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Abstract 

During the past two decades or so, graphical representations have been used 

increasingly for the examination, summarisation and communication of statistical data. 

Many graphical techniques exist for exploratory data analysis (ie. for deciding which 

model it is appropriate to fit to the data) and a number of graphical diagnostic techniques 

exist for checking the appropriateness of a fitted model. However, very few techniques 

exist for the representation of the fitted model itself. This thesis is concerned with the 

development of some new and existing graphical representation techniques for the 

communication and interpretation of fitted statistical models. 

The first part of this thesis takes the form of a general overview of the use in 

statistics of graphical representations for exploratory data analysis and diagnostic model 

checking. In relation to the concern of this thesis, particular consideration is given to the 

few graphical techniques which already exist for the representation of fitted models. 

A number of novel two-dimensional approaches are then proposed which go part

way towards providing a graphical representation of the main effects and interaction terms 

for fitted models. This leads on to a description of conditional independence graphs, and 

consideration of the suitability of conditional independence graphs as a technique for the 

representation of fitted models. Conditional independence graphs are then developed 

further in accordance with the research aims. 

Since it becomes apparent that it is not possible to use any of the approaches taken 

m order to develop a simple two-dimensional pen-and-paper technique for the 

unambiguous graphical representation of all fitted statistical models, an interactive 

computer package based on the conditional independence graph approach is developed for 

the construction, communication and interpretation of graphical representations for fitted 

statistical models. This package, called the "Conditional Independence Graph Enhancer" 

(CIGE), does provide unambiguous graphical representations for all fitted statistical 

models considered. 
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1. Introduction to the Research Problem 

1.1 Introduction 

This thesis is concerned with the graphical representation of structured 

multivariate data or, in other words, with the graphical display of fitted statistical models. 

To appreciate the need within statistics for graphical displays in general, and for 

graphical displays of fitted models in particular, it is first necessary to consider the role 

and importance of graphical representations within statistics to date. This is done in 

Section 1.2. 

The nature of the research problem and how it is to be tackled in this thesis is then 

specified in Section 1.3. 

Throughout this introductory chapter, I shall be considering statistical graphics in 

general. In subsequent chapters I shall discuss individual techniques and the particular 

uses to which they are most suited, such as exploratory data analysis, experimental 

design, diagnostic model checking, and the representation of fitted models. As shall be 

seen, in both this and subsequent chapters, very few techniques exist for the graphical 

representation of structured multivariate data in the form of fitted models, and this will be 

the concern of this thesis, as described in Section 1.3. 

1.2 The Importance of Graphical Representations 

In this section, I hope to demonstrate the importance of graphical representation 

techniques in statistics using evidence contained within the literature. I shall begin by 

briefly outlining the history of the use of graphical techniques in statistics from the 10th 

Century and through the work of Playfair. The past twenty-five years or so have seen a 

surge in the development and use of graphical techniques in statistics, and I shall pay 

particular attention to the developments which have taken place during this time. The 

various uses to which statistical techniques are put will be considered, and current areas of 

research shall be identified. I shall also make some suggestions as to the future role of 

graphical representations and consider directions in which developments may take place, 

such as virtual reality. 



1.2.1 History 

Although most graphs seem intuitively simple, their invention was neither simple 

nor obvious, according to Lewandowsky & Spence (1989b). The idea did not occur to the 

Greeks or Romans, nor even to great 17th century mathematicians like Newton and 

Leibnitz. The earliest attempt at the graphical depiction of empirical data has been traced 

by Beniger & Robyn (1978) back at least as far as the 10th or lIth Century, but it was 

only after the work of Playfair, who developed the bar-chart and the pie-chart for the 

display of economic data in the late 18th / early 19th Centuries that the use of graphs and 

charts for data display became commonplace (Costigan-Evans & MacDonald-Ross 

(1990», although the histogram has been traced back to 1662 (Scott (1979)). 

Lewandowsky and Spence claim that since most graphs are Cartesian in nature, their 

development owes much to Descarte's La Geometrie, published in 1637. 

Two excellent historical sources are the detailed appendix of historical 

developments in statistical graphics presented by Beniger & Robyn, and the book by 

Tufte (1983). 

1.2.2 Development 

Within the past 25 years a number of new and innovative graphical techniques 

have been developed. To quote Beniger and Robyn (1978): "Today, statistical graphics 

appear to be re-emerging as an important analytic tool, with recent innovations exploiting 

computer graphics and related techniques". The same statement is still true today, almost 

20 years later. 

Gnanadesikan (1981) also attributes the renaissance of graphical techniques in 

statistics to the development of easily and affordable and accessible graphics hardware, 

even though many widely used statistical software packages do not include the majority 

of available graphical tools. Another reason for the previous neglect of statistical graphics 

may have been the emphasis on more theoretical aspects of statistics. 

Cleveland & McGill (1987) also suggest that statistical graphics is a newly 

activated area of statistics because of the 'computer graphics revolution' - high quality 

systems are now available at low cost, and software is being developed for graphing data. 

Thus the surge of interest in the use of graphical representations in statistics has 

been coupled with an increase in the availability of computing power; both in terms of 
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reduced costs, and enhanced capabilities. Ball & Hall (1970), considered the implications 

of computer graphics and concluded that the use of interactive computer graphics systems 

should increase the ease of presenting and manipulating conceptual material since the 

interactive aspect allows the user to convey his needs to the computer rapidly, the graphic 

aspect allows the results of a computation to be conveyed rapidly in a quickly conceivable 

form, and the graphics computer allows the manipulation of graphics and the development 

of new graphical representations of complex data structures. 

Today, statistics packages for personal computers (commonly for IBM-PC 

compatibles or Apple Macintosh computers) regularly incorporate graphics routines for 

representing data. Most usually, the graphics available are for the representation of raw 

data, in the form of pie-charts, histograms, and scatterplots - all well-known graphical 

techniques which were in existence before computing became so readily available. Other, 

more recent, techniques available for exploring the raw data usually include box-and

whisker plots, stem-and-Ieaf plots, and multi-dimensional scatterplots. Other graphical 

techniques are available, not for the exploration of the data, but for model diagnostics; for 

example, showing fitted regression curves, and plotted residuals. Examples of packages 

which are available, and which offer both computational routines and graphical displays, 

include Statgraphics, S-PLUS and SYSTA T. Personal computers provide graphics 

capabilities cheaply, and the displays obtained are adequate for most purposes. However, 

workstations, which are becoming more common, can provide very high resolution colour 

or monochrome graphics, and many of the packages for personal computers mentioned 

above have been implemented on such workstations. Conversely, many main-frame based 

statistics packages, such as SPSS, SAS, GUM, Genstat and MINIT AB, which tended to 

have quite crude graphics utilities, have become available in formats suitable for personal 

computers, and are increasingly incorporating more and more sophisticated graphics 

options. However, the quality of the graphics produced may still be restricted by 

limitations of the available hardware, especially printers. 

In general, the increasing availability of fast high-resolution full-colour graphics 

displays and printing has encouraged the use of graphical representations in statistics. 

This is not to say, however, that pen-and-paper graphical representations no longer serve a 

purpose. Often a back-of-the-envelope type preliminary sketch can guide the statistician 

prior to a more formal analysis. However, it can be argued that a graphical representation 

can be obtained more accurately with the aid of a computer-based package, and where the 
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user is likely to analyse the data with the same package, little extra effort is required, 

whilst providing the facility for manipulation and good quality reproduction. 

1.2.3 Uses 

Mahon (1977) believes that failure on the part of the statistician to communicate 

his [sic] findings could mean that all of his work is wasted. According to Mahon, the three 

available media for communicating statistical information are words, tables and pictures, 

all of which may need to be used in combination for really effective communication. 

Mahon suggests that tables are best for communicating values, whilst graphs are best for 

communicating relationships. Although he warns that drawing graphs "is more of an art 

than a science", a good picture can provide insight and make a point very clearly. To 

quote: "A good picture can convey instantly, and memorably, a relationship that would 

otherwise require a laborious and easily forgotten explanation". 

Fienberg (1979) goes so far as to claim that "graphical methods have played a 

central role in the development of statistical theory and practice". However, practices in 

statistical graphics are widely varied, and there is no theory of, or standards for, statistical 

graphics. Fienberg lists five benefits of using statistical graphics, originally presented by 

Schmid (1983), as follows: 

1. Well-designed charts are more effective than other types of presentation in creating 

interest and in appealing to the attention of the reader. 

2. Visual relationships, as portrayed by charts and graphs, are more clearly grasped and 

more easily remembered. 

3. The use of charts and graphs saves time, since the essential meaning of large masses of 

statistical data can be visualised at a glance. 

4. Charts and graphs can provide a comprehensive picture of a problem which makes 

possible a more complete and better-balanced understanding than could be derived 

from tables or text. 

S. Charts and graphs can bring out hidden facts and relationships, and can stimulate and 

aid analytical thinking and investigation. 

Thus uses for graphs and charts suggested by Schmid are illustration, analysis, and 

computation. Uses for graphs suggested by Tukey (1972) are: to show what has been 
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learnt using some other technique; to allow us to see what is happening above and beyond 

what is already known; to allow numbers to be conveyed; and for decoration. 

Cox (1978) mentions that graphical techniques may have an important role in the 

teaching of statistics, to illustrate theoretical points, or in model formulation, including 

the testing of assumptions. 

Gentleman (1977) also discusses the usefulness of computer graphics systems in 

teaching statistics. Graphics can be easily generated, and hard copies obtained, which will 

suitably demonstrate the concepts or techniques being taught. Such graphical displays can 

be included in text-books. Also, according to Gentleman, consultants can make use of 

interactive graphics in the analysis of data, and in presenting and explaining the results to 

the client 

Ball & Hall (1970) believe that three different populations of statisticians profit 

from developments in interactive computer graphics systems, these being: 

1. Data analysts: Interactive computer graphics systems allow increased convenience in 

data analysis, especially in data manipulation. More complex and different techniques 

can be used, and more data exploration can be carried out cheaply. This, Ball & Hall 

suggest, could lead to a change in scientific research with much less emphasis on 

formal hypothesis testing. 

2. Statisticians: Interactive graphic computer systems allow the development of new 

statistical tools. To quote: "Possibly ... the interactive system will permit development 

of a new symbol set in which graphics is used much more intensively in the actual 

research toward developing and understanding statistical techniques. . . .It seems 

possible that the development of new symbol sets that can be manipulated within an 

interactive graphic computer will cause statistical research to move in entirely new 

directions" . 

3. Statistics teachers: Interactive graphic computer systems provide a host of new 

teaching tools for communicating characteristics of statistics to students. 
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Cleveland (1984a) points out that graphs allow vast amounts of information to be 

summarised, and readily reveal quantitative patterns and relationships in data. As such 

they are analogous to written language, and vital for communication in science. 

The surge in the availability and use of graphical methods in statistics, and the 

proliferation of techniques which have been developed within the past two decades or so, 

is indicative of the importance of graphical techniques in statistics. What statistician 

would plunge into an analysis without first checking the form of the data by some 

exploratory graphical means, and subsequently checking the results of the analysis by 

some diagnostic graphical means? 

1.2.4 Current Research 

The three currently active (overlapping) areas of research in graphical statistical 

methods are considered by Cleveland (1987) to be as follows: 

1. Methodology: concerned with what information should be shown on a graph in order 

to explore the data or for model diagnostics. Dynamic methods allow direct 

manipulation of the graphical elements on the computer screen with near-instantaneous 

change. 

2. Computing: concerned with building the interface between the statistician and the 

computational procedures, in order to produce the displays. 

3. Graphical perception: aims to provide a scientific foundation for the evaluation of the 

methodology, and is concerned with the visual decoding of the information contained 

in the graph. 

Cleveland also points out that, unlike numerical statistical procedures, there is no 

well-developed theory which provides criteria for the evaluation of graphical methods. To 

quote: "Inventing a graphical method is easy. Inventing one that works is difficult. 

Figuring out if a particular invention works is more difficult". 

Even a quarter of a century ago, Ball & Hall (1970) believed that 'current' 

facilities for computing, display, and real time interaction had developed beyond our 

understanding of how to use them effectively in data analysis, and stated that a deeper 

insight is needed into the psychology of graphs, pictures and output media in general, 

both for use in interaction and communication. 
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1.2.5 The Future 

Beniger and Robyn (1978) suggested that future innovations in statistical graphics 

were likely to follow developments in computer hardware and software, including colour 

computer graphics, computer animation, three-dimensional computer graphics, and even 

holography and mechanically controlled sound. It is certainly possible to report that 

colour graphics, animation and 3-dimensional graphics have played, and continue to play, 

a role in the development of new and existing graphical techniques. Even sound has been 

used (Mezrich et al (1984), Wilson (1991». However, it now seems unlikely that 

holography could have a practical role to play in the development of statistical graphics, 

since comparable 3-dimensional representations can be achieved using modem interactive 

computer graphics. 

Beniger and Robyn were probably not in a position, in 1978, to include "virtual 

reality" amongst their list of developing aspects of computer hardware and software. 

Virtual reality is a relatively new approach to interactive computer use which, with the aid 

of special goggles and sometimes also a 'data glove' or whole 'data suit', immerses the 

user in a 3-dimensional 'reality' created by the computer in which they can move and 

interact. Virtual reality has the potential to be used to move around inside and to explore 

representations of vast data sets. Worrall (1991) reports that just such a virtual reality 

system has already been created whereby the data is represented as a forest which the user 

can fly over. Use of a data glove with a virtual reality representation of the data may be a 

solution to the inadequacy, mentioned by Huber (1987), of current (2-dimensional) 

pointer devices used with conventional 3-dimensional representations. 

To bring us back to reality, Fienberg (1979) concludes in his survey that there is a 

need for more and better use to be made of existing graphical techniques by statisticians 

and in journals, and for more experiments to be conducted on graphical methods 

(involving both statisticians and cognitive psychologists) for the development of a theory 

for statistical graphs. 

Cox (1978) also suggests a need for the development of a theory of graphical 

methods which will bring the field together in a coherent manner, and provide a basis for 

dealing with new situations. 
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Cleveland (1984a) believes that statisticians could playa vital role in effecting an 

improvement in graphical communication in science, but five areas which would require 

more thought are as follows: 

1. The assessment and development of graphical methods for data presentation. 

2. The development of guide-lines to ensure clarity of graphs (both clarity of presentation 

and of explanation). 

3. The study of human graphical perception; ie. of how people visually decode the 

quantitative information encoded on a graph. 

4. Software design. 

5. How people currently use graphs in science. 

1.3 The Research Problem 

Four very important components of any statistical analysis are: experimental 

design, data exploration, data modelling, and the communication and interpretation of the 

results. As was indicated in the preceding section and shall also be seen in the following 

chapters, graphical representations are of relevance for each of these components of 

statistical analysis. It is the concern of this thesis, however, that, whilst numerous 

graphical techniques exist for representation of the raw data, and are therefore of 

importance for determining which model it would be appropriate to fit to the data, and 

whilst several graphical techniques exist for diagnostic model checking and are therefore 

of importance for testing the appropriateness of the model which has been fitted to a given 

data set, very few techniques have been proposed and employed for the representation of 

the fitted model itself. 

Thus the work in this thesis is concerned with the development of graphical 

techniques for the representation of fitted models. In particular, it is concerned with 

consideration of the few techniques which are already in existence and with the 

development of new and existing techniques for the representation of fitted models. 

Any graphical technique which is developed for the display of a fitted model 

should also serve as a useful aid for the communication and interpretation of the model. It 

should therefore convey the terms which are contained in the fitted model, together with 

some indication of their significance. It is envisaged that techniques for the graphical 
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representation of fitted statistical models will be of particular benefit to users of statistics 

who may have only limited theoretical statistical knowledge, such as behavioural and 

social scientists, and for statistical consultants working in these areas. For example, the 

statistical consultant may use the graphical representation of the model to communicate 

features of the fitted model to the scientists, whilst the scientists themselves may use the 

graphical representation to assist in the interpretation of the fitted model and to 

communicate features of the fitted model to other scientists. 

Any graphical technique which is developed should be made available in an easily 

implementable form, either as a static representation, which can be photocopied and 

incorporated into a journal, or report, etc., and/or as an interactive computer-implemented 

screen-based manipulable display (which may be printed out in its final form for inclusion 

in a journal or report). 

1.3.1 Tackling the Research Problem 

In the next chapter (Chapter 2), I shall outline some of the more common methods 

amongst the wide variety of graphical techniques which are available in statistics for the 

representation of raw data (generally termed Exploratory Data Analysis (EDA)). In 

Chapter 3 some of the techniques employed for diagnostic model checking are described. 

Together, these are the two areas in which graphical techniques are most frequently 

employed, and for which the most techniques exist. Mention will also be made of a few 

other, less common, uses of graphical representations in statistics, such as experimental 

design symbolisation, model selection procedures and multiple comparison procedures. 

Chapter 4 is devoted to description and consideration of the few graphical 

techniques which exist in statistics for the representation of the fitted model itself. Such 

techniques include the well-known Analysis of Variance (ANOV A) interaction plots, and 

lesser known techniques such as Bond's technique for the representation of the terms in 

an ANOV A summary table, plus techniques for the representation of contingency tables 

and log it models. By far the most important technique which falls into this category, 

which will be considered in detail in later chapters as I develop new approaches to the 

representation of fitted models, is the conditional independence graph. 

9 



In Chapter 5, a number of issues in graphical perception and presentation are 

considered, which may have implications for the assessment of existing graphical 

techniques and for the development of new graphical representation techniques. 

In Chapter 6, some attempt is made to develop some simple two-dimensional 

static representations of statistical models, but, as will be seen, the techniques developed 

are only of use in certain situations. In Chapter 7, the uses of conditional independence 

graphs in graphical modelling are described and their usefulness as a simple two

dimensional static technique for the representation of fitted statistical models is assessed. 

This leads to a more detailed consideration of their limitations, and the development of 

modifications to the conditional independence graph approach in Chapters 8, 9 and 10. 

The remaining limitations of the conditional independence graph approach are 

overcome by the development of an interactive package, called the "Conditional 

Independence Graph Enhancer" (CIGE), which also incorporates the modifications 

developed in the preceding chapters. The features of the CIGE package are described in 

Chapter 11, and illustrated using a number of real and artificial example data sets in 

Chapter 12. 

In Chapter 13, suggestions are made for further improvements and extensions to 

the conditional independence graph approach, as developed using CIGE, and in Chapter 

14, an overall assessment is made of the success in fulfilling the research aims. 
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2. Graphical Techniques for Data Exploration 

2.1 Introduction 

There are very many techniques for the graphical representation of raw data. 

Indeed, this is probably the most prolific area of use of graphics within statistics. Such 

representations, of univariate or multivariate data, obtained either directly or indirectly 

through the use of dimension reduction techniques, are particularly useful for obtaining an 

appreciation of the structure in the data and as such can assist the interpretation ofthe data 

and suggest more formal approaches to the analysis of the data. Such representations can 

also be useful for the identification of outlying data values, for the examination of the 

distribution of data points (including the identification of clusters of points), and for the 

identification of data values which may need to be treated in a special way (eg. by 

transformation or discarding). As such, these techniques are useful for data exploration, 

and can therefore be said to fall into the area of statistics termed "exploratory data 

analysis" (EDA) by Tukey (1977). 

Within this chapter, a number of graphical techniques of use for the exploration of 

univariate or multivariate raw data are described: 

For univariate data, direct representation methods which can be used to provide a 

graphical display of the data include histograms and bar-charts, frequency polygons, pie 

charts, stem-and-Ieaf plots, and box-and-whisker plots (variations of which include the 

schematic plot, the variable-width box-plot and the notched box-plot). Modifications of 

all these techniques exist for the graphical representation of raw bivariate data, including 

the three-dimensional histogram, back-to-back stem-and-Ieaf plots and the rangefinder 

box-plot, although by far the most commonly used graphical representation technique for 

bivariate data is the scatterplot. 

Direct representation techniques which may be used for the display of raw 

multivariate data, which I shall refer to as "pictorial techniques", include glyphs, stars and 

cartoon faces. Such pictorial techniques show considerable imagination on the part of 

their inventors, but may be of little practical use in the exploration of the raw multivariate 

data. Within this section, I shall also consider extensions to the bivariate scatterplot and 

the scatterplot matrix. 
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Dimension reduction techniques for multivariate data include graphical displays 

resulting from the use of "ordination techniques" such as principal components analysis, 

the biplot, correspondence analysis. multidimensional scaling and principal coordinates 

ana!ysis. These techniques can be used to transform multi-dimensional data so that it may 

be displayed in two or a few dimensions. In reducing the dimensionality of the 

multivariate data. it is to be hoped that the structure within the data is preserved. 

Additional dimension reduction techniques include cluster analysis and Andrews' plots. 

To conclude this chapter, some mention will be made of dynamic computer

implemented approaches to exploratory data analysis which incorporate some of the 

techniques described in the following sections. 

No illustrations will be given of the techniques described in this chapter. It is 

assumed that, if the reader is not already familiar with a technique, then he or she will 

refer to the references given for further details and illustrations. Good general references 

for many of the graphical techniques for data exploration described in this chapter include 

Tukey (1977), Everitt (1978), Barnett (1981), Chambers et al (1983), Seber (1984), 

DuToit et af (1986). Digby & Kempton (1987), Krzanowski (1988), Everitt & Dunn 

(1991), Manly (1994). Daly et al (1995). 

2.2 Univariate Data 

2.2.1 Bar Charts and Histograms 

Bar charts are constructed to show some value (eg. count, percentage, mean) for 

each category (ordered or unordered) of a discrete variable. A rectangular bar is drawn, of 

height proportional to the value to be displayed. The width of the bar does not usually 

convey any information, and should be the same for each category. The bars are usually 

drawn separated from each other. 

Histograms are similar to bar charts. but are usually constructed for continuous 

variables. The continuous variable is divided into equally-sized intervals, such that every 

value falls into exactly one interval. As for the bar chart, a rectangular bar is drawn. of 

height proportional to the value (count, percentage, mean, etc.) to be displayed. Because 

of the continuous nature of the scale used to determine the classes, the bars are usually 

drawn adjacent to each other. 
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Histograms and bar charts are probably by far the most commonly used form of 

graphical representation. They are of use for displaying and summarising data, and in so 

doing can highlight the distribution of the data values and any outliers. However, the 

appearance of the display can be greatly affected by the choice of the size of the intervals 

(or bin-width). This in tum will affect the number of intervals and the number of 

observations falling into any interval. If there are too few intervals, this will not give a 

clear indication of the distribution of the data values, but if there are too many intervals, 

the display will not be smooth and can be misleading. Various methods have been 

proposed for determining the optimum number of intervals (Scott (1979». 

There are many possible variations on the histogram theme. For example, if the 

data can be divided naturally into categories, ego males and females, the values for the 

different categories can be represented by stacked bars, ego with the bottom bar 

corresponding to males and the top bar to females. Alternatively, the bars for the females 

can be placed alongside corresponding bars for the males (on a bar chart) or the bars can 

be made a fixed length and divided according to the percentage contribution by each sex, 

etc. 

2.2.2 Frequency Polygons 

The frequency polygon is essentially an alternative representation of the histogram 

or bar chart for ordered groups, where the represented values are counts. Instead of 

drawing bars for each group, a point is plotted corresponding to the top of the bar and 

these points are then joined together in order (Scott (1985». To complete the polygon 

shape, the ends of the line are usually extrapolated to O. The frequency polygon has the 

advantage of making the shape of the distribution of the data values clearer, without the 

distraction of the vertical bars. 

A cumulative frequency polygon can be constructed by combining the frequency 

of occurrence for each interval with the frequencies of the preceding intervals, and 

plotting these cumulative frequencies in the form of a frequency polygon. The cumulative 

frequency polygon is of use for estimating the number (or percentage) of observations 

above or below a particular value. 
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2.2.3 Pie Charts 

Pie charts are commonly used to represent counts or percentages. Thus the whole 

'pie' (usually drawn as a circle) corresponds to the total or 100%, and wedges of the pie 

are drawn in proportion such that the area of each wedge corresponds to the count or 

percentage relating to a particular category. The pie chart is essentially an alternative 

display of the information contained in the bar chart, although Lewandowsky & Spence 

(1989b) argue that the bar chart is better than the pie chart if comparisons between 

categories are to be made. 

2.2.4 Stem-and-Leaf Plots 

The stem-and-Ieaf plot forms a display resembling a histogram of frequencies in 

which all of the original data values are retained. A good introduction to the stem-and-Ieaf 

plot is given by MacDonald (1982) and by Landwehr & Watkins (1985). 

The stem-and-Ieaf plot is constructed by using the first part of each data value in 

each interval (eg. the tens: 0,1, ... ,9) as the stems to determine the positions of the data 

points along the (usually vertical) axis, and using the last part of each data value (eg. the 

units: 0,1, ... ,9) to give the leaves by writing each unit value contained in the data as part 

of a bar alongside the corresponding tens value. If the data takes some form other than 

tens and units, a different choice of stem and leaf may be more appropriate. If the range of 

data values is very small, it may be appropriate to repeat the stem values for different 

values of the leaves. For example: 10,11, ... ,14 and 15,16, ... ,19 would have separate 

stems and separate bars corresponding to the two sets of leaf values. 

Thus the stem-and-Ieaf plot may be seen to resemble the histogram for counts, 

with the added feature that the bars preserve the actual data values. However, in the same 

way that the use of different bin-widths can affect the appearance and interpretation of a 

histogram (see Section 2.2.1), so the choice of stems can affect the appearance and 

interpretation ofa stem-and-Ieafplot. Jobson (1991) discusses the choice of the number of 

intervals for stem-and-Ieaf plots. 
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2.2.5 Box-and-Whisker Plots 

In a box-and-whisker plot, or boxplot, the data themselves are not conveyed, but 

the locality, spread, skewness and outliers of the set of data are. The five summary 

statistics used to construct the plot are the median, the upper and lower quartiles, and the 

upper and lower extreme values. The construction of a box-and-whisker plot based on this 

five-figure summary is illustrated in Figure 2-1. 

M,Nt-IMU-f1-:i----Li ___ :----t'lA-iIUMUM 

Figure 2-1: Construction of a box-and-whisker plot from five figure summary 

A box-and-whisker plot allows a simple visual check to be made of the 

distribution of the data, and outliers can be identified, although Lewandowsky & Spence 

(1989b) claim that the boxplot is less effective than the stem-and-Ieaf plot for assessments 

of the distribution of data. 

If two or more sets of data are to be compared, this can be done by constructing a 

box-and-whisker plot for each data set and plotting them in a manner in which they may 

be compared, for example according to the median value of each data set. 

Many variations of box-and-whisker plots have been suggested, including the 

schematic plot. In a schematic plot, attention is drawn to outliers by representing all data 

values lying beyond chosen cut-off points as highlighted points. The whiskers are then 

drawn only as far as the most extreme values lying within the cut-off points. A common 

choice of cut-off point is median ± (1.5 x interquartile range). 

McGill et al (1978) suggest three modifications to the standard box-and-whisker 

plot, based on their beliefs about the additional information which non-statisticians try to 

gain from boxplots. For example, it is their belief that non-statisticians, when shown a set 
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of boxplots, try to estimate the overall median by visualising an 'average' median. The 

three modifications are described below: 

1. In a variable-width boxplot, the width of each boxplot is drawn proportional to the 

value of the square root of the corresponding sample size. This draws attention to size 

differences between samples and therefore allows better appraisal of the data. 

2. In a notched boxplot, notches are drawn surrounding the median which indicate the 

size of the confidence interval around the median and so provide a rough indication of 

the significance of differences between samples. If the notches for the boxplots of two 

samples do not overlap, then the medians are significantly different at the level of 

significance used to construct the notches. If the end of the notch lies outside the box, 

then the notch is drawn protruding from the ends of the box. 

3. In a variable-width notched boxplot, both of the above variations are combined, such 

that sample size and confidence intervals are seen simultaneously. However, since the 

confidence intervals are based on sample size, this introduces some redundancy. 

2.3 Bivariate Data 

Some of the univariate raw data representation techniques described in the 

previous section can be modified for the representation of bivariate raw data. However, 

the scatterplot is particularly suited to the representation of bivariate data. Extensions to 

some univariate representation techniques and the scatterplot are described below. 

2.3.1 Histograms 

A 3-dimensional histogram can be used for the display of bivariate data; for 

example, when frequencies have been cross-classified according to the categories or 

intervals of two variables. This is potentially of use for assessing the bivariate distribution 

of the data although in practice the 3-dimensional histogram can be difficult to read, 

especially ifbars at the front are obscuring bars at the back. As for histograms constructed 

for univariate data, there are issues such as the choice of bin-width which may affect the 

appearance of the graphical representation. 
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2.3.2 Stem-and-Leaf Plots 

It is possible to compare the distributions of the observations on two variables by placing 

two stem-and-Ieafplots, one for each variable, back-to-back using the same stem. 

2.3.3 Scatterplots 

Probably the most commonly used and most useful technique for the 

representation of bivariate raw data is the scatterplot. Each of the two axes corresponds to 

one of the variables, and the observations are plotted in the coordinate space defined by 

the two axes, according to the values of each observation for the two variables. This 

technique is well-suited to continuous data, since exact data values can be conveyed 

(within the limits of the accuracy of the construction of the scatterplot). If one or both 

variables are discrete, there may be a greater problem with overlapping values than would 

be expected if both variables are continuous. 

From a scatterplot, it is possible to identify visually outlying observations and 

clusters of observations. It is also possible to judge the apparent collinearity or correlation 

between the two variables, although dramatically different configurations of points may 

have the same correlation coefficient (as demonstrated by Anscombe (1973». Thus a 

scatterplot can be looked at in terms of the location of individual points, or in terms of the 

overall shape. Smoothing techniques have been advocated to assist in detecting shape by 

reducing noise within a scatterplot (Cleveland & Kleiner (1975), Cleveland & McGill 

(1984b». 

Additional information may be conveyed on a scatterplot, such as the marginal 

distribution of each variable, by the superimposition of histograms or boxplots on the 

axes. Becketti & Gould (1987) describe the rangefinder box plot whereby six line 

segments are superimposed onto a scatterplot and display precisely the same information 

which would be contained in a box plot constructed for each of the variables individually. 

To construct a rangefinder boxplot, two central line segments are drawn on the scatterplot 

corresponding to the medians and intersecting at the cross-median values. The lengths of 

the horizontal and vertical central line segments delimit the interquartile range of the 

variables measured along the horizontal and vertical axes. Line segments are also drawn 

17 



on the left and right, and top and bottom, of the scatterplot where the whiskers of the box 

plot would terminate. 

Scatterplots may also be used to display a fitted regression line (see Chapter 3); to 

assess bivariate normality, with the aid of superimposed elliptical contours corresponding 

to the bivariate normal distribution; to display data collected over time (not the concern of 

this thesis); and as a basis for enhancements of the data points to illustrate other aspects of 

the data (see Section 2.4). 

2.4 Multivariate Data: Direct Representation Techniques 

A number of representation techniques for raw multivariate data, which associate 

each observation with values on each of p measured variables, appear quite imaginative. I 

shall refer to these representations as "pictorial" techniques, for reasons which should 

become clear (particularly if one regards a picture as something which may be more 

decorative than useful!). Additional references for the techniques described in this section 

Everitt & Nicholls (1975) and Fienberg (1979). 

2.4.1 Multidimensional Scatterplots 

Trivariate raw data can be plotted on some sort of 3-dimensional structure, such as 

a 3-dimensional scatterplot contained within a cube. The 3-dimensional scatterplot is, 

however, more difficult to construct by hand and harder to interpret than a 2-dimensional 

scatterplot. Moreover, the technique cannot be directly extended to four or more variables. 

Huber (1987) has considered the use of 3-dimensional scatterplots. Although he 

admits that 2-dimensional scatterplots may be of some use in identifying outliers and 

clusters of variables, and for identifying linearity or otherwise in the data, Huber suggests 

that 3-dimensional scatterplots are better for examining the structure of the data. For 2-

dimensional scatterplots, Huber believes that the user can subconsciously relate the points 

to the axes, but not for 3-dimensional scatterplots. Thus 3-dimensional scatterplots may 

be more suited for the representation of data points normally located in 3-dimensional 

space. 

To obtain a 2-dimensional scatterplot from a 3-dimensional scatterplot, one of the 

dimensions can be collapsed or, equivalently, as Huber suggests, the 3-dimensional 
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scatterplot can be rotated using real-time computer graphics (see Section 2.6). 

Alternatively, principal components analysis (see Section 2.5.1) can be applied to the 3-

dimensional data to see which two 'principal component axes' will give the best 2-

dimensional view. 

2-dimensional scatterplots can be readily compared, if drawn on equivalent axes. 

However, to compare 3-dimensional scatterplots, it may be necessary to use interactive 

computer graphics to rotate the plots, or to enhance the plots using colours, lines, 

symbols, text, etc .. 

If one of the three variables is categorical, construction of a 3-dimensional 

scatterplot may result in some spurious clusters in the data. In this situation it would 

probably be better to construct a 2-dimensional scatterplot using the continuous variables 

and to superimpose information about the categorical variable onto each point, for 

example, by the use of shading or a symbol, or by drawing the points as circles with 

radius in direct proportion to the value of the third variable (sometimes called a 'bubble 

plot'). 

For three or more variables it is possible to construct a 'scatterplot matrix' or 

'draughtsman's plot' formed by the 2-dimensional scatterplots drawn for all combinations 

of pairs of the variables. This approach is described by Carr, Littlefield, Nicholson & 

Littlefield (1987). For p variables, p(P-I) scatterplots are required (of which half will be 

reflections in x=y). Representation of the data in this way may elucidate some 2-

dimensional features of the data, such as outliers and clusters, but any higher-dimensional 

structure in the data may not be discernible. However, as Carr et al mention, the 

scatterplots could be enhanced to provide more information. If the scatterplots are drawn 

in an interactive graphical computing environment, it may be possible to highlight subsets 

of variables on one scatterplot which will automatically be highlighted in the other 

scatterplots. This technique is termed 'brushing scatterplots' and is described further in 

Section 5.6. 

If there are only a few variables to be represented (say 3~p~6) then, having 

constructed a 2-dimensional scatterplot using two of the variables, the remaining variables 

could be represented on this scatterplot, for example as straight lines emanating from the 

points representing the observed units, where the orientation of the line corresponds to the 

variable represented, the length of the line is proportional to the value of the observed unit 
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for that variable, and the direction of the line corresponds to the sign of the value. This 

variation is sometimes called a 'weather vane plot' . 

Ball & Hall (1970) suggest another variation which involves tilting the line 

representing the third variable at an angle dependent on the value of the fourth variable. 

Other possible variations could make use of the glyphs and stars described below 

(Sections 2.4.2 and 2.4.3). 

With all these variations on scatterplots, however, there is the potential difficulty 

of plotted information overlapping and becoming confusing for observed units which are 

close together. 

2.4.2 Glypbs 

In the construction of glyphs, proposed by Anderson (1960), a circle is drawn for 

each observed unit and a number of lines are drawn emanating from the top of the circle 

with as many lines as there are variables and each line corresponding to a particular 

variable. The length of each line is proportional to the value of the observed unit on that 

variable. The glyphs constructed for each observed unit can then be displayed together 

and examined for clusters, outliers, etc .. 

Within the literature, glyphs are typically constructed to represent five variables. 

With fewer variables, it may be more appropriate to use a scatterplot-based representation 

technique. and with more variables, the glyphs may appear quite messy. However, it is 

possible to reduce the number of dimensions to be represented by two by plotting the 

glyphs for each observed unit on a scatterplot, in positions determined by the values taken 

on the two variables excluded from the glyph. This may be particularly appropriate if one 

or two variables are related to location. 

2.4.3 Stars 

Stars are very similar in construction to glyphs, except that each observed unit is 

represented by a point, the lines emanating from the points are regularly distributed about 

the point (again there are as many lines as there are variables and the length of each line is 

drawn in proportion to the value of the observed unit on the variable represented), and the 

ends of the lines are joined together. 
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Within the literature, stars are typically constructed to represent six variables. 

With fewer variables the stars may resemble quadrilaterals or triangles. With many more 

variables, stars, like glyphs, may appear quite messy. As for glyphs, it may be appropriate 

to use stars with another representation technique, such as a scatterplot. 

2.4.4 Cartoon Faces 

Various versions of Chernoff's (1973) original cartoon faces have been proposed 

(eg. Flury & Riedwyl (1981)), but they all conform to the same basic principle. Thus a 

cartoon face is drawn for each observed unit which is comprised of a number of features 

whereby each feature (eg. shape of mouth, shape of eyes, shape of chin, location of nose, 

etc.) corresponds to a particular variable and takes on an appearance which is dependent 

on the value of that particular variable for the observed unit. The appearance of a 

particular feature may be derived by interpolating between two extremes of appearance, 

where these extremes correspond to the most extreme values taken by any of the 

observations on that variable. Most commonly, between 9 and 18 variables/features may 

be represented in this way although it is possible to represent more variables by increasing 

the number of features, or to represent fewer variables by holding a number of features 

constant for all faces. 

Since people are experts in studying and reacting to faces, it is to be hoped that 

faces are an efficient technique for the representation of multivariate data and that by 

displaying the faces corresponding to each observation together, it will be a 

straightforward exercise for an observer to identify any clusters, outliers, etc., in the 

multidimensional data. However, very little is known about how people actually study 

and react to faces and it seems quite likely that different observers may react in different 

ways to different faces, perhaps concentrating more on some features than on others. Thus 

the effectiveness of Chernoff faces as a data representation technique may depend on 

which variables are assigned to which features (Chernoff & Rizvi (1975)). 

Despite their failings, cartoon faces have enjoyed a certain popularity and are 

frequently described in books concerned with graphical representation techniques for 

multivariate data, yet cartoon faces are hardly ever used in practice. This popUlarity is 

probably due to the novelty of the technique, yet is seemingly out of all proportion to their 

usefulness as a graphical representation technique. Of course, the basic idea behind 
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Chernoff faces (the mapping of variable values to features ofa pictorial graphical display) 

could be modified and applied to more abstract representations, thus avoiding some of the 

subjective problems attached to the examination of faces, but this does not seem to have 

been done in practice. 

2.5 Multivariate Data: Dimension Reduction Techniques 

Given a set of multivariate data in the form of a (n x p) data matrix X, obtained by 

measuring n observed units on each of p variables, a p-dimensional graphical 

representation of X would be required to preserve the relationships between the variables. 

However, a lower-dimensional representation of the data may be desired in order to 

facilitate interpretation of the data and comparisons with other data sets. Since it is not 

possible to represent the data directly, except with the use of the techniques described in 

the previous section, a reduction in the dimensionality of the data to just two or three 

dimensions is usually sought, using projection techniques. 

The techniques described in this section are computational techniques commonly 

used for the reduction of the dimensionality of multivariate data and which have the 

advantage of resulting in a graphical representation of the data in fewer dimensions. The 

techniques described include principal components analysis, the biplot, correspondence 

analysis, principal coordinates analysis, multidimensional scaling and cluster analysis. I 

shall also describe the lesser used technique of Andrews' plots. 

The techniques described in this section differ from those described in Section 2.4 

since, in reducing the dimensionality of the data, the raw data values are not necessarily 

preserved although it is to be hoped that relationships between the observations (or 

variables) are preserved. If the relationships in the data are preserved, then the graphical 

representations (typically constructed in two dimensions) resulting from these dimension 

reducing techniques may be of use in identifying outliers, clusters, and other features 

which exist in the high dimensional data. 

The majority of the techniques described in this section are termed 'ordination 

techniques' since they are designed to preserve the geometric distance between the points 

in the original p dimensions in the lower-dimensional representation. It is the distance 

(usually Euclidean) between plotted observations which is usually of importance in the 

interpretation of the graphical representations. 
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None of the techniques described will be dealt with in a great amount of 

theoretical detail, since the interested reader who is not already familiar with these 

techniques can easily look the more mathematical details up elsewhere (see, for example, 

Manly (1994), Mardia et at (1979), Krzanowski (1988». However, details will be given 

on the construction and interpretation of the graphical representation(s) which can be 

obtained using these techniques. 

Less commonly encountered techniques for the graphical representation of raw 

multivariate data in a reduced number of dimensions, but which will not be described 

here, include factor analysis, multidimensional unfolding, orthogonal procrustes analysis, 

three-way scaling and proximity analysis. The interested reader is referred to Gower 

(1966, 1985) for a description of these techniques. 

2.5.1 Principal Components Analysis 

Perhaps the most commonly used dimension reduction technique is principal 

components analysis (PCA). The following description and discussion of PCA is based on 

the books by Krzanowski (1988), Manly (1994), Everitt & Dunn (1991), Everitt (1978), 

Digby & Kempton (1987) and Jolliffe (1986), the latter being the most comprehensive. I 

have not given a detailed mathematical derivation of PCA since this can be readily 

obtained from the references given or from other multivariate texts, such as Mardia et al 

(1979), Chatfield & Collins (1980) and Jobson (1992), any of which would be incomplete 

without a section on PCA. 

For a multivariate data set consisting of p measurements on each of n 

observations, the only true representation can be in p-dimensional space. As has already 

been discussed, where p > 2, a series of 2-dimensional scatterplots constructed for each 

pair of variables cannot be relied upon to reveal the true structure within the data. PCA, in 

common with other dimension reduction techniques, can be used to find the 'best' (in 

some sense) projection of the data points onto a 2-dimensional plane. This might be 

expected to give a better representation of the structure in the data which can then be 

examined for clusters and outliers, etc .. 

In PCA, the 'best' projection of the data is one which minimises the sum of 

squares of the perpendicular distances between the observations and the plane, and in 

doing so preserves as much as possible of the variation in the original data. Of course, it is 
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not necessary to consider a plane - projection of the data onto any p*-dimensional sub

space of the original p-dimensional space (where p * < p) could be considered. However, it 

is usually preferable, in order to produce a readily constructed and interpretable graphical 

representation, to consider the projection withp* = 2. Values ofp* = 1 or p* = 3 may also 

be considered, the former being readily represented by a line, the latter requiring a 3-

dimensional or enhanced scatterplot (see Section 2.4.1). 

The projection of the data points onto the p*-dimensional sub-space is obtained by 

considering the (n x p) data matrix X (n observations measured on each of p continuous 

variables), having sample covariance matrix S. The jth principal component is the linear 

combination of the original variables with coefficients given by the elements of the 

eigenvector corresponding to the jth largest eigenvalue of S. Note that the values of the 

coefficients are constrained, such that the jth principal component will have variance 

equal to the jth eigenvalue, and will be orthogonal to the ith principal component, for all i 

< j. There are p principal components in total. The total variation, explained by the set of 

p principal components, is therefore the sum of the eigenvalues, equivalent in value to the 

trace ofS. 

The first principal component obtained, corresponding to the largest eigenvalue of 

S, represents the line of least-squares best fit for the n p-dimensional observations, such 

that the perpendicular projection of the points onto this line will result in the best 1-

dimensional representation of the data and the spread of the n points when projected onto 

this line will be a maximum. However, unless the observations are perfectly collinear, it is 

more usual to consider the first two or few principal components, which define a low

dimensional sub-space onto which the data points can be projected. For example, the 

second principal component obtained will be the line with the greatest spread of the points 

when projected onto it (though not as great as for the first principal component), subject 

to the constraint that it is orthogonal to the first. The third principal component similarly 

accounts for the next greatest amount of variance, and is orthogonal to the first two, and 

so on. By maximising the variance explained by the first few principal components, the 

configuration of the points in the sub-space defined by these principal components may be 

expected to give the best approximation to the original configuration of the data points in 

p-dimensional space, in terms of Euclidean distances between points, and thus to reveal 

the essential features of the multivariate data. 

Principal component scores can be computed for each individual observation on 

each principal component. The coefficients for each variable being given by the 
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eigenvector corresponding to the eigenvalue corresponding to the principal component 

under consideration. It is these scores, for the first p* principal components, which are 

plotted against p * orthogonal axes to give the required representation of the observations 

in the p *-dimensional sub-space defined by the first p * principal components. 

As has already been stated, plotting the data in the space defined by the first few 

principal components can be useful for detecting patterns such as clusters and outliers in 

the data. Outliers observed in the first few dimensions often correspond to individuals 

whose values on one or more variables are inflating the measured covariances or 

correlations. By plotting the data in the space of the last few principal components, 

outliers may be detected which are adding insignificant dimensions to the data. However, 

if an individual has a large score in one of the last few dimensions, this may indicate that 

they are poorly represented by the projection into p*-dimensional space which may be a 

failing of the projection, not of the individual. As always, care is required in the 

interpretation of outliers. 

If the variables are measured on different scales, or have widely differing 

variances, it is advisable to standardise the data in order to prevent variables from 

dominating the results of the PCA. This transformation of the original data is equivalent 

to using the sample correlation matrix R in place of the covariance matrix S. Choice of 

whether to use S or R is important, as different eigenvalues and eigenvectors, and 

therefore different sets of principal components and different representations will be 

obtained, with no obvious relationship between the two. If R is used, the sum of the 

eigenvalues will equal p since the variables will all have unit variance. Other 

transformations of the original data matrix may be used, such as giving variables different 

weights to reflect their relative importance, but iterative procedures are then required to 

identify the principal components. 

If the points in p-dimensional space have some simple non-linear structure - for 

example, the points all lie on the surface of a sphere - then PCA is unlikely to detect 

this. Also, if there is little correlation among the original variables, PCA is unlikely to 

find a representation in a few dimensions. 

To assess how well the p*-dimensional projection of the data points approximates 

the original p-dimensional configuration of the n observations, the proportion of the total 

variance which is accounted for by the first p* principal components can be calculated 

simply as the sum of the eigenvalues corresponding to the principal components 
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considered, divided by the total variance defined above. As a rule of thumb, if the p*

dimensional representation accounts for 70-90% of the variance of the observations in the 

original p-dimensional space, then the p*-dimensional representation may be regarded as 

providing a good representation of the data, such that the relative positions of the 

projected points very closely approximate the relative positions of the original points. 

Another rule of thumb for determining the appropriate value of p* is based on the 

graph known as a scree diagram. This involves plotting the ordered eigenvalues against 

the rank values 1, ... ,p and joining the points. The resulting diagram will, typically, 

resemble a cross-sectional view of a cliff, with a steep descent followed by a shallow, 

near horizontal collection of values resembling scree. The value of p* is chosen as the 

rank value where the steep decline ends. This may be regarded as the point beyond which 

there are no marked changes in the values of the eigenvalues, and these values are, 

hopefully, negligible. 

Yet another rule of thumb involves choosing those principal components whose 

eigenvalue exceeds the average value of all eigenvalues (ie. which exceed 1 if the 

correlation matrix R is considered). 

Different rules of thumb may lead to different decisions. More formal methods 

have been suggested by Jolliffe (1986). 

The effectiveness of a 2-dimensional representation can also be assessed by 

superimposing a Minimum Spanning Tree (MST). The MST joins the points so that each 

point is connected and there are no closed loops in such a way that the sum of the 

'lengths' of the lines, in the original p-dimensional space, is minimised. Observations 

which are close in p-dimensional space will be linked. Thus superimposing the MST on 

the 2-dimensional representation should, if the representation is effective, preserve links 

between points which are close. If points which are close are not linked, or if there are 

very long links, this indicates that there is some distortion in the 2-dimensional 

representation. 

Occasionally, attempts are made to identify the principal components with 

underlying properties of the data represented. This is a subjective process - there is no 

reason why a purely mathematical procedure can be expected to produce meaningful 

dimensions, excepting that the resultant principal components will be linear combinations 

of the original variables. Moreover, different principal components may be obtained 

depending on whether S or R was used, and the coefficients obtained using R will be for 

standardised variables. However, if treated with due caution, interpretation, or reijication, 
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of the principal components, by examination of a principal components plot or by 

interpretation of the values and signs of the coefficients, can further enhance the 

interpretation of the structure in the data. It is a common feature of PCA when applied to 

biological measurements, that the first principal component relates to 'size' whilst the 

second and subsequent components relate to aspects of 'shape'. 

PCA is sometimes used as a starting point for Factor Analysis (Child (1970), 

Cooper (1983)) and a rotation of the axes employed to attempt to associate points more 

strongly with axes and so assist the process of reification. Factor analysis is most 

commonly applied to data arising in behavioural experiments, for example to identify 

dimensions of personality or intelligence. Of course, the rotated factors will no longer 

maximise the variance. Moreover, they may be allowed to become non-orthogonal during 

the rotation. 

Thus PCA is a useful technique for the graphical representation of multivariate 

data in a few dimensions. It is a well-known and popular technique, due in part to the 

relative simplicity of the calculations involved and the ready availability of statistical 

software to carry out these calculations. PCA has a variety of applications (see Jolliffe 

(1986)), but its most common use is as a dimension-reducing technique. The 

representations obtained by plotting the principal component scores of the individuals 

against the orthogonal axes defined by the first few principal components are readily 

interpreted and, subject to the proviso that the number of dimensions chosen provide a 

good representation (it will be the best in that number of dimensions), should readily 

reveal any structure in the data such as outliers and clusters. If more than two principal 

components are required to obtain a representation which reveals an adequate amount of 

the total variation in the data, it will be necessary to use enhanced scatterplots, or the 

pictorial techniques described in the preceding section, as the results will still be 

intrinsically multivariate. 

2.5.2 The Biplot 

The following description and discussion of the biplot is based on Everitt (1978), 

Gower (1985), and Gower & Digby (1981). Other books and papers in which the biplot is 

described include Gabriel (1971), who introduced the biplot, Gabriel (1981), Seber 

(1984), Digby & Kempton (1987) and Gower & Hand (1995). 
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In a biplot, as in principal components analysis, the n observations in a (n x p) 

multivariate data matrix are represented by a set of points for which the inter-point 

distances are considered to indicate the relationships between the observations. However, 

unlike principal components analysis, the relationships between the p variables, obtained 

using the correlation or covariance matrix derived from the raw data, are represented in 

the same multidimensional space as the observations by a set of vectors. As in principal 

components analysis, in constructing a biplot a low-dimensional representation is then 

sought, preferably in just two dimensions, so that they may be easily represented. The 

term "biplot" refers not to the 2-dimensional representation which may be derived, but to 

the dual representation of the observed units and the measured variables. 

A simple form of the biplot may be obtained by representing the n observations in 

the original data matrix X (where the elements of X have had the variable means 

subtracted) by projecting them onto the 2-dimensional plane defined by the first two 

principal components of X. To represent the p observed variables on the same 2-

dimensional plane, each of the p original axes in the original p-dimensional space (where 

each axis corresponds to one variable) could be projected onto the plane such that each 

axis/variable is represented by a unit vector passing through the origin. The appropriate 

coordinates for representing the p variables in 2-dimensional space are given by the first 

two columns of the matrix of principal component scores H - if these coordinates are 

plotted as points in the same space as the observations, and a vector drawn linking each 

point to the origin, then this will yield a 2-dimensional vector representation of the p 

variables superimposed upon a 2-dimensional point representation of the observations. 

The above biplot is just one possible form. It can be interpreted with respect to 

how the plotted observed units relate to the vector representations of the variables - if an 

observation lies near to a vector but far from the origin, then that observation can be 

regarded as having a high (positive or negative) score on the variable represented by that 

vector. 

In matrix terminology, the above biplot can be obtained by considering the 

singular value decomposition of X=LSH (see Gower (1985) for details concerning the 

singular value decomposition). The covariance matrix S=X'X=HS2H, where the columns 

of H correspond to the component loadings used in principal components analysis. Thus 

the coordinates for the observations are the rows of XH=LS, and the coordinates for the 

variables are the rows of H. If all the dimensions are considered, the rows of LS and of H 

therefore define the biplot, and the inner product of these two matrices reproduces X. If 
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only the first r dimensions are to be plotted, it follows from the decomposition that these 

will give the best (in a least squares sense) rank r approximation to X. Thus the best rank 

2 approximation to X using this simple form of biplot, will be of the form X[2]=A(2)B[2]" 

where A[2] is an (nx2) matrix, the rows of which correspond to the coordinates for plotting 

the n observations in two dimensions, and B[2] is a (px2) matrix, the rows of which 

correspond to the coordinates for plotting the p vectors representing the p variables. 

An alternative form of biplot can be obtained for which (assuming that the biplot 

gives a good approximation to X) the lengths of the vectors, instead of being of unit 

length as in the biplot described above, are proportional in length to the relative variance 

of the variables (provided X has not been normalised to ensure that all variables have 

standard, unit, variance). To obtain this form ofbiplot, the coordinates of the observations 

are obtained by considering the rows of L, and the coordinates of the vectors representing 

the variables are obtained by considering the rows of HS, where the inner product of L 

and HS will reproduce X. This form ofbiplot has the following properties: 

1. The standard deviation of a variable is equal to the length of its corresponding vector 

(thus the variance of a variable is equal to the square of the length of its corresponding 

vector), since the length of the vectors is related to HS2H'=X. 

2. The covariance of two variables is given by the inner product of the pair of vectors 

representing the variables. 

3. The correlation between two variables is given by the cosine of the angle between the 

two vectors representing the variables, such that highly correlated variables have nearly 

coincident vectors, and poorly correlated variables have nearly orthogonal vectors. 

4. The distance between two observations is given by the distance between the points 

which represent these two observations as plotted on the biplot. However, the distances 

between the plotted points on this form of biplot are Mahalanobis, whereas they were 

Euclidean on the first form of biplot described. 

Again, a 2-dimensional representation of the biplot can be obtained by considering 

the rank 2 approximation to S. To assess the usefulness of this approximation, the 

proportion of the total variance accounted for by the two dimensions can be calculated, 

based on the eigenvalues of S, as in peA. 
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A third form of biplot, which is a compromise between the two forms already 

described, is proposed by Gower (1985), who believes that the first form of biplot deals 

well with the points representing the observations but poorly with the vectors representing 

the variables, whereas the second form of biplot deals well with the vectors representing 

the variables, but poorly with the points representing the observations. Gower therefore 

suggests using the rows of LS to give the coordinates for plotting the points representing 

the observations (as in the first form of biplot), and using the rows of US to give the 

coordinates for plotting the vectors representing the variables (as in the second form of 

biplot). However, the inner product of LS and US will not correspond to X. 

Applications of the biplot technique for the representation of multivariate data 

have been considered by Gabriel (1971), who considers the application of biplots to 

principal components analysis in order to show inter-point distances and to indicate the 

clustering of variables, as well as to display the variances and correlations between the 

variables, and by Bradu & Gabriel (1978) who describe the use of the biplot as a 

diagnostic tool for tables of data. 

Three-dimensional biplots are described in the paper by Gower (1990), although 

their display, in common with other 3-dimensional graphs such as the scatterplot (see 

Section 2.4.1), is not straightforward. Gabriel et at (1986) discuss the use of interactive 

computer graphics and colour to display 3-dimensional biplots. 

Another extension to the biplot is the non-linear biplot (Gower & Harding (1988». 

This is appropriate for use with non-metric data, of the sort used in PCO (see Section 

2.5.4). 

2.5.3 Correspondence Analysis 

Correspondence analysis is an exploratory data analysis technique for the 

graphical display of multivariate categorical data, which includes two-way contingency 

tables. Gower & Harding (1988) describe correspondence analysis as equivalent to 

constructing biplots for two-way tables. The history of correspondence analysis can be 

traced back many decades, under a variety of different names, but its popularity is due 

essentially to the French school of statisticians headed by Benzecri, who term the 

technique ['analyse des correspondances. 

The most comprehensive English-language exposition of correspondence analysis 

is contained in Greenacre (1984). A less theoretical, more practical, account is contained 
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in Greenacre (1993). Geometric aspects of correspondence analysis are described by 

Greenacre & Hastie (1987). The links between correspondence analysis and related 

techniques for quantifying and modelling categorical data, such as dual scaling, reciprocal 

averaging, optimal scaling and homogeneity analysis are discussed by Tenenhaus & 

Young (1985). Van der Heijden & de Leeuw (1985) and van der Heijden et al (1989) 

consider the complementary use of correspondence analysis and log-linear modelling for 

contingency table data. Illustrations of the use of correspondence analysis, are contained 

in the aforementioned books and papers, and also in Lauro & Decarli (1982), Greenacre & 

Vrba (1984), Hoffman & Franke (1986) and Higgs (1991). 

Correspondence analysis scales the rows and columns of a (n x p) rectangular 

categorical data matrix or contingency table X in corresponding units so that each may be 

displayed in the same low-dimensional space. This representation can be used to reveal 

structure and patterns inherent in the data. Each row of X can be represented exactly as a 

point in p-dimensional space, and each column of X may be represented exactly as a point 

in n-dimensional space. 

To obtain a low-dimensional representation of X (say in two-dimensions), the first 

step is to rescale the original data matrix so that the sum of the elements is 1. This gives a 

new matrix, P, called the correspondence matrix, with elements corresponding to the 

relative frequencies or probability densities. The row sums of P are used to construct a (n 

x n) diagonal matrix Dr. and the column sums of P are used to construct a (c x c) diagonal 

matrix Dc' These row and columns sums are called the masses and are equivalent to the 

marginal probability densities. The masses are used to weight each point in proportion to 

its frequency. 

The row and column profiles ofP are defined as the row and column elements of 

P divided by their respective masses. Thus the n row profiles in p-dimensional space are 

given by the rows ofR=Dr-1p and the p column profiles in n-dimensional space are given 

by the given by the rows ofC=Dc-1p. 

The problem now is to find a low-rank approximation to the original data matrix 

which optimally represents both the row and column profiles in k-dimensional sub-spaces 

(ideally k=2). This involves centering the correspondence matrix P and finding the 

generalised singUlar value decomposition. 

The k-dimensional subspaces have a geometric correspondence that enables both 

row and column profiles to be represented on the same display. The geometric display of 
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each set of points highlights the nature of similarities and variation within the rows or 

columns, and the joint display highlights the correspondence between the row and column 

points. Distances between points within the rows or columns correspond to a chi-square 

metric, but distances between row and column points cannot be interpreted so readily. 

Some attempt may be made to interpret the axes. A point will be related to an axis 

when it has a large mass and is close to the centroid, or is a very large distance from the 

centroid irrespective of its mass; ie. when the point has large inertia, which is based on 

the squared distance from the point to its centroid. 

Again there is the problem of determining the most appropriate number of 

dimensions for the low-dimensional display. Two is most convenient for the construction 

of the display. The proportion of spatial variation in the data which is accounted for by 

each axis can be assessed in much the same way as in principal components analysis, 

based on the sum of the eigenvalues. 

2.5.4 Principal Coordinates Analysis 

Principal coordinates analysis (PCO) is a metric multidimensional scaling 

technique based on principal components analysis (PCA). PCA is applied to Euclidean 

distance measures obtained from the (nxp) data matrix X, but PCO is applied to a 

symmetric matrix M of order n, where the elements of M, mi}' correspond to some 

measure of the association (ie. the similarity, dissimilarity, or distance (not necessarily 

Euclidean)) between the observations i and j. M may be observed directly, or derived 

from X. In all metric scaling techniques, which includes PCO, M is analysed to give an 

ordination defined by a set of n coordinates in pt (Pt< p) dimensions, such that the 

Euclidean distance between the plotted points i and j approximates m;j' The goodness of 

fit of this approximation can be assessed using criteria involving some simple function 

f(mij,ml). Note that non-metric multidimensional scaling, described in the following 

section, uses more general goodness of fit criteria. 

In principal coordinates analysis, it is assumed that coordinates can be found for 

the n points PI (i=I,2, ... ,n) in no more than (n-1) dimensions, with Euclidean inter-point 

distances ~(P;'Pj) which exactly equal mi}' Given these coordinates of the Pi' principal 

components analysis can then be used to obtain a nt-dimensional (nt < (n-l)) 

approximation by projecting the Pi onto the nt-dimensional sub-space which is defined by 
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the first n* principal components and which minimises the sum of squares of the distance 

of the Pi from this sub-space. 

2.5.5 Multidimensional Scaling 

Multidimensional scaling (MOS) is a technique originally due to Kruskal and to 

Shepard. The following description is taken from Everitt (1978). Methods for MOS are 

also described by Clarkson & Gentle (1986), as well as within other texts referred to in 

this chapter. 

Principal coordinates analysis (PCO), described in the previous section, IS 

alternatively known as metric MOS, or classical MDS. In classical MOS, the similarity 

measures used have cardinal properties. In contrast, in non-metric MOS, which will be 

considered in this section, the similarity measures used do not have any cardinal 

properties; rather they have only ordinal properties. Therefore non-metric MOS, 

henceforth referred to just as MOS, is used to obtain a coordinate representation of a 

similarity matrix using only the ordinal properties of the data contained in the matrix. 

As with the other ordination techniques already described, in MOS we wish to 

represent the n observed units measured on p variables as n points plotted in p*

dimensional space (where p*« p) by finding a set of p*-dimensional coordinates for 

each observed unit. 

A graphical representation of a similarity matrix A should be such that a large 

(Euclidean) distance between observed units on the graph corresponds to a small 

similarity in A and, conversely, that a small distance corresponds to a large similarity. 

Thus if the similarities in the matrix A were to be ranked from smallest to largest, one 

would expect the corresponding distances on the graph to be ranked from largest to 

smallest. In other words, the Euclidean distances in the p*-dimensional sub-space used in 

the graphical representation should be monotonically related to the similarities in A, 

where only the rank ordering of the similarities is of importance, not their values. The 

success of the representation in preserving the monotonicity of the data may be assessed 

by the calculation of what is termed stress. This is essentially a residual sum of squares, 

such that the lower the value taken by the stress, the better the representation. 

In order to find a p*-dimensional representation with minimum stress, one can 

begin with an arbitrary configuration of the points and then move them around so as to 
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reduce the stress value until no further improvement in stress can be made. This approach 

is due to KruskaL However, there may be problems with local minima so it may be a good 

idea to repeat the procedure with a different starting configuration. 

2.5.6 Cluster Analysis 

Cluster analysis is the term given to a collection of techniques which attempt to 

form 'clusters' or groups of individuals or of variables from an (nxp) data matrix X, such 

that individuals/variables in the same cluster are more similar, in some sense, than 

individuals/variables in different clusters. The techniques of cluster analysis are well 

described in the book by Everitt (1993). 

Cluster analysis is not in itself a dimension reduction technique, unlike the 

ordination techniques described previously. However, superimposing the results of a 

cluster analysis can aid in the interpretation of the data displayed on any of the plots 

described previously. In addition to this, many of the tools of cluster analysis are 

intrinsically graphical, such as the dendrogram or the minimum spanning tree, both of 

which are described below. 

Within this section, I shall be concerned with hierarchical clustering techniques. 

These may be agglomerative, whereby individuals or groups of individuals which are the 

most similar, in some sense, are fused together, thus proceeding from n individuals to a 

single cluster. Or these may be divisive, which takes the opposite approach, thereby 

progressing from a single cluster containing all n individuals, to the individuals 

themselves. Either approach will produce a hierarchical set of solutions in which clusters 

are formed by merging or partitioning other clusters. For anyone solution, each individual 

will appear in one and only one cluster. Different results may be obtained depending on 

which measure of similarity/dissimilarity is used (eg. correlation coefficient, Euclidean 

distance, city-block metric, etc., according on the nature of the data); and depending on 

which clustering method is used (eg. nearest-neighbour single-linkage, furthest-neighbour 

complete-linkage, centroid clustering, median clustering, group average, or Ward's 

method). These methods differ in the way in which the distance between groups is 

defined. Different results may also be obtained depending on the number of clusters it is 

decided to accept as the final solution. 

A scatterplot or principal components plot may be used initially to give insight 

into the data as to whether there may be natural clusters in the data, and how many, since 
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cluster analysis will always identify clusters!. The clustering results may be presented in 

the form of a dendrogram. This is a simple two-dimensional tree-like diagram showing 

the complete set of hierarchical cluster solutions and the distances at which clusters are 

merged or partitioned, and which may assist in determining the appropriate number of 

clusters to extract. The chosen solution may be superimposed on the original scatterplot or 

principal components plot, for example by enclosing clustered points, or by symbolic 

coding of points. However, if the original display is not very good, superimposing the 

solution may give the appearance of overlapping clusters. An alternative approach is to 

relate the solution to the minimum spanning tree (described in Section 2.5.1). 

2.S.7 Andrews' Plots 

This is a dimension reduction technique due to Andrews (1972), which is also 

described in Everitt (1978) and other multivariate texts. 

Quite simply, each of the p-dimensional observations x is used to define a function 

of the form: 

x 
Ix (I) = 1. + x2 sin(t) + x3 cos(t) + x 4 sin(2/) + x5 cos(2/)+ ... 

which is then plotted over the range -1t ~ I ~ 1t. This will result in a set of lines drawn 

across the plot, one per observed unit. 

Since this function representation preserves Euclidean distances, it is possible to 

use this technique to identify clusters, outliers, etc .. For example, points which lie close 

together in the original p-dimensional space will be represented on the plot by lines which 

remain close together for all values of t, whereas points which lie far apart in the original 

p-dimensional space will be represented by lines which stay apart at least for some values 

of I. 

However, since the variables XI> X2, ... are not equally weighted in the function, it 

may be useful to associate XI with the most important variable, and so on. An alternative 

approach is to apply principal components analysis (peA) prior to constructing an 

Andrews' plot and to associate XI with the first principal component, etc .. 

Tests of significance have been derived for use with Andrews' plots, and 

confidence intervals can be constructed. See, for example, Goodchild & Vijayan (1974). 

Moreover, one-dimensional projections can be obtained for particular values of I. 
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One draw-back of Andrews' plots is that only a limited number of observations 

can be represented on the same diagram before the number of lines make it too confusing. 

One approach suggested by Everitt is to begin with a plot of all the observations in order 

to get an overall view of the data, and then to construct plots using subsets of the 

observations in order to get a clearer picture. 

Another draw-back of Andrews' plots is that, owing to the composite nature of 

each observation's function, it is not possible to observe the effect of a single variable in 

isolation. 

2.6 Dynamic Techniques for Exploratory Data Analysis 

As Mezrich et al (1984) point out: "Our nonnal perceptual intake of infonnation 

in our everyday environment is dynamic. The fact that data ... are portrayed statically is 

not because of the requirements of human infonnation processing but rather due to the 

traditional limitations of technology". Indeed, the development and success of dynamic 

methodologies has been very much tied in with technological advances in both hardware 

and software. 

The earliest attempts at dynamic graphics can be traced back to the 1970's, but I 

shall not consider those early crude systems (PRIM-9, CLOUDS, ORION (Friedman e/ al 

(1982)), PROMENADE (Ball & Hall (1970)) here. The development of dynamic graphics 

really took off in the 1980's, due to the work of Becker and his colleagues at AT&T Bell 

Laboratories (eg. Becker, Cleveland & Wilks (1987, 1988), Becker, Chambers & Wilks 

(1986), Cleveland & McGill (1988)). The development and use of dynamic graphics has 

also accompanied the decreasing price and increasing availability of powerful computing 

environments, such as workstations, which facilitate the use of dynamic graphics. 

Dynamic graphics are also available for Apple Macintosh - for example, MacSpin 

(Donoho et al (1986)). 

The addition of dynamic capabilities to traditional static data display methods 

provides an enonnous increase in the power of statistical methods to convey infonnation 

about data. New, highly-interactive, dynamic methods have become possible, and 

capabilities which were difficult or impossible in a static environment are now simple and 

fast. This does not, however, mean that static methods will fall into disuse, rather that the 

collection of methods available will become much larger and richer. After all, the most 
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convenient way to present the results of a dynamic method is usually to select and print a 

suitable static view. 

As Becker et af (1987, 1988) point out, dynamic graphical methods have two 

important properties: direct manipulation of graphical elements on a computer graphics 

screen and instantaneous change of these elements - the data analyst takes some action 

through manual manipulation of an input device, and something happens on the screen in 

real time. Dynamic statistical graphics tools are therefore of use for exploring and 

visualising structure in high-dimensional data (Young & Rheingans (1991». 

Becker et af (1987, 1988) review a collection of dynamic graphical methods for 

data analysis, including identification, deletion, brushing, scaling, rotation, and dynamic 

parameter control. These are considered in tum below: 

Identification: It is not possible to routinely show the labels of all points because 

this would make an unintelligible mess on the screen. The user can either select a 

particular element on the screen and find out what its label is, or select a label and find the 

location of the corresponding element on the screen. It is also possible for the user to 

identify a subset of elements, and these will be highlighted. Alternatively, the display can 

cycle through different subsets. This avoids the necessity for different plotting symbols 

(colours, shapes, etc.) on a static display. 

Deletion: Points can very easily be deleted from a graph with dynamic graphics, 

using the cursor. 

Linking: If a point, or cloud of points, is selected on one display, the 

corresponding elements will be highlighted in related displays. This method is particularly 

useful with scatterplot matrices. 

Brushing: Brushing is a dynamic method in which the data analyst moves a 

rectangle, known as the brush, around the screen using a mouse. Brushing can be used to 

support identification, deletion and linking in a transient, lasting or undone mode. More 

details of brushing, within the context of scatterplot matrices, are contained in Becker & 

Cleveland (1987) and Becker et al (1988). Brushing can also be applied to other graphical 

displays, such as 3-dimensional plots and histograms. 

Scaling: An important aspect of a two-dimensional display is the aspect ratio (the 

physical length of the vertical axis divided by the length of the horizontal axis). The 
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aspect ratio can affect the appearance of any pattern in the data. Dynamic scaling permits 

the rapid consideration of different aspect ratios. 

Rotation: For measurements on three variables, or on a subset of three variables, 

the data may be represented as a point cloud in 3-dimensions, but the screen, like a piece 

of paper, permits only 2-dimensional views. However, unlike a piece of paper and more 

like a movie, a computer display can convey a sense of the 3-dimensional structure by a 

rapidly changing sequence of 2-dimensional views. This gives an apparent rotation of the 

cloud about a specified axis. The use of stereo vision has been suggested to further 

enhance the 3-dimensional effect of the rotating cloud. Rotation is also described by 

Becker et al (1988). 

Parameter Control: Dynamic methods can be used to control any parameter, 

discrete or continuous, that can affect a graphical display, ego the subsets of variables, the 

aspect ratio, the axis of rotation, power transformations of the variables. 

MacSpin (Donoho et al (1986)) has graphics capabilities implemented on an 

Apple Macintosh desktop computer which allows some of the features of Becker's 

dynamic graphics such as rotation of a point cloud to show a third dimension, 

identification of interesting points, highlighting of important subsets, animation to look at 

the effect of a fourth variable (such as time), transformation of the data, and marking 

subsets. Data can be readily imported and hard copy of screen displays readily obtained or 

incorporated into reports. 

Haslett et al (1991) have also incorporated many of Becker's dynamic graphical 

methods into a system implemented on the Apple Macintosh computer which has been 

developed for the exploratory analysis of spatial data with an emphasis on identification 

and linking. 

The use of animation, also advocated by Andrews (1981), may be considered to 

fall into the family of Grand Tour techniques (Asimov (1985), Buja & Asimov (1986), 

Buja et al (1986), Young & Rbeingans (1991 )). This is a set of projection pursuit-type 

methods, the basic purpose of which is to try and understand the structure of the data as 

an aid to interpretation. 

Another, specific, example of the development and use of dynamic computer 

graphics is Stuetzle' s (1987) Plot Windows for drawing and considering scatterplots and 

histograms. 
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Many computing issues must be considered when developing a dynamic method. 

Hardware must very often be pushed to its limits to achieve the requisite speed, and 

software environments can leave a large gulf between the conception of a new idea and its 

implementation. Two aspects of the hardware which have a large impact on the speed and 

ease of use of dynamic techniques are the bandwidth of the system (ie. the speed with 

which user input can be translated into image updates, which ideally should be perceived 

to be instantaneous) and the specific input/output devices used (eg. mouse, light-pen, 

colour printer). Software considerations include the (high level) environment, the 

(medium level) graphics library functions and the (low level) program components. 

Interface design has also been shown (see Jones (1988» to have a significant 

influence on aspects such as learning time, performance speed, error rates and user 

satisfaction. The need for specialised programming techniques to get adequate 

performance for dynamic displays means that implementations usually vary slightly from 

machine to machine and are therefore not readily portable. A survey of some requirements 

for and applications of interactive graphical systems for the analysis of data is contained 

in Andrews et al (1988). 

As has already been seen, dynamic graphics are often used to enhance scatterplot 

matrices. Scatterplot matrices provide an effective tool for graphical exploratory 

multivariate data analysis. Carr et al (1986) and Carr et al (1987) consider interactive 

density representation and display techniques for enhancing scatterplot matrices for very 

large N, including brushing, subset selection and animation. 

Huber (1987) considers his subjective experiences with 3-dimensional scatterplots 

or point clouds which may, as has already been indicated, be enhanced by the use of 

interactive dynamic graphics. One of the most important applications of interactive 3-

dimensional graphics, according to Huber, is the finding of good 2-dimensional views. 

Also important is the consideration and comparison of 3-dimensional structures. 

Dynamic graphics are considered, by Becker et al (1989) and Becker et al (1990), 

to be particularly useful for the visualisation of network data (eg. transportation data) 

consisting of a set of nodes, possibly with a geographical location on a map, and links 

between nodes. Statistical data may be associated with both nodes and links. With even a 

modest number of links and nodes, it may be impossible to encode the data values in a 

static display. Becker et al have therefore developed tools that make use of dynamic 

graphics to display and manipulate network data. Parameters which can be readily 
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manipulated, making use of a three-button mouse and on-screen boxes and sliders, are the 

statistics, levels, geography/topology, time, aggregation and size. It is also possible to see 

how the statistics change over time. 

To illustrate the dynamic interaction essential for 3-dimensional graphics, Huber 

(1987) argues that videotapes are required. Static printing can only be done in the form of 

2-dimensional views, although stereo pairs may be produced if the third dimension is 

essential. A perspective view of a 3-dimensional cube is usually useless. Colour slides 

may be obtained, but not readily reproduced. Despite the use of colour in their dynamic 

displays, Becker et al (1990) were unable to reproduce colour figures in their published 

report. 

Higher dimensional data may be more readily examined for structure using 

dynamic graphic methods for 3-dimensional scatterplots and scatterplot matrices if 

dimension reduction techniques of the sort described in Section 2.5 are first applied to the 

data. This approach is considered by Weihs & Schmidli (1990) - their Online 

Multivariate Exploratory Graphical Analysis (OMEGA) strategy combines dimension 

reduction methods with dynamic graphics methods within the framework of an overall 

data analysis perspective, to provide a tool for exploring, understanding and forming 

hypotheses about the structure of multivariate data. 

To be really useful, dynamic graphics routines should be embedded in a data 

analysis environment to permit data management, basic graphics, statistical modelling, 

data transformations, etc .. 

2.7 Summary 

This chapter has been concerned with the description of some of the most 

commonly used graphical techniques for data exploration, or EDA. This is by far the most 

prolific area of research within statistical graphics. 

It has been impossible to consider every one of the many hundreds of published 

chapters and articles relating to this area, and many less well known techniques have been 

omitted. In particular, no consideration has been given to statistical maps or to graphics of 

use for time series data. 

The techniques which are considered in this chapter have been classified as 

techniques for univariate raw data, for bivariate raw data and for multivariate raw data, 
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the latter represented directly or transfonned in some way to reduce the intrinsic 

dimensionality of the data. Although these techniques are not the main concern of this 

thesis, they serve to indicate the most appropriate model which may be fitted to the data. 

Moreover, many of the techniques described, including histograms and scatterplots, are of 

use for other statistical activities, as will be seen in Chapters 3 and 4. In particular, PCA 

and MDS will be employed elsewhere in this thesis, in Chapter 10. 

Particular attention was paid, in Section 2.6, to dynamic techniques for the 

representation and exploration of multivariate raw data. With the increasing availability of 

computers with graphic facilities capable of supporting interactive real-time computer 

graphics, this is likely to be a popular and fruitful area for future research. Indeed, an 

interactive computer program is developed in Chapter 11 as part of the research described 

in this thesis. 
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3. Graphical Techniques for Model Fitting and 

Diagnostics 

3.1 Introduction 

In the preceding chapter, some of the very many graphical techniques which exist 

for the representation and exploration of the raw data were described. These techniques 

serve a useful purpose in revealing the structure within the data and suggesting the kind of 

statistical models which it would be appropriate to fit to the data. In this chapter, some of 

the graphical techniques which exist to assist in the fitting of models to data will be 

considered. As shall be seen, these are not so numerous as techniques for the 

representation of raw data. 

In Section 3.2, some techniques for determining the distribution of the raw data 

will be described. This is important for assessing the appropriateness of the distribution of 

the data for the chosen model and can reveal the need for transformation of the data. 

Particular attention will be paid to probability plotting techniques which, as shall be seen, 

are of use not just for investigating the distribution of the data, but also for comparing 

distributions, estimating parameters and detecting effects. 

Some graphical techniques of use with Analysis of Variance (ANOV A) will be 

considered. These include techniques for summarising the ANOV A design, prior to 

collecting and modelling the data according to the specified design. These are described in 

Section 3.3. In Section 3.4, some graphical techniques for the mUltiple comparison of 

means, used for determining which pairs, or subsets, of means differ are outlined. 

Some graphical techniques of use with regression will also be considered. In 

Section 3.5 some graphical approaches to model selection within mUltiple regression, 

used as an aid to selecting a parsimonious model to fit to the data, are described, and in 

Section 3.6 the important role of graphical representations in regression diagnostics; ie. 

for checking the appropriateness of a fitted regression model, is discussed. 
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3.2 Assessing Distributional Assumptions 

One of the simplest ways to examine the distribution of a set of raw data is by the 

construction of a histogram (see Section 2.2.1). This allows a crude assessment of the 

shape of the distribution of the data, which can be enhanced by superimposing a normal 

(or whatever) curve onto the graph. However, as was discussed in Section 2.2.1, the 

appearance of the histogram may be distorted, depending on the choice of interval, or bin, 

width. 

An alternative technique is the boxplot (Section 2.2.5), though this is very crude, 

being based on just five summary statistics. 

Another possible display is a symmetry plot (Gnanadesikan (1977), Jobson 

(1991». This allows one to see whether a distribution is symmetric or not, although it 

says nothing about the precise form of the distribution. If a distribution is symmetric, then 

the ith lowest observation from the median, Xi, and the ith highest observation from the 

median, Xn-i+l> should each be the same distance from the median. Therefore a plot of XM

Xi against Xn-i+l-XM (where XM is the median value) should result in a straight line with 

intercept 0 and slope 1. Departures from the expected line will indicate the nature of any 

asymmetry. 

Better insight into the distribution of the data may be obtained through the use of 

more formal probability plotting techniques, which are described below. 

3.2.1 Probability Plotting Tetbniques 

Probability plotting is a visual method commonly employed to check the basic 

assumptions about the distribution of data and to detect departures from these 

assumptions. Good overviews of the techniques and uses of probability plotting are given 

by Wilk & Gnanadesikan (1968), Gerson (1975), Gnanadesikan (1977), Chambers et al 

(1983) and Jobson (1991), amongst others. 

Probability plotting may be used to compare two distributions where both 

distributions are empirical, or one is theoretical. 

The underlying assumption in the probability plotting of experimental data is that 

if a number of values are sampled independently from a population with some known 

frequency distribution and the ordered values are plotted against the corresponding 
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quantiles of this distribution, or against the quantiles of some other distribution, then the 

resulting points will lie approximately on a straight line passing through the origin with a 

gradient of 1. Of course, the determination of what can and cannot be considered a 

straight line is a subjective matter - measures of the goodness of fit have been advocated 

(Mage (1982), Gan et al (1991». 

A Percentile, or Percentile-Percentile, or P-P, plot can be constructed by finding 

the probability of different values or quantiles from the cumulative probability 

distribution for each distribution and plotting the probabilities for one distribution against 

the corresponding probabilities for the other. If the distributions are identical, this will 

result in a straight line through the origin with slope 1. Any variation from such a line 

would indicate that the two distributions were not identical. The P-P plot will be most 

sensitive to differences in the middle of the distributions, but not in the tails. 

A Quantile, or Quantile-Quantile, or Q-Q, plot can be constructed in a similar way 

by considering the quantiles corresponding to different probabilities and plotting the 

quantiles for one distribution against the corresponding quantiles for the other. In this case 

a straight line plot will be obtained provided one random variable is a linear 

transformation of the other. Differences in mean and variance may be inferred from the 

intercept and slope of the graph respectively. If the two variables are from identical 

distributions, the slope will pass through the origin with gradient 1. The Q-Q plot is most 

sensitive to differences in the tails of the distributions rather than in the middle. A single 

straggler at the beginning or end of the plot may indicate an outlier. Curvature at the ends 

indicates kurtosis (ie. a greater concentration of points in the tails of one of the 

distributions). Convexity or concavity suggests a lack of symmetry. Kafadar & 

Spiegelman (1986) suggest that some curvature of the Q-Q plot is an inherent fault which 

makes linearity hard to quantify and propose the use of conditional Q-Q plots, though 

these must carry the risk that real effects may not be detected. 

A set of values thought to be from a normal distribution can be plotted against the 

corresponding quantiles of the standard normal distribution. This is more commonly 

called a normal plot. This may be done directly, or using special normal probability 

plotting paper. A half-normal plot is one where, if fl=O, the absolute values are ordered 

and plotted against order statistics of the standard half-normal distribution (see Daniel 

(1959), Sparks (1970), Zahn (197Sa), Zahn (197Sb». 
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Choice of plotting positions has attracted some debate. When the n sample values 

are ordered from smallest to largest, it is necessary to decide on the percentiles to which 

they correspond in order to evaluate the quantiles of the relevant distribution. Note that 

the pth quantile will correspond to the (100 x p) th percentile of the data set. Probably the 

most widely used value for the percentiles is Pi = (i-O.5)/n. Other values have been 

suggested, although different plotting conventions can lead to different lines (Gerson 

(1975), Mage (1982». 

In general, claims Gerson, P-P and Q-Q plots between them provide reasonably 

sensitive indicators of distributional discrepancies, although if both distributions show the 

same departures, a straight line will still result. Q-Q plots tend to be the more favoured. P

P and Q-Q plots are only identical when the two variables are each from a Uniform (0,1) 

distribution. 

When a half-normal plot is constructed, there may well be one or more values 

which are much bigger than expected and lie some distance from the line on which the 

other points lie. It is possible to test whether such points have been obtained by chance or 

whether they represent an outlier (Gerson (1975), Zahn (I 975a, 1975b». 

Plotting techniques are also commonly employed for the Gamma distribution, 

which includes the chi-squared and exponential distributions as special cases (Wilk, 

Gnanadesikan & Huyett (1962». A gamma plot, using quantiles of the chi-squared 

distribution, is useful for detecting the existence and form of heterogeneity when ordered 

variance estimates are plotted. However, the gamma distribution is complicated by the 

presence of a shape parameter which must be estimated before the probability plot may be 

constructed. 

Hybrid plots can be constructed based on P-P or Q-Q plots, usually involving 

some function of the percentiles or quantiles (Wilk & Gnanadesikan (1968». 

In addition to testing distributional assumptions and revealing outliers, probability 

plots may assist the determination of appropriate models. For example, a plot can be done 

of the ordered mean squares obtained from an Analysis of Variance, in order to permit 

informal 'internal comparisons' (Wilk & Gnanadesikan (1964), Wilk & Gnanadesikan 

(1968), Gnanadesikan & Wilk (1970». The precise approach depends on the degrees of 

freedom. If no real effect exists, the resulting plot will be linear, otherwise values will be 

found not to lie on the line. These values should be removed and the graph re-plotted to 

reveal any other effects. Also, derived data, such as the residuals from a multiple 
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regression, analysis of variance, or some other analysis, may be plotted to check 

distributional assumptions and for outliers (see Section 3.6). 

For multivariate data, it may be tempting to construct a scatterplot for pairs of 

variable values to look for an elliptical pattern, but this will only be effective for large 

samples. For smaller samples probability plotting can be used to compare the variables in 

pairs, or one at a time against the normal distribution. Normal probability plotting 

techniques may, however, be extended to handle multivariate data (see Healy (1968), 

Everitt (1978». 

3.3 Experimental Design Symbolisation 

Experimental design symbolisation techniques for use in Analysis of Variance 

(ANOVA) have been proposed by Winer et al (1991), Lee (1966), Wilkinson & Rogers 

(1973), and Taylor & Hilton (1981), amongst others. Of these techniques, those of Lee 

and of Taylor & Hilton seem to be particularly informative in that the experimental design 

implies which main effects and interaction effects can be tested for using a particular 

design. 

The reader IS assumed to be familiar with the terminology connected with 

ANOVA. 

3.3.1 ANOV A Design Table 

Perhaps the most commonly used experimental design symbolisation technique is 

the design table, mentioned in Lee (1966). An example of a design table for a three factor 

ANOV A design where factor A has 2 levels, factor B has 4 levels, factor C has 2 levels, 

and factor A is crossed with factors B and C but B is nested under C, is presented in 

Figure 3-1. 

By looking at an ANOV A design table, it is possible to determine which factors 

are crossed and which are nested. If the subjects are themselves nested under one or more 

factors (in a between subjects design), then the subjects can be represented individually as 

different levels of a factor 'subjects'. Similarly in a repeated measures (within subjects) 

design, 'subjects' can be represented as a factor which is crossed with all combinations of 

the other factors. Mixed designs (involving both between and within subjects factors) 

require a combination of the two approaches in the construction of the design table. 
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Al A2 

Bl 

Cl B2 

B3 

B4 

C2 B5 

B6 

Figure 3-1: Design table for a three factor ANOVA design 

However, ifthere are more than three factors in the design, it may not be easy to construct 

or interpret the design table for any experimental design. 

Design tables have a practical use since they form a table of cells where each cell 

corresponds to a particular treatment combination. In this sense, design tables resemble 

contingency tables. In each cell, the subjects assigned to that particular treatment 

combination and/or the observations made on those subjects can be recorded. 

3.3.2 Blocks Representation for Three Factor ANOV A 

An experimental design symbolisation technique which I have developed from the 

ANOV A design table described in the previous subsection (3.2.1) specifically for use 

with three factor ANOV A is the blocks representation. Again, using this technique it is 

possible to determine visually which factors are crossed with, or nested under, which 

other factors. Again, consider an experimental design in which factor A has 2 levels, 

factor B has 6 levels, and factor C has 2 levels. Factor B is nested under factor C, and 

factor A is crossed with factors B and C. The blocks representation for this design will be 

as given in Figure 3.2. 
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C.L 

Figure 3-2: Blocks representation of example ANOV A design 

An imaginary view from the top would indicate that factors A and B are fully 

crossed, as shown in Figure 3.3. Similarly, an imaginary view from the side would 

indicate that factors A and C are fully crossed, as shown in Figure 3.4. However, an 

imaginary view from the front would indicate that factor B is nested under factor C as 

shown in Figure 3.5. 

Ai 

Figure 3-3: Top view of blocks representation 

49 



Ai A'J. 

Ci 

Figure 3-4: Side view of blocks representation 

C1. r3~ es (3b 
, 

~d-

Figure 3-5: Front view of blocks representation 

Obviously, the blocks representation is inherently 3-dimensional and could not 

easily be extended for the representation of designs involving more than three factors. 

3.3.3 Symbolic ANOV A Design Representation 

Winer et al (1991) suggest an experimental design symbolisation technique in 

which an alphabetic symbol represents a factor in the experiment, a line including a cross 

drawn between two factors indicates that the two factors are crossed, and a line including 

a circle drawn from one factor and pointing towards another factor indicates that the 

former is nested under the latter. An example of an experimental design involving four 

factors repres~nted in this symbolic way is given in Figure 3-6. It can be seen that factor A 
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is crossed with each of factors B. C and D, that C is crossed with D, and that factor D is 

nested under factors A and B. Thus this technique can be used to convey the factors in the 

experiment and the relationships between these factors in a visual manner. It would be 

quite straightforward to add a subscript to each factor symbol in order to indicate the 

number of levels in each factor, and to add some kind of underscore to each factor symbol 

to indicate whether they are fixed or random factors. 

Figure 3-6: Symbolic representation of example ANOV A design 

This symbolic ANOV A representation technique can be used to represent a greater 

number of factors than can be effectively achieved using the design table or blocks 

representation techniques described above. However, for a large number of factors, some 

crossing of the lines representing the relationships between factors would inevitably 

occur, leading to a messy representation. 

3.3.4 Factor Relation Table for ANOV A 

Lee (1966), in addition to the design table, also describes a "factor relation table" 

which conveys exactly the same information as Winer et aI's (1991) symbolic 

representation technique, but in tabular form. For example, the factor relation table 

presented in Figure 3-7 represents the same experimental design as represented in Figure 

3-6. A 'x' in a cell of the table indicates that the two factors which form that cell are 
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crossed and parentheses are used to indicate the nesting of factors - for example, D(A) 

indicates that factor D is nested under factor A. 

A 

B 

C 

D 

A 

-

x 

x 

D(A) 

B c 
x x 

- x 

x -

D(B) x 

Figure 3-7: Factor relation table for example ANOVA design 

D 

D(A) 

D(B) 

x 

-

One advantage of the factor relation table is that it is readily extendible to any 

number of factors. However, disadvantages of the factor relation table are that a lot of 

information is duplicated (since it is a symmetric table), and relationships between factors 

may not be as immediately apparent as in the more visual symbolic representation. 

The factor relation table was developed by Lee for use with a programmable 

algorithm which can be applied to the table in order to derive the appropriate ANOV A 

model corresponding to the experimental design. In the process of deriving this model, an 

alternative design symbolisation is derived of the form, for example, AxB(CxD), where 

the 'x' indicates that the factors are crossed and the '( ... )' indicates that the factor 

immediately outside the parentheses is nested under the levels of the factor or compound 

factor enclosed in the parentheses. This design symbolisation may be quite difficult to 

interpret for a complex design without the aid of a factor relation table, and it conveys no 

information about the number of levels of each factor, but it is in a form from which the 

appropriate ANOVA model can be derived using Lee's algorithm. 

Wilkinson & Rogers (1973) present a design symbolisation similar to that of Lee, 

using ,*, to represent crossed factors and '/' to represent nested factors. They too develop 

this syntax for use with programmable algorithms for model specification. 

3.3.5 Structure Diagram Symbolisation for ANOV A 

The structure diagram symbolisation of Taylor & Hilton (1981) is probably the 

most versatile experimental design symbolisation technique of those considered in this 
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section. It incorporates all of the best features of the other experimental design 

symbolisation techniques described in that all the factors are shown, the crossing and 

nesting relationships between the factors are shown, the number of levels of each factor 

are shown, and the appropriate ANOV A model corresponding to the experimental design, 

together with the necessary formulae for testing the terms in the model, can be derived 

using a series of rules presented by Taylor & Hilton and which are potentially 

programmable. 

An example of a structure diagram is presented in Figure 3-8. In the structure 

diagram, the presence of (vertical) links between two factors indicates that the lower 

factor is nested under the upper factor, and the absence of any link between two factors 

indicates that the two factors are crossed. 'U' is used to represent the overall mean and all 

other factors are nested under this. 'E' is used to represent error and is nested under all 

other factors. 

Figure 3-8: Example ANOV A structure diagram 

The structure diagram representation of the experimental design not only conveys 

the relationships between the factors but, as has already been mentioned, can also be used 

to obtain the appropriate linear model corresponding to the experimental design. This is 
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achieved by writing down each factor as a main effect together with an interaction term 

for each combination of the crossed factors. Subscripts are written corresponding to each 

main effect symbol, with the subscripts of all nesting factors (ie. factors linked from 

above) written in brackets. The ANOVA model corresponding to the design represented 

by the structure diagram in Figure 3-8 is therefore 

Yabce = u + Aa + Bb + ABab + C(a)<: + BC(a)bc + E(abc)e 

The appropriate ANOV A model is derived more easily and more quickly than if 

Lee's (1966) algorithm had been employed, and requires only the use of visual rules of 

thumb rather than the iterative application of Lee's algorithm. However, it is not apparent 

whether Taylor & Hilton's visual rules of thumb could easily be programmed and 

executed automatically. For a very large number of factors, with complex nesting 

relationships between them, it is likely that the structure diagram and the corresponding 

working diagram (described below) would become quite messy and difficult to interpret 

visually. This criticism was also made of Winer et aI's (1991) superficially similar 

symbolic representation technique (see Section 3.2.3). 

The working diagram corresponding to the structure diagram in Figure 3.8 is 

presented in Figure 3.9. In the working diagram, the presence and absence of links 

between pairs of variables again indicates the presence of nesting or crossing 

relationships. The number in parentheses alongside each factor symbol indicates the 

number of levels of that factor, and the presence of a squiggly underline indicates that it is 

a fixed factor, else it is assumed to be a random factor. These additions are an 

improvement over Winer's symbolic representation technique, yet could readily be 

incorporated into it. 

Using the working diagram, in which the mean effect is implicit, it is possible to 

derive the appropriate F -test in order to test the significance of each effect of interest 

contained within the ANOV A model derived from the structure diagram. In order to 

derive the appropriate F-test, a quite complex set of rules contained in Taylor & Hilton 

(1981) are used. These essentially involve partitioning the complete set of factors into 

various disjoint sets, according to the effect to be tested, and these are then used to 

develop the appropriate formulae for the degrees of freedom, the sum of squares, the 

expected mean squares and the F-tests, together with variance component estimates. It is 

claimed by Taylor & Hilton that, with practice, it is possible to derive the appropriate F

tests directly by visual inspection of the working diagram and without reference to the 

54 



Figure 3-9: Example ANOV A working diagram 

derived linear ANOVA model. Alternatively, it may be possible to program their rules as 

a computer implemented algorithm. 

Thus Taylor & Hilton's structure diagram symbolisation (encompassing both 

structure diagram and working diagram representations) is the most sophisticated of all 

the ANOV A experimental design symbolisation techniques presented in this section. Like 

Lee (1966), the representation is related to a model building process, and in a computer 

implemented format it would allow easy examination of the effects upon the linear 

ANOVA model and upon the corresponding F-tests of adding or deleting factors, or of 

altering the relationships between factors. However, Taylor & Hilton's technique has the 

limitation that it can only be used with balanced ANOV A designs. 

3.4 Multiple Comparison Procedures 

One-way ANOV A is used to test hypotheses that all treatment means are equal. 

However, having rejected this hypothesis, the experimenter is often interested in 

determining which means differ and whether there are subsets of treatments having 

similar means. There are very many computational multiple comparison procedures 

(MCPs) available; for example, due to Dunnett, Tukey, Duncan, Scheffe, etc. (see, for 

example, Howell (1992)). Such tests usually test pairwise equality of the means. 
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Pairwise comparison of means in ANOVA can also be done graphically. For a set 

of k-treatment means, the means are plotted in increasing order of magnitude with 

uncertainty intervals, based on the standard error. Any pair is judged to be different if and 

only if their uncertainty intervals do not overlap. Such a procedure is a MCP only if the 

experimentwise error rate (ie. the overall probability of making at least one Type 1 error 

within the set of conclusions) is controlled. Such a plot is quick and easy to use, and 

simple to interpret. Gabriel (1978) presents a simple graphical procedure which can be 

used for the comparison of means of unequally sized samples. Confidence intervals for 

more complicated (ie. non-pairwise) contrasts can also be constructed using Gabriel's 

approach. Andrews et al (1980) and Hochberg et al (1982) each consider four graphical 

MCPs for pairwise comparisons, suitable for use with unbalanced ANOV A designs, 

which differ in their computational simplicity and efficiency. 

Schweder & Spjotvoll (1982) present a graphical procedure called a P-value plot 

for pairwise comparisons, which is based closely on the half-normal plot described in 

Section 3.2.1. This permits estimation of the number of hypotheses which can be rejected, 

or the p-value which should be used. Suppose there are T hypotheses / pairwise 

comparisons, each with an associated p-value. Plot the number of p-values greater than p 

against I-p. For large p, this should result in a straight line with slope equal to the 

unknown number of true null hypotheses. The null hypothesis should be rejected for the 

points deviating from the straight line, corresponding to small p on the right-hand side of 

the plot. Often the plot will show a gradual bend rather than a clear break, which will 

make interpretation less clear. It is suggested that there should be at least 15 p-values (ie. 

T ~ 15) in order for a straight line to be fitted. 

An alternative approach is to partition the treatment means into groups using 

cluster analysis (see Section 2.5.6). The dendrograms generated by the hierarchical 

clustering algorithms give a graphical representation of the results and can be used to 

describe differences among the treatment means. Scott & Knott (1974) present a 

clustering method for grouping means in ANOV A. Calinski & Corsten (1985) propose 

two clustering methods to group treatments into homogeneous clusters. Tasaki et al 

(1987) consider six methods of clustering sample means. The main finding, perhaps not 

surprisingly, is that different clustering methods result in different dendrograms and 

therefore in different conclusions. It cannot be inferred that treatments in different groups 

are significantly different, nor does the fact that means are in the same group prove 
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equality. I would suggest that clustering means in ANOVA should therefore be regarded 

as an exploratory technique. 

3.5 Model Selection Procedures 

In multiple regression, with n observations on k independent variables XI, ... ,xk and 

one dependent variable y, a number of different possible models may be fitted, using 

different subsets of the independent variables. Model selection procedures in multiple 

regression are described in general in Chapter 7. In this section I wish to consider one 

particular graphical approach, based on Mallow's Cp statistic (Mallows (1973». For a 

regression based on p of the k independent variables, a plot of Cp against p for all possible 

regressions (of which there are 2k) should indicate which regressions are adequate. For an 

adequate regression, Cp should be close to p (ie. lie on the line Cp = p), otherwise Cp will 

be much larger than p. Spjotvoll (1977) presents two alternative, but related, plots. 

3.6 Regression Diagnostics 

Diagnostic graphical methods are frequently used in regression analysis, where 

they commonly involve plotting some combination of the observed values of the 

dependent variable, the observed values of the independent variable(s), the fitted values of 

the dependent variable, the residuals (ie. observed minus fitted values of the dependent 

variable), and/or the regression line itself, in order to diagnose the appropriateness of the 

fitted model (as represented by the regression line) in relation to the data. 

There is a vast literature in this area which I shall not attempt to review in detail 

since the use of graphical displays for regression diagnostics are not the main concern of 

this thesis. However, it seems to be appropriate to give an outline of some of the work 

which has been carried out in this area, since techniques used in regression diagnostics 

make considerable use of graphical representations. 

Anscombe (1973) provides a good introduction to the use of scatterplots in 

regression analysis, giving details of the implications for the fitted model of various 

patterns which may emerge in a scatterplot. For example, in a scatterplot of the observed 

values of the dependent variable y against the measured values of the independent 
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variable x, where a simple regression model of the form y,=a+bx; has been fitted, five (or 

more) patterns may be found as follows: 

1. The plotted points may lie in a straight line. 

2. The plotted points may lie on a smooth curve. 

3. The y-values may be scattered about independently of the corresponding x-values. 

4. Some combination of the above may be found. 

5. Most of the plotted points lay on a straight line, but a few of the points are scattered a 

long way away. 

The first of these patterns is the ideal scatterplot which shows that the model fits 

very well. The second pattern can usually be easily converted to the first by use of a 

suitable transformation of the data. The fifth pattern indicates the presence of outliers. 

The residuals (e. = y. - y.) should also be plotted, either against the Xi values or 
I I I 

against the fitted values of the dependent variable y.. The simplest approach to the 
I 

analysis of residuals is to plot the frequency distribution of the set of residuals as a 

histogram or as a cumulative plot on normal probability paper (see Section 3.2.1). If the 

assumptions of the regression are close to being satisfied, then the residuals will appear to 

be distributed normally with zero mean and common variance for all X;. In a plot of the 

residuals (against X; or y. ) the following four (or more) patterns may be found: 
I 

1. A few of the residuals are much larger in magnitude than the others, ie. there are 

outliers among the residuals. 

2. The residuals may form a curve. 

3. There may be a progressive change in the variability of the residuals accompanying an 

increase in the values of the fitted or independent values. 

4. There may be a skewness or otherwise non-normal distribution of the residuals. 

The latter three patterns can sometimes be removed simultaneously by a suitable 

transformation of the data. The second pattern can also sometimes be removed by the 

addition of a quadratic term into the regression equation. 
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Anscombe and Tukey (1963), Anscombe (1973), Denby & Pregibon (1987) and 

Chatterjee & Price (1991) provide general introductions to the examination and analysis 

of residuals. 

To illustrate the usefulness of residual plots in regression diagnostics, Anscombe 

(1973) considered four fictitious data sets. Each of these data sets yields the same values 

in fitting a regression equation; also each data set has the same number of observations, 

the same mean of the x values, the same mean of the y values, the same regression line, 

the same regression sum of squares, the same residual sum of squares, etc .. However, 

scatterplots of the y-values against the x-values for the four data sets with the regression 

line superimposed highlight problems with all except one of the data sets which would not 

have been detected otherwise. 

In a more complex regression analysis, for example with two independent 

variables XI and X2, it is not practicable to construct a 3-dimensional scatterplot of y 

against XI and X2 simultaneously. Instead, scatterplots can be constructed for each of the 

three possible combinations of pairs of variables, or a scatterplot can be constructed for 

two of the variables with the value of the third variable indicated by a suitable symbolic 

or numeric value (see Section 2.4.1). If there are many independent variables to be 

considered, however, it is not so straightforward to use scatterplots. 

Atkinson (1985) devotes a book to graphical methods for diagnostic regression 

analysis, mostly based on the scatterplot. Atkinson indicates that regression diagnostics 

may be used for the following purposes: 

1. To identify errors arising in the measurement or recording of independent or dependent 

variables. 

2. To assess the adequacy of the linear model to describe the systematic structure of the 

data. 

3. To assess the need to transform the dependent or independent variables. 

4. To assess the error distribution within the data, and so assess the suitability of using 

least squares regression. 

Some examples of residual plots are given, which can be used to detect certain 

departures from the fitted model or from the assumptions of the technique as follows: 
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1. Scatterplots of the dependent variable y against each of the independent variables 

2. Scatterplots of the residuals against each independent variable in the model - if a 

curvilinear relationship exists, this indicates that a quadratic term should be included in 

the model. 

3. Scatterplots of the residuals against each independent variable not in the model - the 

presence of a relationship would suggest that the corresponding independent variable 

should be included in the model. 

4. A scatterplot of the residuals against the predicted y values obtained from the fitted 

model - if the variance of the residuals increases with the fitted values, this suggests 

that the values of the dependent variable may need to be transformed. 

5. A normal probability plot of the residuals - the residuals should look like a sample 

from a normal distribution. 

6. If the data are collected in a particular time order then, even if time is not treated as an 

independent variable, the dependent variable and the residuals should be plotted 

against time - such plots may lead to the detection of previously unexpected patterns 

in the data due to time or due to other variables which are correlated with time. 

Rather than construct residual plots, it is possible to detect the same effects by the 

calculation of suitable test statistics and the assessment of their significance. However, 

Anscombe claims that plots show the effects quickly and vividly (particularly if 

implemented on a computer), and so formal testing is made unnecessary. 

Anscombe also discusses the use of residual plots in 2-way ANOV A. Having 

calculated the row and column means and the ANOV A equation, and the residuals 

obtained in fitting this equation, scatterplots can be constructed of the residuals against 

the fitted values, or a triple scatterplot constructed of the row effects against the column 

effects with the residuals encoded. Indeed, for any RxC table (including contingency 

tables) for which a set of main effects and interaction effects have been calculated, it 

should be possible, Anscombe suggests, to plot the residuals against the fitted values. 

Graphical methods also exist for assessing logistic regression models (Landwehr et al 

(1984)). 

Probably the most common reason for the calculation of residuals is for the 

identification of outliers; ie. observations which have large residuals relative to the other 

observations. Outliers may occur due to an error in the measurement or recording of the 
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observations, or they may represent the correct observation of an unusual phenomenon. In 

the former case the value may be discarded, or assigned a modified value, or given a low 

weight, or be considered separately, or be transformed in some way together with the 

other observations. 

Graphical procedures are likely to be more 'sensitive' to outliers than numerical 

procedures for the examination of residuals. For example, scatterplots are frequently used 

to examine residuals - outliers can be readily identified as isolated points, and 

peculiarities in the distribution of the residuals or associations between the residuals and 

the fitted values can also be detected visually. 

3.7 Summary 

In this chapter, a variety of graphical techniques for model fitting and model 

diagnostics have been described, including techniques for assessing distributional 

assumptions, experimental design symbolisation in ANOV A, multiple comparison 

procedures in one-way ANOV A, model selection, and regression diagnostics. Such 

techniques are of use for determining which model(s) it would be appropriate to fit to the 

data. 
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4. Graphical Techniques for the Representation of 

Fitted Models 

4.1 Introduction 

The main concern of this thesis is with the graphical representation of fitted 

models. As has already been seen, in Chapter 2, there are very many graphical techniques 

for the representation of the raw data prior to the fitting of a model and, in Chapter 3, a 

number of graphical techniques for checking the appropriateness of a fitted model were 

described. However, there are few graphical techniques already in existence for the 

representation of the fitted model itself. Those graphical model representation techniques 

which have been developed to date are described and considered below. 

Representations for ANOV A models are considered in Section 4.2. These include 

the commonly employed interaction plot and extensions to this; a technique for the 

display of the ANOVA summary table; and a Venn diagram representation of Sums of 

Squares. Extensions are suggested for some of these techniques. 

Representations for contingency table data are described in Section 4.3. These 

include graphical displays such as histograms, circle graphs, barycentric plots, cluster 

analysis and probability plots. Correspondence analysis is also revisited in the Section, 

having been described in some detail in Chapter 2. 

Also in this chapter, two graphical representation techniques for logit models are 

briefly considered, in Section 4.4. 

By far the most useful technique for the representation of a variety of fitted 

models, such as covariance selection models, log-linear interaction models and mixed 

interaction models (which include ANOVA, multiple regression, etc.), is the conditional 

independence graph. Because of the importance of this representation technique for the 

work described within this thesis, the conditional independence graph will be considered 

separately, in Chapter 7. 
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4.2 Representations for ANOV A Models 

4.2.1 Interaction Plots 

A commonly employed representation technique used with ANOV A is to 

construct an interaction plot, based on means. For example, given two factors A and B, a 

plot can be constructed showing the value of the mean for each level of factor A at each 

level of factor B (ie. the simple effects of B). The means plotted for the first level of factor 

A can then be linked, as can the means for the second level of factor A, and so on. Of 

course, the value of the mean for each level of factor B at each level of factor A (ie. the 

simple effects of A) could be plotted instead. 

If the lines on the plot are parallel, this indicates that there is no interaction 

between factors A and B, but if the lines are not parallel, or if they intersect, this indicates 

that there is an interaction between the two factors. The extent of the departure of the lines 

from being parallel indicates the extent of the interaction. Thus interaction plots can be 

used as an exploratory technique, in the investigation of which model would best fit the 

data, but they can also be used to illustrate the model which has been fitted to the data. 

Details of the construction and use of interaction plots can be found in most 

introductory statistics text-books which include ANOV A, particularly those intended for 

behavioural scientists, ego Winer et al (1991), Howell (1992), Boniface (1995). An 

example of an interaction plot is given in Figure 4.1, based on data contained in Boniface 

(1995). It can be seen that the lines representing the simple effects of A are not parallel, in 

other words that the effect of B is not the same at every level of A. This indicates that 

there may be an interaction, the significance of which would need to be tested using 

numerical techniques. 

The main effects of A and B can also be represented graphically, by constructing a 

bar chart showing the mean for each level of A (ie. the main effect of A) and a bar chart 

showing the mean for each level of B (ie. the main effect of B). This is illustrated in 

Figure 4.2. 

In the vast majority of standard ANOVA texts, raw means are graphed in the 

manner described. However, Rosnow & Rosenthal, cited in Allison et al (1993), argue 

that the main effects should be removed and the residuals plotted, since an interaction 
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Figure 4-1: Interaction plot for example data set 

effect is the multiplicative effect of two (or more) variables after controlling for the 

individual additive effects (ie. the main effects). 

For an ANOVA experiment involving three factors, interaction plots are usually 

constructed for two of the factors at each level of the third. If a three-way interaction is 

present, the interaction between any two of the factors (ie. the simple interaction effects) 

will be different at different levels of the third factor. However, it is not always apparent 

whether the three-way interaction is present or absent and, depending on the choice of the 

two factors to be plotted at each level of the third, it can also be difficult to determine 

which two-way interactions are present or absent. 
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Figure 4-2: Bar charts of means 

Monlezun (1979) has proposed a variation upon the standard interaction plot in 

order to represent interactions in three factor ANOV A. This approach involves plotting 

the differences between the values of the cell means, rather than the cell means 

themselves. The plots constructed depend on which effects are zero - Monlezun considers 

cases in which the three-way interaction is zero and none, one, or two two-way 

interactions are also zero. 

For example, Figure 4.3 shows the usual interaction plot constructed for a three 

factor ANOVA (data taken from Monlezun). From this plot it is difficult to determine 

whether there is a three-way (ABC) interaction or not, but the viewer is likely to conclude 

that there is a three-way interaction. Compare this with Figure 4.4 which shows a plot 

suggested by Monlezun based on the differences between means for different levels of A. 

This plot indicates that there is no BC interaction based on the differences between means, 

from which it follows that there is no ABC interaction. (Note that there is a BC interaction 

based on the raw means). 
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Figure 4-3: Interaction plot for 3 factor ANOV A example 

Monlezun only considered data sets for which the three-way interaction was 

absent. I applied the technique to some contrived three-factor data sets with the three-way 

interaction effect present in some cases, and to others with various main effects and two

way interactions absent, in addition to the three-way interaction. I also extended the 

technique and applied it to some higher order data sets, plotting the differences between 

differences, in order to obtain a two-dimensional representation. In practice, the 

appropriate plots to construct are dictated by which interactions are present or absent in 

the data, since these in tum dictate which differences it is appropriate to calculate and 

plot. The plots were not straightforward to construct, and they were also very difficult to 

interpret. For the four-factor data, the difficulties of construction and interpretation were 

compounded. 
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The two main criticisms I have of Monlezun plots are that the plots show what is 

not, rather than what is, in the model, and that a large number of plots are required for a 

given data set. The difficulty of interpretation of the plots, even for an experienced user 

with considerable knowledge of the construction and rationale of the plots, would seem to 

be such that it would be better simply to state the model. Thus I conclude that Monlezun's 

plots are not worthwhile pursuing. 

Winer et al (1991) suggest the use of a three-dimensional representation for three

factor ANOV A. In Winer's representation, each factor is assigned to one of each of the 

three co-ordinate axes, and the levels of each factor are spaced along the corresponding 

axis. This is illustrated in Figure 4.5 with a diagram taken from Winer et al (1991). From 

such a representation it is possible to interpret the three-way interaction, the three two

way interactions, the three main effects, and the various simple main effects and simple 

interaction effects, depending on the viewing perspective, or cross-section, chosen (see 
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Winer et al for illustrations of these effects). However, in my experience, it can be very 

difficult to construct Winer's representation for three-factor ANOVA by hand, and such a 

technique is not readily extendible to higher dimensional models. 

:0 

!'l. £I, 

Figure 4-5: Three-dimensional representation of 3 factor ANOV A 

All of the techniques considered above are for use only with balanced ANOV A 

designs. Paik (1985) has suggested the use of circles of diameter proportional to the cell 

sample size for use in the representation of a three-way (2x2x2) contingency table (see 

4.3.3). Incorporation of this approach with ANOVA interaction plots may help to resolve 

paradoxes which can occur as a result of unequal sample sizes. 

4.2.2 ANOV A Summary Table 

Graphical techniques are available for representing elements of the ANOVA 

summary table. Consider the ANOV A summary table presented in Table 4.1, which 
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corresponds to the data contained in Boniface (1995) used to illustrate the interaction plot 

in the preceding section. 

Source SS df MS F 

A 126.67 3 42.22 15.64 

B 640.00 2 320.00 118.52 

AB 493.33 6 82.22 30.45 

Error 129.38 48 2.70 

Total 1389.38 59 

Table 4-1: Example ANOVA summary table 

The table itself presents useful information relating to the corresponding model. 

For example, the Sums of Squares (SS) values give a breakdown of the variation within 

the data and some indication of the size of the effects, the degrees of freedom (df) indicate 

the sample size and number of treatment levels, and the Mean Squares (MS) give the 

variance estimates used in the ANOV A. In particular, a numerical indication of the size of 

the main effects and the interaction effect is given by the F values, which can be tested for 

significance by comparison with appropriate critical values from tables. 

Boniface (1995) presents a graphical technique for the representation of the SS 

values in an ANOVA summary table, based on the Venn diagram. A rectangle is 

constructed to represent the total SS and then circles are drawn (not to scale) to indicate 

the proportion of the total SS explained by the different effects. This is illustrated in 

Figure 4.6 for the summary table in Table 4.1. 

By the use of separate circles, overlapping circles, and areas linking circles, 

Boniface extends the Venn diagram approach to illustrate concepts such as sequential SS, 

synergic SS, unique SS and adjusted SS. He also modifies this approach to separate out 

between subjects and within subjects sources of variation. However, Boniface's Venn 

diagram approach cannot be extended to three factor designs. I shall be considering an 

alternative Venn diagram approach for higher order designs in Chapter 6. 
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Figure 4-6: Venn diagram representation of Sums of Squares in ANOV A 

Bond (1988) has proposed a straightforward but effective technique for the 

representation of an ANOV A summary table. A bar-chart is constructed showing each 

main effect and interaction effect, and the error 'effect' which is used to test the 

significance of the model effects. For each effect, a bar is drawn such that the height of 

the bar corresponds to MSeffccl and the width of the bar corresponds to dfeffecl' Thus the 

area of the bar corresponds to SSeffecl' since SS/df = MS. In this way, all of the 

information contained within an ANOVA summary table may be displayed concisely. 

Bond's technique is illustrated in Figure 4.7 for the data contained in Table 4.1 (ignore the 

vertical axis on the right-hand side of the graph for now). 

I have extended Bond's technique so that each effect, as represented by a bar, can 

be assessed for significance. Since Flcst=MSeffccl / MSerror is significant if Flesl > Ferit, this 

involves multiplying the value of the mean square error by the critical F value found from 

Kokoska & Nevison (1992) for the appropriate degrees of freedom. The values thus 

obtained can be indicated on or above the bar representing the effect, or on a right-hand 

axis of the bar-chart. This is illustrated in Figure 4.7 with a=O.OS. Ifthe bar representing 

the effect extends beyond the appropriate critical value of MSerrorxFeril, then the effect 

represented by the bar is significant at the level of significance used. In Figure 4.7, the 
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Figure 4-7: Bar chart representation of ANOVA summary table 

main effects and the interaction effect are all significant. However, this extension does not 

indicate how confident one may be that a particular effect is or is not significant. 

Other extensions of Bond's technique are also conceivable. For example, I have 

considered making the height of the bar equivalent to the calculated F-statistic, Ftest, the 

width of the bar equivalent to the MScrror' and the area of the bar equivalent to MSefTect' 

since F test=MSeffec/MSerror 
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4.3 Representations for Contingency Tables 

4.3.1 Correspondence Analysis 

The technique of correspondence analysis has already been described in Section 

2.5.3 of Chapter 2. In that section it was seen how correspondence analysis can be used to 

obtain a graphical representation of the structure within a contingency table. Such a 

display can be used to communicate and interpret a model which has been fitted to the 

contingency table data. 

4.3.2 Histograms 

Boardman (1977) suggests constructing bar charts to show row percentages by 

column categories for a two-way contingency table, to show how the distribution of the 

row categories vary according to the column category. This is illustrated in Fig 4.8 for the 

contingency table contained in Table 4.2, taken from Boardman (1977). Cohen suggests a 

modification in which the width of each bar is proportional to the row total, giving 

additional information about marginal distributions. 

Hair Colour 

Eye Colour Black Brunette Red Blonde Total 

Brown 68 119 26 7 220 

Hazel 15 54 14 10 93 

Green 5 29 14 16 64 

Blue 20 84 17 94 215 

Total 108 286 71 127 592 

Table 4-2: Example 2-way contingency table 
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Figure 4-8: Bar chart representation of 2-way contingency table data 

Dallal and Finseth (1977) suggest the use of dual histograms to display graphically 

the cell entries in an Rx2 contingency table. The dual histogram is equivalent to the back

to-back stem-and-Ieaf plot described in Section 2.3.2 of Chapter 2, with the vertical stern 

fonned by the R categories of the contingency table and the two sets of leaves drawn as 

horizontal bars to represent the two column categories, with length proportional to the 

frequencies in the corresponding row categories. The dual histogram can be used in an 

exploratory manner to detect symmetry in the column frequencies, and departures from 

symmetry. However, if there were a larger number of counts in one column category than 

in the other, this would need to be taken into account. 

An Rx2x2 contingency table can be represented by using double dual histograms, 

whereby a dual histogram is constructed for each category of one of the two dichotomies, 

and then superimposed. Thus one dichotomy is represented by the left and right sides of 

the stern, whilst the other dichotomy is represented by each dual histogram. 
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Boardman (1977) and Cohen (1980) suggest graphical displays for contingency 

tables which resemble Bond's (1988) technique for the representation of the ANOV A 

summary table (see Section 4.2.2). 

For each cell of the contingency table, a bar is drawn on a bar-chart where the 

height of the bar is proportional to Vij=(Oij-Eij)/.yEjj (where Oij is the observed frequency 

in the ij-th cell, and Eij is the expected frequency under the null hypothesis). Cohen 

suggests that the width of the bar should be proportional to .yEjj , and the area of the bar 

proportional to (Oij-Ejj), to incorporate valuable information about sample sizes. The Vij 

is therefore a measure of the contribution of the cell to the overall chi-squared statistic. 

This is illustrated in Figure 4.9 (from Cohen (1980)) for the data contained in Table 4.2. 
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Figure 4-9: Bar chart representation of2-way contingency table 
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4.3.3 Circle Graphs 

Paik (1985) presents a simple graphical representation for a 2x2x2 contingency 

table which could also be used for the representation of logit analysis and unbalanced 

two-way ANOV A. It involves drawing a graph not dissimilar to the interaction plots used 

in ANOV A (see Section 4.2.1), with circles superimposed on the plotted points. Each 

circle is drawn with its area proportional to the size of the sample sub-group for that 

particular plotted point. Different circle graphs can be drawn by varying the plotted 

positions of each variable and the corresponding circle sizes. 

Using the circle graph it is possible to discern relationships existing within the 

contingency table, and both within group and overall correlations can be seen allowing for 

the sample sizes as represented by the circles. In this way, use of the circle graph can 

highlight the occurrence of Simpson's Paradox, which only becomes apparent when 

sample sizes are taken into account. The circle graph drawn in Figure 4.10 for the data for 

three classifying variables A, B and C contained in Table 4.3, taken from Paik (1985), 

provides an illustration of Simpson's paradox. 

Al A2 

Bl B2 Bl B2 

Cl 550 1250 2950 800 

C2 1450 2750 1050 200 

2000 4000 4000 1000 

Table 4-3: Table of data 

4.3.4 Barycentric Plots 

For Rx2 and Rx3 contingency tables, Snee (1974) suggests plotting the observed 

proportions Pij of frequencies for each row (where Pij=njjlNj for the i-th row and j-th 

column) as points in a (C-1 )-dimensional simplex with barycentric coordinates (a one

dimensional simplex corresponds to a bar-chart; a two-dimensional simplex corresponds 

to an equilateral triangle). Points which cluster together correspond to homogeneous rows, 

although it may be helpful to calculate and draw a confidence interval for each point. In 
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Figure 4-10: Example Circle Graph 

this way the user may determine which rows of the contingency table are contributing to a 

significant chi-squared statistic. 

For an Rx4 contingency table, the rows could be plotted as points in a three

dimensional simplex (ie. a tetrahedron), but the confidence regions are not easily 

displayed, and the points become difficult to interpret. This leads Snee to suggest that for 

Rx4 and higher-order tables, the points could be plotted in the two-dimensional sub-space 

defined by the first two eigenvectors obtained in a principal components analysis applied 

to the original coordinates. Confidence regions can also be projected onto this two

dimensional sub-space. However, Cohen (1980) claims that this might result in loss of 

information about the structure of the data, and could be confusing to a non-statistician. 

Figure 4.11 gives the two-dimensional barycentric plot, with confidence intervals, for the 

(4x4) contingency table data contained in Table 4.3 (figure from Snee (1974». 

A by-product of this graphical display is that it illustrates the inverse relationship 

between sample size and the size of the confidence regions, which may help the user to 

decide visually whether a larger sample size is required. 
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Figure 4-11: Example barycentric plot 

4.3.5 Cluster Analysis 

With Snee's barycentric plots, described in the preceding section, if min(R,C»3, 

principal components analysis needs to be carried out in order to reduce the 

dimensionality of the data. Since this may lead to loss of information about the structure 

in the data, and may be confusing to a non-statistician, Cohen suggests using cluster 

analysis, which does not reduce the dimensionality of the data. 

The distance measure is taken to be the chi-squared distance between the row (or 

column) categories, although other distance measures could be used to study the 

similarities or differences between the categories, depending on the purpose of the 

analysis. A clustering method (see Section 2.5.6) can then be applied to the symmetric 

matrix of distance measures - which is constructed either for the rows (to study the 

relationships between the rows) or for the columns (to study the relationships between the 

columns), and a dendrogram obtained. Where two very similar categories are merged in 

the dendrogram, it may be possible to collapse the contingency table across these two 

categories and to calculate a new distance matrix. 

The clustering procedure is particularly helpful in cases where min(R,C) is large. 
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4.3.6 Probability Plots 

Cox and Lauh (1967) and Fienberg (1969) have developed graphical methods for 

the display of functions of a contingency table, based on the half-normal probability plot, 

for the visual determination of the cells exhibiting interaction. Fienberg' s technique is for 

use with two-way, ie. (r x c), contingency tables, whereas Cox & Lauh's is for use with 

multidimensional contingency tables where there is a binary response variable. Cohen 

(1980) presents a gamma probability plot which is claimed to be a simpler alternative to 

Fienberg's plots. Any deviant points on this plot correspond to cells which contribute to 

the significant chi-squared statistic. 

4.4 Representations for Logit Models 

In this section, two graphical representation techniques for logit models are briefly 

outlined - one by Karger (1980), and the other by Long (1987). Because logit models are 

not of concern anywhere else in this thesis, details and illustrations have been omitted. 

The interested reader is referred to the original papers. 

Karger (1980) describes a graphical representation technique for 2-way tables of 

ratios. This is intended to show how the two categorical variables defining the table 

determine the values of a dependent dichotomous variable. The graphical display is 

claimed to have the following features: 

• It provides a graphical display of the ratio values. 

• It permits easy visualisation of the way in which the row and column factors affect the 

ratios. 

• It provides a graphical representation of the results of suitable significance tests, which 

will provide statistical confirmation of the nature of some effects which are visually 

apparent. 

A rectangle is constructed to represent the !i-th cell, having the following features: 

• The area of the rectangle is proportional to the corresponding cell value. 
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• The base of the rectangle xij equals the column effect under the hypothesis of 

independence. 

• If rectangles are drawn of different heights for the same row, this provides evidence of 

an interaction effect. 

• If there is independence the height of the rectangle Yij is proportional to the row effect. 

To avoid the risk of spurious visual effects and to improve the efficiency of the 

graphical representation as a communication device, statistical information about the 

nature of the effects can be incorporated. This can be achieved by carrying out a suitable 

significance test on the data and then shading in those rectangles representing cells for 

which the corresponding interaction terms have been found to be significant. In order to 

further increase the visual impact, the rectangles may be shaded according to the size of 

the corresponding p values. A similar method of shading could be used to communicate 

the significance of the main effects in the case where there is complete independence of 

the independent variables. 

The RxC rectangles can be arranged according to the rows and columns of the 

original tables, thus maintaining the basic structure of the original lay-out, or rearranged 

according to size to indicate the presence of an interaction effect. 

Karger suggests that the same approach could also be used for the graphical 

representation of 2-way contingency tables. The width of the rectangle xy=Pij and the 

height of the rectangle Yi)=P ij I P J' where P ij is the ij-th cell proportion and Pj is the j-th 

marginal proportion. 

Long (1987) proposes the use of a graphical method, called an "Effects Plot", to 

represent the magnitudes and statistical significance of all effects in a multinomial logit 

analysis and which allows easy visual interpretation of the relative magnitudes and 

directions of effects both within and between the independent variables. Currently, most 

(non-graphical) applications of logit analysis are limited to making statements about the 

direction and significance of effects without reference to their magnitudes. This is because 

of the problems introduced by non-linearity of effects and the large number of coefficients 

to be considered. 

Using an effects plot, it is possible to summarise the magnitudes, direction and 

statistical significance of the effects of all of the independent variables on all 

combinations of the dependent categories. Comparisons can also be made of the relative 
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magnitudes of the effects between different independent variables, as well as within a 

single independent variable, indicating the differentiation of the different dependent 

outcomes by that particular variable. 

The effects plot can be further supplemented by inclusion of numerical details of 

the significance of the chi-squared test of the hypothesis that all of the logit coefficients 

for a given independent variable are zero. In other words, that the given independent 

variable has no effect on the odds of a particular outcome. 

Also, the effects plot allows the user to assess the rankings of the dependent 

categories, with respect to the ability of an independent variable to differentiate between 

their odds of occurring. 

Thus, Long concludes that adoption of the effects plot in multinomial logit 

analysis can significantly increase the amount of information obtained in the analysis, and 

allows a simple presentation of complex results in a form easily conveyed to people 

unfamiliar with the technical details of logit analysis. Long suggests that the technique 

could be adapted for use with other statistical techniques which involve nominal or 

ordinal dependent variables. 

4.5 Summary 

The main concern of this thesis is with the graphical representation of fitted 

models. In Chapter 2, some of the many graphical techniques of use for the examination 

of the raw data in order to determine which model it may be appropriate to fit to the data 

were described, and in Chapter 3 some graphical techniques for assessing the 

appropriateness of the fitted model were considered. This chapter has been concerned 

with the few techniques which exist in statistics for the graphical representation of the 

fitted model itself; in particular for use with ANOV A models and contingency tables. 

None of the techniques considered in this chapter fulfil the aims of this thesis, 

which is to obtain a graphical technique of use for the representation of all fitted models. 

However, in Chapter 7 another representation technique which has been developed for use 

with fitted models, namely the conditional independence graph, will be considered in 

relation to some simple pen-and-paper techniques which I develop in Chapter 6. As shall 

be seen, the conditional independence graph goes part-way towards meeting the research 

aims and will be developed further in the remainder of the thesis. 
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5. Issues in Graphical Perception and Graphical 

Presentation 

5.1 Introduction 

Statistical graphs have been in use for two centuries, since the work of Playfair. 

Despite their long history and the ubiquity of graphs, little is known about how people 

perceive and process statistical graphs, and numerous appeals for more empirical 

investigations have been made (Lewandowsky & Spence (l989a». Such concerns are not 

restricted to pen-and-paper techniques - Broersma & Molenaar (1985) are particularly 

concerned that, although there has been a steady development of software for graphical 

data analysis, many of the methods for displaying data offered by statistical computer 

packages are deficient and not based on a clear scientific foundation or on systematic 

experimentation. 

It can be argued (eg. Cleveland (1 984b), Kosslyn (1985), Lewandowsky & Spence 

(1989b» that graphical displays are so effective because they exploit the natural 

perceptual, cognitive and memory capabilities of human beings. Human beings are well 

equipped to recognise and process visual patterns, vision being the dominant human 

sense. However, very little is known about how graphical displays are processed, there 

being few experimental studies of how people process graphs. Very often intuition is 

relied upon to decide whether a graphical display is good or bad. Similarly, advice on use 

and guidelines for construction are very often without empirical foundation. Graphs are a 

vital part of communication but the design of graphs for data analysis and presentation is 

largely unscientific. As Fienberg (1979) states: "Although advice on how and when to 

draw graphs is available, we have no theory of statistical graphics, nor ... do we have a 

systematic body of experimental results to use as a guide". 

This chapter will consider the main theoretical and experimental results contained 

within the graphical perception literature (Section 5.2), together with published 

recommendations for the construction of graphical representations (Section 5.3). These 

will then be considered (Section 5.4) in connection with my research aims. 
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5.2 Issues in Graphical Perception 

Cleveland (1984) states that the main criterion for judging a graph should be how 

well people extract the quantitative information portrayed on it. 

The earliest research on graphical perception, carried out in the 1920's, tended 

simply to test whether one type of graph (eg. a pie chart) is better than another (eg. a bar 

chart) when carrying out judgement or inference tasks (see, for example, Fienberg 

(1979». More recently researchers, such as Cleveland & McGill (1984, 1985, 1987), have 

begun to consider the cognitive processes which operate when people decode the 

information presented in a graph. Two key questions to be addressed by researchers are, 

according to Simkin & Hastie (1987): 

1. How is the information from a graph represented mentally? 

2. What mental processes intervene between early vision and the establishment of the 

mental representation, operate on the representation to infer non-obvious properties, 

and operate on the representation and the inferences to generate a task-appropriate 

response? 

Of course, other researchers have continued to focus on aspects of or comparisons 

between particular techniques by means of controlled experiments; for example: Chernoff 

& Rizvi (1975) considered the permutation of features in Chernoff faces, Wainer & 

Francolini (1980) considered the use of colour in two-variable colour maps, Cleveland, 

Diaconis & McGill (1982) considered the effect of scale changes on judgements of 

correlation in scatterplots, Cleveland & McGill (1983) considered colour-caused optical 

illusions on statistical maps, Cleveland, Harris & McGill (1983) revisited Cleveland's 

earlier work and also considered the judgement of circle sizes, Broersma & Molenaar 

(1985) compared the effectiveness of stem-and-leaf plots and boxplots for the graphical 

perception of distributional aspects of data, Lewandowsky & Spence (1989a) considered 

the use of different symbol types in scatterplots, and Kelly (1993) used a 3x3x3 Latin 

Square design to compare tables, graphs and text, concluding that the latter is inferior 

with no significant difference between graphs and tables. However, as Broersma & 

Molenaar (1985) state, from experiments of this kind it is always hard to make statements 

that will hold in a more general context. 
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One way to study graphical perception, according to Cleveland (1987), is to 

invoke theoretical and experimental results from the more general field of visual 

perception. Another way is to run specially designed controlled experiments. Cleveland & 

McGill (1984a) combine the results of their own reasoning and experimentation with the 

results of psychophysical experiments and the theory of psychophysics. 

Cleveland & McGill's (1984a, 1985, 1987) approach, or "paradigm" (also 

described by Kolata (1984», is based on the consideration of "human graphical 

perception". They define graphical perception as the visual decoding of the information 

encoded on graphs. The aim of their work is to identify the elementary perceptual tasks 

which are carried out when people extract quantitative information from graphs, and to 

order these tasks according to how accurately people perform them. This is intended to 

provide a vocabulary with which to account for or predict performance in simple graph

perception tasks, and guide-lines for graph construction. 

Ten elementary codes identified by Cleveland & McGill, which correspond to 

both textural and geometric aspects of graphs, are: position along a common scale, 

position along non-aligned scales, length, angle, slope, area, volume, density (ie. amount 

of black), colour saturation and colour hue. Cleveland & McGill describe how these 

elementary codes are judged in order to extract quantitative information for a variety of 

graph forms. They claimed that, for most graphs, a viewer must perform one or more of 

these mental-visual tasks in order to extract the values of the variables represented. The 

power of a graph therefore lies in its ability to enable the viewer to take in the quantitative 

information displayed, to organise it, and to see patterns and structure not readily revealed 

by other methods of displaying the data. 

On the basis of theory and experimentation, both informal and formal, the ten 

elementary codes have been ordered from most to least accurately judged as follows: 

1. Position along a common scale. 

2. Position along non-aligned scales. 

3. Length. 

4. Angle. 

4.-10. Slope. 

6. Area. 

7. Volume. 

85 



8. Density. 

9. Colour saturation. 

10. Colour hue. 

This is the version of the list as contained in Cleveland & McGill (1987). This 

ordering of the codes varies from those presented in the earlier papers by Cleveland & 

McGill, as more experimentation has been carried out. Still more experimentation is 

required to confinn the ordering above, particularly for items 8-10. 

Simkin & Hastie (1987) are concerned that there is an interaction between graph 

type and judgement type, believing that people have expectations about the type of 

infonnation that will be contained in different graph types. In other words, that the 

ordering of the elementary codes by Cleveland & McGill may depend on the analytic 

task. Simkin & Hastie assess perfonnance by consideration of both the accuracy and 

speed of the extraction of quantitative infonnation. 

The ultimate aim of Simkin & Hastie is to develop a vocabulary of elementary 

mental processes that can be combined to build infonnation-processing models of 

perfonnance in graph-perception tasks. Processes considered by Simkin & Hastie are 

simple anchoring, scanning, projection, superimposition and scanning operators. These 

are considered to be sufficient to write instructions to enable another person to perfonn 

the experimental tasks, or even to write computer-program models to perform the tasks. 

They consider that there may be distinct consistent schemata associated with different 

graph types (a schema being a generic cognitive structure, learned from past experience 

and stored in long-tenn memory, that guides a perceiver in organising incoming 

infonnation into a complex knowledge representation) which make use of the elementary 

mental processes they have identified. 

Lewandowsky & Spence (1989a) conducted two behavioural experiments to study 

the effect of symbol type and the expertise of the observer in discriminating strata in 

scatterplots. They also considered both accuracy and speed, showing that "measuring 

response latency in addition to accuracy is essential in research on graphical perception". 

Not surprisingly, some symbol types were processed more quickly than others, with 

different colours being processed fastest, and confusable letters being processed slowest. 

Identical patterns of accuracy were found, but not until response time was restricted. A 

surprising difference was found between experts and novices, such that the experts were 
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slightly more accurate but slower. When processing time was restricted, however, the 

superior accuracy of experts was confirmed. 

As well as response time and error rate, other methods, described by Kruskal 

(1982), may be used to compare two graphical methods. These include recall and more 

aesthetic considerations such as user preference. Kruskal is critical of the fact that very 

few papers have been published in which subjects have been asked to do graphical 

statistical tasks more complex than simply judging size, answering factual questions, etc .. 

However, such advantages as insight, understanding and discovery are difficult to assess. 

Broersma & Molenaar (1985) are concerned that the results of graphical 

perception experiments will depend to a large extent on the design of the experiment (eg. 

the instruction given and the face validity of the exercise), features of the subjects (eg. 

their experience and motivation), the stimuli used, the specific display form, and on many 

other circumstances that may make it really difficult to carry out a properly controlled 

experiment with results that are readily generalisable. 

Although there is some evidence that a science of graphic presentation has started 

to emerge (Allison et al (1993», stimulated largely by the work of Cleveland and his 

colleagues, much still remains to be learned, particularly as regards cognitive aspects of 

the processing of graphs including the role of short term and long term memory 

(Lewandowsky & Spence (1989b ». Pittenger (1995) observes that most of the research on 

perception and the use of graphs has been published by statisticians in statistical journals 

- psychologists have written very little in this area, despite their extensive use of 

statistical graphics! 

5.3 Issues in Graphical Presentation 

A rational set of standards for graphical presentation should be based on theory 

and experimentation, yet graph design for data analysis and presentation is largely 

unscientific. As Wainer & Francolini (1980) state: "The search for rules for effective 

graphical display, whether for the purpose of communication, exploration, or 

reconstitution, has been hampered by the lack of a cohesive body of experimental 

evidence regarding the parameters of efficacious graphical display". 

At present we have only a few results from the graphical perception literature - for 

example, Cleveland & McGill (l984a) claim that graphs should employ elementary codes 

87 



as high in the ranked list presented above as possible. On the basis of the derived ordering 

of the elementary perceptual tasks, Cleveland & McGill have analysed some of the more 

common forms of graphs and have suggested replacements were appropriate. For 

example, they suggest replacing divided bar-charts by dot-charts and replacing pie-charts 

by bar-charts. 

Several sets of simple, intuitive, suggestions have been made that should improve 

the clarity of most graphs. For example, Cox (1978) suggests the following: 

1. The axes should be clearly labelled with the names of the variables and the units of 

measurement. 

2. Scale breaks should be used for false origins. 

3. Comparison of related diagrams should be made easy, for example, by using identical 

scales of measurement and placing diagrams side by side. 

4. Scales should be arranged so that systematic and approximately linear relations are 

plotted at roughly 45° to the x axis. 

5. Legends should make diagrams as nearly self-explanatory, that is, independent of the 

text, as is feasible. 

6. Interpretation should not be prejudiced by the technique of presentation, for example, 

by superimposing thick smooth curves in scatter diagrams of points faintly reproduced. 

Wainer (1984) gives twelve rules for bad data display. Rather than quote the rules 

for the bad display of data, I have modified them to give twelve principles for good data 

display as follows: 

1. The less information carried in the display, the worse it is. The amount of information 

in a display can be measured using Tufte's (1983) "data density index" which is 

equivalent to the number of numbers plotted per square inch. A good graphical 

technique can convey a large amount of information in a small space. 

2. Maximise the "data-ink ratio". Also devised by Tufte, this measures the amount of ink 

used in graphing the data to the total amount of ink in the graph. A low data-ink ratio 

means a lot of 'chart-junk' which can obscure the data or features of the data. 

3. A set of numbers having both magnitude and order should be represented by an 

appropriate visual metaphor, such that magnitude and order of the metaphorical 

representation matches that of the numbers. 
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4. Length should not be used as the visual metaphor when the observer is more likely to 

perceive area. It is possible to calculate Tufte's measure of "perceptual distortion", 

which is the perceived change in magnitude divided by the actual change. 

5. The perception of the graph can be modified misleadingly by the choice of interval or 

scale (particularly for time series data), and by showing parts of the data outside of the 

context of the rest of the data. 

6. Changing the scale in mid-axis can make large difference look small, and make linear 

changes look linear, and vice versa. This can therefore be misleading. 

7. A graph should not emphasise the trivial and ignore the important. 

8. To allow comparisons to be made between graphs, these graphs should start from a 

common base. 

9. Ordering graphs and tables alphabetically can obscure structure in the data which 

would have been made obvious if the display had been ordered by some aspect of the 

data. 

lO.Labels should not be illegible, incomplete, incorrect or ambiguous. 

II.Excessive decimal places should not be shown in tables since they may imply greater 

accuracy than is justified, and may not be very clear. Similarly, excessive dimensions 

should not be used in graphical representations - for example, using both length and 

area may be ambiguous, and colour should be used with caution, owing to 

inconsistencies in human perception. 

12.Consider techniques which have been used in the past, and which may be better suited 

to a current purpose than any alternative techniques which you may invent. 

Kosslyn (1994) has published a "how-to book" on graph design which offers step

by-step recommendations for the construction of simple graphs, and which also addresses 

the perceptual and cognitive principles underlying his recommendations. In a chapter 

concerned with how people lie with graphs, he presents a set of recommendations, rather 

in the way that I have converted Wainer's rules for bad data display into 

recommendations above. However, Kosslyn's list is too long to reproduce here. 

Other authors have concerned themselves with the bad display of data; for 

example, Huffs (1973) classic book contains many examples of misleading graphics, as 

does Reichmann (1961). 
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Tufte (1983, 1990) has studied graph usage, particularly within the media, and 

found widespread misrepresentation of data and gross errors, together with some shining 

examples of the use of graphics over the past 200 years. Based on his experience in the 

field, rather than experimental assessments, Tufte presents a number of recommendations 

and criteria for making "good" graphs. For example, Tufte criticises the use of "chart 

junk" - the embellishment or decoration of graphs often employed by the media - and 

believes that nothing should be included in the graph that is not absolutely necessary for 

the display of the data, ie. that the "data-ink ratio" (the ratio of ink used for data to ink 

used for other parts of the graph) should be maximised. Other criteria have already been 

presented above, such as "perceptual distortion" and "data density index". 

Other books which contain a survey of, and recommendations for, graph 

construction are Bertin (1983) and Schmid (1983). Bertin even goes so far as to develop a 

taxonomy of graphical components and to introduce a grammar for the description of 

graphs so that, in theory at least, graphs may be unambiguously reduced to a brief 

grammatical description and subsequently reconstructed. 

Cleveland (1984a) presents a short list of guidelines, both for journals and for 

authors, to prevent the sorts of errors he detected in a detailed survey of the use of graphs 

in the journal Science. In common wi~ the guidelines contained in Tufte, Schmid, etc., 

however, there is no compunction for such guidelines to be adhered to. 

Fienberg (1979) reports that, with the rapid growth of graphical presentations, has 

come a concern for the need of recognised standards. Such concern is not altogether new, 

and in fact may be traced back to 1853, but has met with only limited success to date. A 

Joint Committee on Standards for Graphic Presentation (1915) published 17 basic rules 

for graphical presentations, although the types of displays considered reflect the kinds of 

graphs that would have dominated publications at that time. Other attempts to formulate 

graphical standards were made in 1936 and 1941 (Bachi (1975». 

Some aspects of graphical presentation must, however, surely be consistent. For 

example, Wainer (1990) finds three important areas of agreement between Playfair and 

Tukey, despite the 200 years which divide these pioneers of graphical design: 

1. Impact is important. 

2. Understanding graphs is not always automatic. 

3. A graph can show us things easily that might not have been seen otherwise. 
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5.4 Summary 

In Section 5.2, what little work has been carried out on graphical perception has 

been considered. Some of this work (eg. Cleveland & McGill (1984a), Simkin & 

Hastie(l987» has been concerned with the development of a theory or model of 

graphical-information processing. Ideally, such work would lead to a clear set of 

standards or guidelines for graphical presentation. Other work has been directly concerned 

with the effectiveness of graphical presentation techniques (eg. Lewandowsky & Spence 

(1989a». However, there is as yet insufficient evidence available to guide the construction 

of new techniques for the graphical display and communication of statistical data, which 

is the concern of this thesis. As has been seen, in Section 5.3, what advice has been 

offered has been for the most part subjective and intuitive. 

Having considered the available evidence and advice, it seems necessary for me to 

attempt to develop graphical representation techniques for the display of structured 

multivariate data in the time-honoured way of intuition and subjective insight. However, 

it is my intention to assess the effectiveness of any technique which seems to be 

particularly successful by means of a graphical perception experiment which, in the light 

of the work by Simkin & Hastie (1987) and Lewandowsky & Spence (l989a), should 

assess both latency and accuracy. 
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6. Some Two-Dimensional Approaches 

6.1 Introduction 

In this chapter I describe a number of novel pen-and-paper approaches to the 

problem of obtaining a graphical representation of a given fitted model, each of which 

attempts to indicate the interactions which are present in the model. The techniques 

developed have been divided into three sections. In the first section (Section 6.2), various 

ways of combining points in two-dimensions will be considered. In the following section 

(Section 6.3), an idea based upon Venn diagrams will be explored. In the final section 

(Section 6.4), a new type of graphical display, the Topological-Magnitude graph, is 

described, which takes two forms; the first of which (the Topological Graph) indicates the 

interactions which are present in the model, and the second of which (the Magnitude 

Graph) illustrates the nature of an interaction and can be used to communicate additional 

information about the size of these interactions. However, few of the techniques which I 

develop can be used for the representation of any given fitted model, and those which can 

do not always result in an aesthetically pleasing representation, so some attempt will be 

made to assess the shortcomings of each technique. 

In this and subsequent chapters I shall be concerned only with hierarchical fitted 

models and so shall begin by giving a definition of a hierarchical model together with an 

explanation of the notation adopted. I shall then go on to define and illustrate the concept 

of the generating class of a model, which provides a unique and concise way of 

summarising the interactions in a given fitted (hierarchical) model. I will then describe the 

use of the 'Implication Diagram', which is based on a lattice structure, to determine and 

represent visually all the terms in a fitted model having a given generating class, before 

going on to describe the two-dimensional approaches in the following sections. 

6.1.1 Hierarchical Models 

A hierarchical model is one for which if an effect of a particular order is included 

in the model, then all lower order effects involving the variables contained in this higher 

order effect are also included in the model. For example, if the second order (three-way) 

interaction term involving the variables A, E, C, which I shall denote ABC, is included in 
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the model then the first order (two-way) interaction terms AB, AC, BC, and the zero order 

interaction terms (ie. the main effects) A, B, C are also included in the model, together 

with any constant term. Examples of models which are typically (but not necessarily) 

hierarchical, and which can therefore be considered in this way, include log-linear 

interaction models and ANOV A models. 

6.1.2 Generating Class 

The generating class of a (hierarchical) model is the set of terms contained in the 

given model whose presence in the model is not implied by any other terms contained in 

the model, but which between them imply the presence of all the other terms in the model. 

For example, consider a model containing all main effects and some interaction 

effects involving the four variables A, B, C and D, which shall be expressed as 

A+B+C+~AB+AC+BC+CD+BCD. 

The generating class of this model would be 

{[BCD] [AB] [AC]}, 

since the BC and CD interactions are implied by the presence of the BCD interaction, as 

are the B, C and D main effects (which are also implied by the BC and CD interactions 

which were themselves implied by the BCD interaction), and the presence of the A main 

effect is implied by both the AB and A C interactions, which also imply the presence of the 

Band C main effects. However, no terms in the model imply either the AB, AC or BCD 

interactions, hence the generating class given is derived. 

6.1.3 Implication Diagram 

Lattice diagram type representations have been used in a model selection context 

(for example, by Whittaker & Aitkin (1978), eottee (1987) and Whittaker (1988,1990» to 

show hierarchical relationships between different models. I have extended this idea in 

order to show the hierarchical relationships between the different terms in a single model. 

Use of this lattice diagram representation enables easy determination of the terms in the 

model whose presence is implied by the elements of the generating class of the model; 

hence the lattice has been termed an "Implication Diagram". 

The Implication Diagram is constructed with all the interactions contained within 

the model which are of the same order located on the same row, and a link is drawn 
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between two interactions of different orders but in adjacent rows if the presence of one 

interaction in the model implies the presence of the other. The links are drawn as arrows 

from the higher order interaction term to the lower order interactions which are implied by 

this term by the exclusion of each of the variables in turn. Thus an interaction term 

involving n variables will have links drawn as arrows pointing to n lower order terms each 

involving n-l variables and formed by dropping a single variable from the original 

interaction term. 

Given the generating class of the model, the elements of the generating class are 

written on the appropriate rows according to the order of the interactions represented by 

the elements. Then, taking each element in turn, the interactions (or main effects) implied 

by an element are written down on the row below, and the links drawn in. Then the 

interactions implied by these interactions are written down on the lattice, and so on until 

all possible interactions and all the main effects implied by the elements of the generating 

class have been included. 

To illustrate the Implication Diagram approach, consider the generating class 

{[ABC] [ACD] [BD]} 

The corresponding implication diagram will be as given in Figure 6-1, and by considering 

each of the interactions and main effects in the diagram, which will correspond to each of 

the terms in the model, the model having the given generating class can be determined to 

be as follows: 

A+B+C+~AB+AC+A~BC+B~C~ABC+ACD 

6.2 Two-Dimensional Combinations of Points 

6.2.1 Introduction 

All of the techniques described in this section have in common the following 

features: 

• Variables are represented by points located freely in two dimensions (ie. on the plane), 

with one point (or vertex) per variable. 

• These points are combined in some way in order to represent the generating class of 

the fitted hierarchical model which it is intended to represent. 
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Figure 6-1 Implication Diagram for model with generating class ([ABC) (ACD) IBD)} 

• If the generating class of the model may be represented by the technique without 

ambiguity, it becomes possible to determine all of the interactions contained in the 

model, and these may be read from the graph. 

The most intuitive way of combining two points is to draw a line (or edge) 

between them on the graph. The presence of an edge in a graph can then be interpreted as 

indicating that the two variables corresponding to the two vertices joined by the edge are 

associated and that the nature of this association would be a two-way interaction, whereas 

the absence of an edge would indicate that the two variables are not associated. Since my 

concern is with hierarchical models, if the two-way interaction is zero then all higher 

order interactions involving this pair of variables will also be zero. 

To represent a three-way interaction, all possible edges could be drawn between 

the three vertices corresponding to the three variables involved in the three-way 

interaction, resulting in the complete graph or sub-graph involving these vertices. This is 

illustrated in Figure 6-2. The three two-way interactions and the three main effects can 

also be determined from this graph. 
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Figure 6-2 Complete graph on three vertices drawn to represent a three-way interaction 

However, suppose that this approach is to be used to represent a model in which 

the three two-way interactions AB, AC and BC are non-zero, but there is no three-way 

interaction ABC. How could this be represented on a graph so as to avoid confusion with 

the complete (sub-) graph drawn on three vertices which represents the ABC interaction? 

What follows in the rest of this section is a description of a number of approaches 

which I have developed, all of which involve the combination of points on the plane, 

either by lines, shapes, or shadings, in an attempt to represent, in an unambiguous manner, 

the two-way, three-way, and higher-order interactions which may be contained in fitted 

hierarchical models. In practice, however, for most of the techniques described there may 

be some models which cannot be represented without ambiguity. However, every 

technique described is of use for the representation of some models (which will differ 

between techniques), and an attempt will be made to define the limitations of each 

technique. The selection of possible approaches presented is by no means exhaustive. 

In later chapters, a number of the ideas explored in the development of these 

techniques will be considered further. 

6.2.2 Links Between Vertices 

This is the approach outlined in Section 6.2.1, in which a line is drawn between 

two vertices if the corresponding pair of variables are associated. As has already been 
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mentioned, it would not be possible, using this technique, to distinguish between the 

model with generating class {[AB] [A C] [BC)} and the model with generating class 

{[ABC]}, owing to the pair-wise definition of the edges. It could be made a convention 

that a complete sub-graph on three vertices always corresponds to a three-way interaction, 

in which case it would not be possible to represent the model with generating class {[AB] 

[AC] [BC]} using this technique. 

Suppose that we wished to represent a model having three three-way interactions 

in its generating class; ego {[ABC] [ABD] [BCD]}. Using links between vertices the graph 

shown in Figure 6-3 would be obtained. However, this graph appears to represent the 

model with generating class {[ABCD]}. Note that to represent a four-way interaction, the 

complete graph would be drawn on four vertices so as to imply the presence of the three

way interactions as well - if the four vertices were simply joined in a quadrilateral, this 

would represent a model having just four two-way interactions in its generating class. But 

even if the viewer was told that the four-way interaction is zero in the model represented 

in Figure 6-3, the graph appears to represent the model with generating class {[ABC] 

[ABD] [ACD] [BCD]} and is indistinguishable from the graphs which would be drawn to 

represent other models involving four variables and having three three-way interactions in 

their generating class; as well as being indistinguishable from certain other models, such 

as the model with generating class {[ABC] [BCD] [AD]} and the model with generating 

class {[ABD] [ACD] [BC]}. Thus it is impossible, using links between vertices in this 

way, to represent the model {[ABC] [ABD] [BCD]} without ambiguity. 

c o 

~------------------------~ 

B 

~------------------------~ 

Figure 6-3 Graph drawn using links between vertices to represent the model with 
generating class ([ABC) (ABD) (BCD)} 
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As shall be seen in Chapter 7, the representation of models by graphs drawn using 

links between vertices is not dissimilar to the conditional independence graph approach 

used in graphical modelling. In the interpretation of conditional independence graphs, the 

cliques (maximally complete sub-graphs) of a given conditional independence graph are 

taken to correspond to the elements of the generating class of the model represented. Thus 

it is acknowledged that certain models, such as {[AB] [AC] [BC]} and {[ABC] [ABD] 

[BCD]} are 'non-graphical' and cannot be represented using this approach. 

6.2.3 Representation of Interaction Type by Line Styles 

In the previous section, in which the use of links between vertices was proposed in 

order to obtain a two-dimensional representation of the generating class of a given model, 

the same style of link was drawn between vertices irrespective of the order of the 

interaction to be represented. By the use of different line styles corresponding to different 

interaction types, it becomes possible to represent a larger number of models without 

ambiguity. 

For example, if a dashed line is used to join pairs of variables involved in three

way interactions and the usual continuous line is used to represent two-way interactions, it 

becomes possible to distinguish between the model with generating class {[AB] [AC] 

[BC]} and the model with generating class {[ABC]}, as shown in Figure 6-4. However, 

the graph shown in Figure 6-5, which has been drawn to represent the model with 

generating class {[ABC] [ABD] [BCD]}, is still indistinguishable from the graphs which 

would be drawn to represent other models involving three or four three-way interactions 

on four variables. The model with generating class {[ABC] [BCD] [AD]} would, however, 

now be distinguishable, as shown in Figure 6-6. Also, the model with generating class 

{[A BCD]} could be represented without ambiguity, by the use of a different line style to 

correspond to a four-way interaction. Alternatively, different thicknesses of lines could be 

used in place of different styles, or different colours could be used, although this latter 

approach would not result in a representation which could be readily reproduced. 
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Figure 6-4 Graphs drawn using line styles corresponding to interaction type to distinguish 
between the model with generating class {(AB) (AC) (BC)} (left) and the model with 
generating class {(ABC)} (right) 
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Figure 6-5 Graph drawn using line styles corresponding to interaction type to represent the 
model with generating class {(ABC) (ABD) (BCD)} 
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Figure 6-6 Graph drawn using line styles corresponding to interaction type to represent the 
model with generating class {(ABC) (BCD) (AD)} 
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Thus using this approach, in which different interaction types are represented by 

different line styles, it is possible to represent a larger number of models uniquely than 

could be achieved using just one line style, but there may still be problems of ambiguity 

for some models. I shall, however, be considering the use of different line styles for the 

representation of interactions further in Chapter 9, within the context of conditional 

independence graphs. 

6.2.4 Use of Line Styles to Distinguish Between Interactions 

If, instead of using different line styles corresponding to different orders of 

interaction as described in Section 6.2.3, different line styles were to be used 

corresponding to the different interactions contained in the generating class of the model, 

it should be possible to identify the elements of the generating class, and therefore the 

model itself, without ambiguity. As before, the line styles may be formed by different 

styles, by different widths, or by different colours, etc .. 

For example, Figure 6-7 shows the graphs corresponding to the model with 

generating class {[AB] [AC] [BC]} and the model with generating class {[ABC]}. Figure 

6-8 shows the graph corresponding to the model with generating class {[ABC] [ABD] 

[BCD]}, and Figure 6-9 shows the graph corresponding to the model with generating class 

{[ABC] [BCD] [AD]}. All of these models can be readily determined from the graphs 

displayed. 

Thus using this approach, it would seem to be possible to represent any given 

model without ambiguity. However, the use of many different line styles could be 

confusing. For example, the different line styles used may not, if there are many of them, 

be readily distinguished and, unlike the use of different line styles corresponding to 

different orders of interaction, the line style used does not convey any information about 

the order of the interaction represented. Moreover, there can be confusion where more 

than one line is drawn between a pair of vertices when two or more interactions have an 

edge in common. This situation is illustrated in Figures 6-8 and 6-9. 

101 



I 
I 

I 
I 

I 

I 
I 

B 

~ 
/ \ 

I \ , 
\ 

\ 

\ 

Figure 6-7 Graphs drawn using line styles corresponding to different interactions to 
distinguish between the model with generating class ((AB) [AC) [BC)} (left) and the model 
with generating class ([ABC)} (right) 
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Figure 6-8 Graph drawn using line styles corresponding to different interactions to 
represent the model with generating class ([ABC) [ABD) (BCD)} 

6.2.5 Shading of Areas 

Shading of Interacting Areas 

c 

Rather than focusing on the joining of vertices by lines, with this approach it is proposed 

that the fundamental shape formed by the variables/vertices involved in each interaction 

(eg. no shape for two-way interactions (two vertices linked by a single edge), a triangle 

for three-way interactions (three vertices linked by three edges), a square or a 
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Figure 6-9: Graph drawn using line styles corresponding to different interactions represent 
the model with generating class ([ABC) [BCD] [AD]} 

triangle for four-way interactions (four vertices linked by six edges), etc.) be filled in 

using a unique shading style. 

For example, in Figure 6-10 the graphs corresponding to the model with 

generating class {[AB] [AC] [BC]} and the model with generating class {[ABC]} are 

shown. The shading of the triangle in the right-hand graph indicates the presence of the 

three-way interaction. In Figure 6-11, the graph for the model with generating class 

{[ABC] [ABD] [BCD]} is shown, and in Figure 6-12, the graph for the model with 

generating class {[ABC] [BCD] [AD]} is shown, with the areas corresponding to the 

interactions in the generating classes shaded. It is possible to determine the model which 

is represented in each case by inspection of the different shapes, each shaded in a unique 

manner, and the vertices forming the boundary of these shapes. If a line does not form the 

boundary of a shaded region (as for the line AD in Figure 6-12), then this line corresponds 

to a two-way interaction which forms part of the generating class. 

It can be seen that the models represented using the shading of interacting areas 

can be determined quite readily, whereas they would have been indistinguishable from 

other models if links between vertices had been used (see Section 6.2.2 above). Thus with 

this approach it would seem that it is possible to represent a larger number of models 

uniquely. 

However, the main disadvantage of this approach is that there can only be so many 

unique and readily distinguishable monotone shades which could be layered one on top of 

the other and still be discernible. Use of a particular shading style could only be 
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Figure 6-10 Graphs drawn using shading of interacting areas to distinguish between the 
model with generating class ([AB] [AC] [BC)} (left) and the model with generating class 
{(ABC)} (right) 

Figure 6-11 Graph drawn using shading of interacting areas to represent the model with 
generating class {[ABC] [ABD] [BCD]} 

c 

Figure 6-12 Graph drawn using shading of interacting areas to represent the model with 
generating class {[ABC] [BCD) [AD)} 
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duplicated for non-adjacent non-overlapping areas. It would not be possible to use solid 

shading or coloured shading because of the problems that would result in the overlapping 

areas. 

Shading of Non-Interacting Areas 

In this approach, any enclosed area of the graph which is not involved in a three

way or higher-order interaction is shaded, whereas the other areas (which are therefore 

involved in three-way or higher-order interactions) are left unshaded. This is therefore the 

opposite approach to that described above. 

Figure 6-13 shows the two graphs corresponding to the model with generating 

class {[AB] [AC] [BC]} and the model with generating class {[ABC]}. Knowledge that the 

shaded areas do not form part of any interactions makes it possible to correctly determine 

the generating class of each model represented. However, this approach would only work 

for certain graphs. In some graphs there would be no regions which are not involved in at 

least one interaction and could therefore be shaded. See, for example, Figures 6-14 and 6-

15, which show the models with generating class {[ABC] [ABD] [BCD]} and {[ABC] 

[BCD] [AD]} respectively. 

__ --------------____ ~c 

Figure 6-13 Graphs drawn using shading of non-interacting areas to distinguish between 
the model with generating class ([AB) lAC) IBC)} (left) and the model with generating class 
{[ABC]} (right) 
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Figure 6-14 Graph drawn using shading of non-interacting areas to represent the model 
with generating class ([ABC) [ABD] [BCD]} 

Figure 6-15 Graph drawn using shading of non-intersecting areas to represent the model 
with generating class {[ABC) [BCD] (AD]) 

Figure 6-16 shows an alternative representation of the model with generating class 

{[ABC] [BCD] [AD]} which is represented in Figure 6-15. Because of the different lay

out of the vertices, it is now possible to determine correctly the model represented. 

However, it would not be possible to rearrange the vertices to represent the model with 

generating class {[ABC] [ABD] [BCD]} without ambiguity. Thus this approach is of use 

for the representation of some models, but the success of the approach depends on the 

nature of the interactions involved in the model, and may also depend on the lay-out of 

the vertices adopted. 
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Figure 6-16 Graph drawn using shading of non-interacting areas to represent the model 
with generating class ([ABC) [BCD] [AD]}, using alternative lay-out ofvertices 

6.2.6 Enclosure of Vertices by Boundaries 

This approach involves surrounding the vertices representing the variables 

involved in the interactions in the model by some boundary or closed shape, rather than 

linking the vertices in some way and/or shading areas. Thus the model with generating 

class {[AB] [AC] [BC]} can be readily distinguished from the model with generating class 

{[ABC]}, since in the former case the three pairs formed by the vertices will be enclosed 

within three boundaries, whereas in the latter case, the triplet formed by the vertices will 

be enclosed within a single boundary, as shown in Figure 6-17. Also, the model with 

generating class {[ABC] [ABD] [BCD]} and the model with generating class {[ABC] 

[BCD] [AD]} can be represented without ambiguity as shown in Figures 6-18 and 6-19 

respectively. 

Although this technique could be extended to any number of vertices and any size 

of interaction, for a large number of interactions the boundaries of the shapes will 

inevitably overlap, making the graph quite messy and difficult to read. Different types of 

shapes could be used corresponding to the order of interaction enclosed, so that it would 

be possible to know at a glance how many vertices should be enclosed within a particular 

shape. For example, one might use oblongs for two-way interactions, triangles for three

way interactions, squares for four-way interactions, etc., but for a large number of vertices 

it may be impossible to draw regular shapes and avoid enclosing vertices which should 

not be enclosed. 
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Figure 6-17: Graphs drawn using enclosure of vertices by boundaries to distinguish 
between the model with generating class (lAB) [AC) [BC)} (left) and the model with 
generating class ([ABC)} (right) 

Figure 6-18: Graph drawn using enclosure of vertices by boundaries to represent the model 
with generating class {(ABC) (ABD) (BCD)} 
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Figure 6-19: Graph drawn using enclosure of vertices by boundaries to represent the model 
with generating class {(ABC) [BCD) [AD)} 

Thus it is unlikely that this approach could give a pleasing and legible 

representation for anything other than simple models involving a few interactions on a 

few variables. 

6.2.7 Disjoint Interacting Areas 

This approach is similar to the enclosure of vertices by boundaries described 

above (Section 6.2.6). However, the shapes used are always the characteristic line, 

triangle, or square, etc., corresponding to the order of the interaction to be represented, 

which are obtained by using links between vertices (see Section 6.2.2). These shapes or 

areas are drawn in close proximity to the vertices representing the variables involved but 

in such a way that no two areas have a coincident edge, even if they have a pair of 

variables/vertices in common. In this way, it is possible to identify the interactions in the 

generating class of the model represented according to the number and nature of the 

disjoint areas. 

For example, in Figure 6-20 the model with generating class {[AB] [AC] [BC]} is 

represented by three separate lines and so it can be readily distinguished from the model 

with generating class {[ABC]} which is represented by a single triangle. Figure 6-21 

shows the model with generating class {[ABC] [ABD] [BCD]}, and Figure 6-22 shows the 

model with generating class ([ABC) [BCD] [AD]}. 
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Figure 6-20: Graphs drawn using disjoint interacting areas to distinguish between the 
model with generating class ((AB) [AC) [BC)} (left) and the model with generating class 
{(ABC)} (right) 

Figure 6-21: Graph drawn using disjoint interacting areas to represent the model with 
generating class ([ABC) [ABD) [BCD)} 

Thus the use of disjoint interacting areas provides a unique representation of the 

generating class of a model since it avoids some of the ambiguity which can arise as a 

result of common edges and the indeterrninability of non-interacting areas. However, if 

there are many vertices and many interactions in the generating class of the model, the 

representation can look quite messy. Also, because the end-points of the areas are disjoint, 

it may not be immediately apparent that several interactions have a common 

vertex/variable. Moreover, for a large number of variables it may not be possible to locate 
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Figure 6-22: Graph drawn using disjoint interacting areas to represent the model with 
generating class {[ABC] (BCD) (AD)} 

the vertices of the graph in such a way that they may be enclosed using the characteristic 

shape corresponding to the interaction to be represented. 

6.2.8 Separate Display of Generating Class Elements 

The model with generating class {[AB] [AC] [BC]} can always be distinguished 

from the model with generating class {[ABC]} if the elements of the generating class of 

the models are displayed separately, as shown in Figure 6-23. Similarly, the model with 

generating class {[ABC] [ABD] [BCD]} can be determined uniquely, as can the model 

with generating class {[ABC] [BCD] [AD]}, as shown in Figures 6-24 and 6-25 

respectively. 

0' 

" 
\ 

" " 

Figure 6-23: Graphs drawn using separate display of generating class elements to 
distinguish between the model with generating class {lAB) (AC] (BC)) (left) and the model 
with generating class {[ABC]} (right) 
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Figure 6-24: Graph drawn using separate display of generating class elements to represent 
the model with generating class {[ABC) [ABD] [BCD]} 

.. 

/: • .. 

Figure 6-25: Graph drawn using separate display of generating class elements to represent 
the model with generating class {[ABC) [BCD] [AD)} 

Because each element of the generating class of a model corresponds to a single 

interaction, the elements can be represented as simple links between vertices (as described 

in Section 6.2.2) without ambiguity. By representing the elements of the generating class 

separately, there can be no ambiguity and it is therefore possible to represent any model 

uniquely. This approach is considered again in Chapter 11. 

6.2.9 Summary 

Of all the techniques suggested above for the two-dimensional combination of 

points in order to represent the generating class of a fitted model, the least successful, due 

to the small number of models which can be represented without ambiguity, are the use of 

links between vertices (Section 6.2.2), the representation of interaction type by line style 

(Section 6.2.3), and the shading of areas corresponding to interacting or non-interacting 

areas (Section 6.2.5). Moderately successful techniques, which could potentially be used 

to represent any model without ambiguity, although they can result in quite messy 

representations for a large number of interactions, are the use of different line styles to 
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distinguish between different interactions (Section 6.2.4), the enclosure of vertices by 

boundaries (Section 6.2.6), and the use of disjoint interacting areas (Section 6.2.7). 

The only wholly successful approach of those considered for the representation of 

the generating class of a fitted model would appear to be the separate display of the 

generating class elements (Section 6.2.8). However, it could be argued that this approach 

is really a three-dimensional combination of points since in viewing the separate two

dimensional displays of each of the elements, time is used as a third dimension. 

Moreover, it could be argued that it would be simpler to write down the generating class 

of the model than to display it graphically in this way. Nonetheless, I shall be returning to 

this approach in later chapters, and also to the use of links between vertices and the 

representation of interaction type by line style since these are intuitively attractive, and at 

least partially successful, approaches. 

6.3 Venn Diagram Approach 

Venn diagrams are commonly used to represent relationships between sets of 

objects graphically. Closed curves, such as circles, are used to represent the sets, and if 

the curves intersect each other, then the intersecting areas represent sub-sets of objects 

which have the characteristics of two or more of the original sets in common. Each 

characteristic for each set may be considered as being binary; ie. the objects either possess 

the characteristic (in which case they are included in the set) or they do not (in which case 

they are not included in the set), for each of the characteristics considered. 

If a Venn diagram is constructed for which each circle corresponds to a variable, 

then the intersecting areas may be regarded as corresponding to interactions between these 

variables, as shown in Figure 6-26 for three variables A, Band C. (Note that this differs 

from the approach taken by Boniface (1995), described in Chapter 4, who uses the 

intersecting areas to illustrate the effect of adjustment for a covariate]. Any given model 

involving these three variables could be represented using this Venn diagram by shading 

the areas in the diagram which correspond to the main effects and interaction effects 

contained in the model. The area outside of the circles but enclosed by the boundary 

(which represents the Universe) can be regarded as representing the constant term, but can 

be left unshaded. Thus for the model with generating class {[ABC]} all seven enclosed 

areas would be shaded, whereas for the model with generating class {[AB] [AC] [BC]} the 
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central area corresponding to the three-way interaction ABC would be left unshaded. 

However, traditional Venn diagrams cannot be used to display satisfactorily more than 

four sets or variables. 

Figure 6-26: Traditional Venn diagram representation for three variables A, B, C 

Edwards (1989) has designed a new kind of Venn diagram which can be applied to 

any (moderate) number of variables. The Universe is taken to be the surface of a sphere, 

and the boundary of the first set is taken to be the equator of the sphere (eg. above the 

equator if the object has the characteristic, or below the equator if not). The second and 

third sets are obtained by intersecting two meridians at right angles to the equator (eg. the 

0-180 meridian and the 90-270 meridian). The fourth set will cut the equator four times, 

swinging 'north' and 'south' to give four semi-circles centred on the four intersections of 

the meridians with the equator. The boundary of the fifth set will then consist of eight 

such alternating semi-circles, centred on the eight equatorial crossings. The sixth set has 

sixteen such alternating semi-circles centred on the sixteen equatorial crossings, and so on 

ad infinitum. 
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This representation of the sets on the surface of the sphere can be projected onto a 

flat surface. Edwards chooses to project the sphere from one of the poles and to reinstate 

an artificial (rectangular) boundary to the Universe. An alternative projection suggested 

by Edwards, and which I have chosen to consider, involves drawing the equator as a 

straight line around which successive curves weave. As for the traditional Venn diagram, 

each combination of sets differs from its neighbour by the inclusion or exclusion of a 

single thing. 

Suppose that a given model contains the N variables A, B, ... , N. The first of these 

(A) can be represented by the equator (ie. a straight line if drawn on a flat surface). Above 

the equator, say, will correspond to inclusion of A, and below will correspond to exclusion 

(equivalent to the constant parameter, ¢, of the model). The first curve to be woven 

around the equator (resulting in one semicircle above, and another below, the equator) ean 

be taken to represent the next variable B. Again, above this curve may correspond to 

inclusion of B, and below to exclusion. Thus, from 'top' to 'bottom' there are four areas 

corresponding to AB, A, B, and ¢. The next variable, C, will be represented by the second 

curve to be woven round the equator, which will form four semi-circles, and result in 

areas corresponding to ABC, AB, AC, BC, A, B, C, and ¢. Further curves can then be 

woven around the equator, until all N variables have been represented. Figure 6-27 shows 

the corresponding (Edwards-style) Venn diagram for three variables A, B, C. 

ABC 

A AB 

B 

Figure 6-27: Edwards-style Venn diagram representation for three variables A, B, C 
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In moving from one area of the Venn diagram to another, a variable is either 

included or excluded. Which particular variable is dropped or added will correspond to 

the variable represented by the boundary which has been crossed. Thus certain parallels 

can be seen between the Venn diagram in Figure 6-27 and the corresponding Implication 

Diagram, shown in Figure 6-28. However, whereas the Implication Diagram conveys a 

sense of dropping variables by moving downwards, in the Venn diagram a variable may 

be dropped in a downwards or a horizontal direction (as can be seen in Figure 6-27), since 

it is sometimes necessary to move across three boundaries to drop just one particular 

variable (adding and then dropping, or dropping and then adding another variable at two 

of the boundaries). 

ABC 

AB AC BC 

A B c 
Figure 6-28: Implication Diagram corresponding to the Edwards-style Venn diagram 
representation for three variables A, B, C 

As mentioned already, the Venn diagram approach can be used to represent the 

terms in a fitted model by shading in the areas corresponding to the terms contained in the 

model. However, there are a number of disadvantages in using Edwards-style Venn 

diagrams for many variables, as follows: 

• A Venn diagram is not ideally suited to the representation of the generating class of a 

model by the shading of the areas corresponding to the elements of the generating 
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class, since it is not straight-forward to determine all the terms in the model implied by 

the elements of the generating class from the diagram (since, as stated above, it is 

sometimes necessary to move across more than one boundary to drop a particular 

variable). 

• Because of the diminishing size of the semi-circles as more variables/curves are added, 

different areas of the Venn diagram which correspond to interactions of the same order, 

may be different sizes. This may have the effect of seemingly giving more weight to 

some interactions than to others of the same order. 

• Because of the different sizes of the different areas representing the same order of 

interaction, quite similar models may not appear similar from their Venn diagram 

representation. For example, in Figure 6-29, three Venn diagrams are shown 

corresponding to the three similar models with generating classes {[AB] [C]}, {[AC] 

[B]}, and {[BC] [A]}, yet these models look quite different if the Venn diagram 

representations are compared. 

• Similarly, models with generating classes consisting of all interactions of a particular 

order, such as {[AB] [AC] [BC]} or {[A] [B] [C]} would not appear as symmetric as 

they would in, for example, an Implication Diagram (see Figure 6-30). 

These criticisms, although illustrated only on models with three variables, would 

also apply to models with four or more variables. 
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ABC 

Be 

ABC 

Figure 6-29: Venn diagram representations drawn for three models with generating classes 
{lAB] [en (top), {lAC] [Bn (middle), and {[BC] [An (bottom) 
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Figure 6-30: Venn diagram representations drawn for the models with generating classes 
{(AB] [AC) [BC]} (top) and ([A] [B) [C)} (bottom) 

6.4 Topological-Magnitude Graphs 

6.4.1 Introduction 

Suppose that the hierarchical model A+B+C+AB has been fitted to a particular data 

set in which the variables A, B, and C are discrete variables or factors, where A has two 

levels, B has three levels and C has two levels, and that the different levels for each of the 
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four effects in the model (ie. the three main effects and the interaction effect) take the 

values given in Figure 6-31. 

2 6 1 2 3 1 

4 4 1 5 3 

5 
A AB c 

B 

Figure 6-31: Tables showing the values taken by different levels of variables A, B, and C for 
the main effects and interaction effect in the model A+B+C+AB 

The overall value for a particular combination of the levels of the variables (eg. 

A=i, B=j, C=k) can be determined by summing the appropriate cells in each of the four 

tables in Figure 6-31. For example: 

etc .. 

(A=I, B=I, C=I) ~ 2+6+1+1 = 10 

(A=2, B=2, C=I) ~ 1+4+1+1 = 7 

In the following sections, two graphical techniques are developed for the 

representation of hierarchical models like the one just described. The particular features of 

the model which I hope to communicate using these two techniques are as follows: 

• The presence or absence of the effects in the model, to be communicated by means ofa 

Topological Graph. 

• The magnitude of the effects present in the model, to be communicated by means of a 

Magnitude Graph. 

In addition, the graphical techniques developed should serve to illustrate the 

additivity of the effects present in the model and should illustrate what is meant by 

'interaction'; ego that given the presence of an AB interaction, this implies that the value 
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for a particular level of variable B depends on the level of variable A which is considered, 

and vice versa. 

In the following sections, I shall derive the construction of the Magnitude Graph 

(Section 6.4.2), from which the construction of the Topological Graph follows (Section 

6.4.3). Some general criteria are presented (Section 6.4.4) for the construction and 

interpretation of Topological-Magnitude Graphs (a generic term used for the graph type) 

which involves the development of a novel algebraic system for the expression of the 

generating class, which is related to the two types of links used in the construction of the 

graphs. A number of examples are presented (Section 6.4.5) to illustrate the construction 

and interpretation of Topological-Magnitude Graphs using this algebraic expression of 

the generating class. However, as will be seen, two additional types of links are required 

in order to be able to represent the generating class of any given model successfully. The 

criteria for the construction of Topological-Magnitude Graphs are therefore revised 

before the usefulness of the Topological-Magnitude Graph approach is assessed (Section 

6.4.6). 

Following on from the development of the Topological-Magnitude Graphs, two 

extensions are suggested. The first of these (Section 6.4.7), called the Proportional 

Graph, is an alternative representation technique for the communication of the 

magnitudes of the effects present in a given model. The second extension (Section 6.4.8) 

is based on the Proportional Graph and can be used to communicate confidence intervals 

for the effects in the model. 

6.4.2 Construction of the Magnitude Graph 

Consider, for example, the model A+B, which has generating class {[A] [B]}. 

Since there is no interaction effect, the effect of variable B will be the same irrespective of 

the level of A which is considered, and vice versa. Suppose that each variable has two 

levels. The values of the effects of the levels could be presented, for each variable, in a 

two-box table of the type used in Figure 6-31. Given two two-box tables (one to represent 

each of the variables A and B), some technique is required to link the two tables which 

indicates that the value for the chosen level of variable B is independent of the level of 

variable A which is chosen. The suggested representation is a horizontal link as shown in 

Figure 6-32. 
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A B 

Figure 6-32: Use of horizontal link in Magnitude Graph drawn to represent the model with 
generating class ([AI [B)} 

Consider now the model A+B+AB, which has generating class {[AB]}. Here the 

effect of the chosen level of variable B will depend on the chosen level of variable A, 

since there is an AB interaction. If each variable has two levels, two two-box tables could 

be drawn of the type used in Figure 6-31 to represent the main effects of A and B, and a 

four-box table could be drawn to represent the interaction effect AB, but having one table 

per effect contained in the model could lead to a very large number of tables for a model 

involving a large number of variables and/or a large number of interactions. Moreover, for 

three-way and higher-order interaction effects involving more than two variables, the 

construction of two-dimensional tables is not straight-forward. A simplified 

representation of the generating class of the fitted model is therefore desired, which 

reduces the number of tables required without leading to loss of information. It is 

suggested that only two sets of tables are needed in practice, one corresponding to A and 

the other to B, provided that some technique is used to link the two sets of tables which 

indicates that the value for the chosen level of variable B is dependent upon the level of A 

which is considered. The suggested representation is a diverging link as shown in Figure 

6-33. 

In the Magnitude Graph for the model with generating class {[Al [Bn, presented 

in Figure 6-32, the top-most box in the table representing variable A will contain the value 

of the main effect corresponding to the first level of A and the bottom-most box will 

contain the value of the main effect corresponding to the second level of A. Similarly, the 

top-most box in the table representing variable B will contain the value of the main effect 
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B 

Figure 6-33: Use of diverging link in Magnitude Graph drawn to represent the model with 
generating class {(AB]) 

corresponding to the first level of B and the bottom-most box will contain the value 

corresponding to the second level of B. 

In the Magnitude Graph for the model with generating class {[AB]}, presented in 

Figure 6-33, the top-most box in the table representing variable A will again contain the 

value of the main effect corresponding to the first level of A, and the bottom-most box 

will contain the value corresponding to the second level of A. However, the top-most box 

in the top-most table representing variable B will contain the value of the main effect 

corresponding to the first level of B plus the value of the interaction effect corresponding 

to the interaction of the first level of A with the first level of B. The top-most box in the 

bottom-most table representing variable B will also contain the value of the main effect 

corresponding to the first level of B, plus the value of the interaction effect corresponding 

to the interaction of the second level of A with the first level of B. Similarly, the bottom

most boxes will contain the value of the main effect corresponding to the second level of 
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B plus the value of the interaction effect corresponding to the interaction of the second 

level of B with the first or second level of A, as appropriate. 

The Magnitude Graph representation of the model with generating class {[AB]} 

could be used to represent the model with generating class {[A] [B]}, but because there 

are no interaction effects in the model corresponding to {[Al [Bl}' the top-most and 

bottom-most tables for B would contain the same entries for each level of B. By using the 

two different forms of links, the suggested Magnitude Graph representation of {[Al [Bn 

makes it clear that the effect of B is the same irrespective of the level of A which is 

chosen, and the suggested Magnitude Graph representation of {[AB]} makes it clear that 

the effect of B will differ according to the level of A which is chosen. 

The two graphs drawn and described above (in Figures 6-32 and 6-33) could have 

been constructed by consideration of variable B first, and variable A second. In this way, 

the graphs would have been constructed as shown in Figures 6-34 and 6-35. Comparing 

the Magnitude Graph shown in Figure 6-32 with that shown in Figure 6-34, and 

comparing the Magnitude Graph shown in Figure 6-33 with that shown in Figure 6-35, it 

would appear that a failing of the Magnitude Graph representation technique is that, since 

the Graphs are constructed in a left-to-right manner, there is a loss of symmetry between 

the variables. For example, it appears that A+B is not the same as B+A, even though the 

tables for A in Figures 6-32 and 6-34 will contain the same values, as will the tables for B. 

Similarly, it appears that A+B+AB is not the same as B+A+BA - although it is clear that 

the effects of the levels of one variable depend on which level of the other variable is 

chosen, the two sets of tables will have different values in each graph. In Figure 6-33, the 

left-hand table will contain values corresponding to the A main effect, and the right-hand 

table will contain values corresponding to the B main effect plus the AB interaction effect. 

In Figure 6-35, the left-hand table will contain values corresponding to the B main effect, 

and the right-hand table will contain values corresponding to the A main effect plus the 

AB interaction effect. If these graphs were to be used to communicate these models to 

somebody who is statistically naive, then the symmetry of the relationships would have to 

be made explicit. 
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B A 

Figure 6-34: Alternative Magnitude Graph drawn to represent the model with generating 
class {[AI [BI} 

A 

Figure 6-35: Alternative Magnitude Graph drawn to represent the model with generating 
class {(AB)} 
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6.4.3 Construction of the Topological Graph 

The two basic fonns of the Magnitude Graph described in the previous section are 

useful for the communication of the numerical values of the effects present in a given 

model, since the appropriate numbers can simply be written in the appropriate boxes. 

However, the user may wish simply to communicate the effects implied by the generating 

class which are present in the model without attaching numerical values to these effects. 

In other words, there is a need for a graphical representation which communicates the 

topology of the effects, but not their magnitude. 

The Topological Graph representation can be derived from the Magnitude Graph 

representation simply by removing the tables of boxes from the Magnitude Graph (which 

would otherwise be unnecessary clutter), but retaining the links between the vertices 

which, in replacing the tables, correspond to the variables in the model. For example, the 

Topological Graph representation for the model with generating class {[A] [Bn will use 

the horizontal link as shown in Figure 6-36 (compare this with the Magnitude Graph in 

Figure 6-32 in the previous section), and the Topological Graph representation for the 

model with generating class {[AB]} will use the diverging link as shown in Figure 6-37 

(compare this with the Magnitude Graph in Figure 6-33 in the previous section) . 

• • 
A B 

Figure 6-36: Use of horizontal link in Topological Graph drawn to represent the model with 
generating class ([A) [B)} 

Although the choices of links used in both the Magnitude Graph and Topological 

Graph representations are intended to correspond in a particular way to the effects in the 

model which they represent, in practice the choice of links is arbitrary and other types of 

links could be adopted provided that the conventions adopted for the meaning of the links 

were applied consistently wherever the links were used. 
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B 

Figure 6-37: Use of diverging link in Topological Graph drawn to represent the model with 
generating class ([ AB)} 

6.4.4 Criteria for the Construction of Topological-Magnitude Graphs 

Given the generating class of a model, the Topological and Magnitude Graphs 

corresponding to the model may be derived using the two types of links presented in the 

preceding sections (Sections 6.4.2 and 6.4.3) by following the criteria for construction 

presented in this section. Conversely, for a given Magnitude Graph or Topological Graph, 

the generating class of the model represented can be determined by use of the same 

criteria. As has already been seen, the Topological Graph can be determined from a given 

Magnitude Graph, but it would not be possible to derive the Magnitude Graph from the 

Topological Graph without additional information about the number of levels of the 

variables and the magnitudes of the effects. 

Some conventions are necessary in order to derive the criteria for the construction 

of the Topological-Magnitude Graph corresponding to a given generating class. As has 
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already been indicated, these conventions are also required for the interpretation of the 

Graphs. The conventions adopted involve some simple 'algebra', and are best described 

by means of some examples, as presented below. 

Consider the model with generating class {[AB] [ACD]}. The generating class is 

to be re-expressed as AB+ACD (where the '+' has a subtly different usage than in the full 

expression of the model: A+B+C+D+AB+A C+AD+CD+A CD). This expression of the 

generating class is now factorised, as in conventional algebra, to give Ax(B+CD), where 

the 'x' represents multiplication with the elements in the brackets (this is not usually 

made explicit in conventional algebra). If the factorisation of the variables is carried to the 

extreme, the expression A x (B+Cx (D)) is obtained. 

The two types of links used in the Topological-Magnitude Graphs described in the 

preceding sections corresponded to the model with generating class {[A] [Bn (Figures 6-

32, 6-34 and 6-36) and to the model with generating class {[AB]} (Figures 6-33, 6-35 and 

6-37). In algebraic terms, these models can be re-expressed as A+B and Ax(B) 

respectively. 

To construct the Topological-Magnitude Graph corresponding to a given 

generating class, the algebraic expression is considered and, reading from left to right, a 

vertex (or vertices) is drawn in the graph whenever a variable is encountered, and a 

horizontal link corresponding to '+' or a diverging link corresponding to 'x' is drawn in 

as appropriate. Following these rules for the model with generating class {[AB] [ACD]}, 

which, as has been shown, can be expressed algebraically as Ax(B+Cx(D)), the 

Topological Graph displayed in Figure 6-38 is obtained. 

The derivation of the generating class of the model represented by a given 

Topological (or Magnitude) Graph is carried out in the same manner - reading from left 

to right, the variables are written down, together with a '+' or a 'x', according to the 

vertices and types of link (horizontal or diverging) encountered. Provided it is 

remembered that a 'x' always precedes a set of brackets, the correct algebraic expression 

of the generating class is obtained from which the generating class itself is readily 

determined. 

Given the equivalence between the two types of links used in Topological and 

Magnitude Graphs, the Magnitude Graph for the model with generating class {[AB] 

[ACD]} would be constructed in the same way as the Topological Graph presented in 

Figure 6-38. Suppose, for instance, that each of the four variables in the above example 

128 



A 

B c 
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Figure 6-38: Topological Graph drawn to represent the model with generating class {(AB] 
[ACDn 

has two levels; the Magnitude Graph for this model would then be as given in Figure 6-

39. From this graph, it can be seen, given the conventions for the 'meaning' of the links 

used and the boxes, that the values of A will depend on the levels of B (ie. there is an AB 

interaction), that the values of C will depend on the levels of A but not on the levels of B 

(ie. there is an AC interaction, but not a BC interaction), and that the values of D will 

depend on the levels of C, which itself depends on the levels of A, but the values of D do 

not depend on the levels of B (ie. there is an ACD interaction). Hence it can be confirmed 

that the Magnitude Graph does indeed represent the model with generating class {[AB] 

[ACD]}. 
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Figure 6-39: Magnitude Graph drawn to represent the model with generating class {[AB] 
lACD]} 

6.4.5 Some Example Topological-Magnitude Graphs 

For all of the models considered in this section it is assumed, in order to simplify 

the construction of the Magnitude Graph, that the variables involved each have just two 

levels. In the more general case where a variable A has i levels, a variable B j levels, a 

variable e k levels, etc., then boxes drawn for the main effects of A, B, and e would have 

i,j, and k levels respectively. For an AB interaction re-expressed as Ax(B), i boxes would 

be drawn corresponding to B, each with j levels. Similarly, for a Be interaction re

expressed as Bx(C),j boxes would be drawn corresponding to e, each with k levels; and 

so on. 
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Consider the model with generating class {[A] [BC]}. The algebraic re-expression 

of this model would be A+Bx(C). The corresponding Topological and Magnitude Graphs 

would be as presented in Figure 6-40. 

A B 

A B 

c c 

Figure 6-40: Topological and Magnitude Graphs drawn to represent the model with 
generating class {[AI [BC]} 

Consider the model with generating class {[AB] [AC]}. The algebraic re

expression of this model would be Ax(B+C). The corresponding Topological and 

Magnitude Graphs would be as presented in Figure 6-41. 

A 

A 

8 c 
B c 

Figure 6-41: Topological and Magnitude Graphs drawn to represent the model with 
generating class {[AB] [AC]} 

Consider the model with generating class {[ABC]}. The algebraic re-expression of 

this model would be Ax(Bx(C). The corresponding Topological and Magnitude Graphs 

would be as presented in Figure 6-42. 
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c B 

Figure 6-42: Topological and Magnitude Graphs drawn to represent the model with 
generating class ([ABC)} 

c 

Consider again the model with generating class {[A] [BC]} shown in Figure 6-40. 

An alternative and equivalent algebraic expression of this model would be Bx(C)+A. If 

the Topological and Magnitude Graphs implied by this expression were to be constructed 

following the criteria presented in the previous section (Section 6.4.4) relating the 

algebraic expression to the types of links used, the graphs obtained would be as presented 

in Figure 6-43. However, if these graphs were to be interpreted using these same criteria 

but relating the types of links to the algebraic components, the expression Bx(C+A) would 

be derived, which corresponds to the model with generating class {[AB] [BC]}, which is 

not the model I wished to represent. 

A problem arises because, when interpreting the graphs algebraically, it is not 

apparent when any brackets which have been opened by the diverging link corresponding 

to 'x' should be closed. Until now, an assumption has been made when deriving the 

algebraic expression corresponding to a given graph that all brackets remain open until 

the far right-hand side of the graph is reached, when they are closed. Provided the 

algebraic expression of the generating class of the model can be written in such a way that 

all brackets close at the far right-hand side, the corresponding graph can be constructed 
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Figure 6-43: Alternative Topological and Magnitude Graphs drawn to represent the model 
with generating class ([A) (BC)} 

and interpreted in the manner described. However, there are some generating classes 

which it is impossible to express algebraically in this way. 

Consider, for example, the model with generating class {[AB] [CD]}. The 

algebraic expression of this model is of the fonn Ax(B)+Cx(D), and it is impossible to 

rearrange this expression so that both sets of brackets close on the far right-hand side. It 

would, therefore, be impossible to construct the Topological or Magnitude Graph 

corresponding to this model in the usual manner such that it would be interpreted 

correctly. The adoption of another type of link corresponding to the closure of the 

preceding brackets followed by a '+' (ie. corresponding to ')+' in the algebraic 

expression) is therefore required. A converging link is proposed, as illustrated in Figure 6-

44. 

A 

o 

Figure 6-44: Use of converging link in Topological and Magnitude Graphs drawn to 
represent the model with generating class ([AB) (CD)} 
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In the Magnitude Graph presented in Figure 6-44, it is apparent that the value of B 

depends on the level of A (ie. that there is an AB interaction), and that the value of D 

depends on the level of C (ie. that there is a CD interaction), but the value of C does not 

depend on the level of A or B. Thus the graph does represent the model with generating 

class {[AB] [CD]}. Alternatively, the links could be interpreted according to the criteria 

relating the links to the algebraic expression in order to derive the expression 

Ax(B)+Cx(D), from which the correct generating class is readily derived. 

Up until now, there has only been one vertex or column of vertices tn the 

Topological Graphs or one box or column of boxes in the Magnitude Graphs 

corresponding to each variable in the model represented, since each variable has appeared 

only once in the algebraic re-expression of the model. 

Consider the model with generating class {[AB] [BC] [CD]}. In algebraic terms 

this model can be re-expressed as Bx(A+C)+Cx(D) or Cx(B+D)+Ax(B). In either case, it 

is impossible to avoid duplication of one of the variables. In constructing the Topological 

and Magnitude Graphs corresponding to this model, two separate components could be 

drawn, one corresponding to Bx(A+C) and the other corresponding to Cx(D), for 

example, or the converging link described above could be used. However, both of these 

approaches would involve duplication of the variable in the Topological-Magnitude 

Graph. I therefore propose the adoption of a fourth type of link to correspond to the 

duplication of a variable. Use of this link requires the algebraic expression of the model to 

be written such that the repeated variable appears on both sides of a ')+' relationship. A 

crossing link is proposed, as illustrated in Figure 6-45 which shows the Topological and 

Magnitude Graphs corresponding to the expression Bx(A+C)+Cx(D). 

<>< 
c 

C 0 

Figure 6-45: Use of crossing in Topological and Magnitude Graphs drawn to represent the 
model with generating class {lAB] [BC] [CD]} 
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From the Magnitude Graph presented in Figure 6-45 it can be seen that the value 

of A depends on the level of B (ie. that there is an AB interaction) and that the level of C 

depends on the level of B but not on the level of A (ie. that there is a BC interaction). 

Also, the value of D depends on the level of C, but not on the level of A or B (ie. there is a 

CD interaction). Hence the generating class of the model represented can be determined 

correctly from the Magnitude Graph or by application of the criteria for interpreting the 

links to either the Topological or the Magnitude Graph. 

There are some models, however, for which two or more variables will be 

duplicated in the algebraic expression of the generating class. Consider, for example, the 

model with generating class {[AB] [AC] [BC]}. This can be represented algebraically as 

A x (B+C)+Bx (C), Bx(A+C)+Ax(C), or Cx(A+B)+Ax(B). In the construction of the 

Topological and Magnitude Graphs, the crossing link can again be used to correspond to 

the ')+' relationship, but it is impossible to avoid repeating one of the two duplicated 

variables. For example, the Topological and Magnitude Graph representation 

corresponding to Ax(C+B)+Bx(C) will be as shown in Figure 6-46. The question of what 

values will appear in the boxes of a Magnitude Graph in which one of the variables is 

repeated is dealt with in Section 6.4.6. 

<>< 
Figure 6-46: Use of crossing link and duplication of variable in Topological and Magnitude 
Graphs drawn to represent the model with generating class ([AB) (AC) (BC)} 

In interpreting the Magnitude Graph shown in Figure 6-46 from left to right, it can 

be seen that the value of B depends on the level of A (ie. that there is an AB interaction) 

and that the value of C depends on A but not on B (ie. that there is an AC interaction). 

However, the crossing link and the duplication of B indicates that the value of B does 

depend on the level of C (ie. that there is a BC interaction). Hence the generating class of 

the model represented can be determined correctly from the Magnitude Graph or by 
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application of the criteria for interpreting the links to either the Topological or Magnitude 

Graph. 

6.4.6 Revised Criteria for the Construction of Topological-Magnitude Graphs 

In the preceding section (Section 6.4.5), two new links were introduced to give a 

total of four link types of use in the construction of Topological-Magnitude Graphs. By 

the application of criteria relating these links to the symbols used in the algebraic re

expression of the generating class of the model, it is now possible to construct and 

correctly interpret the Topological-Magnitude Graph for any given model. These links are 

listed in Table 6-1 together with their representation in Topological and Magnitude 

Graphs and their algebraic equivalent. Any brackets which remain open are automatically 

closed at the far right-hand side of the algebraic expression. 

The generating class of a model can be represented using only the horizontal and 

diverging types of links if the most parsimonious algebraic expression of the generating 

class does not involve duplication of any the variables and all brackets close on the far 

right-hand side. This is the case if there is only one element in the generating class - for 

example, as in {[ABC]}; if the elements of the generating class have no variables in 

common and there is at most one interaction effect - for example, as in {[A] [BC]}; or if 

two or more of the elements of the generating class have just one variable in common -

for example, as in {[AB] [BC]} or {[AB] [BC] [BDl}. 

The generating class of a model can be represented using only the horizontal, 

diverging and converging types of links if the most parsimonious algebraic expression of 

the generating class does not involve duplication of any of the variables but not all the 

brackets close on the far right-hand side. This is the case if the elements of the generating 

class have no variables in common and there are at least two interaction effects - for 

example, as in {[AB] [CD]}. 

The generating class of a model may be represented using all four types of lines 

(horizontal, diverging, converging, and crossing) if the most parsimonious algebraic 

expression of the generating class involves duplication of at least two different variables 

- for example, as in {[AB] [AC] [BC]} or {[ABC] [CD] [AE]}. In the former case, every 

pair of elements has a least one variable in common and it will be impossible to avoid 

constructing the Topological-Magnitude Graph without duplication of at least one of the 

variables. In the latter case, there is at least one pair of elements without a variable in 
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HORIZONTAL 
LINK 

X+Y 

DIVERGING 
LINK 

X(Y ... 

CONVERGING 

LINK 

... X)+Y 

CROSSING 

LlliK 

... X)+X(Y •.. 

Table 6-1: List of links used in Topological-Magnitude Graphs, together with their 
algebraic interpretation 
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common and it is again impossible to construct the Topological-Magnitude Graph 

without duplication of any of the variables. 

Consider again the hierarchical model A+B+C+AB having generating class {[AB] 

[C]} which was first considered in Section 6.4.1 and for which the different effects in the 

model take the values presented in Figure 6-31 according to the levels of the variables 

considered. The Magnitude Graph corresponding to this model, with the appropriate 

values placed in the appropriate boxes, is as presented in Figure 6-47. 

7 

6 

8 
1 

3 

10 
c A 

5 

10 

8 

Figure 6-47: Magnitude Graph drawn to represent the model with generating class {[AB] 
[e]} with example values 

The boxes representing variables C and A contain the values corresponding to the 

main effects of C and A, whereas the boxes representing variable B contains the values 

corresponding to the main effect of B plus the values corresponding to the interaction 

effect of AB. For a more complex Magnitude Graph, in which one (or more) of the 

variables is duplicated, only one of the occurrences would incorporate the values 

corresponding to the main effect of that variable with an interaction effect; the other 
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occurrence(s) of the variable would contain values corresponding to the appropriate 

interaction effect only. 

The compounding of the values in the Magnitude Graph may be regarded as a 

disadvantage to its use. One solution would be to separate the values within the boxes, 

according to the effects which they correspond to, but this could result in a lot of clutter 

which could make the graph difficult to read. 

An alternative representation of the magnitudes of the effects in the model 

involves replacing the terms in the Implication Diagram (see Section 6.1.3) by n-box or 

nxm-box tables containing the values corresponding to the main effects and interaction 

effects. This is illustrated in Figure 6-48 for the example model with generating class 

{[AB] [C]} and values as given in Figure 6-31. Note that the arrowheads have been 

omitted from this representation owing to the change in usage of the Implication Diagram. 

Normally an Implication Diagram would be constructed as an aid to determining which 

terms are present in a model having a given generating class and the arrowheads are used 

to highlight the terms in the model which are 'implied' by other terms in the model. In the 

usage of the Implication Diagram illustrated in Figure 6-48, the main concern is with the 

display of the numerical values corresponding to each term in the model - it is useful to 

retain a link between effects having variables . in common in order to highlight the 

existence of higher-order interaction effects, but the direction of the link is not meaningful 

in this context. However, as has already been mentioned, for interactions involving three 

or more variables, it would be difficult to construct multi-dimensional tables. 

A more attractive solution would involve separating out the main effects and 

interaction effects. To achieve this, I propose a new type of graph, based on the 

Topological-Magnitude Graph, called the 'Proportional Graph', which is described 

below. 
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Figure 6-48: Implication Diagram drawn to represent the model with generating class 
{lAB] [en with example values 

6.4.7 The Proportional Graph: An Alternative Representation for Magnitudes 

The Proportional Graph takes the same basic form as the Topological Graph 

except that only the horizontal and diverging links are needed, irrespective of the 

generating class of the model, and these links are drawn corresponding to the levels of 

each variable and to the levels of any interaction effects. Diverging (ie. sloping) lines 

correspond to the main effects and horizontal lines correspond to the interaction effects, 

and the length of each line is proportional to the value of the effect it represents. Thus the 

relative sizes of the effects in the model can be determined; lines of the same length will 

correspond to a constant (non-zero) effect, and lines omitted from the graph (ie. having 

zero length) will correspond to zero effects. 
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For example, the Proportional Graph corresponding to the model with generating 

class {[AB] [C]}, having the Magnitude Graph presented in Figure 6-47, is presented in 

Figure 6-49. The lines have been drawn to scale such that 0.75cm corresponds to a value 

of 1. 

}o,e. c.. 

Figure 6-49: Proportional Graph drawn to represent the model with generating class {lAB) 
[en 

To interpret the Proportional Graph, a series of consecutive lines corresponding to 

the levels of interest of the variables are followed from left to right and the total length of 

the path followed will be proportional to the overall value for the combination of levels of 

the variables considered. For example, since the Proportional Graph in Figure 6-49 has 

been drawn to scale, it can be determined that 

as found in Section 6.4.1. 

A.+B.+A.B.+C. = 10 

A2+B2+A2B2+C. = 7 

In the Topological-Magnitude Graphs, a set of criteria is required for the 

construction and interpretation of the graphs, which is based on an algebraic expression of 

the generating class, in order to obtain a condensed graphical representation for any given 

model. However, the Proportional Graph does not provide such a condensed 

representation since lines are drawn corresponding to every main effect and interaction 
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effect in the model. The order of the lines in the Proportional Graph is immaterial since 

they are always labelled, and for this reason one could use just a single link style, 

although the use of diverging and horizontal links makes the distinction between main 

effects and interaction effects clearer. For example, the basic structure of the Proportional 

Graph (with every line of constant length, and assuming that each factor has two levels) 

for the model with generating class {[AB] [AC] [BC]} is presented in Figure 6-50. 

Comparing this graph with the Topological and Magnitude Graphs presented previously 

in Figure 6-46, it can be seen that the Proportional Graph provides a less condense 

representation of the model. Thus the Proportional Graph is only recommended for use if 

it is necessary to communicate the magnitude of each effect separately. 
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Figure 6-50: Structure of Proportional Graph drawn to represent the model with 
generating class ((AB) [AC) [BC)} 

6.4.8 A Representation Technique for Confidence Intervals Based on the 

Proportional Graph 

Because the Proportional Graph represents every main effect and interaction effect 

in the model, it can be used to display additional information such as confidence intervals 

for the effects. This can be done by drawing a vertical bar corresponding to each 

(horizontal) line in the graph of length proportional to the value of the confidence interval. 
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For example, the Proportional Graph presented in Figure 6-49 is presented again in Figure 

6-51 with hypothetical confidence limits superimposed at the ends of the lines 

corresponding to each effect. 

-I 
I 

-

I -

-

-

• -

Figure 6-51: Proportional Graph drawn to represent the model with generating class {[ABI 
(en with hypothetical confidence limits super-imposed 

Information about the confidence limits of the effects could also be included in the 

boxes ofthe Magnitude Graph but this may lead to unnecessary clutter. 
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6.4.9 Conclusions 

In this section, a novel technique for the representation of the generating class of a 

model, called the Topological-Magnitude Graph, was presented. This technique can be 

used for the graphical communication and interpretation of a model, in terms of the 

topology of the effects (ie. the effects which are present) and the magnitude of the effects 

(ie. the size of the effects which are present). The relationships between the two graph 

types and the generating class of the model, in terms of the derivation of one from 

another, is illustrated in Figure 6-52. 

Full Linear Model 

t 
7gCl~ 

Topological (. ') Magnitude 
Graph Graph 

Figure 6-52: Figure showing the relationships between the Topological and Magnitude 
Graphs and the generating class of the model 

This technique requires the use of an algebraic re-expression of the generating 

class which relates the generating class to four types of links used according to a set of 

criteria which has been described in some detail. The algebraic expression which is 

derived has implications for the number of and nature of the link styles required, and 

whether any variables must be duplicated in the representation. The actual style of the 

links used in the graph, and the equivalent symbols used in the algebraic expression of the 

model are not important, although those suggested have an intuitive attraction. Any link 

or relationship used must be used in a consistent manner. A certain amount of knowledge 

about Topological-Magnitude Graphs is therefore required to be able to interpret the 

graphs effectively, but this form of criticism is applicable to most graphical techniques. 
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The Topological-Magnitude Graph approach is applicable to both (hierarchical) 

ANOV A and log-linear interaction models, such that it is claimed (without proof) that the 

generating class of any model, and therefore any model (since the generating class of a 

model is unique) can be represented without ambiguity. Very complex graphs would be 

obtained for models containing very many variables and interactions between these 

variables, but this is likely to be true of all representation techniques. 

Although the Topological-Magnitude Graphs illustrate the additivity and 

interaction of effects, a potential criticism of the technique is that the left to right nature of 

the construction of the graphs leads to some asymmetry in the representation of models, 

since the order in which the variables are considered may affect the appearance of the 

graph. Also, in an interaction, the value taken by one variable appears to be dependent on 

the level of another, but the converse relationship (ie. that the value of the second variable 

is similarly dependent on the level of the first) does not appear to be true (although it is). 

Another criticism of the Topological-Magnitude Graph is that the compounding of effects 

within the boxes of the Magnitude Graph may be a draw-back, depending on the use to 

which the Magnitude Graph is to be put, although this can be circumvented by use of the 

Proportional Graph, which is described and suggested as a basis for the graphical 

communication of other information such as confidence intervals. 

6.5 Summary 

In this chapter, three different approaches to the graphical representation of a fitted 

statistical model have been developed. All three approaches have in common the fact that 

they are novel two-dimensional techniques, designed to illustrate which terms are present 

in the model represented. 

The first approach, based on combinations of points, resulted in a number of 

different methods for linking points in order to indicate interactions in the model. Of all 

the methods developed, however, only one (involving the separate display of the 

generating class elements) was wholly successful in permitting an unambiguous 

representation of the model terms for all fitted models. This method in particular, together 

with certain of the other methods considered, will be developed further in subsequent 

chapters. 
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The second approach, based on the Edwards-style Venn diagram, was found to 

have a number of shortcomings. This approach will not be considered any further in this 

thesis. 

The final approach, based on an original concept termed the Topological

Magnitude Graph, was found to be useful not only for indicating which effects are present 

in the model, but also for indicating the size of these effects. A set of criteria has been 

presented for the construction of the Topological and Magnitude Graphs from the 

generating class of any given model. Although this approach will not be considered 

further within the context of this thesis, it is believed to be a useful technique for the 

graphical representation of fitted models. 

In the following chapter, the conditional independence graph approach to the 

representation of a particular class of models (the so-called graphical models) will be 

considered. As will be seen, there are certain similarities between the conditional 

independence graphs described and the first of the methods considered in this chapter 

(namely, the use of links between vertices for the two-dimensional combination of 

points). 
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7. The Conditional Independence Graph Approach 

7.1 Introduction 

In the preceding chapter, an attempt was made to develop some new graphical 

techniques for the representation of structured multivariate data. The first set of 

techniques described, involving the two-dimensional combination of points (Section 6.2), 

is probably the simplest of the approaches considered, both to construct and to 

comprehend. The basic notion of drawing two-dimensional graphs with vertices 

representing variables and links representing associations between variables is intuitively 

simple but quite profound. Indeed, this particular approach is not wholly novel, for graphs 

of this sort form the foundations of a relatively new area of statistics: graphical modelling. 

In this chapter I wish to describe the graphical modelling approach to statistical 

data analysis, in the hope that the concomitant graphical representations of use in the 

fitting of graphical models may provide a starting point for the development of further 

techniques for the representation of structured multivariate data. 

The graphical representation technique used in graphical modelling, which closely 

resembles the two-dimensional combination of points involving vertices and edges 

between associated variables/vertices presented in Section 6.2.2 of the preceding chapter, 

is known as the conditional independence graph, or independence graph. As the name 

suggests, the construction and interpretation of the conditional independence graph is 

based on the important notion of conditional independence, which is considered briefly in 

Section 7.2. As will be seen, many statistical models may be interpreted in terms of 

conditional independence and therefore represented by conditional independence graphs. 

Having considered conditional independence in general terms, I shall present some 

necessary graph theoretic concepts used in graphical modelling before going on to 

describe the construction and interpretation of conditional independence graphs in Section 

7.3. 

In Section 7.4 of this chapter, and in the remainder of this thesis, I shall be 

considering two types of statistical model having a conditional independence 

interpretation and commonly considered in graphical modelling; namely the covariance 

selection model for continuous data, and the log-linear interaction model for discrete data, 

typically used in contingency table analysis. However, there are other measures of 
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association which can be used in contingency table analysis, such as the odds ratio, and I 

shall also consider this. For the sake of completeness I shall also make some mention of 

models for mixed data and of causal modelling. Most other statistical models fall into 

these categories; ego models for regression analysis, analysis of variance, logit analysis, 

logistic regression, etc .. However, because graphical modelling theory is not so tractable 

for mixed data models, they are not considered again until Chapter 13. 

Although this thesis is concerned with the representation of fitted statistical 

models, and not with the process of fitting statistical models, mention has already been 

made in Chapters 2 and 3 of a number of graphical representations which may be of use 

for this purpose; therefore some mention will also be made, in Section 7.5, of the 

techniques of graphical modelling. This provides an opportunity to describe the statistical 

packages GUM and MIM, which are used and referred to in subsequent chapters. 

Finally, but most importantly, I shall describe, in Section 7.6, the limitations of the 

conditional independence graph as a technique for the representation of fitted statistical 

models in relation to my research aims. This has lead to the development of modifications 

to the conditional independence graph which are described in Chapters 9 and 10. 

However, even using the suggested modifications there are still limitations to the 

conditional independence graph approach. I have solved. these by the development of an 

interactive computer package called the "Conditional Independence Graph Enhancer", or 

CIGE. The features ofCIGE are described in Chapter 11 (and in more detail in Appendix 

A), and illustrated using real and example data sets in Chapter 12. 

Graphical modelling was really born with the seminal paper by Darroch, Lauritzen 

& Speed (1980), anticipated by Speed (1978), which unified conditional independence 

theory and Markov graphs. In the years since, the field has expanded quite rapidly, 

primarily due to the output of a small number of enthusiastic researchers. The technique is 

becoming more widely known, but to date there has only been one text which succeeds in 

bringing together all the various aspects of graphical modelling, which have previously 

only been described in journal articles or technical reports; this being the book by 

Whittaker (1990), although a less theoretically detailed book has recently been written by 

Edwards (1995). The books by Whittaker and Edwards form the basis of the description 

of the conditional independence graph approach presented below, but where other sources 

from the ever-increasing graphical models literature have been used, these have been 

acknowledged. 
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7.2 The Importance of Conditional Independence 

The basic concept that underlies the theory of graphical modelling is that of 

conditional independence. Although not always obvious, conventional statistical 

techniques often have a conditional independence interpretation. 

For example, Dawid (1979), in a paper pre-dating the conditional independence 

graphs literature, explains how conditional independence forms a conceptual frame-work 

for much of the theory of statistical inference, as well as probability theory. It is Dawid' s 

assertion that many areas of statistics, which otherwise appear to be unrelated, may be 

unified in terms of conditional independence. Indeed, pre-empting the development of 

graphical modelling, Dawid claims that "rather than just being another useful tool in the 

statistician's kit-bag, conditional independence offers a new language for the expression 

of statistical concepts and a framework for their study". 

Whittaker (1990) shares Dawid's contention that conditional independence can 

provide a unifying theoretical frame-work for multivariate statistics, but states that 

graphical modelling and independence graphs are just one manifestation. As will be seen 

in this chapter, graphical modelling uses notions of conditional independence to unify 

covariance selection models, log-linear models, path analysis, and, more recently, models 

for a mixture of continuous and discrete data. 

Knuiman (1978) argues that identification of the conditional independences 

between variables or subsets of variables offers ease of interpretation for high

dimensional data involving a large number of interactions. 

To denote that 2 random variables X and Y are independent, Dawid uses the 

notation X.n. Y. This situation arises if any information we know about Y does not affect the 

distribution of X. If X.n. Y, then y.n.x. 

If X and Y are independent given that a third variable Z=z, this is expressed X.n. Y 

I Z. This states that the conditional distribution of X, given Yand Z is in fact completely 

determined by Z alone, Ybeing superfluous once Z is known. If x.n.yl Z, then y.n.xl z. 
It is possible that x.n.yl Z without X.n.Y, and vice versa. This is termed Simpson's 

Paradox (Simpson (1951) and is discussed further in Section 7.4.2 below. 

Slightly different notations to that suggested by Dawid exist, and are considered in 

Section 7.3.2 below. 

149 



7.3 Conditional Independence Graphs 

It is necessary, for a full understanding of the role of conditional independence 

graphs in graphical modelling, to have some knowledge of the graph theoretic terms 

which are commonly used, so I shall begin by defining and illustrating the necessary 

terms. I shall then consider briefly the concept of conditional independence and go on to 

give a general description of the construction of conditional independence graphs, given 

the set of conditional independence relationships identified in a set of data. However, the 

identification of the conditional independence relationships within a given continuous or 

discrete data set will not be dealt with until Section 7.4. I shall conclude this section by 

defining the Markov properties of conditional independence graphs, which are of 

importance in the interpretation of the graphs. 

7.3.1 Graph Theory 

In graph theoretic terms (see, for example, Harary (1969) or Wilson (1985)), a 

graph is a mathematical object, G( V. E), or G, which is formed by a set of vertices {V}, 

and a set of edges {E} formed by unordered pairs of vertices (although in a directed 

graph, the vertices may be ordered). A drawing of a graph is a mapping of the graph onto 

a surface. In graph theoretic terms, the vertices are mapped onto nodes and the edges are 

mapped onto arcs. I shall be less rigorous in the use of graph theoretic terms and refer to 

the drawing of the graph (which is always mapped onto the plane in order to obtain a 

convenient representation of the conditional independence graph) as a graph, and to the 

nodes (drawn as filled circles) as vertices and arcs (drawn as straight lines) as edges. In 

this section, I shall only be concerned with simple undirected graphs, although directed 

graphs, in which the edges are formed by arrows, do have a role in graphical modelling 

and will be briefly described in Section 7.4.4. A simple graph is one which has no 

multiple edges or loops. 

In all drawings of graphs, the following assumptions are made: 

• Adjacent edges (ie. edges with the same vertex in common) never cross. 

• Two non-adjacent edges cross at most once. 

• No edge crosses itself. 
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• No more than two edges cross at a single point in the plane. 

• There is no more than one edge between a pair of vertices. 

• There are no loops (ie. edges having the same vertex at both ends). 

• All edges are undirected. 

• There are a finite number of vertices and edges. 

These assumptions are also applicable to conditional independence graphs, for 

which most of the assumptions are satisfied by drawing the edges of the graph as straight 

lines. 

An example of a conditional independence graph is presented in Figure 7-1. This 

will be used to illustrate the terms which are introduced in the following paragraphs. 

A B 

H G .. ----e 

c 

Figure 7-1: An example conditional independence graph 

o E 

Two vertices are adjacent if there is an edge between them. For example, vertices 

A and B in the diagram are adjacent. Two edges are adjacent if there is a vertex between 

them. For example, edges A-B and B-C are adjacent. 

A path is a sequence of vertices with an edge between each successive pair. For 

example, in the diagram there are two paths between vertices B and F (B-C-F or B-C-D

F). The path is a cycle if the start and end-points are the same. For example, in the 

diagram there is a cycle C-D-F-C and a cycle A-B-G-H-A. It is a chordless cycle if no 

pair of variables other than successive ones in the path are adjacent. In the diagram, A-B

G-H form a cycle which is chordless, but if there was an edge between A and G and/or an 

edge between B and H, then the cycle would no longer be chordless. 
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Two vertices i and j are connected if there is a path from i to j. For example, in the 

diagram vertices G and F are connected, since there is a path between them (eg. G-B-C

F). If all pairs of vertices are connected, as in the example graph, then it is a connected 

graph. 

A separating subset of vertices separates two vertices i and j if every path joining 

the two vertices contains at least one vertex from the separating subset. For example, the 

variables {C,D,F} form a separating subset between the variables B and E in the diagram. 

A separating subset separates two subsets of vertices a and b if it separates every pair of 

vertices iea and jeb. For example, the variables {C,D,F} form a separating subset 

between the subsets {A,B,G,H} and {E}. 

If a is a subset of vertices, the neighbours of a are all those vertices adjacent to a 

vertex in a which are not themselves in a. For example, the neighbours of the subset 

{C,D,F} are {B,E}. 

The sub-graph of a is obtained by deleting all the vertices not in a from the graph, 

together with all edges which do not join two elements of a. A graph or sub-graph is 

complete if all of the vertices are joined to every other vertex. A clique is a subset of 

vertices which induces a complete sub-graph, but the addition of a further vertex would 

render the graph incomplete; ie. a clique is a maximally complete sub-graph. In the 

example diagram, the variables {A,B,G,H} form an incomplete sub-graph, whereas the 

variables {C,D,F} form a complete sub-graph, which is also a clique. The variables 

{C,D} by themselves form a complete sub-graph, but this is not a maximally complete 

sub-graph and therefore not a clique, since the sub-graph remains complete when the 

vertex F is included. 

The most important feature of the conditional independence graph is that it 

highlights non-adjacent variables and cliques. As shall be seen, this is of importance in 

the construction and, in particular, in the interpretation of the graph. 

7.3.2 Construction of Conditional Independence Graphs 

For the three-variable case where A and B are conditionally independent given C, I 

shall adopt the notation Ail I C, used in the papers by Whittaker (1988), Lauritzen (1979) 

and Edwards & Kreiner (1983), amongst others. Two alternative notations are A.D.B Ie, 
employed by Dawid (1979), Whittaker (1990) and Edwards (1995), and in more recent 

papers by Edwards, Lauritzen, and Wermuth (eg. Edwards (1990), Lauritzen & Wermuth 
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(1989), Wermuth (1985, 1988) and Wermuth & Lauritzen (1983,1990)), and A0B I C, 

employed by Darroch, Lauritzen & Speed (1980). The extension of the notation adopted 

to multivariate cases should become apparent. 

In the construction of a conditional independence graph, one vertex is drawn per 

variable, located freely on the plane. No edge is drawn between a pair of vertices if, and 

only if, the corresponding pair of variables are conditionally independent given the rest. 

Thus, because the pair-wise definition of conditional independence used corresponds 

naturally to the pair-wise definition of an edge, the edges in the graph illustrate the 

patterns of dependence or association within the data. 

Consider the 4 different conditional independence graphs which it is possible to 

construct for the three variables A, B and C, shown in Figure 7-2. In general, for k 

variables it is possible to construct 2(~) different conditional independence graphs. 

B B • • 

A c A C • • .• ~-------. 
CD.) (b) 

C 

(C.) (01) 

Figure 7-2: Four conditional independence graphs constructed for three variables A, B, C 
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The conditional independence interpretation of the four graphs is as follows. The 

first graph corresponds to mutual independence. and the conditional independence 

statements which can be read from the graph are: Ail \ C. A1.C \ B. and B1.C \ A. The 

second graph corresponds to partial independence. and the conditional independence 

statements which can be read from the graph are: Ail \ C and B1.C \ A. The third graph 

corresponds to conditional independence. and the only conditional independence 

statement which can be read from the graph is A1.C \ B. The fourth graph corresponds to 

no independence. and no conditional independence statements can be read from the graph. 

7.3.3 Markov Properties of Conditional Independence Graphs 

The usual interpretation of a conditional independence graph holds that two 

variables i and j which are not joined by an edge (ie. which are not adjacent) are 

conditionally independent given the 'rest' of the variables. ie. iJj\ {rest}. However. 

conditional independence graphs have been shown (eg. Darroch. Lauritzen & Speed 

(1980). and Speed (1978)) to have Markov properties. which have implications for the 

interpretation of the graphs. The three Markov properties of conditional independence 

graphs and their implications are described below. 

Pair-wise Markov Property: Non-adjacent pairs of variables are independent 

conditional on the remaining variables. This is the property which essentially defines the 

construction and interpretation of conditional independence graphs. 

Local Markov Property: Any variable is independent of all the remaining 

variables conditional only on the adjacent variables (ie. the boundary). 

Global Markov Property: Any two subsets of variables separated by a third are 

independent conditional only on the variables contained in the third subset. 

These three properties are in fact equivalent. Proofs are contained in Whittaker 

(1990). and make use of the separation theorem which is presented below. 

Separation theorem: Non-adjacent variables are independent given their 

separating subset alone. In other words. if every vertex in subset b is separated from every 

vertex in subset c by the vertices in subset a. then {b} 1. {c} I {a}. If a is the minimal 
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separating subset, this implies that some of the conditioning variables may be redundant 

in an independence relationship. 

7.4 Models of Interest 

Two types of model of primary interest to graphical modellers are covariance 

selection models for continuous data and log-linear interaction models for discrete data. 

Wermuth (1976a) showed that these two model types are in fact analogous. Recently, 

advances have been made in the consideration of models for mixed data and although, 

because of their theoretical complexity, these will not be my main concern, they are 

described for the sake of completeness. Covariance selection models and log-linear 

interaction models may be regarded as special cases of models for mixed data having just 

one type of data: continuous or discrete. Within graphical modelling, models for 

continuous multivariate normal data (ie. covariance selection models) are also known as 

graphical Gaussian models, models for discrete multinomial data (ie. log-linear models) 

are also known as graphical log-linear models, and models for mixed data are also known 

as graphical conditional Gaussian models or mixed interaction models. Within the section 

on mixed models, I shall also be considering other types of graphical models, such as 

graphical chain models for directed data. 

7.4.1 Covariance Selection Models for Continuous Data 

Standard analyses of continuous data, when summarised by a correlation or 

covariance matrix, commonly employ techniques which examine linear combinations of 

the variables; see, for example, the multivariate ordination techniques described in 

Section 2.5 of Chapter 2. However, the technique of covariance selection described in 

Dempster (1972) and Knuiman (1978) takes an alternative approach which, as the name 

suggests, involves selecting elements of the (inverse) covariance matrix, and setting them 

to be zero. Because of the importance of covariance selection models within graphical 

modelling in general, and their relevance for the remainder of this thesis in particular, I 

shall provide a brief overview of covariance selection models in this section. 

In multivariate normally distributed, or Gaussian, data consisting of p continuous 

variables, which can be represented as a correlation or covariance matrix, there are a 
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possible p(P-l )/2 pairwise associations. As in all of statistical model fitting, a way is 

required which permits the modeller to analyse these associations in order to explain and 

easily interpret the data. 

Dempster (1972) introduced covariance selection as a technique for reducing the 

number of parameters (ie. the number of elements of the inverse covariance matrix) to be 

estimated. This is achieved by setting elements of the inverse covariance matrix, known 

as concentrations, to zero. This is equivalent to setting partial correlations to zero. Thus if 

the element aij of the matrix l: is the covariance of variables XI and Xj' then the element d' 

of the inverse matrix l:-I is the concentration of variables Xi and xj , and Pij.K is the partial 

correlation. 

Iterative fitting procedures involving the use of likelihood ratio tests and based on 

the calculation of deviance were derived by Dempster for determining which 

concentrations could be set to zero, but there is an alternative "naive" covariance selection 

modelling approach which I describe below and shall be applying in later Chapters. 

Wermuth (1976a) noted the connections between log-linear models and 

covariance selection models, both of which belong to the exponential family of statistical 

models, and both of which can be interpreted in terms of conditional independence. 

Essentially, if a concentration in the inverse covariance matrix is zero, then the 

corresponding variables are conditionally independent given the rest. If a concentration is 

non-zero, then the pair of vertices corresponding to these variables will be joined by an 

edge in the corresponding conditional independence graph. The pattern of non-zero and 

zero concentrations is sometimes referred to as an adjacency matrix. 

It should be noted that a covariance selection model may be specified completely 

by the set of pairwise non-zero associations, or two-way interactions. Therefore, unlike 

log-linear models (see below), we do not need to restrict our attention to hierarchical 

models, nor is it possible that a covariance model may not be represented uniquely by its 

corresponding independence graph - all covariance selection models are graphical 

models. 

Naive Covariance Selection Modelling 

This is a simplistic but effective approach to covariance selection modelling, 

described in Whittaker (1988, 1990). 
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1. Estimate the population covariance matrix V by its maximum likelihood estimate: the 

sample covariance matrix S. Alternatively, estimate the population correlation matrix 

by the sample correlation matrix R. 

2. Calculate the inverse of the sample covariance matrix, S·'. Alternatively, calculate the 

inverse of the sample correlation matrix, R'. The diagonal elements of either matrix 

are interpretable in terms of partial variances, and indicate how well the corresponding 

variable can be predicted from the other variables. For example, the diagonal elements 

of the inverse correlation matrix correspond to 1I(I-R2
), where R is the multiple 

correlation coefficient between the corresponding variable and the rest. 

3. Re-scale either inverse to have unit values on the diagonal. The off-diagonal elements 

will now correspond to the negatives of the partial correlation between the two 

corresponding elements i and}, partialled on the rest, K ie. -PijK' 

4. Set 'sufficiently small' off-diagonal elements of the scaled inverse matrix to zero. This 

may be assessed by calculating the edge exclusion deviance, e.e.d = -N In{ l-(pijK)2} 

and comparing to '1: value with 1 degree of freedom. 

5. Draw the resulting independence graph on the basis that no edge is included in the 

graph if the correspontling partial correlation coefficient has been set to zero. 

This approach may be criticised in that a whole set of edges is removed at once, 

instead of removing the least significant edge, recalculating the edge exclusion deviances, 

removing the least significant edge and so on in a backwards model selection procedure 

(see below) until no more edges can be removed. However, Whittaker et al (1988) argue 

that either approach usually results in the same set of edges being included in the graph. 

7.4.2 Log-Linear Interaction Models for Discrete Data 

The seminal paper by Darroch et al (1980) considered the use of graphical models 

within the context of log-linear models. Log-linear models, which are linear models of the 

logarithms of the expected cell counts in a multidimensional contingency table, are well 

described in many texts. Probably the definitive text is Bishop, Fienberg & Holland 

(1975), although a more accessible account is contained in Everitt (1992). Because of the 

importance of log-linear models within graphical modelling in general, and their 
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relevance for the remainder of this thesis in particular, I shall provide a brief overview of 

log-linear interaction models in this section. This overview will be based on the approach 

taken by Everitt (1992) and Edwards (1995). Alternative sources are Kastenbaum (1974), 

Upton (1978), Upton (1986) 

Suppose, for example, we have N observations on three discrete variables A, B and 

C, having #A, #B and #C levels respectively. We can form a three-way contingency table 

of counts, having individual cell counts nijk, where i=l, ... ,#A, j=I, ... ,#B, k=1, ... ,#C. The 

cell probability (ie. the probability that an observation falls in a given cell) can be written 

as Pijk where Plik = P;.P.jP .. k (ie. the product of the corresponding row, column and layer 

totals). Hence the expected cell count mlik = NPlik' If the cell counts are assumed to be 

independent, then the joint probability distribution of the table of counts is given by the 

multinomial distribution. It is assumed that the categories of the variables are unordered, 

and that the marginal counts of the table are not fixed by the design. 

The simplest linear model for a three-way table expresses the (natural) logarithm 

of the cell probabilities as: 

In(pijk) = U + utA + ujB + ukC (i) 

where the u's are unknown parameters. Analogous to ANOVA, U relates to an overall 

mean effect and Uj, Uj' Uk to main effects. This model states that A, B and C are completely 

independent, ie. A.lB I C, A..lC I B and B..lC I A. This corresponds to Figure 7.2a. 

A more complex log-linear model is: 

In(Plik) = U + utA + ujB + UkC + ujlcAC (ii) 

Extending the analogy with ANOV A, this model states that there is a two-way interaction 

between A and C, although uyAB=O and U;kBC=O implying that A and B. and B and C. are 

independent, ie. A..lB1 C and B..lCI A. This corresponds to Figure 7.2b. 

Another possible model for the three variables is: 

In(Plik) = U + utA + ujB + UkC + uyAB + Uj~C (iii) 

This model states that there is a two-way interaction between A and B and between B and 

C, although u;0C=O implying that A and C are independent, ie. A..lCI B. This corresponds 

to Figure 7.2c. 
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Another model is: 

In(Pilk) = U + u;A + ujB + UkC + uyAB + u;,.AC + UjkBC (iv) 

This model states that there are two-way interactions between every pair of variables, thus 

there are no conditional independences. This corresponds to Figure 7.2d. 

The full model is: 

In(pijk) = u + u;A + ujB + UkC + uyAB + u;,.AC + UjkBC + uij,.ABC (v) 

This model states that there is a three-way interaction, in addition to two-way interactions 

between every pair of variables, thus there are no conditional independences. This also 

corresponds to Figure 7.2d. 

Attention is restricted to hierarchical log-linear models. The term hierarchical 

means that if a term in the model is set to zero, then all higher-order terms in the model 

involving the same subset of variables is also zero. For example, if uyAB = 0, as in (ii) 

above, then uij,.ABC=O. The main reason for focusing attention on hierarchical models is 

their ease of interpretability compared with non-hierarchical models. 

Because we are restricting attention to hierarchical models, it is possible to infer 

the presence of lower order interaction terms in the model from the higher order 

interaction terms. This gives a short-hand way of expressing a model, simply by writing 

down the list of terms corresponding to the maximal interaction terms in the model, from 

which all other terms may be inferred. This is termed the generating class of the model. 

For example, the five models considered above may be written as (i){[A] [B] [C]}, (ii) 

{[B] [AC]}, (iii) {[AB] [BC]}, (iv) {[AB] [AC] [BC] and (v) {[ABC]} respectively. 

The independence graph is constructed by connecting any pair of vertices with an 

edge if there is a term in the generating class of the log-linear model which implies a two

way interaction between the variables represented by the vertices. As can be seen, two 

models may have the same independence graphs (eg. models (iv) and (v) above) where 

they contain the same two-way interactions. Thus log-linear models do not always have a 

unique representation. Where the cliques of the graph correspond the generating class of 

the model (as in model (v) above), the model is said to be graphical. Where the cliques of 

the graph do not correspond to the generating class of the model (as in model (iv) above), 

the model is said to be non-graphical. Pairwise conditional independences which may be 

inferred from the graph wherever there is no edge are equivalent to zero two-way 
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interactions. The same conditional independence relationship hold therefore for both 

models (iv) and (v), and model (iv) may be regarded as a sub-model of model (v). I shall 

return to the problem of the non-uniqueness of the independence graph in Chapter 9. 

Edwards & Kreiner (1983), Whittaker (1990) and others refer to a graph 

constructed in this way as an "interaction graph", but in actuality it is identical to the 

independence graph. I wish to use the term "interaction graph" in a specific sense in 

Chapter 9 and subsequent chapters, and so will continue to refer to graphs drawn in this 

context as independence graphs. 

The analysis of contingency tables by graphical models is considered in detail in 

Darroch et al (1980), Edwards & Kreiner (1983). 

Simpson's Paradox 

The fact that only the so-called graphical models can be represented by the 

independence graph illustrates one inadequacy of concentrating on the pairwise 

associations between variables. Simpson's Paradox (Simpson (1951), Hand (1979), Paik 

(1985» illustrates another inadequacy of only studying pairwise associations. 

Consider model (iii) above, for which Al..CI B, indicating that A and C are 

conditionally independent given B. If the three-way contingency table were to be 

collapsed over the levels of B, we would find that A is no longer independent of C. This is 

a consequence of Simpson's Paradox, which occurs whenever there is a change in the 

nature of the association between the marginal and the conditional distributions This 

change may also be a reversal in the direction of the association. 

Asmussen & Edwards (1983) discuss collapsibility within a multidimensional 

contingency table. 

Fitting Log-Linear Interaction Models 

Log-linear interaction models can be fitted using statistical packages such as 

GUM and MIM, which are described in detail in Section 7.5. This section outlines some 

of the basic principles involved in the fitting of log-linear models. 

The goodness of fit of a log-linear model may be measured by its deviance. This is 

based on the difference in the maximised log-likelihoods for the full, or saturated model 

and the model of interest Mo. This can written as: 
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G2 
= 2 L nijk In(nij'/m'ijk) 

where m'ijk = N P'ijk> where the P'ijk are the maximum likelihood estimates of Pijk for the 

model Mo, obtained from the cell counts. Assuming that the hypothesised model of 

interest Mo is true, then the deviance is asymptotically x,2[kl distributed, where the k 

degrees of freedom is the difference in the number of free parameters between the two 

models. 

Alternatively, the deviance difference between two nested models Mo and MI 

(where Mo is nested under MJ) may be computed as: 

d = 2 L nilk In(m I 'Ilk I mO'ilk) 

where mo'ijk and m/ijk are the maximum likelihood estimates for Mo and MI respectively. 

Assuming Mo is true, then the deviance difference is asymptotically x,2[kl distributed, 

where k is the difference in the number of free parameters between Mo and MI. 

In either case, the sub-model will be accepted in preference to the full or fuller 

model only if the difference in deviance is non-significant. 

Note that there is a special class of log-linear models, called decomposable 

models, that have direct estimates that can be used in place of the maximum likelihood 

estimates in the above formulae. Decomposable models are characterised by being 

graphical models with triangulated graphs (ie. no cycles of length ~ 4 without a chord). 

Thus the graph can be decomposed into a set of complete subgraphs having direct 

estimates. Decomposable models are considered in some detail in Darroch et al (1980) 

and Lauritzen et al (1984). 

The following table (Table 7-1), taken from Darroch et al (1980), gives some idea 

of the number of models which may be fitted for 2, 3, 4 or 5 variables. Darroch et al 

actually present the graphs corresponding to all decomposable and hierarchical non

decomposable graphical models of dimension ~ 5. As can be seen, for even a small 

number of variables, there are very many possible models. The topic of model selection 

will be returned to in Section 7.5. 

Dimension 
Type 2 3 4 5 

Interaction 8 128 32768 2147483648 
Hierarchical 5 19 167 7580 

Graphical 5 18 113 1450 
Decomposable 5 18 110 1233 

Table 7-1: Number of models of given type for different numbers of variables 
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Other Measures of Association for Discrete Data 

For simple two-way contingency tables with r rows and c columns, the most 

familiar measure of association is probably the Pearson X2 statistic based on the 

differences between observed (Oij) and expected (Eij) frequencies such that 

X2 = l: l: (OirEij)2/ Eij 

This statistic approximately follows a .. l distribution with (r-l)( c-l) degrees of freedom 

against which it may be compared to assess the independence of the classifying variables. 

For 2x2 tables, a variety of statistics may be computed such as the relative risk, 

the odds, and the odds ratio. Consider, for illustration, the table presented in Figure 7-3. 

Variable J Level 1 

Level 2 

Variable I 

Levell 

a 

c 

a+e 

Level 2 

b 

d 

b+d 

Figure 7-3: Illustrative lxl contingency table 

a+b 

e+d 

N 

The odds of an individual being in Level 1 of I given that they are in Level 1 of J 

is alb. The odds of an individual being in Level I of I given that they are in Level 2 of J is 

e/d. The odds ratio, alternatively known as the cross-product ratio, is given by (alb)/(cld) 

= ad/be. 

Alternatively, the odds of an individual being in Level 2 of I given that they are in 

Level 1 of J is b/a. The odds of an individual being in Level 2 of I given that they are in 

Level 2 of J is die. The odds ratio is now given by (b/a)/(dle) = be/ad. 

If there is no association between I and J, then the proportions will be the same 

irrespective of the levels, ie. alb will equal cld. In this situation, the odds ratio will take 

the value I, no matter how it has been calculated. Alternatively, one may consider the 

natural log of the odds ratio, which will take the value O. Departures from these values 

indicate association between the classifying variables. An odds ratio less than one will 

result in a negative log odds ratio, whereas an odds ratio greater than one will result in a 

positive log odds ratio. Swapping the levels of one of the variables will give l/(odds 
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ratio), as shown above. Ideally one would obtain a confidence interval for a calculated 

odds ratio in order to assess whether it is significantly different from 1. 

For a 2x2x2 table, the odds ratio can be computed for the association between two 

of the variables at each level of the third. If the ratio of these two odds ratios is then 

computed, this will indicate whether there is a three-way association or not. 

There are other measures of association not considered here. The interested reader 

is referred to Bishop et of (1975), Freeman (1983), Everitt (1992). 

7.4.3 Models for Mixed Data 

Many classical statistical methods involve both discrete and continuous variables 

- for example, ANOV A, MANOV A, ANCOV A, multiple regression, logistic regression 

and structural equation models - and may potentially be modelled using graphical 

modelling methods extended to mixed data (Lauritzen (1989), Edwards (1990), Wermuth 

& Lauritzen (1990)), although this has rarely been done in practice. 

Graphical models for mixed data combine the models for continuous data and the 

models for discrete data previously described. Given a set 11 of p discrete variables, and a 

set r of q continuo~s variables, the probability that the discrete variable l=i is Pi> and the 

distribution of the continuous variable Y given I=i is multivariate normal. Hence the 

whole data set is described by the conditional Gaussian distribution. If 11=0, this reduces 

the problem to the class of covariance selection models, whereas if r=0, this reduces the 

problem to the class of graphical log-linear models. 

Hierarchical models for mixed data, also called mixed interaction models or 

graphical association models, are defined by a sum of interaction terms and, rather like 

log-linear interaction modelling, mixed interaction models can be defined by setting 

higher-order interaction terms to zero. 

Model formulae for mixed models can be expressed in a short-hand way in three 

parts, separated by slashes. For example, ifp=q=l, 11={A}, r={y}, one possible model is 

A I AY I AY. The first part of the model corresponds to the discrete generators, the second 

part to the linear generators, and the third part to the quadratic generators. Rules restrict 

the set of permissible formulae. For example, for each linear generator there must be a 

corresponding discrete generator, and for each quadratic generator and for each 

continuous variable there must be a corresponding linear generator. The letters A,B,C, ... 
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are conventionally used to represent discrete variables; ... X Y,Z to represent continuous 

variables. If there are no continuous variables, then the discrete generators give the log

linear interaction model. If there are no discrete variables, then the two-factor quadratic 

generators give the covariance selection model. 

If no discrete generator contains AB, then A..l.B1 {rest}; If no linear (or quadratic) 

generator contains AX then Alli {rest}; if no quadratic generator contains XY then 

X.Lyl {rest}. Therefore to construct the independence graph for a given mixed model, 

simply connect with an edge those vertices that occur together in the same generator. 

When constructing the independence graph corresponding to a mixed model, dots (ie. 

filled in nodes) are conventionally used to represent the discrete variables, and circles (ie. 

empty nodes) to represent the continuous variables. For example, Figure 7.4 shows the 

independence graph corresponding to the mixed (homogeneous) model AB / AX BX A Y, 

BZ/ Xl'; XZ. 

A y 

B z 
Figure 7-4: Conditional independence graph for mixed model AB I AX, BX, A Y, BZ I XV, 
XZ 

To find the formula of the graphical mixed model corresponding to a given graph, 

consider the cliques of the graph. The discrete generators are given by the cliques 

involving discrete variables only. The linear generators are given by the cliques involving 

a single continuous variable. The quadratic generators are given by the cliques involving 

continuous variables only (for a homogeneous model) or the cliques involving all 

variables (for a heterogeneous model). The same ambiguities arise as for log-linear 
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models in that two hierarchical models for mixed data may have the same independence 

graph, so only the graphical model may be determined from the graph. 

Maximum likelihood estimation of the model parameters of a mixed interaction 

model is possible, and expressions can be derived for the deviance. Thus model fitting 

may be carried out a similar way to that already described for log-linear interaction 

models. 

A detailed account of hierarchical interaction models is contained in Edwards 

(1990). 

7.4.4 Directed Graphs 

Directed graphs can be used to study causal mechanisms or the relationships 

between explanatory and response variables. The origins of the study of causal 

mechanisms using directed graphs lie with path analysis in the 1920's, but they now have 

applications in probabilistic expert systems with an emphasis on Bayesian inference. 

Edges are drawn on the graph as arrows corresponding to the direction of influence or 

causality. The graphs should be acyclic ie. with no loops. An early consideration of 

directed graphs within the context of graphical models is contained in Wermuth & 

Lauritzen (1983). 

Chain Graphs, leading to the formulation of graphical chain models, are an 

attempt to combine directed and undirected graphs into a single framework (Wermuth 

(1985), Wermuth (1988), Lauritzen & Wermuth (1989), Wermuth & Lauritzen (1989), 

Lauritzen (1989) assuming the conditional Gaussian joint distribution for mixed 

(continuous and discrete) variables. Within this framework, the set of vertices is divided 

into subsets called chain components. All edges between the vertices within a chain 

component are undirected; all edges between chain components are directed. As usual, a 

missing edge between any two vertices, or subsets of vertices V and W means 

V.LWI {rest}. 
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7.5 Model Selection Procedures 

Given the large number of different log-linear models it is possible to try fitting to 

a table of data, even for a modest number of classifying variables (see Table 7-1 above), it 

is useful to use some sort of strategy or model selection procedure to reduce the number 

of models which you need to try fitting, but which will result in a good-fitting (if not the 

best-fitting) parsimonious model for the data. 

The commonest strategies involve the application of some sort of stepwise model 

selection procedure. These involve starting with a model and adding and/or deleting terms 

(or edges, if a graphical model is desired) until a model is obtained which satisfies some 

criterion. Similar strategies are employed for the stepwise selection of models in multiple 

regression. 

A backwards elimination procedure typically begins with the saturated model, and 

terms are tested and removed one at a time subject to the criterion that their removal does 

not cause a significant change to the fit of the model. A forwards selection procedure 

typically begins with a basic model (no terms, or no interaction terms) and terms are 

added and tested one at a time subject to the criterion that their addition leads to a 

significant improvement in the fit of the model. Other procedures allow for a combination 

of these two approaches, such that terms which are added may later be removed if the 

addition of further terms renders them obsolete, and terms which are removed may later 

be added. A procedure will terminate when no further terms can be added or removed. 

The above model selection procedures are not specific to graphical modelling. 

Further details of general model selection procedures for the fitting of log linear 

interaction models and/or covariance selection models, some of which incorporate 

simultaneous test procedures, are contained in Wermuth et al (1976), Whittaker & Aitkin 

(1978), Benedetti & Brown (1978), Aitkin (1980), Edwards & Havranek (1985), Upton 

(1991). However, it is possible to restrict attention to graphical models and to consider the 

addition or deletion of edges, and the corresponding terms, at each step. Graphical 

modelling is described in Wermuth (1976b), Edwards & Kreiner (1983), Havranek 

(1984). Having obtained a good fitting graphical model, one can then go on to consider 

any non-graphical models having the same conditional independence structure, ie. having 

the same graph (Lauritzen (1979)). Whittaker (1984) considers initially focusing attention 
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on decomposable models in an exploratory analysis of a multi-way contingency table in 

order to further simplify the calculation required .. 

The technique of graphical modelling, meaning the fitting of graphical models to 

data, serves three purposes as listed by Whittaker (1990): 

1. Interpretation. Graphical modelling can be used to describe or explain the inter

relationships between several variables. 

2. Simplification. Graphical models are easy to fit and interpret. They can be used to 

condense the data set without eliminating or obscuring any interesting relationships. 

3. Unification. Graphical modelling provides a unifying framework for continuous 

data, discrete data, and mixed data. 

The above model selection procedures can also be applied to fit models to mixed 

data. 

7.5.1 Modelling with MIM 

MIM is a command driven PC-program designed to carry out graphical modelling 

for continuous, discrete or mixed data. It is, in fact, the only comprehensive package 

written to date for carrying out graphical modelling. Its main features are described 

below. Full details, examples of applications and a copy of the software are contained in 

Edwards (1995). 

Data can be read in to MIM, directly or from a file, as raw data, counts, means or 

covariances and manipulated. Model formulae can be specified in terms of the members 

of the generating class (or generators). MIM will report whether the specified model is 

graphical, whether it is decomposable and whether it is collapsible. Models may be 

changed by the deletion of two-way interactions from or the addition of two-way 

interactions to the current model. This corresponds directly to the deletion of edges from 

or the addition of edges to the conditional independence graph. Parameter estimates for 

the specified model can be obtained using the fit command. This will give the deviance 

and degrees of freedom for the specified model. For decomposable models, MIM can 

obtain the maximum likelihood estimates directly. For non-decomposable models an 
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iterative algorithm is employed. An asymptotic likelihood ratio test may be used to 

compare the current model with a specified base model (where the current model is a sub

model of the base model) - the deviance difference between the two models is treated as 

being asymptotically chi-squared distributed, with degrees of freedom as the difference in 

the number of free parameters between the two models. 

It is also possible to test, in the same way, whether an edge may be deleted from 

the graph of the current model - this is equivalent to testing whether the corresponding 

pair of variables are conditionally independent. It is also possible to apply stepwise model 

selection procedures (see above). The default is backwards selection based on chi-square 

tests of the deviance difference between successive models. Forward selection may 

alternatively be used. 

Standard input, output and on-screen display facilities (of graphs, data, models and 

summary statistics relating to the modelling procedure) are provided. 

7.5.2 Modelling with GLIM 

GUM (Generalised Linear Interactive Modelling) is a package developed under 

the auspices of the Royal Statistical Society for the fitting of generalised linear models. 

Details of the use of GUM are contained in Aitkin et al (1989). In common with SAS and 

SPSS, GUM can be used to fit log-linear interaction models to contingency table data, 

since these fall into the category of generalised linear models, but it cannot be used to fit 

covariance selection models to continuous data. None of these packages offers procedures 

directly related to graphical modelling. Whittaker (1982) describes the fitting of graphical 

log-linear models using the GUM language, and incorporates the notation of Wilkinson 

& Rogers (1973) previously described in Chapter 4. MIM resembles GUM. GUM has 

been used to fit the log-linear model considered in Chapter 12. 

7.6 Limitations of the Conditional Independence Graph Approach 

Whittaker (1990) himself states that "The independence graph of a set of variables 

conveys a vivid but terse description oftheir pattern ofinteraction" and goes on to suggest 

that the graphs could be augmented by attaching a number to each edge which 

corresponds to the strength of the bond represented by that edge. 
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Whittaker (1988) and Whittaker et al (1988) highlight the problem of fitting 

models and constructing graphs for large numbers of variables. For small numbers of 

variables, it is quite straightforward to construct the corresponding conditional 

independence graph by hand, but for larger numbers of variables, the placement of the 

numerous vertices and edges may not be so straightforward, if one wished to avoid having 

numerous crossovers and curves. Whittaker (1988) suggests two approaches to this. 

The first approach suggested is to apply principal components analysis (PCA) to 

the matrix of negative partial correlations obtained through application of the naive 

covariance selection procedure. By plotting the vertices/variables in the space defined by 

the first two principal components, and drawing in edges between pairs of variables 

having a significant edge exclusion deviance, a graph is obtained which has the added 

feature that the lengths of the edges between vertices correspond to the strength of the 

association between pairs of variables. Of course, this does not necessarily result in a 

graph without numerous crossovers, but this approach provides a starting point for 

encoding the strength of association between pairs of variables, and will be considered in 

more detail in Chapter 10. 

The second approach suggested by Whittaker for the construction of independence 

graphs for large numbers of variables is based on the idea of "blocking". This involves 

grouping together strongly associated subsets of variables, having a complete sub-graph 

between them, to form a single block or vertex. An edge between two blocks implies the 

presence of inter-block edges between all variables in the two blocks, whereas the absence 

of a link between two blocks implies that there are no inter-block edges between any of 

the variables in the two blocks. Blocks of variables can be determined by visual 

inspection of the graph, or of the negative partial correlation matrix or matrix of edge 

exclusion deviances, or by application of a hierarchical clustering technique such as 

average linkage cluster analysis to either matrix. Although it seems sensible, as an aid to 

interpretation, to cluster together strongly associated subsets of variables to simplify the 

edge structure between and within subsets of vertices, it has the disadvantage of loss of 

information in relation to the aim of wishing to communicate the associations between the 

variables contained in the model. 

Both of these approaches are applicable only to covariance selection models for 

continuous data, and cannot readily be extended to multi-way contingency tables or mixed 

data. Furthermore, both approaches are intended as exploratory aids, and could be 
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combined by imposing the results of a cluster analysis on a graph obtained through the 

application of PCA. However, none of these approaches have been fully developed by 

Whittaker. In Chapter 10, the PCA approach will be considered in more detail and 

developed as a technique for the encoding of strength of association in conditional 

independence graphs. However, the use of blocking of variables in conditional 

independence graphs, although suggesting an approach to the summarisation of the 

structure in the data, seems to result in a gross simplification of the association structure 

between variables, and will not be pursued any further. The problems of constructing 

graphs for large numbers of variables with the minimum number of cross-overs will, 

however, be considered in the following chapter. 

7.7 Summary 

In this chapter, the use of the conditional independence graph as a simple two

dimensional technique for the representation of fitted statistical models has been 

described and assessed. This technique has been considered here rather than in Chapter 4 

owing to its similarities with some of the two-dimensional approaches developed in 

Chapter 6. 

Although the conditional independence graph has certain limitations, discussed in 

Section 7.6, which preclude its use as a representation technique for all fitted models, it 

does provide a starting point for the development of a graphical representation technique 

which does fulfil the aim of this thesis, and will be the concern of the following chapters. 
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8. The Crossing Number Problem 

8.1 Introduction 

A conditional independence graph (as described in Chapter 7) containing many 

vertices and many edges may, if there are a large number of cross-overs between the 

edges, appear quite messy (making the graph unacceptable on aesthetic grounds) and be 

difficult to read (making the graph unacceptable on the grounds of illegibility). Numerous 

cross-overs may make it difficult to follow the links between vertices which are far apart, 

and the user may erroneously mistake points at which two or more edges cross as being 

additional vertices, at least in the case of graphs consisting of huge numbers of edges and 

vertices. This section is therefore concerned with the minimisation of the number of 

cross-overs as an aid to legibility. 

In three dimensions it would always be possible to construct an independence 

graph with zero cross-overs, but my research aims are concerned with the derivation of a 

two-dimensional solution. A three-dimensional solution could only be examined on a 

computer screen or by construction of a three-dimensi.onal model, but a two-dimensional 

representation could be constructed by hand or with the aid of a computer and then 

subsequently be 'dumped' from the screen and printed out for inclusion in reports, etc. 

Examination of the graph theory literature and personal correspondence (Guy 

(1988» revealed that the problem of representing a graph with the minimum number of 

cross-overs had only been solved in a small number of specific cases. These results are 

described in the following sections. 

8.2 Graph Theoretic Results 

It is assumed that the reader is now familiar with the graph theory concepts 

presented in Section 7.3.1 of the previous chapter. Some additional concepts which are 

required for the understanding of the graph theoretic results presented in this chapter are 

presented below. 

A planar graph is one which can be embedded in the plane; a non-planar graph is 

one which cannot. Thus whenever a non-planar graph is drawn in the plane, some of its 

edges will cross. The crossing number v(G) of a graph G is the minimum number of 
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crossings with which G can be drawn in the plane. A drawing of G having the minimum 

number of crossings is said to be optimal. By definition, for a planar graph v(G)=O, 

whereas for a non-planar graph v(G)~O. If a graph G is a sub-graph of a graph H, then 

v(G)~v(H). 

Erdos & Guy (1973) state: "Almost all questions that one can ask about crossing 

numbers remain unsolved". Similarly, Kainen (1974) states: "Very few results are known 

for crossing numbers". 

For a complete graph Kp with all (~) possible edges drawn between p vertices, it 

has been shown (see, for example, Guy (1971)) that: 

v(K )s;![E.lp-llp-2Ip-3] 
p 4 2 2 2 2 

where [ ] means 'the largest integer not greater than'. Lower bounds have been suggested 

by Guy (1972). 

It is conjectured (by Saaty (1964), amongst others) that equality holds in the above 

equation for all values ofp, but exact results have only been obtained for 1~~10, by Guy 

(1971, 1972). These known values ofv(Kp) are presented in Table 8-1. 

1 I 2 3 5 161 7 8 9 I 10 
o 0 3 9 I 18 I 36 I 60 

Table 8-1: Table giving the known crossing number results for complete graphs 

For p=5 and p=6, there are unique optimal drawings of Kp- For p=7 there are five 

non-isomorphic (ie. distinct, in a graph theoretic manner) optimal drawings. For p=8 there 

are three, and for p=9 there are thought to be about 200 optimal drawings. The optimal 

drawings of Kp for 5~~8 are presented in Erdos & Guy (1973) and Guy (1971, 1972). 

Harary & Hill (1962/63) present an optimal drawing of K9 . 

A planar complete graph (ie. a graph for which v(Kp)=O in Table 8-1) can be 

drawn with the edges as straight line segments and with no cross-overs (proved by Fary 

(1948)). It is not necessarily the case, however, that non-planar complete graphs can be 

drawn with the edges as straight line segments with the number of cross-overs given in 

the table. By convention, conditional independence graphs are usually drawn with straight 

edges, thus the rectilinear crossing number, 17 (G), of a graph G should be considered. 
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The rectilinear crossing number is the minimum number of crossovers with which a graph 

G may be drawn in the plane using a straight line segment for each edge. It has been 

shown by Jensen (1971) that: 

_ [7n4-S6n3 +128n2+48n[n;7]+1081 
v(Kn) ~ 432 

and equality has been conjectured by Guy (1971). 

It should be apparent that v( G)~ 1/ (G). The rectilinear crossing number has only 

been determined, by Harary & Hill (1962/63) (verified by Guy (1972», for complete 

graphs Kp for which 1~~9. These results are presented in Table 8-2. It can be seen from 

this table that 1/(Kp)=v(Kp) for 1$p~7 and p=9. For p~10 it can be shown that 

v (Kp»v(Kp)' For example, it has been conjectured, by Guy (1971, 1972), that 

1/(KIO)=63. 

1 23 I 4 I I 6 I 7 8 
o 0 1 0 I 0 I 3 I 9 I 19 I 

Table 8-2: Table giving the known rectilinear crossing number results for complete graphs 

For complete bipartite graphs Km.n (ie. graphs having m+n vertices and nm edges 

joining each of the m vertices to each of the n vertices), it has been shown that: 

v(K )<[mlm-lI!!J[~J m,n-2 222 

Equality is conjectured by Guy (1971), amongst others, but has only been shown 

to hold for l~in(m,n)~6. Some examples of known results are shown in Table 8-3. For 

the smallest complete bipartite graph for which the crossing number is not known, ie. K7,7' 

it is thought that v(K7,7)=77, 79, or 81. 

m 2 3 4 5 
v (Km,m) 0 4 16 

Table 8-3: Table giving known crossing number results for bipartite graphs for which m=n 
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It has been conjectured that all bipartite graphs can be drawn with the minimum 

number of crossovers as given in Table 8-3 with the edges drawn as straight line 

segments. ie. that v(Km.n) = V (Km.n). 

A given conditional independence graph will rarely be a complete graph 

(corresponding to no independence relationships), nor a bipartite graph. Typically, a 

conditional independence graph will be more akin to a 'general' graph G(n,k) with n 

vertices and k edges. For such graphs it is conjectured (Erdos & Guy (1973» that: 

c k' c k' _1_, < g(n,k) <-'-, 
n n 

where g(n,k) is the minimum value ofv(G) taken over all possible graphs of G(n,k) and c) 

and C2 are constants. 

From Euler's theorem, which relates the number of vertices, edges and faces of a 

plane graph (see, for example, Wilson (1985) or Harary (1969)), it is known that g(n,3n-

6) = 0 and that g(n,3n-5) = 1. In general it is thought, by Erdos & Guy (1973) and Guy 

(1972), that: 

g(n,k) = k-3n+6 for 3n-6~ k ~ min(4n-8,(;» 
except that g(7,20)=6 and g(9,28)=8. 

The above results for a graph G(n,k) are not known for the rectilinear case. 

A few highly specific results and bounds have been found for other graphs, such 

as n-partite graphs (ie. having all possible edges drawn between n sets of vertices, where 

n~3), but these will not be considered here. Similarly, crossing number results for other 

surfaces, such as the sphere, the Klein bottle, and the torus, are not considered here since 

they are not felt to be of relevance to the consideration of conditional independence 

graphs. 

It would therefore seem to be the case that, with a few exceptions, no theoretical 

results exist for the determination of the minimum number of cross-overs for any given 

graph. Those results which have been obtained are for particular types of graphs (some 

complete graphs, some bipartite graphs, and a few other special types of graphs) which 

may be rarely encountered in practice. The majority of conditional independence graphs 

may be expected to be incomplete graphs, which do not fall into any of these categories. 
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8.3 Algorithmic Approaches 

An alternative approach is to attempt to find an algorithmic approach to the 

problem of constructing a graph having the minimum number of cross-overs. The graph 

theory literature contains a number of algorithms for testing the planarity of a graph and 

for the construction of a planar graph. Some of these techniques are outlined in Section 

8.3.1. However, although these algorithms can be used to identify non-planar graphs, they 

have not been developed for the construction of non-planar graphs. It may, however, be 

possible to modify the algorithms for this purpose, and I have made some suggestions as 

to how this might be achieved so as to result in the minimum number of cross-overs. 

A review of the electronics literature, which might be considered to be a major 

application of graph theory in the design of Printed Circuit Boards, proved to be 

surprisingly fruitless. The problem in circuit board design, mentioned by Read (1979) and 

Gibbons (1985), is to construct an electrical circuit (or circuits) on the plane, ideally using 

the minimum amount of wire, but with the minimum number of cross-overs, since these 

can lead to interference problems. However, in the 1960's, when circuit designers were 

just beginning to come to grips with these problems, the nature of circuit designs changed 

dramatically with the development of multi-layered circuit boards. With such boards, 

problems with cross-overs never arise, since there is a third dimension into which the 

circuit can be directed. 

The only algorithm to emerge from the electronics literature of relevance to the 

problem of constructing a two-dimensional graph with the minimum number of cross

overs is that of Nicholson (1968), which is described in Section 8.3.2. 

8.3.1 Algorithms for Planar Graphs 

One of the most fundamental characterisations of a planar graph is that it does not 

contain a sub-graph which is homeomorphic to (ie. essentially identical to) Ks or K3•3, 

these being the smallest complete and bipartite graphs, respectively, which are non-planar. 

This is a theorem due to Kuratowski, contained in Wilson (1985), amongst others, and can 

be used as a necessary and sufficient criterion for testing planarity (see, for example, Tutte 

(1963) and Gibbons (1985)). However, as Read (1970) states, this theorem does not 
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provide a practical algorithm for testing the planarity of a given graph, nor does it provide 

a practical algorithm for the construction of a planar drawing of a planar graph. 

Read (1970, 1979) and Gibbons (1985), among others, present a number of 

algorithms which have been developed to test for the planarity of a given graph and for 

the construction of planar graphs. I describe three of these approaches below, together 

with suggestions as to how they might be modified for the construction of non-planar 

graphs. 

One of the algorithms described by Read is due to Weinberg (1972). This involves 

construction of a spanning tree of the graph, which is drawn in the plane in any 

convenient manner. Then an attempt is made to add the remaining edges so that no 

crossings occur. This may not be possible, even if the graph is planar, depending on the 

position in which the tree was originally drawn. However, by rotating parts of the graph, 

it may be possible to accommodate the edges. This method is quite readily extendible to 

the construction of non-planar graphs with the minimum number of cross-overs. 

However, the algorithm is not suited for computer implementation although it can be 

implemented by hand quite readily. 

A different approach is taken by Fisher & Wing, again described by Read. This 

involves starting with a circuit of the graph. If the graph is planar, this circuit can be 

deformed into a circle. If the vertices of the circle are removed, and any edges adjacent to 

these vertices also removed from the graph, this will leave a number of connected 

components. First of all, the planarity of each of these components must be determined 

and planar representations obtained. Then it must be determined whether each component 

needs to be placed inside or outside the circle to ensure that none of the link edges 

between the vertices in the circuit and the components of the graph cross-over when they 

are redrawn. If the graph is non-planar then this cannot be achieved. This algorithm 

reduces the problem to a number of similar problems involving smaller graphs and can be 

readily programmed, although fairly slow. If one wished to modify this algorithm for the 

construction of a non-planar graph, then one would try to place the components of the 

graph so as to minimise the number of cross-overs. 

Another algorithm cited by Read (1979) is due to Lempel, Even & Cederbaum. 

This involves starting with a single vertex and building up a drawing of the graph in the 

plane by the addition of vertices and edges. This results in a fast computer-implementable 

algorithm. 
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If there are less than nine edges or less than five vertices, or if E53 V-6, where E is 

the number of edges and V is the number of vertices, then the graph must be planar (due 

to Euler's theorem). For incomplete graphs involving just 5, 6, 7 or 8 vertices and any 

number of edges, I have considered how one might construct graphs having the minimum 

number of cross-overs by considering the optimal drawings of complete graphs having 

these numbers of vertices. 

The complete graph on 5 vertices, Ks, has just one cross-over. If the graph to be 

constructed have five vertices and at least one edge missing, then by mapping one of the 

missing edges in the graph to be constructed onto one of the edges involved in the cross

over in the complete graph, a representation of the graph is obtained which has no cross

overs. This follows from Euler's theorem, since E=3 V-6 in this case. The complete graph 

on 6 vertices, ~, has three cross-overs. With more than 6 edges missing, it is possible to 

map the missing edges to edges in the complete graph in order to obtain a planar graph. 

However, if there are between 3 and 6 edges missing, it mayor may not be possible to 

map the missing edges to edges in the complete graph to give a planar graph, depending 

on the vertices involved. If there are less than 3 edges missing, it may be possible to map 

the missing edges to the edges in the complete graph to minimise the number of cross

overs, but it will not be possible to construct a planar graph. For the complete graph on 7 

vertices, K7, at least 13 edges must be missing for a planar graph, and if fewer than 6 

edges are missing this will always result in a non-planar graph. For the complete graph on 

8 vertices, Kg, the corresponding figures are at least 20 edges missing for planarity and 

fewer than 10 edges missing for non-planarity. However, by careful mapping of the 

missing edges onto the edges involved in the cross-overs in the complete graphs, it should 

be possible to minimise the number of cross-overs. In theory this approach is readily 

programmable, but only appropriate for use with the handful of complete graphs for 

which the optimal drawings are known. For more than 8 vertices, the number of optimal 

drawings is not known. 

Although I have presented a number of algorithms, due to Read, for the 

construction of planar graphs and have suggested how they may be modified for the 

construction of non-planar graphs, and I have also suggested an algorithm based on 

optimal drawings of complete graphs, these algorithms do not guarantee the 'best' 

solution in terms of the minimum number of cross-overs. The problem of knowing what 
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the best solution is would still remain since, as stated in the previous section (Section 8.2), 

there are no useful theoretical results for incomplete graphs. 

8.3.2 Nicholson's Algorithm 

Nicholson (1968) presents an algorithm, based upon permutation of the edges and 

vertices of a graph, which purports to result in the minimum, or otherwise a near

minimum, number of cross-overs. Hashimoto & Noshita (1971) explain why it is not 

always possible to obtain a representation having the minimum number of cross-overs. 

Nicholson's algorithm involves taking a given graph, defined by a set of vertices 

and edges, and deforming it so that the vertices lie along a horizontal line with the edges 

between the vertices forming semi-circles above or below this line. This same linear 

representation is used by Saaty (1964) in considering the minimum number of 

intersections in complete graphs. 

Given this linear representation of the graph, the edges and the vertices are then 

permuted until the number of crossings is a minimum. However, for a graph with n 

vertices and m edges, there are 2m
-

I Cn-l)! possible permutations of the vertices and edges. 

Nicholson's algorithm reduces the number of permutations to be tested by optimising the 

initial placement of the vertices and edges along the line, and by controlling the permuting 

of the vertices and edges in relation to a given function. 

Nicholson's algorithm does not always result in the minimum number of cross

overs, but it does perform quickly and well. For large regular graphs, Nicholson obtained 

results which were equal to or within 2 cross-overs of the known results or lower bounds, 

and for random graphs the algorithm performed far better than Monte Carlo methods. 

I have implemented the algorithm in a simple FORTRAN program, so that the 

algorithm can be readily applied to a graph by inputting the number of vertices and the 

connections which exist between pairs of vertices in the graph. The output consists of an 

ordering of these vertices, and a listing of those edges which must be drawn "above" an 

imaginary horizontal line drawn through the vertices in their final order, and those which 

must be drawn "below" this line. This solution is not necessarily unique. 

The solution can be translated into two dimensions in order to obtain a more 

conventional representation of the graph, having the minimum, or a near-minimum, 

number of cross-overs. The vertices can be located freely on the plane, subject to the 

constraint that it must be possible to draw a non-intersecting imaginary line between the 
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vertices in the order in which they occur in the final permutation. The edges are then 

drawn either side of this imaginary line, subject to the constraint that all edges "above" 

the horizontal line which would be drawn through the vertices in the one-dimensional 

solution are drawn to one side of this imaginary line, and that all edges "below" the 

horizontal line which would be drawn in the one-dimensional solution are drawn to the 

other side of this imaginary line. This is equivalent to deforming the linear graph 

representing the solution. 

There is obviously considerable freedom in the choice of positions of the vertices. 

One constraint which may be imposed for the construction of conditional independence 

graphs is that the edges between the vertices should all be straight lines. This may reduce 

the amount of freedom available in the location of the vertices, and make the graph harder 

(or even impossible) to construct by hand. It would almost certainly be impossible to 

modify the programmed algorithm to always give a graph with the minimum, or a near

minimum, number of cross-overs which could be constructed in two dimensions with 

straight-lined edges. 

8.4 Summary 

This chapter has been concerned with the construction of conditional 

independence graphs with the minimum number of cross-overs as an aid to legibility. 

Some graph theoretic results for crossing numbers were found which may be of 

use for the construction of a small number of special, typically complete, graphs, but for 

the construction of more general incomplete graphs, no useful theoretical results exist. 

It was instead decided to try an algorithmic approach to the construction of graphs 

having the minimum number of cross-overs. Most algorithms in the graph theory 

literature have been developed for the identification and construction of planar graphs (ie. 

graphs having no cross-overs), but suggestions were made as to how these algorithms 

could be modified for the construction of a non-planar graph with, hopefully, a small 

number of cross-overs. 

A review of the electronics literature uncovered a readily programmable algorithm 

due to Nicholson for the construction of a graph having the minimum, or a near

minimum, number of cross-overs. However, the one-dimensional solution with curved 

edges which is obtained would not necessarily correspond to a two-dimensional 
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conditional independence graph with straight edges having the same number of cross

overs. 

Thus it is concluded that no straightforward theoretical or algorithmic solution 

exists for the problem of constructing any conditional independence graph with the 

minimum number of cross-overs. I shall, however, suggest a way around this problem in 

Chapter 11. 
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9. Edge Coding of Interactions in Conditional 

Independence Graphs 

9.1 Introduction 

As has already been stated (in Chapter 7), in a conditional independence graph 

constructed to represent a hierarchical log-linear model, the absence of an edge indicates 

that the pair of variables corresponding to the two vertices which are not linked are 

conditionally independent, given the levels of the other variables. If there is an edge, this 

indicates that the variables are associated, but provides no further information about the 

nature of this association. In particular, no information is given about whether this 

association is the same or different between levels of the other variables; ie. about the 

order of any interactions (other than two-way) involving these two variables. It is, of 

course, not appropriate to talk about different 'levels' of variables, nor of higher order 

associations, in the case of covariance selection models for continuous data; hence this 

chapter is restricted to the consideration of (hierarchical) log-linear models for discrete 

contingency table data. 

In the remainder of this chapter, an edge coding scheme for conditional 

independence graphs for log-linear models will be described, which provides additional 

information about the nature of the associations between pairs of variables. The use of 

edge codes is based on the representation of interaction type by line styles described in 

Section 6.2.3 of Chapter 6. Through the use of the edge coding scheme it is possible to 

represent a larger number of models without ambiguity than can be achieved with the 

existing form of the conditional independence graph. However, those situations in which 

models can still not be represented without ambiguity are discussed. The work contained 

in this chapter was originally presented in Cottee & Hand (1989). 

9.2 Interpretation of Interactions in Conditional Independence Graphs 

The independence graph drawn in Figure 9-1 corresponds to the complete graph 

drawn on three vertices. Since there are no edges missing from this graph, no conditional 

independence statements may be made. The edges in the graph imply that A and C are not 
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independent given the levels of B, nor are A and B independent given the levels of C, nor 

Band C given the levels of A. What cannot be detennined from the graph in Figure 9-1, 

however, is whether the association between A and C, for example, has the same (non

zero) value for each level of B, or whether the AC association differs between levels of B. 

If the AC association has the same value for each level of B, then the graph corresponds to 

a model with no ABC interaction, and thus corresponds to the model with generating class 

([AB) [AC) [BC)}. If the AC association does differ between levels of B, then the graph 

corresponds to the model containing the ABC interaction, which has generating class 

([ABC)}. 

c 

~ ____________________ ~.B 

Figure 9-1: Independence graph for ((AB) [AC) [BC)} and {(ABC)} 

For a graphical model, the cliques (ie. the maximally complete sub-graphs) of the 

independence graph correspond to the elements of the generating class of the model. 

Thus, in the context of graphical models, the graph in Figure 9-1 represents the graphical 

model with generating class {[ABC]} , and there is no independence graph which 

corresponds uniquely to the model with generating class {[AB) [AC] [BC)}, since this is 

not a graphical model. 

A non-graphical model may be regarded as a sub-model of the graphical model 

having the same independence graph, since the conditional independence relationships 

which hold for the graphical model, and which can be read from the independence graph, 

will also hold for any sub-models. However, for a given independence graph, it would not 
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be possible to determine whether the edges in the graph are intended to correspond to 

associations in the graphical model, or to associations in a non-graphical sub-model. 

9.3 Coding of Edges to Distinguish Between Models Involving Three 

Variables 

As has been seen, for an independence graph drawn on three vertices the absence 

of an edge implies that there is no association between two variables at any of the levels 

of the other variable. The presence of an edge may imply the presence of a two-way 

association, if that association is the same for each level of the third variable. 

Alternatively, an edge may imply the presence of the three-way association, if the two

way association represented by that edge differs between levels of the third variable. The 

presence of the three-way association would, in tum, necessitate the presence of all two

way interactions implied by the three-way interaction, since I am concerned with 

hierarchical models. 

I therefore propose using a new edge 'code', drawn as a dashed line, to represent 

the situation when the corresponding two-way association is different at each level of the 

third variable, and will retain the existing edge 'code', a continuous line, to represent the 

situation when the corresponding 2-way association is the same at each level of the third 

variable. Using these edge codes, Figure 9-2 shows the conventional independence graph 

which now represents the model with generating class {[AB] [AC] [BC]}, and the graph in 

Figure 9-3 represents the model with generating class {[ABC]}. 

c 

~ ____________________ ~B 

Figure 9-2: Interaction graph for (lAB) [AC) [Be)} 
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'A , B 

-----------------~ 
Figure 9-3: Interaction graph for {[ABC]} 

Note that there are logical constraints on the use of the edge codes. For three 

variables it would not be possible to use both dashed edges (indicating the presence of the 

3-way interaction) and continuous edges (indicating the absence of the 3-way interaction) 

in the same graph on three vertices/variables. 

In using different edge codes to distinguish between different interaction types, 

my primary concern is with the display of the conditional interactions in the model (ie. the 

values of the pair-wise interactions, conditional on the levels of the other variables), rather 

than with the display of the pair-wise conditional independencies. The graph drawn using 

the edge codes will therefore be referred to as a conditional interaction graph, or 

interaction graph for short. 

9.4 Coding of Edges to Distinguish Between Models Involving Four or 

More Variables 

9.4.1 Four Variables 

The notion of an interaction graph, using different edge codes to distinguish 

between different types of interaction in order to distinguish between different models, 

can be extended to four or more variables. 
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For example, Figure 9-4 shows an independence graph (ie. not using the edge 

codes) on four vertices. The corresponding graphical model is {[ABD] [ACD]} and the 

same diagram would be used to represent all of the following: {[AB] [BD] [CD] [AC] 

[AD]}, {[ACD] [AB] [BD]} , {[ABD] [AC] [CD]}, as well as {[ABD] [ACD]}. That is, 

from an independence graph it is not possible to distinguish between these four models. 

However, as Figures 9-5, 9-6, 9-7 and 9-8 show, using interaction graphs (with edge 

codes) all four of these models are quite distinguishable. 

c o 

B 

~----------------------

Figure 9-4: Independence graph for {[ABD) [ACDn 

o 

B 

Figure 9-5: Interaction graph for {lAB) [AC) [AD] [BD] [CD]} 
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.------------------~~ 
I ~~ 
I ~~ 
I ~~ 
I ~~ 
I ~~ 
I ~~ 
I ~~ 
I ,~ 
I ~~ 
I , 
I ~~ 
A~ 8 

Figure 9-6: Interaction graph for {lACD) [AB) [AD)} 

c o 

~--------------------------~~ ~~ I 
~~ I 

" I ~, I 
,~ I 

" I ,~ I 

" I 
" I ,~ I 

~ 
y' 18 

--------------------~ 

Figure 9-7: Interaction graph for ([ABD) [AC) [CD]} 

C 0 

.-------------------~, I ~~ I 
I ~~ I 
I ,~ I 
I ~~ I 
I ,~ I 
I ~, I 
I ,~ I 

I" I 
I'~ I 

I " I 
I ~~ I 
~ 8 

~--------------------~ 

Figure 9-8: Interaction graph for ([ABD) [ACDn 
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To distinguish the model with generating class {[ABCD]} from models involving 

only 3-way interactions and which have all pair-wise associations present, it is necessary 

to introduce another edge code. An alternately dashed-dotted line is used to indicate such 

a 4-way interaction. Figure 9-9 shows the model {[ABCD]}, while Figure 9-10 shows the 

graph representing the models with at least three 3-way interactions present, ie. {[ABC] 

[ABD] [ACD] [BCD]}, {[ABC] [ABD] [A CD]} , {[ABC] [ABD] [BCD]}, {[ABC] [ACD] 

[BCD]}, and {[ABD] [ACD] [BCD]}. 

Figure 9-9: Interaction graph for {[ABeD]} 

C 0 

.~------------------;. 
I ~~ " I 
I ~~ " • 
I ~~ ,'1 
I ~, " I 
• ~, " I 
I ~ • 
• " ~~ I 
I " ~~ • I,' '~I 
I " ~~ I 
I " ~~ I ~ ~ 8 

~--------------------~ 

Figure 9-10: Interaction graph for models with at least three 3-way interactions present 

As noted above, in a graphical model the cliques of the independence graph 

correspond to the elements of the generating class of the model represented. Non

graphical sub-models of the graphical model may have the same independence graph as 
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this model, thus the independence graph will not allow us to distinguish between these 

models. As can be seen in Figure 9-10, different models may also have the same 

interaction graph. A similar convention is therefore proposed for interaction graphs; ie. 

that the set of complete sub-graphs implied by the edge codes used in the interaction 

graph correspond to the elements of the generating class of the model represented. In this 

way, the graph of Figure 9-10 is taken to represent the model {[ABC] [ABD] [ACD] 

[BCD]}, even though models with only three of the 3-way interaction terms in the 

generating class have the same interaction graph. It is suggested that the model 

represented by the interaction graph be referred to as a graphical interaction model. 

9.4.2 More Than Four Variables 

In the previous sub-section, a graphical interaction model was defined as one for 

which each complete sub-graph of the interaction graph, implied by the edge codes, 

corresponds to an element of the generating class of the model. A non-graphical 

interaction model is therefore a sub-model of the graphical interaction model having the 

same interaction graph. Consider, for example, the interaction graph drawn on five 

vertices in Figure 9-11. This graph has been constructed to represent the model with 

generating class {[A BCD] [ABCE] [ABDE] [CDE]} , using the usual edge codes. 

However, the graphical interaction model corresponding to this graph, with the elements 

of the generating class of the model corresponding to the complete sub-graphs implied by 

the edge codes in the graph, is {[A BCD] [ABCE] [ACDE] [ABDE] [BCDE]}. The model 

represented is therefore a (non-graphical) sub-model of the graphical interaction model 

corresponding to the graph. 

For three and four vertices, the complete sub-graphs of the interaction graph were 

each formed by a single type of edge code. For example, a continuous edge between two 

vertices corresponded to a 2-way interaction in the generating class, three dashed edges 

between three vertices corresponded to a 3-way interaction, and six dashed-dotted edges 

between four vertices corresponded to a 4-way interaction. 

For five or more vertices, the complete sub-graphs corresponding to 3,00 .,(n-2)

way interactions (where n is the number of vertices) may not be formed by a single type 

of edge code. For example, in Figure 9-12 the ADE sub-graph is formed by two different 

edge codes - a dashed line for the AE and DE edges, and a dashed-dotted line for the AD 

edge. This situation arises as a result of the pair-wise nature of the edges: if an edge 
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Figure 9-11: Interaction graph for {[ABCD) (ABCE) (ABDE) (CDE)} 

(corresponding to a 2-way association) is contained within at least two elements of the 

generating class which are of different orders, only one code can be used to represent the 

edge. The code chosen is the one corresponding to the highest interaction containing that 

edge. Therefore, in Figure 9-12, the AD edge is contained within both the ADE and ABeD 

SUb-graphs, and the dashed-dotted line code is used, corresponding to the 4-way 

interaction. 

In general, if there are at least two terms of different orders, each greater than 2-

way, in the generating class of the model, with at least one edge in common, then the 

complete sub-graphs of terms other than the highest are not formed using a single type of 

edge code. 

The above is only applicable to interaction graphs drawn on five or more vertices. 

If there are three vertices, then there is either one 3-way interaction, or up to three 2-way 

interactions. If there are four vertices, then there is either one 4-way association, or some 

combination of 3-way and 2-way interactions. However, the generating class of a 

(hierarchical) model with four variables will never include a 2-way interaction which is 

contained within a 3-way interaction, and so only one edge code is ever needed for each 

complete sub-graph. 
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Figure 9-12: Interaction graph for ((ABeD) [ADE)} 

For an interaction graph drawn on five or more vertices, a complete sub-graph on s 

vertices must have at least one edge corresponding to the s-way interaction, else the sub

graph will correspond to a higher-order interaction. The other ~(s(s-1 ))-1 edges may 

correspond to s-way or higher order interactions. 

Use of a particular code for an edge indicates that the association between the two 

variables joined by that edge is different between the levels of p other variables. For a 

continuous line, corresponding to a 2-way interaction, p=0; for a dashed line, 

corresponding to a 3-way interaction, p= 1; and for a dashed-dotted line, corresponding to 

a 4-way interaction, p=2. Therefore, a given edge will form part of a complete sub-graph 

on p+2 vertices, corresponding to a (p+2)-way interaction in the generating class of the 

model represented. 

In Figure 9-12, the dashed edge between A and E, for example, implies that there 

is at least one other variable X which will form a complete sub-graph on three vertices 

AEX. The other edges AX and EX must correspond to 3-way or higher associations. In this 

case X=D, and the model represented corresponds to the graphical interaction model. 

In Figure 9-13, the dashed edge between C and E implies that there is at least one 

other variable X which will form a complete sub-graph CEX. The other edges ex and EX 
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must correspond to 3-way or higher order interactions. In this case X=A, B, or D, and the 

other two edges, in each case, correspond to 4-way interactions. The graphical interaction 

model corresponding to this graph is therefore {[ABCD] [ABD£] [CD£] [BCE] [ACE]} , 

and the model represented by the interaction graph is a non-graphical interaction sub

model of this model. 

Figure 9-13: Interaction graph for {[ABCD] [ABDE] [ACE]} 

In general, if there are n vertices the largest possible order interaction will be n

way, so that a maximum of (n-l) edge codes will be required. However, if the highest 

order interaction in the generating class, corresponding to the largest clique of the graph, 

involves s variables, then a maximum of (s-l) edge codes will be required, corresponding 

to the (2, ... ,s)-way associations (where s:5;n). A complete sub-graph on s vertices will 

have ~(s(s-I)) edges, so if s is very large it may become difficult to determine the 

complete sub-graphs corresponding to a particular edge. However, sparseness of such 

graph structures has been stressed as likely (for example, by Lauritzen and Spiegelhalter 

(1988)), so in practice not many edge codes may be needed, and the complete sub-graphs 

may not be too large. 
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9.5 Summary 

In this chapter, an edge coding scheme is proposed for use with conditional 

independence graphs for discrete data. By adopting this edge coding scheme, a 

conditional interaction graph is obtained which is more informative than the 

corresponding conditional independence graph, and which can be used to provide an 

unambiguous visual summary for a larger number of models than can be achieved using 

the independence graph. In other words, the interaction graph is useful for the 

representation of some non-graphical as well as graphical models. However, there are still 

some non-graphical models which cannot be represented through the use of interaction 

graphs without ambiguity. 

The interaction graph approach is considered again in Chapter 11 where a solution 

to the problem of ambiguity is proposed which can be applied to both independence and 

interaction graphs. 
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10. Encoding Strength of Association in Conditional 

Independence Graphs 

10.1 Introduction 

In the preceding chapter (Chapter 9), some consideration was given to the problem 

of how the nature of an interaction could be incorporated into conditional independence 

graphs by the use of an edge coding scheme. This chapter is also concerned with the 

incorporation of additional information in conditional independence graphs. The concern 

of this chapter is not, however, with the encoding of the nature of the interaction, but with 

the encoding of the strength of the association. 

In encoding the nature of the association, it was only appropriate to consider 

models for discrete data (ie. hierarchical log-linear models) since models for continuous 

data (ie. covariance selection models) involve only pair-wise associations. However, in 

encoding the strength of the association, it is more straightforward to consider models for 

continuous data since the pair-wise associations correspond uniquely to edges in the 

conditional independence graph, whereas for models for discrete data the edges in the 

graph may correspond to more than one interaction. Thus this chapter is mainly concerned 

with the encoding of the strength of associations in conditional independence graphs for 

continuous data, although some consideration will be given to the discrete data case. 

In the first two sections (Sections 10.2 and 10.3), measures of strength of 

association will be considered for continuous data and discrete data respectively, although 

these have also been considered in Chapter 7. I shall then go on to consider, in Section 

10.4, the encoding of strength of association by distance, and in Section 10.5 will consider 

the encoding of strength of association by edge style. This leads on to the execution of a 

graphical perception experiment, which is described in detail in Section 10.5.1. Finally, 

encoding the sign of the association is considered in Section 10.6. 

10.2 Measures of Strength of Association for Continuous Data 

For continuous multivariate Normal (MvN) data, which is the concern of the bulk 

of this chapter, associations are pair-wise and correspond directly to the edges in the 
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conditional independence graph, such that zero pair-wise associations correspond to the 

missing edges in the graph. 

As was indicated in Chapter 7, the strength of each association may be inferred 

from the value of the partial correlation Pij.K between a pair of variables i and j partialling 

on the rest of the variables K, or from the value of the edge exclusion deviance (e.e.d.). 

These two values are monotonically related as: 

e.e.d.= -N In(l-(P?:. K») 
I). 

where N is the number of observed units. 

In general, if the e.e.d. is sufficiently small (ie. < X2
[II = 3.841, a = 0.05), thus 

corresponding to a small partial correlation coefficient, then no edge is drawn between the 

corresponding pair of variables in the graph. However, the greater the absolute value of 

the partial correlation, the greater the value of the e.e.d. and the stronger the association 

between the corresponding pair of variables. 

10.3 Measures of Strength of Association for Discrete Data 

In a conditional independence graph constructed for discrete data, each edge may 

form part of a two-way association, or of one or more three-way associations, and/or of 

one or more four-way associations, etc. Thus measures of strength of association which 

are related to the parameter values of the log-linear model (for example, their value or 

significance) could not readily be encoded in the graph since a single edge may take on 

multiple values, and three or more edges would be involved in three-way or higher order 

interactions. 

There is a concept comparable to the edge exclusion deviance used in covariance 

selection models for continuous data which can be used with discrete data - namely the 

exclusion deviance based on the maximum likelihood test statistic. This is used within the 

context of graphical modelling to investigate the effect of removing each edge in tum 

from the graph corresponding to a fitted graphical model. Because of the computational 

complexity in the step-wise fitting of numerous graphical models, the exclusion deviance 

is usually found by using MIM or GUM to fit the (~) graphical models which can be 

derived by dropping one edge from a graph having k edges. A comparable concept to the 

matrix of edge exclusion deviances for continuous data would be a matrix of exclusion 
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deviances for the edges formed by each pair of variables in the final fitted graphical 

model. A missing edge would have zero deviance; otherwise the greater the deviance, the 

stronger the association. 

Note that for continuous data, edge exclusion deviances may be non-significant 

but are unlikely to be exactly zero. For discrete data, the values of the edge exclusion 

deviances depend on the base model considered - this may be the saturated model, in 

which case some deviances may be non-significant but are unlikely to be exactly zero; or 

this may be a model fitted using a step-wise procedure, perhaps using an iterative 

procedure starting with the saturated model and dropping one edge at a time according to 

the value and significance of its exclusion deviance. The exclusion deviances of the 

missing edges in a model fitted in this way will be zero, whilst the deviances of the 

remaining edges may no longer resemble the magnitude of these edges in the saturated 

model from which the fitted model was derived. Moreover, when deleting each edge in 

tum, it is always the graphical model corresponding to the resultant graph which is then 

fitted - non-graphical models do not have a place in the model-fitting procedure. 

For small contingency tables, typically 2x2, one well-known measure of 

association is the cross-product ratio, or cpr (see Bishop et al (1975), Whittaker (1990)). 

Although there are other measures of association available, based on the 'X: statistic (see, 

for example, Everitt (1992)), these are more an index measure for assessing the 

significance of the association exhibited in a given table or for comparing the degree of 

association in different tables and, unlike the cross-product ratio, do not constitute a direct 

measure of the association between the variables in the table. 

For a 2x2 table of proportions as shown in Figure 10-1: 

If the row and column variables (A and B in Figure 10-1) are interchanged, the 

value of the cross-product ratio remains unchanged. If the rows of A, or the columns of B, 

alone are interchanged, the new value for the cross-product ratio will be the reciprocal of 

the previous value. 

For perfect independence, cpr= 1; otherwise the cross-product ratio may take 

positive values up to co. It is more usual, however, to consider the natural logarithm of the 

cross-product ratio. For perfect independence In cpr=O; otherwise the natural log of the 
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Figure 10-1: Figure showing the proportions in each cell used in the calculation of the cross
product ratio for a 2x2 contingency table 

cross-product ratio may take positive or negative values to 00. The natural log of the 

reciprocal of the cross-product ratio, corresponding to an interchange of the rows or 

columns of one of the variables, will take the same value as the natural log of the cross

product ratio of the untransformed contingency table, but will have the opposite sign. 

The cross-product ratio is a strictly pair-wise concept for use with variables having 

two levels each. However, for a 2x2x2 table, for example, it is possible to calculate the 

cross-product ratio for two of the variables conditioning on the levels of the third variable. 

For larger tables one might consider collapsing the table across the levels of some of the 

variables to give a single 2x2 table or a series of 2x2 tables for which the cross-product 

ratio can then be calculated. However, in collapsing contingency tables and considering 

only the margins, erroneous conclusions may be reached due to misleading associations 

resulting from the act of collapsing the tables. This phenomenon is commonly known as 

Simpson's paradox (Simpson (1951)). 

The cross-product ratio can also be directly related to the interaction terms of the 

log-linear model for two or three variables (see Whittaker (1990». 

Although the following sections concerning the encoding of strength of 

association in conditional independence graphs will be illustrated using continuous data 

examples, for which the strength of the associations between variables can be readily 

calculated as either the negative partial correlation coefficient or the edge exclusion 
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deviance, it is possible to adapt the approaches described for use with pair-wise measures 

of strength of association for discrete data (ie. the exclusion deviance or the cross-product 

ratio). The problem of representing the parameter values of the interactions in a 

hierarchical log-linear interaction model for discrete data is deferred until Chapter 11. 

10.4 Encoding Strength of Association by Distance 

Whittaker (1988), and Whittaker, Iliakopoulos & Smith (1988), consider the 

application of principal components analysis (PCA) to graphical modelling for use with 

large numbers of variables, as has already been mentioned in Section 7.6 of Chapter 7. 

Use of PCA in this context, in providing a rationale for the placement of the vertices, 

makes it possible to interpret the graph in terms of the strengths of the associations 

between pairs of variables and may be applied to any number of variables. 

In order to encode strength of association in a conditional independence graph, 

PCA is applied to the matrix of negative partial correlations in the following way: 

1. Calculate the negative partial correlation matrix (by application of the naive covariance 

selection procedure described in Chapter 7). 

2. Calculate the edge exclusion deviances as e. e. d. = - N In(1- (p?:. K» . 
I). 

3. Apply PCA to the negative partial correlation matrix. 

4. Plot the vertex corresponding to each variable in the space defined by the first two 

principal components. 

5. Draw edges in the graph corresponding to those pairs of variables for which the edge 

exclusion deviance exceeds the critical value. 

In this way, the strength of each association is encoded by the distance between 

pairs of vertices/variables. 

Whittaker (1988) illustrated this approach by applying PCA to the matrix of 

negative partial correlations obtained using Jeffers' (1967) pit-prop data. This data set 

consists of a matrix of correlations between 13 variables and will be considered again in 

more detail in Chapter 12. By calculating the matrix of negative partial correlations and 

applying PCA in the manner described above, the conditional independence graph 

presented in Figure 10-2 is obtained. Of the 78 possible edges in the complete graph 
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drawn on 13 vertices, 25 edges correspond to a significant edge exclusion deviance (ie. ~ 

X\l]= 3.841, 0.=0.05) and are therefore included in the graph. It would be possible to use 

a higher level of significance, for example 0.=0.01, for which X\I) = 6.635, in which case 

there would be 14 edges in the resultant independence graph. 

Figure 10-2: Pit-prop data: peA plot constructed for the negative partial correlation 
matrix 

One would anticipate that the closer a pair of vertices/variables are plotted to each 

other, the stronger the association between them. Thus only short edges would be 

expected in the graph, since longer edges would correspond to pairs of variables with 

insignificant edge exclusion deviances. However, in the graph in Figure 10-2, there are 

some long edges which correspond to pairs of variables having large negatively signed 

negative partial correlations. Since a large negative partial correlation will have a large 

(always positive) value for the corresponding edge exclusion deviance irrespective of the 

sign of the negative partial correlation, these long edges are significant and are therefore 

included in the graph. 
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I have considered further the application of PCA for the encoding of strength of 

association in conditional independence graphs. PCA has been applied to the correlation 

matrix and the partial correlation matrix, and to the absolute values of the correlation 

matrix and the partial correlation matrix for Jeffers' pit-prop data, and the results plotted 

in the space determined by the first two principal components using SPSS. The result of 

applying PCA to the negative partial correlation matrix has already been presented in 

Figure 10-2. The result of applying PCA to the absolute partial correlation matrix is 

presented in Figure 10-3. 
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Figure 10-3: Pit-prop data: PCA plot constructed for the absolute partial correlation 
matrix 

Since the correlation matrix is inverted in order to obtain the matrix of negative 

partial correlations, the absolute values of which are monotonically related to the values 

of the edge exclusion deviances, it seems more appropriate to consider the partial 

correlation matrices than the correlation matrices. Furthermore, it seems more appropriate 

to consider the absolute partial correlation matrix because of its relationship to the matrix 

of edge exclusion deviances, which means that very short edges should correspond to 
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highly significant/strongly associated edges and that the problem of very long edges 

corresponding to very strong (negative) associations does not arise. 

The graphs obtained in applying peA to the correlation matrices are not presented 

here, but similarities were found between the graphs for the correlation matrix and the 

partial correlation matrix, and between the graphs for the absolute correlation matrix and 

the absolute partial correlation matrix. For the correlation matrix and the negative partial 

correlation matrix (Figure 10-2), a mixture of long and short edges was found in the 

resultant independence graphs, whereas for the absolute correlation matrix and the 

absolute partial correlation matrix (Figure 10-3), the edges in the resultant independence 

graphs were mainly very short. In the latter two plots, there is a tendency for the shorter 

edges to correspond to stronger associations (which have larger values for the edge 

exclusion deviance), but one needs to beware the low proportion of the total variation in 

the data explained by the first two dimensions (38% for the graph corresponding to the 

negative partial correlation matrix, and 40% for the graph corresponding to the absolute 

partial correlation matrix). All four plots showed some grouping of the variables. 

peA has also been applied to Poole's kangaroo skeleton data set, presented in 

Andrews & Herzberg (1985). This data set consists of 18 measurements made on each of 

148 kangaroo skeletons. Again, this. data set is considered in more detail in Chapter 12. 

For the purposes of this analysis, no distinction was made between the different sexes or 

of the different species of kangaroo, and missing values were replaced by the intra-species 

intra-variable mean prior to the calculation of the correlation matrix. The independence 

graphs obtained by plotting the vertices in the space defined by the first two principal 

components for peA applied to the negative partial correlation matrix and the absolute 

partial correlation matrix are presented in Figures 10-4 and 10-5 respectively. 

Again, it can be seen from Figure 10-4 that application of PCA to the negative 

partial correlation matrix results in some very long edges corresponding to edges with a 

large negative partial correlation and high edge exclusion deviance, and it is quite difficult 

to discern any structure in the data. However, the first two principal components account 

for just 27% of the variation in the data (eight principal components would be required to 

account for 70%). 

The independence graph obtained by application of peA to the absolute partial 

correlation matrix (see Figure 10-5) also accounts for a very small proportion of the total 

variation in the data (28%, with nine principal components required to account for 70%). 
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Figure 10-4: Kangaroo skeleton data: PCA plot constructed for the negative partial 
correlation matrix 
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Figure 10-5: Kangaroo skeleton data: PCA plot constructed for the absolute partial 
correlation matrix 
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However, some structure is now apparent in the data - there are shorter edges and some 

grouping of the variables. 

I have also applied classical multidimensional scaling (MDS) to Jeffers' pit-prop 

data set and Poole's kangaroo data set, using the same four matrices (correlation matrix, 

absolute correlation matrix, negative partial correlation matrix, and absolute partial 

correlation matrix), although only the results obtained using the two forms of the partial 

correlation matrix will be considered here. The results were plotted in the first two 

dimensions determined by the principal coordinates using SPSS. 

For Jeffers' pit-prop data, the independence graph obtained by applying MDS to 

the negative partial correlation matrix, presented in Figure 10-6, is quite messy, with a 

mixture of long lines and irregularly dispersed points. The plotted graph obtained by 

applying MDS to the absolute values of the matrix of partial correlations, presented in 

Figure 10-7, is far more attractive, and suggests some structure within the data. Similarly, 

for Poole's kangaroo data, a messy representation is obtained using the negative partial 

correlation matrix, presented in Figure 10-8, but a quite pleasing representation is 

obtained using the absolute partial correlation matrix, presented in Figure 10-9. However, 

in both plots obtained by applying MDS to the absolute partial correlation matrix, the 

"horse-shoe effect", which is a common artefact in MDS, has occurred. 

Figure 10-6: Pit-prop data: MDS plot constructed for the negative partial correlation 
matrix 
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Figure 10-7: Pit-prop data: MDS plot constructed for the absolute partial correlation 
matrix 

Figure 10-8: Kangaroo skeleton data: MDS plot constructed for the absolute partial 
correlation matrix 
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Figure 10-9: Kangaroo skeleton data: MDS plot constructed for the absolute partial 
correlation matrix 

Thus it would appear to be the case that it is possible to construct an independence 

graph in which the strength of association between pairs of variables is encoded by the 

length of the edges by applying peA or MDS to the absolute values of the partial 

correlation matrix, and plotting the results in the first two dimensions. The distances 

between the vertices are in inverse proportion to the strength of association, as measured 

by the absolute value of the partial correlation or the edge exclusion deviance (the two are 

monotonically related), such that, in general, the closer together two variables joined by 

an edge, the stronger the association between them. 

10.4.1 Problems with Encoding Strength of Association by Distance 

Although it would appear to be the case that it is possible to construct an 

independence graph in which the strength of association between pairs of variables is 

encoded by the length of the edges by applying peA or MDS to the absolute values of the 

partial correlation matrix, and plotting the results in the first two dimensions, in practice a 
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PCA or MDS solution usually exists in more than two dimensions. For example, for the 

pit-prop data example, five principal components are required in order for the PCA plot to 

represent 70% of the total variance, and for the kangaroo data example, eight or nine 

principal components are required. By using just the first two principal components, less 

than 40% of the total variance is explained for the pit-prop data, and less than 30% for the 

kangaroo data. Similar problems apply to the MDS solutions. In showing a PCA or MDS 

solution in just two dimensions, the relationship between strength of association and 

length of edge may not be preserved unless the first two dimensions account for most of 

the variation. Thus it may be the case for the graphs obtained by applying PCA and MDS 

to the pit-prop data and the kangaroo data sets that variables which are very strongly 

associated may, on occasion, be plotted further apart than variables which are less 

strongly associated. 

Although the application of PCA (and also of MDS) also has the advantage, cited 

by Whittaker (1988), of providing an approach to the construction of independence graphs 

for large number of variables; in practice, as can be seen from the figures presented in this 

section, the graphs obtained are not necessarily aesthetically pleasing, in that some 

vertices may be clustered together so closely that it is difficult to determine the edges 

which are present between them. Also, the graph may contain multiple crossovers, which 

may lead to a messy graph and make it difficult to determine which pairs of vertices are 

actually linked. One may wish to relocate some of the vertices in order to make the edges 

of the graph more readily discernible, but this would destroy the relationship between the 

length of the edge and the strength of the association. 

It therefore seems to be desirable to seek an alternative way of encoding strength 

of association in the edges of the graph which is not dependent on the length of the edges, 

so that the user is free to relocate the vertices of the graph if they wish. 

10.5 Encoding Strength of Association by Edge Style 

As was seen in the previous section, it is possible, and intuitively attractive in the 

continuous case, to encode the pairwise strengths of association by distances between 

pairs of variables. However, in practice it was found that the resulting representation may 

not be visually pleasing. What is desired, therefore, is some technique whereby the 

strengths of associations are encoded in the graph without using distance, so that vertices 
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may be relocated to provide a visually pleasing representation without destroying the 

encoding of the strengths. Two possible approaches are suggested: 

• Width of edges: such that the wider an edge, the stronger the absolute value of the 

association between the pair of variables linked by that edge. No edge corresponds to 

zero association, a thin edge corresponds to a weak (non-zero) association, and a thick 

edge corresponds to a strong association. 

• Shading of edges: such that the darker an edge, the stronger the absolute value of the 

association between the pair of variables linked by that edge. No edge corresponds to 

zero association, a faint edge corresponds to a weak (non-zero) association, and a dark 

edge corresponds to a strong association. 

Width was used in preference to area, since area is also dependent on length. 

Grey-tone shading of edges was used in preference to colour, in keeping with the aim of 

developing a monotone graphical representation which may be readily reproduced, and 

because different colours have no intuitive ordering. Even though different colours can be 

ordered according to physical criteria such as wavelength, other criteria such as intensity 

or brightness or even the viewer's subjective preference may influence the viewer's 

perception of the different colours. 

It is the case that PCA or MDS could be used in conjunction with either of these 

techniques for the encoding of strength of association by edge style, perhaps as an initial 

exploratory approach to the construction of the conditional independence graph and to the 

examination of the structure within the data. If edges in the PCA or MDS solution were to 

be relocated, the encoding of the strength of association in the edge styles used would still 

be preserved, even though the distances between the vertices would no longer be 

meaningful. 

10.5.1 A Graphical Perception Experiment 

An experiment was conducted to determine which of the two suggested 

approaches for encoding strength of association by edge style - width of edges or grey

tone shading of edges - is the most effective. 

This was intended to be a pragmatic experiment, to provide information about 

which of the two methods facilitates the fastest and/or the most accurate interpretation of 
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the information about the strengths of the associations encoded in the graphs. The 

experiment was not, however, intended to identify or explain any differences in the 

cognitive processing of widths and grey-tone shading. Although it may be expected that 

one edge style is found to be faster and/or more accurate than the other and that such a 

result may be due to differences in cognitive processing of the two styles, it would not be 

possible to eliminate the possibility that there may have been differences in the manner in 

which the two edge styles were presented. Thus the experiment described in the remainder 

of this section can not be regarded as a graphical perception experiment of the kind 

described in Chapter 5. 

In the remainder of this section, the experimental design used is described and the 

results obtained are presented and discussed. 

Experimental Method 

It was decided to present the experimental graphs to the subjects on a computer

based display using a monochrome SUN workstation with a mouse pointer, since it was 

intended that the method found to be 'best' (in tenns of speed and/or accuracy) for 

encoding strength of association would be incorporated in the "Conditional Independence 

Graph Enhancer" computer package, which has been written for SUN workstations and 

which will be described in more detail in Chapter 11. 

In practice it was found that only about five different widths or grey shades could 

be used (in addition to 'no edge') in order for the edges to be readily distinguishable 

whilst avoiding the use of excessively thick lines. This limitation is due to the finite size 

of pixels on the computer screen. Table 10-1 shows the relationship between the level of 

the strength of association to be represented (0-5) and the degree of screen-based 

resolution available for representing widths or grey-tone shading; the widths being 

expressed by the number of pixels and the grey-tone shading being expressed as some 

percentage grey (the ratio of black pixels to white pixels). 'Root grey' is the SUN default 

grey-tone, falling between 25% and 50% grey. 

Twelve graphs were used in the experiment, having 5, 6, 7 or 8 vertices and 0%, 

25% or 50% of edges missing, as summarised in Table 10-2. This was felt to give a 

reasonable and representative number of edges and vertices. For each graph, the edges 

were randomly allocated a value between 0 and 5 inclusive corresponding to the different 
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Level Width (pixels) Grey-tone shading 
0 (no edge) (no edge) 
1 1 25% grey 
2 3 root grey 
3 5 50% grey 
4 7 75% grey 
5 9 black 

Table 10-1: Table showing the relationship between level ofstrength of association and 
degree of screen-based resolution 

possible levels of strength of association as given in Table 10-1, but the allocation of the 

values was constrained by the number of missing edges to be allocated a value of 0, as 

summarised in Table 10-2. The lay-out of the vertices for each of the 12 graphs was 

determined by displaying each graph on the computer screen with the edges un-encoded. 

The graphs were then manipulated interactively by the experimenter by moving the 

vertices around the screen until the graph appeared complicated without being illegible 

(ie. with a large number of long edges but without overlapping vertices). For the graphs 

with few vertices and few edges this tended to involve creating as many crossovers as 

possible, whereas for the graphs with very many vertices and many edges this tended to 

involve removing several crossovers. Checks were subsequently made, once the edge 

styles had been incorporated, to ensure that there was a unique answer to each question in 

the experimental task, and the graphs were modified if necessary. 

No. of vertices Total no. of edges No. of edges missing 
n n(n-l)/2 0% 25% 50% 
5 10 0 3 5 
6 15 0 4 8 
7 21 0 5 11 
8 28 0 7 14 

Table 10-2: Table showing number of vertices present and number of edges absent for each 
of the 12 basic graphs 

Each of the twelve graphs was to be presented twice to each subject, once with the 

edges drawn using the different widths corresponding to the numerical value of the level 

assigned to each edge, and once with the edges drawn using the different grey-tone shades 

corresponding to the same numerical values. This was to control for the possibility that, if 

different graphs had been used for the two different edge styles, the graphs used for one 
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edge style may have been easier to interpret than those used for the other edge style. Each 

subject was therefore shown 24 graphs in total, in addition to two practice graphs (one for 

each edge style). 

A modified 2x2 'treatment'x'period' cross-over design was employed (Jones & 

Kenward (1989), Clayton & Hills (1987» with 'treatment' corresponding to the edge style 

and 'period' corresponding to whether a particular edge style (width or grey-tone shading) 

was presented first or second for any given graph. In a standard 2x2 cross-over design, 

half the subjects would have been presented with the graphs with the strength of 

association encoded by widths before being presented with the equivalent graphs with the 

grey-tone edge styles, for all twelve graphs, and the other half of the subjects would have 

received the grey-tone graphs before the equivalent widths graphs. Such a design enables 

the testing of carry-over and period effects, in addition to the treatment effect. In other 

words, having already been presented with a graph employing one edge style, does this 

make the experimental task easier when presented with the same graph with the other 

edge style? If yes, is the effect the same irrespective of the order of presentation of the 

two graph types? If yes to the latter then, although there may be a period effect, any carry

over effect is the same, and the grey-tone graphs can be compared directly with the 

equivalent widths graphs irrespective of the order of presentation of the graphs and 

irrespective of any period effect. 

It was decided that the subjects should not receive all twelve graphs with one edge 

style first, but should receive one edge style first for six of the graphs, and the other edge 

style first for the other six graphs. The twelve basic graphs were therefore divided into 

two groups of six. To do this, the graphs were ordered according to the number of edges, 

or to the number of vertices in the case of a tie (see Table 10-2), and then assigned one by 

one to alternate groups. These two groups will be referred to as Group A and Group B. 

Half the subjects were to receive the Group A graphs with the grey-tone edge style first, 

and the Group B graphs with the widths edge style first. The other half of the subjects 

were to receive the Group A graphs with the widths edge style first, and the Group B 

graphs with the grey-tone edge style first. These two groups of subjects will be referred to 

as SG 1 and SG2 respectively. The graphs were presented in a different random order for 

each subject, subject to the constraint regarding which edge style is presented first for 

each graph for each group of subjects, and also to the constraint that the same graph could 

not be presented twice in succession. 
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The experimental set-up was tried and tested using two pilot subjects who did not 

participate in the main experiment. Twelve subjects were used in the main experiment. 

All of the subjects were volunteers who were either post-graduate students or members of 

the academic staff of the Open University, and most were members of the Mathematics or 

Science Faculties. Some of the subjects were members of the Statistics Department, 

whereas the other subjects had differing amounts of statistical knowledge. However, 

given the nature of the task, and the detailed instruction and practice provided (for what 

is, in any case, a novel statistical technique), it was felt that the statisticians would have 

no advantage over the non-statisticians. There was no evidence to contradict this 

assumption. Six of the subjects were allocated to SG 1, and six to SG2. Given the twelve 

subjects S I-S 12 in order of recruitment, this allocation was made alternately, such that 

odd numbered subjects were allocated to group SGI and even numbered subjects were 

allocated to group SG2. 

For each graph, three questions were asked. These questions were each intended to 

be of a realistic nature bearing in mind the intended use of the edge styles for the 

encoding of strength of association in conditional independence graphs. The general form 

ofthe three types of questions was as follows: 

1. Which two variables are most strongly associated with variable X (where X was one of 

the variables in the graph)? 

2. Which of the following four pairs of variables are most strongly associated (where the 

most strongly associated pair in the list did not necessarily correspond to the most 

strongly associated pair in the graph)? 

3. Which of the following is the strongest 3-cycle in the graph (where the strongest 3-

cycle was to be assessed by some sort of visual summation or averaging by the subject 

of the three edges in the cycle, and did indeed corresponded to the strongest 3-cycle in 

the graph as assessed by summing or averaging the numerical values assigned to the 

edges)? 

The three questions were always asked in the same order. For each question, four 

options were presented, only one of which did indeed correspond to the correct answer. 

The options were always presented in alphabetical order (for example, a possible answer 

ACD would be listed before a possible answer BCD). For a few of the graphs drawn on a 

small number of vertices with a large proportion of edges missing, one or more of the 

210 



options for one or more of the questions had to be a dummy option, which could not 

actually be found in the graph (either a listed variable was not linked to the variable 

named in the first question, or an edge did not exist between a pair of variables listed in 

the second question, or a three-cycle did not exist in the third question), but wherever 

possible, the options presented were to be found in the graph displayed. 

Each graph was displayed prior to the display of the first question to allow the user 

to study the graph. The user could request the first question when ready by clicking the 

mouse on a button on the screen. Having answered the first question, the user could then 

request the display of the second question when ready in the same way. Having answered 

the second question, the user could then request the display of the third question when 

ready. Having answered the third question the user could then request the display of the 

next graph, again by clicking the mouse on the button. Having selected one of the four 

options as the answer to the displayed question, the user could change hislher answer 

provided they did so before going on to the next question. The user could not move on to 

the next question or graph until they had selected one of the four options displayed. 

The user was initially shown two practice graphs, one with strengths encoded by 

widths, and one with strengths encoded by grey-tone. The same two practice graphs were 

used for each subject. These are shown in Figures 10-10 and lO-14 respectively. Using the 

first practice graph, the necessary basic concepts were explained to the subject - for 

example, the five different levels of width/grey-tone were pointed out, and their 

correspondence to different levels of strength was explained (ie. that the stronger the 

association, the wider or darker the edge). It was explained that missing edges correspond 

to zero or no association. It was also explained that 3-cycles correspond to sets of three 

non-zero edges between three variables. Then the use of the graph-mouse interface was 

explained to the subject, and the subject was talked through each of the three questions for 

the first graph. For the practice graphs only, the subject was told whether their chosen 

answer was correct or not. The three questions, and the correct responses, are shown in 

Figures 10-11, 10-12 and 10-13 for the widths practice graph. Having answered each 

question correctly for the first practice graph, the subject was then allowed to go through 

the questions for the second practice graph by themselves. The three questions, and the 

Correct responses, are shown in Figures 10-15, 10-16 and 10-17 for the grey-tone practice 

graph. Prior to displaying the first experimental graph, the subject was reminded of the 
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most important features of the graphs and of the experimental set-up, and was given an 

opportunity to ask questions. 

Figure 10-10: Practice grapb with strength of association encoded by width of edges. 

Yhtch two variable. are most strongly associated with variable A? 

fil Solect ona of the foll<J.1ing: 

fil 8,C 

Ii:I 8,E 

til 8,F 

fil C,E (PRACTlCE:~EXT QUESTION) 

Figure 10-11: First question for practice graph with strength of association encoded by 
width 

212 



'w'h1ch of the following ,i pairs of variables are most strongly associated? 

Ii] Select Dna of the fo11C1.111n9: 

Iil A,F 

til 8,F 

til C,D 

til D,F (PRACTICE:~EXT QUESTION] 

Figure 10-12: Second question for practice graph with strength of association encoded by 
width 

Identify the '.trong •• t' 3-cycl. In the graph (I •• largest sum of sdges) 

Ii:! Select one of the folla./lng: 

Ii:! ABC 

Ii:! ABE 

fill ABF 

Ii:! 6DF 
( PRACTI CE :FNEXT GRhPH) • 

Figure 10-13: Third question for practice graph with strength ofassociation encoded by 
width 

Figure 10-14: Practice graph with strength of association encoded by grey-tone 
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Yhlch two vadabl •• are ",ost strongly aSlociated with Yariable E1 

Iil Select one of tho fo'1\""lng: 

Iil A,S 

Iil A,O 

lil 8,0 

Iil C,O (PRACTICE:~EKT QUESTION) . 

Figure 10-15: First question for practice graph with strength of association encoded by 
grey-tone 

't'h1ch of the following 4t paira of yartablaB a". _oet strongly associaled? 

III Select one of the fo1\a.olng: 

Iil A,E 

iii B,E 

Iil C,E 

III O,F I PRACTICE :~EKT QUESTION) 

Figure 10-16: Second question for practice graph with strength of association encoded by 
grey-tone 

Identify the 'strong •• t' 3-cycle In t~e' graph (Ie. largest sun of edges) 

Iil Select one of the fo1\owlng: 

III ACO 

III AOE 

III BCE 

iii COE (BEGItWiXPERIMENT ) 

Figure 10-17: Third question for practice graph with strength of association encoded by 
grey-tone 

Half the subjects (three from SG 1 and three from 8G2) received the widths 

practice graph first, and the other half received the grey-tone practice graph first, so that 

any effect resulting from which graph was explained most thoroughly could be tested for. 

These two groups of subjects and the practice graphs they received first will be referred to 

as WP and GP respectively. 
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For each experimental graph, the latency (ie. the time taken to answer each 

question) was measured using the computer's internal clock (which is accurate for time 

measured in seconds) from the moment the question was displayed until the user selected 

an option (or options, if they changed their mind), and the option(s) chosen were 

recorded. Whether the question was answered correctly or not was assessed subsequently. 

Subjects had been informed that both latency and accuracy were being recorded, without 

placing emphasis on either form of response, thus leaving it to the subjects to make any 

trade-off themselves. Assessment of both latency and accuracy is consistent with the 

experimental design used in a graphical perception experiment by Lewandowsky & 

Spence (1989b) who state that "When the performance of observers of statistical graphs is 

examined, it is desirable to measure not only accuracy, but also response latency". 

The experimental design and allocation of subjects is summarised in Table 10-3. 

SGI SG2 
Widths A-2nd B-lst A-1st B-2nd 

WP Grey-tone A-1st B-2nd A-2nd B-lst 
Subjects S7,S9,SII S8, S10, S12 

Widths A-2nd B-lst A-1st B-2nd 
GP Grey-tone A-lst B-2nd A-2nd B-lst 

Subjects SI, S3, S5 S2,S4,S6 

Table 10-3: Summary of experimental design, detailing the allocation of subjects to subject 
groups SGI and SG2, and to initial practice graphs WP and GP, together with the order of 
presentation of the group A and group B graphs 

Hypotheses 

The following, main, hypothesis was to be tested using both accuracy and latency 

as measures of performance: 

1. There is no difference in performance according to the edge style used to encode 

strength of association. 

Two other, secondary, hypotheses which were also to be tested using the same 

measures were as follows: 
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2. Any carry-over effect affects performance between the two presentations of each graph 

in the same way, irrespective of the order of presentation of the edge styles. 

3. The edge style of the practice graph which was presented first and therefore explained 

most thoroughly does not affect performance for the two different edge styles. 

The main hypothesis cannot be answered satisfactorily without first investigating 

the two secondary hypotheses. 

Initial Analyses 

Tables 10-4 to 10-6 give, for each subject and each question, the mean time to a 

correct response, the number of correct responses (maximum N=12), and the standard 

deviation of the correct response times for the graphs encoded by the grey-tone edge style 

(G) and for the graphs encoded by the widths edge style (W). The latencies of incorrect 

responses are not considered since the experiment is concerned with the effectiveness of 

the two different edge styles for accurate, as well as quick, interpretation of encoded 

information. Furthermore, including the latencies of incorrect responses may distort the 

results if, for example, an inaccurate response is the result of a subject being more 

concerned with speed than accuracy, or if a subject is very poor at interpreting the graphs 

(whether fast or slow). 

The same summary values are also given in Tables 10-4 to 10-6 for the 

differences in response times, G-W, computed for each pair of graphs. Where a subject 

gave an inaccurate response for one or both presentations of a graph, the G-W difference 

for that graph has not been included in the calculation of the mean G-W difference. 

It can be seen from Tables 10-4 to 10-6 that the number of errors made was quite 

small relative to the total number of answers given. Of the 864 answers (12 subjects x 24 

graphs x 3 questions), a total of 44 errors were made. The errors made, broken down by 

question and edge style of graph, are summarised in Table 10-7. Most of the errors made 

for Question 3 were made because some subjects chose options for which only two of the 

three possible edges between the vertices were present in the graph where these two edges 

'summed' to more than the three edges in any of the 3-cycles in the graph. Even though it 

was stressed in the introduction to the experimental task that 3-cycles involve three edges 
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Question I 
Subject G W G-W Subject G W G-W 

SI 12.09 11.82 0.90 S7 9.33 9.50 -0.17 
N=II N=11 N=10 N=12 N=12 N=12 
(3.88) (4.29) (3.28) (2.87) (5.02) (5.04) 

S2 12.00 16.58 -4.58 S8 23.80 29.89 -9.75 
N=12 N=12 N=12 N=10 N=9 N=8 
(5.12) (10.86) (12.03) (10.30) (17.16) (21.50) 

S3 9.58 9.67 -0.08 S9 8.00 8.64 -0.55 
N=12 N=12 N=12 N=12 N=ll N=ll 
(3.45) (2.67) (4.12) (2.13) (2.25) (3.33) 

S4 6.83 11.42 -4.58 S10 9.50 8.92 0.58 
N=12 N=12 N=12 N=12 N=12 N=12 
(3.30) (10.62) (10.00) (7.63) (5.79) (9.40) 

S5 8.50 10.25 -1.75 SII 10.42 10.64 0.18 
N=12 N=12 N=12 N=12 N=11 N=ll 
(1.24) (3.60) (3.42) (6.87) (4.80) (8.89) 

S6 7.25 8.25 -1.00 S12 21.45 19.64 2.10 
N=12 N=12 N=12 N=ll N=ll N=IO 
(1.29) (2.14) (2.34) (17.07) (4.80) (25.96) 

Table 10-4: Mean latencies, number of correct responses and standard deviations for each 
subject on Question 1 

Question 2 
SUbject G W G-W Subject G W G-W 

SI 20.73 18.83 2.18 S7 16.00 16.75 -0.75 
N=ll N=12 N=11 N=12 N=12 N=12 
(8.67) (10.51) (11.55) (6.84) (7.68) (5.19) 

S2 19.42 23.75 -4.33 S8 29.00 32.08 -5.50 
N=12 N=12 N=12 N=1O N=12 N=IO 
(5.87) (10.63) (10.05) (9.51 ) (14.64) (8.46) 

S3 20.08 22.42 -2.33 S9 18.09 17.92 0.45 
N=12 N=12 N=12 N=11 N=12 N=II 
(5.76) (10.10) (6.10) (9.19) (9.89) (5.68) 

S4 17.33 16.42 0.92 SIO 25.17 25.42 -0.25 
N=12 N=12 N=12 N=12 N=12 N=12 
(7.44) (8.05) (11.15) (8.13) (9.12) (9.50) 

S5 20.17 18.83 1.33 SII 20.83 19.09 1.18 
N=12 N=12 N=12 N=12 N=11 N=ll 
(4.88) (6.25) (4.68) (8.58) (9.50) (6.65) 

S6 15.08 18.83 -3.75 SI2 32.42 27.25 5.17 
N=12 N=12 N=12 N=12 N=12 N=12 
(5.52) (6.73) (6.40) (16.33) (5.82) (16.02) 

Table 10-5: Mean latencies, number of correct responses and standard deviations for each 
subject on Question 2 
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Question 3 

Subject G W G-W Subject G W G-W 
SI 22.78 23.12 -3.71 S7 34.27 35.82 -1.55 

N=9 N=8 N=7 N=11 N=11 N=11 
(14.32) (14.87) (13.34) (15.64) (17.15) (14.96) 

S2 40.42 42.55 -6.91 S8 37.00 29.70 2.38 
N:::::12 N=l1 N=11 N=9 N=10 N:::::8 

(18.76) (20.24) (1S.00) (18.25) (16.25) (14.55) 
S3 35.60 29.17 7.00 S9 7.25 10.45 -3.55 

N=10 N=12 N=10 N=12 N=l1 N=11 
(26.49) (12.60) (29.07) (3.33) (9.88) (11.36) 

S4 28.18 29.36 -1.18 S10 41.50 37.60 0.20 
N:::::ll N:::::ll N=11 N:::::12 N=10 N=10 

(24.26) (14.00) (16.63) (17.59) (10.76) (13.46) 
S5 29.30 30.67 2.80 S 11 42.50 31.27 1.50 

N=10 N:::::12 N=10 N=11 N=11 N=10 
(12.15) (16.18) (12.59) (37.50) (18.78) (30.69) 

S6 23.36 25.75 -3.36 S12 39.33 45.27 -4.82 
N=11 N:::::12 N:::::l1 N:::::12 N=11 N=11 

(16.82) (19.96) (19.48) (17.90) (17.68) (19.15) 

Table 10-6: Mean latencies, number of correct responses and standard deviations for each 
subject on Question 3 

Question 1 Question 2 Question 3 Overall 
Widths 7 1 14 22 
Grey-tone 4 4 14 22 
Overall 11 5 28 44 

Table 10-7: Table giving numbers of errors made, broken down by question and edge style 

between three vertices, some subjects interpreted missing edges as edges 'present' but 

having zero strength. 

Because of the relatively small number of errors made, and because, overall, the 

same number of errors were made for each edge style, it was decided not to investigate 

accuracy any further. However, it is of interest to note that each subject made at least one 

error. Two subjects made one error only; five subjects made two errors; two subjects 

made three; one subject made four; one subject (S 1) made ten; and one subject (S8) made 

twelve. Therefore, two subjects were responsible for half the total number of errors made. 

Because of the small number of subjects who took part in the experiment, it was decided 

not to drop these subjects from the analysis on the basis of their accuracy. For all the 
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subjects, the latency of the response to a question was not considered if the wrong answer 

had been given. 

Looking at the data in Tables 10-4 to 10-6, it is apparent that there were two 

exceptionally slow subjects, S8 and Sl2 (both in subject group SG2 and both of whom 

received the widths practice graph first). It was decided not to drop these subjects from 

the analyses, on the assumption that their slow performance would affect both graph types 

such that they would not bias the results used to test Hypotheses 1 and 2, although they 

could affect the results used to test Hypothesis 3. Although it may be the case that S 12, 

who made a total of 3 errors, was sacrificing speed for accuracy, S8 was both slow and 

inaccurate. With a larger sample size, it would be expected that a subject like S8 would 

not be so influential. 

It can be seen from Tables 10-4 to 10-6 that the mean latencies and the standard 

deviations, for both widths and grey-tone graphs, tend to increase with question number, 

confirming that the 3 questions represent increasing complexity. However, if the G-W 

differences can be shown to be the same for each of the 3 questions, it may be possible to 

combine the results for the 3 questions to give a potentially more sensitive analysis. To 

test this, a repeated measures analysis was used. The analysis of repeated measures is 

described in detail in Crowder & Hand (1990) and Hand & Taylor (1987). 

Given the simplicity of the design used here, having just one within-subjects 

factor with three levels, the analysis was carried out by hand using the multivariate 

approach described by Morrison (1976) and Myers (1979). The null hypothesis to be 

tested, based on the G-W differences for each of the three questions QI, Q2 and Q3, was 

that J.l.ql = J.l.q2 = J.l.q3. The analysis proceeded by consideration of the two sets of difference 

scores, xql - Xq2 and Xq2 - Xq3, computed for each of the 12 subjects. It was found that 

F=1.003 with v=2,10df. Since FCrilicai at a=0.05 is 4.81, the null hypothesis can not be 

rejected and it was decided that the results for each of the three questions may be 

combined for each subject. 

Table 10-8 gives the same summary values as presented in Tables 10-4 to 10-6, 

computed for the combined questions. 

The three hypotheses were tested in accordance with the procedures for the 

analysis of a 2x2 cross-over design contained in Jones & Kenward (1989). Table 10-9 
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Combined Questions 
Subject G W G-W Subject G W G-W 

SI 18.26 17.45 0.25 S7 19.46 20.26 -0.80 
N=31 N=31 N=28 N=35 N=35 N=35 

(10.35) (10.92) (9.91) (14.18) (15.40) (9.11 ) 
S2 23.94 27.20 -5.23 S8 29.69 30.68 -4.38 

N=36 N=35 N=35 N=29 N=31 N=26 
(16.69) (17.76) (12.12) (13.71) (15.42) (15.45) 

S3 20.94 20.42 1.21 S9 10.91 12.50 -1.21 
N=34 N=36 N=34 N=35 N=34 N=33 

(17.85) (12.31) (16.24) (7.37) (8.99) (7.54) 
S4 17.14 18.77 -1.63 S10 25.39 23.18 0.18 

N=35 N=35 N=35 N=36 N=34 N=34 
(16.48) (13.13) (12.62) (17.66) (14.47) (10.44) 

S5 18.74 19.92 0.68 S 11 24.09 20.33 0.94 
N=34 N=36 N=34 N=35 N=33 N=32 

(11.02) (13.06) (7.62) (25.14) (14.82) (17.70) 
S6 15.00 17.61 -2.69 S12 31.34 30.62 0.91 

N=35 N=36 N=35 N=35 N=34 N=33 
(11.72) (13.93) (11.32) (18.17) (16.65) (20.27) 

Table 10-8: Mean latencies, number of correct responses and standard deviations for each 
subject on the Combined Questions 

shows the mean response times or latencies for each subject, for the 6 graphs which were 

first of all presented using grey-tone shading (GI) and then using widths of edges (W2), 

and for the other 6 graphs which were first of all presented using widths of edges (WI) 

and then using grey-tone shading (G2). Subject groups SG 1 and SG2 were presented with 

the same two sets of 6 graphs, but in opposite ways. The means of various sums and 

differences used in the analyses are also presented. The overall means are displayed in 

Table 10-10 in relation to the design of the cross-over trial, and summarised visually in 

Figure 10-18. 

The use of parametric tests requires assumptions of normality. With just 12 

observations it is difficult to assess normality. Histograms constructed using MINIT AB, 

but not presented here, suggest that the distributions of some measures were more normal 

in appearance than others. However, on the assumption that the t-test is generally robust, 

the decision was made to use parametric tests and to test each hypothesis at the usual 5% 

level of significance. 

The results of the tests of the hypotheses are presented for each question in tum 

below. The results of all the analyses carried out are summarised in Appendix B. All 

analyses were carried out using MINIT AB. 

220 



~ -3 
1:1 ~ Q,cr 
Q,;" 
5~ 
~ I 
., ID 
~ .. 
~ ~ 
~ ~ = 1:1 ", 
~ ., 
Q,~ _. 'C 

1:1 = ... 1:1 cr", 
~ ~ = e. 
1:1 :; 
a~ 
'< ", 
; 0-
", ., 

~ 
n =
'C ., 

N ~ 
N ~ 

1:1 ... 
~ 
:t
o 
1:1 
", 

4 
;" 
~ = Q, 

'C 
~ ., 
o· 
~ 
g 

~ =~ ., 
~. 
So 
'" = :3 
'" 

Subject 
SI 
S2 
S3 
S4 
S5 
S6 
S7 
S8 
S9 
S10 
Sll 
SI2 

Practice Subject 
Graph Group GI 

GP SOl 16.94 
GP SG2 25.56 
GP SGI 24.41 
GP SG2 18.18 
GP SGI 19.71 
GP SG2 14.94 
WP SGl 21.56 
WP SG2 31.79 
WP SGI 11.06 
WP SG2 28.67 
WP SGI 33.44 
WP SG2 35.61 

W2 WI G2 GI +W2 WI +G2 GI-W2 WI-G2 
16.94 18.15 '19.86 34.12 37.55 -0.24 -1.00 
20.88 33.17 '22.33 42.47 55.50 0.71 10.83 
20.50 20.33 ' 17.47 44.06 37.29 4.76 2.35 
15.06 22.28 16.17 33.24 38.44 3.12 6.11 
17.44 22.39 17.76 34.65 38.94 4.76 3.41 
14.50 20.72 15.06 29.41 35.78 0.47 5.67 
19.11 21.47 17.24 40.67 38.71 2.44 4.24 
30.93 30.44 27.73 64.08 56.93 -3.08 5.50 
9.29 15.71 10.78 19.62 26.71 2.50 4.71 
21.47 24.88 22.11 46.88 46.18 3.94 3.59 
18.31 22.24 14.18 45.88 36.75 9.25 7.37 
27.65 33.59 26.82 64.76 61.81 9.47 8.19 

-



Practice Graph Subject Group Graph Group Presentation I Presentation 2 
A (GI) (W2) 

SGI 20.35 18.29 

- (S I,S3,S5) B (WI) (G2) 
GP 20.29 18.36 

A (WI) (G2) 
SG2 25.39 17.85 

(S2,S4,S6) B (GI) (W2) 
19.56 16.82 

A (G1) (W2) 
SGI 22.02 15.57 

(S7,S9,S 11) B (WI) (G2) 
WP 19.81 14.07 

A (WI) (G2) 
SG2 29.64 25.55 

(S8,S I O,S 12) B (GI) (W2) 
32.02 26.68 

Table 10-10: Mean latencies presented in relation to cross-over design 

24 -j Wi. 

23 -~ t.}1 

~ 22 J 
m I 
~ 21 -l 
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Li ------------------- --_ .. _---------- --,..- "--- ---._-
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Period 

Figure 10-18: Visual display of overall means resulting from cross-over design 
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Analyses: 

To test Hypothesis 2, that there is no carry over effect between the two 

presentations of each graph, a paired t-test was carried out to compare the two sets of 

(twelve) scores OI+W2 and 02+Wl. This analysis is based on the standard procedure for 

a 2x2 cross-over design, although a (two-tailed) paired t-test is employed instead of the 

usual two-sample t-test because data from all of the subjects is used to obtain both sets of 

scores. Use of this procedure cannot show that there is no carry-over effect. Rather, it may 

be shown that any carry-over effect affects the two different orders of presentation (0 

followed by W and W followed by 0) in the same way. 

It was found that any carry-over effect between the two presentations of the graphs 

affects the two orders of presentation equally (mean of OI+W2=41.7; mean of 

02+Wl=42.5; mean difference =-0.90; t=-O.46; p=0.65; 1 Idf; 95% CI (-5.19, 3.40». I 

shall therefore consider all the graphs, irrespective of period of presentation, in testing 

Hypotheses 1 and 3. 

It is possible to test whether there is any difference between the two periods of 

presentation by comparing the two sets of difference scores 01-W2 and 02-WI. Using a 

paired t-test it is found that there is indeed evidence of a significant difference between 

the two periods (mean ofGI-W2=3.17; mean ofG2-Wl=-5.08; mean difference =8.26; 

t=5.44; p=0.0002; I1df; 95% CI (4.91, 11.60». Although a two-tailed hypothesis test was 

employed, the values of the means suggest that the subjects are faster the second time 

they see a graph. However, it has already been shown that the carry-over effect is the 

same irrespective of which style of graph was seen first. 

To test Hypothesis 3, that there is no effect of the edge style of the first practice 

graph upon performance, two two-sample t-tests were conducted, one to compare the six 

subjects receiving OP first with the six receiving WP first for 0 I +W2, and the other to 

compare these two groups for WI +02. There was no evidence of any effect of practice 

graph upon performance based on these two measures (mean of OI+W2 for OP =36.33; 

mean of Gl+W2 for WP =47.00; t=-1.48; p=0.17; IOdf; 95% CI (-26.7, 5.4); mean of 

WI +02 for OP =40.58; mean of WI +02 for WP =44.50; t=-O.64; p=0.54; 10df; 95% CI 

(-17.7,9.8». 

To test Hypothesis 1, that there is no evidence of a difference in performance 

according to the edge style used, a paired t-test was carried out to compare the two sets of 
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twelve difference scores GI-W2 and WI-G2.1t was found that there is no evidence ofa 

difference between the two edge styles, widths and grey-tone shading (mean of G 1-

W2=3.17; mean of WI-G2=5.08; mean difference =-1.91; t=-1.59; p=0.14; 11df; 95% 

CI (-4.55, 0.74)). 

Analyses: Summary 

All the above results for the three hypotheses are summarised in Appendix B. The 

main results are also summarised in Table 10-11. 

Hypothesis t df p 
I (treatment effect) -1.59 11 0.14 
2 (practice effect: GI+W2) -1.48 10 0.17 
2 (practice effect: WI +G2) -0.64 10 0.54 
3 (carry-over effect) -0.46 11 0.65 
3 (period effect) 5.44 II 0.00 

Table 10-11: Table summarising the t-tests carried out for each hypothesis, for each 
question 

In conclusion, this experiment provides no evidence to reject the null hypothesis 

that the edge style used to represent strength of association (ie. widths or grey-tone 

shading) has no effect upon the speed (or accuracy) of the interpretation of the displayed 

graph. 

One possible explanation of the 'failure' of this experiment to distinguish between 

the two edge styles in terms of speed or accuracy is that there is no difference between the 

two styles. An alternative explanation which should be considered is that the power of the 

t-test used to test the main hypothesis was not sufficient to detect any real difference. This 

is a potentially plausible explanation given that just 12 subjects were used in the 

experiment, owing to difficulties in recruiting volunteers. 

Power calculations have been carried out to determine the sample size which 

would have been required to detect a significant difference for the main hypothesis, 

assuming high power and some meaningful difference. Since this was a pragmatic 

experiment, there is no theoretically significant difference which I would wish to detect. 

Instead, therefore, an arbitrary difference of 3 seconds has been chosen - no doubt a 

different conclusion would be reached if a smaller value were chosen, but I would suggest 

that a larger difference would also be acceptable. No direction for the difference is 
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hypothesised. The value used as an estimate of the standard deviation of the differences is 

3.66 (the larger, and therefore the more conservative, of the two sample standard 

deviations obtained for the GI-W2 and WI-G2 differences). 

The power calculations were carried out using the nomogram presented on p.456 

of Altman (1991) at the 5% level of significance and for power values of 70%, 80% and 

90%, which should yield sample sizes appropriate to give a moderately high, high and 

very high (respectively) probability of detecting as significant a difference of the 

magnitUde considered. The results of the power calculations were 36 subjects for 70% 

power, 47 for 80% power and 62 for 90% power. It can be seen that the sample size of 12 

used in the experiment was considerably less than required to give power of 70%-90% to 

detect a difference of 3 seconds. 

The number of subjects who, on average, actually took longer than the arbitrarily 

chosen difference of 3 seconds for one graph type compared with the other to select the 

correct response was considered. In the test of Hypothesis I, 6 subjects were faster, on 

average, on widths graphs than the equivalent grey-tone graphs for G 1-W2, whereas one 

subject was faster on the grey-tone graphs. For WI-G2, 10 subjects were faster on the 

grey-tone graphs than on the widths graphs, and none was faster on the widths graphs. In 

practice, these seemingly large differences are likely to reflect the significant difference 

previously found between the two presentation periods. 

Another possible explanation for the apparent failure of the experiment to 

distinguish between the two edge styles is that it was inappropriate to use parametric tests 

without some transformation of the data. The analyses were subsequently repeated using 

equivalent non-parametric tests (the Wilcoxon (W) test in place of the paired t-tests, and 

the Mann-Whitney (U) test in place of the two-sample t-tests) and of the 5 hypothesis 

tests carried out (results presented in Appendix B), the conclusions reached using the non

parametric tests agreed with the conclusions reached using the parametric tests in every 

case, at the usual 5% level of significance. 

Regression Results 

Regression lines were fitted to the data for the twelve widths graphs and the 

twelve grey-tone graphs for each of the three questions separately, to investigate whether 
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the mean latency of the response could be related to the number of vertices and/or the 

number of edges in the graph, according to the edge style used. Simple (linear) regression 

was used to fit the number of vertices V and the number of edges E separately, and 

multiple (linear) regression was used to fit V and E together, with and without an 

additional term corresponding to V* E. The fitted regression lines and corresponding 

coefficients of determination R2 (adjusted for degrees of freedom) obtained using 

MINIT AB are presented in Appendix B and summarised below. 

For Question 1, all of the fitted regression lines for both edge styles have an R2adj 

value between 0% and 15.8%. This indicates that the fitted regression lines explain none 

or very little of the variation in the observed response latencies. This finding may reflect 

the simplicity of this particular question, in which case we would hope for more 

interesting results for the more complex Questions 2 and 3. 

For Question 2, all of the fitted regression lines for both edge styles have an R2adj 

value between 37.9% and 79.4%. Some of these values are large enough to indicate that 

the fitted regression lines explain a sizeable proportion of the variation in the observed 

response latencies. 

For Question 3, all of the fitted regression lines for both edge styles have an R2 adj 

value between 0.0% and 8.5%. contrary to expectations, these values are no better than 

for Question I and again indicate that the fitted regression lines explain none or very little 

of the variation in the observed response latencies. 

The fitted linear regression lines only succeed in explaining the observed response 

latencies in terms of the number of vertices and/or the number of edges in the graph for 

Question 2, and then for widths graphs better than for grey-tone graphs. Examination of 

plots of the mean latencies against E and against V (not presented here) suggest that many 

relationships may in fact be non-linear, although for some of the plots there are outliers 

which may be distorting the relationships; thus the appropriateness of the use of linear 

regression should be examined. It may, however, be necessary to incorporate other, 

uncontrolled, variables in order to explain the variation in the recorded latencies using the 

regression approach. 

Because it was not the main aim of the experiment to be able to predict latency 

from the number of edges and/or the number of vertices in the graph, the significance of 

the regression coefficients in each equation has not been considered, and the fitting of 

regression lines has not been pursued any further. 
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Conclusions 

It is therefore the conclusion of this experiment that there is no evidence that one 

edge style (width or grey-tone shading) has a greater influence on the speed or accuracy 

with which subjects can extract different types of information about strengths of 

association from independence graphs than the other edge style. Some subjects remarked 

that they found one edge style more pleasant to use than the other, and the majority of 

those who expressed a preference preferred the grey-tone style, but it was not always the 

case that a subject performed faster on the edge style he/she preferred! 

It is therefore suggested that the edge style to be used could be left to the 

individual preference of the user. Alternatively, both width and grey-tone could be 

combined in a single representation, such that thin faint edges correspond to weak non

zero associations, and fat dark edges correspond to strong associations. However, 

although intuitively attractive, there is no experimental evidence available to indicate 

whether a combination of the two edge styles would be preferable (in terms of speed 

and/or accuracy) to a single edge style alone. 

10.6 Encoding Sign of Association 

This chapter has been concerned with the graphical representation of strengths of 

associations, primarily for continuous data. The strength of an association between two 

continuous variables may be indicated by the value of the negative partial correlation 

coefficient between the two variables, which may be positive or negative in sign, or by the 

edge exclusion deviance, which is monotonically related to the absolute value of the 

partial correlation coefficient and is always positive in sign. The strength of an association 

between two discrete variables may be indicated by the exclusion deviance, which is 

always positive in sign, or, in certain situations, by the cross-product ratio, which may 'be 

positive or negative in sign. 

It may be of interest to represent graphically which paIrs of variables are 

positively associated, and which are negatively associated, when this information is 

known. One edge style (eg. a thick edge) could be used to represent positive associations, 

and an alternative edge style (eg. a thin edge) to represent negative associations. 
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It is not suggested that information about the signs of association be combined 

with information about their strength, since this may lead to an excessive amount of 

information on a single graph. It may be preferable to have two graphs available, one of 

which communicates information about the strengths of associations, and the other of 

which communicates information about the signs of these associations. This idea will be 

pursued further in Chapter 11. 

10.7 Summary 

This chapter has been concerned with the encoding of strength of association in 

conditional independence graphs. This is applicable both to associations between 

continuous variables (represented by the negative partial correlation coefficient or the 

edge exclusion deviance) and to associations between discrete variables (represented by 

the exclusion deviance for graphical models or the cross-product ratio for 2x2 

contingency tables). 

One approach to the encoding of the strengths of the associations is to use the 

distance between vertices in the independence graph. By applying PCA or MDS to the 

matrix of associations, 'it is to be hoped that the vertices representing highly associated 

variables will be plotted close together. However, in practice the two-dimensional PCA or 

MDS solution may not produce an accurate representation of the multi-dimensional 

distances representing the relative strengths of the associations between variables, and the 

resultant graphs can also appear quite illegible. 

It was therefore decided to encode the strengths of the associations in the edges of 

the graph, with no restrictions on the location of the vertices. Two edge coding schemes 

were proposed: one based on the widths of edges and the other based on the grey-tone 

shading of edges. A graphical perception experiment gave no evidence of any important 

differences between the use of these two coding styles in terms of accuracy or latency in 

the interpretation of information about the strength of associations from graphs 

constructed employing the two styles. A third style was also suggested, this being a 

combination of the width and grey-tone shading styles. 

Finally, it was suggested that the sign of the association might also be 

incorporated in a conditional independence graph. 
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The use of edge styles and the encoding of the sign of the associations will be 

considered further in Chapter 11, together with the problem of representing the parameter 

values of the interactions contained within log-linear interaction models for discrete data. 
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11. Conditional Independence Graph Enhancer 

11.1 Introduction to the CIGE Package 

A computer package has been written to implement the work and ideas which 

have been presented in Chapters 7, 9 and 10, based on the conditional independence graph 

approach. Thus the package is intended as a tool for the construction of representations of 

fitted statistical models based on independence and interaction graphs. In addition to this, 

however, the package serves as a tool for the interpretation of the model represented, and 

may also be of use in assessing the appropriateness of the fitted model. 

Because of the various features of the package, it has been called the "Conditional 

Independence Graph Enhancer", or CIGE (pronounced "Siggy"). The package has been 

written for monochrome Sun workstations with a three-button mouse pointer, and is 

written in "C" using SUNView graphics library routines. There are approximately 2310 

lines of code. The decision to write the package for the SUN computer rather than the 

more ubiquitous IBM PC-compatible is due to the highly interactive and high-speed 

performance of this dedicated graphics workstation. The choice of monochrome, rather 

than colour, workstations is in keeping with the philosophy that representations should be 

readily reproducible. 

In the following section (Section 11.2), the main features of the CIGE package are 

described, including the initial data input and graph construction, incorporation of the 

extensions to independence graphs described in earlier chapters, and additional 

modifications to the use of independence graphs as a model representation technique 

which have not been described previously. Some of these additional modifications have 

parallels in the work of Becker et af (1987, 1989, 1990), among others, on the use of 

dynamic graphics for the analysis of network data (see Chapter 2). All of the features 

described will be illustrated in the next chapter (Chapter 12), in which the use of CIGE 

applied to a number of example data sets is described. The reader is also referred to 

Cottee (1990). Full details of the use of CIGE are contained in a User's Guide presented 

in Appendix A. 

In many respects it is appropriate to think of CIGE as an interface between the 

user and numerical information relating to the displayed fitted model. Through the graph 

drawn to represent the model, the user can access information relating to the model. In 
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some instances, this information may be encoded pictorially in the graph itself, or will be 

presented numerically, or in an additional pictorial form. The interface is intended to be 

self-explanatory and easy to use, guiding the user in their choice of information. 

11.2 Features of the Package 

11.2.1 Data Input 

Before CIGE can be employed to represent a fitted model, it is necessary for the 

user to first fit the model to their data. It is not possible to do this within CIGE, since the 

package does not possess any model fitting capabilities. Instead, it is recommended that 

the user should use some existing model fitting package, such as GUM or MIM (see 

Chapter 7). Having fitted a model, the user can then input the pertinent features of the 

model into the CIGE package. 

For continuous data, the user should input the 'strengths' of the paIr-WIse 

associations in the fitted covariance selection model. These 'strengths' may take the form 

of the fitted partial correlation coefficients or of the edge exclusion deviances (the two are 

monotonically related). For discrete data, the user can input either the generating class of 

the fitted log-linear model which they wish to represent, or the parameters of each of the 

terms in the model (from which the generating class can be determined). 

11.2.2 Graph Construction and Manipulation 

By default, CIGE will construct the initial independence graph with one vertex per 

variable, whereby the vertices are located equidistant around the circumference of an 

imaginary circle. The vertices are labelled with a variable name specified by the user. 

In the conventional manner for independence graphs, single continuous edges are 

drawn between the vertices to correspond to pair-wise associations or two-way 

interactions. In the case of continuous data, the inclusion of edges in the graph is 

dependent upon a default threshold value corresponding to the 5% significance level for 

the 'strengths' of the associations (negative partial correlations or edge exclusion 

deviances) or upon a threshold value specified by the user. If the strength of the 

association between a pair of variables exceeds the threshold value, then an edge is drawn 

in the graph between the two vertices corresponding to this pair of vertices. In the case of 
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discrete data, the inclusion of edges in the graph is dependent upon implication of the 

corresponding two-way interactions by the elements of the generating class, or upon the 

presence of non-zero model parameters for the two-way interactions. If the generating 

class of the model (discrete data only) is given as input, then this is sufficient to determine 

which edges are present in the independence graph, otherwise the generating class of the 

model must first be determined from the inputted model parameters. 

If the initial, default, lay-out of the independence graph is not to the user's liking, 

it is a simple matter to click the mouse on any offending vertex and then, whilst holding 

the mouse button down, to 'drag' the vertex across the screen to a preferred position. The 

user will see the edges of the graph which are linked to this vertex being dragged along 

with the vertex as it moves. 

Reasons why a user may wish to relocate the vertices may include aesthetic 

reasons, such as removing cross-overs which may the graph difficult to read, and 

interpretative reasons; for example, the user may wish to cluster variables together to 

highlight the associations within and between different groups of variables. 

It could be argued that there are alternative methods of obtaining a default 

representation. For example, a PCA or MDS solution could be used to determine a lay-out 

of the points, but the usefulness of such a representation was questioned in Chapter 10. 

Another method might ideally represent the independence graph with the minimum 

possible number of cross-overs, so as to improve the readability of the graph. However, 

incorporation of a routine to execute Nicholson's algorithm in CIGE (described in 

Chapter 8) is rejected on the grounds that it does not necessarily give the best solution 

(although it is the best algorithm that I know of), and, in particular, because it cannot be 

readily implemented. The computation is straightforward, but the graph construction 

presents too many problems. 

Hence the user is provided with an initial construction of the graph which is easy 

to construct and involves very little computation, even though the resultant representation 

is not necessarily the best, either in terms of cross-overs or on aesthetic grounds (the latter 

problem being one which almost certainly could not be solved by a programmable 

algorithm). If the user wishes to employ the result of Nicholson's algorithm applied to the 

graph under consideration, or to implement a PCA or MDS solution, the facility to drag 

the vertices and edges may be used. However, the desired lay-out of the points must be 

determined outside ofCIGE. 
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11.2.3 Incorporation of Edge Codes for Interactions 

This feature of CIGE is only appropriate for, and hence only available for, models 

for discrete data. 

The edge codes described in Chapter 9, whereby each edge is drawn using a 

particular edge code according to the largest interaction involving that edge and which 

leads to construction of the conditional interaction graph, have been incorporated into 

CIGE. At any stage the user may display the interaction graph in preference to the 

independence graph. A key can be displayed together with the graph, to indicate which 

edge code corresponds to each order of interaction. 

11.2.4 Display of Generating Class Elements 

This feature of CIGE is only appropriate for, ~d hence only available for, models 

for discrete data. 

In order to identify uniquely the model corresponding to a displayed independence 

or interaction graph, it is necessary to be able to determine the elements of the generating 

class of the model represented. As has already been seen (Chapters 7 and 9), it is not 

always possible to determine the elements of the generating class from the displayed 

graph, only to identify the corresponding graphical (independence or interaction) model, 

of which the model actually represented may be a sub-model. 

Thus CIGE contains a facility whereby the elements of the generating class of the 

model represented may be displayed individually, as sub-graphs of the independence or 

interaction graph which is displayed. Having selected the option to do this, a second 

window is displayed (the original graph being contained in the first), and the sub-graphs 

corresponding to each element may be displayed either simultaneously, or sequentially. 

The edges of the sub-graphs will be edge codes appropriate to the order of the interaction 

of the element. The positions of the vertices will correspond to those in the main graph, 

and will be labelled with the initial letter of each variable label used in the main graph. 

However, if the user relocates the vertices of the main graph whilst the second window is 

open, the vertices of the sub-graphs will be not he relocated until the sub-graphs are re

displayed. 
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11.2.5 Incorporation of Edge Styles for Associations 

This feature of CIGE is only appropriate for, and hence only available for, models 

for continuous data. 

For continuous data, the original independence graph (the interaction graph not 

being available for this data type) can be modified to incorporate the edge styles described 

in Chapter 10. All three types of edge styling described in Chapter 10 are available -

namely width, grey-tone shading, and width and grey-tone shading combined. Six levels 

of each (consisting of five 'non-zero' levels, and one 'zero' or 'sub-threshold' level) are 

available, since (as mentioned previously in Chapter 10) this is the number of different 

widths or shades which are readily distinguishable given the pixel resolution of the 

screen. The user must specify the edge style to be used, and must also specify which of 

three approaches should be used to find the boundary values between each of the six 

levels. For all of these options, only the absolute values of the associations are considered. 

CIGE can calculate and use boundary values based on equidistant values between the two 

extreme data values, or calculate and use boundary values based on significance levels. 

Alternatively, the user may specify boundary values between the levels, the lower and 

upper limits being zero and the maximum association respectively for this option. For 

further details, see Appendix A. 

11.2.6 Use of Sliders 

This feature of CIGE is only appropriate for, and hence only available for, models 

for continuous data. 

Through the use of a slider, it is possible to obtain a dynamic display of the 

absolute strengths of the associations represented in a given independence graph. This is 

an alternative approach to the use of edge styles in the previous section (11.2.5), and is a 

useful tool for determining a threshold value below which associations will be regarded as 

being zero (ie. for determining which edges it is appropriate to drop from the fitted 

model). 

In the initial display, the graph corresponding to the current threshold value is 

drawn, and above the graph a slider is displayed of which the lower limit is zero and the 

upper limit corresponds to the maximum absolute strength of association in the data. The 
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slider is initially at the current threshold value used in the construction of the displayed 

graph, but the mouse may be used to move the slider between the upper and lower limits. 

As the slider moves, edges are added to or dropped from the graph as appropriate for the 
. 

threshold value of the strength of association corresponding to the current position of the 

slider. This threshold value is displayed above the slider, and is updated as the slider 

moves. Thus the slider can be used as a tool for determining a new threshold value for the 

strength of association in an ad hoc manner. 

11.2.7 Numerical Information from Vertices, Edges and Cliques 

Continuous Data 

For continuous data, the user may obtain the numerical value of the strength of 

any pair-wise association within the data. When this option is chosen, the complete graph 

on the vertices is displayed, with edges set to 'zero' (ie. below the current threshold value) 

represented as thinner continuous lines than those used to represent 'non-zero' edges. 

Using this graph, the user may click the mouse on the edges which are missing from the 

independence graph, and thus obtain the true value (with sign) of the association (which is 

not necessarily zero) between any pair of unlinked variables. In the same way, the user 

may also obtain the true value (with sign) of the association between any pair of linked 

variables. 

Discrete Data 

For discrete data, if the data used as input is in the form of parameter estimates, 

the user may click the mouse on a single vertex (corresponding to a main effect), on two 

vertices (corresponding to a two-way interaction effect), or on three or more vertices 

(corresponding to a higher order interaction effect), in order to obtain the parameter 

estimates of the terms of the model represented by the displayed independence or 

interaction graph. The estimates are displayed in the form of a table with one entry per 

level of the variable (in the case of a main effect), or one entry per combination of the 

levels of the variables (in the case of an interaction effect). 

If the data used as input is in the form of the generating class, this option can not 

be chosen since the requested numerical information is not available. 
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Sign of Association 

This option is only appropriate for, and therefore only available for, models for 

continuous data for which the partial correlation coefficients are used as input. For models 

for discrete data, it is possible to determine the sign of the association by examination of 

the parameter values (see above). 

When this option is selected, the independence graph is re-displayed with the 

usual continuous lines drawn between pairs of variables having positive values for their 

partial correlations, and thinner continuous lines drawn between pairs of variables having 

negative values for their partial correlation. Because the true values of the partial 

correlations are used, the signs represented will be the opposite of those contained in the 

matrix of negative partial correlations. 

If the matrix of edge exclusion deviances was used as input, it is not possible to 

examine the sign of the association between pairs of variables, since the value of the edge 

exclusion deviance will be positive for all pairs of variables. 

11.3 Summary 

In this chapter, the Conditional Independence Graph Enhancer (CIGE) package 

was introduced. This package has been designed to implement the work and ideas 

concerned with the use of conditional independence graphs for the representation of fitted 

models presented in preceding chapters, but also incorporates a number of other ideas. 

The main features of the CIGE package, including the data input and graph 

construction and manipulation, as well as the encoding and accessing of numerical 

information were outlined. Full details of these features and of the use of CIGE are 

contained in Appendix A. 

The usefulness of the various features of CIGE when applied to models fitted to a 

number of actual data sets will be illustrated in the next chapter. 
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12. Examples Using CIGE 

12.1 Introduction 

In this chapter, I shall describe the use of CIGE for the representation of models 

fitted to various example data sets. 

Covariance selection models have been fitted, using the naive covariance selection 

modelling technique described in Chapter 7, to two continuous data sets. The continuous 

data sets used are as follows: 

1. The pit-prop data set considered by Jeffers (1967). This data set involves 13 variables, 

consisting of various measurements relating to the maximum compressive strength of 

N= 180 pit-props manufactured from Corsican pine trees. This data set has already been 

examined in Chapter 10 within the context of the encoding of strength of association 

by distance, and has also been used by Whittaker (1988, 1990), in a graphical 

modelling context. 

2. The kangaroo skeleton data set of Poole, presented in Andrews & Herzberg (1985). 

This data set involves 18 variables, consisting of various measurements made on 

N= 148 kangaroo skeletons. Although measurements were made on three different 

species of kangaroo of both sexes, no distinction has been made between the species or 

the sexes for the purposes of illustrating CIGE. Missing values were replaced by the 

intra-species intra-variable mean prior to the calculation of the correlation matrix. This 

data set was also examined in Chapter 10 within the context of the encoding of 

strength of association by distance. 

The use of CIGE for the enhancement of conditional independence graphs for 

covariance selection models is described by consideration of each of the available menu 

options in tum. This is done in some detail for the pit-prop data set but, for the other 

continuous data sets, only the more interesting aspects of the displayed models which can 

be determined using CIGE will be presented. 

A discrete data set will also be used to illustrate CIGE, to which a log-linear 

interaction model has been fitted. This is the byssinosis incidence data analysed by 

Higgins & Koch (1977), and also contained in Andrews & Herzberg (1985). This data set 
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forms a 3x2x2x2x3x2 contingency table, and is one of very few large multidimensional 

contingency tables which have been published. Although one of the variables in the data 

set is, strictly speaking, a dichotomous response variable, and so it is perhaps more 

appropriate to fit a logistic model to the data, I have chosen to treat all the variables as 

independent variables for the purposes of illustrating CIGE. In addition to this data set, a 

number of contrived generating classes of models, first considered in Chapter 6, are 

reconsidered using CIGE, in order to demonstrate the usefulness of the features of CIGE 

for uniquely determining the represented models. This achievement should be contrasted 

with the limited successes of the simple two-dimensional combination of points used in 

Section 6.2, and of the other techniques considered in that chapter, for the representation 

of these generating classes. 

In describing the use of CIGE to investigate these example data sets, my intention 

is to provide the reader with a detailed illustration of how CIGE can be used for the 

representation and interpretation of covariance selection models for continuous data and 

of log-linear interaction models for discrete data. In particular, I wish to show how the 

representation can be used as part of an interface formed by CIGE and the graph in order 

to obtain additional information about the model displayed, in either numerical or 

pictorial form, which cannot be determined directly from the independence graph. The 

description is illustrated with screen-dumps made during actual interactive use of the 

package, and some suggestions are made about what can be learnt about the data and the 

fitted models using CIGE. 

Actual instructions on the use ofCIGE and details of the design of the package are 

omitted from this chapter. The interested reader is referred to Appendix A for details of 

the design of the package and instructions on how to run CIGE, and for details of how to 

use each of the various menu options available to obtain the screen-dumps used to 

illustrate the Jeffers pit-prop data and Higgins & Koch byssinosis data examples. 

12.2 Covariance Selection Models 

12.2.1 Pit-Prop Data Set 

The 13 variables in this data set are as listed in Table 12-1, and the lower

triangular matrix of correlations between these 13 variables is presented in Figure 12-1. 
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LABEL VARIABLE 
DIA Top diameter of prop (inches) 
LEN Length of prop (inches) 

MOIST Moisture content of prop (% dry weight) 
SPGl Specific gravity of timber 
SPG2 Oven-dry specific gravity of timber 

RNGT Number of annual rings at top 
RNGB Number of annual rings at bottom 
BOW Maximum bow (inches) 

BDIST Distance of point of maximum bow from top (inches) 
WHORL Number of knot whorls 

CLEN Length of clear prop from top 
KNOT Average number of knots per whorl 
KDIA Average diameter of knots (inches) 

Table 12-1: Pit-prop data: Variable list 

Given the correlation matrix, the naive approach to graphical modelling described 

in Chapter 7 was used in order to obtain the lower-triangular matrix of (negative) partial 

correlations presented in Figure 12-2, from which the lower-triangular matrix of edge 

exclusion deviances presented in Figure 12-3 was derived. 

Data Input 

Although the data is available in two forms (see Figures 12-2 and 12-3), the matrix 

of negative partial correlations will be used as input. Although the absolute values of the 

partial correlations are monotonically related to the edge exclusion deviances, the edge 

exclusion deviances do not preserve information about the sign of the association. 

For the pit-prop data set, the variable labels used shall be as given in Table 12-1, 

and the number of observed units is N=180 pit-props. 
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Basic Display 

The initial display of the basic independence graph, using the default 5% threshold 

value for the absolute value of the negative partial correlation coefficient -Pij.K and the 

default lay-out of the vertices equi-distant around the circumference of a circle, is 

presented in Figure 12-4. 

RNGB 

Figure 12-4: CIGE: Default lay-out of basic independence graph for pit-prop data model 

It is already possible to discern some relationships between the variables. In 

particular there is a clique formed by MOIST, SPG I and SPG2, which are variables 

related to the moisture content and wet and dry specific gravities of the timber 

respectively. However, there are a large number of very long edges (for example, the 

variables BDIST and LEN, although associated, are drawn far apart) and there are several 

cross-overs within the graph. The user might therefore begin by attempting to improve the 
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layout of the graph, so th~t the relationships between the variables can be discerned more 

easily. 

By clicking and dragging the mouse on any of the vertices in this default display 

and relocating them, it is possible to obtain a much more aesthetically pleasing display of 

the basic independence graph, such as the display shown in Figure 12-5. The basic 

independence graph now has just one cross-over, and the associations between the 

variables can be determined more readily, although some of the edges in the graph are still 

very long. The conditional independence relationships between the variables in this data 

set may now be readily determined according to the missing edges in the graph (see 

Chapter 7). For example, it can be seen that BOW (the maximum bow of a pit-prop) and 

LEN (the length of the prop) are conditionally independent given DIA (the top diameter 

of the prop). 

Figure 12-5: CIGE: Modified lay-out of basic independence graph for pit-prop data model 

By clicking the left-hand mouse button anywhere within the window in which the 

graph is drawn, it is possible to display the menu of options listed in Table 12-2. The 
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function of each of these options will be described in tum in the remainder of this section 

with reference to the pit-prop data set. 

Numerical Values 
Encoded Strengths 
Slider 
Change Threshold 
Signed Graph 

Table 12-2: List of menu options for use with covariance selection models 

Menu Option: Numerical Values 

When this menu option is selected, the complete graph on all 13 vertices is drawn 

as shown in Figure 12-6. The thick edges correspond to the edges in the basic 

independence graph, and the thinner edges correspond to associations which fall below 

the current threshold level and are therefore not displayed in the basic independence 

graph. By clicking the mouse on any edge (thick or thin) between any pair of vertices, the 

value of the association between the corresponding pair of variables can be obtained. 

Through the use of this menu option it is therefore possible to determine the value of the 

associations between any or all pairs of variables. 

In this example, the value of the association displayed will correspond to the 

partial correlation between the variables, the negative values of which have been 

presented in Figure 12-2 and were used as input. If the matrix of edge exclusion deviances 

had been used as input, then the value of the association displayed would correspond to 

the edge exclusion deviance, as presented in Figure 12-3. For example, if the user were to 

click on the edge between RNGB and KDIA, the strength of the association would be 

reported as -0.241 - thus there is a negative partial correlation between the number of 

rings at the base of the pitprop and the average diameter of the knots, and since the 

corresponding edge is thick, this association is significant at the 5% level. 

Some idea of the strength and sign of the associations between every pair of 

variables can also be obtained, encoded within the graph in pictorial form, by the use of 

other menu options described below. 
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Figure 12-6: CIGE: Use of numerical value menu option for pit-prop data model 

Menu Option: Encoded Strengths 

This menu option has two sub-menus, one corresponding to the edge styles which 

can be chosen to encode the strength of association, and one corresponding to the method 

of determining the boundaries between the six different levels of strength. These sub

menus are presented in Table 12-3. 

Widths 
Grey Shades 
Combination 

Default 1: Significance Levels 
Default 2: Equi-spaced 
User-defined boundaries 

Table 12-3 Sub-menus for use with Encoded Strengths menu option for covariance 
selection models 
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In Figure 12-7, the independence graph is presented for the pit-prop data set in 

which the strengths of the associations have been encoded by the widths of the edges, and 

the boundaries between the associations corresponding to each of the six levels of width 

of edge (including no edge) have been determined by the use of the default significance 

levels (see Section 11.2.5 of Chapter 11). Most of the edges appear quite thick, which 

implies that the associations represented by these edges are highly significant. There are 

some thin edges, for example between KNOT (the average number of knots per whorl) 

and WHORL (the number of knot whorls), and between KNOT and CLEN (the length of 

clear prop from the top), implying that these associations have low significance and that it 

may not be appropriate to attach too much importance to them. The precise value of these 

associations can be determined using the numerical values menu option already described. 

Figure 12-7: CIGE: Use of encoded strengths menu option, with default levels chosen by 
significance level and strength encoded by width for pit-prop data model 

In Figure 12-8, the independence graph is presented for the pit-prop data set in 

which the strengths of the associations have been encoded by the grey-tone shading of the 

edges, and the boundaries between the associations corresponding to each of the six levels 

of grey-tone shading (including no edge) have been determined by the use of the default 
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equi-spacing (see Section 11.2.5 of Chapter 11). Use of the equi-spacing option means 

that the styles assigned to the edges correspond to the relative importance of the edges, 

whereas the use of the significance levels option, illustrated above, meant that the styles 

assigned to ~he edges corresponded to the importance of the edges in terms of their 

significance. Thus in Figure 12-8, it can be seen that only a few edges, represented by 

darker lines, have relatively strong associations, whereas the other edges have negligible 

associations (corresponding to no edge) or relatively small associations (corresponding to 

the faintest edges). The strongest associations are between RNGB and RNGT (both 

relating to the number of rings), between LEN and DIA (both relating to the size of the 

prop), and between SPG! and MOIST (corresponding to the specific gravity of the pit

prop when wet and the moisture content of the pit-prop). Other strong associations 

involve SPG2 (the specific gravity of the pit-prop when dry) with SPGI and MOIST. 

RNGB 

Figure 12-8: CIGE: Use of encoded strengths menu option, with default levels chosen by 
equi-distant spacing and strength encoded by grey-tone shading, for pit-prop data model 

Use of the third option, for which the user must specify the boundaries between 

the associations corresponding to each of the six levels of encoding, has not been 
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illustrated here since it is not obvious what an appropriate choice of boundary values 

would be for this example. 

Menu Option: Slider 

In Figure 12-9, it can be seen how the slider initially appears when this menu 

option is chosen. The position of the slider and the appearance of the graph correspond to 

the current (default) threshold value of 0.1453. which is the (absolute) value of the partial 

correlation coefficient corresponding to the 5% significance level. 

The current valul for th, tlV'lIhold II 0.1",,5303 

Done 

(IS] oIlWIIIIII_IIHiII"C=================:::::J1 100 

Figure 12-9: CIGE: Use of slider menu option, with threshold value=O.1453, corresponding 
to the 5% significance level, for pit-prop data model 

In Figure 12-10, the slider has been moved to show how the independence graph 

would appear for a threshold value of 0.1951, which approximates, within the limits of the 

resolution of the slider, the 1 % significance level of 0.1902. The edges remaining in the 

251 



graph will correspond to those having the thickest edges in the graph in Figure 12-7, since 

they represent the stronger, more significant, associations. 

RNGB 

Figure 12-10: CIGE: Use of slider menu option, with threshold value=0.1951, corresponding 
to the 1 % significance level, for pit-prop data model 

Figure 12-11 shows how the independence graph appears for a much greater 

threshold value of 0.2508, which approximately corresponds to the much higher 

significance level of 0.1 % (which has a true value of 0.2416). This indicates that the 

associations represented by the remaining edges are very strong indeed. By comparing 

this graph with the graph in Figure 12-8 it can be seen that some of the edges remaining 

must correspond to associations which are, relatively speaking, even more significant. In 

particular, there is a definite clique fonned by SPOI, SP02 and MOIST, which is 

independent of all other variables at this level of significance. 
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BDIST RNGB 

~ KNOT 

LEN~ • 
.... OIA 

• BO'YI • 
CLEN 

KDlA • 
Figure 12-11: CIGE: Use of slider menu option, with threshold value=0.2508, corresponding 
to the 0.1 % significance level, for pit-prop data model 

Menu Option: Changing the Threshold 

Use of the slider allows the user to examine the effect of changing the threshold in 

an exploratory, transient, manner. An alternative approach is to change the actual 

threshold value explicitly and permanently. In Figure 12-12, the threshold value has been 

changed to that corresponding exactly to the 1 % significance level (ie. to 0.1902) and the 

independence graph automatically redrawn accordingly. It can be seen that the edges in 

this graph do not correspond exactly to those in the graph drawn using the slider option 

for a threshold value of 0.1951 presented in Figure 12-10. This suggests that if it is very 

important to determine which edges correspond to associations which are significant at a 

particular level, then it is better to change the threshold value explicitly, but for most 

purposes use of the slider will be adequate and a new threshold value need only be 

explicitly specified if a permanent change is required. 
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RNGO 

Figure 12-12: CIGE: Use of the change threshold menu option to change the threshold to 
0.1902, corresponding to the 1 % significance level, for pit-prop data model 

Menu Option: Signed Graph 

The signed graph corresponding to the independence graph constructed for the 5% 

significance level is presented in Figure 12-13. In this graph the signs of the partial 

correlations are represented (which will be the opposite of those contained in the matrix of 

negative partial correlations used as input). Thus the thin edge between MOIST and SPG2 

corresponds to a negative partial correlation between the moisture content of the pit-prop 

and the oven dry specific gravity of the pit-prop, whereas the thick edge between MOIST 

and SPG 1 corresponds to a positive partial correlation between the moisture content of the 

pit-prop and the specific gravity of the wet pit-prop. 
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RNGB 

Figure 12-13: CIGE: Use of signed graph menu option, for pit-prop data model 

12.2.2 Kangaroo Data Sct 

The 18 variables in this data set are as listed in Table 12-4, and the lower

triangular matrix of correlations between these 18 variables is presented in Figure 12-14. 

Given the correlation matrix, the naive approach to graphical modelling described 

m Chapter 7 was used to obtain the lower-triangular matrix of (negative) partial 

correlations presented in Figure 12-15, from which the lower-triangular matrix of edge 

exclusion deviances presented in Figure 12-16 was derived. 
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LABEL VARIABLE 
BASIL Basilar length 
OCCIP Occipitonasallength 
PAL-L Palatilar length 

PAL-W Palate width 
NAS-L Nasal length 

NAS-W Nasal width 
SQUAM Squamosal depth 
LACRY Inter-Iacrymal width 

ZYGOM Zygomatic width 
ORBIT Post orbital width 
ROST Rostral width 

SUPRA Supra-occipital-paroccipital depth 
CREST Crest width 

FORAM Incisive foramina length 
MAN-L Mandible length 

MAN-W Mandible width 
MAN-D Mandible depth 
RAMUS Ascending ramus height 

Table 12-4: Kangaroo skeleton data: Variable list 

Data Input 

Although the data is available in two forms (see Figures 12-15 and 12-16), the 

matrix of negative partial correlations will again be used as input. 

For the kangaroo skeleton data set, the variable labels used shall be as given in 

Table 12-4, and the number of observed units is N=148 skeletons. 

Basic Display 

The default basic independence graph which is initially displayed is as presented 

in Figure 12-17. As can be seen from this graph, there are very many edges (47) 

corresponding to a large number of associations significant at the 5% level, and very 

many cross-overs. It is unlikely that a more pleasing representation of this model could be 

obtained easily by relocating the vertices. 
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Figure 12-17: CIGE: Default lay-out of basic independence graph for kangaroo skeleton 
data model 

To obtain a more pleasing display, the user could first simplify the model by 

reducing the number of significant associations by using a higher significance level. . 

Using the appropriate menu option to change the threshold according to the new 

significance level would have the effect of reducing the number of edges in the graph. For 

example, Figure 12-18 shows the independence graph with the default lay-out of vertices 

constructed for the threshold value corresponding to the 1 % significance level, and Figure 

12-19 shows the independence graph constructed for the 0.5% significance level. 
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Figure 12-18: CIGE: Default lay-out of basic independence graph for kangaroo skeleton 
data model with threshold value changed to 1 % significance level 

ORBIT 

Figure 12-19~ CIGE: Default lay-out of basic independence graph for kangaroo skeleton 
data model with threshold value changed to 0.5% significance level 
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The number of edges in the graph, corresponding to only the more significant 

associations, is now sufficiently small (having been reduced from 47 to 25) to enable the 

vertices to be relocated by hand and eye to give a more pleasing representation of this 

particular in?ependence graph. One possible representation is as shown in Figure 12-20. It 

can be seen from this graph that the two variables FORAM (incisive foramina length) and 

ROST (rostral width) are not associated (at the 0.5% level) with any other variables, 

whereas the other 16 variables are all strongly associated with at least one other. 

MAN-L CREST ORBIT 

~~~~-----------. fOR AM • 
ROST • 

Figure 12-20: CIGE: Modified lay-out of basic independence graph for kangaroo skeleton 
data model (with threshold value corresponding to 0.5% significance level) 

It is difficult to interpret the associations and cliques between the variables 

without specialised knowledge of kangaroo anatomy, but it can be seen, for example, that 

PAL-L and PAL-W (palatilar length and width) are associated, as are NAS-L and NAS-W 

(nasal length and width), whereas there are no associations between MAN-L, MAN-W 

and MAN-D (mandible length, width and depth) at this level of significance. 

Menu Option: Numerical Values 

The numerical values option was not employed with this data set because, with 18 

variables in the data set, the corresponding complete graph would have 153 edges. The 
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representation of such a graph would be extremely crowded and it would be difficult to 

use the mouse pointer to select a particular edge in order to determine the precise 

numerical value of the association represented by that edge. If the user did wish to find 

the numerical value of the association corresponding to a particular edge, they should first 

rearrange the vertices so as to isolate the edge of interest before selecting this menu 

option. 

Menu Option: Encoded Strengths 

Using the (default) equi-distant spacing option in conjunction with the grey-tone 

shading edge style, the graph shown in Figure 12-21 is obtained. This graph indicates 

that, although there are a large number of associations in the data, only a handful of them 

are relatively strong. The two strongest associations can be seen to be between OCCIP 

(occipitonasallength) and NAS-L (nasal length), and between BASIL (basilar length) and 

PAL-L (palatilar length). Only one association occurs at the next level (between NAS-W 

(nasal width) and LACRY (inter-Iacrymal width)), and one at the next (between OCCIP 

and BASIL). Relativeiy speaking, the majority of associations occur at the lowest 3 levels 

(including no edge). 

Figure 12-21: CIGE: Use of encoded strengths menu option, with default levels chosen by 
equi-distant spacing and strength encoded by grey-tone shading, for kangaroo data model 
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Using the (default) significance levels option in conjunction with the combination 

of width and grey-tone shading edge style, the graph displayed in Figure 12-22 is 

obtained. The thick black lines correspond to the basic graph obtained using the 0.5% 

significance level (see Figure 12-20). The whole set of edges contained in this graph are 

significant at the 10% level. Because of the lay-out of the vertices and because of the use 

of different widths and shades for the edges, this graph in fact seems more pleasing 

visually than the original default graph presented in Figure 12-17 (with edges significant 

at the 5% level), despite having more edges. 

Figure 12-22: Use of encoded strengths menu option, with default levels chosen by 
significance levels and strength encoded by the combination of width and grey-tone 
shading, for kangaroo data model 

Menu Option: Slider 

The slider option has not been employed with this data set because a lot of 

information has already been acquired as to how the graph will change in appearance with 

an increase or decrease in significance level. 
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Menu Option: Changing the Threshold 

The threshold has already been changed explicitly in order to obtain a simplified 

independence graph. 

Menu Option: Signed Graph 

The graph obtained when this option is chosen is presented in Figure 12-23. From 

this graph it can be seen that, of the strongest associations (see Figure 12-21), the 

association between BASIL and PAL-L is in fact negative in sign, whereas the association 

between NAS-L and OCCIP is positive, although again one would need a certain amount 

of knowledge of kangaroo anatomy to interpret the signs of the associations. 

CREST ORBIT 

~~--~-------------4 FOR;';.j • 
ROST • 

Figure 12-23: CIGE: Use of signed graph menu option, for kangaroo data model 
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12.3 Log-Linear Interaction Models 

12.3.1 Byssinosis Data Set 

The data take the form of a 3x2x2x2x3x2 contingency table. The six variables are 

as listed in Table 12-5, and the contingency table is reproduced in Table 12-6. 

LABEL VARIABLE LEVELS 
EMP Length of employment 1: <10 years 

2: 10-19 years 
3: ~20 years r--------r---------------- r.---------------------SMOKE Smoking habit 1: Smoker (in last 5 years) 

1-------- r---------------- 2: Non-smoker (in last 5 years) 
r~--------------------SEX Sex 1: Male 
2: Female 1---------

RACE ~----------------Race ~---------------------1: White 
2: Other 1---------

WPLACE I-~---------------Dustiness of work place ~---------------------1: Most dusty 
2: Less dusty 

1-------- ~----------------
3: Least dusty 
r~--------------------BYSS Incidence of byssinosis 1: Yes 

2: No 

Table 12-5: Byssinosis data: List of variables 

GUM was used to fit a log-linear interaction model to the data contained in the 

contingency table, ignoring potential problems arising from the sparsity of the data. A 

forwards stepwise selection procedure was used, in which the interaction making the 

largest significant improvement to the fit of the model was added at each stage and the 

model re-fitted until no further improvement in significance, at the 5% significance level, 

could be achieved by the addition of any remaining terms. This procedure may not have 

resulted in the 'best' or most appropriate model which can be fitted to this data set, and 

the resulting model is quite different from that fitted by Higgins & Koch (1977) using a 

different approach, but the model obtained is adequate for the purpose of illustrating the 

use of CIGE for the representation of a log-linear interaction model fitted to a discrete 

data set. 
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WPLACE 
1 2 3 

BYSS BYSS BYSS 
EMP SMOKE SEX RACE 1 2 1 2 1 

1 1 1 1 3 37 0 74 
1 1 1 2 25 139 0 88 
1 1 2 1 0 5 1 93 
1 1 2 2 2 22 2 145 
1 2 1 1 0 16 0 35 
1 2 1 2 6 75 1 47 
1 2 2 1 0 4 1 54 
1 2 2 2 1 24 3 142 
2 1 1 1 8 21 1 50 
2 1 1 2 8 30 0 5 
2 1 2 1 0 0 1 33 
2 1 2 2 0 0 0 4 
2 2 1 1 2 8 1 16 
2 2 1 2 1 9 0 0 
2 2 2 1 0 0 0 30 
2 2 2 2 0 0 0 4 
3 1 1 1 31 77 1 141 
3 1 1 2 10 31 0 1 
3 1 2 1 0 1 3 91 
3 1 2 2 0 1 0 0 
3 2 1 1 5 47 0 39 
3 2 1 2 3 15 0 1 
3 2 2 1 0 2 3 187 
3 2 2 2 0 0 0 2 

Table 12-6: Byssinosis data: Contingency table data 

The fitted model is as follows: 

1 + EMP + SMOKE + SEX + RACE + WPLACE + BYSS 

+ EMP.SMOKE + EMP.SEX + EMP.RACE 

+ EMP. WPLACE + EMP.BYSS + SMOKE.SEX 

+ SMOKE.RACE + SMOKE. BYSS + SEX. RACE 

+ SEX. WPLACE + RACE. WPLACE + WPLACE.BYSS 

2 
3 
3 
3 
0 
1 
2 
4 
1 
0 
2 
0 
0 
0 
1 
0 

12 
0 
3 
0 
3 
0 
2 
0 

+ EMP.SMOKE.SEX + EMP.SEX.RACE + EMP.SEX. WPLACE 

+ EMP.RACE. WPLACE + SMOKE. SEX. RACE 
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258 
242 
180 
260 
134 
122 
169 
301 
187 
33 
94 
3 

58 
7 

90 
4 

495 
45 

176 
2 

182 
23 

340 
3 



7. 

The generating class of the fitted model is as follows: 

[EMP.SMOKE.SEXj [EMP.SEX.RACEJ [SMOKE.SEX.RACEJ 

[EMP.SEX. WPLACEJ [EMP.RACE. WPLACE] 

[WPLACE.BYSS] [EMP.BYSS] [SMOKE.BYSS] 

The parameter value estimates obtained using GUM are as presented in Table 12-

ESTIMATE PARAMETER ESTIMATE PARAMETER 
1.674 1 2.344 SEX(2). WPLACE(2) 
0.169 EMP(2) 1.976 SEX(2). WPLACE(3) 
1.637 EMP(3) -1.251 RACE(2). WPLACE(2) 

-1.260 SMOKE(2) -1.488 RACE(2). WPLACE(3) 
-2.264 SEX(2) -0.507 EMP(2).BYSS(2) 

1.420 RACE(2) -0.655 EMP(3).BYSS(2) 
-1.762 WPLACE(2) 0.555 SMOKE(2).BYSS(2) 
-0.680 WPLACE(3) 2.531 WPLACE(2).B YSS(2) 

1.854 BYSS(2) 2.709 WPLACE(3).BYSS(2) 
-0.498 EMP(2).SMOKE(2) 0.620 EMP(2).SMOKE(2).SEX(2) 
-0.251 EMP(3).SMOKE(2) 1.113 EMP(3).SMOKE(2).SEX(2) 
-8.536 EMP(2).SEX(2) -1.392 EMP(2).SEX(2).RACE(2) 
-2.192 EMP(3 ).SEX(2) -2.510 EMP(3).SEX(2).RACE(2) 

0.515 SMOKE(2).SEX(2) 0.226 SMOKE(2).SEX(2).RACE(2) 
-1.225 EMP(2).RACE(2) 8.122 EMP(2).SEX(2). WPLACE(2) 
-2.414 EMP(3 ).RACE(2) 8.117 EMP(2).SEX(2). WPLACE(3) 

0.058 SMOKE(2).RACE(2) 1.818 EMP(3).SEX(2).WPLACE(2) 
0.386 SEX(2).RACE(2) 1.433 EMP(3 ).SEX(2). WPLACE(3) 

-0.082 EMP(2). WPLACE(2) -0.919 EMP(2).RACE(2). WPLACE(2) 
0.024 EMP(2). WPLACE(3) -0.657 EMP(2).RACE(2). WPLACE(3) 

-0.433 EMP(3). WPLACE(2) -1.781 EMP(3).RACE(2). WPLACE(2) 
-0.338 EMP(3). WPLACE(3) 0.113 EMP(3).RACE(2). WPLACE (3) 

Table 12-7: Byssinosis data: Parameter value estimates obtained using GLIM 

Data Input 

For the purposes of this example, the parameter values presented in Table 12-7 

will be used as input in preference to the generating class, which can be determined from 

the parameter values. 

For the byssinosis data set, the number of variables is 6 and the variable labels 

used are as presented previously in Table 12-5. 
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Basic Display 

The basic independence graph, having the initial default lay-out, is as displayed in 

Figure 12-24. There are only a few cross-overs in the graph but, nevertheless, it is not as 

clear as it could be. By relocating the vertices it is possible to obtain a more aesthetically 

pleasing display of the basic independence graph, such as the one presented in Figure 12-

25. 

RACE 

SEX 

Figure 12-24: CIGE: Default lay-out of independence graph for byssinosis incidence data 
model 
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-

It'PLACE SEX 

~~------------------~~ 

.. 1iiiiioIo __________________ .;;:::.iI~SM.OKE 

Figure 12-25: CIGE: Modified lay-out of independence graph for byssinosis incidence data 
model 

Menu Option: Independence Graph 

The independence graph for the byssinosis example data set· is the same as the 

initial graph which has already been presented in Figure 12-25. 

From this graph, it is possible to determine a number of conditional independence 

relationships (see Chapter 7). For example, SEX and BYSS (the incidence of byssinosis) 

are conditionally independent given EMP (length of employment), WPLACE (dustiness 

of work-place) and SMOKE (smoker or non-smoker). This immediately leads one to 

hypothesise that the incidence of byssinosis may differ for men and women because men 

and women tend to work in different environments, albeit within the same factory, 

because men and women had different smoking habits at the time of the study (1973), and 

because men tend to stay in the same job for longer than women, women tending to leave 

to raise a family. 

Menu Option: Interaction Graph 

The interaction graph for the byssinosis data example is presented in Figure 12-26. 

It can be seen that there are only two edge styles used, corresponding to two-way and 
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three-way interactions, since these are the only orders of interactions contained within the 

generating class. 

~PLACE SEX ----------------------------=. ... ... ... ... .- .- .-'- -:, " ..... .-"" .. .; ...... .-"",- ~ 
" ... ... ... RACE .. ", .. ... .; ~ 

, ...... 'e'!" - ~ 

" .', .;~~ " .', ~ , ., ~~ 
" • ~< 

" I ~', , I~; , 

" • EMP~ '" ...... , ...... , ......... , ...... , 
...... , 

............ ' SNOKE 

Figure 12-26: CIGE: Interaction graph for byssinosis incidence data model 

From the interaction graph it would appear that the three-way interaction 

[EMP.SMOKE.RACE] is also contained in the generating class of the model represented. 

To be able to determine the represented model correctly, it is necessary, in this case, to 

display the elements of the generating class separately, either simultaneously or 

sequentially. 

Menu Option: Elements of Generating Class 

The simultaneous display of the 8 elements of the generating class for the model 

fitted to the byssinosis data is as shown in Figure 12-27. From such a display it is possible 

to determine the generating class of the model represented without ambiguity. 
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0 0 0 0 

Figure 12-27: CIGE: Use of menu option to display elements of generating class 
simultaneously for byssinosis incidence data model 

c 

" 

An alternative to the simultaneous display of the generating class elements is the 

use of the sequential display. The elements of the generating class displayed sequentially 

for the model fitted to the byssinosis data would, of course, be identical to those already 

shown in Figure 12-27, except they would be displayed one at a time. 

Menu Option: Parameter Values 

The user can access the actual values of the parameters in the model for a 

particular main effect or interaction by using the mouse pointer to highlight the vertex or 

vertices corresponding to the variable(s) in the main effect or interaction effect of interest. 

In Figure 12-28 the vertices corresponding to EMP, SEX and WPLACE can be seen to 

have been highlighted. 
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It'PLACE 
... }~.... SEX ._------------------------- ~. .... - - ':I ;-,j} , .............. ". ". ". "'." ~ . 

, ....... ".".- ~ I 
, .... ... ". ... ... 1 

, ...... RACE........ ~" 
, ...... ~-... .,,~ I 

" I' ,,' 1 
, 1 " , 1 

, ',' I 
" I ',,, I " 1,< I 

, I ", I ',I ,,', I 
, 1 EMP' " I 

.. ......... " I 
....... '... 1 ....... , 

......... ,I 
...... 'I 

........... ' SMOKE 

Figure 12-28: CIGE: Use of menu option to display parameter values: highlighted 
interaction for byssinosis incidence data model 

The table of parameter valup." corresponding to this interaction will be displayed 

in a separate window on the screen. For the interaction highlighted in Figure 12-28, the 

parameter values are as given in Figure 12-29. The values are displayed for each 

combination of the levels of the three variables. Even though not all these values were 

contained in the parameter values used as input, CIOE carries out the necessary 

calculations in order to determine the missing values. 

If vertices are highlighted which correspond to an interaction which is not 

contained in the model, the user is told that there is no such interaction. Thus if the user 

had highlighted the three vertices corresponding to EMP, SMOKE and RACE, they 

would have been informed that there is no such interaction, even though it would appear 

from the interaction graph in Figure 12-26, as has already been mentioned, that such an 

interaction exists in the model. If the user had highlighted just two of these three vertices, 

then the parameter values of the corresponding two-way interaction would have been 

displayed, because all of the two-way interactions involving these three variables are 

implied by the other three way-interactions actually contained in the represented model. 
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Done 

EMP(1) SEX(1) \t'PLACE(l) -19.49 
\t'PLACE(2) 9.94 
'w'PLACE(3) 9.55 

SEX(2) 'w'PLACE(l) 19.49 
\t'PLACE(2) -9.94 
'w'PLACE(3) -9.55 

EMP(2) SEX(l) 'w'PLACE(1) 16.239 
'w'PLACE(2) -B.122 
\t'PLACE(3) -B. 117 

SEX(2) 'w'PLACE(l) -16.239 
\tPLACE(2) B.122 
'w'PLACE(3) B.117 

EMP(3) SEX(l) 'w'PLACE(l) 3.251 
\t'PLACE(2) -1.B1B 
\t'PLACE(3) -1.433 

SEX(2) \t'PLACE(1) -3.251 
'w'PLACE(2) 1.B1B 
\t'PLACE(3) 1.433 

Figure 12-29: CIGE: Use of menu option to display parameter values: table of parameter 
values corresponding to interaction for byssinosis incidence data model 

12.3.2 Example Generating Classes 

In Chapter 6, some simple pen-and-paper approaches to the representation of the 

generating class of a fitted model were considered involving the two-dimensional 

combination of points (Section 6.2). A number of example generating classes were used 

in order to illustrate and assess the usefulness of each of these technique. In particular, it 

proved difficult to distinguish between the three variable generating classes {[AB] [AC] 

[BC]} and {[ABC]}, and between the four variable generating classes {[AB] [AC] [AD] 

[BC] [BD] [CD]}, {[ABC] [BCD] [AD]}, {[ABC] [ABD] [BCD]}, {[ABC] [ABD] [ACD] 

[BCD]} and {[ABCD]}. 

The techniques which were developed and considered in Section 6.2 included the 

use of links between vertices (6.2.2), the representation of interaction type by line styles 

(6.2.3) and the separate display of generating class elements (6.2.8), among others. These 

three techniques have since been incorporated into the CIGE approach. 

In this section, therefore, I wish to show how CIGE can be applied to the 

generating classes presented above, and the use of the different features in order to 
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determine, without ambiguity, the generating class which has been used as input in each 

case. 

Example Generating Classes Involving Three Variables 

If either of the generating classes {[AB] [A C] [BC]} or {[ABC]} are used as input 

to CIGE, the corresponding independence graph will be as shown in Figure 12-30. As 

discussed in Chapter 6, it is impossible to detennine for certain the generating class of the 

model this independence graph is intended to represent. 

B 

Figure 12-30: CIGE: Use of menu option to display independence graph corresponding to 
example generating classes involving three variables 

However, if the interaction graph menu option is selected, then if the interaction 

graph is identical to the independence graph in Figure 12-30, it must represent the model 

with generating class {[AB] [AC] [BC]}, whereas if the interaction graph appears as in 

Figure 12-31, it must represent the model with generating class {[ABC]}. 

Alternatively, the menu option to display the elements of the generating class 

(simultaneously or sequentially) may be selected. In the case of the model with generating 

class {[AB] [AC] [BC]} , the elements will be displayed as in Figure 12-32, whereas in the 

case of the model with generating class {[ABC]} , the (single) element will be displayed as 

in Figure 12-33. This element is identical to the interaction graph in Figure 12-31. 
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Figure 12-31: CIGE: Use of menu option to display interaction graph corresponding to 
example generating class ([ABC)} 

O~---------------~ 

o 

Figure 12-32: CIGE: Use of menu option to display elements of generating class {[AB] [AC] 
[BC]} 
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Figure 12-33: CIGE: Use of menu option to display element of generating class ([ABC)} 

Example Generating Classes Involving Four Variables 

If any of the five generating classes {[AB] [AC] [AD] [BC] [BD] [CD]}, {[ABC] 

[BCD] [AD]}, {[ABC] [ABD] [BCD]}, {[ABC] [ABD] [ACD] [BCD]}, or {[ABCD]} is 

used as input to CIGE, the independence graph displayed will be as in Figure 12-34 

(vertices relocated from initial default display). As discussed in Chapter 6, it is impossible 

to determine for certain the generating class of the model this independence graph is 

intended to represent. 

If the interaction graph menu option is selected, and the interaction graph is 

identical to the independence graph in Figure 12-34, then it must represent the model with 

generating class {[AB] [AC] [AD] [BC] [BD] [CD]}. If the interaction graph appears as in 

Figure 12-35, then it must represent the model with generating class {[ABCl [BCD] 

[AD]}, or if the interaction graph appears as in Figure 12-36, then it must represent the 
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Figure 12-34: CIGE: Use of menu option to display independence graph corresponding to 
example generating classes involving four variables 

model with generating class {[ABCD]}. However, if the interaction graph appears as in 

Figure 12-37, it may represent the model with generating class {[ABC] [ABD] [BCD]} or 

the model with generating class {[ABC] [ABD] [ACD] [BCD]} (or even one of the other 

three models involving three three-way interactions). Only by selecting the menu option 

to display the elements of the generating class separately is it possible to distinguish 

between the model with generating class {[ABC] [ABD] [BCD]} (see Figure 12-38) and 

the model with generating class {[ABC] [ABD] [ACD] [BCD]} (see Figure 12-39). 

, 
' ... ...... ...... ...... 

I ,\ ...... III 

~--------------------~ 

Figure 12-35: CIGE: Use of menu option to display interaction graph corresponding to 
example generating class ([ABC) [BCD) [AD)} 
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Figure 12-36: CIGE: Use of menu option to display interaction graph corresponding to 
example generating class ([ABCD)} 

I: I) 

~ ,- .... ..... --.. -------...... --- -,., 
• .......... ,,<tf>" I 

I ... ... " <tf> I 
... "1 

...... ,," I 
........ ,," I 
~ I 

~" ...... I ".. ... 
,," ...... I 

" ... I I ,,~ ...... I 
I ~ ... I 

. " ... II Y ... ~ ... -... , ........ --.. -----------... .. 

Figure 12-37: CIGE: Use of menu option to display interaction graph corresponding to 
example generating classes ([ABC] [ACD] [BCD)} and {[ABC] [ABD] [ACD] [BCD]} 

[N.B. The figures produced using CIGE to illustrate this section are identical in 

appearance to some of the figures used to illustrate the pen-and-paper techniques 

developed in Chapter 6. This is because CIGE was in fact used to produce the figures in 

Chapter 6 wherever possible. ] 
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Figure 12-38: CIGE: Use of menu option to display elements of generating class {[ABC] 
[ABDj [BCn]} 
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Figure 12-39: CIGE: Use of menu option to display elements of generating class {[ABC] 
[ABD] [ACD] [BCD]} 
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12.4 Summary 

In the preceding chapter (Chapter 11) the main features of the CIGE computer 

package, which incorporates the work in earlier chapters, were described in general terms. 

This chapter was concerned with the application of these features of CIGE to real data 

sets, both to illustrate the various features and (hopefully) to demonstrate the usefulness 

of CIGE as a technique for the representation of structured multivariate data. Although 

this chapter was illustrated with graphs obtained during the actual interactive use of 

CIGE, the reader was spared too many details on how to use CIGE in practice - such 

details are provided in the form of a User's Guide in Appendix A, together with numerous 

other screen dumps. 

Covariance selection models fitted to two continuous data sets were used to 

illustrate CIGE. The first, concerned with measurements relating to pitprops, was a 

moderate sized data set involving 13 variables used primarily to illustrate the features of 

CIGE for continuous data, although some consideration was given to the relationships 

found in the data. The second set of data, concerned with measurements relating to 

kangaroo skeleto~s, was a fairly large data set involving 18 variables. Some problems 

were encountered with the display and interpretation of such a large amount of 

information in graphical form, but these were tackled within CIGE and a lot was 

eventually learnt about the structure within the data. 

A log-linear interaction model fitted to a multidimensional contingency table was 

then considered, involving 5 variables relating to the incidence of byssinosis in the textile 

industry. This model was primarily used to illustrate the features of CIGE for discrete 

data. 

The discrete data features of CIGE were also applied to a number of example 

generating classes which had previously been considered in Chapter 6 where they had 

been used to illustrate a number of simple two-dimensional pen-and-paper approaches to 

the representation of fitted models which had not always been successful. Consideration 

of these generating classes using CIGE made it possible to determine the represented 

model quickly and correctly in each case, with the added advantage that the computer 

could draw the required graphical display instantly. 

Having considered each of these data sets using CIGE, CIGE can be seen to be a 

useful tool for the representation of certain types of fitted model. CIGE facilitates the 
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display, in graph form, of numerical information relating to the fitted model, and the user 

is able to interact with the graph, and therefore with the data, in a straightforward manner 

which enables the user to develop an understanding of the structure within the data. 

Furthermore, as has been seen, the graphical display obtained using CIGE can be printed 

out at any stage of the analysis for inclusion in reports, papers, etc. 

Although CIGE is already a useful package for the display and consideration of 

certain types of structured multivariate data, in the following chapter I wish to consider a 

number of ways in which CIGE may be extended and improved, so as to increase its 

usefulness. 
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13. Extensions and Improvements to CIGE 

13.1 Introduction 

The preceding chapters (Chapters 11 & 12) have been concerned with the 

development and use of CIGE ("Conditional Independence Graph Enhancer"). CIGE is a 

computer program which has been written to implement the work and ideas contained in 

the second part of this thesis (ie. Chapter 6 onwards). 

CIGE has been written for the construction and interpretation of representations 

for fitted statistical models obtained by the application of covariance selection modelling 

and log-linear modelling, and implemented on the SUN workstation. 

This chapter is concerned with possible extensions and improvements to CIGE. In 

Section 13.2, the use of CIGE to represent other models, such as regression or ANOVA 

models, will be discussed. If the actual model fitting could be carried out in CIGE, this 

would make CIGE a very versatile package for both the fitting and display of statistical 

models for multivariate data. This possibility is considered in Section 13.3. 

The graphical representations used in CIGE, whilst developed for the display of 

the terms in a covariance selection model or log-linear model, are potentially of use for 

the display of other information. The use of CIGE for the representation of correlation and 

covariance matrices is discussed in Section 13.4. 

Finally, the possibility of writing a PC version of CIGE is considered in Section 

13.5. 

13.2 Representation of Other Models 

If one has any model which contains the equivalent of main effects and interaction 

terms, for example, regression models or ANOV A models, then this model may be 

expressed in terms of a generating class and the generating class may be used as input to 

CIGE in the same way as the generating class of a log-linear interaction model. In this 

way, a graphical representation of the model can be obtained. Features of CIGE which 

would be of use with such representations include: 

• The facility to display an 'interaction' graph. 
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• The facility to display the elements of the generating class of the model either 

simultaneously or sequentially, to resolve any ambiguities in the interaction graph. 

If it is possible to input parameter values as well, then it may also be possible to 

use CIGE to obtain the values of the parameters for various chosen terms in the model. 

13.3 Incorporation With Model-Fitting Routines 

One particular way in which CIGE could be improved would be if it could be used 

as a tool for modelling as well as for model interpretation and communication. It was not 

the aim of this thesis to develop a tool for modelling, but it would seem to be a logical 

extension. For example, if the user could specify edges to add to or delete from the 

displayed graph (perhaps for theoretical rather than statistical reasons), a model-fitting 

version of CIGE (M-CIGE?) could then provide details of the fit of the new model. 

Moreover, at present the user is required to fit a model to hislher data outside of the CIGE 

package (using GUM, SPSS, SAS, or whatever) and then to input the details of the fitted 

model to CIGE before the corresponding graph can be displayed. M-CIGE would 

conceivably be a unified package which requires only the raw data as input, and which 

can then be used to fit a model prior to its display. Alternatively, the display may actually 

form part of the model fitting procedure. 

CIGE could therefore be improved by the incorporation of model fitting routines, 

which mayor may not make use of the graphical display of the current model. However, 

there already exists a modelling package called "Mixed Interaction Modelling", written by 

Edwards (1995) and described in Section 7.5.1 of Chapter 7, which is designed for use in 

the fitting of covariance selection models (graphical Gaussian models) and graphical log

linear models, as well as conditional Gaussian models for mixed data. Moreover, MIM 

provides a visual display of the current graphical model, which can be used as an aid to 

the fitting of models (eg. by the deletion of one edge at a time from the graph, or by the 

addition of one edge at a time). It may therefore be appropriate to combine CIGE with a 

package such as MIM. Then not only would it be possible to fit the initial model in 

M-CIGE, but it would be possible at any stage in the examination of the fitted model 

through its graphical representation, to investigate the effect upon the fit of the model of 
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modifications or alternatives to this model. Because CIGE can be used to represent non

graphical models too, it could be used to extend the usefulness of MIM. 

13.4 Representation of Correlation and Covariance Matrices 

CIGE could be readily adapted as a tool for the exploration of correlation and 

covariance matrices. There are obvious parallels between the current use of CIGE to 

explore the contents of matrices of negative partial correlations and edge exclusion 

deviances, and its potential use to explore the contents of covariance and correlation 

matrices. Features of the package which would be of relevance to the exploration of such 

matrices include: 

• The display of those edges corresponding to all associations greater than a specified 

threshold value. 

• The facility to use the slider to investigate the strengths of the associations. 

• The facility to obtain the value of the association between any pair of variables by 

clicking on the appropriate edge in the complete graph. 

• The facility to display the strengths of associations by the use of edge codes (width 

and/or grey-shading). 

• The signed graph display which makes the sign of the association between pairs of 

variables apparent. 

Indeed, the only distinction between the use of CIGE for the representation of 

covariance selection models and the use of CIGE for the representation of correlation and 

covariance matrices is that no interpretation can be made in terms of conditional 

independence of the absence of edges below a particular threshold from a graph drawn for 

a correlation or covariance matrix. However, CIGE would still be invaluable as an 

exploratory tool to investigate the strongest associations (correlations or covariances) 

between variables. 
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13.5 PC Version of CIGE 

Although the SUN version of CIOE has the benefits of speed and excellent 

graphics facilities as a result of the quality of the hardware (eg. a high resolution screen 

and a three-button mouse) and of the powerful standard software (SUNView graphics 

library routines), it is not readily portable, except to other SUN users. 

It is therefore my intention to write a PC version of CIOE (PC-CIOE). This will 

increase the number of potential users ofCIOE. However, there are different software and 

hardware specifications available on supposedly compatible PCs, and programming 

decisions will need to be made taking into account the choice of graphics board (eg. VOA 

or SuperVOA?), the fact that most users will have a mouse with just one or at most two 

buttons, what operating system to write for (eg. Windows 3.1, Windows 95 or Windows 

NT?), what commercial graphics software packages the user may have, what dialect of 

"C" would be most appropriate (eg. Microsoft C, or an Object Oriented version such as 

Borland C++?), how much RAM the user is likely to have (8Mb or more?), and what 

speed of processing could be achieved (eg. 386,486 or Pentium?). 

It would not be a straightforward matter to rewrite the SUN version of CIGE to 

run on a PC. It is likely that the program would not only need to be rewritten, but also 

redesigned. 

13.6 Summary 

In this chapter, a number of possible extensions and improvements to CIOE have 

been considered which would further increase the usefulness of the program. It is hoped 

that these improvements may be implemented at some stage in the future. 
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14. Conclusions 

This thesis has been concerned with the development of graphical representations 

for structured multivariate data. 

Graphical representations have been shown (in Chapter 1) to have played an 

important role in the application and development of statistics, particularly within the past 

20 years or so. This surge of interest in the development and use of graphical techniques 

in statistics has been coupled with the surge in the availability and capabilities of 

computing power and computer graphics software, and shows every sign of continuing. 

However, while very many techniques have been developed for exploratory data 

analysis (ie. for determining which model it is most appropriate to fit to the data), and 

whilst several techniques have been developed for assessing the fit of the model to the 

data, it was the concern of this thesis that very few techniques exist for the representation 

of the fitted model itself. 

In Chapter 2, some of the most common graphical techniques for data exploration 

were described, followed in Chapter 3 by a review of the most common techniques for 

model diagnostics. Some mention was also made in Chapter 3 of the techniques available 

for experimental design symbolisation in ANOVA, since the design of the experiment has 

a direct influence on the models which may be fitted to the data. In Chapter 4, the few 

techniques existing for the representation of fitted models were described in some detail, 

with the exception of conditional independence graphs, which were considered in 

considerable detail later on. An attempt was made to extend the usefulness of two of the 

techniques described: namely the extension of interaction plots made by Monlezun 

(1979), and the technique for the representation of an ANOV A summary table by Bond 

(1988). It was concluded that the Monlezun plots were not easily interpretable, and that 

extensions to them were not worth pursuing. The alternative approaches to Bond's 

representation of an ANOV A summary table were successful, but obviously only of use 

for the purpose of representing an ANOVA summary table. Finally, in Chapter 5, some 

mention was made of issues in graphical perception and presentation which should be 

borne in mind when considering the effectiveness of any graphical representation. 

In Chapter 6 an attempt was made to develop some novel pen-and-paper based 

techniques for the representation of fitted statistical models. Three approaches were 

pursued. Firstly, the two-dimensional combination of points was considered in Section 
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6.2. Most of the ideas developed were found to be of use for the unique representation of 

the generating class of some models, but not of all models. The models which could be 

successfully represented differed according to the technique used. A few ideas were found 

to be of-use for the representation of the generating class of all models but, with the 

exception of the separate display of the generating class elements, these could lead to 

quite messy representations for models involving many variables. Secondly, in Section 

6.3 an alternative representation of Venn diagrams developed by Edwards (1989) was 

developed for the representation of the generating class of a fitted model. Although this 

technique, unlike the previous techniques, did not lead to problems of ambiguity, it was 

felt to be unsatisfactory because of the differing emphasis made of different elements of 

the generating class. Thirdly, in Section 6.4 a completely new technique was developed: 

the Topological-Magnitude Graph. This technique did not aim to represent the elements 

of the generating class of the fitted model, but to show every variable in the data and the 

nature of any interactions between these variables. Use of the Topological Graph allowed 

the terms within the model to be determined by means of an algebraic interpretation of the 

links between blocks. Use of the Magnitude Graph conveyed this same information, but 

the actual size of the effects corresponding to the terms on the model could be represented 

as well, with only a slight increase in complexity. However, in practice it was found that 

there were certain types of models which could not be successfully represented by these 

graphs, due to limitations of the algebraic interpretation of the links. 

Having failed to develop a novel pen-and-paper technique for the representation of 

fitted models which is of use for the representation of all fitted models, attention was 

switched to the conditional independence graph used in graphical modelling. This is 

similar to the graph constructed using links between vertices in Section 6.2.2 of Chapter 

6. Since graphical modelling is a relatively new and little used, but nevertheless useful 

and important, statistical technique, a detailed description of both graphical modelling and 

conditional independence graphs was presented in Chapter 7. However, as was found for 

the techniques I developed for the two-dimensional combination of points, use of the 

conditional independence graph as a way of representing statistical models is only 

successful for some, but not all, models, and the technique has other limitations due to 

crossovers and the amount of information conveyed. These limitations were considered in 

the next three chapters. In Chapter 8, the problem of crossing numbers in graphs was 

considered in general, and I was forced to conclude that no theoretical or algorithmic 

solution exists at present to the problem of constructing a graph with the minimum 
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number of cross-overs. In Chapter 9, the usefulness of the conditional independence graph 

for the representation of log-linear interaction models for discrete data was extended by 

the incorporation of edge codes corresponding to interactions, thus leading to the 

development of the "conditional interaction graph". Then, in Chapter 10, the usefulness of 

the conditional independence graph for the representation of covariance selection models 

for continuous data was extended by the incorporation of the strength of the (pair-wise) 

associations into the graph by the use of varying edge styles. A graphical perception 

experiment provided no evidence of any difference in speed of interpretation of the graphs 

for the encoding of strength by the width of edges compared with the encoding of strength 

by the grey-tone shading of edges. Some consideration was also made of the possibility, 

first suggested by Whittaker (1988), of encoding strength of association by distance. peA 

and MDS were applied to two data sets, but did not necessarily lead to a successful or 

aesthetically pleasing graph. Mention was also made in this chapter of a simple technique 

to encode the sign of the association in the graph. 

Having initially failed to develop a successful pen-and-paper technique, it was felt 

that the way ahead could be with computer-implemented interactive graphical techniques. 

Computer-implemented techniques not only have the advantage of allowing easy 

construction and manipulation of the graphical representation, but are in keeping with 

recent trends that only those statistical techniques which for which software is available 

are commonly used. Having had some success in extending the usefulness of the 

conditional independence graph, it was decided to implement these extensions in an 

interactive computer package called the "Conditional Independence Graph Enhancer" or 

CIGE, specifically for covariance selection models and log-linear interaction models. 

The many features of CIGE were described in Chapter 11. Not all features are 

applicable to both model types considered. For continuous data, the most important 

features are: a facility for obtaining the actual value of the partial correlation or edge 

exclusion deviance for any pair of variables; the incorporation of edge styles 

corresponding to strength of association (where the level of the strength of association can 

be encoded in three different ways); a slider facility for the examination of the effect of 

changing the threshold upon the edges in the graph; a facility for changing the threshold 

permanently; and a facility for showing the sign of the partial correlations. For discrete 

data, the most important features are: the incorporation of edge codes corresponding to 

order of interaction; a facility to display the elements of the generating class separately, 
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either simultaneously or sequentially; and a facility to display the parameter values 

corresponding to highlighted interactions. In general, the graphs obtained can be 

manipulated in order to obtain a more aesthetically pleasing representation or one with 

fewer cross-overs and/or a more meaningful grouping of the vertices/variables. These 

features were illustrated on a number of example data sets for both continuous and 

discrete data in Chapter 12. 

Thus, through the use of CIGE, covariance selection models for continuous data 

and log-linear interaction models for discrete data can now be represented in such a way 

that, through the use of a combination of the available facilities, it is possible to determine 

the represented model uniquely. Since CIGE has been written for use with monochrome 

graphics workstations, and does not rely on three-dimensional graphics, at any stage the 

graph displayed can be printed out for inclusion in a report or journal. 

With CIGE, therefore, I would claim to have been successful in meeting the 

research aim of developing a graphical technique for the representation of structured 

multivariate data in the form of (certain) fitted statistical models. Up until now, this has 

been a much neglected area. By keeping the mathematics as simple as possible, I have 

hopefully developed an approach which will appeal to non-statisticians who need to 

interpret and communicate fitted statistical models, as well as to statistical consultants 

who may have to assist non-statisticians in the interpretation and communication of fitted 

models, and hopefully to other statisticians too. Where it is not possible to use CIGE 

interactively, it may be possible to use some of the ideas contained therein, or to use one 

of the pen-and-paper techniques I developed in Chapter 6, for a fitted model where the 

chosen technique will be successful. 

All of the techniques I have developed appear, with hindsight, to be simplistic and 

perhaps even 'obvious', yet I would argue that these features should be regarded in favour 

of the use of the graphical representations for fitted models developed in this thesis. 

As for future developments, it is unlikely that a straightforward universally 

successful pen-and-paper technique could be developed - it is more likely that the future 

will lie in the development of interactive computer implemented techniques, both due to 

the complexity of constructing a representation, and also because of the importance and 

popularity of computer implemented techniques in statistics in general. In Chapter 13, a 

number of ideas for the future development of CIGE were presented. The extension of the 

package to enable the representation of models for mixed data will make CIGE more 

widely applicable, and the writing of a PC version of the software will make it more 
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widely useable. Incorporation of CIGE with model-fitting routines, whilst not directly 

relevant to my aims of developing a technique for the representation of fitted models, will 

extend the usefulness of the package. In particular, incorporation of CIGE with a package 

such as MIM for the fitting of graphical models could be of use in making graphical 

modelling known and available to a larger number of users than at present. 
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15. Appendix A: CIGE User's Guide 

15.1 Introduction 

The contents of this appendix are complementary to the contents of Chapters 11 

and 12 in that this appendix describes in detail the implementation of the features 

described in Chapter 11 and illustrates the use of CIGE to obtain the graphs used to 

display the models fitted to the analyses of the pit-prop data and byssinosis data sets 

presented in Chapter 12. 

CIGE ("Conditional Independence Graph Enhancer") is an interactive computer 

package for the display, communication and interpretation of covariance selection models 

for continuous data and log-linear interaction models for discrete data. CIGE has been 

written in the "C" programming language (Kernighan & Ritchie (1988); Schildt (1987)), 

for use with monochrome SUN workstations (eg. 3/50 and 3/60 models), making use of 

SUNView library routines which facilitate the use of windows, icons, menus and pointers 

(WIMPs). Although this section forms a User's Guide in that it details the various features 

of CIGE and their use, it is not intended to be a technical section, so details of the 

program itself have been kept to a minimum. In this way, it is not necessary to have any 

specialised knowledge of the hardware or software in order to understand how to use 

CIGE, beyond a basic familiarity with the use of windows, menus, and a three-button 

mouse pointer. 

CIGE is formed by three main modules called CIGE, CCIGE, and DCIGE. The 

CIGE module (approximately 550 lines of code) handles the input of the data, which is 

either continuous or discrete, and passes control to the CCIGE module (approximately 

880 lines of code) if the data is continuous, or to the DCIGE module (approximately 880 

lines of code) if the data is discrete. This modular structure was chosen because the 

features of CIGE for continuous data and for discrete data are quite different. 

The relationship between the three main modules is as illustrated in Figure 15-1. 

In Figure 15-2, the input and output files used with CIGE, together with the various 

temporary files and a supplementary program are illustrated in relation to these three main 

modules. Figure 15-2 is intended for reference, and the function of these files and the 

supplementary program will hopefully become apparent in subsequent sections of this 

appendix. 
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DaInput 

CIGE 

Continuous / ~ 
Data ~ 

Discrete 
Data 

CCIGE DCIGE 

1 1 
Output Output 

Figure 15-1: Diagram showing the relationship between the three main modules of CIGE: 
CIGE, CCIGE and DCIGE 

The structure of this appendix is such that I shall begin by describing the use of 

the features of the data entry module CIGE. I shall then go on to describe the use of the 

continuous data module CCIGE, and conclude by describing the use of the discrete data 

module DCIGE. To avoid confusion, the name CIGE will, in general, be used throughout 

the text to refer to the package as a whole. The modules CIGE, CCIGE and DCIGE will 

only be referred to where it is relevant to the description of the functioning of the 

package. From the user's perspective, the modules form a coherent whole package, which 

is CIGE. 
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CONT.EED 

CCIGE.C 

GUM.OUT 
GUM 
Output 
File 

GUM.CONV _ _ _ Conversion File 

L 
DIS.Pv 

CIGE.C - - - - - - - - Data Input Code 

~ 
CIGE.TMP 

~. 
CIGE.DAT - - - - - - - Output ofCIGE.C 

, 
DCIGE.C • -. Data Handling Code 

CONT.NPC DIS.GC DIS.PV - - • Saved Output 

Figure 15-2: Diagram showing the relationship between the three main modules of CIGE, 
together with the temporary files and supplementary program 
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15.2 CIGE: Data Entry Module 

Assuming that the three main modules and necessary icons, together with the 

supplementary program and any data files are resident in the current directory, CIGE is 

invoked simply by typing "cige" at the SUN shell prompt. 

The first screen which the user encounters is part of the CIGE data entry module. 

This requires the user to choose between the following options: 

1. Input new data 

2. Restore previously saved graph. 

If it is a new data set, the user would choose option 1. However, at any stage 

during the use of CIGE it is possible to save the current data, variable labels, variable 

positions, and threshold value for the basic graph so that it may be examined again at a 

later occasion. Were it the case that a graph had already been saved in this way, the user 

could select option 2, and then the name of the file containing the previously saved graph 

would be requested and the graph would be re-displayed exactly as it had appeared when 

saved. However, let us suppose that the user wishes to input new data and so selects 

option 1. 

Having specified that he/she wishes to input new data, it is now necessary for the 

user to specify one of the following two options: 

1. Continuous data 

2. Discrete data 

If a continuous data set is to be considered, the user would select option 1. What 

happens thereafter is described in Section 15.2.1. However, if a discrete data set is to be 

considered, the user would select option 2. What happens thereafter is described in 

Section 15.2.2. 
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15.2.1 Data Input for Continuous Data 

Having indicated that continuous data is to be analysed, it is necessary to specify 

the form in which the continuous data has been prepared, by selecting one of the 

following two options: 

1. Edge exclusion deviances 

2. Negative partial correlations 

If the user selects option 1, they are asked to specify the name of the data file in 

which the matrix of edge exclusion deviances is contained in upper triangular matrix 

form. In Figure 15-2, this corresponds to cont.eed. If the user selects option 2, they are 

first asked to specify the number of observed units N, and then to specify the name of the 

data file in which the matrix of negative partial correlation coefficients is contained in 

upper triangular matrix form. In Figure 15-2, this corresponds to cont.npc. 

The upper triangular matrix must consist of one line per variable, and there must 

be at least one space between each data value. Otherwise, the data can be in free-format 

form. It is not necessary to explicitly give the number of variables in the data set (for 

which there is no maximum limit), since this can be determined from the size of the 

matrix used as input. It is, however, necessary for the user to have included the variable 

names with which they wish to label the vertices within the data file. 

In Figure 15-3, it can be seen how the above options are displayed on the screen. 

The options are displayed one pair at a time, since the next pair of options to be displayed 

depends on the choice made between the previous options. However, the previous options 

continue to be displayed and it is possible to change an earlier response, in which case the 

subsequent options will change and be re-displayed as appropriate. 

The data file specified is called pitprop.npc. This file contains the mat;ix of 

negative partial correlations corresponding to the covariance selection model examined 

using CIGE in Section 12.2.1 of Chapter 12. This data file is displayed, with annotations, 

in Figure 15-4. The file containing the matrix of edge exclusion deviances for the same 

data set, pitprop.eed, is identical, except that the upper triangle of the matrix of negative 

partial correlations is replaced by the upper triangle of the matrix of edge exclusion 

deviances. 
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Conditional Independence Graph Enhancer' '_ ,,', '., ,,;,' :"', " 
, Please indicate whether new or old data 

(jJ Input new data 

(0 Restore previously saved graph 

Please Indicate the data, type 
(il Cont i nuous da ta 

(0 0 i screte da ta 

Please indicate the matrix value types 
(0 Edge exclusion deviances ' 

Ii) Negative parth I correlations 

Number of observations: 160 
Filename: pitprop.npc 

Figure 15-3: CIGE: Data entry screen for example continuous data model 

-0.8632 -0.1018 -0.0066 0.0621 -0.0147 -0.0634 -0.1748 

0.0445 -0.0115 0.0010 0.0474 -0.0581 0.1015 -0.3035 

-0.9289 0.6635 0.0370 0.1127 -0.0688 -0.0092 0.0353 

-0.6933 -0.1753 0.0194 0.1184 -0.0299 -0.0512 0.0207 

0.0153 -0.0586 -0.1086 0.0222 0.0970 0.0379 0.1119 

-0.8579 -0.0055 0.1553 0.4613 0.0921 -0.2106 -0.0379 

0.0619 -0.1760 -0.5416 -0.0930 0.1906 0.2407 

-0.2117 -0.2437 -0.1711 0.1915 0.1163 
-0.0263 -0.1001 -0.0767 0.0167 

!( 0.5100 0.1563 0.1913 nQ.~c.h~ VOJ'tiC\ . 0.1363 0.2080 
0.0792 t CJ'{'r Q..\. Q \'\ Ctrt M c.~ r< 

Figure 15-4: CIGE: Input data file (pitprop.npc) containing matrix of negative partial 
correlations, with annotations, for example continuous data model 

298 



The CIGE module modifies the data file used as input according to the choice 

made at each pair of options displayed and, in the case of the matrix of negative partial 

correlations only, the number of observations, to give cige.tmp. The default threshold 

value and the default lay-out of the vertices are calculated, and then the file is passed on to 

the CCIGE module as cige.dat. The lay-out of cige.dat is identical to the saved data file 

corresponding to a saved graph, which will be illustrated later. 

15.2.2 Data Input for Discrete Data 

Having specified that the data to be analysed is discrete, it is necessary to specify 

the form in which the discrete data has been prepared by selecting one of the following 

two options: 

1. Parameter values 

2. Generating class 

The appearance of the above options on the screen is as appears in Figure 15-5 

The user is then asked to specify the name of the data file in which the parameter 

values or the generating class elements are contained. In this example, the data file 

specified contains parameter values and is called byss.pv. It is again necessary to specify 

any names with which the user wishes to label the vertices corresponding to the variables, 

and also to specify the number of variables, within the file used as input. 

Rather than type each of the parameter values into the data file, a special program 

has been written, to run independently of CIGE, called glim.conv. This program will take 

a GLIM output file (eg. glim.out), and strip it of all irrelevant text except for the list of 

parameter labels and values which are displayed by the GUM command $ disp e $; This 

stripped output file can be used, with a few other additions, as the data file corresponding 

to dis.pv in Figure 15-2 for use with CIGE. CIGE is able to calculate the parameter values 

not explicitly contained in the GUM output file. 

The annotated input data file containing the parameter values for the byssinosis 

data considered in Chapter 12 is presented in Figure 15-7. In Figure 15-6, the same model 

is represented by its generating class. 
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Condttlonal Indopendence Graph Enhancer .... -'. ',:'~:' '", '.' ' .• -; "",-. 
Please indicate whether new or old data 

(i1 Input new data 

lORestore previously saved graph 

Please Indicate the data type 

Ii] Continuous data 

til 0 i screte data 

Please Indicate the input type 

iii Parameter values 

u:::IGeneratlng class 

Filename: bysslnosis.dat. 

Figure 15-5: CIGE: Data entry screen for example discrete data model 

6 ~ nc. oj Uo.sicb\es 
EMP 
SMOKE 
SEX 
RACE 
WPLACE 
BYSS 
EMP SMOKE SEX 
EMP SEX RACE 
SMOKE SEX RACE 
EMP SEX WPLACE 
EMP RACE WPLACE 
WPLACE BYSS 
EMP BYSS 
SMOKE BYSS 

lc.beJs 

Figure 15-6: CIGE: Input data file containing the generating class of the model, with 
annotations, for example discrete data model 
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6 
E 
S 
G 
R 
W 
B 
3 
2 
2 
2 
3 
2 

~ nD. ~ 
\SOJ\-C b\ Q. 

1 1.674 
E(2) 0.1693 
E(3) 1.637 
S(2) -1.260 
G(2) -2.264 
R(2) 1.420 
w(2) -1.762 
w(3) -0.6800 

uCJJ1Qb\ Q,S 

tc. be. is 

8(2) 1.854 
E(2).S(2) -0.4983 
E(3).S(2) -0.2505 
E(2).G(2) -8.536 
E(3).G(2) -2.192 
S(2).G(2) 0.5154 
E(2).R(2) -1.225 
E(3).R(2) -2.414 
S(2).R(2) 0.05751 
G(2).R(2) 0.3859 
E(2).W(2) -0.08221 
E(2).W(3) 0.02426 
E(3).W(2) -0.4333 
E(3).W(3) -0.3381 
G(2 .W(2 2.344 
G . 

Figure 15-7: CIGE: Input data file containing the parameter values of the model, with 
annotations, for example discrete data model 

Again, the CIGE module modifies the data file used as input according to the 

choices made at each pair of options displayed to give cige. Imp which is passed as 

cige.dat to the DCIGE module. 
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15.3 CCIGE: Continuous Data Module 

The CCIGE module is automatically called by the CIGE module for use with 

continuous data in the form of the matrix of negative partial correlations or the matrix of 

edge exclusion deviances, corresponding to a covariance selection model. 

IS.3.1 Basic Display 

CIGE automatically calculates a default threshold level for the display of edges, 

which corresponds to the 5% significance level. Thus if the matrix of edge exclusion 

deviances had been used as input, the default threshold would be X2
[I] =3.841. Since the 

matrix of negative partial correlations has been used as input instead, the default threshold 

will be the absolute value of Pij.K for which 

Pij.K = ~I - e-
3
.s,:1 

where N is the number of observed units. This equation is derived from the formula 

described in Chapter 11 for the calculation of the matrix of edge exclusion deviances from 

the matrix of negative partial correlations. 

The basic independence graph is drawn using the default lay-out obtained by 

locating the vertices corresponding to the variables equidistant around the circumference 

of an imaginary circle. These vertices are labelled with the variable names given as input. 

For those pairs of variables for which the absolute value of their (pair-wise) partial 

correlation exceeds the 5% (default) threshold value of Pij.K, an edge is drawn between the 

corresponding vertices of the graph. The basic independence graph for the pit-prop data 

example is presented again in Figure 15-8. 

By clicking and dragging the middle mouse button on any of the vertices in this 

default display and relocating them, it is possible to obtain a much more aesthetically 

pleasing display of the basic independence graph. An intermediate stage in the derivation 

of the modified lay-out is presented in Figure 15-9. This shows the appearance of the 

graph whilst the user is actually 'moving' one of the vertices. Because this much 

simplified version of the graph is drawn whenever the mouse button is depressed on a 

vertex, the graph can be continually updated, giving the impression that the edges are 

being dragged along by a moving vertex. This is very useful when attempting to 
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Figure 15-8: CCIGE: Default display of basic independence graph for continuous data 
example 

determine the best (in some sense) location for each vertex, since the user can see, in real 

time, the effect of every position the vertex passes through upon the overall appearance of 

the graph. Only when the mouse button is released again is the graph redrawn with the 

thicker edges and variable labels, such as the graph presented again in Figure 15-10. 

15.3.2 Menu Options 

By clicking the right-hand mouse button anywhere in the window in which the 

basic graph is displayed, the menu of options is obtained. The appearance of the menu 

options is as shown in Figure 15-11. If the matrix of edge exclusion deviances had been 

used as input, the signed graph option would be automatically deselected, since it is not 

appropriate for this form of data. 
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Figure 15-9: CCIGE: Intermediate stage in the modification of the display of the basic 
independence graph for continuous data example 

In the remainder of this section, the effects of each of the menu options will be 

described in turn. Whenever no menu option is active, the basic independence graph is 

displayed by default. A menu option only ceases to be active when the user clicks the 

mouse on the DONE button. Whilst a menu option is active, it is still possible to relocate 

the vertices of the displayed graph. 

Numerical Values 

When this menu option is selected, the complete graph on all n vertices (involving 

n(n-I)/2 edges) is displayed. The edges which were included in the basic graph are still 

represented as continuous lines, but those edges in the complete graph which are not 

included in the basic graph are drawn narrower and so appear fainter. 
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Figure 15-10: CCIGE: Modified display of basic independence graph for continuous data 
example 

By clicking the left mouse button on any edge in the complete graph, it is possible 

to obtain the (signed) value of the partial correlation between the two variables joined by 

that edge. See, for example, the graph displayed in Figure 15-12 - having just clicked on 

the edge joining the vertices labelled RNGB and KDIA, the user is infromed that the 

strength of the association represented by this edge is -0.241. Note that the sign given is 

that which corresponds to the partial correlation, which is the opposite to that contain~d in 

the matrix of negative partial correlations used as input. 

If the matrix of edge exclusion deviances had been used as input instead of the 

matrix of negative partial correlations, then the (always positive) value of the edge 

exclusion deviance between pairs of variables would be displayed. 

If two edges are located close together, and the user clicks on an ambiguous area 

(ie. where the edges are very close), CIGE will display the partial correlation 

corresponding to one of the edges. Which edge this is is dependent on the way in which 
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Figure 15-11: CCIGE: Menu options for use with continuous data example 

the program tests each edge in turn until it finds one within a certain distance of where the 

mouse was clicked, but will be apparent from the labelling of the displayed value. If it is 

not possible to find an unambiguous part of an edge to click on in order to obtain the 

desired partial correlation it is possible to relocate the vertices using the middle mouse 

button as before. 

Using this menu option it is therefore possible to obtain precise information about 

the strength of the association between pairs of variables where the strength of the 

association is below the threshold value and the edges are therefore not displayed in the 

basic graph, even though their value may be non-zero. It is also possible to obtain precise 

information about the strength of associations which are greater than the threshold value 

and are therefore represented by edges in the basic graph. 
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Figure 15-12: CCIGE: Numerical values menu option applied to continuous data example 

Encoded Strengths 

When this menu option is chosen, another, pull-right, menu is displayed listing the 

three different ways in which the strength of the associations represented by the edges in 

the basic graph can be incorporated in the graph. Having chosen one of these options, yet 

another pull-right menu is displayed listing the three different ways of specifying the 

boundaries between each of the levels of encoding used. The appearance of these menus 

and menu options is as shown in Figure 15-13. 

For the first of the options for specifying the boundaries between each of the 

levels of encoding, which is based on significance levels, default significance levels are 

used which correspond to p>O.I, 0.1~p>0.05, 0.05~p>0.025, 0.025~p>0.01, 

0.01~p>0.005 and p~0.005. The values of the edge exclusion deviances or (absolute) 

partial correlations corresponding to these values of p can be calculated automatically by 
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Figure 15-13: Additional menu options for use with Encoded Strengths option for 
continuous data example 

CIGE since the values of the edge exclusion deviances follow a i[ll distribution, and are 

therefore tabulated as the critical values of i[l] corresponding to different values of p. 

The corresponding values of the partial correlations can be found using the equation 

presented in Section 15.3.1, substituting the appropriate value from the x,2[I) distribution 

for the default value of i[I) =3.841 (which corresponds to p=O.05). The smaller the value 

of p (in other words, the greater the significance of the association represented by a 

particular edge), then the wider and/or darker the edge. For example, Figure 15-14 shows 

the use of the default significance levels option in conjunction with the grey shades option 

for encoding the strength of association. 

For the second option, where the levels are equi-spaced, the boundaries between 

levels are found by default by considering the maximum absolute partial correlation (or 

maximum edge exclusion deviance) and dividing this value by 6. Then the boundaries of 
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Figure 15-14: CCIGE: Default significance levels option used in conjunction with the grey 
shades option for encoding strength of association, for continuous data example 

the six levels are calculated as max, % max, % max, ~ max, % max, ~ max, O. 

The closer the level to the maximum value (in other words, the stronger the association), 

then the wider and/or darker the edge. For example, Figure IS-IS shows the use of the 

equi-spaced default option in conjunction with the widths option for encoding strength of 

association. 

For the third option, the user is free to specify hislher own choice of values for the 

strengths of the associations (absolute partial correlations or edge exclusion deviances, as 

appropriate) corresponding to the boundaries of the six levels. The user's choice of values 

is subject to the logical requirement that the boundary values must increase 

monotonically. Again, the stronger the association, then the wider and/or darker the edge. 

Figure 15-16 shows the initial appearance of the graph after the user-defined boundaries 

option has been selected. Irrespective of the option which would have already been 
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Figure IS-IS: CCIGE: Default equi-spaced option used in conjunction with the widths 
option for encoding strength of association, for continuous data example 

chosen for encoding the strengths of the associations, the basic independence graph is 

redisplayed and the 5 thresholds between the 6 levels are all initialised at the current 

threshold level. The user can then specify hislher own boundary values. For example, 

Figure 15-17 shows the use of the user-defined boundaries option for the trivial case 

where the user has defined the boundary values to correspond to the significance levels 

available automatically with the default significance levels option, in conjunction with the 

combination (widths and grey-shades) option for encoding the strengths. 

By comparing Figure 15-15 with Figure 15-14 (or Figure 15-17), it can be seen 

that the two default options for calculating the boundaries between the levels can result in 

quite different encodings of the edges. 
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Figure 15-16: CCIGE: User-defined boundaries option applied to continuous data example 

Slider 

Use of this menu option makes it possible for the user to investigate the effect of 

changing the threshold value, above which edges are included in the graph, and below 

which edges are excluded. 

When this option is selected, a slider is displayed above the graph. The left-hand 

end of the slider corresponds to a threshold value of zero, for which all edges would be 

included in the graph (since absolute values of the partial correlations are considered). 

The right-hand end of the slider corresponds to a threshold value equivalent to the 

maximum absolute partial correlation or maximum edge exclusion deviance, for which no 

edges would be included in the graph. Initially, the slider is located at the position 

corresponding to the current threshold value, as shown in Figure 15-18. 
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Figure 15-17: CCIGE: User-defined boundaries option used in conjunction with the 
combination option for encoding strength of association, for continuous data example 

The user can click the left-hand mouse button on the slider and drag it in either 

direction, left or right. As they do so, edges are added to or dropped from the graph 

according to the change in threshold value, and the changing threshold value is displayed 

above the slider. For reasons of speed, the graph drawn whilst the mouse button is 

depressed on the slider has thin edges as shown in Figure 15-19. Only when the button is 

released is the graph redrawn with the usual, thicker, edges according to the prevailing 

threshold value, as shown in Figure 15-20. In Figure 15-20, the threshold value displayed 

above the slider is greater than the original threshold displayed in Figure 15-18 and so 

there are fewer edges in the redrawn graph. 
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Figure 15-18: CCIGE: Initial display of slider for continuous data example 

Note that this menu option is for exploring the effect of a change in threshold 

value and that the current value of the threshold is not permanently altered - as soon as 

this option is exited, the original basic independence graph is displayed. To change the 

default threshold permanently, the following menu option must be used. 

Changing the Threshold 

Having decided to permanently change the current threshold value, perhaps by 

calculation (outside of CIGE) of the default threshold corresponding to a significance 

level other than 5%, or by exploratory use of the slider menu option, this menu option 

should be used. Once a new value for the threshold is typed in, the independence graph is 

redrawn according to this new value. However, the new value does not become the new 

permanent threshold until the user clicks the left-hand mouse button on the button marked 
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Figure 15-19: CCIGE: Intermediate stage in the use of the slider for continuous data 

example 

'DONE'. This allows the user to experiment with different values before making a 

permanent change. After making a permanent change, the basic independence graph will 

thereafter be displayed with the edges corresponding to absolute partial correlations (or 

edge exclusion deviances) greater than this new value, until the value is again changed 

using this option. Use of this option is illustrated in Figure 15-21. 
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Figure 15-20: CCIGE: Display of independence graph for new value of threshold obtained 
using the slider for continuous data example 

Signed Graph 

In the basic independence graph, the edges displayed correspond to pairs of 

variables with an absolute partial correlation greater than the current threshold value. 

However, the user may wish to ascertain which pairs of variables are positively 

associated, and which are negatively associated. In choosing this menu option, the basic 

graph is re-displayed, but those edges corresponding to a positive partial correlation are 

drawn with the usual thick dark edge, and those edges corresponding to a negative partial 

correlation are drawn with a thinner and therefore fainter edge. Use of this option is 

illustrated in Figure 15-22. 

As has already been mentioned, this menu option is not available if the edge 

exclusion deviance matrix is used as input, since there are no signs attached to their 

values. 
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Figure 15-21: CCIGE: Change threshold menu option applied to continuous data example 

Saving the Results 

As mentioned above, the basic independence graph displayed can be saved at any 

time for further examination on another occasion. This is achieved by selecting this menu 

option and specifying the filename by which the data is to be saved (see Figure 15-23). 
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Done 

Figure 15-22: CCIGE: Use of signed graph menu option for continuous data example 

The saved file, which can be specified in the data entry module any time CIGE is 

run (see Section 15.2 above), will contain the data matrix used as input, the locations of 

the vertices, the variable labels, and the default threshold level, and other information 

which was specified when the data was originally entered, such as whether the data was 

continuous or discrete, the form of the data matrix used as input, and the number of 

observed units. An annotated example of the saved data file for the pitprop data example 

is contained in Figure 15-24. 
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Figure 15-23: CCIGE: Save menu option for continuous data example 

Exiting from CIGE 

By selecting the menu option 'exit', the CIGE program is exited, after seeking 

confirmation of the user's intention. If the graph has not been saved by explicit use of the 

save menu option, then all changes will be lost. 
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Figure 15-24: CIGE: Saved data file with annotations for example continuous data model 
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15.4 DCIGE: Discrete Data Module 

The DCIGE module is automatically called by the CIGE module for use with 

discrete data, in the form of the generating class ofa fitted log-linear interaction model, or 

of the actual parameter values of the terms in the fitted model. Given the parameter values 

as input, CIGE is able to derive the generating class corresponding to the fitted model. 

15.4.1 Basic Display 

The basic independence graph is drawn using the default lay-out obtained, as in 

the CCIGE module described above, by locating the vertices corresponding to the 

variables equidistant around the circumference of an imaginary circle. The vertices are 

labelled with the variable names which were inputted. For those pairs of variables for 

which a two-way interaction between the variables is either contained in the generating 

class of the model, or is implied by an element of the generating class of the model, an 

edge is drawn between the corresponding pair of vertices in the graph. Figure 15-25 again 

shows the default layout of the independence graph for the discrete data example, together 

with the menu of options (see below). 

By clicking and dragging the middle mouse button on the vertices in this default 

display, it is possible to obtain a much more aesthetically pleasing display of the basic 

independence graph, such as the graph presented again in Figure 15-26. 

15.4.2 Menu Options 

By clicking the right-hand mouse button anywhere in the window in which the 

basic graph is displayed, the menu of options is obtained as already shown in Figure 15-

25. In the remainder of this section, the effects of each of these options is considered in 

turn. Whilst a menu option is active, it is still possible to relocate the vertices of the 

displayed graph. When displaying the elements of the generating class, although the 

positions of the vertices when this option was called will be mirrored in the second 

window, any relocation of the vertices of the graph in the main window will not be 

mirrored in the second window until the option is re-selected. 
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Figure 15-25: DCIGE: Default display of basic independence graph for discrete data 
example 

As for the CCIGE module, a menu option remains active until the user clicks the 

mouse on the ~DONE' button, with the exceptions of the independence graph and 

interaction graph options, one or other of which is active at all times (see below). 

Independence Graph 

This corresponds to the basic independence graph described in the previous 

section and displayed in Figure 15-26. Unlike continuous data, it is not the case for 

discrete data that this graph is displayed by default whenever no other menu option is 

active. Instead, either the independence graph or the interaction graph (described in the 

next section) may be displayed, depending on which was the most recently chosen menu 

option. 
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Figure 15-26: DCIGE: Modified display of basic independence grapb for discrete data 
example 

Interaction Graph 

When this menu option is chosen, the interaction graph is displayed. This will 

have the same edges present and lay-out of the vertices as the independence graph in 

Figure 15-26, but the style of the edges will be coded according to the order of the largest 

interaction involving that pair of variables, as shown in Figure 15-27. 

A key listing all the possible edge codes and the corresponding order of interaction 

is available for use with this menu option, and also for use with the display of the 

elements of the generating class described below, by clicking on the displayed key icon. 

This key is presented in Figure 15-28. 
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Figure 15-27: DCIGE: Display of interaction graph for discrete data example 

Conditional Independence Graph Enhancer Key 

Edge coding for interaction graphs: 

"'~#~~~ 
~~~~ 

Ivla in effect 

1 i ne style for 2-way interaction 
_______ 1 line style for 3-way interaction 

.1.1.1.1.1.1.1.1.1.11 1 ine style for 4-way interaction 

.111.111.111.111.111.111 1 ine style for 5-way interaction 

111111111111111111111111 line style for 6-way interaction 

Figure 15-28: Key listing all possible edge codes and corresponding orders of interaction for 
interaction graphs for discrete data example 
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The appearance of the key when the key icon in Figure 15-27 is clicked, is as in 

Figure 15-29. 
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Figure 15-29: DCIGE: Display of interaction graph with key for discrete data example 

Elements of Generating Class 

If this menu option is chosen, an additional, pull-right, menu appears as shown in 

Figure 15-30. This allows the user to specify whether the elements of the generating class 

are to be displayed simultaneously or sequentially. For either option, the independence or 

interaction graph continues to be displayed in the current window, and a second window 

appears in which the elements of the generating class will be displayed. 

If the elements of the generating class are to be displayed simultaneously, a full

screen sized 'canvas' is used to display the elements in a square grid of dimensions most 

appropriate to the number of elements in the generating class (eg. 2x2, 3x3, 4x4, etc.). In 

this example, the generating class has 8 elements, so a 3x3 grid is used. The second 
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Figure 15-30: DCIGE: Appearance of pull-right menu for display of elements of generating 
class for discrete data example 

window which initially appears is, by default, the same size as this grid, but the user can 

change the window size in order to access the main window, although re-sizing the 

second window will obscure part of the grid. In each square of the grid, a sub-graph is 

drawn corresponding to one of the elements of the generating class of the model, with the 

edges encoded or a single vertex highlighted, according to the size of the interaction 

corresponding to the displayed element. 

See Figure 15-31 for the simultaneous display of the elements of the generating 

class corresponding to the discrete data example. The generating class elements were 

determined by CIGE from the parameter values in the data file used as input. 
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Figure 15-31: DCIGE: Simultaneous display of generating class elements for discrete data 
example 

If the elements of the generating class are to be displayed sequentially, the first of 

the elements appears in a second window. Again, by default, this window is initially the 

same size as the screen, but if the user changes the size of the window the graph will 

automatically be re-drawn to scale. By clicking on the button marked 'NEXT' each time, 

the user can repeatedly flip through each of the elements of the generating class in tum. A 

message tells the user that "Graph X of Y" is currently being displayed, where Y is the 

number of elements in the generating class of the model, and X is the number of the 

element (l,2, ... ,Y) currently displayed. Again the edges of the sub-graphs displayed are 

encoded according to the size of the interaction. 

Figure 15-32 shows graph 1 of 8 displayed in a re-sized second window for the 

discrete data example. The other 7 graphs to be displayed are as in Figure 15-31. 
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Figure 15-32: DCIGE: Graph 1 of 8 in the sequential display of generating class elements 
for discrete data example 

Parameter Values 

When this option is selected, the user can select the variable or variables which 

form the main effect or interaction effect of interest by clicking the left mouse button on 

the corresponding vertex or vertices in the graph. This acts as a toggle, such that one click 

will highlight the vertex (which is re-displayed with a shaded as opposed to a solid 

vertex), whilst a second click will cancel the selection of the vertex (which is then 

displayed as a solid vertex again). When all the variables in the interaction of interest have 

been selected, as shown in Figure 15-33, the user can click the mouse on the button 

marked 'SHOW'. This will cause a second window to be opened in which the parameter 

values are displayed, as shown in Figure 15-34. However, if the user has selected a group 

of variables which form an interaction which is not contained in the generating class of 
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Figure 15-33: DCIGE: Highlighting of vertices corresponding to interaction of interest for 
discrete data example 

For a main effect, the parameter values are listed in a single row; for a two-way 

interaction effect, the parameter values are listed in a two-way table; and for a three-way 

or higher order interaction effect, the parameter values are listed in a cross-referenced 

table as shown in Figure 15-34. The rows and columns of the tables are labelled with the 

vertex labels so that the parameter values can be determined for any combination of the 

levels of the selected variables. 

The second window is initially displayed the same size as the screen, but can be 

re-sized to allow the user to select or deselect other variables/vertices in the graph in the 

main window. In re-sizing the second window, some of the parameter values may be 

obscured, but the user can enlarge the window if he/she wishes to inspect all of the values 

again. If the user selects or deselects other vertices in the main window whilst the second 
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Figure 15-34: DCIGE: Parameter values corresponding to interaction of interest for 
discrete data example 

window is open, and then clicks on the 'SHOW' button, the display In the second 

window will change according to the interaction which is now highlighted. 

Saving the Results 

As indicated above, the independence graph or the interaction graph displayed can 

be saved at any time for further examination on another occasion (although a saved 

interaction graph will initially be re-displayed in the form of the corresponding 

independence graph). This is achieved by selecting this menu option and specifying the 

filename by which the data is to be saved. This file, which can be specified in the data 

entry module any time CIGE is run (see Section 15.2 above), will contain the parameter 

values given as input (if these were given), details of the interactions contained in the 

generating class of the model (for either form of data input), the locations of the vertices, 
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the variable labels, and other information which was specified when the data was 

originally entered, such as whether the data was continuous or discrete, the form of the 

data used as input and the number of variables. An annotated example of the saved data 

file for the. byssinosis data example is contained in Figure 15-35 for the inputted 

parameter values, and in Figure 15-36 for generating class input. 
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Figure IS-3S: CIGE: Saved data file with annotations for example discrete data model with 
parameter value input 
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Figure 15-36: CIGE: Saved data file with annotations for example discrete data model with 
generating class input 

Exiting from CIGE 

As in the contiilUous data example, by selecting the menu option 'Exit', the CIGE 

program is exited, after seeking confirmation of the user's intention to exit. If the graph 

has not been saved by explicit use of the save menu option, then all changes will be lost. 
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16. Appendix B: Graphical Perception Experiment _ 

Summary of Results 

16.1 Introduction 

In this appendix, the results of all of the parametric and non-parametric hypothesis 

tests carried out for the experiment described in Section 10.5.1 of Chapter 10 are 

summarised. As mentioned in Section 10.5.1, both parametric and non-parametric tests 

were applied to the same data from the graphical perception experiment since the 

assumptions underlying the use of the parametric tests were not fulfilled for every test 

carried out. However, the results obtained by applying parametric and non-parametric 

tests to the same data were consistent for every test, suggesting that the reporting of only 

the parametric tests within Section 10.5.1 was sufficient. 

The various parametric tests (paired t-tests for Hypotheses 1 and 3, and two

sample t-tests for Hypothesis 2) are summarised in Section 16.2, and the various non

parametric tests (Wilcoxon W tests for Hypotheses 1 and 3, and Mann-Whitney U tests 

for Hypothesis 2) are summarised in Section 16.3. 

The main hypothesis tested was as follows: 

1. There is no difference in performance according to the edge style used to encode 

strength of association. 

The two secondary hypotheses tested were as follows: 

2. Any carry-over effect affects performance between the two presentations of each graph 

in the same way, irrespective of the edge style which is presented first. 

3. The edge style of the practice graph which was presented first and therefore explained 

most thoroughly does not affect performance for the two different edge styles. 

The short-hand notation presented in Table 16-1 is used throughout. This short

hand is consistent with that adopted in Chapter 10. 
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~.~------~------------------

W Widths graphs 
G Grey-tone graphs 

WI Widths graphs presented at Time I 
WI Widths graphs presented at Time 2 
G I Grey-tone graphs presented at Time I 
G2 Grey-tone graphs presented at Time 2 

WP Widths practice graphs 
GP Grey-tone practice graphs 

Table 16-1: Short-hand notation adopted in the presentation of the results of the hypothesis 
tests 

In the final section (16.4) the results of the attempts to fit regression lines to the 

data for the widths and grey-tone graphs, according to the number of vertices and the 

number of edges in the graph, are presented. 

16.2 Parametric Tests 

Hypothesis Sample 1 Mean S.D. Sample 2 Mean S.D. t df P 
I. Treatment GI-W2 3.17 3.66 WI-G2 5.08 3.01 -1.59 11 0.14 
effect 
2. Practice GP:GI+W2 36.33 5.70 WP:GI+W2 47.00 16.70 -1.48 10 0.17 
graph effect 
2. Practice GP:WI+G2 40.58 7.39 WP:WI+G2 44.50 13.20 -0.64 10 0.54 
graph effect 
3. Carry-over GI+W2 41.70 13.10 WI+G2 42.50 10.40 -0.46 II 0.65 
effect 
3. Period GI-W2 3.17 3.66 G2-WI -5.08 3.01 5.44 11 0.0002 
effect 

16.3 Non-Parametric Tests 

Hypothesis Sample I Median N Sample 2 Median N W/U P 
I. Treatment GI-W2 2.81 12 WI-G2 5.11 12 24 0.255 
effect 
2. Practice GP:Gl+W2 34.39 6 WP:Gl+W2 46.38 6 29 0.128 
graph effect 
2. Practice GP:Wl+G2 37.99 6 WP:WI+G2 42.44 6 35 0.575 
graph effect 
3. Carry-over Gl+W2 41.57 12 Wl+G2 38.57 12 35 0.784 
effect 
3. Period GI-W2 2.81 12 G2-WI -2.74 12 77 0.003 
effect 
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16.4 Regression Results 

Dependent variable: 

Y: Mean response latency (seconds) 

Independent variables: 

V: Number of vertices (3,4,5 or 6) 

E: Number of edges (100%, 75% or 50% of V(V-I)/2) 

V and E were fitted separately (simple linear regression) and together (multiple 

(linear) regression) for the widths graphs and for the grey-tone graphs separately for each 

question (1-3). 

16.4.1 Question 1 

Widths graphs 

Regression Equation R2adi (%) 
y = 7.40 + 0.791 V 2.8 
Y = 12.6 - 0.005E 0.0 
y= 3.00 + 2.05V - 0.276E 15.8 
Y = -1.7 + 2.72V + 0.189E - 0.064V*E 8.0 

Grey-tone graphs 

Regression Equation R2adi (%) 

Y = 6.66 + 0.705V 6.0 
Y = 9.60 + 0.120E 5.9 
Y= 7.72 + 0.401 V + 0.067E 0.0 
Y= 18.1-1.07V-0.968E+0.142V*E 5.8 

16.4.2 Question 2 

Widths graphs 

Regression Equation R2adi (%) 

Y=-11.5+5.07V 76.9 
Y = 12.7 + 0.641E 37.9 
Y= -12.7 + 5.42 V - 0.075E 74.6 
Y= -32.4 + 8.23V + 1.90E - 0.270V*E 79.4 
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Grey-tone graphs 

Regression Equation R2adi (%) 
y= -4.16 + 3.88V 53.1 
Y = 12.4 + 0.629E 47.3 
Y = 0.52 + 2.54 V + 0.293E 53.3 
Y= -13.4 + 4.52 V + 1.68E - 0.1 90 V*E 52.4 

16.4.3 Question 3 

Widths graphs 

Regression Equation R2adi (%) 
Y= 10.0 + 3.36V 8.5 
Y = 25.2 + 0.485E 3.3 
Y= 11.7+2.89V+0.103E 0.0 
Y = 30.7 + O.l7V - 1.80E + 0.261 V*E 0.0 

Grey-tone graphs 

Regression Equation R2adi (%) 
Y= 10.2 + 3.44V 1.9 
Y = 28.4 + OJOOE 0.0 
Y = 4.0 + 5.23 V - 0.391E 0.0 
Y= 21.2 + 2.77V - 2.l1E + 0.236V*E 0.0 
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