

Total 5.00 5.00 5.01 5.01 5.01 5.00

Append/xC 319 Textures &Microprobe data



Nama 93L105 93L105 93L105 93L105 93L105 93L105

Mineral Alkalifald. Alkalifald. Alkalifald. Alkalifeld. Alkalifald. Alkalifald.

5102 63.40 64.36 65.33 63.45 64.25 65.49

Ti02 0.03 0.03 0.04 0.02 0.02 0.04

AI203 18.89 18.98 18.31 19.08 18.72 18.45

MgO 0.01 0.00 0.00 0.00 0.00 0.00

CaO 0.42 0.35 0.23 0.36 0.36 0.34

MnO 0.01 0.01 0.00 0.00 0.00 0.00

FeO 0.07 0.11 0.10 0.08 0.10 0.09

BaO 3.09 1.99 1.45 2.76 1.99 0.95

N820 2.75 2.78 2.62 2.86 2.61 2.71

K20 10.73 11.44 11.69 11.00 11.51 12.04

Total 99.40 100.03 99.76 99.60 99.54 100.09

Formula Units 8 8 8 8 8 8

Si 2.96 2.97 3.00 2.95 2.98 3.00

Ti 0.00 0.00 0.00 0.00 0.00 0.00

AI 1.04 1.03 0.99 1.05 1.02 1.00

Mg 0.00 0.00 0.00 0.00 0.00 0.00

ca 0.02 0.02 0.01 0.02 0.02 0.02

Mn 0.00 0.00 0.00 0.00 0.00 0.00

Fa 0.00 0.00 0.00 0.00 0.00 0.00

Ba 0.06 0.04 0.03 0.05 0.04 0.02

Na 0.25 0.25 0.23 0.26 0.24 0.24

K 0.64 0.67 0.69 0.65 0.68 0.70

Total 4.96 4.98 4.96 4.98 4.97 4.97

AppendixC 320 Textures & Microprobe data



Name 93L99 93L99 93L99 93L99 93L99 93L80

Mineral Alkali feld. Alkali feld. Alkali feld. Alkali feld. Alkali feId. Alkali feId.

Si02 64.92 65.71 64.84 64.73 63.37 69.39

r~ 0.06 0.02 0.05 0.04 0.08 0.01

Af203 18.82 18.44 18.66 18.76 19.28 19.46

MgO 0.00 0.00 0.00 0.00 0.00 0.01

CaO 0.40 0.30 0.26 0.33 0.45 0.01

MnO 0.01 0.01 0.00 0.00 0.00 0.00

FeO 0.08 0.10 0.09 0.10 0.09 0.03

SaO 2.03 1.08 1.64 1.71 3.43 0.00

Na2D 2.68 2.72 2.43 2.38 zrr 11.78

K2D 11.46 11.84 12.19 12.05 10.94 0.06

Total 100.45 100.21 100.16 100.10 100.41 100.75

Formula Units 8 8 8 8 8 8

Si 2.98 3.00 2.98 2.98 2.94 3.01

Ti 0.00 0.00 0.00 0.00 0.00 0.00

AI 1.02 0.99 1.01 1.02 1.05 0.99

Mg 0.00 0.00 0.00 0.00 0.00 0.00

Ca 0.02 0.02 0.01 0.02 0.02 0.00

Mn 0.00 0.00 0.00 0.00 0.00 0.00

Fe 0.00 0.00 0.00 0.00 0.00 0.00

Ba 0.04 0.02 0.03 0.03 0.06 0.00

Na 0.24 0.24 0.22 0.21 0.25 0.99

K 0.67 0.69 0.72 0.71 0.65 0.00

Total 4.97 4.97 4.98 4.97 4.98 4.99

AppendixC 321 Textures &. Microprobe data



Name 93128 93128 93128 93128 93L28 93L28

Mineral Alkali feld. Alkali feld. Alkali feld. Alkali feld. Alkali feld. Alkali feld.

Si02 66.91 67.30 67.00 66.79 66.53 66.74

T~
AI203 18.68 18.62 18.67 18.56 18.67 18.63

MgO

CaO 0.07 0.05 0.04 0.06 0.08 0.07

MnO 0.01 0.01

FeO 0.17 0.14 0.15 0.19 0.19 0.17

SaO 0.03 0.02

N82<) 6.32 6.32 6.12 6.36 6.54 6.31

K20 7.80 7.97 8.15 7.70 7.44 7.91

Total 99.96 100.41 100.14 99.65 99.45 99.84

Formula Units 8 8 8 8 8 8

Si 3.00 3.01 3.01 3.01 3.00 3.00

Ti

AI 0.99 0.98 0.99 0.99 0.99 0.99

Mg 0.00 0.00 0.00 0.00 0.00 0.00

Ca 0.00 0.00 0.00 0.00 0.00 0.00

Mn 0.00 0.00 0.00 0.00 0.00 0.00

Fe 0.01 0.01 0.01 0.01 0.01 0.01

Ba 0.00 0.00 0.00 0.00 0.00 0.00

Na 0.55 0.55 0.53 0.56 0.57 0.55

K 0.45 0.46 0.47 0.44 0.43 0.45

Total 5.00 5.00 5.00 5.00 5.00 5.01

AppendixC 322 Textures &Microprobe data



Name 931.28 93L28 931.28 931.28 93L28 931.28

Mineral Alkali feld. Alkali feld. Alkali feld. Alkali feld. Alkali feld. Alkali feld.

Si02 66.83 66.70 66.40 66.98 66.89 67.30

Ti02

AI~ 18.76 18.66 18.64 18.62 18.50 18.62

MgO 0.00 0.00 0.00 0.00 0.00 0.00

CaO 0.07 0.08 0.06 0.07 0.07 0.07

MnO 0.00 0.00 0.00 0.01 0.00 0.02

FeO 0.16 0.18 0.18 0.17 0.17 0.17

BaO 0.00 0.00 0.00 0.00 0.00 0.02

Na2<) 6.51 6.48 6.25 6.28 6.49 6.47

K2<) 7.64 7.75 7.n 7.89 7.63 7.67

Total 99.97 99.84 99.30 100.02 99.75 100.33

Formula Units 8 8 8 8 8 8

Si 3.00 3.00 3.00 3.01 3.01 3.01

Ti

AI 0.99 0.99 0.99 0.99 0.98 0.98

Mg 0.00 0.00 0.00 0.00 0.00 0.00

Ca 0.00 0.00 0.00 0.00 0.00 0.00

Mn 0.00 0.00 0.00 0.00 0.00 0.00

Fe 0.01 0.01 0.01 0.01 0.01 0.01

Ba 0.00 0.00 0.00 0.00 0.00 0.00

Na 0.57 0.57 0.55 0.55 0.57 0.56

K 0.44 0.45 0.45 0.45 0.44- 0.44-

Total 5.01 5.01 5.00 5.00 5.00 5.00

AppendixC 323 Textures & Microprobe data



Name 93128 93L28 93128 93L39 93L39 93L39

Minerai Alkalifeld. Alkalifeld. Alkalifeld. Alkalifeld. Alkalifeld. Alkalifeld.

5i02 66.89 67.04 66.86 66.25 66.62 66.30

Ti02

AI203 18.50 18.69 18.66 18.68 18.n 18.64

MgO

CaO 0.07 0.06 0.06 0.22 0.23 0.25

MnO 0.01

FeO 0.17 0.20 0.17 0.13 0.14 0.15

BaO 0.02 0.01

N820 6.49 6.16 6.26 5.76 5.64 5.88

K20 7.63 7.87 7.96 8.43 8.48 8.39

Total 99.75 100.02 99.99 99.47 99.86 99.62

Formula Units 8 8 8 8 8 8

Si 3.01 3.01 3.00 3.00 3.00 3.00

Ti

AI 0.98 0.99 0.99 1.00 1.00 0.99

Mg 0.00 0.00 0.00 0.00 0.00 0.00

ca 0.00 0.00 0.00 0.01 0.01 0.01

Mn 0.00 0.00 0.00 0.00 0.00 0.00

Fe 0.01 0.01 0.01 0.01 0.01 0.01

Ba 0.00 0.00 0.00 0.00 0.00 0.00

Na 0.57 0.54 0.55 0.51 0.49 0.52

K 0.44 0.45 0.46 0.49 0.49 0.48

Total 5.00 4.99 5.00 5.00 4.99 5.01

AppendixC 324 Textures & Microprobe data



Name 93139 93139 93139 93139 93139 93L39

Mineral Alkali feld. Alkali 'eld. Alkali 'eld. Alkali feld. Alkali 'eld. Alkali feld.

Si~ 67.08 66.68 66.52 67.27 66.05 65.88

Ti02 0.00 0.00 0.03 0.00 0.01 0.02

Al2<)a 18.87 18.75 18.85 18.88 18.79 18.83

MgO 0.01 0.01 0.00 0.00 0.00 0.00

CaO 0.21 0.20 0.27 0.28 0.31 0.27

MnO 0.00 0.01 0.00 0.00 0.01 0.01

FeO 0.13 0.12 0.15 0.14 0.15 0.15

BaO 0.00 0.00 0.00 0.00 0.02 0.00

N820 5.75 5.61 5.87 5.98 6.01 5.83

K2<> 8.50 8.70 8.33 8.05 8.26 8.45

Total 100.55 100.08 100.02 100.60 99.61 99.44

Formula Units 8 8 8 8 8 8

Si 3.00 3.00 2.99 3.00 2.99 2.99

Ti 0.00 0.00 0.00 0.00 0.00 0.00

Al 1.00 0.99 1.00 0.99 1.00 1.01

Mg

Ca 0.01 0.01 0.01 0.01 0.02 0.01

Mn

Fe 0.01 0.01 0.01 0.01 0.01 0.01

Ba

Na 0.50 0.49 0.51 0.52 0.53 0.51

K 0.49 0.50 0.48 0.46 0.48 0.49

Total 4.99 5.00 5.00 4.99 5.01 5.01

Appendix C 325 Textures &Microprobe data



Name 93139 93L36 93L36 93L36 93L36 93L36

Mineral Alkali feld. Alkali felel. Alkali feld. Alkali feld. Alkali feld. Alkali feld.

SI02 67.23 66.72 66.57 66.11 66.01 66.90

Ti02 0.02 0.01 0.00 0.01 0.00 0.00

AI203 18.83 18.68 18.68 18.74 18.81 18.99

MgO 0.00 0.00 0.00 0.00 0.00 0.00

CaO 0.24 0.16 0.25 0.29 0.32 0.40

MnO 0.00 0.00 0.01 0.00 0.00 0.00

FeO 0.14 0.13 0.12 0.10 0.14 0.13

BaO 0.02 0.00 0.00 0.02 0.00 0.01

Na20 5.84 5.26 5.69 5.95 6.15 6.29

K20 8.44 9.27 8.55 8.35 7.95 7.58

Total 100.75 100.24 99.88 99.57 99.38 100.29

Formula Units 8 8 8 8 8 8

Si 3.00 3.00 3.00 2.99 2.99 2.99

n 0.00 0.00 0.00 0.00 0.00 0.00

Al 0.99 0.99 0.99 1.00 1.00 1.00

Mg 0.00 0.00 0.00 0.00 0.00 0.00

Ca 0.01 0.01 0.01 0.01 0.02 0.02

Mn 0.00 0.00 0.00 0.00 0.00 0.00

Fe 0.01 0.01 0.01 0.00 0.01 0.01

Ba 0.00 0.00 0.00 0.00 0.00 0.00

Na 0.51 0.46 0.50 0.52 0.54 0.55

K 0.48 0.53 0.49 0.48 0.46 0.43

Total 5.00 5.00 5.00 5.01 5.01 5.00

AppendixC 326 Textures &Microprobe data



Name 93L36 93L36 93L83 93L83 93L83 93L83

Mineral Alkali feld. Alkali feld. Alkali feld. Alkali feld. Alkali feld. Alkali feld.

Si02 66.38 66.38 65.31 64.87 65.60 65.50

Tt02 0.01 0.05 0.04 0.05 0.04

Af20a 18.91 18.52 20.48 20.26 20.45 20.21

MgO

CaO 0.30 0.18 1.65 2.45 1.64 1.49

MnO

FeO 0.12 0.15 0.19 0.14 0.17 0.16

BaO 0.00 0.02 0.12 0.14 0.10 0.12

Na~ 5.93 5.57 7.60 7.30 7.29 7.72

K~ 8.16 8.64 4.18 4.22 4.24 3.95

Total 99.80 99.46 99.59 99.41 99.54 99.18

Formula Units 8 8 8 8 8 8

Si 2.99 3.01 2.92 2.91 2.93 2.94

Ti

AI 1.00 0.99 1.08 1.07 1.08 1.07

Mg

Ca 0.01 0.01 0.08 0.12 0.08 0.07

Mn

Fe 0.01 0.01 0.01 0.01 0.01 0.01

Ba

Na 0.52 0.49 0.66 0.64 0.63 0.67

K 0.47 0.50 0.24 0.24 0.24 0.23

Total 5.00 5.00 4.99 4.99 4.97 4.98

Appendix C 327 Textures &Microprobe data



Name 93183 93183 93183 93183 93L83 93L83

Mineral Alkali feld. Alkali feld. Alkali feld. Alkali feld. Alkali feld. Alkali feld.

Si02 65.23 65.95 71.19 65.41 66.20 65.78

Ti02 0.01 0.04 0.04 0.04 0.05 0.03

AI2D3 20.19 20.13 15.93 19.03 20.16 19.85

MgO 0.01 0.00 0.01

CaO 1.17 1.32 0.24 0.30 1.28 1.16

MnO 0.01 0.00 0.00

FeO 0.19 0.19 o.n 0.69 0.17 0.15

BaO 0.08 0.11 0.01 0.04 0.14 0.06

N820 7.54 7.22 5.94 6.90 7.10 6.55

K20 5.24 4.61 5.85 7.06 4.53 6.09

Total 99.69 99.57 99.96 99.48 99.62 99.66

Formula Units 8 8 8 8 8 8

Si 2.93 2.95 3.15 2.96 2.95 2.95

n 0.00 0.00 0.00 0.00 0.00 0.00

AI 1.06 1.06 0.82 1.01 1.06 1.05

Mg 0.00 0.00 0.00

Ca 0.06 0.06 0.01 0.01 0.06 0.06

Mn 0.00 0.00 0.00

Fe 0.01 0.01 0.03 0.03 0.01 0.01

Ba 0.00 0.00 0.00 0.00 0.00 0.00

Na 0.66 0.63 0.51 0.61 0.61 0.57

K 0.30 0.26 0.33 0.41 0.26 0.35

Total 5.01 4.97 4.85 5.03 4.95 4.98

AppendixC 328 Textures &Microprobe data



Name 92U12 93193 93L97 93L97 93L125 93L125

Mineral Auaite Auaite Piaeonite PiQeonite Auaite Auaite

Si02 49.92 52.34 54.76 53.79 48.99 48.45

Ti02 0.83 0.48 0.19 0.17 1.14 0.72

AI2<)a 5.92 1.56 1.62 1.n 3.70 1.15

Cr2<>3 0.33 0.42 0.00 0.00

MgO 14.76 16.96 29.22 29.06 10.79 8.54

CaO 19.19 16.93 2.00 2.09 10.60 13.62

MnO 0.21 0.25 0.27 0.25 0.51 0.58

FeO· 8.40 11.03 11.97 11.50 23.74 26.10

Na~ 0.60 0.18 0.02 0.03 0.53 0.13

K20 0.00 0.01 0.01 0.00 0.09 0.04

Total 99.82 99.74 100.38 99.08 100.12 99.34

Formula units 6 6 6 6 6 6

Si 1.84 1.94 1.94 1.93 1.88 1.92

Ti 0.02 0.01 0.00 0.00 0.03 0.02

AI 0.26 0.07 0.07 0.07 0.17 0.05

Cr 0.00 0.00 0.01 0.01 0.00 0.00

Mg 0.81 0.94 1.54 1.55 0.62 0.50

Ca 0.76 0.67 0.08 0.08 0.44 0.58

Mn 0.01 0.01 0.01 0.01 0.02 0.02

Fe2+ 0.22 0.29 0.30 0.29 0.65 0.74

Fe3+ 0.04 0.05 0.05 0.05 0.11 0.13

Na 0.01 0.00 0.00 0.00 0.01 0.00

K 0.00 0.00 0.00 0.00 0.00 0.00

Total 3.97 3.98 3.99 4.00 3.93 3.96

AppendixC 329 Textures &Microprobe data



Name 931125 931125 931125 931125 93L53 93L104

Mineral Plaeonite Auaite Auaite Auaite Auaite Auaite

Si02 49.94 50.21 49.78 50.29 49.73 49.56

Ti02 0.45 0.69 0.82 0.76 1.57 1.05

AI2<>3 0.84 1.36 1.56 1.40 2.52 2.05

Cr~3 0.02 0.02 0.00 0.00 0.04 0.05

MgO 16.46 12.76 13.19 12.31 12.n 15.38

cao 5.29 16.23 13.18 17.28 20.38 17.35

MnO 0.58 0.43 0.52 0.40 0.28 0.30

FeO* 25.28 17.58 20.62 17.05 12.48 12.55

N820 0.03 0.16 0.14 0.16 0.37 0.22

K20 0.00 0.00 0.01 0.00 0.00 0.00

Total 98.90 99.46 99.81 99.65 100.15 98.50

Formula units 6 6 6 6 6 6

Si 1.93 1.92 1.91 1.92 1.88 1.89

Ti 0.01 0.02 0.02 0.02 0.04 0.03

AI 0.04 0.06 0.07 0.06 0.11 0.09

Cr 0.00 0.00 0.00 0.00 0.00 0.00

Mg 0.95 0.73 0.75 0.70 0.72 0.87

Ca 0.22 0.67 0.54 0.71 0.82 0.71

Mn 0.02 0.01 0.02 0.01 0.01 0.01

Fe2+ 0.69 0.48 0.56 0.46 0.33 0.34

Fe3+ 0.12 0.08 0.10 0.08 0.06 0.06

Na 0.00 0.00 0.00 0.00 0.01 0.00

K 0.00 0.00 . 0.00 0.00 0.00 0.00

Total 3.98 3.98 3.98 3.98 3.98 4.00

AppendixC 330 Textures & Microprobe data



Name 93L104 93L104 93L104 93L104 93L104 93L27

Mineral Auaite Auaite Auaite Auaite Auaite Auaite
Si02 SO.57 SO.10 SO.34 41.09 51.62 SO.16

TiCh 0.65 0.71 0.77 0.49 0.61 0.90

AI2<)a 1.84 1.66 2.29 21.57 1.58 2.80

Cr2<)3 0.04 0.05 0.21 0.00 0.12 0.41

MgO 16.28 15.98 16.11 2.77 16.20 16.36

cao 16.33 17.80 18.67 8.05 18.80 17.64

MnO 0.31 0.31 0.25 0.10 0.28 0.27

FeO· 12.73 11.62 9.94 20.51 9.85 10.05

Na:zQ 0.23 0.21 0.21 3.46 0.19 0.23

K20 0.01 0.00 0.00 0.30 0.00 0.01

Total 99.00 98.43 98.78 98.38 99.27 98.84

Formula units 6 6 6 6 6 6

Si 1.91 1.90 1.89 1.58 1.93 1.88

Ti 0.02 0.02 0.02 0.01 0.02 0.03

AI 0.08 0.07 0.10 0.97 0.07 0.12

Cr 0.00 0.00 0.01 0.00 0.00 0.01

Mg 0.91 0.90 0.90 0.16 0.90 0.92

Ca 0.66 0.72 0.75 0.33 0.75 0.71

Mn 0.01 0.01 0.01 0.00 0.01 0.01

Fe2+ 0.34 0.31 0.27 0.56 0.26 0.27

Fe3+ 0.06 0.05 0.05 0.10 0.05 0.05

Na 0.00 0.00 0.00 0.06 0.00 0.00

K 0.00 0.00 0.00 0.00 0.00 0.00

Total 4.00 4.01 4.00 3.79 3.99 3.99

AppendixC 331 Textures & Microprobe data



Name 93L104 93L125 93L125 93L125 93L125 93L125

Mineral Auaite Auaite Auaite Auaite Auaite Auaite

Si02 49.72 50.45 SO.65 49.65 SO.30 49.94

Ti<>2 1.31 0.49 0.70 0.91 0.37 0.68

Al203 1.88 0.82 1.41 1.82 0.74 1.38

Cr203 0.00 0.00 0.02 0.00 0.17 0.12

MgO 14.88 16.67 13.89 12.40 15.95 12.54

caO 16.03 5.15 15.49 16.61 5.08 16.70

MnO 0.38 0.58 0.42 0.42 0.62 0.42

FeO* 15.72 25.29 17.84 17.89 26.28 17.51

N82C) 0.06 0.14 0.16 0.05 0.16

K20

Total 99.93 99.50 100.55 99.85 99.58 99.44

Formula units 6 6 6 6 6 6

Si 1.88 1.93 1.92 1.90 1.93 1.92

Ti 0.04 0.01 0.02 0.03 0.01 0.02

AI 0.08 0.04 0.06 0.08 0.03 0.06

Cr 0.00 0.00 0.00 0.00 0.01 0.00

Mg 0.84 0.95 0.78 0.71 0.91 0.72

Ca 0.65 0.21 0.63 0.68 0.21 0.69

Mn 0.01 0.02 0.01 0.01 0.02 0.01

Fe2+ 0.42 0.69 0.48 0.49 0.72 0.48

Fe3+ 0.07 0.12 0.08 0.09 0.13 0.08

Na 0.00 0.00 0.00 0.00 0.00 0.00

K 0.00 0.00 0.00 0.00 0.00 0.00

Total 4.00 3.97 3.99 3.98 3.97 3.98

AppendixC 332 Textures & Microprobe data



Name 93Ll25 93Ll25 93L125 93Ll25 93Ll25 93L125

Mineral Auaite Auaite Auaite Augite Auaite Auaite
Si02 48.75 48.31 49.69 49.69 51.27 48.02

Ti02 0.85 0.85 0.33

Ai203 1.31 1.26 1.70 1.70 0.70 1.70

Cr203 0.17 0.17 0.00

MgO 16.68 12.91 12.91 18.35 16.01

CaO 15.90 16.31 15.58 15.58 4.66 15.34

MnO 0.44 0.44 0.54

FeO* 17.04 18.07 18.65 18.65 23.84 18.67

Na2<) 0.16 0.17 0.16 0.16 0.07 0.16

K20 0.16 0.18 0.09

Total 83.32 84.28 100.15 100.15 99.74 83.99

Formulaunits 6 6 6 6 6 6

Si 1.86 2.18 1.90 1.90 1.94 1.84

Ti 0.00 0.00 0.02 0.02 0.01 0.00

AI 0.06 0.07 0.08 0.08 0.03 0.08

Cr 0.00 0.00 0.01 0.01 0.00 0.00

Mg 0.95 0.00 0.73 0.73 1.03 0.92

Ca 0.65 0.79 0.64 0.64 0.19 0.63

Mn 0.00 0.00 0.01 0.01 0.02 0.00

Fe2+ 0.46 0.58 0.51 0.51 0.64 0.51

Fe3+ 0.08 0.10 0.09 0.09 0.11 0.09

Na
K

Total 4.06 3.73 3.99 3.99 3.98 4.07

AppendixC 333 Textures &Microprobe data



Name 93L125 93L125 93L125 93L125 93L125

Minerai Auoite Auoite Auaite Auaite Augite

8i02 48.50 48.46 48.13 49.16 48.39

Ti02

AI~3 1.63 0.93 1.24 7.11 0.75

Cr~

MgO 14.92 17.78 16.46 11.32 20.13

CaO 16.65 9.87 16.23 9.59 5.40

MnO

FeO· 18.02 22.85 17.60 21.16 25.28

N82C) 0.18 0.11 0.14 1.36 0.06

K20 0.11 0.00 0.19 0.18 0.00

Total 85.08 82.22 83.54 88.68 79.87

Formula units 6 6 6 6 6

8i 1.86 1.86 1.85 1.86 1.85

n 0.00 0.00 0.00 0.00 0.00

AI 0.07 0.04 0.06 0.31 0.03

Cr 0.00 0.00 0.00 0.00 0.00

Mo 0.85 1.02 0.94 0.64 1.15

ca 0.68 0.41 0.67 0.39 0.22

Mn 0.00 0.00 0.00 0.00 0.00

Fe2+ 0.49 0.62 0.48 0.57 0.69

Fe3+ 0.09 0.11 0.08 0.10 0.12

Na 0.00 0.00 0.00 0.00 0.00

K 0.00 0.00 0.00 0.02 0.00

Total 4.05 4.06 4.08 3.90 4.07

Appendix C 334 Textures &Microprobe data



Name 93LB3 93LB3 93LB3 93L83 93LB3 93L83

Mineral Ti-Mao. Ti-Mao. Ti-Mao. Ti-Mao. n-Mao. Ti-Mao.

Si02 0.29 0.22 1.30 0.48 1.75 0.74

TI02 16.15 20.34 19.55 18.96 17.39 17.94

Ab03 0.12 0.15 0.30 0.16 0.30 0.21

V~3

Cr~3 0.00 0.00 0.01 0.01 0.09 0.00

MgO 0.10 0.05 0.24 0.12 0.21 0.14

Cao 0.00 0.05 0.10 0.56 0.05 4.83

MrIO 0.57 0.63 1.49 0.86 0.63 1.06

FeO 73.82 68.32 68.30 68.34 70.09 61.67

Na~ 0.01 0.02 0.00 0.03 0.03 0.05

K~ 0.08 0.03 0.04 0.03 0.01 0.07

Total 91.27 90.02 91.55 89.75 90.70 86.86

Formula Units 32 32 32 32 32 32

Si 0.11 0.08 0.47 0.17 0.64 0.27

Ti 4.45 5.60 5.38 5.22 4.79 4.94

AI 0.05 0.06 0.13 0.07 0.13 0.09

Cr 0.00 0.00 0.00 0.00 0.03 0.00

Mo 0.05 0.03 0.13 0.06 0.11 0.08

Ca 0.00 0.02 0.04 0.22 0.02 1.89

Mn 0.14 0.16 0.38 0.22 0.16 0.27

Fe 22.60 20.92 20.91 20.92 21.46 18.88

Na 0.01 0.01 0.00 0.02 0.02 0.04

K 0.04 0.02 0.02 0.01 0.00 0.03

Total 27.45 26.90 27.47 26.93 27.36 26.49

AppendixC 335 Textures &Microprobe data



Name 93L83 93L83 93L83 93183 93183 93L125

Minerai

Si02 0.65 0.28 0.22 0.32 0.47 1.24

Ti02 19.10 20.47 20.73 20.70 19.07 27.63

A~3 0.25 0.15 0.10 0.11 0.24 2.42

Vz03

Crz03 0.00 0.02 0.01 0.00 0.00 0.29

MgO 0.20 0.15 0.07 0.07 0.11 0.08

cao 0.03 0.04 0.29 0.03 0.06 0.10

MnO 1.21 1.79 0.68 0.85 0.95 0.89

FeO 69.07 68.31 68.16 69.20 69.90 57.32

NazO 0.03 0.01 0.01 0.01 0.01 0.03

KzO 0.02 0.00 0.01 0.01 0.05 0.03

Total 90.73 91.43 90.47 91.49 91.05 90.32

Formula Units 32 32 32 32 32 32

Si 0.24 0.10 0.08 0.12 0.17 0.45

n 5.26 5.64 5.71 5.70 5.25 7.61

AI 0.11 0.07 0.04 0.04 0.10 1.03

Cr 0.00 0.01 0.00 0.00 0.00 0.08

Mg 0.11 0.08 0.04 0.04 0.06 0.04

Ca 0.01 0.02 0.11 0.01 0.02 0.04

Mn 0.31 0.45 0.17 0.21 0.24 0.23

Fe 21.14 20.91 20.87 21.18 21.40 17.55

Na 0.02 0.01 0.01 0.01 0.01 0.02

K 0.01 0.00 0.01 0.01 0.02 0.01

Total 27.20 27.28 27.04 27.32 27.27 27.07

AppendixC 336 Textures & Microprobe data



Name 93L125 93L125 93L125 93L125 93L125 93L125

Mineral Ti-Maa. Ti-Maa. Ti-Maa. rl-Maa. rI-Mao. rI-Mea.

SI02 0.98 2.57 0.71 1.23 1.85 0.80
Ti02 27.42 26.06 27.23 28.61 29.76 28.84

~3 2.40 2.46 2.33 2.24 2.20 2.15

V-z03

Cr~3 0.25 0.28 0.28 0.20 0.19 0.20

MgO 0.06 0.10 0.05 0.07 0.06 0.07

CaO 0.05 0.10 0.06 0.11 0.27 0.14

MnO 0.91 0.72 0.89 0.86 0.98 0.91

FeO 58.40 56.91 59.08 57.50 55.32 57.37

Nap 0.06 0.02 0.00 0.03 0.08 0.08

K~ 0.03 0.21 0.02 0.06 0.05 0.01

Total 90.89 89.67 90.95 91.20 91.14 90.88

Formula Units 32 32 32 32 32 32

Si 0.36 0.94 0.26 0.45 0.68 0.29

Ti 7.55 7.17 7.50 7.88 8.19 7.94

AI 1.03 1.05 1.00 0.96 0.94 0.92

Cr 0.07 0.08 0.08 0.06 0.05 0.06

Mg 0.03 0.05 0.03 0.04 0.03 0.04

Ca 0.02 0.04 0.02 0.04 0.11 0.05

Mn 0.23 0.18 0.23 0.22 0.25 0.23

Fe 17.88 17.42 18.09 17.60 16.94 17.56

Na 0.04 0.01 0.00 0.02 0.05 0.05

K 0.02 0.10 0.01 0.03 0.03 0.00

Total 27.23 27.05 27.21 27.29 27.27 27.15

AppendixC 337 Textures &Microprobe data



Name 93L125 93L125 93L125 93L125 93L125 93L53

Mineral Ti-M{lQ_. Ti-M~ Ti-Maa. Ti-Maa. Ti-Mag. Ti-Maa.

Si02 1.67 0.66 0.94 1.81 1.17 0.57

Ti02 29.24 26.02 28.94 29.22 29.00 20.64

AI~3 2.13 2.73 2.30 2.15 2.22 0.82

V203

Cr~3 0.19 0.18 0.16 0.21 0.21 0.08

MgO 0.07 0.06 0.07 0.07 0.05 0.43

CaO 0.29 0.10 0.12 0.29 0.20 0.29

MnO 0.90 0.79 0.89 1.01 0.95 0.58

FeO 55.54 60.52 57.11 55.37 56.88 67.96

Na20 0.09 0.03 0.04 0.11 0.08 0.00

K~ 0.05 0.02 0.04 0.07 0.02 0.00

Total 90.48 91.39 90.88 90.66 91.11 91.56

Formula Units 32 32 32 32 32 32

Si 0.61 0.24 0.34 0.66 0.43 0.21

Ti 8.05 7.16 7.97 8.04 7.98 5.68

AI 0.91 1.16 0.98 0.92 0.95 0.35

Cr 0.05 0.05 0.05 0.06 0.06 0.02

Mg 0.04 0.03 0.04 0.04 0.02 0.24

Ca 0.11 0.04 0.05 0.11 0.08 0.11

Mn 0.23 0.20 0.22 0.25 0.24 0.15

Fe 17.00 18.53 17.49 16.95 17.41 20.81

Na 0.07 0.02 0.03 0.08 0.06 0.00

K 0.02 0.01 0.02 0.03 0.01 0.00

Total 27.10 27.44 27.17 27.15 27.24 27.56

Appendix C 338 Textures &Microprobe data



Name 93L53 93L53 93L53 93L53 93W 92U12

Mineral n·Maa. Ti-MJg. Ilmenite Tl-Maa. ilmenite _!!:Mag.

Si02 0.93 0.44 1.06 0.15 0.12 1.75

Ti02 15.23 15.48 34.41 6.90 44.00 24.32

A~3 1.04 0.82 0.59 1.40 0.06 2.04

Vt:J3

Cr~3 0.11 0.10 0.06 0.10 0.00 0.64

MgO 0.28 0.27 0.39 0.21 0.70 1.56

CaO 0.56 0.04 0.76 0.00 0.03 0.15

MnO 0.58 0.66 1.87 0.11 0.80 0.68

FeO 72.76 72.94 53.60 83.66 48.32 63.56

N~ 0.03 0.01 0.09

K~ 0.01

TotaJ 91.63 90.90 93.10 92.61 94.47 94.82

Formula Units 32 32 32 32 32 32

Si 0.34- 0.16 0.39 0.05 0.05 0.64

Ti 4.19 4.26 9.47 1.90 12.11 6.70

AI 0.44 0.35 0.25 0.60 0.02 0.87

Cr 0.03 0.03 0.02 0.03 0.00 0.18

Mg 0.15 0.15 0.21 0.11 0.38 0.85

Ca 0.22 0.02 0.30 0.00 0.01 0.06

Mn 0.15 0.17 0.47 0.03 0.20 0.17

Fe 22.27 22.33 16.41 25.61 14.79 19.46

Na 0.02 0.07

K

Total 27.80 27.48 27.53 28.33 27.58 28.99

Appendix C 339 Textures &Microprobe data



Name 92U12 92U12 92U12 92U12 92U12 92U12

MInerai TI-Maa. Ti-Mao. Ti-Mao. Ti-Mao. Ti-Mac. Ti-Mao.

Si02 0.17 0.16 0.16 0.18 0.17 0.17

Tt02 26.79 27.50 27.26 26.48 27.33 26.04

A1~3 1.48 1.03 1.44 1.40 1.44 1.64

V~3 0.12 0.08 0.12 0.10 0.07 0.14

Cr~3 0.11 0.05 0.29 0.34 0.48 1.93

MgO 0.05 0.24 0.06 1.04 0.06 0.05

CaO 0.12 0.15 0.07 0.19 0.24 0.18

MoO 1.20 0.70 1.21 0.69 1.04 0.99

FeO 64.30 64.79 64.18 65.30 63.35 63.34

N¥) 0.04 0.02 0.01 0.00 0.01 0.00

K~ 0.03 0.03 0.02 0.01 0.02 0.01

Total 94.39 94.74 94.83 95.73 94.22 94.48

Formula Units 32 32 32 32 32 32

SI 0.06 0.06 0.06 0.06 0.06 0.06

TI 7.37 7.57 7.51 7.29 7.52 7.17

AI 0.63 0.44 0.62 0.60 0.62 0.70

V 0.08 0.06 0.08 0.07 0.05 0.10

Cr 0.03 0.01 0.08 0.10 0.14 0.55

Mg 0.02 0.13 0.03 0.57 0.03 0.03

Ca 0.05 0.06 0.03 0.08 0.09 0.07

Mn 0.30 0.18 0.31 0.17 0.26 0.25

Fe 19.69 19.83 19.65 19.99 19.39 19.39

Na 0.02 0.01 0.01 0.00 0.01 0.00

Total 28.26 28.35 28.37 28.93 28.18 28.33

AppendixC 340 Textures et Microprobe data



Name 92U12 92U12 92U12 92U12 92U12 93L44

Mineral TI-Maa. TI-Maa. TI-Mao. Ti-Maa. TI-Maa. Ilmenite

Si02 1.42 0.18 0.17 0.17 0.17 0.07

TI02 26.46 26.42 26.96 26.19 26.97 60.58

A1~3 1.70 1.45 1.55 1.65 1.27 0.04

V~3 0.31

Cr~3 0.14 1.57 0.15 0.59 0.32 0.01

MgO 0.67 0.04 0.06 0.06 0.06 0.03

CaO 0.10 0.13 0.12 0.15 0.16 0.00

MnO 1.23 1.21 1.18 0.95 1.27 0.41

FeO 62.18 63.38 64.36 64.18 63.36 35.16

N¥> 0.11 0.11 0.10 0.12 0.11 0.07

Total 94.01 94.53 94.67 94.09 93.71 96.70

Formula Units 32 32 32 32 32 32

Si 0.52 0.07 0.06 0.06 0.06 0.03

Ti 7.29 7.27 7.42 7.21 7.42 16.68

AI 0.72 0.62 0.66 0.70 0.54 0.02

Cr 0.04 0.45 0.04 0.17 0.09 0.00

Mg 0.36 0.02 0.03 0.03 0.03 0.01

Ca 0.04 0.05 0.05 0.06 0.06 0.00

Mn 0.31 0.31 0.30 0.24 0.32 0.10

Fe 19.04 19.40 19.70 19.65 19.40 10.76

Na 0.08 0.08 0.07 0.08 0.08 0.05

Total 28.40 28.28 28.34 28.22 28.01 27.65

Appendix C 341 Textures & Microprobe data



Name 93144 93144 93L44 93L44 93L112 93L112

Mlnerat ilmenite TI-Mag. Ilmenite ilmenite Ti-Maa. Ti-Maa.

Si02 0.07 0.19 0.14 0.42 0.25 0.17

Ti02 58.23 28.79 51.88 58.36 11.69 19.36

AI~3 0.04 1.95 0.05 0.06 2.96 0.93

V~3 0.31 0.17 0.23 0.20 0.05 0.12

CrA 0.00 0.01 0.00 0.00 0.00 0.04

MgO 0.04 0.07 0.04 0.08 0.07 0.13

CaO 0.00 0.02 0.00 0.06 0.10 0.05

MnO 0.58 0.24 0.20 0.22 0.33 0.26

FaO 37.84 62.39 42.19 34.29 73.68 70.59

N¥> 0.01 0.01 0.01 0.01 0.01 0.01

NiO 0.07 0.24 0.03 0.06 0.25 0.29

Total 97.19 94.11 94.78 93.78 89.49 91.95

Formula Units 32 32 32 32 32 32

SI 0.03 0.07 0.05 0.15 0.09 0.06

Ti 16.03 7.93 14.28 16.07 3.22 5.33

AI 0.02 0.83 0.02 0.03 1.26 0.40

Cr 0.00 0.00 0.00 0.00 0.00 0.01

Mg 0.02 0.04 0.02 0.05 0.04 0.07

Ca 0.00 0.01 0.00 0.02 0.04 0.02

Mn 0.15 0.06 0.05 0.06 0.08 0.07

Fe 11.59 19.10 12.92 10.50 22.56 21.61

Ni 0.05 0.17 0.02 0.04 0.18 0.21

Na 0.00 0.00 0.01 0.00 0.00 0.01

Total 27.88 28.21 27.37 26.92 27.47 27.78

Appendix C 342 Textures & Microprobe data



Name 93L112 93L112 93L112 93L107 93L107 93L107

Mineral Ilmenite TI-Maa. Ilmenite Tt-M&a. ilmenite ilmenite

Si02 0.04 0.21 0.08 1.41 0.09 0.06

TI02 50.31 23.14 49.62 17.20 55.71 56.06

AI~3 0.08 1.62 0.08 1.12 0.38 0.24

V~3 0.24 0.12 0.28 0.32 0.26 0.28

Cr~3 0.01 0.00 0.00 0.47 0.02 0.00

MgO 0.13 0.09 0.16 0.14 0.12 0.11

caO 0.05 0.00 0.00 0.04 0.00 0.00

MnO 0.91 0.63 0.71 0.25 0.23 0.67

FeO 48.01 66.52 48.81 68.52 38.01 38.75

NiO 0.05 0.12 0.08 0.11 0.00 0.02

N¥) 0.00 0.06 0.00 0.03 0.00 0.00

Total 99.84 92.52 99.84 89.63 94.82 96.19

Formula Units 32 32 32 32 32 32

Si 0.02 0.08 0.03 0.52 0.03 0.02

Ti 13.85 6.37 13.66 4.73 15.34 15.43

AI 0.04 0.69 0.04 0.48 0.16 0.10

Cr 0.00 0.00 0.00 0.13 0.01 0.00

Mg 0.07 0.05 0.09 0.08 0.07 0.06

Ca 0.02 0.00 0.00 0.02 0.00 0.00

Mn 0.23 0.16 0.18 0.06 0.06 0.17

Fe 14.70 20.37 14.94 20.98 11.64 11.86

Ni 0.04 0.09 0.06 0.08 0.00 0.01

Na 0.00 0.03 0.00 0.01 0.00 0.00

Total 28.96 27.83 29.00 27.09 27.30 27.68

AppendixC 343 Textures &Microprobe data



Name 931107 931107 931107 931107 931107 931107

Mineral Ilmenite Ti-maa. Ti-maa. Ti-maa. Ilmenite Ilmenite

Si02 0.07 1.93 0.30 0.36 0.07 0.05

Ti02 58.51 4.51 19.70 7.52 52.02 59.94

A~3 0.16 3.27 0.66 0.52 0.11 0.11

VA 0.33 0.10 0.40 0.43 0.21 0.30

Cr~3 0.01 0.02 0.16 0.18 0.00 0.00

MgO 0.12 0.21 0.07 0.11 0.10 0.09

CaO 0.00 0.09 0.03 0.00 0.00 0.00

MnO 0.86 0.20 0.28 0.18 0.85 0.48

FaO 36.27 82.65 73.00 82.25 43.63 36.03

NiO 0.04 0.04 0.04 0.00 0.00 0.00

N¥) 0.00 0.02 0.00 0.02 0.00 0.03

Total 96.38 93.10 94.65 91.58 97.00 97.04

Formula Units 32 32 32 32 32 32

Si 0.03 0.71 0.11 0.13 0.03 0.02

TI 16.11 1.24 5.42 2.07 14.32 16.50

AI 0.07 1.40 0.28 0.22 0.04 0.05

Cr 0.00 0.01 0.05 0.05 0.00 0.00

Mg 0.06 0.11 0.04 0.06 0.05 0.05

ca 0.00 0.04 0.01 0.00 0.00 0.00

Mn 0.22 0.05 0.07 0.04 0.22 0.12

Fe 11.10 25.30 22.35 25.18 13.36 11.03

Ni 0.03 0.03 0.03 0.00 0.00 0.00

Na 0.00 0.01 0.00 0.01 0.00 0.01

Total 27.62 28.90 28.36 27.78 28.02 27.79

AppendixC 344 Textures & Microprobe data



Name 93L107 93L105 93L105 93L105 93L99 93L99

Mineral Ilmenite Ilmenite Ilmenite Ilmenite Ilmenite Tl-maa.

Si02 7.56 0.06 0.09 0.05 0.07 0.66

Ti02 37.90 53.16 53.65 49.33 44.73 3.69

AI~3 4.63 0.05 0.15 0.15 0.01 0.21

V~3 0.16 0.28 0.29 0.38 0.26 0.22

Cr~3 0.02 0.01 0.00 0.02 0.01 0.22

MgO 0.96 0.06 0.12 0.20 0.05 0.13

caO 0.19 0.00 0.00 0.00 0.00 0.02

MnO 0.53 0.81 4.66 1.36 0.68 0.12

FeO 43.59 44.26 35.84 44.90 50.79 84.48

NiO 0.07 0.05 0.21 0.14 0.07 0.02

Na~ 0.59 0.00 0.02 0.01 0.00 0.00

K~ 0.22 0.00 0.01 0.00 0.00 0.04

Total 96.41 98.76 95.03 96.55 96.68 89.82

Formula Units .32 32 32 32 32 32

S\ 2..77 0.02 0.03 0.02 0.03 0.24

Ti 10.43 14.63 14.77 13.58 12.32 1.02

AI 1.98 0.02 0.06 0.07 0.00 0.09

er 0.01 0.00 0.00 0.01 0.00 0.06

Mg 0.52 0.03 0.06 0.11 0.03 0.07

Ca 0.07 0.00 0.00 0.00 0.00 0.01

Mn 0.13 0.20 1.18 0.34- 0.17 0.03

Fe 13.34 13.55 10.97 13.75 15.55 25.86

Na 0.05 0.04 0.15 0.10 0.05 0.02

K 0.27 0.00 0.01· 0.01 0.00 0.00

Total 29.58 28.51 27.24 27.97 28.14 27.40

Appendix C 34S Textures & Microprobe data



Name 93L99 93L99 93lgg 93L99 93L99 93160

Minerai Ti-Mao. Ilmenite Ilmenite Ilmenite Ti-Maa. Ilmenite

Si02 1.38 0.05 0.07 0.05 0.30 1.66

Ti02 17.33 59.63 69.54 58.57 8.75 76.97

AI~3 0.53 0.04 0.00 0.02 1.75 0.11

V~3 0.50 0.37 0.36 0.38 0.20 0.44

Cr~3 0.11 0.03 0.00 0.02 0.11 0.02

MgO 0.10 0.01 0.00 0.02 0.11 0.02

CaO 0.02 0.00 0.00 0.00 0.01 0.07

MnO 0.13 0.27 0.24 0.81 0.28 0.00

FeO 69.96 35.78 25.69 36.35 79.62 6.23

Na~ 0.20 0.00 0.01 0.00 0.01 0.22

K~ 0.06 0.00 0.00 0.00 0.00 0.11

Total 90.41 96.18 95.94 96.27 91.17 85.87

Formula Units 32 32 32 32 32 32

Si 0.51 0.02 0.03 0.02 0.11 0.6f

Ti 4.n 16.42 19.14 16.12 2.41 21.19

AI 0.22 0.01 0.00 0.01 0.75 0.05

er 0.03 0.01 0.00 0.01 0.03 0.01

Mg 0.05 0.00 0.00 0.01 0.06 0.01

Ca 0.01 0.00 0.00 0.00 0.00 0.03

Mn 0.03 0.07 0.06 0.21 0.07 0.00

Fe 21.42 10.95 7.86 11.13 24.38 1.91

Na 0.07 0.01 0.02 0.02 0.01 0.00

K 0.10 0.00 0.00 0.00 0.00 0.10

Total 27.21 27.49 27.12 27.52 27.83 23.90

AppendixC 346 Textures & Microprobe data



Name 93L111 93L111 93L111 93L111 93L111 93L111

Mineral Ilmenite Ti-Mao. TI-Maa. Tt-Maa. Ti-Mao. Tt-Mao.

Si02 0.59 0.32 0.22 0.14 0.26 0.60

Ti02 42.30 22.79 23.80 18.72 25.80 19.90

AI~3 0.35 1.22 1.23 1.20 1.25 1.14

V~3 0.27 0.32 0.27 0.38 0.32 0.34

Cr~3 0.02 0.05 0.01 0.07 0.06 0.09

MgO 0.27 0.19 0.21 0.17 0.23 0.20

CaO 0.03 0.08 0.06 0.01 0.05 0.07

MnO 1.45 0.84 0.92 0.52 0.60 1.02

FeO 47.05 63.73 62.79 71.98 64.70 68.12

NiO 0.04 0.26 0.32 0.17 0.14 0.45

Na~ 0.01 0.03 0.00 0.04 0.01 0.06

K~ 0.01 0.07 0.08 0.00 0.01 0.00

Total 92.39 89.90 89.90 93.40 93.43 92.01

Formula Units 32 32 32 32 32 32

Si 0.22 0.12 0.08 0.05 0.10 0.22

Ti 11.65 6.27 6.55 5.15 7.10 5.48

AI 0.15 0.52 0.52 0.51 0.53 0.49

Cr 0.01 0.01 0.00 0.02 0.02 0.02

Mg 0.15 0.10 0.11 0.09 0.12 0.11

Ca 0.01 0.03 0.02 0.00 0.02 0.03

Mn 0.37 0.21 0.23 0.13 0.15 0.26

Fe 14.40 19.51 19.22 22.04 19.81 20.85

Ni 0.03 0.18 0.23 0.12 0.10 0.32

Na 0.00 0.01 0.00 0.02 0.00 0.03

Total 26.98 26.98 26.98 28.14 27.95 27.80

AppendixC 347 Textures &Microprobe data



Appendix C 348 Textures &Microprobe data

Name 93L111 93L104 93L104 93L104 93L104 93L104

Minerai Tl-Mao. Tl-Maa. Ti-Maa. Ti-Maa. Ti-Maa. Ti-Maa.

Si02 0.15 0.67 0.60 0.44 O.SO 0.11

rlO2 16.17 4.46 19.91 26.62 19.96 34.07

AI~3 1.87 0.82 0.69 0.37 0.86 0.70

V~3 0.36 0.16 0.15 0.14 0.12 0.07

Cr~3 0.07 0.26 0.39 0.50 0.40 0.84

MgO 0.14 0.11 0.11 0.11 0.12 0.15

CaO 0.00 0.08 0.39 0.51 0.35 0.16

MnO 0.41

FeO 70.65 82.65 67.93 61.91 74.37 56.33

NiO 0.19

K~ 0.03

Total 90.04 89.21 90.16 90.60 96.68 92.41

Formula Units 32 32 32 32 32 32

Si 0.06 0.25 0.22 0.16 0.18 0.04

Ti 4.45 1.23 5.48 7.33 5.50 9.38

AI 0.80 0.35 0.29 0.16 0.37 0.30

Cr 0.02 0.07 0.11 0.14 0.11 0.24

Mg 0.08 0.06 0.06 0.06 0.07 0.08

Ca 0.00 0.03 0.15 0.20 0.14 0.06

Mn 0.10 0.00 0.00 0.00 0.00 0.00

Fe 21.63 25.30 20.80 18.95 22.77 17.24

Na 0.13 0.00 0.00 0.00 0.00 0.00

Total 27.27 27.29 27.11 27.00 29.13 27.34



Name 93L104 93L104 93L104 93L104 93L104 93L47

Mineral Ilmenite Ilmenite rl-Mag. Ilmenite rI-Mao. Ti-Maa.

Si02 0.12 0.09 0.70 0.10 0.78 0.67

Ti02 48.47 43.03 21.51 49.24 18.10 17.01

AlA 0.14 0.13 0.80 0.17 2.10 1.04

V~3 0.04 0.01 0.14 0.05 0.10 0.43

Cr~3 2.52 1.98 0.58 1.97 0.95 0.37

MgO 0.24 0.20 0.10 0.18 0.17 0.26

CaO 0.54 0.51 0.45 0.52 0.34 0.22

MnO

FeO 43.15 46.76 66.07 43.28 69.19 70.87

Total 95.20 92.70 90.34 95.52 91.73 90.86

Formula Units 32 32 32 32 32 32

Si 0.04 0.03 0.26 0.04 0.29 0.24

Ti 13.34 11.85 5.92 13.55 4.98 4.68

AI 0.06 0.05 0.34 0.07 0.90 0.44

Cr 0.72 0.57 0.17 0.57 0.27 0.10

Mg 0.13 0.11 0.05 0.10 0.09 0.14

Ca 0.21 0.20 0.17 0.21 0.13 0.09

Mn 0.00 0.00 0.00 0.00 0.00 0.00

Fe 13.21 14.31 20.23 13.25 21.18 21.70

Total 27.72 27.12 27.14 27.79 27.85 27.40

ApperuJixC 349 Textures &Microprobe data



Name 93L47 93L47 93L78 93L78 93L78 93L78

Minerai TI-Maa. TI-Maa. Ti-Maa. Ti-Maa. Ti-Maa. Ti-Maa.

Si02 1.20 0.46 0.74 0.12 0.38 0.41

Ti02 26.87 18.60 20.55 18.33 22.36 23.39

AI~3 1.07 2.49 1.48 1.35 1.73 1.61

V~3 0.27 0.47 0.01 0.01 0.01 0.02

Cr~3 0.97 0.48 0.12 0.21 0.06 0.22

MOO 0.29 0.20 0.09 0.00 0.03 0.08

ceo 0.90 0.41 5.78 0.67 6.80 2.26

MnO

FeO* 58.30 67.15 62.66 69.06 60.23 63.81

Total 89.86 90.25 91.42 89.75 91.61 91.81

Formula Units 32 32 32 32 32 32

Si 0.44 0.17 0.27 0.05 0.14 0.15

Ti 7.40 5.12 5.66 5.05 6.16 6.44

AI 0.46 1.06 0.63 0.58 0.74 0.69

Cr 0.28 0.14 0.03 0.06 0.02 0.06

Mg 0.16 0.11 0.05 0.00 0.02 0.04

Ca 0.35 0.16 2.27 0.26 2.67 0.89

Mn

Fe 17.85 20.56 19.18 21.14 18.44 19.54

Total 26.93 27.31 28.09 27.13 28.18 27.81

Appendix C 350 Textures & Microprobe data



Name 93L78 93L78 93L78 93L78 93128 93136

Mineral rl-mao. THnaQ. Ilmenite Ilmenite Ilmenite _Ii-mag.

Si02 0.92 0.54 0.44 1.11 0.13 o.n
rlO2 23.36 21.62 57.00 48.26 54.35 16.81

AlA 1.70 1.87 0.09 0.28 0.05 0.87

VA 0.02 0.00 0.00 0.02 0.00 0.00

Cr:P3 0.14 0.11 0.13 0.24 0.01 0.07

MgO 0.10 0.07 0.06 0.06 0.00 0.04

CaO 3.22 6.78 3.23 1.62 4.18 0.45

MnO

FeO· 60.51 61.50 34.61 40.99 31.44 70.99

Na~ 0.01 0.00

K:P 0.46 0.18

Total 89.98 92.48 95.55 92.58 90.63 89.98

Formula Units 32 32 32 32 32 32

Si 0.34 0.20 0.16 0.41 0.05 0.28

Ti 6.43 5.95 15.69 13.29 14.96 4.63

AI 0.73 0.80 0.04 0.12 0.02 0.29

Cr 0.04 0.03 0.04 0.07 0.00 0.02

Mg 0.06 0.04 0.03 0.03 0.00 0.02

Ca 1.26 2.66 1.27 0.63 1.64 0.18

Mn 0.00 0.00 0.00 0.00 0.00 0.00

Fe 18.52 18.83 10.59 12.55 9.62 21.73

Na 0.32 0.13

Total 27.38 28.50 27.82 27.10 26.63 27.27
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Name 93L36 93L93 93L93 93L93 93L93 93L93

Mineral ilmenite TI-maa. TI-mac. Ilmenite Ti-maa. Ti-maa.

S~ 0.20 0.28 0.92 0.92 2.60 0.19

Ti02 SO.60 20.87 20.74 55.56 20.17 19.06

AI~3 0.07 2.19 2.34 0.18 2.16 2.52

V~3 0.00 0.20 0.20 0.01 0.25 0.32

Cr~3 0.07 0.18 0.15 0.31 0.20 0.88

MgO 0.01 0.06 0.08 0.11 0.14 0.06

CaO 4.46 1.14 1.06 1.67 1.00 0.26

MnO

FaO· 34.67 67.05 66.97 35.19 65.65 68.06

Na20 0.00 0.06 0.07 0.03 0.08 0.09

K~ 0.07 0.13 0.15 0.00 0.12 0.10

Total 90.14 92.16 92.70 93.97 92.37 91.53

Formula Units 32 32 32 32 32 32

Si 0.07 0.10 0.34 0.34 0.95 0.07

Ti 13.93 5.74 5.71 15.30 5.55 5.25

AI 0.03 0.93 1.00 0.08 0.92 1.08

Cr 0.02 0.05 0.04 0.09 0.06 0.25

Mg 0.01 0.03 0.04 0.06 0.08 0.03

Ca 1.75 0.45 0.41 0.65 0.39 0.10

Mn

Fe 10.61 20.53 20.50 10.n 20.10 20.83

Na 0.00 0.01 0.01 0.00 0.01 0.01

K 0.05 0.09 0.11 0.00 0.09 0.07

Total 26.47 27.94 28.17 27.29 28.15 27.70
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APPENDIXD

ARGON DATING, TECHNIQUE & REsULTS

Dl. Introduction.

The Ar-Ar dating technique first developed by Turner in 1966 depends upon the

decay of a naturally occuning isotope of potassium. 4OJ(, to the argon isotope. 4OAr. In

Ar-Ar dating. potassium ismeasured by the transmutation of another naturally occurring

isotope, 39K to 39Ar by neutron bombardment. In this present work, 1aser step heating

was performed on both single and multiple grains of either plagioc1ase or potassium

feldspar, except in the case of 93L59 where biotite separates were analysed.

D2. Sample Preparation.

Samples were chosen according to a number of criteria. including their

microscopic appearance. phenocryst assemblage. the size and degree of freshness of

phenocrysts. and the absence of amygdaloidal fragments. Only samples that appeared to

be fresh and unaltered were crushed using a pneumatic jaw cmsher and disc grinder and

then sieved into three fractions: > 1mm; > 250 um & < 250 J.lID. The >250 um fractions

were examined under a Leica Wild M8 microscope with Intra1ux® lighting and fresh,

single phenocrysts were hand picked. On average 100 grains were placed in50% acetic

acid solution in an uhrasonic bath for 20 mins. to remove any clay minerals. The samples

were washed with RO water. centrifuged at 1000 rpm for 3 mins•• drained and then dried

under an evaporating hood. The samples were finally washed in methanol, and then de

ionised water in an ultrasonic bath for 15 mins. The samples were wrapped in AI foil and

placed in pure quartz tubes together with ages standards of either 41O.3Ma Tinto biotite

(Rex & Guise. 1995) or 27.9 Ma 850003 sanidine spaced every 0.5 - lcm. Ca and K

salts were also included in the package to measure and calculate the relevant (39/37) Ca,

(36137) Ca, and (40139) K correction factors due to neutron induced interferences. 1be
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quartz tubes were vacuum sealed to prevent absorption of atmospheric argon during

irradiation. The tubes were placed in a pure quartz glass bucket for irradiation at either

the Ford reactor, Michigan or Oregon State University (O.S.U).

D3. Radiation Procedure.

All samples of Table D3 apart from 93L36; 93L19; 93L107 & 93L125 were

irradiated at the Ford reactor, Michigan, all others at O.S.U. At the Ford reactor one of

two positions is used, MS at the core and L67 at the outer edges, the latter being

preferential as the thennal neutron dose received is lower. At O.S.U. the CLICIT sample

system was used with the result that different correction factors apply. The duration of

irradiations is variable, for the samples analysed -18brs at O.S.U. and 60brs at Ford.

Samples at the Ford reactor received approx. 1018 fast neutrons per cm at position L67.

The quantity of 39ArK produced during neutron irradiation is dependent on the neutron

flux density ,( e) at energy £ and the length of the irradiation '~T' :

39Ar..=39K&TJ ;(e)o(e)tie

where 0(£) is the capture cross section for neutron having energy in the

39K (nap) 39Ar reaction. However, it is not always possible to make direct measurements

of the flux density or the neutron capture cross section, therefore, monitoring is achieved

using age standards with accurately determined K-Ar ages. This defines the

dimensionless parameter J, which is substituted into the age equation. Following a period

of cooling in the order of a month the saIIq)les are returned and loaded into an infra-red

laser port for analysis.

D4. Analysis of Samples.

The samples were loaded into individual holes in a 1aser tray. The five major

isotopes analysed using a Mass Analyser Products 215 Dobie gas mass spectrometer

fitted with an electron multiplier detector. 36Ar is measured to correct for atmospheric

40Ar using the measured present day atmospheric 4OArf36Ar ratio (295.5; Steiger &

Jager, 1977). However. mass spectrometers in general do Dot yield absolute abundance

ratios of the isotopes analysed therefore the machine has to be calibrated and appropriate
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corrections applied to the measured ratios. Calibration for argon is achieved by analysing

atmospheric argon (here. by mehing pieces of glass containing argon of the 40Arf36 Ar

atmospheric ratio 295.5). The departure from the absolute value. the mass discrimination

4OArf36Ar measurement in this case is either 283 or 285. 36Ar. however. can be affected

by chlorine and hydrocarbons.

The three stable isotopes of Ar (36Ar; 38Ar and 4OAr) in addition to the reactor

produced isotopes (39Ar and 37Ar) are measured by the mass spectrometer. The myriad

of reactions including 44,43,42,4OCa, 41,40,391(, 4O,38,36Ar. and 35,370 all going to produce

36-40Ar are corrected for using the Ca and K salts included in each irradiation. 41Ar and

35Ar are additionally measured to monitor the build up of hydrocarbons and chlorine

respectively in the extraction line. Table Dl contains information on the main five

isotopes of argon and their uses.

Table Dl. ,. 0181'200.

Isotope Indicator of:

40Ar Radiogenic 40Ar (once atmospheric component is removed).

39Ar 39K

38Ar Amount of chlorine in saJDl)le

37Ar Amount of Ca in sample

36Ar Atmospheric argon

Argon was extracted in stages from individual grains by laser step heating using a

Nd-doped yttrium aluminium garnet (Nd- YAG) continuous wave (CW) laser. Initially

samples were analysed using a laser without apertures (Mu1timode) which produces a

wide beam of high power and so required less current to meh the samp1es. A TEMoo

system was also used. which includes a small aperture to restrict the transverse modes

and so focus the beam. one of the resuhs is that a larger current is required to mek the

sample. For example, using the Mu1timode system the lowest step required a current of -

8A to begin mehing plagioclase, however using TEMoo a current of 15.7A is required.

The resulting analyses were corrected for blanks, 37Ar decay and neutron

interferences (see Table D2). J values were calculated using the standard minerals (Tinto
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biotite & 850003 sanidine) to monitor the neutron flux for each sample (see Table D3).

Ages were calculated using the equation:

where A. = 5.543xlO-10 years.

Table D2. Correction factors for the the interfering reactions produced during

neutron irradiation .
Correction factor: Correction factor:

Ford, Michigan (L67) Oregon State University

(36137~a 0.000205 0.000264

(39/37)Ca 0.000781 0.000673

(40/39)K 0.031 0.00086

The samples analysed from Uruguay are included in Table D4 along with rock

type and location, while the volcanics of the African margin are included in Table D5.

Table D3. J values for aD samples calculated from standards irradiated at the same

time.

Sample-Uruguay J-value Sample- J-value Sample- J-value

Etendeka Etendeka

93L19 0.004465 CP3 0.004223 SM60 0.004475

93L28/22142 0.00925 LBI 0.004216 SM172 0.004495

93L36 0.004445 KK-1l9 0.004231 KU-66 0.004239

93L47 0.00936 KLS230 0.0045 KU-82 0.004247

931.53/59/93/97 0.0094 KLS327 0.00449 DRLS07 0.00448

93L107 0.00447 KLS348 0.004485 DRLS08 0.004515

93Ll25 0.00451 KLS488 0.004505 TKI-47 0.004254
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Table D4. Uruguayan samples for argon analysis.

SamDlename RocktJrDe Location Reactor

93L97 Basalt Treinte Y Tres Ford, Michi2an

93IA7 Basalt Paso de los Talas Ford, Michi2an

93L53 Basalt Cerro Partido Ford. Michi2an

93L93 Basalt Piraraia Ford, Michi2an

93Ll25 Andesite Lascano Oregon State Uni.

93IA2 Dacite Paso de los Talas Ford, Michi2an

93L22 Rhyolite Minas Ford. Michi2an

93L28 Rhyolite Ai2Wl Ford, ...., _... an

93LI07 Rhyolite Lascano Oregon State Uni.

93L36 Rhyolite Aigua Orezon State Uni.

93Ll9 Rhyolite Cerro Partido Oregon State Uni.

T ble OS E deka oIcani and associated d kes.a . ten v a; IYI

Sample RocktvDe Location Reactor

DRL507/508 Ott. tholeiite Mehlberg dyke Oregon State Uni.

KLS488 Basalt Huab Oregon State Uni.

KLS230 Basalt Horin2baai Oregon State Uni.

SMl72 Latite Springbok Oregon State Uni.

KLS327 Latite Sechomib Orezon State Uni.

KLS348 Mafic vo1canic Oregon State Uni.

SM60 Latite Tafelber2 Oregon State Uni.

LBI Basalt CapeTown Oregon State Uni.

CP3 Andesite I CapeTown Oregon State Uni.

KK-119 Dolerite Kuiseb Oregon State Uni.

KU-66 UgabRiver Oregon State Uni.

KU-82 UgabRiver Oregon State Uni.

TKI-47 Basalt Suurberg Oregon State Uni.
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D5. Argon Results & Discussion.

Correlation plots of 36ArJ40 Ar vs 39Ar/40 Ar were used to distinguish excess argon

and a1so to yield precise intercept ages. Atmospheric argon on the y-axis plots at

0.003384. A straight line from the point AIR through a cluster of data points intercepts

the y-axis resulting in an intercept age, if the argon is pure and uncontaminated. Excess

argon plots at the origin of such a diagram, thus the addition of 40Ar to the sample results

in a lower 36Ar/40 Ar ratio than expected and hence an older intercept age. Plateau ages

are described from plots of age vs cumulative 39Ar and are defined by as the flattest trend

defined by the majority of data. Total gas ages are averaged from all collected

40ArJ39 Ar*.

93L19: Large variations in 37ArJ39 Ar ratios (0.098 & 3.33), indicate

contamination of phenocrysts with the result that data yielded wildly varying ages of

112.7 ± 5.8 Ma* (* indicates 2<1 errors quoted on age) to 50.2 ± 115.0 Ma*

respectively.

93L28 (a) & (b): Two separate experiments were performed on single sanidine

grains. The first sanidine was analysed in 22 steps, using a initial current of 9.1A and a

final fusion current of 22.0A (Fig. 4.6b). This yielded an intercept age of 126.3 ± 0.6Ma*

at 36ArJ40Ar = 0.00335. The second analysis using 19 steps resulted in a slightly older

plateau age of 127.1 ± 0.6 Ma* (Fig. 4.6b). Similar experiments were performed on

single sanidine phenocrysts from samples 93L22 (Fig. 01) and 93L36.

93L93: Plagioclase separate from porphyritic basalt. Age range variable from 141

± 8 to 123 ± 6 Ma. Initial step-heating of the grains yielded older ages in all the analyses

probably due to the presence of remnant clay minerals. The hydrocarbon contents (as

indicated by 41Ar peak) reached very high levels resulting in large errors on the ages. The

apparent age obtained from the total gas is 133.1 ± 1.2 Ma*. A similar basalt (93L97)

from the Pirarajatrreinte Y Tres region was separated for plagioclase also, however, age

determination was again difficult with large age corrections on a seemingly very young

sample of 118.0 ± 6 Ma.

93LI07: Uruguayan rhyolite K-feldspar multi grain separate yielded an age of

127.7 ± 1.6 Ma*. Some mixing with atmospheric argon evident in the first three steps,
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remaining six steps display a very tight array and are considered to reflect a true age (FIg.

4.6a).

Flg.Dl. Plateau age cakulated 011 duplicate saaidine separates tCll' ...... 93Ln. Arrow

iDdIcates the number ~ steps used to calculate final. (Ma) ~ (I) 130.9±8.7 (dashed One) Md (D)

131.9 ± 0.5 (solid Hoe).

145r------------------------------------------- __~

~ 130

~

140

'n:'; il - .-~ ~.--.-. ..
l..J

125

120

10 20 30 40 so 60 70 80 90 100

Cumulative % J9Ar

93L125: Plagioclase separated from this Uruguayan andesite yie1ded widely

varying ages due to a problem with excess argon as indicated by the 36Ar contents which

vary from 0.000204 to 0.006077 from the start to end of the analysis. The best result

obtained is an approximate Cretaceous age for the sample.

CP3: Chapman's Peak Drive, Cape Town. Only four heating steps were carried

out on separated plagioclase multi grains with little gas being realised. A Jarge spread in

the 36Ar/40 Ar and 39ArJ40Ar data indicates a problem of excess argon. As seen in FJg. D2

a Hne drawn to intersect through air (0.00335) and the majority of data yields an

intercept age of 140.8 Ma. However, the intercept when averaged on the entire data set

intersected the yaxis at 0.00120, and resulted in a much younger age of 101.6 Ma.
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Table 1>6. Results of samples
_._ ~.

Sample Intercept Ages MSWD Plateau Ages Phase

93L19 0.358 111.7:f:: 4.2 Multi, K-spar

93L22a 129.7:f:: 2.1 0.878 130.9 :f::0.7 Single, K-spar

93L22b 131.9:f:: 0.5

93L28a 126.4:f:: 1.2 1.059 124.3:f:: 0.7 Single, K-spar

93L28b 123.9 :f::0.4

93L36 123.9:f:: 1.4 1.083 123.9 :f::0.4 Multi, K-spar

93IA2 132.9 :f::0.9 1.020 131.8:f:: 0.9 Multi, K-spar

93L47 125.8:f:: 5.1 0.101 128.0:f:: 3 Multi, Plag.

93L53 0.913 134.0:f::5 Multi, Plag.

93L59 132.3:f:: 1.2 0.195 132.0:f:: 3 Multi, Biotite

93L93 136.1:f:: 3.2 1.183 130.0:f:: 2 Multi, Plag.

93L97 109.6:f:: 32.8 0.353 118.0:f:: 6 Multi, Plag.

93L107 127.8 ± 1.6 0.857 127.6±0.6 Multi, K-spar

93L125 0.237 124.5:f:: 12 Multi, Plag.

CP3 141.7:f:: 10 141.9:f:: 10.2 Multi Plag.

LBI 125.4:f:: 3.4 1.282 125.4:f:: 6.8 Multi, Plag.

KK-119 1623.2 :f::7.4 Multi, Plag.

KLS230 236.3±2.8 6.458 272.3 ±2.2 Multi, Plag.

KLS327 129.1± 1.0 1.165 128.6 ± 1.4 Multi, Plag.

KI..S348 132.5:f:: 2.4 1.265 132.4 ± 2.3 Multi, Plag.

KLS488 131.0 ± 1.9 0.617 130.5 ±0.8 Multi, PJag.

SM60 129.1 ± 1.1 0.923 129.1 :f::1.8 Multi, Plag.

SM172 128.1 :t: 1.1 1.307 128.2±2.2 Multi, PJag.

KU-66 1780.6:f:: 11.6 Multi, Plag.

KU-82 128.9 :t:4.4 0.524 129.5:f:: 1.5 Multi, Plag.

DRLS07 147.0:t: 7.5 1.758 214.9 ±2.2 Multi, Plag.

DRLS08 117.1 ±0.9 0.784 117.2:t: 1.4 Multi, Plag.

TKI-47 194.4:t: 11.9 Multi, Plag.
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FiIoD2.

coasidered to eGDtribute to a slightly old age.

Proposed intercept .. for Cape Town dyke sample CP3 a1t11ouab escess araon Is

0.0035

0.003

OJ)025..
~ 0.002I::;

~ 0.0015

0.001

0.0005

FIg. D3.

CP3

0.04 0.05 0.06

therefore there Is a relatimy laqe error 011 the age quoted.

Intercept diagram for Cape Town dyke LBI. MblDg array Is DOt well c:antnined

0.003

~ 0.0025

t. 0.002
&.i-<
~ 0.0015

0.001

0.0005

LB!

o
0.050.03 0.040.02 0.060.01

39Arf40Ar

LB 1: Cape Town dyke plagioclase separate. Multi grains analysed in six steps

but with little emission of gas. Most of the gas was realised in the first two steps and is
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principally excess argon. The high temperature stage although more reliable yielded 40%

of the cumulative % 39Ar and therefore an average total age was calculated. A large

variation in CalK ratio (9.976-69.545) proves unreliable also. The intercept age was 108

Ma, while a line from Air through the high temperature ages yielded a 125.4 ± 8 Ma*.

The total gas age is 135.2 Ma. With the result that a Lower Cretaceous age is inferred

(Fig. D3).

KK-119: Plagioclase separate from an Btendeka dolerite dyke that gave a range

of ArchaeanlPrecambrian ages of 2.2 ± 0.2 Ga*. A plot of apparent age versus

cumulative % 39Ar gave what can only be described as a 'Step-machine' array. A

correlation diagram shows a wide scatter along the x axis, implying either: (a) the sample

is old and there has been argon loss or (b) it is a young sample that has been influenced

by varying degrees of excess argon andlor contamination by host rock feldspar. The

latter option is favoured as the dyke is observed intruding the -600 Ma Damara granite

and on an age versus 37Arf39Ar plot shows a mixing array between younger and older

components (Fig. 04).

Flg. D4. MJxiDg of feldspars of different ages due to the use of muldple phenocrysts in

analyses giving rise to the old ages.
KK-1l9
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37Ar/39Ar

KLS230: Multiple grain, plagioclase separate. As with sample KK-119, this

sample experiences a similar problem in that there appears to be mixing between feldspar
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phenocrysts of different age and composition. A 37Arf39Ar versus Age (Ma) plot

illustrates this point with older ages corresponding to higher CalK ratios (Fig. 4.6d). A

'saddle' shape age spectrum highlights a problem with excess argon in both the low and

high temperature steps (Fig. 05).

KLS348: Multiple grains of plagioclase were separated from this Etendeka mafic

volcanic. Data yields an intercept age of 132.5 ± 4.76 Ma*, the error is large due to the

interference of atmospheric argon in the initial stages of analysis. This resulted in

exclusion of the first data point.

SM172: These multiple grains ofpJagioc1ase from the Etendeka region were

analysed in 8 steps and yie1ded varying quantities of gas. Removing spurious points due

to very low argon gas contents, resulted in an intercept age of 128.2:f: 2.2 Ma*.

Fig. DS. Cassie saddle shaped proIIIe (J/ S8DIpIe KLS 230 from tile Eteadeka fncIfeadag a

problemwith euas argon iD the aualyses.
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KU-66: Multi grain, plagioclase separate. This sample duplicates the behaviour of

KK-119, although it results in a slightly younger Precambrian age. Again a mixing line is

evident on an age vs 37Arf39Ar plot with the older material having a low CalK ratio while

the younger feldspars have higher CalK ratios (Fig. 06).
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KU-82: Dolerite from the Ugab River region. FU'Ststep heat of the multiple

plagioclase grains gave an old age of 183.1 ± 8.8 Ma*, however, a plateau age of 129.5 ±

2Ma* appears more consistent. Low CalK. ratios possibly indicate a mixture of

plagioclase and K-feldspar in the separation process.

Fig.D6. Problem with miDDg ~ older components bigblighted in Etendeka samples.

KU-66
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DRLS07 & DRLS08: Due to the difficulties of excess argon encountered by Reid

& Rex (l994b) these samples were re-analysed as plagioclase separates. The samples

originate from the Mehlberg dyke, a NNW trending 16 km long, 10-13 IDwide dyke that

intrudes both Precambrian sediments and granite in an en echelon manner. The two

samples are from different sections along its length. DRLS08 intruded massive quartzites

while DRL507 intruded foliated granitoids.

An age spectrum for DRLS07 reveals a 'saddle' shape spectrum indicative of

excess argon (Fig. D7), also implied by the correlation diagram. Results indicate a much

older, unreliable age of220 ± 22 Ma* for this sample. Over 60% of the 39Ar released

from DRLS08 occurred in the first three steps, the best estimate of a plateau age is 117 ±

1.1 Ma* although the error is underestimated (Fig. D8).
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Fig. 07. Saddle sbaped spectrum IDdkadft ~ exeesa ....... iD tile ...,. ~ IaIIIpIe DRL WT.
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TKl-47: Suurberg basalt pJagiocJase separate. The multiple grains of separate

yielded very little gas but consistently gave Jurassic Karoo ages of 194 * 28 Ma·. This

sample is thus unlikely to be associated with the rifting of the South Atlantic, and may

instead be related to the rifting of Africa from India & Australia.

Meblbel'l dyke sample DRL 588 JI"ring • wry different .. to that ~ DRL 587.

The youug • obtained Is COIIIIldered to be a fundioD ~ ... ~ radiopDie .......
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Table D7. Argon data on which ages were calculated.
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Table D7. Cont.

-_
e ::

<~~":...'~,:!:"J~
-.: -:

.,.. ='
::::!:::
r--:-
N ~- -+t

..,. or, ..,.
ee ~
N r-- or,

rr, ,._t""'. ,.... ('J-- -
,.., ..,.
~..::
".. ..::f""oo. ,.._,,..,

+I

Appendix D

~9.19.:~9.~~~~~~9.9.-r::::,=:r::~-~.,.:;::ei;:;~:r.x
(""I t"! _ r-: -; -1': ~ ee v: "', - ~

.......x ~~:"'" ::'

x X x x x X x :::c ,...., x
.-: ---'----- -

~~.~~:~~x:~~:-- ---
~~=2~xxx ..~xxx_x

_;....; _"

x:
~ '.C-
x x
x x

= =------ - - :::: -= -::-

r-- or, ee
V""• ..,. ,.,..,

or,

S
tr. "'. ;;:, =' ;; ~
~~~~~~-_=-

::::~~;g~~~~~~~~~~~"":"":r-r-r-r---r-r-r-r-r-r---r-r--r-:

~~9.=
- ;:;=.:
"J :: -t: ,_.- ,..

= ===:

:-
X)="~O'\
t-=t-=r--.c

367

-_

Argon Dating



Table D7. Cont.
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