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Abstract

It is well-known that the classical exploratory factor analysis (EFA)
of data with more observations than variables has several types of in-
determinacy. We study the factor indeterminacy and show some new
aspects of this problem by considering EFA as a specific data matrix
decomposition. We adopt a new approach to the EFA estimation and
achieve a new characterization of the factor indeterminacy problem.
A new alternative model is proposed, which gives determinate factors
and can be seen as a semi-sparse principal component analysis (PCA).
An alternating algorithm is developed, where in each step a Procrustes
problem is solved. It is demonstrated that the new model/algorithm
can act as a specific sparse PCA and as a low-rank-plus-sparse ma-
trix decomposition. Numerical examples with several large data sets
illustrate the versatility of the new model, and the performance and
behaviour of its algorithmic implementation.

Keywords: Alternative factor analysis, Matrix decompositions, Least squares,

Stiefel manifold, Sparse PCA, Robust PCA.
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1 Introduction

Let z € RP*! be a random vector of standardized observable variables. The
classical EFA (exploratory factor analysis) model states that z can be written
in the form (Mulaik, 2010, p. 136):

z2=ANf+Vu, (1)

where f € R™*! is a random vector of m (m < p) common factors, A € RP*™
is a matrix of fixed factor loadings, u € RP*! is a random vector of unique
factors and W is a p x p diagonal matrix of fixed coefficients called uniqueness.

Thus, EFA tries to express p random variables by fewer m new variables
and additional adjustment for each variable, i.e. involving another p unique
variables (factors). EFA can be interpreted as an attempt to improve prin-
cipal component analysis (PCA) by doing a similar low-rank approximation
and polishing it by a slight adjustment of each fitting variable. However, that
means that EFA expresses p observable variables by new unknown m+p vari-
ables. Another baffling feature of the EFA model (1) is that it includes both
random and non-random unknowns. One would expect some hybrid solution
obtained by parametric and non-parametric methods.

Instead, the classical EFA takes the following approach. Let £ denote
the expectation operator. EFA assumes that £(f) = Onxi1, E(u) = Opxa,
E(uu") = I, and E(fu') = Opxyp, where I, is an identity matrix of order p
and O,y is @ p X m matrix of zeros. Furthermore, let £(z2") = ¥ be the
population correlation matrix and E(ff") = I,,, i.e. assuming uncorrelated
(orthogonal) common factors. Then, the population EFA m-model (1) and
the assumptions made imply that

Y=AAT + 0% (2)

and the unknown random variables f and w luckily vanished.

In reality, we do not know the population correlation matrix 3. We have
either a p X p sample correlation matrix or a n x p data matrix Z collecting
n independent observations on p(< n) standardized variables. According
to (1), let F' and U denote the matrices of common and unique factors,
respectively. Then, the sample analog of the m-factor model (1) and the
adopted assumptions imply that EFA represents Z as follows:

Z=FA" +UV, (3)



subject to F'F = I,,, U'U = I,, U'F = Opym and ¥ diagonal. The
EFA data representation (3) implies representation of the sample correlation
matrix as:

777 = ANT 407 (4)

The classical EFA finds A and ¥ by fitting the model AAT + W% to Z7Z
with respect to some goodness-of-fit criterion, e.g. least squares (LS) or
maximum likelihood. As A and ¥ have pm + p (unknown) parameters and
7" Z has p(p+1)/2 informative entries, the EFA problem becomes reasonable
for certain values of m. Suppose that a pair {A, ¥} is already found by solving
(4). The problem that many possible F' exist for certain Z, A and ¥ is known
as factor indeterminacy Mulaik (2005).

De Leeuw (2004); Trendafilov and Unkel (2011) recently proposed another
view at the EFA model (1) and its sample version (3), by considering it as a
specific data matrix decomposition. Then, the EFA problem is to minimize
the following LS (least squares) criterion:

A(F,AUW) = ||Z = FAT UV, (5)

where the norm is the Frobenius matrix norm ||A||* = 37, - a;. As before,
F'F =1, UU = I, U'F = Opxm and VU is square and diagonal. In
(Trendafilov and Unkel, 2011) it is proved that this EFA reformulation gives
unique ¥ and A (if chosen lower-triangular), and quantitative characteriza-
tion of the factor indeterminacy.

In this paper we also consider EFA as a specific data matrix decomposition
(5). We analyse in detail the factor indeterminacy using optimization on the
Stiefel manifold. In particular, we show that the classical EFA model is not
well-defined when n > m + p. For years, the authors are looking for ways to
extract well-defined factors by requiring them to possibly satisfy additional
utility features. We believe that replacing the classical EFA model with a
new well-defined one is a more reasonable mode of attack. In the new model

we approximate, in a least squares sense,
Z~FA"+UT", FeRY™ AcR>™ UecRY, TecRP*F

for m + k < min(n, p), with the constraint (FU)"(FU) = I. ¥ is no longer
required to be diagonal, but the columns of W are sparse and structurally
orthogonal. The new model overcomes several pitfalls of the classical one.
Its essence is that it allows for each "unique” factor u; to contribute to more



than one observable variable z;. In this sense, u; become shared factors,
rather than unique as in the classical EFA. In addition, as k is the rank of
the factor U¥ T, it can be seen as a parameter that determines the degree of
dimension reduction or data compression of the model.

The paper is organized as follows. In the next Section 2 we provide a new
characterization of the well-known factor indeterminacy problem, and show
that for n > m+p the classical EFA model does not make sense. Section 3 in-
troduces the alternative model and algorithm called for short the semi-sparse
PCA (SSPCA)!, which etymology becomes clear in Section 3.1. In the first
step of the algorithm the Singular Value Decomposition (SVD) of the data
matrix is computed. Then an alternating procedure is executed: for fixed
non-zero positions of ¥ it finds U, satisfying the orthogonality constraint.
This problem is a Procrustes problem that is solved using the SVD of a cer-
tain matrix. For fixed U the objective function is minimized with respect to
the non-zero positions of W. In Section 4 we illustrate the new SSPCA algo-
rithm on a couple of well-known large data sets traditionally used with other
dimension reduction techniques. We also show that SSPCA is quite stable
by running it on perturbed data with different levels of noise. Although the
initial goal of this study is the development of a indeterminacy-free model as
alternative to the classical EFA, the resulting data matrix decomposition is
exceedingly resourceful. Section 5 demonstrates the versatility of the SSPCA
method/algorithm which goes far beyond the standard EFA applications.
Section 5.1 shows how SSPCA can perform sparse PCA and provide addi-
tionally the number of useful sparse PC for the particular data. The best
existing sparse PCA techniques are generally faster, but lack this feature
completely and work with prescribed number of PCs only. It is also shown
in Section 5.2 that SSPCA can be very successful as a low-rank-plus-sparse
matrix decomposition of large correlation matrices compared to a number
of existing methods. We demonstrate that most of these approaches target
exact fit to the data, which makes them vulnerable to either poor low rank
or not sparse enough parts. A very recent approach (Aravkin et al., 2014) is
able overcome this weakness. We demonstrate that SSPCA also solves the

IThe PCA concept is very specific and well-defined: it is equivalent to a low-rank
approximation of the data matrix using the singular value decomposition. Our proposed
method is similar to PCA in a sense that it gives orthogonal factors, but it is not a PCA
in the strict sense. In view of the fact that there are other related concepts, such as
Sparse PCA or Robust PCA, which are not real PCA’s, we decided to name our method
Semi-sparse PCA, SSPCA.



problem, and moreover achieves better fit to the data. Finally, the brief Con-
clusion summarizes the main points of the paper, and potential directions for
future work.

We let I, denote the identity matrix of dimension p and define

Ly = (%’) € R™P,

where the columns of I, are the canonical unit vectors e;, for j =1,2,...,p.

2 Why the standard EFA does not make sense

The classical EFA model (4) with diagonal ¥ suffers from factor indetermi-
nacy, i.e. there exist many possible F' for certain Z, A and V. As a result, a
number of approaches were proposed to find optimal in some sense, and thus
unique, common factor scores F' (Harman, 1976; Mulaik, 2010). Finding U
is even more complicated. The major problems with the classic EFA model
are summarized here:

Gramian Indeterminacy There is no unique U2, such that Z'Z — 02 is
Gramian, i.e. it is a scalar product (AAT) of a matrix;

Rotational Indeterminacy Apparently, for any orthogonal matrix (), one
has ZTZ = AAT + U2 = AQQTAT + U2,

Factor Indeterminacy Even if A and ¥? are unique, F' and U are not.
This was demonstrated by Guttman and Kestelman more than 50 years
ago (Mulaik, 2005; Unkel and Trendafilov, 2010). They define F' =
Z(ZTZ)'N+ SG and U = Z(Z"Z)""W — SGATY 1) where S is an
arbitrary n x m matrix satisfying STS = I, and STZ = 0,,,x,, and G is
a Gramian factor of I, —AT(Z"Z)"tA. The long history and evolution
of the factor indeterminacy problem is carefully considered in (Steiger,
1979; Steiger and Schonemann, 1978).

In this section we demonstrate the indeterminacy of the EFA problem in
the standard case when n > m + p. Assume that Z € R"*P, with n > m +p,
and rank(Z) = p. Consider the problem of minimizing (5) in slightly changed

notations:
1 ~ ~ AT
min - ||Z — (F U) ( )
UMD 2 H N4

5

2

, (6)




where F' € R™™ and U € R™?, under the constraints that (F U)T(F U) =
I +p, and that ¥ is diagonal. To this end, we first make an initial transfor-
mation of the problem.

Consider the QR decomposition of the n x p data matrix 7,

z=q (7). ")

where () € R"*" is orthogonal and R € RP*? is upper triangular and nonsin-
gular (due to the full column rank of Z). Defining

X = (f;) L F=Q'F, U=q'T, (8)

we see that (6) with the constraints is equivalent to

2

! | (9)

a5 X = o) (5)

under the constraint
(F U (FU) = sy, (10)

The constraint on ¥ remains the same.
For any (F U) satisfying (10), enlarge the matrix so that (FU Y] ) is an
orthogonal matrix. Then

2

AT || 2 I 0 AT
GZHX_(FU)(\I/> =(UT ] X—-[0 I <\If)
' 00
= [FTX = ATIP+ JUTX — [ + Y] X%
After introducing the following partitioning
Fl Ul m
(F U) = (F2 Uz) ,Fy e RP*™, Uy € RP*P,
Fy, € RO=pxm 17, ¢ R-P)xP (11)
we can write
O =|F R—AT|?+ U] R— 9|+ [y, X]| (12)
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Since A is not constrained, the first term can be made equal to zero for any
F. U can be chosen arbitrarily as long as it is diagonal, and therefore the
minimization of the second term is equivalent to the minimization of the sum
of squares of the off-diagonal elements of U;' R, which, in turn, is equivalent
to

p
max || D(U] R)||? = max > (1] u{V)2, (13)
1

under the constraint U'U = I, and where r; and ugl) are the column vectors
of R and U, respectively. Note, that for A € RP*P we define D(A) =
diag(a1, age, . .., ay) to be a diagonal matrix.

In order to analyse the maximization problem (13) with the constraint
U'U = I,, we will here consider it as an optimization problem where the
unknown quantity U is required to lie on a Stiefel manifold. Manifold opti-
mization for linear algebra problems is treated in (Absil et al., 2008; Edelman
et al., 1998). Here it is enough to use the fact that in Stiefel optimization,
essentially, the constraints are included in the solution geometry, and sta-
tionary points are not characterized using the standard gradient but rather
the Stiefel gradient.

Consider

_ 1 T 2 __ 1 T 2

max T(U) = max || DU X)|" = max ~|| DU, R)|
1 P

= max — E (riTugl)f. (14)

UTU=I 2 -

The gradient of I' in the ambient coordinate system is

I'y=XDU'X) = (g) D(U'R),

and, making it a Stiefel gradient (Edelman et al., 1998, Section 2.4.4),
VI=Iy-UTjJU=XDU'X)-UDU'X)X'U

— (?) D(U{ R) — <g;) DU R)R"U,. (15)

At a stationary point the gradient is equal to zero, a fact that is used in the
following lemma.



Lemma 2.1. Assume that U is a stationary point that is the mazimizer of

(14). Then
U= (U01> , (16)

The proof is given in 6. The result is quite natural, due to the fact that
the data lie in a p—dimensional subspace of R”. Then one would expect that
the optimum is attained when all the degrees of freedom of U are used to
maximize the objective function inside that subspace.

Going back to (12), we now have the following result.

where Uy € RP*P 4s orthogonal.

Theorem 2.2. Assuming that m + p = n the EFA problem (9), with con-
straints (10) and V diagonal, determines U and the subspace spanned by the
columns of F'. In the case n > m-+p U is determined but F' is undetermined.
At the optimum the parameter A always has the value 0.

Proof. First let m + p = n. The objective function (12) is
IFTX = AT+ (U7X — v,

and the first term can always be made equal to zero due to the fact that A
is unconstrained (however, we will see below that its value is equal to zero
at the optimum). The matrix (F U) is square and orthogonal and at the
minimum for the second term it has the structure

ro=(5 %)

due to Lemma 2.1. Thus the subspace spanned by F'is determined.
Next consider the case n > m + p, where the objective function is

O =[|FTX - AT|P+|UTX — W||* + |v] X]*.

If we can show that at the minimizer of the second term, both the first
and the third term can be made equal to zero, then we can get the overall
optimum by minimizing the second term separately.

Again, as A is unconstrained, the first term can always be made equal to
zero. From Lemma 2.1 we see that at the minimum for the second term, the
orthogonal matrix (F'UY, ) must have the structure

<FUYL>=(£2 " (Y(jb)’

8



where F,) (Y] ), = 0. Therefore, the third term is

WIxE =0 0D () =0

Thus, at the minimum of © neither F, nor (Y ), are determined by the
model.
In both cases A is equal to zero, since F'TX = 0 at the optimum. O

The proof is completely based on the orthogonality properties of the
columns of F' and U (and Y, ) at the optimum. Those properties are the
same also if we make the transformation back from (9) to the original prob-
lem (6). Therefore the theorem holds also for (6).

In the next section we propose an alternative EFA model, which is well-
defined. The analysis above shows that the standard EFA model suffers from
indeterminacy. It is also easy to see another weakness. In data sets of today
we can often expect some columns of Z to be close to linearly dependent.
The model would associate such columns with different vectors u; that are
orthogonal; this would be unnatural and lead to numerical instabilities. The
model described in the next section does not suffer from this deficiency.

3 New model and algorithm

A model and an optimization criterion that does not determine the model
parameters, and has a parameter that at the solution is always equal to
zero, can not be considered as well formulated. Theorem 2.2, shows that the
classical EFA model is useless for n > m + p. The theorem also indicates
that too many orthogonal vectors are included in the model. Based on this
we suggest an alternative model, where the total number of columns in F
and U is less than min(n,p). In our new model the “unique” factors, the
u;’s, are not necessarily related to a single original variable. It will be shown
that such a weakening of the standard EFA model assumptions makes its
parameters identifiable.



3.1 Model

We start with the original problem with Z € R"*P allowing for n > p or

n < p. Consider
1 ~ ~\ (AT
min - ||Z — (F U) ( )
FoAw 2 H v

where F € R™*™ for some specified m.

Assume that the rank of Z is equal to s and let Z = QXV " be the SVD
of the data matrix, where () € R"*5, ¥ € R**%, and V € RP** and put
R**? 3 R = XV'. The diagonal matrix ¥ has full rank. Since the data
column vectors are in the subspace spanned by the columns of @), we also
require (F U) to be in that subspace. We will choose U € R™_ for some
k < s —m (see Section 3.3). Then we put

2

Y

(FU)=Q(FU), FeR>*" UeR>* (17)

where the columns of (F' U) are orthonormal. Thus we have the equivalent
minimization problem,

R—(FU) ({Iﬂ)

In the (dysfunctional) EFA model of Section 2, each column vector r;
of R was associated with a unique vector u;. We now relax the uniqueness
requirement and allow several vectors in R to share the same u;. This is
natural, as we will be dealing with data matrices with collinearities, i.e. where
there are column vectors that are (almost) linearly dependent. We prescribe
each row of ¥ to have one non-zero element, denoted by 1);, and allow the
columns of ¥ to have more than one non-zero element. This sparse construct
was already used in (Adachi and Trendafilov, 2017) to achieve sparse factor
loadings A. Note, that the proposed new model (18) has a dense A and
sparse (non-diagonal) W. With this prescription, the minimization problem
(18) corresponds to modeling each column of R as

min
FUAU

' : A € RPX™ O € RP*F, (18)

i=1
where p(j) is a function that chooses one of the column vectors of U,
po{1,2,...,p = {1,2,... k}.

10



Thus,
UT = (Yreun) Yoeu) - Uplur)) - (20)

We start the computations for determining U and ¥ with k£ columns in the
two matrices. Due to the fact that we allow several vectors from R in (19),
say r; and r;, to share the same w,, i.e., u(i) = p(j) = v, it is quite likely
that when the algorithm has run to finish, there will be zero columns in ¥,
which means that some of the u,’s will not occur in any model (19). Such
u,’s will be called passive, and those that do occur in the model will be called
active.
In matrix notation, (19) becomes R~ FAT + UV, which gives

R'R= (FA"+ UV (FAT+U¥") = AAT + WU T, (21)
The matrix P = WU cannot be diagonal,

{@Di@bj, if r; and r; are associated with the same u vector,
Dij =

0, otherwise.

However, ¥ TV is diagonal. Furthermore, the columns of U are structurally
orthogonal, in the sense that |¥|"|¥| is diagonal, where || is the correspond-
ing matrix of absolute values.

The new "unique” factors U are shared. The first term AAT of the new
decomposition (21), as its classical EFA analogue, takes care for the low-rank
approximation of R R. The second term W' provides sparse adjustment
of the low-rank part, in order to improve the overall fit. The two parts of
the new matrix factorization are orthogonal (uncorrelated) as in the classical
EFA. They are spanned by vectors taken from orthogonal subspaces. In
this sense, they should be clearly distinguished, in the same way ”common”
and "unique” factors are in the classical EFA. However, it is important to
recognise that the unique factors are "unique” because W is assumed diagonal,
not because they come from subspace orthogonal to the one of the common
factors. The purpose of the two orthogonal subspaces is to deliver a model as
a sum of two terms, as in (4) and (21). If one allows for diagonal ¥ with few
non-zero off-diagonal entries, then the classical EFA will change considerably.
In this sense, in the new model, it seems more appropriate to speak about
adjusting factors U, rather than for unique ones as in the classical EFA.
Finally, there is no unique W', such that Z'Z — WU is Gramian, i.e. the
Gramian indeterminacy remains.

11



The new model (19) can be written as R~ AT + UV = [F UJ[A ¥]".
This block-matrix approximation is a kind of PCA-like factorization of R.
For this reason, it can be called for short the semi-sparse PCA (SSPCA),
because the block-loadings matrix is composed by dense A and sparse W.

The interpretation of the new model SSPCA is changed with the size and
format of the data analysed. For small data sets the interpretation under-
standably concentrates on specific input variables. For a large number of
variables, this strategy becomes impractical. This is reflected in the mod-
ern approach to produce sparse solutions (loadings) where the unimportant
entries are simply made zeros (Trendafilov et al., 2017). It is worth men-
tioning here, that in some modern large applications the interpretation is
somewhat less important, what counts is how the model performs in terms
of the application. For example, latent semantic indexing (LSI) is a widely
used technique in text mining. LSI is a special form of PCA/SVD and its
mathematical interpretation is clear. However, the application of that prin-
ciple in LSI is not very informative (Eldén, 2007, 11.3). The new SSPCA
could perhaps have a more natural interpretation. But that goes far beyond
the aims of the present paper. The important bit is that the new method
decomposes the sample correlation/covariance matrix into a sum of low-rank
approximating part and sparse adjustment part, which sparseness and size
are self-formed and data driven.

3.2 Algorithm

Consider the residual (18). We will first assume that the function p is given,
and describe a method for solving the problem of minimizing the residual
with respect to the unknowns (F U), AT, and ¥, under the constraints
discussed above.

Recall that R**? 3 R = XV ", where the ¥ and V are from the SVD of
Z. Partition

E:(Zl 0)7 V:(‘/l‘/Q), zleRme’ %ERpXm’

0 2
and put
o (B (V]
-\ R YV, )

12



We propose to choose F' and AT so that FAT is the best rank-m approxima-
tion of R. Due to the definition of R we have

F = (%“) , AT =R, =%V, (22)

which implies uniqueness of F' and A. Moreover, (22) implies that A has
no rotational freedom any more as in the classical EFA, i.e. it cannot be
rotated without changing the model fit. Indeed, any counter rotation of
F will destroy its special structure defined in (22). Thus, the rotational
indeterminacy (of A) in the classical EFA is solved in the proposed new
SSPCA model, as well as the common factor scores F' indeterminacy.

Now, note that the best rank-m approximation of the original matrix Z
is QFY, V)" =1 Q,:%,V,", where Q; € R™™. The residual becomes

I(z) -+

The requirement F'U = 0 implies

o= (1)

where U, € R~k Ag the columns of U are to be orthogonal and normal-
ized, the same applies to U,. Thus we arrive at the minimization problem,

. . T
ke | Ry — U W', (23)

with the requirements that U,' Uy = I, and that ¥ has the structure (20),
i.e. the columns of ¥ are structurally orthogonal.

If W is fixed in the minimization problem (23), then we have an orthogonal
Procrustes problem, which can be solved using the SVD of Ry¥ (Golub and
Van Loan, 2013, Chapter 12). Let

Ry =PSWT, PeRE™k  geRME W e RFE
where S is diagonal, be the thin SVD. The solution of (23) is

Uy = PWT, (24)

13



which is unique, for a fixed ¥, as solution of a standard Procrustes problem
(SVD).

The overall SSPCA algorithm will be alternating: Given p and ¥, com-
pute Us from (24). Then, given Us, update p and W.

The update of the function p and V¥, given U,, is made based on the
observation that the solution of the least squares problem

minlry — giul,  1<v<F (2)
J

is 9; = 7] u,, and the residual is ||(I — wuyu,) )r;|. If the smallest residual is
obtained for v = 4, then u(j) := .

As with any iterative method, the choice of the starting point is impor-
tant. Random starts are always an option, but having a good rational start
is preferable. For this reason, we note that Ry = ZQVQT = IS_mEQVQT, ie.
the left singular vectors of R, are the canonical unit vectors e; € R%™™,
Thus, those vectors are the “best” basis vectors for the column space of R,.
Therefore it is natural to choose the identity matrix I, ., as a starting
approximation for Us in the above alternating procedure.

The number of active columns may vary during the optimization proce-
dure. When the optimal solution is computed, we remove the passive columns
in Us,, and delete the corresponding columns of .

The SSPCA procedure is summarized in Algorithm 1, where Matlab-like
notation is used. B

Let U and ¥ denote the output of Algorithm 1, and put U = Q3U,. The
algorithm gives an approximation of the original matrix

m k m k
J =~ lel‘/lT + [7\IJT = Z O'iuiUiT —+ Zﬁng: = Z O'ifi/l);r -+ Z ﬁl¢j,
=1 =1 =1 =1

where the columns of U are denoted ¢;. Thus the first term is the best
rank-m approximation, i.e. PCA. The second term has a left factor with
orthonormal columns; the right factor is sparse with structurally orthogonal
columns.

3.3 Model size

We will refer to the number of columns in (£ U) (in the notation above
m+ k) as the model size. In our formulation of the SSPCA algorithm above,

14



Algorithm 1 Given Ry, compute Uy, ¥, and p.

{Initialization}

UQ = [s_mJg

for j=1:pdo
i := max(abs(Ra(:,7)))
‘Ij(jv Z) = R2(27j)

pu(j) =i
end for
{Alternating procedure}
repeat

Update U, from (24)
Update p and ¥
until convergence
Remove all passive columns of U, and corresponding zero columns of W

we assume that m and k are chosen a priori. After the optimal solution has
been computed, it is essential to be able to test whether an increase of the
dimension of U; will reduce the residual substantially. Note that one should
not just take any vector orthogonal the active u,’s, because such a vector
would not be likely to become active in the subsequent optimization. Instead
we suggest the following choice, which is the closest vector not accounted for
in the present model.

Choose W such that (Uy W) is an orthogonal matrix, make the Ansatz
u = We, where ¢'c = 1, and consider the residual for the enlarged model

oo )

Clearly the vector ¢ that gives the best approximation is the first left singular
vector of W T Ry. This enlarged model can then be taken as first approxima-
tion for a new run of the alternating algorithm.

2

= ||U Ry — U2+ |[WT Ry — 0T |%.

4 Numerical experiments

In all examples we start with a data matrix Z that is centred and normalized
to have columns of Euclidean norm 1. The computations were performed

15



using Matlab R2016b on a standard (2015) quad-core laptop computer under
Ubuntu Linux. The codes used and the data matrices are available at http:
//users.mai.liu.se/larel04/EFA/.
Let
0= ™
p

where € is the maximum change of any element in U between two iterations,
and p is the element of largest magnitude in W. The iterations were stopped
when § was less than 0.05.

4.1 Complexity

As the SSPCA algorithm is iterative, where the number of iterations is highly
problem dependent, it is impossible to give detailed operation counts for the
algorithm. Such counts would also be difficult to interpret due to the com-
plexity of the computer architecture and of the programming environment.
We will give here some timings below, based on the use of the Matlab profiler,
that indicate how large problems can be solved on a standard computer. In
addition, we will see that the structure of a modern language like Matlab,
with highly optimized standard functions (in our context the svd function,
which by default is implemented with parallel execution on more than one
core on the computer that we used), makes it very difficult or impossible to
draw conclusions based on operation counts.

The SSPCA algorithm starts with the computation of the SVD of Z, so
the total complexity exceeds that of PCA (i.e., the computation of an SVD).
In every iteration the evaluation of the new iterate requires the computation
of the thin SVD of a matrix of dimension (s—m)x k. In many applications s—
m and k will be much smaller than n and p; therefore for very large problems,
one can expect the cost for computing the initial SVD to be dominating.
That was actually the case in the example with cancer data below, where
each SVD during the iterations required about 3% of the time for the initial
SVD.

On the other hand, in our numerical experiments we saw that the de-
termination of W', given Us,, took much longer time than the SVD. This
computation, which involves solving a number of simple least squares prob-
lems (25) has an operation count O(skp), which is comparable to that for
the SVD’s, but as it is coded in Matlab, it is not optimized.
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4.2 Real data experiments

Here we demonstrate the behaviour of the SSPCA algorithm on real data.
We also perform simulation study to evaluate the effectiveness of the new
method with respect to the level of data contamination. First, we find a
solution of the particular data set and display record of the convergence
history. This solution {Fpy, Uy, Ao, ¥o} is considered target in the consequent
simulation study. Then, we contaminate the data by adding Gaussian noise
as follows: X := X 4+0N, where X is already standardized, and each element
of o N is a normally distributed random number with mean 0 and standard
deviation o, which controls the level of contamination. However, depending
on the particular number of observations, the standardized data will be in
different numeric ranges. Thus, a level of contamination for one data set
will have different effect for a different data set. In order to have a rough
guidance for the appropriate level of contamination (not too small or too
large), we assume that the magnitude of a "typical” value in a particular data
set is 1/4/n. For example, the Cancer data set (Section 4.2.1) has n = 216
observations, and the magnitude of its "typical” value is 0.0680, while the
MLL data set (Section 4.2.2) has n = 72 observations, and its "typical”
magnitude is 0.1179. Thus, it is likely that a rather moderate contamination
for the MLL data, may have considerable contaminating effect for the Cancer
data.

The SSPCA algorithm is applied to different standardized contaminated
data, and the solutions { F, U, A, U} are compared to the target { Fy, Uy, Ao, Yo }
(original solution) in the following way. We use as a discrepancy measure
between two m x n matrices A; and A, their mean absolute error (MAE), i.e.
I|A; — As||L, /mn. To compare fairly A to Ay we, in fact, solve a Procrustes
problem |[AQ — Ao||r and measure the MAE between AQ and Ag. Similarly,
we compare the MAE of the rotated F'(Q to Fy. For U and ¥, we only use
their element-wise magnitudes, i.e. |||V]| — |Wo|||; and |||U| — |Usl|1,, where
| | denotes taking element-wise absolute value. This is because U cannot be
rotated, as counter rotation of ¥ would destroy its sparse structure. Finally,
we compute MAE of the normalized original fit || X — FoAg — Uo¥y || /|| X || #
and the one for the perturbed data. To evaluate the perturbation influence
on the number of location changes in ¥, we also report §(¥)/4(¥o). The
values smaller than 1 indicate that the original data needs more location
changes to reach the optimal ¥ than the perturbed one.

These same type of comparisons will be reported for each of the following
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two large data sets.

4.2.1 Cancer data

To test the algorithm for a medium size data set we ran the algorithm with
m = 2 on the ovarian cancer data from Matlab’s Statistics and Machine
Learning Toolbox?. The data matrix is 216 x 4000. We started with 214
columns in Us; at the end 208 were active. The results are illustrated in
Figure 1. The relative residual after the PCA step was 0.831 and after the

Residual history # Psi loc changes
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Figure 1: Cancer data. Top left: Residual history (||Ry — Us ¥ " ||?/|| R2||?) as
a function of iterations. Top right: The number of element locations changed
in U (the last 21 iterations the nonzero locations remained fixed). Bottom:
Plot of the non-zero structure of the matrix ¥'. Each dot represents a
non-zero element. For visibility we only plot the first 500 columns of W',

second stage

HR —(FU) @-Tr) H IR = 0.737.

’https://se.mathworks.com/help/stats/select-data-and-validation-for-classification-problem.
html?s_tid=srchtitle
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71 iterations were required. The time for the initial SVD was around 0.6
second, and the total execution time was about 150 seconds. Using the
Matlab profiler it was seen that more than 92% of this time was used to
update W. There were in total 2481 location changes in the entries of U until
the optimal ones were found. This can be explained by the fact that, while
the SVD function is highly optimized, the computation of ¥ is to a high
degree coded in the Matlab language.

In the following Table 1 we report the resulting MAEs and standard
deviations (SDs) from 10 runs of the algorithm with contaminated data for
each value of ¢. The important observation is that A, F' and U are very
stable, with F' and U hardly changing with the increase of the noise. The
changes in the objective function become considerable for o > .05, while ¥
is very unstable. All perturbed data require less location changes in ¥, than
those for the original data, occasionally up to 30%. If one assumes that the
"typical” value in the standardized data is +1/y/n = +1/v/216 = +0.0680,
adding noise of .05 already means significant contamination. This suggests
that the algorithm is pretty stable.

Table 1: MAE/SD for contaminated Cancer data

o A 1\ F U Fit W Loc Change
.01 | 0.0081/0.0001 | 0.1804/0.0257 | 0.0004/0.0000 | 0.0022/0.0000 | 0.0048/0.0008 | 0.9752/0.0593
.03 | 0.0326/0.0002 | 0.2361/0.0506 | 0.0011/0.0000 | 0.0022/0.0000 | 0.0402/0.0014 | 0.9576/0.0900
.05 | 0.0514/0.0003 | 0.2849/0.0373 | 0.0021/0.0001 | 0.0023/0.0000 | 0.0831/0.0015 | 0.9658/0.1293
.07 | 0.0594/0.0005 | 0.2845/0.0233 | 0.0032/0.0001 | 0.0023/0.0000 | 0.1199/0.0009 | 0.7960/0.0843
.10 | 0.0718/0.0005 | 0.2565/0.0069 | 0.0045/0.0002 | 0.0023/0.0000 | 0.1545/0.0006 | 0.6971/0.0498
.15 | 0.0815/0.0008 | 0.2830/0.0051 | 0.0069/0.0003 | 0.0023/0.0000 | 0.1809/0.0004 | 0.7410/0.0201
.20 | 0.0776/0.0005 | 0.2938/0.0018 | 0.0100/0.0005 | 0.0023/0.0000 | 0.1914/0.0003 | 0.7680/0.0169

4.2.2 MLL data

The MLL data contain 72 leukemia samples of which 24 come from acute
lymphoblastic leukemia (ALL), 20 — from mixed-lineage leukemia (MLL) and
28 — from acute myeloid leukemia (AML). The data matrix® has dimension
72 x 12582 and has been studied first by Armstrong et al. (2002).

We used m = 2, and started with 72 columns in Us; after the problem was
run to completion 69 were active. The relative residual was 0.847 after the

3 Available from http://datam.i2r.a-star.edu.sg/datasets/krbd/Leukemia/MLL.html
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PCA step, and 0.732 after the complete run. 95 iterations were performed.
The time for the initial SVD was about 60 seconds, and the total execution
time was about 187 seconds. Using the Matlab profiler it was seen that more
than 95% of this time was used to update W. There were in total 14811
location changes in the entries of ¥ until the optimal ones were found. The
results are illustrated in Figure 2.

Residual history . # Psi loc changes
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Figure 2: MLL data. Top left: Residual history. Top right: The number of
element locations changed in W. Bottom: Non-zero structure of the matrix
U first 500 columns.

Now, we investigate the sensitivity of the algorithm to noisy data. In the
following Table 2 we report the MAEs and SDs from 10 runs of the algorithm
with contaminated data for each value of o. The results resemble our findings
for the Cancer data in the previous Section 4.2.1. Again, A, F and U hardly
change with the increase of the noise. The changes in the objective function
they become considerable for ¢ > .1. As before, VU is very unstable. However,
the number of location changes in ¥ for the perturbed data does not deviate
much from those for the original data (except for two levels of o).

Assuming that the "typical” value in the standardized data is +1/y/n =
+1/ V72 = +0.1179, shows again that the algorithm copes well with noise of
up to £.07(+£.1).
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Table 2: MAE/SD for contaminated MLL data

o A v F U Fit W Loc Change
.01 | 0.0074/0.0000 | 0.1722/0.0131 | 0.0002/0.0000 | 0.0003/0.0000 | 0.0019/0.0001 | 0.9540/0.0389
.03 | 0.0241/0.0001 | 0.1839/0.0298 | 0.0007/0.0000 | 0.0003/0.0000 | 0.0152/0.0002 | 0.9897/0.0434
.05 | 0.0431/0.0002 | 0.2380/0.0124 | 0.0013/0.0001 | 0.0003/0.0000 | 0.0379/0.0003 | 1.0866/0.0571
.07 | 0.0599/0.0002 | 0.2253/0.0146 | 0.0019/0.0001 | 0.0003/0.0000 | 0.0634/0.0003 | 1.2023/0.0547
.10 | 0.0821/0.0004 | 0.2632/0.0091 | 0.0033/0.0002 | 0.0004/0.0000 | 0.0993/0.0004 1.1665,/0.0828
.15 | 0.1026/0.0004 | 0.2884/0.0032 | 0.0041/0.0003 | 0.0004/0.0000 | 0.1386/0.0004 | 0.9239/0.0543
.20 | 0.1124/0.0005 | 0.3078/0.0011 | 0.0056/0.0004 | 0.0004/0.0000 | 0.1585/0.0002 | 0.9386,/0.0398

5 Comparison with other related data matrix
factorizations

Historically, PCA is the most popular dimension reduction technique. PCA
of a given n x p data matrix X is obtained by a truncated SVD of X.
For a specified m, the best LS approximation to X of rank m is given by
X ~ QSP", where S is m x m diagonal, containing the m largest singular
values of X, and ) and P are respectively n x m and p x m orthonormal,
containing the corresponding singular vectors. Then, why look for other data
matrix factorizations, which are suboptimal compared to PCA/SVD?

There are several reasons, but probably the most important one is that the
modern data are very large and their PCA solutions are difficult to interpret.
In the last couple of decades there appeared a great number of alternative di-
mension reduction techniques producing sparse solutions, which are easier to
interpret. One big group of methods modify PCA to produce sparse compo-
nent loadings P, and is known now as sparse PCA /SVD (Jolliffe et al., 2003;
Journée et al., 2010; Shen and Huang, 2008; Witten et al., 2009). Another
type of methods/algorithms aim at low-rank-plus-sparse matrix decomposi-
tion of large data containing noise and/or missing entries, problems known
also as matrix completion (Cai et al., 2008; Candes et al., 2009).

We will show now, that the proposed new SSPCA model and algorithm
can, in fact, serve for both of the above purposes. The SSPCA model Z ~
FAT +UW¥T incorporates the two extreme cases Z ~ FA"T and Z ~ UV,
which themselves correspond to the standard PCA/SVD of Z and to its
sparse PCA/SVD respectively. The ”intermediate” SSPCA models can be
seen as low-rank-plus-sparse matrix decompositions of the sample correlation
matrix of the data.
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5.1 Sparse PCA

Indeed, the proposed SSPCA algorithm turns into a sparse PCA by taking
m = 0, i.e. transforming (5) into Z ~ UW¥'. This can be particularly
convenient if you have to analyse a sparse matrix. Then, each data row is
modelled by a linear combination (not sparse) of sparse rows.

To explore this option we consider data from the Medline database con-
taining biomedical abstracts. This particular data matrix has dimension
1033 x 4163, and was constructed from 1033 abstracts, where stopwords
were removed and stemming performed. For details, see (Eldén, 2007, Chap-
ter 11). The standard PCA/SVD solution is depicted in Figure 3. One can
hardly find any interesting pattern in the cloud of thousands points, except
its fan shape. It is interesting, can one get any more specific information by
applying sparse PCA.

0.3

0.2

-0.2

Figure 3: PCA of Medline data. Left: First two component scores. Right:
First two component loadings.

This example is also included to investigate additionally (to the examples
in Section 4.2) the performance of the iterations for a matrix Us of relatively
large dimension. In this case, we did not centralize or normalize the matrix.
We used m = 0, and started with 1033 columns in Us; after the problem
was run 36 iterations to completion 803 were active. The relative residual
was 0.694 after the complete run. The time for the initial SVD was around
3.4 seconds, and the total execution time was about 690 seconds. This infor-
mation is summarized in Figure 4. More than 93% of this time was used to
update W. When we ran the same problem starting with 300 columns in Us,
the execution time was about 187 seconds.
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Figure 4: Medline data. Top left: Residual history. Top right: Number of
element locations changed in ¥. Bottom: Non-zero structure of W',

The top panel of Figure 5 contains the plots of the first two columns of U
and U, which are regarded as score and sparse loadings matrices. The first
two columns of ¥ contain 21 non-zero loadings. For comparison, we apply
GPower (Journée et al., 2010) to the Medline data, which is considered the
best sparse PCA algorithm. We produce two sparse components with 20 non-
zero loadings (the closest we can get to 21). The bottom panel of Figure 5
contains the plots of the first two sparse components found by GPower. Note,
that ¥ is normalized, such that W' W = g3 (and U is accordingly adjusted),
because GPower produces orthonormal sparse loadings. The locations of the
non-zero entries in both solutions are given in Table 3.

Table 3: Non-zero loadings for Medline data

Method | Component Non-zero locations
SSPCA I 86 1124 1157 1616 1743 1797 1803 2810 3082 3340
11 360 1083 1746 1884 2768 2819 3132 3493 3621 3699 3861
GPower I 1157 1616 1704 1743 1750 1797 1965 2810 3098 3385
11 442 553 850 2031 2083 2211 2212 2269 3464 3817
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Figure 5: Medline data. Top left: First two SSPCA scores. Top Right: First
two SSPCA loadings. Bottom left: First two GPower scores. Bottom light:
First two GPower sparse loadings.
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Both sparse solutions are very similar. The proposed SSPCA proce-
dure needs 368 seconds (this experiment is with different computer) to find
4163 x 803 sparse matrix ¥ containing, of course, 4163 non-zero entries. The
first two columns, with the largest column sums of squares, are displayed
and discussed above. Now, we ask GPower to find 4163 x 803 sparse com-
ponent loadings matrix from the original 1033 x 4163 data matrix. We use
the same thresholding parameters as for the two-component solution shown
above (with 20 non-zeros). This takes 75 seconds, however the resulting
sparse matrix has 12674 non-zero entries, i.e. three times more than in our
V. Looking for a sparser matrix is generally more demanding, but it is not
very reasonable to compare here the speed of the two algorithms, as their
strengths and goals are different. If one simply needs only few most represen-
tative sparse components, then the right action would be to apply GPower
(or other sparse PCA) for fast result. However, if one needs the whole matrix
decomposition with its factors, then SSPCA is probably to be preferred as
it finds the correct, active, inner size of the involved parameter (factoring)
matrices. Finding very few sparse components may not be a satisfactory
solution for many large data sets. The problem is that the spectrum of many
large data is smoothly, slowly and gradually decreasing, and does not provide
clear-cut location to be used for dimension reduction. For example, the first
two principal components of the Medline data explain less than 1% of the
total variance. One needs 345 components to explain 50%. The SSPCA al-
gorithm finds that the optimal number of components to use for the Medline
data is 803, which explains 88% of the total variance.

5.2 Low-rank-plus-sparse matrix decomposition

Suppose that the SSPCA algorithm was run and the optimal fit to the data Z
is found to be {F, U, A, ¥}. Then, the new SSPCA model definition (19) and
the related constraints make it possible to find that Z'Z ~ AAT + U T,
where Z'Z is the sample correlation matrix for standardized Z. In other
words, our SSPCA algorithm can be seen as a kind of low-rank-plus-sparse
matrix decomposition of the sample correlation matrix, because AAT is a
low-rank matrix and YWU' is sparse. By the way, the classical EFA can
be seen as the oldest low-rank-plus-sparse matrix decomposition, because it
looks for {A, ¥} and ¥ diagonal, such that ZTZ ~ AAT + U2,

Medline data are sparse and not convenient for analysis through cor-
relations. Instead, we consider the Cancer data from Section 4.2.1, with
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sample correlation matrix Z ' Z of size 4000 x 4000. We want to compare the
proposed SSPCA method/algorithm with methods for low-rank-plus-sparse
matrix decomposition, also known as robust PCA (RPCA) (Candes et al.,
2009). Our solution, obtained in Section 4.2.1 is used to form AAT + UW T
which gives a rank-two-plus-sparse matrix decomposition of the sample cor-
relation matrix Z'Z. This solution is obtained for 69 seconds. The sparse
term WU has 722842 non-zero entries (cardinality), which means that 4.52%
of the entries of the sparse term are non-zeros. The achieved normalized fit
|Z7Z — ANT — WU T ||/ Z7 Z||F is 0.2636.

A useful review of different approaches and algorithms for RPCA is given
in (Candes et al., 2009, Section 5). First, we tried two algorithms (LRSD
and RobustPCA) admitting very compact implementation of the alternating
directions method (Yuan and Yang, 2013). However, they need considerable
CPU time to decompose Z ' Z into a rank-two or -three matrix plus a ’sparse’
part, which is, in fact, pretty dense. Thus, they are not taken for comparison.
Next, we tried partial-proximal-gradient-rpca based on the accelerated
proximal gradient (Lin et al., 2009a). With X\ = 0.0009, it decomposed Z ' Z
for 105 seconds into a rank-two matrix plus a 'sparse’ part with only 454 zero
entries (out of 16 x 10%), i.e. practically a dense matrix. Similar result was
obtained by inexact-alm-rpca (Lin et al., 2009b) with A = 0.0009, which
is based on the augmented Lagrange multiplier method. In this case, Z'Z
was decomposed for 39 seconds into a rank-two matrix plus a 'sparse’ part
with cardinality 99.86%, i.e. again nearly dense.

Apparently, these methods compensate the lower rank with lower sparse-
ness and vice versa. This is because they require that the low-rank part
plus the sparse one should reconstruct the data perfectly. An algorithm
that can maintain these two features separately is fastRPCA (Aravkin et al.,
2014) and is available from Mathworks File Exchange. Of course, the ex-
act fit to the input data is sacrificed. Again, we try to find a solution re-
sembling our, i.e. decomposing Z'Z into a rank-two matrix plus a sparse
matrix with about 4.52% non-zero entries. Such a solution is obtained with
solver-RPCA-Lagrangian with parameters A\;, = 145 and Ag = .185. Indeed,
fastRPCA is much faster and produces such a solution (rank-two-plus-4.4%-
sparse-matrix) for less than 4 seconds. However, the normalized fit is 0.3283,
which is 20% worse than the one achieved by SSPCA. It is unlikely that
this is only due to the 0.12% difference in sparseness. This experiment sug-
gests/indicates that the SSPCA can be a reasonably competitive method for
RPCA of a large correlation matrix able to maintain simultaneously low-rank
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and sparse parts.

6 Conclusions

The purpose of this paper has been to reconsider the classical EFA and
elevate it to a modern dimension reduction technique capable of producing
well defined parameter estimations.

We approach EFA as a specific matrix factorization problem. First, we
reconsider the factor indeterminacy problem of the classical EFA model and
reveal the reason for its numerical behavior. To address this long standing
problem of EFA we propose a new and more general SSPCA model, which
permits factors to relate to more than one variable. Next, we develop a fast
and stable algorithm for its solution applicable to any type of data (with
more or less variables than observations). In addition, the construction of
the new SSPCA algorithm leads to unique factor loadings and scores, and
thus, circumvents the notorious EFA rotation indeterminacy.

We demonstrate that the new SSPCA model and algorithm can play
valuable role among the existing methods for sparse PCA of large sparse data,
and robust PCA of large correlation matrices. The comparisons with other
related methods show that the proposed EFA deserves further systematic
work.

It is well-known that alternating algorithms may have quite slow con-
vergence. However, when SSPCA is applied to medium-large problems, the
number of iterations was not excessive. We are currently working on the
improvement of the algorithm to make it possible to use it for large and
structured problems.

Appendix

Proof of Lemma 2.1

Proof. In the proof we will, for convenience, denote D = D(U, R). Without
loss of generality we assume that the diagonal elements are ordered, |u] ry| >
ugro| > --+ > |u)rp|. Here r; and u; denote the ’th column of R and Uy,
respectively.
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Let the CS decomposition (Golub and Van Loan, 2013, Section 2.5.4) of

U\ (@i 0\ (C B
()= (3 @) (5)vr eresmn

where ()1, 02, and V are orthogonal, and C' and S are diagonal. The diagonal
elements of C' satisfy ¢; > ¢3 > -+ > ¢, > 0. Clearly, the statement of the
lemma is equivalent to C' = I,, and S = 0.

We insert the CS decomposition in (15), set VI' = 0, and multiply by

Q0
0 @

from the left and by V' from the right. We get

QI RDV CVTDRTQ,C
0 SVTDRTQ.C )

With B = Q] RDV € RP*P we thus have B = CB'C, or, equivalently,
B = C?BC”. (A1)
Clearly, for any b;; # 0 we must have ¢; = ¢; = 1. Assume that

_ Bs 0 SX S8
B_(O 0), B, € R¥*, (A2)

and that, for some 1 < i < p, b;; # 0, or, for some 1 < j < p, by; # 0 (we
allow s = p, in which case B, = B). Then, since b, = ¢;b;sc2, or by; = c2bg;c,
and since the ¢;’s are ordered, we must have ¢; = --- = ¢, = 1. Thus, if s = p,

then C' = I,,, and the lemma is true.
If s < p, C has the structure

I, 0
= (5 o)

where Cy = 0 or its diagonal elements are nonnegative.
We now assume that

Cy = diag(csy1,---,¢,0,...,0) (A3)

with ¢; > 0, i.e., Uy has rank ¢t < p. We will show that then the stationary
point does not correspond to a global maximum.
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Due to (A2) we can write

T _ NT _ Bs Bls
BV _QlRD_(O )

Consider the last row of BV T:

0=(gpm ayr2 ==+ a7)

=:¢'D,
where 7; denotes the i’th column of R. Since R is nonsingular there must
exist at least one non-zero element in c¢', say q; rt. Then the corresponding
element i D must be equal to zero, u} ry = 0.

Under the assumption (A3) U has rank ¢: using the CS decomposition
we can write u; = 22:1 civ;iq;, for j =1,2,... p. Clearly g, is orthogonal to
{u1, ug, ..., u,}. Thus we can replace the column wy in U; by ¢, and make
the objective function larger. It follows that the assumption that rank(U;) =
t < p cannot be valid at the global maximum.

It remains to consider the case when all the diagonal elements of C' are
positive, and U; is non-singular. Due to the structure (A2) we have

_ B, 0
(QIR)'B=DV = (le 0) :

With the corresponding blocking V' = (V; V5) we have DV, = 0, i.e., D has a
null-space of dimension p — s. Since the diagonal elements of D are ordered,
it follows that D has the structure

. DS 0 SXS
o-(2 0. pew

where Dy is nonsingular. Put

Vy = (512> . Vpe R(P=8)x(p—s)
22
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From the identity DV, = 0 we then get Vi, = 0; consequently Vo, is an
orthogonal matrix, and it follows that

(Vi 0
v_(o V)

From the CS decomposition we then have

_ {25:1 VjiGi, J=12,...,s,

Z?:s—i—l Civjigi, J=s8+1,...,p.

It follows that ¢, is orthogonal to u; for j = 1,2,...,s, and as in the cases
above we can now replace u, by ¢, and increase the value of the objective
function.

Thus we have shown that for C' # I, the stationary point does not corre-
spond to the global maximum, which proves the lemma. O
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