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ABSTRACT 

 

Radiotherapy is currently used in around 50% of cancer treatments. Although highly 

effective it is also damaging to surrounding healthy tissues and needs to be improved by better 

targeting of cancer cells. Improved radiotherapy outcomes can be achieved by using 

nanoparticles, especially those with high atomic number (Z), that interact with ionising radiation 

to generate secondary electrons and reactive species that increase cellular damage. One of the 

most promising elements to use is gold, in the form of gold nanoparticles (AuNPs) because of its 

biocompatibility and amenability to surface modification. For example, surface modification of 

AuNPs with simple sugars can improve their solubility and cellular uptake. Furthermore, 

positively charged AuNPs are thought to have an improved cellular uptake because of their 

interactions with negatively charged cell membranes. 

 

This thesis is focussed on two research areas: (1) the development of dual action chemo-

radiosensitising AuNPs and (2) the development of oligonucleotide-AuNPs for radiosensitisation.  

 

(1) It is shown that sugar-PEGamine coated AuNPs demonstrate selective uptake and 

toxicity toward skin cancer cells with an IC50 of 1 μg/ml [Au], without damaging normal skin 

cells at this concentration. Oxidative stress and caspase-dependent apoptosis both play a key 

role in the toxicity of these AuNPs. Moreover, AuNPs coated with sugar and PEGamine show a 

strong radiosensitisation effect in combination with kilovoltage X-rays and a smaller effect with 

megavoltage X-rays. 

 

(2) Oligonucleotide-phosphine-coated AuNPs are shown to demonstrate a limited uptake 

in the cellular cytoplasm compared to the previous AuNPs but increase AuNPs uptake into the 

cell nucleus. The limited uptake into the cells, as well as the DNA triplex forming oligonucleotides 

(TFOs) attached to the AuNPs, is still responsible for a radiosensitisation effect, although smaller 

than with sugar:PEGamine AuNPs. In the future, the uptake of the oligonucleotides AuNPs may 

possibly be improved by varying their size (from 3.5 to 2 nm) and/or adding a spacer between 

the NP and the TFO.  
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DSBs: Double strand breaks 
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EDTA: Ethylenediaminetetraacetic acid  
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ER: Endoplasmic reticulum 
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HIF-1: Hypoxia Inducible Factor 1  
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HSC-3: Human oral squamous carcinoma cell line with high metastatic potential 

H2O2: Hydrogen peroxide 
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ICP-MS: inductively-coupled plasma mass spectrometry 

ICP-AES: inductively-coupled plasma atomic emission spectrometry 

IgG: immunoglobulin G 
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kVp: peak kilovoltage 

LB: Luria-Bertani broth 
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MDDC: dendritic cells 
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MeOH: Methanol 
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MRI: magnetic resonance imaging 
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NHEJ: Non-homologous end joining  

NPs: Nanoparticles 
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OU: Open University 
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PCR: Polymerase chain reaction 
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CHAPTER 1: INTRODUCTION 
 

Cancer is one of the major diseases of the 21st century and one of the leading causes of 

non-communicable death in developed countries worldwide (McMullin, 2016). In 2012 the 

World Health Organization (WHO) reported 14 million of new cases of cancer and 8.2 million 

cancer related deaths worldwide (McMullin, 2016). Cancer can potentially affect any part of the 

body, expand quickly locally and spread throughout the body (McMullin, 2016) often leading to 

rapid and irreversible deterioration in the patient. Accordingly, the study of causes and 

mechanisms of cancer and the development of new treatment methods is one of the major 

research topics in modern human health. 

 Radiotherapy e.g by X-rays (Zolotoyabko, 2014) provides one of the major treatment 

methods for cancer but is limited by the need to restrict radiation doses such that healthy tissue 

is not damaged by incident radiation (Zolotoyabko, 2014). One method for increasing the 

effectiveness of the radiation without damaging healthy tissue is to add a radiosensitiser to the 

tumour. The work presented in this thesis focuses on the potential of nanoparticles (NPs), made 

of gold, to act as radiosensitizers.(Burger et al., 2014a). The main aims of this project were: 

1) To investigate, cellular uptake, intracellular localisation and toxicity of both bare and coated 

AuNPs in cancer and normal cell lines. 

2) To characterise, understand, and improve the radiosensitisation potential of such AuNPs 

using clinical X-ray sources at different energies. 

 

NPs composed of many different materials have been exploited in radiotherapy 

(Zolotoyabko, 2014) but NPs made of gold have been chosen in these studies because of their 

significantly high atomic number, their biocompatibility and amenity to surface modification 

(Kwatra et al., 2013). 

Specifically two types of AuNPs coated with sugar:PEGamine or oligonucleotides were used in 

this work.  

Both of these AuNP types have a core size below 5 nm in diameter, so they can be quickly cleared 

from the body via kidneys and so avoid long term toxicity (Longmire et al., 2008), but their small 

size can also allow  them to pass through nuclear pores and enter the cell nucleus (Kodiha et al., 

2015). Two types of coating have also been considered, one being positively charged, containing 

a PEGamine and a sugar group, in order to look at the cellular effect of different AuNPs charge 

(Haume et al., 2016b); the other coating employs oligonucleotides which are negatively charged 

and thought to improve the deoxyribonucleic acid (DNA) targeting (Huo et al., 2014, Tkachenko 

et al., 2003) and possibly the radiosensitisation improvement. The DNA sequence chosen is a 

single stranded DNA, which is able to specifically form a triplex with part of the c-myc promoter 
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sequence. Another type of NP (ceria) has also been considered for possible radiosensitisation 

improvement and some preliminary studies are presented in Chapter 5. 

In this introductory chapter the mechanisms and use of several agents to improve 

radiotherapy efficiency is summarised beginning with a review of radiotherapy treatment and 

its various strategies, followed by a description of the different NPs currently used in therapeutic 

irradiation. Details on the characteristics of the AuNPs used in our experiments will be provided 

followed by a review of the potential effect of AuNPs in cells, as well as their interaction with 

radiation. 

 

1.1. Cancer 

 

The origin of the word cancer comes from the Greek physician Hippocrates. He used the 

word carcinos, which in Greek, refer to a crab, imaging the cancer spreading by its claws. It is 

Celsus who later translated the word into cancer-, the Latin word for crab.(2014). 

Cancer is defined as a population of cells whose cell cycle is dysregulated and their proliferation 

and division are faster than under physiological conditions (2001). This dysregulation is the 

consequence of an alteration of several genes, such as downregulation of tumour suppressor 

genes, upregulation of oncogenes, or loss-of-function of genes involved in DNA repair and 

proliferation (Hanahan and Weinberg, 2000, Patel et al., 2014, Schwab, 2008). For example, EGF 

is involved in the growth stimulus of many epithelial cells and is up-regulated in squamous cell 

carcinoma (Weber, 2007). However, p53, which is the most important protein for maintaining 

cell-cycle control, is suppressed in 50% of all cancers, resulting in uncontrolled and rapid cell 

proliferation (Weber, 2007). 

Early stage cancer is localised to the tissue where it formed, but can subsequently mutate further 

and spread anywhere in the body when in an advanced stage (Schwab, 2008). When it forms a 

solid mass, it is called a tumour. However, some cancers, such as leukaemia affect blood cells 

and do not necessarily form a solid mass (Schwab, 2008). 

Cancer is a major health concern of the 21st century but is not a new disease, since it can be 

traced back many millennia. Metastatic osteosarcoma has been detected in an ancient Egyptian 

skeleton dated to 3200 years ago (Binder et al., 2014). It is thought to be originally 

nasopharyngeal, which can spread to different organs such as thyroid, kidneys and bones 

(Binder et al., 2014). 

Several factors are associated with the development of cancer such as primarily aging, 

followed by genetic susceptibility such as BRCA1 mutation and breast cancer predisposition 

(Weber, 2007), and lifestyle (Ferlay et al., 2007). For example, there is a positive association 

between lung cancer and tobacco or particles coming from diesel fumes (2014). 
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Moreover, infection by viruses such as papilloma viruses, hepatitis B and C, and HIV can lead to 

cancer development (2014).  

 

1.2. Radiotherapy 
 

1.2.1. Conventional Radiotherapy 

 

Radiotherapy is a major methodology for treatment and about 50% of cancer patients 

will receive radiotherapy at some point in their treatment (Burger et al., 2014a). Radiotherapy 

represents the use of ionising radiation, such as photons (X-rays and gamma rays) or particles 

(electrons and ions) to kill cancer cells, or the vasculature that feed them. Radiotherapy can be 

used on its own during a cancer treatment but is more often combined with chemotherapy as 

adjuvant therapy to complement the effect of the drug. Radiotherapy can be also used as a 

remission treatment, following another treatment, to make sure that all the cancer cells were 

eradicated from the body (Tubiana et al., 1990). 

Radiation induced damage targets different biomolecules and organelles in cells and 

particularly the DNA which may be present breaks or modifications by both direct and indirect 

processes with the most important of the latter processes being the production of reactive 

oxygen species (ROS). ROS are defined as chemically unstable molecules or free radicals that 

have an unpaired electron and are highly reactive with the environment (Roesslein et al., 2013). 

They derive from molecular oxygen and can be produced via numerous pathways (e.g. 

mitochondrial respiration, nanomaterials, radiotherapy) (Fu et al., 2014).They are formed upon 

irradiation of water. Water radiolysis is the decomposition of water molecules into different 

ROS, such as hydrogen radical (H•) and hydroxyl radical (•OH) due to ionising radiation (Le Caër, 

2011). After a cascade of events, such as relaxation and solvated electron formation, other 

molecules can be produced such as dihydrogen (H2), hydrogen peroxide (H2O2), hydronium ions 

(H3O+) and hydroperoxyl radicals (HO2
•) (Le Caër, 2011).  

The most commonly used radiotherapy employs X-rays in the energy range from 80 kV 

to 25 MV, which causes ionization of atoms and molecules in the irradiated tissues (Dendy P.P 

and Heaton B, 1999). X-rays have been used to treat cancer and other medical conditions for 

over a century (Mozumder and Hatano, 2003). 

Various energies of X-rays are used in radiotherapy. Kilovoltage X-rays (10-400 kV) were 

the first to be used in radiotherapy (Mayles et al., 2007). Their use has gradually decreased due 

to their limited penetration into tissues and with the increased availability of high energy 

photons, but they are still used for superficial cancer treatment, such as basal and squamous 
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cell carcinoma, where the radiation beam is deposited on the surface of the patient skin and 

does not need to travel deep into tissues (Mayles et al., 2007).  

In contrast, megavoltage X-rays (typically 6 MV or above) have the advantage of deeper 

penetration in tissues and deliver the majority of the applied radiation dose below the skin 

surface, decreasing any adverse effects on the skin and superficial tissues (Mayles et al., 2007) 

(Figure 1.1b). Linear accelerators (LINAC) are commonly used to produce high energy electrons. 

These electrons are converted into megavoltage X-rays by bombarding a high atomic number 

target (Mayles et al., 2007).  

One of the main limitations of X-ray radiotherapy is its damage to tissues all along the 

beam track, including above and below the intended target tissues (Chauhan et al., 2011). This 

can be explained by low Linear Energy Transfer (LET) for these type of energies (50kV and above) 

(Mayles et al., 2007). The LET is the average energy released per unit path length due to 

ionization and excitation processes (Becker et al., 2007, Hatano et al., 2010) and describes the 

density of ionization in the particle tracks (Joiner and Van der Kogel, 2009). A low LET 

corresponds to a relatively low ionisation density of the secondary charged particles (Mayles et 

al., 2007). Low LET radiation cannot therefore travel long distances but can deposit their energy 

everywhere along the track (Figure 1a). By contrast, beams of heavy ions (such as carbon), due 

to their high LET, deposit most of their energies at the end of the track and can lead to a potential 

increase of the biological effectiveness. Indeed, as the LET increases, the cell death increases 

(Niemantsverdriet et al., Mayles et al., 2007). 

γ-rays are also used for the treatment of malignant diseases, with the advantage that 

they penetrate deeply into the tissue, allowing treatment of deeply sited tumours, such as 

pancreas, brain, or prostate cancers (Porcel et al., 2010c). Megavoltage γ-rays can be produced 

using different sources, including Cobalt-60, which produces two well-defined photon energies 

of 1.173 MV and 1.332 MV. The main differences between X-ray and gamma rays are their 

wavelength, which is shorter for gamma rays, and their generation, which is made via atomic 

energy level excitations for X-rays and nuclear interaction and transformations for γ-rays 

(Mozumder and Hatano, 2003).  

Electron radiotherapy can also be used for superficial lesions as the dose deposited by 

an electron beam is very sharp and constant, due to the high LET, but decreases rapidly at the 

end of their track (Raju, 2012). LINAC can increase the energy of electrons for a deeper 

penetration within the tissues.  

New strategies of cancer treatment include radiation delivery by charged particles such 

as protons and heavy ions (e.g. carbon) (Mayles et al., 2007). Both protons and heavy ions confer 

the improvement of dose delivery to the tumour by controlling the dose distribution. Indeed, 

since heavy ions are characterised by a high LET, their ionisation capacities increases at the end 
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of their track. Therefore, the depth-dose curve characterising heavy ions irradiation will give rise 

to a Bragg peak, due to an increase of energy deposition with depth penetration (Mayles et al., 

2007). The large cross section of their interaction with matter increases the efficiency of ion 

radiotherapy by a factor of three times compared to X-rays (Figure 1.1 b). The advantages of 

therapies using ions, also known as hadrontherapy, explains the fast expansion of therapy 

centres (especially proton) in the world (Porcel et al., 2010c). However, these new methods of 

radiotherapy are limited due to the complexity and cost of such techniques (Niemantsverdriet 

et al.). All these different radiotherapies are summarised in the Table 1.1. 

a)  b)  

Figure 1.1: Different types of radiation used in radiotherapy and their penetration into matter. a) 

Particle track structure depending on the LET, b) treatment plans of the same pancreas carcinoma 

(Joiner and Van der Kogel, 2009). 

 

Table 1.1: Different radiation characteristics and their use in cancer radiotherapy (Ma, 2013, Mayles et 

al., 2007, Raju, 2012). 

Type of 

radiation 

energy LET  Tissue penetration Cancer treated 

X-rays 

kilovoltage 

~ 220 kV <1 keV/µm Maximum dose at 0.5 

cm  

Skin lesions 

X-rays 

megavoltage 

6-10 MV <1 keV/µm Maximum dose at 1.5 

cm 

Breast, brain, 

pancreas, prostate 

¥-rays, Co60 1.173, 1.332 

MV 

<1 keV/µm Maximum dose at 0.5 

cm 

Pancreas, prostate 

Protons 200-250 MV 100 keV/µm Maximum dose between 

20 and 30 cm 

ophthalmic and 

intracranial tumours 

Carbon ions 300 MV 13 keV/µm, 

bragg peak up 

to 200 

keV/µm 

10 cm ophthalmic and 

intracranial tumours 
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1.2.2. Radiotherapy improvement 

 

Throughout the latter part of the 20th and the first decades of the 21st century there 

have been many attempts to improve radiotherapy treatment. These different methods may be 

summarised as either increasing the damage induced by radiation in the tumour or preventing 

damage to healthy tissue allowing larger doses to be applied to the tumour. These two 

approaches will be summarised below. An alternative approach is to limit or slow the repair of 

DNA damaged during irradiation, which is a method for enhancing net radiation damage in the 

complete radiotherapy cycle. 

 

Increased damage in tumour 

Conventional radiotherapy delivers fractionated doses of radiation in order to limit 

toxicity to surrounding normal tissues (Moding et al., 2013). The advantages of fractionation of 

radiotherapy was established more than 30 years ago, through the observation that 

administering small but frequent radiation doses over a period of weeks gave better results in 

cancer killing and less side effects than when using single-dose treatments (Mayles et al., 2007).  

 

Radiotherapy side effects include fibrosis and secondary tumours appearing due to non-

selective DNA damage in healthy tissues. These are critical problems in clinical delivery and need 

to be resolved (Chauhan et al., 2011). In the field of cancer treatment research, different 

strategies are being developed in order to avoid these problems (Kwatra et al., 2013); either by: 

(1) radioprotecting the healthy tissues surrounding the tumour, (2) by suppressing 

radioresistance, or (3) by radiosensitising the tumour to radiotherapy. These three strategies 

can be used separately or in combination and will be described below (Chauhan et al., 2011) 

(Figure 1.2). 

 

Figure 1.2: Different approaches for enhancing the radiosensitisation of cancer cells. 
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Radioprotection of healthy tissue 

In order to improve the efficiency of radiotherapy treatment, it is possible to protect 

adjacent healthy tissues from radiotherapy toxicity (Kwatra et al., 2013). Compounds such as 

the amino acid cysteine have shown radioprotective effects in vivo. A possible mechanism for 

such radioprotectors could be free radical trapping by sulfhydryl groups (Bari, 1968). However, 

their potential as radioprotective agents is limited by the high toxicity, defined as a negative 

effect decreasing the viability of an organism or a cell after a specific treatment, of the drug dose 

required to have a biological antioxidant effect.  

Antioxidants such as vitamin E have also been explored for radioprotection given after 

radiotherapy. They protect especially from ROS induced damage (Kumar, 2002). ROS can directly 

cause damage via the oxidation of DNA, lipids, proteins, or indirectly by activating intracellular 

signalling, such as mitogen-activated protein kinase (MAPK) signal, for which a cascade of 

activation is seen in the presence of ROS (Shen et al., 2013), with implication of extracellular 

signal related kinase (ERK), c-jun-N-terminal kinase (JNK) signal and p38-MAPK (Torres and 

Forman, 2003). Their activation require the phosphorylation of a tyrosine and threonine. 

Amifostine is a phosphorylated aminothiol prodrug compound than can selectively radioprotect 

normal tissues. The prodrug amifostine becomes active after alkaline phosphatase 

dephosphorylatation, which is enriched in the environment of healthy cells, where its free thiol 

is capable of scavenging free-radicals (Kouvaris et al., 2007). Recently, amifostine showed clinical 

improvement in radiation therapy and was approved by the US Food and Drug Administration 

(FDA) for head and neck cancer radiotherapy (Kouvaris et al., 2007). However, some cancers, 

such as breast cancer and choriocarcinoma up-regulate alkaline phosphatase, limiting the utility 

of amifostine in these cases (Sharma et al., 2014). Nitroxides, such as Tempol, have been 

explored as radioprotectors as they can easily enter cells and act as antioxidants, reacting with 

free radicals or mimicking the enzyme superoxide dismutase, responsible for detoxification of 

superoxide ions (Hahn et al., 1994). Tempol has been tested clinically and it can not only 

selectively protect normal tissues from radiotoxicity but is non-toxic by itself (Davis et al., 2011, 

Davda et al., 2016, Metz et al., 2004). 

Finally melatonin hormone has been explored as a radioprotector in preclinical and clinical 

studies as it can act as an antioxidant and also mimics the activity of glutathione peroxidase and 

superoxide dismutase; two antioxidant defences (Citrin et al., 2010). 

 

Suppressing radioresistance 

A cascade of events, such as cytokine production, vascular damage and hypoxia can lead 

to late damage of healthy tissue after radiotherapy and this can result in increased 

radioresistance. Radioresistance is defined as the maximal dose of radiation for which an 
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organism is still able to survive. Different characteristics such as differences in cell cycle, repair 

mechanisms and growth factors can predict the sensitivity of a tissue to radiotherapy (2001). 

Cancer cells can develop resistance to radiotherapy, especially under hypoxia, where the low 

amount of oxygen is linked to a low ability to generate free radicals responsible for cellular 

damage, resulting in sub-lethal damage. Radiation mitigators are molecules generally used to 

limit the toxicity of radiation, even after the treatment. They can have an impact on oxidative 

stress phenomenon and thus decrease the late toxicity after radiation (Citrin et al., 2010). 

Different molecules such as  inhibitors of: cyclooxygenase 2 (COX-2), angiotensin-converting-

enzyme (ACE) and Transforming growth factor (TGF-β) can be used to reduce acute radiotoxicity 

(Citrin et al., 2010). TGF-β inhibitors are particularly used to protect tissues against fibrosis 

(Xavier et al., 2004). Granulocyte colony-stimulating-factor (G-CSF) can reduce the radiation 

toxicity on healthy tissues by enhancing the cell differentiation and development (Bertho et al., 

2005, Finch and Rubin, 2004). Palifermin in particular is a recombinant keratinocyte growth 

factor used clinically to help reduce oral mucositisis, adverse effects defined as inflammation 

and ulceration of the mucous membrane in the digestive tract, in patients receiving radiotherapy 

(Brizel et al., 2008, Finch and Rubin, 2004).  

One of the main strategies in overcoming radioresistance of cancer cells consists of 

inhibiting specific proteins that are overexpressed in tumour cells (Kwatra et al., 2013). This is 

the case for example with survivin; which is an important regulator of cell division, apoptosis, 

cell migration and metastatis and is overexpressed in most tumours, while it is barely detectable 

in normal tissues (Zaffaroni et al., 2005, Grdina et al., 2013). 

In addition, the transmembrane glycoprotein epidermal growth factor receptor (EGFR) regulates 

cell proliferation and the overexpression of EGFR can be associated with cancer invasion and 

resistance to various treatments (Small Jr, 2008). Inhibiting EGFR signalling can prevent 

accelerated repopulation of cancer tissues (Small Jr, 2008). 

 

Radiosensitisers and modifying DNA damage 

Radiosensitisation, which is designed to increase the sensitivity of cells to radiation by 

better targeting of cancer tissues, is central to radiotherapy research and can be achieved using 

different molecules and technologies. The combination of radiotherapy and chemotherapy has 

been widely used clinically to improve cancer treatment efficiency. In this area, various drugs 

have been designed which can cause intracellular suppression of radioprotection, can be 

oxygen-mimetics in the cells, can increase of the production of toxic substances intra or 

extracellularly, or can inhibit the repair mechanisms in the cells (Lehnert, 2014). 

Nucleoside analogues, such as gemcitabine or clofarabine, can inhibit DNA polymerase 

and ribonucleotide reductase, thus inhibiting DNA repair (Cariveau et al., 2008). Particularly, the 
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nucleoside analogue halogenated pyrimidine, 5-Fluorouracil, can inhibit thymidylate synthase 

and thus inhibit the production of thymidine, but also can be incorporated into the DNA of 

cancer cells during proliferation and therefore can increase the DNA damage by interfering with 

the duplication of the DNA (Koutcher et al., 1997). Cisplatin can have the same effect by 

interacting with DNA and creating more damage during irradiation through the generation of 

secondary electrons, especially if it is close to the source of radiation (Zhang et al., 2011). 

However, the specificity of these molecules is limited and can damage the DNA of normal tissues 

as well (Zhang et al., 2011). To overpass cisplatin toxicity, new molecules were designed, such 

as oxaliplatin, which contains an oxalate group, which is supposed to protect health tissue by 

interacting with the platinium group until deplaced in physiological environment. Although less 

toxic compared to cisplatin, oxiplatin still presents some unwanted toxicity in clinics, such as 

ototoxicity (Mehmood, 2014, Montagnani et al., 2011). 

Taxanes, such as paclitaxel, are a new generation of radiosensitisers. They derive from 

the Yew tree Taxus brevifolia and their main mechanism of action is to stabilise microtubules, 

thereby preventing metaphase spindle formation, resulting in G2/M cell cycle arrest, which is 

the most sensitive cell cycle phase to radiation, due to the DNA duplication (Joseph et al., 2014). 

Doxorubicin is a well-known cancer chemotherapeutic. Its mechanism of action involves 

the formation of complexes with DNA, interfering with the DNA polymerase and thus inhibiting 

the DNA repair (Costantini et al., 2010).Campthotecin is a plant alkaloid obtained from the 

“happy tree” Camptotheca acuminata and is used in cancer therapy as an inhibitor of 

topoisomerase I, a nuclear enzyme important for DNA replication (Zhu and Willett, 2003). 

Irinotecan is part of the same family as camptothecin and has the same mechanism of action 

(Saijo, 2002). Its particularity is to be a precursor of the active product SN-38, improving its 

biocompatibility and life time (Saijo, 2002).  

Since 2000, many groups have used different agents to enhance the susceptibility of 

tumour tissue to radiation exposure damage (Kwatra et al., 2013). The application of poly (ADP-

ribose) polymerase (PARP) inhibitors in cancer treatments has shown it can lead to selective 

cancer cell damage (Kouvaris et al., 2007). For example, Shelton et al. studied the enhancement 

of radiotherapy in in vitro models of colorectal cancer combined with chemotherapeutic 

molecules such as 5-Fluorouracil, irinotecan, or oxiplatin and in addition with PARP inhibitors 

(Shelton et al., 2013). They have shown that the PARP inhibitors significantly increases the 

radiosensitisation both with and without chemotherapeutics by increasing the number of 

double strand breaks (DSBs) in DNA, which corresponds to breakage of both strands of the DNA 

helix (Shelton et al., 2013). By contrast, single strand breaks (SSBs) correspond to breaks only to 

one strand of the DNA helix.  
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There are two main mechanisms of SSB and DSB repairs in eukaryotes. Base excision 

repair (BER) is the main repair mechanism of SSBs (Clancy, 2008). Glycosylases play important 

roles in this process and are able to recognise specific base damage such as uracil containing 

DNA, or base oxidation. The DNA glycosylase cleaves the damaged or abnormal base from its 

sugar-phosphate bond, leaving a free base and a free sugar. Thereafter, endonucleases can 

cleave the free sugar and leave the place for the DNA polymerase to replace the missing base 

and the DNA ligase to seal the DNA (Figure 1.3 a) (Clancy, 2008, Cooper and Ganem, 1997). 

Nucleotide excision repair (NER) is mainly responsible for DNA repair following UV radiation, and 

damage which are not recognised by the glycosylases. NER acts via DNA polymerase and DNA 

helicase, by removing a group of bases containing the damage (oligonucleotide), and then as 

before, DNA polymerase and DNA ligase replace the missing bases and seal the DNA strand 

(Figure 1.3 b) (Clancy, 2008). By blocking the BER mechanism, PARP 1 inhibitors can increase the 

number of both SSBs and DSBs in the DNA of cancer cells (Powell et al., 2010a) This is due to the 

fact that cancer cells seem to be more susceptible to DNA repair pathways modulation than 

normal cells (Powell et al., 2010a). DSBs are more complex to repair due to the effect on the 

double stranded DNA and are mostly repair through homologous recombination (HR) and non-

homologous end joining (NHEJ) repair mechanisms (Figure 1.3 c) (Raleigh and Haas-Kogan, 

2013). The mechanism of choice will depend of the nature of the damage. Indeed, HR needs the 

homologous chromosome to be damage free. It uses the homologous chromosome as a 

template to repair the DSB and is also responsible for the DNA crossover and genetic information 

exchange during meiosis. In contrast, NHEJ, uses DNA ligase in order to take pieces of DNA 

adjacent to the break and fill it, which can lead to additional errors, depending on the cell cycle, 

especially if the cell has not completed its DNA replication (Clancy, 2008, Cooper and Ganem, 

1997). 
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a)  b)  

Figure 1.3: Different DNA repair mechanisms. a) Base excision repair, b) nucleotide excision repair, c) 

DSBs repair, covered by homologous recombination an non homologous end joining (Cooper and 

Ganem, 1997). 

 

Table 1.2 summarises the different chemotherapeutic strategies used in combination with 

radiotherapy. 
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Table 1.2: Summary of chemotherapeutic strategies used in combination with radiotherapy 

Drug mechanism Clinical trials 

Vitamin E (Kumar, 2002, 

Singh et al., 2013) 

Tocopherol and tocotrienol family 

Antioxidant 

Good biodistribution 

Phase II clinical trials, oral administration to prevent 

diarrhoea and nausea after radio- and chemotherapy 

Amifostine (Kouvaris et 

al., 2007) 

Reduced in an active product by 

alkaline phosphatase, scavenging free 

radicals 

Food and Drug Administration approval for reducing 

xerostomia after post-operative radiotherapy (head 

and neck,  

Tempol (Davis et al., 

2011, Davda et al., 2016, 

Metz et al., 2004) 

Radioprotective and contrast product 

on magnetic resonance 

Exploration on phase I clinical trials to reduce alopecia 

Cox-2 inhibitors (Citrin 

et al., 2010) 

Counterbalance increase of COX-2 and 

prostaglandin expression  

Promotion of apoptosis, radiosensitiser 

On-going and phase III completed trials as 

radiosensitiser 

ACE (Citrin et al., 2010) Inhibition of angiotensin II production, 

decrease of proliferation and oxidative 

stress 

On-going and final phase III of clinical trials, prevention 

of radiation-induced nephrotoxicity  

G-CSF, palifermin (Brizel 

et al., 2008, Finch and 

Rubin, 2004) 

Favour cell differentiation and 

proliferation 

Phase II of clinical trials for radioprotector 

VEGF inhibitors (Small Jr, 

2008) 

Reduce tumour vascularisation Phase I clinical trials in combination with 5-fluorouracil 

5-fluorouracil (Koutcher 

et al., 1997) 

Pyrimidine analogue, inhibition of DNA 

synthesis 

phase II clinical trials as radiosensitisers 

Cisplatin, oxaliplatin (Zhu 

and Willett, 2003) 

Integrating on DNA, between two 

guanines or a guanine and adenine, 

decreasing the DNA synthesis 

phase II clinical trials as radiosensitisers in rectal cancers 

Clofarabine, 

Gemcitabine (Metro et 

al., 2010, Ogawa et al., 

2012) 

Purine (Clofarabine) and pyrimidine 

(Gemcitabine) nucleoside analogue, 

DNA polymerase and Ribonucleotide 

reductase inhibitors 

Phase III of clinical trials as chemotherapeutic, adjuvant 

of radiotherapy treatment of pancreatic cancer 

Paclitaxel (Joseph et al., 

2014) 

G2/M blocker, metabolised by 

cytochrome P450 

Bind beta tubulin to stabilise 

microtubule 

Already established as radiomodulator (head and neck), 

blocking the cell cycle 

Paclitaxel coating NPs is FDA approved  

Irinotecan (Zhu and 

Willett, 2003) 

Inhibition of DNA polymerase I, decrease 

of DNA synthesis 

phase II clinical studies as radiosensitisers on colorectal 

cancer 

PARP inhibitors (Powell 

et al., 2010a) 

Decrease of DNA SSB repair, 

radiosensitiser 

On-going phase I and II clinical trials in BRCA-1 deficient 

patient and metastatic melanoma 

 

Nanomaterials 

Finally, nanomaterials can be used as radiosensitisers. They are of interest due to the 

physical interaction happening between, for example, the photon produced by X-ray radiation 

and the high element surface of the NPs (Retif et al., 2015). Due to their high atomic number, 

specific NPs have a high density of electrons, which promote such photon interaction and 

therefore can release different species after interacting with radiation (Kwatra et al., 2013). 
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Different physical processes can happen between the NPs and the photon interacting, 

depending on its energy and therefore, electrons of different energies will be produced 

(Mesbahi, 2010). These electrons will be able to directly damage the DNA of the cells, or 

indirectly by reacting with the water and oxygen within the environment and creating radicals, 

such as hydroxyl (•OH) And superoxide (•O2
-) (Boudaiffa B et al., 2000) (Figure 1.4). The use of 

NPs as radiotherapy agents and in particular as radiosensitisers is the main topic of this thesis. 

.    
Figure 1.4: schematic view of the interaction between X-ray radiation and NPs, the radiosensitisation 

effect. 

 

1.3. Nanoparticles: their use in radiotherapy 
 

1.3.1 Nanoparticles definition and their different applications 

 

Nanoparticles are defined as atomic structures, generally spherical but not always, and 

whose diameter lies within the range of 4-100 nm, while a nanocluster refers to such structures 

with a diameter below 4 nm (Tan et al., 2004). 

“Nano” size technologies are interesting in many different disciplines, such as engineering and 

biomedicine. Due to their small size, their behaviour is different and particularly, they are 

characterised by a large surface area. They exhibit catalytic properties and are also interesting 

for cell penetration (Hebié et al., 2013) (Figure 1.5). The potential use of NPs includes the 

delivery of attached drugs such as chemotherapeutics, whose efficiency is limited by their poor 

targeting (Cui et al., 2014, Zheng et al., 2015). As an example, many studies have satisfactory 

shown doxorubicin encapsulation in nanomaterials, such as liposomes or PGLA polymeric NPs, 

and improved delivery to cells (Piktel et al., 2016, Zheng et al., 2015, Madhankumar et al., 2006). 

NPs have also been used as drug delivery in combination with radiotherapy. In this area, Cui et 

al. have shown an improvement of radiotherapy efficiency when using NPs consisting of 

polylactone based structure with gelatinase and PEG coating as delivery for docetaxel in gastric 

cancer cells (Cui et al., 2014). 
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Moreover, gene therapy, which consists of introducing NPs with attached DNA 

sequences and derivatives to promote or supress protein production is particularly of interest 

nowadays with the development of personalised therapy (Muddineti O.S et al., 2015). NPs (such 

as gold) can also be used in medical imaging (Adler et al., 2008, El-Sayed et al., 2005). Indeed, 

AuNPs have the ability to scatter visible light due to the delocalised electron oscillations that 

exist at the surface of this material (El-Sayed et al., 2005). The term Plasmon resonance refers 

to the interaction of electrons inside the metallic NPs with the electric field vector of the incident 

light causing an oscillation of free electrons at the surface of AuNPs (Boisselier and Astruc, 2009, 

Louis and Pluchery, 2012). The Localized Surface Plasmon Resonance (LSPR) is responsible for 

the red-purple colour of the spherical AuNPs and comes from the confinement of the electric 

field within the small spherical NP, where the radius is smaller than the wavelength of light 

(Pluchery, 2012). 

 

 

Figure 1.5: Schematic representation of NP-mediated drug delivery, via active and passive targeting 

(Ghosh P et al., 2008). 

 

Although nanoparticles are widely used as drug delivery agents in order to improve the 

biocompatibility or selectivity of different drugs, and to deliver molecules such as proteins, DNA 

or RNA to their target, they can also be used on their own in combination with radiotherapy 

(Barkalina et al., 2014, Ghosh P et al., 2008). Indeed, by interacting with x-ray or gamma-ray 

photons, or heavy protons, different physical processes lead to the formation of reactive oxygen 

species (ROS) and/or electrons, as described soon in Section 1.4 (Muddineti O.S et al., 2015).  
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1.3.2. NPs for radiotherapy 

 

Targeted radiotherapy can be achieved by using nanoparticles (NPs) (Porcel et al., 

2010b), which act to increase the dose of radiation deposited in the vicinity of the NP (Dendy 

and Heaton, 1999, Kwatra et al., 2013). Hainfield et al. (2004) were the first to show an 

improvement of cancer cell killing when AuNPs were combined with kilovoltage radiotherapy in 

vivo (Figure 1.6) (Hainfeld et al., 2004, Haume et al., 2016b). The radiosensitisation effect of NPs 

used with radiotherapy involves different processes such as physical, chemical and biological. 

The physical processes involved when the beam of radiotherapy interacts with the NPs are 

described in section 1.4 and will be linked with the potential attenuation of particles (e.g 

photons) with matter. Depending on the energy of the particles used in radiotherapy, different 

processes will take place such as the photoelectric effect, Compton effect and pair production 

and secondary electrons will be produced. The electrons can react with the environment (e.g 

water) to produce reactive species in the vicinity of the NPs. The interaction of these species 

with the environment will depend on their half-life and the distance they can travel (Havaki et 

al., 2015). Electron are the most common secondary species produced and can react with the 

environment and subsequently produce a cascade of reaction including the production and 

transformation of radicals (Leroy C, 2009).  

In addition, the surface of NPs, such as gold, can be electronically active and catalyse chemical 

reaction, especially if the NPs have a small size/high surface area (Rosa et al., 2017). Different 

reaction such as water radiolysis or reaction between energised molecules can be catalysed at 

the NP surface (Le Caër, 2011) and will depend on the composition, the size, the charge and the 

surface coating of the NPs (Kwatra et al., 2013). These parameters are described further in 

section 1.5 to 1.9. 

Finally, the radiosensitisation effect on the cellular level is described in section 1.14. The 

different species produced around the NPs will interact with the biological environment within 

the cell, having a potential impact on different organelles and on the cell DNA (Jeynes et al., 

2014, Kong et al., 2008). Indeed, the biological effects can be due to radical species formed from 

the reaction between electron produced and water molecules or from radicals formed with 

biological molecules (e.g DNA, proteins). Some NPs can also have a direct toxic effect on the cells 

due to chemical reaction or release of metal ions for example and engender a synergistic effect 

when combined with radiotherapy (Grellet et al., 2017, Kong et al., 2008). 

 

When considering the NPs composition, NPs various materials such as silicon, fullerenes, 

or metallic NPs can be used (Kwatra et al., 2013). Heavy elements (with an atomic number above 

50) such as gold, gadolinium, platinum or silver, were found to increase the level of damage 
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caused by X-ray radiotherapy. This phenomenon is known as radiation sensitisation or 

nanoparticle enhanced X-ray therapy (NEXT) (Kwatra et al., 2013). Such heavy elements are 

characterized by a high density of electrons which increase the probability of interaction with 

the X-ray photon beam. They can selectively scatter or absorb high energy gamma/X-ray 

photons (Kwatra et al., 2013).  

The interesting properties of gadolinium, gold and high atomic number elements come not only 

from their radiosensitisation effect, but also due to their contrast agent’s properties in presence 

of magnetic field such as magnetic resonance imaging (MRI) and computed tomography (CT). CT 

scanners are used as standard imaging technique for diagnosis and radiotherapy treatment 

planning (Smith et al., 2012). 

 

Figure 1.6: Average tumour growth after different treatment (Hainfeld et al., 2004). (▲, n = 12); gold 

only (♦, n = 4); irradiation only (30 Gy, 250 kVp, •, n = 11); intravenous gold injection (1.35 gAukg−1) 

followed by irradiation (■, n = 10). 

 

Radiotherapy leads to cell death mainly by damaging the DNA. The most common types 

of DNA damage are the SSBs, DSBs or sugar and base modifications (Hein et al.). SSBs are the 

most common and are generally rapidly repaired by DNA repair pathways but if not, SSBs can 

lead to DSBs (Powell et al., 2010b). DSBs are the less common but are most important because 

they are much more difficult to repair correctly.  

An enhancement in cancer cell death when NPs were combined to radiotherapy has been shown 

with X-rays at kilovoltage energies (Hainfeld et al., 2004, Haume et al., 2016b) and megavoltage 

energies. Indeed,Figure 1.7 shows tumour volume in mouse after different treatment using gold 

nanorods goserein acetate coating (gAuNPs), a synthetic analogue of the LHRH that can binds to 

the overexpressed LHRH receptors on pancreas cancer cells and lead to the reduction of 

testosterone secretion (Wolfe et al., 2015). Before in vivo experiment, Wolfe et al explored the 

effect of these AuNPs on PC-3 pancreas cancer cells and showed a pick of uptake in cells and 

particularly in vesicles after 24h exposure (exposure time between 15 min and 72 hours). They 
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further showed that this exposure for 24 h was responsible for a radiosensitisation effect on 

cells with a radio enhancement factor at 20% of 1.36 (Wolfe et al., 2015). 

  

Figure 1.7: Tumour-growth in nude mouse with and without treatment with coated gold nanorods 

(gAuNR). The mice were irradiated with a dose of 5 Gy X-rays at 6 MV, 24h post AuNPs intravenous 

injection (1.35 mg of gold per gram of body weight) (Wolfe et al., 2015). 

 

Moreover, with the increasing use of heavy ions therapy, such as proton therapy, 

considerable research has been undertaken to explore and understand the combination of 

proton therapy with NPs. Schlatholter et al. (2016) have shown that platinum NPs combined 

with 150 MeV protons increase the amount of SSBs and DSBs on plasmid DNA (Figure 1.8). They 

observed that an increase of DSBs was related to an increase of LET. Indeed, the ratio of 

SSBs/DSBs was higher at the entrance of the track (low LET) than at the end of the Bragg peak 

(high LET). This indicated that the damage was more complex at the Bragg peak (Schlathölter et 

al., 2016). 

 

Figure 1.8: A) SSBs and B) DSBs observed in Plasmid DNA exposed with Platinum NPs and proton 

therapy, and without. EC stands for entrance channel and represents proton beam therapy with low 

LET, mimicking the entrance of the ion track, while BP stands for Bragg peak and represents therapy 

with high LET, mimicking the end of the track (Schlathölter et al., 2016).  

 



30 
 

In order for the irradiated NPs to demonstrate robust DNA damage, they need to be 

able to enter cells (Jain et al., 2011, Kong et al., 2008, Retif et al., 2015). Indeed, NP uptake plays 

a major role in the radiosensitisation effect, as the localisation of the NPs will determine the 

effects on the cell. The cellular uptake of the NPs will be described further in this chapter, in 

Section 1.10 and its impact on radiosensitisation will be mentioned in Section 1.14. 

 

1.3.3. Role of oxidative stress in the combination of NPs with radiotherapy 

 

Oxidative stress plays a key role in radiotherapy and the radiosensitisation effect 

(Kryston et al., 2011). For example, in addition to the direct effect of radiation, ROS are 

implicated in bystander effects via the induction of different molecules such as MAPK and p53 

and inflammatory processes (Azzam et al., 2003). Bystander cells are cells which are not directly 

irradiated, but in the vicinity of targeted irradiated cells also respond to the radiation exposure 

(Azzam et al., 2003). NAD(P)H oxidase and cyclooxygenase 2 are key factors in the production of 

further ROS by these bystander cells (Havaki et al., 2015). 

Among the different ROS species responsible for DNA damage, H2O2 is stable and characterised 

by a long lifetime (miliseconds until it is dissociated) and can therefore cause damage at a 

distances from the radiation site (Havaki et al., 2015). Conversely, superoxide ion (•O2
-) has a 

shorter lifetime (microseconds) and therefore has a more limited range of possible damage 

(Mikkelsen and Wardman, 2003). The hydroxyl radical, •OH is the most reactive ROS species 

(nanosecond lifetime) and can therefore only travel few nanometres (Mikkelsen and Wardman, 

2003). All of these ROS species can react with DNA, proteins and lipids, causing changes to cell 

function and further damage (Havaki et al., 2015).  

The prediction of direct or indirect effects of free radicals produced after radiation on 

DNA is dependent upon different factors, such as the energy of irradiation, the amount of water 

and oxygen. Without water and oxygen, no indirect effect of irradiation would be observed 

(Ogawa et al., 2016). Moreover, the distance from the radical production to the DNA molecule 

impacts also on the damage and it is estimated that free radicals produced at a distance of 5 nm 

or less from the DNA helix will be most likely to create a damage (Ogawa et al., 2016).   

ROS production may be influenced by the presence of NPs. Misawa et al. have shown 

an enhancement of ROS generation (by a factor of 7.68 for •O2
- and 1.46 for •OH) when using 5 

and 20 nm AuNPs combined with kilovoltage X-ray (100 kV) in water (Misawa M and Takahashi 

J, 2011). They observed that the production of •O2
- was proportional to the NPs characteristics 

such as an increase of surface area and therefore decrease of size, while •OH related to its 

volume (Misawa M and Takahashi J, 2011). 
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Several studies have tried to improve ROS production during irradiation by using 

catalytic materials (such as ceria (Wason et al., 2013)) which can capture molecules of oxygen 

depending on their oxidative state and can act as antioxidants, radioprotectors or 

radiosensitisers (Sun et al., 2012, Colon et al., 2010, Wason et al., 2013). Previous work has 

shown their potential as adjuvant with radiotherapy (Shcherbakov et al., 2014). 

 

1.4. Physical processes involved in the interaction between NPs and 

radiation 
 

Depending on the energy of incident photons, various processes may take place when 

NPs are irradiated. These include (in order of increasing photon energy): the photoelectric 

effect, fluorescence, Auger electron emission, Compton scattering, and electron-positron pair 

production (Figure 1.9).  

At low energies the photoelectric effect is prominent. The photoelectric effect was one 

of the first examples of the quantum nature of matter and light explaining how photons can 

liberate electrons from a metallic surface if they have an energy (hν) greater than the ‘work 

function’ of the metal W, the residual energy of the absorbed photon may then be released as 

kinetic energy of the ejected electron (Jeynes et al., 2014, Mesbahi, 2010). Typical values of W 

are 4-6 eV and thus short-wavelength visible or ultraviolet light is required to liberate electrons 

from most metals. Higher energy photons may liberate’ electrons from inner shells (K, L etc) of 

an atom creating a ‘hole’ valence electrons may decay into the hole releasing energy in form of 

fluorescence  (Hobbie and Roth, 2007). The photoelectric effect probability is a function of the 

atomic number (Z) of the NPs. The higher is the Z number, the higher the probability of the Auger 

effect. In the solid state, metal, the core levels of atoms are little perturbed and essentially 

remain as discrete, localised (i.e. atomic-like) levels, and thus electrons are released from the 

metal by high energy photons, X-rays with few hundred eV to keV energy (Leroy C, 2009, 

Mesbahi, 2010). In X-ray Photoelectron Spectroscopy (XPS) the absorbed X-ray energy ejects a 

core level electron directly whilst in Auger Electron Spectroscopy (AES) as one electron falls from 

a higher level to fill an initial core hole in the inner-shell the energy liberated in this process is 

simultaneously transferred to a second (Auger) electron ; a fraction of whose energy is required 

to overcome the binding energy of this second electron, the remainder being retained by this 

emitted Auger electron as kinetic energy  (Hobbie and Roth, 2007). Both XPS and AES are 

relevant for electron liberation from nanoparticles and give rise to a continuum of secondary 

electrons worth energies from 10 eV to keV (Pradhan et al., 2009). 
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< 500 keV 

> 500 keV 

> 1.02 MeV 

At higher energies (> 500 keV), incident photons scatter off electrons within the atoms 

of the NP. the Compton effect leads to the production of a recoil electron and a photon of lower 

energy than the one interacting (Leroy C, 2009). 

Finally, electron-positron pair production takes place for incident photons with energies 

higher than 1.02 MeV and comes from the interaction between a photon and an atomic nucleus 

inducing an electron and a positron (positive electron) formation (Leroy C, 2009).  

All of these different photon interactions can produce secondary energetic photons, electrons, 

and ions, which can interact with oxygen and water or can directly interact with DNA and cause 

cellular damage in the vicinity of the NP  (Mayles et al., 2007, Retif et al., 2015). 

 

Fluorescence emission 

             Photo electric effect → Auger electrons  

Incoming  

X-rays          High-Z number   

       metallic NPs                                        Compton scattering 

       

Pair production  

Figure 1.9: Possible emission pathways after photon irradiation of high-Z metal NPs (Kwatra et al., 

2013). 

 

a) b)  

Figure1.10: Distribution of energy deposited within 1 um of a 20 nm size NP as a function of its atomic 

number. a) energy deposited for kilovoltage X-rays, b) energy deposited for megavoltage X-rays 

(McMahon et al., 2015). 

 

However, MacMahon et al. found that high atomic number does not always correlate 

with enhanced radiosensitisation effects (McMahon et al., 2015). They have shown, using 

Monte Carlo simulations that, when kilovoltage x-rays interact with the NPs, Auger electrons are 

the main source of energy deposition at the vicinity of the NPs. Monte Carlo simulations are 

often used to calculate and follow the probability for numerous photons to be scattered after 
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interacting with a substance (Hobbie and Roth, 2007). The spectra for these electrons is 

dependent on the NPs elemental composition and gives an indication of the “radiosensitisation 

potential”, although it has a multi-peaked dependence (Figure 1.10 a). When considering 

megavoltage energies, Auger electron production, although still present, is reduced, and the 

main energy deposition comes from secondary electrons produced by the primary beam of 

radiation. The total energy deposition at the vicinity of the tumour is constant, with a weak 

dependence on atomic number (Figure 1.10 b). In consequence, megavoltage X-rays are 

predicted to give a radiosensitisation effect independent of the element the NPs are made from 

(McMahon et al., 2015). 

 

In this thesis, gold was chosen as the main constituent of the NPs to be used for cancer 

radiotherapy. However, different elements can be used as radiosensitisers and will be described 

below. In addition, since different characteristics of the NPs play a role in the radiosensitisation 

potential, the effect of NPs size, charge and surface coating will be also considered (Figure 1.11)  

 

Figure 1.11: Different characteristics influencing NPs behaviour (Chou et al., 2011). 

 

1.5. Different NPs composition used in radiotherapy  
 

1.5.1 High atomic number NPs 

 

As discussed previously, nanomaterials characterised by a high Z number are good 

candidates for radiosensitisation and several NPs have already been used in radiotherapy. 
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Metallic NPs 

The first material explored as a radiosensitiser was gold. A radiosensitisation effect was 

shown by Hainfeld et al. using 2nm diameter AuNPs. After injecting the AuNPs into mice, they 

noticed a decrease in tumour growth when X-ray irradiation treatment was combined with NP 

injection, as compared to irradiation alone (Hainfeld et al., 2004) (Figure 1.6). Gold is therefore 

the most used in radiosensitisation applications and many studies have been undertaken to 

characterise AuNPs and explore how they may be used in radiotherapy (Haume et al., 2016b). 

Gadolinium, due to its high X-ray photon interaction cross section, has also been 

adopted as a radiosensitiser (Townley et al., 2012). In addition, it is often used as a chelated 

compound in combination with magnetic resonance imaging, due to its paramagnetic 

properties, to enhance the quality of the images, making it a theranostic material (Kwatra et al., 

2013). However, gadolinium ions Gd3+ can cause toxicity in different organs by oxidative stress 

and chelation of Ca2+, such that it needs to be handled carefully (Rogosnitzky and Branch, 2016) 

and is often being encapsulated/chelated by other molecules such as silica, in order to control 

its toxicity. 

Various teams have exploited gadolinium in radiosensitisation experiments, such as a 5 nm size 

NPs, consisting of a polysiloxine core with a shell of diethylenetriaminepentaacetic acid (DTPA), 

forming the gadolinium chelates. These experiments have shown for example that the NPs are 

capable of efficient radiosensitisation in vitro in head and neck squamous cell carcinoma cells 

with a SER of 2.00 (corresponding to 50 % decrease) after incubation for 1h at a concentration 

of 0.6 mM and an irradiation with a dose of 2 Gy with 250 kV X-rays (Miladi et al., 2015) in 

squamous cell carcinoma (Sancey et al., 2014), as well as in brain cancer cells U87 with a 37% 

decrease of viability thanks to the sensitizing effect of the NPs after exposure for 3 h with 0.5 

mM NPs and an irradiation of 8 Gy with 6 MV X-rays (Mowat et al., 2011). A radiosensitization 

effect has also been shown  in vivo with an increase of animal survival treated by Gd-NP (20 min 

or 24h incubation at 40 µg per gram of weight) and microbeam radiotherapy irradiation by 2 

compared to irradiation alone in rats brain with gliosarcoma (Sancey et al., 2014). It is difficult 

however to compare the effect of the NPs on different models as the different papers published 

use generally different outcome measures (SER, decrease of viability and DEF) at different doses 

of radiation and using different NPs concentration and exposure time. 

Platinum NPs have often been explored in cancer treatment strategies. Porcel et al. have 

shown the potential of platinum nanoparticles as radiosensitisers. By using in vitro plasmid DNA, 

they have shown that the combination of Pt-NPs with hadron therapy (carbon) can enhance 

DNA strand breakage. Indeed, they have shown that an incubation of 1 NP of 3 nm per 2 plasmid 

PbR322 1h before irradiation with a dose up to 360 Gy with 276 MV Carbon irradiation was 
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responsible for a 2-fold increase of SSB and 1.3 increase of DSB (Porcel et al., 2010a). They 

hypothesised that it was the Pt2+ ions released from the Pt-NP that causes significant DNA 

damage and cellular apoptosis. These Pt2+ ions form a complex with DNA which seems to be 

similar to that of cisplatin, which is commonly used as radiotherapy agent (Porcel et al., 2010a). 

 

Metallic oxides NPs 

Metallic oxide NPs have the advantage of providing NPs with well-controlled size, shape 

and structure when synthetized (Jolivet et al., 2010). They offer interesting properties in 

radiotherapy since they can promote the formation of ROS by catalysis of radicals’ production 

from the surrounding water. Their limitations are in the active sites which are weak by 

themselves. Some authors have shown that the catalytic properties of these types of NPs are 

enhanced when they are formed with another high element metal such as gold around it, 

forming a core shell structure with the catalytic part on the core and the other element 

constituting the shell (Mitsudome et al., 2015). 

Titanium oxide (TiO2) is a photocatalytic metallic oxide that can react with water to 

produce ROS when irradiated with UV (Smith et al., 2012, Sotter et al., 2005). Radiosensitisation 

has been shown for example with breast cancer (MCF-7) and gastric cancer (MKN-45) cells using 

TiO2 NPs and gamma irradiation, with a 15% and 10 % survival with NPs and radiation compared 

to 30 % and 15 % for radiation only after irradiation with a dose of 2 Gy and exposure with a NP 

concentration of 30 µg/ml for NCF-7 and MKN-45 respectively (Rezaei-Tavirani et al., 2013). The 

NPs therefore seem to be responsible for an enhancement between 5-15% for these particular 

conditions (Rezaei-Tavirani et al., 2013). Mirjolet et al have also shown that 10 nm TiO2 

nanotubes were able to radiosensitise both U87MG and SNB-19 cell lines after an exposure of 1 

µg/ml for 24h and an irradiation with a dose of 2 Gy using a LINAC leading to a survival fraction 

of 0,18 for SNB-19 cells compared to 0,36 for the control and a survival fraction of 0,43 compared 

to 0,60 for the control for U87MG cells (Mirjolet et al., 2013). However, TiO2 NPs aggregate easily 

due to their isoelectric point (IEP) which is close to neutral pH, and therefore will have a poor 

solubility in neutral medium (Townley et al., 2012). The IEP represents the pH at which a specific 

molecule will carry no net electric charge. One way to avoid this problem is to coat the NPs with, 

for example, silica group (Townley et al., 2012). 

Hafnium oxide NPs are interesting due to their high electron density (Zarschler et al., 

2016). They are also quite inert, and demonstrate selective toxicity toward cancer tissues 

(Maggiorella et al., 2012). They can produce cellular stress damage when irradiated due to their 

high atomic number (Maggiorella et al., 2012). This effect has been shown both in vitro in 

HCT116 cells with a DEF superior to 1.10 after a dose of 4 Gy with 6 MV X-rays and in vivo using 

xenograft mice models with a DEF superior to 1.5 and irradiated with a dose of 8 Gy with 6 MV 
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Co-60 gamma rays (Maggiorella et al., 2012). Moreover, hafnium oxide NPs have been now in 

phase II clinical trials as adjuvant therapy with radiation for the treatment of hepatocellular 

cancer and liver metastases (2015). 

Zinc oxide and iron oxide could be suitable radiosensitisers but their application is 

limited due to their potential dissolution in cellular media, which is responsible for their high 

toxicity (Nel et al., 2009). Ceria (cerium oxide, CeO2) is a cubic fluorite-type oxide, in which each 

cerium site is surrounded by 8 oxygen sites, allowing it to store and transport oxygen. Cerium 

oxide can act as radiosensitiser (Briggs et al., 2013, Cheng et al., 2013, Park et al., 2008) or 

radioprotector (Arya et al., 2016) depending on its redox state, and the pH of the environment. 

 

Magnetic NPs  

Magnetic properties of matter are defined by the orbital and spin motions of electrons, 

whose spin and angular momentum are associated with a magnetic moment (Colombo et al., 

2012). Magnetic properties are used for electricity, mechanic, optic, bio-separation properties, 

but also contrast enhancement agents for magnetic resonance imaging in particular (Yu et al., 

2008). 

 

Superparamagnetic iron oxide nanoparticles (SPIONs) have been used due to their 

ability to catalyse ROS formation. Their superparamagnetic properties allow better targeted 

therapy, by directing and localising them into organs using an external magnetic field (Klein et 

al., 2014, S Wadajkar et al., 2013). Superparamagnetic iron oxide nanoparticles refer mainly to 

magnetite (Fe3O4) (S Wadajkar et al., 2013). Recently, superparamagnetic NPs have been used 

in combination with doxorubicin and antibody targeting endothelium growth factor receptor 

(EGFR) for magnetic resonance imaging applications and as an anti-cancer drug in addition to 

photothermal therapy using an in vitro model of cancer cells (DLD-1) where a 60 nm size NPs 

have shown more than 80 % of cell viability after 24hof NP exposure and then photothermal 

therapy compared to the control(Mu et al., 2017).  

Cobalt NPs are metallic NPs and can reach a higher state in magnetisation than iron 

oxides or other metallic oxides NPs, and so are of interest in magnetic resonance imaging. 

However, their toxicity limits their use in patients. Silica coatings can reduce their toxicity 

(Zarschler et al., 2016). 

 

1.6. NPs size used in radiotherapy 
 

The size of the NPs also plays a crucial role in its biodistribution and elimination 

(Zarschler et al., 2016). The surface area and the number of atoms present at the surface, 
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relative to non-surface atoms, increase when the NPs size decreases, hence, an ultrasmall NP of 

2 nm size will have 70% of its atoms at the surface (Zarschler et al., 2016). 

The size of the NPs regulates its clearance from the body via the kidneys. It is well known 

that NPs below 5 nm are preferentially cleared from the body via kidney clearance and so, avoid 

long term exposure at the whole-body level (Alric et al., 2013, Sancey et al., 2014). The NPs size 

also impacts on their uptake in cells and will be discussed in Section 1.10. 

NP size is also important for the interaction with the beam of radiation. As the NPs size 

increases, the ionization event from the interaction with radiation may occur within the bulk of 

the NP, reducing the dose deposited on its surface (Haume et al., 2016b, McMahon et al., 2011). 

The size of NP plays a role on the course of the species produced and the distance they have to 

travel in order to reach the surface. Indeed, the catalytic abilities of the NPs depend on having 

excited electrons as its surface. Bigger is the NP and bigger are the chances that the electrons 

recombine in the bulk of the NPs before reaching the surface. Therefore, the physical dose 

enhancement can be different as for smaller NP most of the atoms are at the surface and for 

bigger NP, long distance between the bulk and the surface (Haume et al., 2016b). 

 

1.7. NPs charge used in radiotherapy 
 

The charge on the surface of the NPs plays an important role in its interaction with the 

environment and especially the cells. Positively charged NPs are known to be able to interact 

with the cellular membrane which is negatively charged by creating pores and disrupting its 

integrity, and thus engenders toxicity (Beddoes et al., 2015a, Goodman et al., 2004). 

Simulations of NP entry through the cellular membrane have been made by Rocha et al., who 

analysed NP behaviour as a function of charge density and interestingly found that a small 

amount (20% of positive coating interacting with the membrane) of positive charge improved 

the uptake, while a large amount (100% of positive coating) favoured the membrane dysfunction 

(Da Rocha et al., 2013). 

Whether the charge on a NP causes toxicity is still controversial, Bannunah et al. found 

that positively charged AuNPs (50 and 100 nm) cause strong toxicity to CaCo-2 cells while 

negatively charged NPs were not toxic (Bannunah et al., 2011b). On the other hand, Shaeublin 

et al. have shown that both positive and negatively charged AuNPs (1.5 nm) were more toxic on 

HaCaT cells than neutral ones, and contribute to different cell death pathways (Schaeublin et 

al., 2011b). 

It is important to point out that the surface charge of the NPs can be modified when loaded in 

cellular medium, forming a protein corona around the NP (Yonamine et al., 2013). 
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1.8. NPs surface coating used in radiotherapy 
 

The coating placed upon NP is a very important characteristic for the stability of that NP 

in solution and may be used to avoid aggregation and agglomeration. The coating influences the 

interaction between the NP and the environment and can regulate the solubility of the NP and 

its interaction with molecules around it (Pavlin and Bregar, 2012). The NP coating and its charge 

can therefore be modified during the exposure by interacting with either the extracellular or 

intracellular environment (Hirsch et al., 2013a, Lv et al., 2014, Zhu et al., 2012, Schollbach M et 

al., 2014). The surface charge can also play a major role in AuNPs stabilization and interaction in 

aqueous solution (Alkilany and Murphy, 2010a). For example, cell exposures to NPs are generally 

conducted through dilution in culture medium and because NPs can interact with serum 

proteins, surface functionalization with polyethylene glycol (PEG) is often used in order to 

prevent interactions of serum proteins with NPs (Damodaran et al., 2010, Pissuwan et al., 2011).  

The number of ligand vacancies on a NP surface depends on their diameter (Babaei and 

Ganjalikhani, 2014a). For example, 2 nm AuNPs can have, on average 100 ligand sites when 

considering molecules such as PEG, proteins or derivative molecules, whereas 100 nm NPs can 

have around 4000 (Babaei and Ganjalikhani, 2014a). 

The pH of the environment is also important for the biomolecule behaviour coating the 

NPs. Indeed, a pH above the IEP makes the molecule negatively charged, while at pH below the 

IEP is positively charged (Yu et al., 2008). This is particularly important when the NPs are 

localised in specific organelles such as the lysosomes which have a more acidic 

environment(Drescher and Kneipp, 2012). 

Different types of forces can bind the NP to its coating. Non-covalent binding is based 

on electrostatic interaction between a molecule and the NPs. Non-covalent binding has the 

advantage that there is an absence of any toxic chemical during the NPs production and 

therefore the biomolecule is coated in its native and unchanged form. The disadvantage is its 

weak interaction with the NP surface, which can be easily broken (Yu et al., 2008). For example, 

the citrate group on AuNPs is attached via weak ionic interactions and therefore will be easily 

and rapidly replaced by other groups such as antioxidants, proteins, antibodies or DNA of 

interest on the AuNPs (Kalimuthu and John, 2010). One of the most interesting coatings uses the 

covalent Au-S bond and is composed of thiolates (Boisselier and Astruc, 2009, Häkkinen, 2012). 

In this way, coating exchange from a phosphorous coated group to a thiol coated group has been 

demonstrated and produces a precursor with a mixture of phosphorous and sulphur groups onto 

the AuNPs (Warner et al., 2000). 
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Covalent interactions between molecules and NPs provide strong and stable binding which can 

be used for specific applications, such as drug delivery. 

The NP coating and particularly its net charge also plays a role in cancer cell targeting 

and particularly the uptake of NPs (Schaeublin et al., 2011a, Yah, 2013). Positively charged NPs 

are thought to improve the uptake by interacting with the negatively charge membrane of the 

cells (Bannunah et al., 2011b, Kralj et al., 2012). 

As mentioned above, one coating than can often be used to improve the 

biocompatibility of NPs is the PEG group. Its amphiphilic characteristics can improve the cellular 

uptake by interacting with the cell membrane (Pissuwan et al., 2011). It can also improve the 

circulation time of NPs in the blood stream (Pissuwan et al., 2011).The PEGamine group, with an 

amine group at the end of the carbon chain, provides a positive charge on the NPs.  

Alternatively, since sugar, and especially glucose, is a primary source of metabolic energy for 

cells, and cancer cells especially need and use significantly more glucose compared to normal 

cells, sugar coated NPs can be an effective way to facilitate the entry of NPs into cancer cells (Hu 

C et al., 2015). 

 

Oligonucleotides have been widely used for drug delivery and targeting of cancer cells 

(Asthana et al., 2014, Carbone et al., 2004, Huo et al., 2014, Tkachenko et al., 2003, Zeller et al., 

2006). Different strategies can be used in order to regulate non-physiologically a gene and 

achieve a better cancer cell killing (Malvy et al., 1999). RNA interference (RNAi) for example is a 

sequence-specific gene silencing. It is mediated by small interfering RNA (siRNA) and can 

decrease the translation of a gene, and therefore the protein level (Huang et al., 2008, Wang et 

al., 2005). Wang et al., in 2005, were able to supress by more than 75 % the expression of c-myc 

protein in MCF-7, and decrease its growth rate 5 days after a transfection for 2 days with an RNA 

silencing sequence that targeted c-Myc production (Wang et al., 2005). Anti-micro RNAs 

(miRNA) have also been used for gene silencing by interacting with the messenger RNAs. Indeed, 

miRNA act as post-transcriptional genes in physiological processes (Kim et al., 2011), thus, anti-

miRNA can help understanding gene regulation (Kim et al., 2011). 

The possibility of targeting a particular DNA sequence in the genome via the triplex 

forming oligonucleotides (TFOs) strategy is of interest and can be used to inhibit the expression 

of this particular gene (Vasquez and Glazer, 2002). TFOs were discovered for the first time in 

1957 by Felsenfeld and Rich, when they noticed whilst looking at the binding characteristics of 

the DNA, a strand composed of polyuridylic and polyadenylic acid able to create a complex with 

the double stranded DNA via a Hoogsteen pairing (Vasquez and Glazer, 2002). TFOs are able to 

bind directly and specifically to the gene of interest in a stable conformation (McGuffie et al., 
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2000). Natural triple helix, such as H-DNA exist in living organisms and seem to play a role as 

gene modulator (Malvy et al., 1999).  

In the Hoogsteen mode, the third strand runs parallel to the oligopurine sequence of 

the double helix, whereas in the reverse Hoogsteen configuration, it adopts an antiparallel 

orientation. Oligonucleotides containing C and T form Hoogsteen hydrogen bonds (Figure 

1.12.a) whereas oligonucleotides containing G, A, and possibly T form reverse Hoogsteen 

hydrogen bonds (Figure 1.12.b) (Malvy et al., 1999). The limitation of the structure C+GC is that 

a protonation of the cytosine is required for the structure to be formed and therefore the 

environment need to be at an acidic pH (Malvy et al., 1999). 

 

Figure 1.12: Canonical base triplexes helix formation. a) When the third strand binds to the pyrimidine 

motif, it is parallel to the purine strand; while b) when it binds to the purine motif, it is anti-parallel 

(Vasquez and Glazer, 2002). 

 

TFOs needs optimum conditions, such as specific pH and magnesium presence, in order 

to bind to the duplex sequence of interest DNA. Once formed, this structure is fairly stable with 

half-lives observed in vitro of several hours, up to days (Carbone et al., 2004). 

In the gene-targeting strategy of treatment, one should try to target a gene which is involved in 

several types of cancer or which causes severe dysregulation of the cell modulation (Hanahan 

and Weinberg, 2000). Two types of genes are involved in tumour development; proto-

oncogenes and tumour suppressor genes. C-Myc is a proto-oncogene that promotes cell division 

and un undifferentiated state in cancer cells. Many strategies have been developed in order to 

inactivate or decrease its activity using for example plasmid DNA and T7 RNA polymerase via 

triplex/quadruplex formation (Belotserkovskii et al., 2007) or in vitro cell models (Colo 320) using 

shRNA (Huang et al., 2008). C-Myc is a transcription factor, highly expressed in stem cells and 
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deregulated in many cancer cells. It is involved in maintaining pluripotency and cell proliferation. 

C-Myc is defined as a pro-oncogene as it is up-regulated in many different types of cancers and 

is often targeted for cancer treatment to decrease the abnormal cell proliferation (Carbone et 

al., 2004, Huo et al., 2014, McGuffie et al., 2000). C 

TFOs targeting the c-myc gene have already been designed, but have never been used 

in combination with radiotherapy (McGuffie et al., 2000), and therefore will be one of the focus 

of this thesis. 

 

1.9. NPs uptake by cancer tissues 
 

NPs are a new method proposed for improving radiotherapy efficiency (Burger et al., 

2014a). Due to the enhanced permeation and retention (EPR) effect, NPs can be better absorbed 

into the tumour tissues. The permeation effect is the cause of cancerous tissues developing a 

rapid vascularisation to compensate the lack of resources, secreting growth factor such as VEGF. 

This rapid vascular development leads to irregular blood vessels with discontinuous epithelium, 

easily permeable and favouring extravasation to the tumour environment (Kwatra et al., 2013). 

The retention effect comes from a defective lymphatic function, resulting in poor drainage 

(Kwatra et al., 2013). 

As mentioned earlier in this chapter, NPs uptake is an important criterion determining the 

radiosensitisation effect. Kong et al. showed that NPs localised in the cell cytoplasm decreased 

the cell viability more than when they are at the membrane surface (Kong et al., 2008). 

Furthermore, they showed that glucose coated NPs improve cellular uptake and 

radiosensitisation, compared to non-coated ones (Kong et al., 2008).  

NP interaction with cells are determined by the different characteristics presented above, such 

as their size, shape, or coating (Mao et al., 2007, Zhu et al., 2012). Some of the main pathways 

of cellular uptake are phagocytosis and endocytosis. Phagocytosis generally involves the uptake 

of particles larger than 100 nm, whereas endocytosis takes place for NPs of smaller sizes (Mao 

et al., 2007, Shukla et al., 2005). If the NPs are small enough (below 10 nm), they can enter 

directly by diffusion through the membrane (Zhu et al., 2012); however, they can be toxic by 

generating holes in the membrane if they have positive surface charge (Zhu et al., 2012). Figure 

1.13 illustrates different mechanisms of NPs cellular uptake.Nevertheless there are still 

questions about the mechanism of uptake of NPs and different characteristics such as their size, 

shape or their coating are linked to their therapeutic properties (Alkilany and Murphy, 2010b, 

Kwatra et al., 2013) and these will now be discussed in the case of AuNPs as used in this work. 
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Figure 1.13: Natural size rules and gatekeepers within a mammalian cell (Zhu et al., 2012, Mao et al., 

2007). 

 

1.10. Gold NPs  
 

Having discussed the propertied of NPs in general and how they influence their 

properties as radiosensitisers, a specific case study will be discussed, that of gold which was used 

in the work presented in this thesis. 

 

1.10.1. AuNPs fabrication 

 

Gold colloid NPs have been known for a long time. Indeed, Michael Faraday in 1857 was 

the first to define the colloid solution as “finely dispersed metal” (Tan et al., 2004). AuNPs have 

been often used, due to their optical properties, biocompatibility and easiness of surface 

modification. AuNPs can be made in a variety of sizes and shapes, which are known to play a 

significant role in the uptake by cells, and in the radiosensitisation effect (Kwatra et al., 2013). 

AuNPs can be produced by many different techniques. The two most advanced reactions to 

produce a gold colloid are the aqueous Turkevich method and the “phase transfer catalyst” 

method. The Turkevich method can produce gold nanoparticles around 12 nm by reducing an 
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aqueous solution of HAuCl4 with citric acid or trisodium citrate. On the other hand, the phase 

transfer catalyst method can produce smaller NPs about 4 nm (Tan et al., 2004). 

Using various reducing agents such as sodium borohydride in the presence of HAuCl4; 

Au3+ can be reduced to neutral gold atoms (Au0) (Yah, 2013). UV or microwave radiation can be 

used also to make AuNPs via a photochemical reduction technique (Khan et al., 2014), with high 

purity and a relatively uniform size. Alternatively, green methods have been used to make AuNPs 

without using strong and toxic reductants (Nazir S et al., 2014); these include the use of microbial 

enzymes, microorganisms or plant extracts (Yah, 2013).  

 

1.10.2. AuNPs characterisation 

 

When using AuNPs for radiotherapy treatment, it is crucial to determine their size, as 

well as their coating (surface density and ligand). 

AuNPs in solution can have a different colour linked to their plasmon resonance. This localized 

surface plasmon resonance depends on the size of the AuNPs and will occur especially if the 

AuNPs size is above 2 nm (Alkilany et al., 2009, Kelly et al., 2003). This plasmon resonance can 

be of interest when characterising the AuNPs and for better visualisation due to their colour in 

solution.  

Different techniques can be used in order to characterise AuNPs. X-ray diffraction 

spectroscopy (XRD) and electron microscopy are both sensitive to the shape and the electron 

density of the AuNPs (Fleury et al., 2015, Tan et al., 2004). X-ray diffraction (XRD) and 

transmission electron microscopy (TEM) are both techniques to study the size and elemental 

structure of the NPs. 

TEM allows the size, morphology and element analysis of an isolated AuNPs to be determined, 

while Scanning Electron Microscopy (SEM) can define the AuNP microstructural characterisation 

but only of a thin layer. However, neither SEM nor TEM are accurate for analysis of aggregated 

AuNPs. In contrast, XRD can overcome these limitations and can be used for exploring the 

composition of various samples (Lee et al., 2012, Zolotoyabko, 2014). 

X-ray absorption occurs via the photoelectric effect, the X-ray photon is absorbed by the AuNPs 

and a free electron is released. The resonant nature of the X-ray absorption, which is 

characterised by a maxima depending on the X-ray energy, can be used to explore material 

chemistry (Zolotoyabko, 2014). X-rays have characteristic energies related to the element, both 

X-ray photoelectron spectroscopy (XPS) and X-ray diffraction use this phenomenon (Wagner, 

2010).  

XPS provides information on the electronic surface, its chemical composition and the oxidation 

state (Wagner, 2010).  
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Not only does the size of the NPs in vacuum needs to be determined but also their size 

in solution, in order to have information on their surface characteristics, as well as their charge 

and potential aggregation. Optical analysis techniques such as dynamic light scattering (DLS), 

single scattering angle and scattered light with polarisation parallel to the incident beam are 

effective techniques to study the size or hydrodynamic radius, and the potential aggregation of 

AuNPs (Tan et al., 2004, Falabella et al., 2010, Zimbone et al., 2011). More specifically, the 

hydrodynamic size of AuNPs gives information on the inorganic layer on top of the AuNPs and 

therefore its coating.  

 

1.10.3. AuNPs Uptake 

 

The size of the AuNPs needs to be small enough (equal or below 50 nm) in order to cross 

the cell membrane without disrupting it and to enter the cell. Chitrani et al. in 2006 have shown 

that NPs of 50 nm in size were showing the best uptake compared to smaller and bigger size (14 

nm and 74 nm) (Chithrani et al., 2006).When the AuNPs enter the cells, they will follow a certain 

course before reaching the target of interest (Kodiha et al., 2015). For example, AuNPs can be 

trapped in the lysosomes, before reaching a second target which could be the mitochondria or 

the nuclei (Chithrani et al., 2006, Georgieva et al., 2011, Gromnicova R et al., 2013). In order to 

passively pass through the nuclear pore complex, the AuNPs need to have a diameter below 9 

nm while the inner membrane of the mitochondria contains channels allowing only 2 nm size 

particle to cross the membrane (Kodiha et al., 2015). 

Cellular uptake depends not only on the characteristics of the AuNPs but also on the cell 

type, with tumour cells being known to be more sensitive to AuNPs entry, particularly regarding 

the nucleus uptake, where its homeostasis is often modified in cancer cells (Kodiha et al., 2015). 

Indeed, cancer cells are generally defined with an increased proliferative rate and an accelerated 

cell cycle compared to normal cells. Moreover, the cell membrane can be different with less 

adhesion molecules and more collagenase for cancer cells (Cooper and Hausman, 2004) 

 

As mentioned previously, the coating of the NP plays an important role on cellular 

uptake and various sugars, like glucose, are often used on top of AuNPs to target cancer cells. 

Cancer cells have generally a higher and faster proliferation than many normal cells, therefore 

they need greater amount of glucose for their metabolism (Babaei and Ganjalikhani, 2014a). 

Glucose-coated AuNPs can enter via GLUT receptors, particularly GLUT-1 (Calvaresia E.C and 

Hergenrother P.J, 2013), on the cancer cell membrane (Gromnicova R et al., 2013, Hu C et al., 

2015). However, this is a challenging technique because it needs a specific recognition of AuNPs 

and its coating by the glucose receptor. This interaction needs to be very specific and as 
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previously mentioned, AuNPs surfaces can be modified in the blood circulation before reaching 

their target (Hirsch et al., 2013a, Zhu et al., 2012). Moreover, the interaction between transferrin 

(involved in iron transport) and its receptor is a useful tool for cellular uptake of drugs and genes 

and has been successfully applied for enhancing internalization of transferrin-coated 20 nm 

AuNPs (Levy et al., 2010). 

The uptake of AuNPs is an important criterion for the radiosensitisation effect. Several 

laboratories have used different ligands in order to allow the AuNPs to enter specifically into 

cancer cells, such as glucose which improve the uptake NP uptake in MCF-7 cells compared to 

no coating (Kong et al., 2008) or peptides such as the combination of peptides targeting CRGDK 

and neuropillin-1, which shows a strong toxicity (70%) on MDA-MB-321 cells when coated on 

AuNPs compared to free (Kumar  A et al., 2012). These ligands and the size of the AuNPs were 

modulated in order to target specifically organelles in the cells such as mitochondria, which is 

strongly linked to ROS production (Mkandawire et al., 2015, Pan et al., 2009). 

Moreover, it was previously mentioned that the localisation of the AuNPs close to the 

DNA (eg. nucleus) impacts on its radiosensitisation effect (Kong et al., 2008).  

Nuclear uptake is a challenging target. It can be accessed via a non-targeting or passive 

pathway but can lead to organelle damage (Kodiha et al., 2014, Kodiha et al., 2015). Previous 

studies have shown a nuclear uptake with AuNPs specifically coated with target molecules such 

as Tat protein, a protein involved in nuclear localisation sequences (NLS) (de La Fuente et al., 

2006, Tkachenko et al., 2003). Interestingly, Tkachenko et al. have shown that AuNPs of 20 nm 

size were able to enter the nucleus of HepG2 cells when coating with nuclear sequence 

localisation NLS and RME together but not separately (Tkachenko et al., 2003). For example, 3 

nm AuNPs functionalized with Tat peptide have been shown using electron microscopy to be 

localized both in the nucleus and in the cytoplasm (Levy et al., 2010). Recently, several groups 

have focused their attention on DNA to coat the AuNPs, such as oligonucleotides or aptamers, 

which can be used not only to improve the uptake, but also for drug delivery (Huo et al., 2014, 

Patel et al., 2014, Tkachenko et al., 2003).  

However, so far, very few experiments have successfully shown a nuclear uptake of the 

AuNPs associated with radiosensitisation. Indeed, to the best of our knowledge, only one 

experiment has successfully showed a nuclear targeting uptake of NPs associated with a 

radiosensitisation effect (Fan W et al., 2015). Fan et al describe in their work novel mesoporous 

silica upconversion nanoparticles of 47 nm size coated with tat protein, a nuclear localisation 

sequence (NLS), which allows a nuclear targeting, and encapsulating mitomycin C, an anti-cancer 

drug which, all together were able to radiosensitise MCF-7 cells (Fan W et al., 2015). They have 

shown more than 50 % decrease of cell number after X-ray irradiation (5Gy) in the presence of 

10 µg/ml of NPs for 24h compared to irradiation alone (Fan W et al., 2015). 
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To measure cellular uptake, TEM is a useful technique, as it takes advantage of the high 

electron density of AuNPs. TEM can have an image resolution of 1 nm. In addition, dark field 

optical microscopy can be performed on living cells to visualize the location of AuNPs using their 

elastic light scattering properties. Fluorescence microscopy can also be used on living cells to 

study AuNPs localization in specific organelles using fluorescent probes (Pernodet N et al., 2006, 

Shukla et al., 2005). Nonetheless, since AuNPs absorb light in the visible region, their 

interference with fluorescent assays has to be considered (Alkilany and Murphy, 2010a). 

All these techniques provide qualitative information about uptake of AuNPs. However, there is 

also a need to precisely quantify the number of NPs in cells, for which inductively coupled plasma 

mass spectrometry (ICP-MS) is the best semi-quantitative technique. In ICP-MS, the sample is 

ionized, separated and the ions produced quantified. This technique can give high specificity and 

excellent limits of detection (e.g. 18 parts per trillion for gold) and can be applied to quantify the 

cellular uptake by digesting the cells with strong acid (Alkilany and Murphy, 2010a). The number 

of AuNPs can therefore be approximated by the amount of gold and its mass found per cell. 

 

1.10.4. AuNPs charge impacts on cellular uptake and toxicity 

 

A positive charge on the AuNPs is thought to improve the uptake by cells due to their 

interaction with the lipid membrane, which is negatively charged (Hirsch et al., 2013b, Kalay et 

al., 2014, Yah, 2013). These positively charged AuNPs can also selectively target cancer cells 

because of the glycocalyx structure, which can be thicker in some cancer cells (Marquez et al., 

2004). Gromnicova et al. discussed the possibility that glucose-coated AuNPs can pass through 

the brain endothelium through glycocalyx, which appears to be more negatively charged when 

compared to endothelium of other tissues (Gromnicova R et al., 2013). This glycocalyx is 

composed of different glycoproteins and glycosaminoglycans, which can influence the 

membrane organisation, signal transduction and possibly enhance endocytosis (Paszek M.J et 

al., 2014). Some work has shown that negatively charged AuNPs may also lead to a better uptake 

in cells by having a longer life-time in the blood stream. 

Nevertheless, there are still questions about the proper amount of charge to optimize 

AuNPs uptake. Previous work by Beddoes et al. has shown that the amount of charge on AuNPs 

is linked to their cell membrane penetration and an endocytosis pathway is observed with a 

100 % cationic charge density of coating (Beddoes et al., 2015b, Da Rocha et al., 2013). Shaedlin 

et al. found that negatively charge AuNPs about 1.8 nm size gave a better uptake in HaCaT cells 

but the anionic AuNPs were more toxic than the cationic ones. Moreover, a theoretical study of 

AuNPs coated with alky thiol ligands suggests that AuNPs with low charge density penetrates 
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the lipid cell membrane more easily than those with high density surfaces charges, which 

interact with the membrane, causing a change in morphology and a wrapping of the AuNPs (Da 

Rocha et al., 2013).  

Finally, other parameters can influence and make it difficult to analyse the cellular 

uptake depending on the AuNPs charge, such as the degree of ionization of these charged 

AuNPs, the circulation time in the body and the potential formation of a protein corona onto 

the AuNPs (Bannunah et al., 2011a, Bertrand N et al., 2014, Calvaresia E.C and Hergenrother P.J, 

2013). 

 

1.11. What are the risks of using AuNPs? 
 

Even if AuNPs are supposed to be inert and biocompatible, more information about their 

toxicological profile still needs to be provided (Kwatra et al., 2013). The EPR effect is an 

advantage, considering the uptake in cancer tissues; however, it may not be beneficial when 

considering the long circulation time in the whole body. There have been several previous 

studies focused on the potential toxicity of AuNPs. Tables 1.3, 1.4 and 1.5 present a non-

exhaustive list of the different toxicology studies conducted with different size of AuNPs, 

different cell types (Table 1.3 and 1.4 for cancer cells and Table 1.5 for normal ones) and 

different AuNPs concentrations. Most of the studies exploring the relationship between AuNPs 

characteristics and their uptake and toxicity on cancer tissues involve in vitro models. In vitro 

models include primary cells, normal cell lines and cancer cell lines. These models are easy to 

use, less expensive and more practical when compared with in vivo models (Mrakovcic M et al., 

2014), which involve animal studies. In vivo situation of a tumour and its characteristic is very 

complex. Cell communications play an important role in tumour development and 

differentiation and particularly the fibroblastic mesenchyme impacts on the cell morphology and 

differentiation (Kunz-Schughart et al., 1998). Moreover, angiogenesis and neovascularism are 

important mechanism of the tumour development and are influenced by the cellular 

endothelium within the tumour environment (Kunz-Schughart et al., 1998). In vitro models have 

limitation compared to in vivo models in this different mechanism of differentiation and for most 

of them, they do not take into account the communication between the cells and what is called 

the bastender effect (Kucinska et al., 2017). Being a 2D model, they do not take into account the 

complexity of connection within the cancer tissue and for example the barrier and circulation 

which needs to be cross for the NPs before reaching their target. Moreover, it is critical for the 

derived cell line to retain the differentiated features of the tumour of origin. In this way some 

tumour models are more likely to adapt to cell culture such as sarcomas cells which have been 

widely used over the past 25 years (Masters and Palsson B, 1998). Moreover, some effort have 
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been done trying to combine different types of cells within a 3D in vitro models to mimic the 

interaction of NPs with a more complex model (Kucinska et al., 2017). Although NPs must be 

studied on animals to be able to conduct any clinical trials, in vitro models are good tools to 

provide some new information on the selective uptake and toxicity on different types of cells. 

 

Table 1.3: Toxicology studies on cancer in vitro models of different spherical AuNPs exposure 

Reference Size (nm) Coating Cancer cells Exposure Time Toxicity 

Tsoli et al., 

2005 

1.4 Ph2PC6H4SO3H MV3,  

BLM 

< 0.4 mM 24h IC50 0.24 μM 

IC50 0.30 μM 

 

Pan et al., 

2007  

0.8; 1.2; 

1.4; 1.8; 

15 

TPPMS, TPTS Hela,  

SK-mel-28 

Up to 

10000 μM 

36h 1.4 AuNPs are the most toxic 

one with IC 50 for Hela cells of 

30 μM and 46 μM for 1.4 MSAu 

NPs and 1.4TSAu NPs, 

Pan et al., 

2009 

1.1-1.4-

15 

TPPMS, GSH Hela 5.6 mM 48h 1.4 AuMS NPs (IC 50 48 μM)   

1.1 AuGSH NPs (IC 50 31μM)  

1.4 AuMS NPs with GSH (IC50 

181 μM),  

15 AuMS NPs less toxic NPs  

Butterworth 

et al., 2010 

1.9 No coating DU-145 

PC-3 

MCF-7 

MDA-231-B 

T98G 

200-2000 

nM 

1h Clonogenic assays show a slight 

toxicity after 200 nM AuNPs 

exposure on MCF-7 (20%) and 

strong toxicity after 2000 nM 

exposure on PC-3 (60%) 

Shukla et al., 

2005 

3.5 ± 0.7 Lysine, 

poly(lysine) 

RAW 264.7 

mouse 

macrophage 

10-100 μM 

 

24h-72h AuNPs not toxic up to 100 μM 

after 24h, slightly toxic after 

72h, 

Decrease of ROS levels after 

100 μM exposure for 48h 

Gu et al., 

2009 

3.7 PEG Hela 0.08-100 

μM 

6-72h Low toxicity (70% viability after 

72h of up to 10 μM AuNPs 

exposure) 

Connor et al., 

2005 

4, 12, 18 CTAB, citrate, 

cysteine, 

glucose, biotin 

K562 human 

leukemia 

0.001-0.25 

μM 

 

72h MTT assay,  

CTAB-NPs 18 nm not toxic up 

to 25 μM 

 

Glazer et al., 

2010 

35.9 ± 

6.7 

Cetuximab 

antibody 

Panc-1 

Cama-1 

100 nM Not 

mentione

d 

AuNPs not toxic for cama-1, 

cell death for Panc-1 (IC50 ~ 

100 nM) and mostly via a 

necrosis pathway 
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Table 1.4: Toxicology studies on cancer in vitro models of different rods AuNPs exposure 

Reference Size 

(nm) 

Coating Cancer cells Exposure Time Uptake  Toxicity 

Cho et al., 

2014 

50×2

0 

CTAB, PEG, 

anti-HER2 

SK-BR-3 0.06 nM 24h ICP-MS, AuNPs/cell 

 (8,000 for CTAB, 

3,000 for PEG, 4,400 

for anti-HER2) 

Not measured 

Hauck et 

al.,  2008  

40×1

8 

CTAB, PSS, 

PAH, 

PDADMAC 

Hela 10-150 

μM gold 

atoms 

1 nM 

6h 

 

ICP-AES, AuNPs/cell 

 (150,000 for 

PDADMAC, 12,000 

for PAH and CTAB, 

1,000 for PSS 

Slight toxicity at 150 

μM for CTAB in serum 

free media (20.8 % cell 

death) and PDADMAC 

(11.7 %) in serum 

containing media  

Alkilany et 

al., 2009  

65×1

5 

CTAB, PAA, 

PAH 

HT-29 up to  

10 nM 

96h ICP-MS, AuNPs/cell 

 (45 ± 6 for CTAB, 

270 ± 20 for PAA, 

2,320 ± 140 for 

PAH) 

CTAB-AuNPs show 

cytotoxicity on cells 

(IC50 ~ 0.3 nM), as 

well as PAH-AuNPs 

(IC50 ~ 2 nM) but not 

with PAA negative 

coating 

CTAB in solution gives 

50% of cell death at 

0.4 nM while PAA and 

PAH are not toxic up 

to 1 nM 

Cho et al., 

2014 

50×2

0 

CTAB, PEG, 

anti-HER2 

SK-BR-3 0.06 nM 24h ICP-MS, AuNPs/cell 

 (8,000 for CTAB, 

3,000 for PEG, 4,400 

for anti-HER2) 

Not measured 
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Table 1.5: Toxicology studies on normal in vitro models of different spherical AuNPs exposure 

Reference Size 

(nm) 

Coating Normal 

cells 

Exposure Time Toxicity 

Pan et al., 

2007  

0.8; 

1.2; 

1.4; 

1.8; 

15 

TPPMS, TPTS L929, 

J774A1 

up to 

10000 

μM 

36h 1.4 AuNPs are toxic for both cell lines, with a 

IC50 for 1.4 MSAuNPs of 30 μM for J774A1 

and 56 μM for L929, 15 nm is not toxic (up 

to 6300 μM) and the toxicity is cell line 

independent 

Schaeublin et 

al., 2011  

1.5  MEEE, TMAT, 

MES) 

HaCat 0-100 

μg/ml 

25 μg/ml 

6-24h 

 

24h 

IC50 < 10 μg/ml for TMAT and MES and  

IC50 = 25 μg/ml for MEEE  

Rahman et 

al., 2009  

1.9 Not coated BAECs 0.125- 

1 mM 

Not 

mentio

ned 

~ 30% cell death at 1 mM AuNPs exposure 

AuNPs clustered in the cell cytoplasm 

Butterworth 

et al., 2010  

1.9 Not coated L132 

Primary 

astrocytes 

AGO 1552 

200-2000 

nM 

1h Clonogenic assays show a slight decrease of 

viability after 200 nM AuNPs exposure on 

L132 (20%) and AGO 1552 (25%). 

Decrease of viability more important after 

2000 nM on L132 (30%) and AGO 1552 

(40%) 

Goodman et 

al., 2004  

2 Quaternary 

ammonium, 

carboxylic 

acid 

COS-1 

 

 

Red blood 

cells 

0.38-3 

μM 

 

 

0.27-833 

μM 

1-24h IC50 MMPC1+ 1.0 μM   

IC50 MMPC2- > 7.37 μM  

IC50 MMPC1+ 1.0 μM   

IC50 MMPC2- 72 μM   

Mironava  et 

al., 2010  

13  

45 

Not coated CF-31 

primary 

dermal 

human 

fibroblast 

Up to 

180 

μg/ml 

 

3; 6 

days 

75% and 100% cell death by apoptosis 

pathway after 45 nm AuNPs exposure at 25 

μg/ml for 3 days and from 20 μg/ml for 6 

days. 

Hartono et 

al., 2009  

20 ± 

2 

Citrate 

BSA-coated 

AuNPs 

Neutravidin-

coated AuNPs 

Fibrinogen-

coated AuNPs 

L-DLPC 50 nM 1-40h BSA-coated NPs can disrupt phospholipid 

monolayer in 40h, uncoated AuNPs are 

unable to disrupt with the same condition. 

A disruption occurs after 32h for 

neutravidin-coated AuNPs and for 1-2h for 

fibrinogen-coated AuNPs 

Patra et al., 

2007  

33 CTAB and 

citrate 

A549, 

BHK21 

0-120 nM 48h Toxicity for A549, IC50 ~ 100 nM  

no toxicity observed for BHK21 up to these 

concentrations 

 

It appears that the toxic potential of AuNPs can vary with their size, their coating but 

also differs for various cell types. For example, Pan et al. showed that the toxicity of coated 

AuNPs is size-dependent but does not depend on the type of coating as TPTS and TPPMS 

coatings have the same toxicity for different cell lines (Pan et al., 2007). However, Tsoli et al. 

found that AuNPs can improve the toxicity for cancer cells compared to standard chemotherapy, 
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with a 50 % toxicity after exposure to 0.24 μM of 1.4 nm Au55 NP clusters for 24 h (Tsoli et al., 

2005). Indeed, the 50 % toxicity (IC50) on a melanoma cell line exposed to 1.4 nm Au55 NPs 

clusters was 180 times lower than the IC50 after exposure to cisplatin (Tsoli et al., 2005). 

To date, no work has demonstrated a toxicity of AuNPs for cancer cells only, compared 

to its relative normal model, also known as selective toxicity. Pan et al. showed a similar toxicity 

for both cancer and normal cell lines after exposure to 1.4 nm AuMS NPs exposed for 36 h (Figure 

1.14) (Pan et al., 2007). Promisingly, Butterworth et al. have shown a decrease in viability for PC-

3 cells exposed to 1.9 nm AuNPs (more than 50 % decrease compared to the control) with less 

toxicity towards L132 fibroblasts(around 30 %) (Butterworth K.T et al., 2010). Thus, more 

information about the difference in toxicity between cancer cells and the respective normal cells 

is required. 

 

Figure 1.14: Toxicity of different size of AuMS NPs on four different cell lines (Pan et al., 2009). Four 

different cell lines are presented, Hela represent cervical cancer cells and SK-Mel-28 human melanoma 

cells, while L929 represent mouse fibroblast cells and J774A1 mouse macrophage cells. 

 

1.12. AuNPs mechanism of toxicity  
 

Does the toxicity appear directly after exposure? Is it a late process? Does it come from 

an apoptosis or necrosis death pathway? Does it depend upon the characteristics of the AuNPs, 

the cell types and the conditions of exposure? All these questions will try to be answered in this 

thesis. 

Pernodet et al. have shown that NPs do not immediately cause cell damage but are 

linked to the formation of larges vacuoles inside the cells, which may be the cause of toxicity 

(Pernodet N et al., 2006). AuNPs can cause two types of cell deaths; apoptosis and necrosis. 

These two cell death pathways have different morphological and biochemical characteristics; 

however; they can occur simultaneously after a toxic exposure (Leist M et al., 1997). Liu et al. 

showed that 13 nm AuNPs were toxic to lung cells, partially involving apoptosis but mostly a 

necrosis pathway (Liu M et al., 2013).  
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One of the mechanisms of toxicity of AuNPs, or other high-Z metallic NPs is the 

involvement of oxidative stress induced by elevated ROS, or the depletion of antioxidants. This 

effect is both cancer cell-line and exposure time dependent (Cui et al., 2013). ROS are generated 

during the cellular oxidative metabolism, which mostly occurs in the mitochondria (Fu et al., 

2014). The interaction of AuNPs with different cellular components can imbalance ROS 

production. (Li et al., 2010). Cui et al. have shown an increase in ROS after exposure to Tiopronin 

AuNPs of 2.7 nm size at a concentration of 0,5 mg/ml for up to 24h, with a fourfold increase 

compared to the control. (Cui et al., 2013). ROS dysregulation is related to the chemical and 

physical structures of the AuNPs, such as size, shape, surface area, coating or solubility (Fu et al., 

2014). For example, Shukla et al. found that high concentrations of AuNPs (100 µM compared 

to 50 µM) lead to a reduction of ROS after an exposure for 48h and is a time and dose-dependent 

effect (Shukla et al., 2005).  

 

1.13. Parameterisation of the radiosensitisation effect of NPs 
 

The following section outlines the most common parameters used in radiotherapy 

efficiency and radiosensitisation measurement, such as the linear quadratic model (LQ), the 

sensitiser enhancement ratio (SER) and the dose enhancement factor (DEF). 

 
Figure 1.15: Survival curve and linear quadratic model of different human cancer cells irradiated at high 

dose rate (Mayles et al., 2007, Taupin et al., 2015). 

 

Linear-quadratic (LQ) curves are useful tools to explore the survival fraction due to 

radiation. It is the model of choice for estimating biological effects after radiation and is used 

both experimentally and in the clinic to evaluate responses to radiation both in vitro and in vivo 
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(Joiner and Van der Kogel, 2009). As highlighted in Figure 1.15, fitting to the data are made via 

the equation: 

𝒔𝒖𝒓𝒗𝒊𝒗𝒂𝒍 𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏 =  𝒆(−𝜶𝒅−𝜷𝒅𝟐),  

where d is the radiation dose. 

LQ model can also help to understand radiobiological mechanisms (Joiner and Van der Kogel, 

2009). To explore the relative radiation contribution to cell killing, the two following parameters 

are separated: 

𝒍𝒊𝒏𝒆𝒂𝒓 𝒐𝒓 𝒂𝒍𝒑𝒉𝒂 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 =  𝒆(−𝜶𝒅) 

𝒒𝒖𝒂𝒅𝒓𝒂𝒕𝒊𝒄 𝒐𝒓 𝒃𝒆𝒕𝒂 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 =  𝒆(−𝜷𝒅𝟐) 

 

The alpha component helps to characterise the first part of the cell survival curve and the 

radiobiological effectiveness after a single dose of radiation, while the beta component is used 

to represent the contribution from cumulative damage (Taupin et al., 2015). The α/β ratio 

indicates the dose where linear and quadratic component contribute equally to the effect.  

The linear-quadratic model can give indications of the mechanism of cell toxicity and especially 

on the effect of both acute and cumulative damage. NPs concentration can influence the 

radiosensitisation mechanism and therefore affect the alpha and beta contributions to the LQ 

graph (Butterworth K.T et al., 2010, Taupin et al., 2015). 

The contribution of AuNPs in increasing the radiotherapy efficiency is measured by the 

DEF. DEF is defined by the radiation dose absorbed by the tumour cells in combination with 

AuNPs compared to the radiation dose absorbed by the cells without AuNPs (Muddineti O.S et 

al., 2015). The radiation dose absorbed at a specific point in a tissue represents the quantity of 

energy deposited close to that point when the radiation passes through this tissue (Tubiana et 

al., 1990). DEF may vary with the AuNPs characteristics (Coulter J.A et al., 2012, Hossain M and 

Su M, 2012), their location inside the cell and especially the distance from the nucleus (Hossain 

M and Su M, 2012). The SER is similar to the DEF but is typically used to characterise 

radiosensitising drugs (Joiner and Van der Kogel, 2009). Large enhancement ratios (>2) can be 

found in animal models when the sensitisers are administered prior to radiation and in most 

cases, a radiosensitiser shows a SER >1 (Joiner and Van der Kogel, 2009). 

 

𝑫𝑬𝑭 =
𝒓𝒂𝒅𝒊𝒂𝒕𝒊𝒐𝒏 𝒅𝒐𝒔𝒆 𝒘𝒊𝒕𝒉𝒐𝒖𝒕 𝒔𝒆𝒏𝒔𝒊𝒕𝒊𝒛𝒆𝒓

𝒓𝒂𝒅𝒊𝒂𝒕𝒊𝒐𝒏 𝒅𝒐𝒔𝒆 𝒘𝒊𝒕𝒉 𝒔𝒆𝒏𝒔𝒊𝒕𝒊𝒛𝒆𝒓
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1.14. Biological consequences of AuNPs radiosensitisation 

 

AuNPs inside the cell can generate a large number of secondary low energy electrons 

when impacted by ionizing radiation. Such low energy electrons may be of importance in the 

process of DNA strand breakage, since they interact with neighbouring molecules, via a process 

called dissociative electron attachment, and leading to direct breakage of DNA (Boudaiffa B et 

al., 2000), or •OH formation, that may lead further to DNA damage. This effect has been shown 

to take place inside the cells, causing cell death by damaging the DNA, specifically increasing the 

number of SSBs and more importantly DSBs (Rahman W.N et al., 2009).  

The exact region where electrons are produced may be important. Energetic electrons 

can travel long distances (microns), leading to a widely dispersed electron distribution 

throughout the target. This would suggest that it is not crucial where the AuNPs is located for 

this phenomenon. On the other hand, low energy secondary electrons, such as Auger electrons, 

that are produced by direct radiation interaction with the NPs do not travel far (e.g. 10 nm) and 

therefore such electrons have a more local effect and will depend on where AuNPs are within 

the cells (Davidson and Guo, 2014) (Figure 1.16).  

Moreover, the radiation source also affects the secondary electrons produced, since 

kilovoltage photons produce long range dose enhancement in the cellular system, away from 

the AuNP surface, while this enhancement will be more limited due to targeted radiation on 

AuNPs in cells for proton therapy (Lin et al., 2014). 

AuNPs can also play a role on the cell cycle. During the G2/M phase of the cell cycle, the 

cells are sensitive to radiotherapy, as this phase corresponds to the division of the cells and the 

genetic material is sensitive to any changes, while they become more resistant during the G0/G1 

phase (Iliakis and Nüsse, 1983, Parshad et al., 1984). Roa et al. in 2009 demonstrated that 

glucose-coated AuNPs were able to arrest the cell cycle in G2/M phase by interfering and 

decreasing the expression of p53, cyclin E, cyclin A and cyclin B1 (Roa et al., 2009). 
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Figure 1.16: Exploration of tracks of ejected electrons on the surface (solid lines) or in the bulk (dashed 

lines) of a 20 nm AuNPs interacting with 50 keV photon (green line), plotted in a)3D, b)2D (McMahon 

et al., 2011). 

 

Several in vitro and in vivo studies have explored the biological basis of 

radiosensitisation (Butterworth et al., 2012). In addition, isolated DNA has often been used in 

combination with radiotherapy as a proof of concept that AuNPs can enhance DNA damage 

(Śmialek et al., 2008). In 1952, Joshua Lederberg defined a “Plasmid” as any extrachromosomal 

heritable determinant (Smalla et al., 2015). Plasmids are double-stranded DNA that carry 

specific genes and can replicate them independently from chromosomal DNA (Smalla et al., 

2015). They are replicated upon cell division and are transmitted from one bacteria to another, 

creating numerous copies of the gene and therefore allow the study of damage upon radiation 

of a particular sequence in a gene of interest (Śmiałek 2007). A brief description of the work 

already been done in radiosensitisation effect using AuNPs is described below. 

 

MacMahon et al. have shown in 2011 that small NPs, about 2 nm, deposit 2 to 3 times 

more energy in their vicinity compared to larger NPs (200 nm) due to the important 

surface/volume ratio of small NPs. This particular statement is true at the vicinity of the NPs but 

vanishes at longer distance as the dose deposited away from the NPs results from the 

photoelectrons and Auger electrons, escaping from all sizes of NPs (McMahon et al., 2011). 

It has already been shown that the closer the AuNPs to the DNA, the better 

radiosensitisation (Brun et al., 2009a, Coulter J.A et al., 2012, Hossain M and Su M, 2012). 

Additionally, Zhang et al. studied theoretically the benefit of 100 nm size AuNPs combined with 

Ir 192 source of radiotherapy using Geant 4. They found that after passing through AuNPs-

containing region (in the tumour) (more than 20 nm away from the NP), the photon beam was 

responsible for a dose deposition much lower (similar to the one without NP) than within the 
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NPs region (28 % enhancement), which is important from a clinical perspective (Zhang et al., 

2009).  

It is important to mention that although theoretical models in order to predict the dose 

enhancement when using NPs are developed but have limitation on the correlation between 

the predicted dose enhancement and the actual experimentally collected dose modifications as 

seen in Figure 1.17. 

 

Figure 1.17: Comparison of experimentally collected Xray dose modification from different experiments 

and predicted dose increase for AuNPs interaction with kilovoltage and megavoltage irradiation 

(Butterworth et al., 2012). 

 

The type of radiation also plays a major role in the radiosensitisation effect. Rahman et 

al. found that low energy X-rays (80 peak kilovoltage, kVp) in combination with AuNPs were able 

to give a high DEF of 24 (Rahman W.N et al., 2009). This DEF increased with increasing 

concentration of AuNPs. It is important to mention that low energy X-ray irradiation is used only 

for treating superficial tumours and cannot penetrate deeply inside the body. Such an effect was 

not observed with megavoltage radiation (6 MeV) (Butterworth et al., 2012, Rahman et al., 

2009). So far, the average DEF obtained with combining AuNPs and radiotherapy is 

approximately 2 (Table 1.6 and 1.7).  

 

Not only the type of radiation, but also the AuNP characteristics play a role in the 

radiosensitisation. It has been reported that concentration of AuNPs plays a bigger role on 

radiation dose enhancement rather than its size (Babaei and Ganjalikhani, 2014a, Mesbahi et 

al., 2013). Indeed, a high concentration of AuNPs is related to high amount of gold atoms near 

the tumour and a better radiosensitisation (Chithrani et al., 2009). Brun et al. tried to understand 

the relationship between the size and the molar ratio of AuNPs with X-ray radiotherapy using 

various photons energies (14.8-70 keV) (Brun et al., 2009b). They found using plasmid DNA that 

the best radio-enhancement (6-fold improvement relative to the controls) was achieved with 
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large size AuNPs of 37.5 nm, high molar concentrations with a molar ratio of 1:1 DNA/AuNPs 

and an energy of 50-keV (Brun et al., 2009b). In addition, Zheng et al. have exposed plasmid DNA 

to AuNPs at a ratio of 1/1 or 1/2 DNA/AuNPs with energy of 60 keV electrons. In their work, the 

condition with 1/2 DNA/AuNPs lead to a 2.5 times increase of double strand breaks (Kwatra et 

al., 2013). 

 

Table 1.6 and 1.7 represent a non-exhaustive list of the different radiosensitisation obtained 

with AuNPs of various size and with different coatings.  
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Table 1.6: Summary of in vitro experiment on human cells exposed to AuNPs (below 10 nm) and 

radiotherapy 

Reference Size 

(nm) 

Coating Cells NPs 

exposure 

Radiation Radiosensitisation Uptake/comme

nt 

Rahman et 

al.,2009  

1.9 No 

coating 

BAECs 0.125-1 

mM 

X-ray 

machine, 

80-150 kV, 

0-5 Gy 

6 MeV-12 

MeV 

Enhancement 

concentration 

dependant. 

Maximum DEF of 24 

with 80 kVp X-ray 

and 1 mM AuNPs 

Not measured 

Butterworth 

et al., 2010  

1.9 No 

coating 

DU-145 and PC-

3 MDA-231-B 

and MCF-7  

L-132 (alveolar 

epithelial cell) 

T98G  

Human primary 

astrocytes AGO-

1522B  

10-100 

μg/mL, 

1h 

160 kVp 

0.625 

Gy/min 

Dose 

between O-

10 gy 

Highest DEF of 1.97 

for AGO-1522B at 

100 μg/ml and 

lowest DEF of 1.04 

for Astrocytes at 10 

μg/ml 

Du-145 show 

the highest 

toxicity after 

AuNPs 

exposure (more 

than 50 %). 

Toxicity 

observed also 

for primary cells 

(around 30 %) 

Jain et al., 

2011 

1.9 No 

coating 

DU-145,  

MDA-MB-231, 

L132  

12 µM, 

24h  

 

160 kVp x-

rays 3Gy 

6 MV X-

rays 

6 MV 

electrons 

(el)  

Dose of 0-

2-4-6 Gy 

MDA-MB-231, SERs 

160 kV = 1.41 

6 MV Xray = 1.29 

6 MV el = 1.04 

DU-145, SERs 

160 kV = 0.92 

6 MV Xray = 1.13 

6 MV el = 1.12 

L132, SERs 

160 kV = 1.05 

6 MV Xray = 1.08 

6 MV el = 0.97 

NPs 

accumulation in 

lysosomes 

Better uptake in 

MDA-MB-231 

cells (4 µg/ml), 

compared to 2 

µg/ml for L132, 

linked to the 

better 

radiosensitisati

on 

Bobyk et al., 

2013  

1.9 No 

coating 

F98 glioma cells 10 

mg/ml, 

15 min 

50 keV, 6 

Gy 

0.5 Gy/min 

SER 10% survival of 

1.92  

Not measured 

Rashid et al. 

2018  

1.9 

nm 

No 

coating 

Hela 0.197 

mg/ml  

24 h 

6; 10 MV X-

ray 

 15 MV 

electron 

100 MU/ml 

Dose O-10 

Gy 

SER = 1.15 (6MV) 

SER = 1.05 (10 MV)  

(linear quadratic 

model) 

α parameter slightly 

higher (0,17 with 

NPs compared to 

0 .14 without) 

NPs 

accumulation in 

endosme 

vesicles, no 

quantification 

studies 
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Reference Size 

(nm) 

Coating Cells NPs exposure Radiation Radiosensitisation Uptake/comment 

Zhang et 

al., 2012 

4.8,  PEG Hela 0.05-0.1 mM 

overnight 

137Cs with 

activity 

of 3600 Ci, 

662 keV  

1-2-4-6-8 

Gy 

6 dishes 

for each 

dose 

SER 0.05 mM of 

1.41,  

SER 0.1 mM of 

1.46,  

 

Cell death cause 

by both necrosis, 

followed by 

apoptosis 

Cui et al 

2017  

5.81 PEG, peptide 

(RME) 

MDA-

MB 

231 

cells 

0.5 mg/ml 

24h 

225 kV X-

ray,, 3.47 

Gy min  

and 13 mA 

with a 

dose up to 

6 Gy. 

In association with 

cisplatin 12 µM 

for 30 min or 0.5 

µM for 48h,   

DEF = 1.14 for 

AuNPs-PEG 

DEF = 1.24 for 

AuNPs-RME and 

DEF= 1.39 for 

AuNPs-RME + 

cisplatin 

AuNPs-RME 

concentration 

after 4 hours > 20 

pg/cell and after 

24 h > 40 pg/cell, 

concentration 

AuNPs-PEG 

inferior to 10 

pg/cell in both 

cases. 

Burger et 

al., 2014 

7.5 Citrate  

Transfection 

reagent 

DNA sequence 

Hela 16h-48h 

concentration 

not 

mentioned 

6 MV x-

rays linear 

accelerator  

Dose rate 

6.67 

Gy/min 

Dose 

between 0-

8 Gy 

Triplicate 

DEF 4Gy = 

1.25 ± 0.14 

  

Better cellular 

uptake for NPs 

coated with DNA 

(semi-

quantitative 

uptake: 100 % of 

strong 

fluorescence for 

cells exposed 

with AuNPs-DNA 

20 % of cells with 

citrate AuNPs 

Hanžić  et 

al. 2018  

8.8 

nm  

 

17 

nm 

 

30 

nm 

GSH 

 

Citrate 

 

diethylaminoethyl-

dextran 

hydrochloride 

(DEX) 

 

MDA-

MB-

231 

10–50 μM 

48h before 

irradiation 

6 MV X-ray 

Dose of 4 

Gy 

4Gy/min 

Increase amount 

of cell in S phase 

of the cell cycle 6 

hours after 

irradiation (13.4 % 

for X-ray + AuNPs, 

10.7 % for X-ray 

and 7.9 % for the 

control). 

G2/M arrest was 

observed 24 h 

after irradiation 

(40.5 % cells in 

G2/M compared 

to 33.2 % for the 

control) 

Au-GSH 

Highest (> 1.106 

AuNPs/cell), while 

Au-Citrate and 

Au-DEX show a 

concentration < 

1.106 AuNPs/cell 

IC80 = 30 μM for 

GSH AuNPs  

IC80 = 50 μM for 

Au-Citrate and 

Au-DEX AuiNPs 



60 
 

Table 1.7: Summary of in vitro experiment on human cells exposed to AuNPs (above 10 nm) and 

radiotherapy 

Reference Size 

(nm) 

Coating Cells NPs 

exposure 

Radiation Radiosensitisation Uptake/other 

Kong et al 

2008 

10.8 Cysteamine 

(AET) 

Glucose (Glu) 

MCF-7 ; MCF-

10A 

15 nM 

3.85 nM  

2 hours 

200 kVp X-

ray ;1.19 

Gy/min,  

Dose of 10 

Gy 

63.5 % death after 

radiation (Glu-NPs) 

and 31.7 % (AET-NP) 

compared to the 

control, complete 

cell death after 5 

days for Glu-NPs, 

compared to 13.8 % 

remaining for AET-

NPs. 

15 nM Glu NPs 

and 3.85 nM 

AET-NPs give 

the same 

cellular uptake 

of 2.96.104 

AuNP/cell. 3 to 

fourfold uptake 

increase with 

AET coating 

Wang et 

al., 2013  

13 Thio-glucose A549 20 nM, 

24h 

6 MV X-

rays 

Dose of 0-

2-4-6-10 

Gyc 

Triplicate 

SER at 10 Gy = 1.49 AuNPs uptake 

maximum after 

24 h with 

concentration 

of 6.51.104 and 

(11.8.104 per 

cell for coated 

AuNP and 

naked-AuNPs 

respectively. 

Zhang et 

al., 2012  

12.1, 

27.3, 

46.6 

PEG Hela 0.05-0.1 

mM 

overnight 

137Cs with 

activity 

of 3600 Ci, 

662 keV  

12.1 nm NPs gives 

the strongest 

radioenhancement 

SER 0.05 mM  

12.1 nm= 1.65,  

27.3 nm = 1.58,  

46.6 nm = 1.42. 

SER 0.1 mM  

12.1 nm= 2.07,  

27.3 nm = 1.86,  

46.6 nm = 1.52. 

Cell death 

cause by both 

necrosis, 

followed by 

apoptosis 

Chithrani et 

al., 2010  

14, 

50, 

74 

Anhydrous 

citric acid 

Hela cells 24  H 

7.109 

NP/ml 

 

Triplicate 

Gulmay  

4.7 Gy/min 

105 kVp  

2.3 Gy/min 

220 kVp. 

137Cs 

irradiator 

660 kV. 

6 MV beam 

600 

MU/min, 

LINAC  

Dose of 2-

4-6-8 Gy 

SERs calculated at 

10% survival 

SER 105kV = 1.66 

SER 220 kV = 1.43 

SER 660 kV = 1.18 

SER 6 MV = 1.17 

 

DSB observed after 

irradiation with 220 

kV and 6 MV X-rays 

(75 foci per cells 

with NPs compared 

to less than 50 

without). 

50 nm AuNPs 

best effect with 

radiotherapy 

and best 

cellular uptake 

(6000 NPs/cell 

for 50 nm 

compared to 

less than 3000 

for the others) 
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Reference Size 

(nm) 

Coating Cells NPs 

exposure 

Radiation Radiosensitisation Uptake/other 

Geng et al., 

2011 

14.3

7 ± 

2.49 

Thio-

glucose 

SK-OV-3  5 nM, 

24h 

90 kVp x-

rays 

(Faxitron 

xrays); 

6 MV 

photons, 

(linear 

accelerator

) 

SER 5Gy using 90 kV 

= 1.43  

SER 5Gy using 6 MV 

=1.37 

Better uptake 

for thio-

gliucose AuNPs 

(9.3.103 

NPs/cells) 

compared to 

naked AuNPs 

(8.0.103 

NPs/cell). 

Zhu et al., 

2015 

20 Galactos

e-PEG 

HEP-G2 1 µg/ml, 

24h 

Triplicate 

6 MV X-ray 

LINAC 

2-4-6-8 Gy 

SER= 1.95 Best uptake in 

cells reached 

after 8h for Gal-

PEG-NPs (30000 

NPs/cell) and in 

a higher 

amount than 

non-coated 

AuNPs (<5000 

NP/cell).  

Joh et al., 

2013 

23  PEG U251 

glioblastoma 

cell line 

1 mM, 

24h 

4 Gy, 150 

kVp 

SER = 1.3 1.7 increase of 

ϒ-h2ax density 

for AuNPs+RT 

compared to RT 

alone 

Ngwa et al., 

2013 

50 Methyl 

polymer 

Hela cells 0.2 

mg/ml 

24 H 

Gamma 

photon, I-

125 

brachyther

apy 

2.1 cGy/hr 

to 4.5 

cGy/hr 

Biological effect 2.3 

times greater when 

cells were irradiated 

with AuNPs than 

with radiation 

alone. 

DEF over 3.5 

Not measured 

Jeynes et al., 

2014 

50 FBS 

TaT 

peptide 

RT112 5.5 µg/ml 

4 H 

Triplicate 

3 MeV 

protons 

250 kVp 

Gulmay X-

ray 

machine 

300 % decrease of 

survival after 5Gy of 

250 KvP X-ray 

irradiation and TaT 

NPs present, 

compared to the 

control. No 

significant different 

after irradiation 

with 5 Gy of 3 MV 

proton irradiation. 

NPs localised in 

the cytoplasm, 

close to the 

nucleus. TaT 

peptide 

increases the 

number of 

NPs/cell (5000 

NP/cell with the 

peptide 

compared to 

1000 NP/cell 

without) 
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Reference Size 

(nm) 

Coating Cells NPs 

exposure 

Radiation Radiosensitisation Uptake/other 

Khoshgard et 

al., 2014 

52 ± 

11.5 

47 ± 

8.2 

Folate-

conjugat

ed 

AuNPs, 

PEG-

AuNPs 

Hela 50 μM 

 6-12-24-

48 h 

Triplicate 

groups 

Co-60 ϒ-

rays 2 Gy 

X-rays 120-

250 kVp 

Radiosensitisation 

better for X-rays 

than for ϒ-rays. 

The best DEF (1.67) 

is obtained with 180 

kVp 

The folate-

AuNPs give a 

better cell 

targeting 

(35000 NPs/cell 

compared to 

less than 10 000 

for PEG AuNPs). 

Nicol et al. 

2018 

28.7 

nm 

45.9 

nm 

PEG 

(AuNP-P) 

 

PEG + 

peptide 

(RME ;H5

WYG) 

(Au-DP) 

MCF-7 

MCF-10A 

MDA-MB-231 

25 μg/ml 

24h 

160 KvP X-

rays 

0-6 Gy 

MCF-10A no 

radiation dose 

enhancement 

MDA-MB-231 cells   

SER = 1.19 for 

AuNP-DP.  

SER = 1.25 for 

AuNP-P  

SER = 3.19 for 

AuNP-DP  at 4 Gy 

AuNP-DP 

significantly 

sensitized MCF-7 

SER of 2.57 at 6 Gy. 

AuNP-DP 

resulted in 

maximum 

nanoparticle 

internalization 

(10 times more 

than AuNPs P) 

and increase 

DNA damage 

(gamma H2AX) 

by 1.7 

compared to 

radiation alone. 

Ma et al 2017  50 

nm 

AuNPs, 

nano-

spkiles 

and 

nanorod 

coated 

with 

PEGs 

(FITC 

labelled 

nano-

materials 

for 

uptake) 

KB cancer cells 50 µg/ml 

24h 

6 MV X-ray 

irradiation 

 1.62, 1.37, and 1.21 

corresponding to 

the treatments of 

AuNPs, nanospikes 

and nanorods  

AuNPs showed 

the best uptake 

after 24h 

compared to 

the other forms 

(side scatter 

intensity 1.2 

higher for 

AuNPs 

compared to 

nanospikes and 

1.5 higher 

compared to 

nanorods) 

 

So far, clear enhancement ratios linked to radiosensitisation, have been shown for 

kilovoltage X-ray radiotherapy, where the photoelectric effect dominates (e;g Section 1.8). 

However, megavoltage irradiation gives much less of a radiosensitisation effect (Burger et al., 

2014b, Jain et al., 2011, Wang et al., 2013). There is a clear benefit of combining AuNPs with 

radiotherapy, nonetheless, it remains difficult to understand the best proprieties and 

concentration to obtain an efficient radiosensitisation effect on the cancer tissues. 
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1.15. Improvement of the radiosensitisation effect by targeted 

AuNPs 
 

As mentioned before in Sections 1.3 and 1.11, NPs are interesting in combination with 

radiotherapy and many parameters impact on the radiosensitisation effect. The concentration 

of AuNPs in the cancer tissue plays an important role in radiotherapy improvement (Babaei and 

Ganjalikhani, 2014a, Mesbahi et al., 2013). Numerous strategies have been used to increase the 

concentration of AuNPs inside cells and one of them includes the use of coatings to improve 

biocompatibility and uptake (Babaei and Ganjalikhani, 2014b, Retif et al., 2015). With the proper 

coating, increasing the uptake, but not interfering with the release of secondary electrons, it is 

possible to improve the radiosensitisation effect (Gilles et al., 2014, Zhu et al., 2015). 

AuNPs coated with sugar have already been shown to have a radiosensitisation effect (Geng et 

al., 2011, Babaei and Ganjalikhani, 2014b), using both kilovoltage and megavoltage X-ray 

radiotherapy. Kong et al. have shown that glucose AuNPs increased the radiotherapy effect, 

especially with 200 kV X-ray radiation, and more efficiently for breast cancer cells, where AuNP 

uptake is higher than for normal breast cells (Kong T et al., 2008).  

Among the different types of cancers, glioblastoma multiforme is the most common and 

aggressive brain cancer (Setua et al., 2014). It is difficult to treat because of the blood brain 

barrier which protects the brain from any contamination and is therefore a barrier to numerous 

treatments. Joh et al. found that AuNPs in glioblastoma cells enhanced their radiation effect in 

vitro but also increase the survival rate in mice with glioblastoma tumours (Joh et al., 2013). In 

addition, Setua et al. found that polyethylenimine AuNPs inside glioblastoma cells from patient 

samples were able to increase the radiotherapy cytotoxicity, shown by the increase of DSBs. 

However, when observing the cell viability 25 days post-irradiation, among the three samples of 

glioblastoma from different patients investigated, one developed resistance to the treatment. 

Their new strategy of treatment involved AuNPs functionalisation with cisplatin and this specific 

combination with radiotherapy resulted in a higher damage and toxicity, and abrogated 

radioresistance of the different glioblastoma cells explored (Setua et al., 2014).  

One promising strategy to improve AuNPs uptake specifically in cancer cells, and 

therefore increase the radiosensitisation effect, is to use active targeting, where AuNPs are 

coated with specific molecules that strongly bind to their target in the cells (Kodiha et al., 2015). 

By using specific coatings such as DNA, it is possible to increase the amount of gold per cell, 

preferentially in the cancer cells and therefore to improve the effect of radiation (Burger et al., 

2014b). 
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Wolfe et al. in 2015 have shown a radiosensitisation effect of luteinizing hormone releasing 

hormone (LHRH) coated AuNPs combined with megavoltage X ray irradiation because of higher 

accumulation in PC-3 cells than non-coated AuNPs (Wolfe et al., 2015). 

Recently, improvements have been made on the NPs entrance in the cell nucleus, not 

only as a drug delivery vehicle but also to improve the radiosensitisation effect as, the closer the 

NPs to the DNA, the bigger the radiosensitisation effect (Brun et al., 2009b). Several works have 

involved specific coating such as oligonucleotides, nuclear localisation sequence (Fan W et al., 

2015), nuclear membrane disruptors (Setua et al., 2014) in order to target and enter the cell 

nucleus. As mentioned before, very few studies have been done on the radiosensitisation of 

nuclear targeted AuNPs (Fan W et al., 2015). Specific signalling sequence were used to improve 

the uptake , however, targeted sequences allowing gene silencing, especially via a triplex 

sequence, have never been tested in addition to radiotherapy and could be of interest as novel 

radiotherapy strategies. 

Moreover, additional coating on the NPs to aid the nucleus entry requires a careful 

design. Indeed, the coating can impact on the radiosensitisation effect by decreasing the release 

of the electrons from the bulk of the NPs to its surface (Haume et al., 2016b). Not many studies 

take into account the chemistry of the AuNPs and its intrinsic properties to radiosensitise the 

cells. 

 

1.16. Aim/Goals of the research undertaken in this thesis 
 

As mentioned before, cancer is one of the major leading cause of non-communicable death in 

developed countries worldwide and a major health public concern (McMullin, 2016). Effort have 

been done trying to improve cancer treatment and nowadays, radiotherapy is one of the major 

treatment methods, but has limitation due to the potential damage to healthy tissue and the 

lack of tumour selectivity toxicity (Zolotoyabko, 2014). The work presented in this thesis focuses 

on the radiosensitisation potential of AuNPs, improving the selectivity of radiotherapy to cancer 

tissues, with main aims of investigating cellular uptake and localisation of coated AuNPs in 

cancer and normal cell lines, and better understand their radiosensitisation potential using 

clinical X-ray sources. Many studies presented use quite significant concentration of AuNPs 

(mM) (Joh et al., 2013, Zhang et al., 2012). However, for reproducibility and to be able to develop 

NPs at clinical level, it will be interesting to explore radiosensitisation effect using less material 

and many studies are going in this direction using nM concentration (Geng et al., 2011, Wang et 

al., 2013). 

Moreover, very limited work have successfully shown a specific radiosensitisation effect 

toward cancer cells without affecting the healthy counter cells (Butterworth K.T et al., 2010, 



65 
 

Kong et al., 2008). It is critical to obtain more information on the selectively of effect between 

cancer cells and normal cells. However, this is difficult to achieve, especially as in vitro models 

have limitation in representing the tumour environment. Indeed, many criteria impact the 

development of a tumour such as the blood flow and microvessel development, the different 

cell type and their interconnections, the inflammation and oxidative stress (Wu and Swartz, 

2014). These process such as blood flow, inflammation and interconnections between cells are 

difficult to mimic in vitro and need to be taken into account when interpreting radiosensitisation 

effect and NPs exposure (Wu and Swartz, 2014).  

This thesis contains six different chapters, with the first one being the introductory 

chapter, which has presented several radiosensitisers to improve radiotherapy efficiency, as well 

as NPs characteristics used in radiotherapy and their effect on cells.  

The second chapter of this thesis will detail the experimental plan followed to explore 

the AuNPs as radiosensitisers. After characterising the size, the charge, and the coating on top 

of each AuNPs, the toxicity toward different cell models was studied. Skin and breast models, 

including both cancer and normal cells were chosen to explore the radiosensitisation of both 

kilovoltage and megavoltage X-ray radiotherapy. Breast cancer is the most frequently diagnosed 

cancer and the leading cause of cancer death in women, with 1.7 million cases and 521,900 

deaths in 2012 (Torre et al., 2015), while squamous cell carcinoma is the second most leading 

cause of chronically sun exposed skin cancer, with more than 1 million cases diagnosed in United 

States each year (2014). Although very common, it is also treatable if diagnosed early (2014). 

Different in vitro assays, including the well-known clonogenic assay, were used to characterise 

the toxicity of the different AuNPs and their mechanism of action. Possible involvement of 

oxidative stress, as well as apoptosis related cell death were explored. Plasmid DNA and 

different associated sequences were also used to explore the mechanism of action and 

interaction of oligonucleotide coated AuNPs with the sequence targeted in the DNA of the cell. 

It is important for future radiotherapy and to obtain a better understanding of toxicity, to have 

information of the uptake of the different AuNPs and their localisation inside cells. Electron 

microscopy have been used in this thesis to provide information of the localisation of AuNPs 

inside cells, as well as mass spectrometry to provide the general amount of gold per cell. 

Finally, after acquiring all these information, the potential radiosensitisation of these AuNPs 

were observed, both outside cells, using the coumarin assay, which provide data on •OH 

production after irradiation in the presence of AuNPs in solution, and inside cells using linear 

quadratic models and measuring the survival fraction of the cells. 

In the third chapter, the results of the exploration of αGal:PEGamine AuNPs will be 

presented. These AuNPs were coated with a sugar in order to selectively target the cancer cells 

as they generally need more nutrient than normal cells to survive (Hu C et al., 2015). The 
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PEGamine group was used as a biocompatible to stabilise the NPs from aggregation and increase 

its lifetime in the circulation (Pissuwan et al., 2011). Not only increasing the NPs stability, 

PEGamine is composed with an amine group, which brings a positive charge onto the AuNPs, 

known to potentially interact with the cell membrane and increasing the AuNPs uptake in cells 

(Marquez et al., 2004). After exploring different coating on the AuNPs, in term of stability and 

toxicity, the ones which gave the best uptake and selective toxicity toward cancer cells only were 

chosen for radiosensitisation exploration. AuNPs were combined with radiation and the effect 

were measured outside and inside the cells. 

In the fourth chapter, detailed about the TFOs used for coating the AuNPs will be 

presented. The interaction of the oligonucleotide only and the triplex formation with the 

sequence target was explored ex vivo, using designed sequences of DNA, as well as in vitro in 

plasmid DNA. The characterisation of the oligonucleotide sequences, as well as the AuNPs 

coated with these oligonucleotides, and their potential to interact and form a triplex will be 

presented ex vivo and in vitro in plasmid DNA and in cells. Then, the AuNPs potential toxicity and 

uptake in cells will be described, before looking at their radiosensitisation effect outside, and 

inside the cells. 

In the fifth chapter, preliminary results of the use of cerium oxide NPs as radiosensitisers 

will be presented, with a brief description of the NPs characteristics and their effect of cells.  

The final chapter of the thesis will present a general conclusion from the work described, 

and the future lines of experiment to complete this work. 
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CHAPTER 2: MATERIALS AND METHODS 
 

In order to improve radiotherapy efficiency, various AuNPs have been developed to 

interact with the beam of X-rays. As discussed in the first chapter, depending on the size, surface 

charge and coating, the AuNPs can have different properties. Therefore, all these criteria were 

taken into account when designing the AuNPs. 

The first type of AuNPs was designed in collaboration with Midatech Pharma® (Abingdon, UK). 

For simplification, the company will be called Midatech in the rest of the thesis. The AuNPshave 

a diameter size of 2 nm and are coated with various types of sugars and a PEGamine group. The 

second type of NPs was designed in the laboratory at the Open University, in collaboration with 

BBi® Company, having a diameter size of c.a. 3.7 nm and are coated with 4,4'-

(Phenylphosphinidene)bis(benzenesulfonic acid) dipotassium salt hydrate, named phosphine 

(PN) for simplification, further in the thesis, and/or a short sequence of DNA.  

The ® sign indicating the trade mark of a company will be noted only once after each introduction 

of a new product. Moreover, all the consumables used for the experiments are listed in Annex 

1.2. 

 

2.1. Different AuNPs used in this project 
 

2.1.1. Nanoparticles coated with sugar and PEGamine 

 

In order to explore the effect of the coating and the charge of the AuNPs on cells, (the 

results are described in Chapter 3), different AuNPs coated with either a sugar or a PEGamine 

were designed, in collaboration with Midatech, with different input ratios (100:0, 80:20, 60:40, 

50:50, 40:60, 20:80, 0:100) of HS-C2-sugar (α-galactose derivative, β-glucose derivative, or N-

acetyl glucosamine derivative) and 1-amino-6-mercapto-hexaethyleneglycol (PEGamine), as 

described previously (Lund et al., 2011). All AuNPs concentrations can be found in Annex 1.1 

recorded as the gold mass in water.  A schematic view of coated AuNPs can be found in Figure 

2.1. 

 

 

 

 

 

 

Figure 2.1: Diagram of the ligands on the AuNPs. 
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2.1.2. Nanoparticles coated with oligonucleotides 

 

Triplex forming oligonucleotide coating was chosen to improve the cancer cell targeting 

and bring a dual action of gene-silencing on top of radiotherapy, which have never been done 

before. In order to prepare AuNPs coated with oligonucleotides, described (for experiments 

described in Chapter 4), gold colloid NPs of 3.7 nm were used, specially made by BBi company 

(CC.T00543.5NM). 3.7 nm was chosen as an average size between 2 and 5 nm, in order to 

visualise them for characterisation and to optimise the oligonucleotides attachment on the 

AuNPs. They are composed of approximately 1,547 gold atoms per NP and have a mass of 5.12 

x 10-19 g (308.3 kDa). 

The concentration of coated BBi NPs with different molecules was measured by absorbance 

using the Beer Lambert Law (Rahman, 2016, Taton, 2001): 

𝒄𝒏 =  
𝑨𝟓𝟐𝟎  ×  𝒅

𝜺𝒏  ×  𝒃
 

where Ɛn=4.7*106 M-1*cm-1 is the molar extinction coefficient measured at 520 nm, d the dilution 

factor, b is the path length of the cuvette and is in our case b=1 cm. 

The molar extinction coefficient value described in Section 4.2.2 was predicted from the 

estimated extinction coefficients of other sizes of AuNPs size (Figure 2.2). 
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Figure 2.2: Curve representing the extinction coefficient versus the NPs diameter size. 

 

Estimated value for 3.7 nm size: log10(3.7) = 0.568 

log10(Ɛ(0.568)) = 6.667 

Ɛ = 106.667  

Ɛ = 4.7×106 M-1×cm-1 
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Figure 2.3: UV-VIS spectrum of 3.7 nm citrate (BBi) AuNPs sample. The Surface Plasmon resonance (SPR) 

peak occurs at 512 nm. 

 

As well as measuring the concentration of the AuNPs by absorbance (Figure 2.3), the 

AuNPs were also characterised by measuring the gold content in each sample. In order to 

measure the concentration in g/L, a gold assay was set up using different volumes (up to 10 µl) 

of gold standard for AAS (Sigma Aldrich®, 08269-100 ml) and the different samples, diluted in 20 

µl of water. The gold samples were then incubated in 30 µl of 50 % HCL/50 % nitric acid, diluted 

in water, in order to fully dissolve gold. After adding 150 µl of 2M sodium bromide (NaBr, Sigma, 

229881-10G) solution, the absorbance at 390nm of each sample (triplicate) was measured using 

the Microplate reader (BMG Labtech®, FLUOstar Optima) and the concentration of each sample 

determined using a gold standard curve. The results of these AuNPs characterisation is described 

in Section 4.2.3. 

 

Oligonucleotide-coated NPs were made following the protocol from Taton, 2001 (Taton, 

2001) and described in Section 4.2.1. First, 4ml of citrate AuNPs provided by BBi were 

concentrated using a 10 kDa molecular weight cutoff centrifugal filter (Merck Millipore®, 

UFC801008) at 4400 rpm for 20 min. After measuring their concentration by UV-Vis absorbance, 

the AuNPs were then incubated with 0.1 M phosphine (PN) (4,4’-

(Phenylphosphinidene)bis(benzenesulfonic acid) dipotassium salt hydrate (Sigma, 479497-1G)) 

solution, at a molar ratio of 2:1 for 14 h at 25 °C in order to exchange the ligand on the AuNPs. 

PN, due to its size and charge, restricts the number of DNA attachment sites and can therefore 

be used to control the DNA ligand coating density (Taton, 2001). In order to remove PN excess, 

the AuNPs were spin washed in a 10 kDa molecular weight cut-off spin filter (Merck Millipore, 

UFC201024) at 3000 rpm for 45 min. Oligonucleotides containing a 5’-trityl group on a 6-carbon 

spacer (detailed in Section 4.1), were deprotected (detached from the spacer), in order to 

activate the thiol group and allowed to form a strong covalent bond with the AuNPs, following 

the protocol of Storhoff et al., 1998 (Storhoff et al., 1998). Since the thiol group is highly reactive, 
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the deprotection needs to be performed immediately before incubation of the oligo of interest 

with the AuNPs. Briefly, the oligonucleotide sequence of interest was diluted in 100 μl of 0.1 M 

triethyleammonium acetate buffer (TEAA, Fluka analytical®, 90357-100ml). Then, in order to 

cleave the protecting group from the thiol, 15 μl of 1 M silver nitrate (AgNO3, Sigma ®, S6506-

25g), was added (the solution turns white), and the mixture was incubated for 30 min at room 

temperature (RT). To remove the excess of AgNO3 after reaction, 20 μl of 1 M DL-dithiothreitol 

(DTT, Sigma, 43816-50ml) was added and incubated for 5 min at RT (the solution turns yellow). 

The solution was then centrifuged to wash away the protecting group, and the remaining 

oligonucleotide-containing solution was purified on a NapTM-5 Column Sephadex® G-25 DNA 

grade (GE healthcare illustra®, 17-0853-01) via elution with ultrapure water (UHP water). The 

purified oligo was then used to coat the AuNPs. The amount of oligo to add to the AuNPs solution 

was calculated by multiplying the surface area of the AuNPs available for the conjugation by the 

expected surface density of AuNPs-bound oligonucleotide, which is around 35 pmol/Au2 (Taton, 

2001). A different quantity of oligonucleotides excess in molar concentration (1-10 excess) to 

the one calculated previously were incubated with the AuNPs for 20 h and described in Section 

4.2. The final AuNPs were then washed by mixing UHP water and filtered using Amicon Ultra-2 

(10K) centrifugal filter at 3000 rpm for 45 min. For each step, the concentration of each different 

AuNPs was measured using a NanoDrop 1000 Spectrophotometer (Thermo fisher®).  

 

2.1.3. Non-coated nanoparticles of 2 nm diameter size 

 

2 nm size AuNPs are often used to explore the radiosensitisation effect in cells (Bobyk 

et al., 2013, Butterworth et al., 2010, Jain et al., 2014). They are a standard size in 

radiosensitisation efficiency. Therefore, in order to compare the effect of the AuNPs with 

different coating, a control gold colloid NPs of 2 nm was selected, also purchased by BBi company 

(EM.GC2). They are composed of approximately 244 gold atoms per NP and have a mass of 8.08 

x 10-20 g (48.7 kDa). 

 

2.1.4. Characterisation of the different AuNPs 

 

For characterising the different AuNPs in solution and defining their size, Transmission 

Electron Microscopy (TEM) was used. TEM was chosen as it allows to measure the core size of 

single NPs and give information of the NP distribution and potential aggregation, within a 

reasonable amount of time. Moreover, this technique, mentioned in Section 1.3, explores more 

precisely the uptake and localization of AuNPs inside the cells. The AuNPs were deposited either 

on carbon or copper grids, and 1 μL of sample was used. The samples were left to dry overnight 
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before electron microscopy. AuNPs (triplicate samples) were analysed using a JEM-1400 

microscope (JEOL®, USA) (Figure 2.4) at an accelerating voltage of 80 kV and a magnification 

from x50 000 to x200 000. Nanoparticle size was measured from thresholded TEM images using 

ImageJ® software. ImageJ analysis give data on the area values of the NPs. The raw data were 

then extracted into an excel sheet and the average diameter of the AuNPs calculated from the 

area values from the 2D images, assuming that each AuNPs shape is a sphere, where the area is 

𝐴 = 𝜋𝑟2 and therefore the 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 = (√𝐴/𝜋)) × 2 (Gromnicova, 2017). These experiments 

are described in Sections 3.1, 3.3 and 4.2.1 of the result chapters. 

 

Figure 2.4: Transmission electron microscope (TEM) used in the experiments (Kleebe et al., 2012). 

 

Dynamic light scattering (DLS) was used to measure the hydrodynamic size of the 

nanoparticles (~ 100 µg/ml), using a zetasizer (NanoZSP, Malvern Instruments, using a DTS1070 

cell). This technique does not need using lots of material and can give information not only on 

the NP size but also its surface charge. Indeed, as well as the size, the zeta potential values of 

the different AuNPs were measured in 3.2% PBS pH 7.4 (for the sugar:PEGamine coated AuNPs) 

or in UHP water (for oligonucleotide coated AuNPs), using the same instrument. About 100 µl of 

each AuNP was diluted in 1 ml of solution and measured three times by the zetasizer. The results 

from these techniques are described in Sections 3.3 and 4.2.1. 

 

In order to characterise the DNA and PN coated AuNPs, and especially looking at the 

different coatings, X-ray photoelectron spectroscopy (XPS) was used. XPS was chosen among 

other microscopy techniques (TEM, SEM) or infrared spectroscopy as it gives quantitative 

information on the elemental characterisation of an entire solution of NPs and with a very small 

quantity of material. These experiments were done only once, using about 10 µl of material, and 

give indication on the AuNPs composition. 
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XPS allows to determine the elemental composition of a sample, and for example the coating of 

AuNPs, as well as the chemical and electronic state of these elements. The different spectra of 

the samples were generated by irradiation with a beam of X-rays, which ejects photoelectrons 

of specific energies from the sample, which is further analysed using Casa XPS software®. The 

results from these techniques are described in Section 4.2.3.2 of the result chapter and in Annex 

3.5. 

 

2.1.5. Description of the different oligonucleotide sequences used 

 

The different oligonucleotide sequences used in Chapter 4 were purchased from 

Sigma. 

dR1 and dY2 are both c-myc promoter 2 sequences, complementary to each other and 

therefore can form a duplex. Both these sequences are used for the experiment described in 

Section 4.1. This specific part of the c-myc gene is known to be able to form a triplex structure, 

due to its high amount of purine groups (Huo et al., 2014). They have a length of either 23 bp, 

which corresponds to the length of the TFOs sequences, or 70 bp in order to explore the 

potential triplex formation depending on bigger DNA length. These different sequences are used 

for the triplex characterisation in Section 4.1.3 and 4.1.4. 

- dR1 (23): 5’-TCCCTCCCTCCGTTCTTTTTCCC-3’ and  

- dR1 (70)  

5’-AACCGGCTTTTATACTCAGCGCGATCCCTCCCTCCGTTCTTTTTCCCGCCAAGCCTCTGAGAAGCCCTGC-3’ 

- dY2 (23): 5’-GGGAAAAAGAACGGAGGGAGGGA-3’ and  

- dY2 (70)  

5’-GCAGGGCTTCTCAGAGGCTTGGCGGGAAAAAGAACGGAGGGAGGGATCGCGCTGAGTATAAAAGCCGGTT-

3’ 

 

Both dY3 and PR are sequences targeting c-myc sequence via a triplex formation. The 

dY3 sequence is designed to form a reverse Hoogsten pairing, described in Section 1.9, via 

guanosine-guanosine-cytosine (G(GC) and thymine-adenine-thymine (T(AT)) structure. The PR 

sequence is designed to form the same pairing via (G(GC) and (A(AT)) structure. The 5’-trityl 

group on the 6-carbon [ThioC6] on the 5’ end of the sequences is used for the attachment on the 

AuNPs, while the biotin molecule (fluorescence group), also on the 5’ end is used to explore the 

interaction of the oligonucleotide to its complementary sequence (forming a duplex). The biotin 

group is used for the experiment described in Section 4.2.4 on the AuNPs characterisation. 

Below is a list of the different oligonucleotides used. 
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- dY3: 5’-TGGGTGGGTGGTTTGTTTTTGGG-3’ 

- dy3 modified with biotin molecule in the 5’ side or with a thiol [ThiC6] 

- dY3 complementary: 5’-biotin-CCCAAAAACAAACCACCCACCCA-3’ 

- dY2: 3’-AGGGAGGGAGGCAAGAAAAAGGG-5’ 

- PR: 5’-AGGGAGGGAGGGAAGAAAAAGGG-3’  

- PR modified with 5’-biotin or with 5’ [ThiC6] 

- PR complementary: 5’-biotin-CCCTTTTTCTTGCCTCCCTCCCT-3’ 

- GFP control: 5’-AATATCGCGGACAGAAGACG-3’ and modified with 5’ [ThiC6] or not. 

 

Finally, GFP is a negative control sequence, of similar length to the other 

oligonucleotides, which is not present in the human genome. It was used to explore the effect 

of the different oligonucleotides on cells, described in Section 4.4. It was chosen as already 

designed and well-characterised by another colleague from the Open University laboratory.The 

concentration and purity of each oligonucleotide sequence was assessed by UV-Vis absorption 

measurement (Table 2.1) using a NanoDrop 1000 Spectrophotometer. Once again, this 

technique allows with a very small amount of material (1 µl) determining the concentration of 

gold in solution. The absorbance at 260 nm is used to measure the concentration of DNA, while 

the absorbance at 280 nm is used to measure any impurities and at 230 nm any traces of salt in 

the solution. The two ratios: 

𝑃𝒖𝒓𝒊𝒕𝒚 𝒓𝒂𝒕𝒊𝒐 =
𝑨𝟐𝟔𝟎

𝑨𝟐𝟖𝟎
                                            𝑻𝒖𝒓𝒃𝒊𝒅𝒊𝒕𝒚 𝒓𝒂𝒕𝒊𝒐 =

𝑨𝟐𝟔𝟎

𝑨𝟐𝟑𝟎
 

are used to evaluate the presence of any contaminants such as proteins or phenols, or to explore 

the presence of salt in the solution respectively. 

A sample will be considered pure with a purity ratio around 1.8, while it will be considered 

exempt of any salt with a turbidity ratio > 1.5. 

 

  



74 
 

 2.2 Gel electrophoresis for DNA sequences interaction 

experiments 

 

2.2.1 Agarose gel 

 

Agarose-gel electrophoresis is a useful technique to separate samples on the basis of 

their sizes and charges in an electric field. It is also efficient for samples with a molecular weight 

heavier than 100 kDa. Not only separating different samples, it can give semi-quantitative 

information using images software, and in small amount of times, compared to chromatography 

or immunoblotting. It was used principally in this work to explore plasmid DNA, described in 

Section 2.5. Since DNA is negatively charged, its migration through the gel is inversely 

proportional to the size of the sample. However, the electrophoretic mobility of DNA samples 

or molecules in the gel can be also modified by their shape, the agarose concentration, the 

electrophoresis buffer, the temperature and the applied voltage. In order to load the samples; 

this thesis work used a 6x loading dye made with 0.25g of xylene cyanol (Sigma, X4126-10g), 

0.25g of bromophenol blue (Sigma, 114391-5g), 0.25g of cresol red (Sigma, 114472-5g), 30 g of 

glycerol (Sigma, G5516-100 ml), mixed with 100 ml of UPH water and autoclaved.  

To analyse the different gels, Image J® software was used. Briefly, using digitised UV 

transilluminator images of the gels (Syngene®, G:Box), the different bands were selected using 

rectangular marque tool and the intensity of each band recorded. Then the different band 

intensities for each sample were expressed as a percentage of the total intensity in order to 

quantify the different samples of DNA. The gel analyses are described in Sections 4.1.4, 4.5 and 

in Annex 3. 

 

2.2.2. Polyacrylamide gel 

 

Polyacrylamide gel (PAGE) electrophoresis is also a useful electrophoresis technique to 

separate samples on the basis of their charge and size. PAGE allows separating samples of much 

smaller size than the agarose gel and this will specifically depend on the percentage of the gel, 

which generally varies from 5 % (for separation of 100 bp) to 20 % (for separation of 10 bp). 

PAGE was therefore used for oligonucleotides explorations, described in Sections 4.1 and 4.2. A 

dilution of 30% Acrylamide/bis-acrylamide (Sigma, A2792-100 ml) was made in water and 5× 

Tris-Borate- MgCl2 (TBM). After adding 20 mg of Ammonium persulfate (APS, Sigma, A3678-25g) 

and 10 ul of N,N,N’,n’-Tetramethylethylenediamine (TEMED, Sigma,T7024-25ml), the solution 

was gently mixed and poured into empty cassettes mini-PROTEAN® (Bio-rad®, 4560003) for 
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making cassette gel. To load the samples and analyse the gel, the same procedure as the one 

described in Section 2.2.1 was applied. 

 

2.3. Oligonucleotide/DNA triplex formation 

 

To explore and characterise the duplex and triplex formation described in Section 4.1, 

20% polyacrylamide gels were used.  

The two-single strands, designed to form a duplex of DNA were incubated at 1µg/ml, 20 µl each, 

diluted in DNAse free water for 5 min at 95°C and then for 1h at room temperature. In order to 

incubate the duplex sequences with the TFOs and run them onto the gel, the protocols from 

McGuffie et al., 2000 (McGuffie et al., 2000) and Sedelnikova et al. 2001 (Sedelnikova et al., 

2001) were followed. 

The 23 bp oligonucleotide sequences dY3 or PR were loaded with either plasmid DNA or 

duplex sequences, containing 50% of incubation buffer (50 mM Tris,HCl, pH 8, 10 mM 

magnesium chloride (MgCl2, Acros organics®, 223210010), 50 mM NaCl). The samples were then 

run in 1x TBM buffer, from a 5x TBM stock solution, at pH8 plus 2-4 µL of 6X loading dye 

(Thermofisher, R0611). The gel was pre-run for 1 h at 8 V/cm and then the samples run for 2-4h 

at 8 V/cm in 1x TBM buffer at 4°C. At the end of the migration, the gel was incubated with 

Ethidium Bromide (EB) (Fisher scientific®, BP1302-10) (100 μL in 100 ml of TBM buffer) just 

before revelation under UV illumination. 

 

2.4. Coated AuNPs characterisation and oligonucleotide 

interaction 
 

These experiments were based on the protocols of McGuffie et al., 2000 and Huo et al., 2014 

(Huo et al., 2014, McGuffie et al., 2000) and described in Section 4.2.1. 

 

2.4.1. Characterisation of the AuNPs using agarose gel electrophoresis 

 

In order to explore and characterise the coating of the AuNPs, agarose gel 

electrophoresis was used. Tris-Borate-EDTA (TBE) 5x buffer stock was prepared, by adding 57 g 

of Trizma base, 27.5 g of Boric acid and 4.65 g of EDTA, in 1 L of UHP water and autoclaved. TBE 

buffer was used either at 0.5x dilution or 1x dilution. The agarose gel was used either at 1-1.4% 

agarose (for 1h to 3h migration at between 5-7 V/cm) or 1.4% agarose (for 16h migration at 0.95 
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V/cm) in 0.5x or 1x TBE. After putting the gel into the electrophoresis tank, the different samples 

were loaded into the gel in a loading buffer. 

In some experiments, the AuNPs (about 20 µl) were incubated in 1x Tris-Borate (TB), 

prepared in the same way as TBE buffer but without adding EDTA, with duplex sequences of 

interest of 23 bp, in the presence of 1 mM MgCl2 for 3h, and single strand oligonucleotide 

complementary to the sequence of interest for 1 h, to explore any possible interaction. 

The AuNP samples in the presence of DNA could migrate into the gel. For experimental with 

samples in the presence of DNA duplexes, the gel was incubated with Ethidium Bromide (100 μL 

in 100 ml of TB buffer) just before revealing the gel under UV, or normal light for the one 

containing only coated AuNPs. 

 

2.4.2. Characterisation of the oligonucleotide attachment with electrophoretic mobility 

shift assay (EMSA) 

 

An EMSA assay was used to explore the oligonucleotide coating the AuNPs using the 

biotin probe (complementary to the sequence of interest), experiment described in Section 

4.2.3. This technique is very sensitive and allows to detect the biotin recognition sequence. 

Compared to agarose gel, much less material was needed to obtain a response signal. The assay 

was made following the protocol from Male et al, 2017 (paper in preparation). Briefly, the 

samples containing oligonucleotide coated AuNPs and the oligonucleotides labelled with biotin 

were incubated for one hour allowing the duplex structure to form. Then the samples were 

diluted or not 100X in water and 1 µl was mixed with 6 µl of TB and 4 µL of loading buffer. The 

samples were loaded into 5% acrylamide gel, pre-run at 7 V/cm and run for 50 min at 7 V/cm in 

0.5 x TB. The gel was then transferred for blotting onto a membrane, at 100 V in 0.5x TB 1 h. 

Finally, the membrane was cross-linked under UV light and revealed with a chemiluminescence 

nucleic acid detection kit (Thermo scientific, 89880). 

 

2.4.3. Characterisation of the triplex formation with the AuNPs with polyacrylamide gel 

 

5% polyacrylamide gels were used to explore the duplex and triplex formation with the 

oligonucleotide sequence attached onto the NPs. As the triplex used in this work is a small 

sequence, it was difficult to observe any migration change using agarose gel and therefore, PAGE 

was prioritised for smaller sequences separation. 

AuNPs coated with different ratios of dY3 sequence (about 2 µl) were mixed with the D23 DNA 

duplex (about 1 µl, ratio about 50 duplex/ 1 AuNP) in the in the presence of 1mM MgCl2 in order 

to look at triplex formation. The gel was pre-run for 1 h at 7 V/cm and then the samples were 
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incubated with 4µL of loading buffer. They were run for 1h at 7 V/cm in 1x TB. At the end of the 

migration, the gel was incubated in EB (100 μL in 100 ml of TBM buffer) just before revelation 

under UV. 

 

2.5. Plasmid culture and modification 

 

2.5.1. Preparation of petri dishes and bacteria culture 

 

Plasmid was prepared and used in Sections 4.1.5 and 4.5.2 of the results chapters. Two 

solutions of Luria-Bertani broth (LB Broth, Sigma, L3022-250g) were prepared at a concentration 

of 20 g/L and 7.5 g/L of agar was added into one. Both solutions were autoclaved (Meadowrose 

scientific LTD®, serial n°1316). Ampicillin (Sigma, A9518-25g) antibiotic (50 µg/ml solution in 

ultrapure water) was sterilised with a Terumo® syringe without needle (Terumo, SS+01T1, 1ml) 

using a filter (Millex®HA, SLHA033SS) of 0.45 µm pore size. After sterilisation, Ampicillin was 

added to the warm temperature (below 36 °C) LB+agar (Sigma, A1296-1Kg) solution and poured 

into sterile petri dishes (Cellstar, greiner bio one®, 628 160) to set at RT. Finally, the bacteria 

pBV-Luc/Del6 were streaked onto plates and incubated overnight at 37°C. All these steps were 

done near a flame to minimise any exterior contamination. 

 

2.5.2. Incubate single colonies of bacteria 

 

After the incubation, single colonies of bacteria were picked for amplification. Each 

colony was inoculated in LB solution containing ampicillin antibiotic for 4 h at 37°C while shaking 

at 1000 rpm. After 4 h, 1 ml of this solution was added to 100 ml of LB solution and the bacteria 

were incubated again for 14 h at 37°C while shaking. 

 

2.5.3. Drying bacteria and DNA extraction 

 

The amplified bacteria were centrifuged at 4°C for 30 min. The resulting bacterial pellet 

was dried for at least 1 h. The plasmid of interest was then extracted from the bacteria using a 

Qiagen plasmid mini kit (Qiagen®, 12123) and cleaned. The collected DNA pellet was then air 

dried and dissolved again in water of pH 8, adjusted with NaOH. The concentration of DNA and 

its purity was measured on the nanodrop and the DNA samples aliquoted and kept in the freezer 

at -20°C. 
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2.5.4. Plasmid endonuclease digestion 

 

Plasmid pBV-Luc/Del-6 (Addgene®, 14969) is circular and double stranded and its size is 

about 4900 bp. It comes from the pBV-Luc plasmid (4867 bp) where the c-myc promoter (442 

bp) was inserted between the cloning sites Xhol (which was destroyed) and Pvull (Figure 2.5).  

 

 

Figure 2.5: Map of pBV-Luc/Del-6 plasmid and schematic view of the insertion del6 (Addgene®). 

 

Plasmid DNA can exist in different topological conformations, such as supercoiled, 

relaxed and linear (Figure 2.6 a). Supercoiled DNA must be relaxed in order for replication to 

occur (Bjornsti, 1999). This relaxation happens with just one break on one of the DNA strands. 

Linear plasmid, however, contains one double-strand cut. All these forms of plasmid DNA can 

be differentiated by their relative migration on an agarose gel; where the supercoiled DNA will 

migrate as a single band, migrating faster than the linear, migrating faster than the relaxed form 

(Figure 2.6 b).  

  

c-myc promoter 
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a) b)  

Figure 2.6: a) Schematic difference in topological forms of plasmid DNA, b) Migration difference of the 

topological forms of plasmid DNA on an agarose gel (Śmiałek 2007). 

 

Each plasmid contains restrictions sites that can be digested by specific endonuclease 

enzymes. These types of enzymes were used to try to cut the plasmid in strategic places where 

the TFO will get easier access to its targeted sequence. Here, the fragment of DNA including the 

P2 promoter of c-myc, which starts in position 504 and finishes in position 527 of the known c-

myc sequence, was of interest. Therefore, two linear restriction enzymes were used, the first 

one, Bfml (Bfml, Sfcl, Thermo Scientific, ER11651, 200 U) cutting at position 454 and the second 

one, Notl (Thermo Scientific, ER0591) cutting at position 723. Bfml enzyme was incubated at a 

concentration of 10 UI/µg of plasmid in 1X buffer Tango for 1H at 37°C. Then Notl enzyme was 

added at an excess concentration of 40 UI/µg of plasmid in 2X Tango again for 1H at 37°C. Finally, 

the samples were heated up at 80°C for 20 min to inactivate the enzymes and stop the reaction. 

Through this procedure, the fragment of interest, containing the c-myc promoter sequence, will 

be about 269 base pairs long. The fragmented plasmid was used in Section 4.1.4. 

The enzyme recognition sequences are, as follows: 

Bfml:    5’-C↓T R Y A G-3’   Notl: 5’-G C↓G G C C G C-3’ 

 3’-G A Y R T↑G -5’ 3’-C G C C G G↑C G-5’ 

 

2.6. Plasmid experiments 
 

2.6.1. Characterisation of the different forms of the plasmid 

 

To characterise the different forms of DNA plasmid, 1-1.4% agarose gel (for 1h to 3h 

migration at between 5-7 V/cm) or 1.4% agarose (Sigma, A9539-100 mg) (for 16h migration at 

0.95 V/cm) were used. These experiments are presented in Section 4.1.4. The samples were run 

in 0.5 x TBE. Then, the gel was incubated with either SYBR Green (to detect double stranded 

DNA) (Sigma, S9430) (20 μL in 150 ml of TBE buffer) or EB (to detect single or double stranded 

DNA) (100 μL in 100 ml of TBE buffer) just before photographing it under UV to detect any 

possible DSBs. 
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2.6.2. Irradiation experiments of the plasmid 

 

To explore the possible breaks on the plasmid after irradiation in the presence or 

absence of AuNPs, agarose gel electrophoresis was realised and presented in Section 4.5.2. Once 

again, this technique was chosen as, although less precise than immune-blotting or rt-qPCR, it 

gives in a very small amount of time a semi-quantitative information of any changes in the 

plasmid. Briefly, the AuNPs were incubated with the plasmid in water, at a concentration of 1/1 

Plasmid/AuNPs, as described previously (Brun et al., 2009b). The samples were irradiated in 

collaboration with Northampton hospital with X-rays at 220 kV energies at a single dose of 10 

Gy. The facilities are described in Section 2.16. After irradiation, the samples were run in a 2 % 

agarose gel for 1h at 7 V/cm in 0.5x TBE and the gel revealed with EB (100 μL in 100 ml of TBE 

buffer), to look at the possible SSBs and DSBs. The SSBs are more likely to happen on the targeted 

sequence of the c-myc promoter and were explored using polymerase chain reaction (PCR). PCR is used to 

amplify a DNA segment of interest to analyse a specific fragment. In this case, the c-myc promoter is the 

sequence of interest and is designed to be about 700 bp. Briefly, two primers have been chosen to amplify 

the c-myc promoter sequence, a forward primer 3’-5’ RVprimer3 (CCCTGTCGGATAAAACGATC, 409402, Tm 

68°C, %GC 50, ThermoFisher) and a reverse primer 5’-3’ LucNREV (CCTTATGCAGTTGCTCTCC, 409402, Tm 

68°C, %GC 50, ThermoFisher). 50 ng of plasmid were incubated with 1 µl of both primer at a concentration 

of 10 µM, 0.2 µl of DNA polymerase, 1 µl of 10 mM deoxynucleotides (dNTP solution mix, N0447S, Biolabs®) 

and filled up to 20 µl with UHP water, following the protocol from Phusion High-Fidelity DNA polymerase 

(M0530S, BioLabs). The fragment of interest was amplified using the following thermocycling conditions: 

Initial denaturation at 98 °C for 30 secs, 15 cycles of: 98 °C for 10 sec, 60 °C for 30 sec, 72 °C for 15 sec, and a 

final extension of 72 °C for 5 min. 

Finally, the different samples were run on a 2 % agarose gel for 1h at 7 V/cm in 0.5x TB and the gel 

revealed with EB (100 μL in 100 ml of TB buffer). 

 

2.7. Cell lines used during the project 
 

HSC-3 and HaCaT cells both derived from human epithelial skin tissues. They 

respectively represent human oral squamous carcinoma cells and keratinocytes. They were 

commonly used and very well characterised in the laboratory, therefore were chosen as primary 

model for the experiment in this work. Moreover, they can grow clonogenically which allows 

further exploration of the effect of radiotherapy. HaCaT cells were a gift of Erik Walbeehm, 

Erasmus Medical Centre, Rotterdam. HSC-3 cells were purchased from the American Type 

Culture Collection. 



81 
 

MCF-7 and MCF-10 cells are derived from human breast epithelial tissues. They are the second 

model used in this thesis as growing clonogenically but also widely used in combination with 

radiotherapy, they allow comparing effect of different NPs in previous work (Butterworth et al., 

2010, Kong et al., 2008, Nicol et al., 2018). MCF-7 cells derived from a human invasive breast 

ductal carcinoma. MCF-7 cells were a gift of Marilena Loizidou, University College London. MCF-

10 are human non-tumorigenic mammary epithelial cell line. 

MCF-10 cells were a gift of Kevin Prise, Queen’s University Belfast.  

 

2.8. Cell culture 

 

HSC-3, HaCaT and MCF-7 cells were incubated in low glucose (1 g/l) DMEM (Gibco®, 

21885-108), supplemented with 10 % Fetal bovine serum (FBS) (Sigma Life Science®, F9885), and 

1% penicillin/streptomycin (P/S) (Gibco, 15140-122). Low glucose condition was chosen to 

simulate the glucose concentration of normal serum (0.7 – 1 g/l). 

MCF-10 cells were incubated in DMEM/F-12, HEPES, no phenol red medium (Fisher scientific, 

11039021), supplemented with 5% horse serum (Sigma, H1270-500 ml), 2.5 mM L-glutamine 

(Sigma, G7513), 15 mM Hepes, 1 ng/ml Cholera Toxin from Vibrio cholera (Sigma, C8052-5mg), 

10 μg/ml insulin (Sigma , I1882-100mg), 50 μM hydrocortisone (Sigma, H0888-1 g), and 100 μM 

EGF recombinant human protein (Fisher scientific, PHG0311). 

MCF-10 and MCF-7 were used for the experiments in Section 3.10.3. All the cells were cultivated 

in 75 cc culture flasks (Cellstar, Greiner bio one®, 658170) in a CO2 incubator (Binder®, C150) at 

37°C and 5% of CO2. After 80% of confluence, the cells were washed with 5ml of Hank’s balanced 

salt solution (HBSS) (Sigma, H6648), then trypsinised with 5ml of trypsin / EDTA (TE) 0.25% 

(Invitrogen®, 25200056) and used for further experiments. The rest of the cells were frozen in 

cryotubes (Cryo.s, Greiner bio-one, 126280) containing FBS with 20% of Dimethylsulfoxide 

(DMSO, Sigma, D2438), and kept at -80°C in order to maintain frozen stocks. 

 

2.9. NPs adhesion tests 
 

These experiments are described in Section 3.6. 

AuNPs were diluted to 10 µg/ml [Au] in either: low glucose DMEM (with or without 

serum), distilled water, ethanol (EtOH, Fisher scientific, BP28184), 5 M sodium chloride (NaCl), 

(Sigma, 57553-250g), or Hank’s buffered saline solution. AuNPs were loaded either on glass 

coverslips (VWR®, 631-0156), or directly in tissue culture plates, for 1 h or 3 h. Incubation was 
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performed at RT and the plates were kept humid to avoid evaporation by wrapping with a wet 

paper towel and aluminium foil.  

Afterwards, the plates were washed with one of the previously mentioned solutions, fixed for 

10 min with 4% paraformaldehyde plus 37% formaldehyde (Fisher scientific, F77-20) in 20 mM 

phosphate buffered saline (PBS) (Thermo Fisher, BR0014G) at pH 7.4, rinsed with water, and 

then 500 µL of silver staining solution, prepared according to the silver stain enhancement kit 

(R-Gent, Aurion) for about 10 min in order to make the AuNPs large enough to become coloured. 

 

2.10. AuNPs exposure and clonogenic assay 
 

Cell proliferation and survival were quantified by clonogenic assay, which is described 

in the published paper Grellet et al. 2016 (Grellet et al., 2017). Clonogenic assay is a standard 

assay to explore the cellular effect of radiotherapy as it allows to measure the effects on a long-

term basis (days after radiotherapy), and does not need fluorescence microscopy like DSB 

measurements. The clonogenic assay was used in Sections 3.2, 3.4, 3.5, 3.7, 3.9, 3.10 and 4.3.1. 

HSC-3 and HaCaT skin cells were seeded at 300 cells/well on 24 well plates (Greiner bio one, 

662160), or diluted in 500 μl of cell medium at a concentration of 3600 cells/ml in a falcon tube 

for 3 hours. The cell density was evaluated using a Haemocytometer Bright-line (Sigma, 

Z359629-1EA) and optimized regarding the format of the plastic plates and wells used, and the 

well differentiated colonies obtained. 

Different concentrations of AuNPs were prepared in 15 ml falcon tubes in serum containing 

medium. The solutions were vortexed just before exposure. Twenty-four hours after seeding the 

plates, the medium in contact with cells was removed and 250 μl of the various concentrations 

(0.3; 1; 2; 3; 10; 20; 30; 200 μg/ml Au) of AuNPs was added to both HSC-3 and HaCaT cells for 1, 

3, 6 or 24 hours described in the section 3.2.1, and 3h for the rest of the experiments. Later, the 

cells were washed once with 500 μl of cell medium and grown for 6 days in the incubator. 

Medium was changed every 2-3 days. 

After 6 days of cultivating cells, they were rinsed once with UHP water and then stained 

with 500 μL of 10 mg/ml methylene blue (Sigma, M9140,) in 50% EtOH for at least 3 h. Then, 

cells were washed with UHP water and immediately dried with a stream of hot air to prevent 

any loss of staining. Finally, colonies containing 50 cells or more were counted and colony 

formation expressed as a percentage compared to the control (without exposure to AuNPs). 

For the exposure of floating cells, described in Section 3.7, AuNPs solutions were 

prepared as previously mentioned, in 15 ml falcon tubes but at double the concentration, then 

250 μl of cells in suspension was added and left in contact with AuNPs for 3 h in the incubator. 
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After exposure, the cells were washed twice with 5 ml cell medium and centrifuged for 5 min. 

Finally, the cells were seeded on plates as described and grown for 6 days. 

The breast cells MCF-7 and MCF-10 were seeded at 600 and 250 cells/well respectively on 24 

well plates. The growth and incubation conditions remained the same as for HSC-3 and HaCaT 

cells. 

 

2.11. Acute toxicity evaluation 

 

Acute toxicity was measured in addition to the clonogenic assay to explore the effect of 

the NPs at different time points after exposure and the potential impact on cell cycle. 

To evaluate the acute toxicity of the AuNPs, described in Section 3.9 and 4.3.2, cells 

were seeded at a density of 100 000 cells/well on 24 well plates or 2000 cells/well on 96 well 

cell culture plate, F-bottom, with lid (Cellstar, Greiner bio one, 655180). Both cancer and normal 

cells were then exposed to AuNPs, for 3h, and washed with medium. Thereafter, the cells were 

grown for 1-3 additional days before exploring the toxicity using CyQuant (Fisher Scientific, 

C7026) assay. CyQuant is a fluorescence assay which measures the amount of DNA in the 

samples, relating to the number of cells. The fluorescence of the CyQuant assay was measured 

at an excitation of 480 nm and emission of 520nm, using a Microplate reader (FLUOstar Optima, 

BMG Labtech).  

 

2.12. Apoptosis related cell death measurements 
 

To explore if caspase dependent apoptosis is linked to AuNPs exposure, described in 

Section 3.9, a general caspase inhibitor (Z-VAD-FMK) (BD Pharmingen®, 550377) was used. This 

can irreversibly bind to catalytic sites of caspase proteases, especially caspase 1 and 3 and 

inhibits apoptosis. Once more, it can give in a small amount of time a semi-quantitative 

information on the apoptosis related death after NP exposure compared to blotting. HSC-3 and 

HaCaT cells were loaded on 24 well plates at 300 cells/well for a clonogenic assay. Antimycin A 

(AMA) (Sigma, A0149) was used as a positive control as this drug is known to induce apoptosis 

by dysregulation of the mitochondrial membrane potential (Park et al., 2007). 

After 24 h, cells were pre-loaded with 50 μM of caspase inhibitor, before exposure to AuNPs at 

a concentration of 1 μg/ml or AMA at a concentration of 10 μM, in presence of absence of 

caspase inhibitor. After 3 h, cells were washed and let grow for 5 days. At the end of the 

clonogenic assay, the cell population exposed to various toxins were compared, in presence or 

absence of caspase inhibitor, to the relative controls. 
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2.13. Amount of AuNPs inside cells by ICP-MS 
 

To quantify the AuNPs uptake into cells, described in Section 3.8.1, Inductively Coupled 

Plasma Mass Spectrometry (ICP-MS) was used, an analytical technique used for elemental 

characterisation, performed with the ICP-MS Perkin-Elmer NexION 300X® and analysing the data 

with NexION ICP-MS software version 1.4. ICP-MS was chosen as it gives information on the 

overall amount of NPs per cell, directly after exposure. To quantify the amount of gold inside 

the cells, HSC-3 and HaCaT were loaded in suspension at a density of 500 000 cells/15 ml falcon 

tube with different ratios of sugar coated-AuNPs for 3h. Cell were exposed in suspension and 

not in adherent conditions to avoid possible interaction with the plastic and falsely high gold 

concentration. The AuNPs concentration used were concentration which gave 50% of cell death 

(IC50) for HSC-3 cells. After exposure, cells were washed twice by centrifugation using a 

Centrifuge (DJB labcare®, ALCPK121R) with 5 ml of serum containing medium and the cell 

density measured by haemocytometer. The cell pellet was dissolved in 2.5 ml of 3% 

tetramethylammonium hydroxide and 0.2% Triton X-100 (Acros Organics®, 215682500). Then, 

2.5 ml of 1% HCl with iridium as internal standard was added prior to the ICP-MS analysis. The 

amount of gold was calculated against a calibration curve ranging from 0.1 to 100 ng/ml of gold, 

including a blank (zero) point. ICP-MS analyses were performed in collaboration with Midatech 

in Bilbao, Spain and with Samantha Hammond, from the Open University.  

 

2.14. Localization of AuNPs in cells by TEM 

 

To complete the information given by ICP-MS on the average amount of gold content 

per cell, TEM was used to have information on the localization of the NPs within the cell. These 

experiments are described in Section 3.8.2 and 4.4 of the result chapters. To prepare the 

samples, the protocol from Gromnicova et al. (Gromnicova R et al., 2013) was used. Cancer and 

normal cells were seeded onto Thincert cell culture insert 12 well (Cellstar, greiner bio one, 

665641) at 150 000 cells per inset for overnight. The cells were then exposed to AuNPs at a 

concentration of 10 μg/ml for 3 h. Cells were then washed 3 times with sterile PBS, resuspended 

then fixed in 2.5% glutaraldehyde (25% Vacuum Distilled 100ml) (Agar scientific®, AGR1311), in 

0.2M Sorenson’s phosphate buffer at pH 4 for 1.5 h. phosphate buffer was prepared by mixing 

0.497g of sodium phosphate monobasic monohydrate (NaH2PO4.H20, Sigma, 71507) with 2.328 

g of sodium phosphate dibasic (Na2HPO4, Sigma, 255793) in 100ml of UHP water. Finally, cells 

were washed 3 times with Sorenson’s phosphate buffer, silver enhanced by freshly-prepared 

silver staining solution (RGENT SE-EM, Aurion, Netherlands) to stain AuNPs and processed by 

washes and cutting for transmission electron microscopy. Ultrathin sections were analysed at 
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magnifications of between x2000 and x20000. TEM tissue processing was done by the Open 

University Electron Microscopy Facility staff: Heather Davies, Dr Radka Gromnicova and Dr Igor 

Kraev. The microscopy images and their analysis were performed by myself. 

In order to analyze the NPs/nm² cells within the different part of the cells, the protocol from 

Nadia Tzelepi has been used (paper in preparation). Briefly, 25 images of each samples were 

analyzed using Image J software, measuring the cytoplasm and nucleus area, and the cell 

perimeter. Then each NP localized in one of these cell compartments was recorded, and the NP 

number expressed as NP/ each nm² for each compartment of the cell.  

 

 

2.15. Oxidative stress measurements 
 

2.15.1. Antioxidant experiment 

 

It was described previously that NPs can engender oxidative stress by themselves, 

without radiotherapy (Rosa et al., 2017). This effect could be interesting in combination with 

radiotherapy. NPs exposure in the presence of antioxidants give information on this particular 

oxidative stress involvement. 

This protocol was used in Section 3.9 of the results chapter. 

HSC-3 and HaCaT cells were seeded at a density of 300 cells/well for a clonogenic 

experiment. After 24 h, cells were exposed to different concentration of sodium pyruvate (NaP) 

(Sigma, P5280-25g) (10 mM stock solution), N-acetyl cysteine (NAC) (Sigma, A9165-5g) (500 mM 

stock solution) and reduced glutathione (GSH, 25mM stock solution), adjusting the pH to 7.4 

with sodium hydroxide (NaOH, Fisher scientific, 215-185-5), to explore the impact of these three 

antioxidants.  

These three molecules were used at the optimum concentration determined by clonogenic 

assay, which gives rescue of the cells from oxidative stress and does not engender toxicity, in 

order to explore the potential oxidative stress related to AuNPs exposure. Hydrogen peroxide 

(H2O2, Sigma, H3410-500ml) was used as a positive control; at a concentration of 0.1 mM, which 

was shown previously to induce oxidative stress (Gülden et al., 2010). Cells were seeded on 24 

well plates at a density of 300 cells/well. After 24 h, cells were exposed to AuNPs at 1 μg/ml Au 

(IC50) for 3 h, with or without antioxidants. After washing the cells from the exposed chemicals, 

fresh medium was added, with and without antioxidants for 24 h. Finally, the cells were washed 

once more and grown for 6 more days. At the end of the clonogenic assay, the cell population 

exposed to different toxic, in the presence or absence of antioxidants, were compared to the 

relative controls. 
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2.15.2. Fluorescence-activated cell sorting (FACS) analysis 

 

In the continuation of oxidative stress involvement, FACS is an interesting technique it 

gives semi-quantitative information on the amount of ROS produced and its intracellular 

characteristics. This method allows analysis of a heterogeneous population of cells by 

determining variations in fluorescence. Two fluorescence probes were used for these 

experiments, described in Section 3.9. Propidium iodide (PI) (Sigma, P4170), stains the DNA of 

permeable unhealthy cells, such as dead cells or dying cells. Carboxy-DCFH-DA (5-(and-6)-

Carboxy-2',7'-Dichlorofluorescein Diacetate) (Life technologies, C-400), was used to quantify the 

amount of ROS following AuNPs exposure. DCFH-DA is hydrolyzed in DCFH by esterases inside 

the cells and can then be oxidized by ROS into the fluorescent product DCF. For these 

experiments, the cells were loaded and incubated with phenol red-free low glucose DMEM 

(Gibco, 21885-108). The cells were loaded at a density of 250 000 cells/well in 15 ml falcon tubes 

with 20 μM of DCFDA probe diluted in phenol-red free medium with 10% serum. The cells were 

loaded for 30 min and then exposed to 1 μg/ml AuNPs (IC50) for 3 h without washing. After 

exposure, fluorescence of 10 000 cells was analysed using flow cytometer BD Biosciences BD 

FACScalibur, on the fluorescein isothiocyanate (FITC) channel. Cells in presence of the oxidizing 

agent Tert butyl hydroperoxide (TBHP) (Luperox, Sigma, 458139) (100 μM) were used as a ROS 

positive control. 

 

2.15.3. Cell-free hydroxyl radical assay 

 

Furthermore, to have information on the potential effect of NPs with radiotherapy, 

before cell exposure which require times and more expenses, the hydroxyl radical production 

coming from the interaction of NPs and radiation was explored. X-ray induced hydroxyl radical 

production was determined by the hydroxylation of coumarin-3- carboxylic acid (3-CCA) to 

fluorescent 7-hydroxycoumarin-3-carboxylic acid (7-OHCCA)  (Collins et al., 1994, Manevich et 

al., 1997). The assay was optimised for use with nanoparticle radiotherapy. The optimisation is 

described in Section 3.10.a, while the coumarin assay was used in Section 3.10.1 and 4.3.1. A 5 

mM stock solution of 3-CCA (Sigma, C85603-25G) was prepared in 20 mM PBS buffer. The fully 

oxidised 7-OHCCA, called also Umbelliferone, (Sigma, H24003-10G), was used in order to set up 

the protocol to measure its fluorescence. The fluorescence of umbelliferone is pH dependent 

and reaches its maximum at pH 9, therefore, samples were adjusted to pH 9 before fluorescence 

measurements. Fifty microliter aliquots of water, or 12 μg/ml AuNPs in water, were added to 50 
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μl of 5 mM 3-CCA in 3 kDa cutoff 96-well ultrafiltration plates (Acroprep Advance omega , Pall 

Life science®, PN 8033). 

Plates were irradiated with 10 Gy of 6 MV X-rays at a dose rate of 5 Gy/min. Control plates were 

not irradiated. Then, 100 μl ethanol was added per well to aid 7-OHCCA solubility, each plate 

was placed onto an empty receiving black, 96 well plate (Cellstar, greiner bio one, 655090), and 

the nanoparticle-free filtrate was collected by centrifugation at 1500 x g for 60 minutes. 100 μl 

of PBS pH 9 was added to each sample in order to increase the coumarin signal to its maximum. 

Quantification of 7-OHCCA fluorescence was performed with an excitation of 390 nm and 

emission maximum at 450 nm (Collins et al., 1994) using a Microplate reader (FLUOstar Optima, 

BMG Labtech).  

 

2.16. Irradiation protocols of the different cell lines 
 

The radiosensitisation effect of the different NPs explored in this thesis was explored 

with the gracious collaboration from two medical centre. Irradiation experiments were 

performed in The Oncology Department of Northampton Hospital, using an Xstrahl 200 clinical 

orthovoltage system for the kilovoltage irradiation (Figure 2.7), in collaboration with Peter 

Goldie and Nicky Whilde, and described in Section 3.10 and 4.5.3. A second set of experiment 

was performed at Milton Keynes Genesis Care Medical Centre, using a linear accelerator (Versa 

HD®, Elekta) (Figure 2.8 a) using 6 MV irradiation, in collaboration with Aquila Sharif and Richard 

Slade-Carter, and described in Section 3.10.2 and 3.10.3. This allowed exploring two range of 

energy of irradiation to compared radiosensitisation depending on energies. All the various cells 

were seeded on 24 well plates at between 300-1000 cells/well for skin cells, and 300-1800 

cells/well for breast cells, 24 h before irradiation. On the day of experiment, cells were exposed 

to AuNPs and the plates heat sealed within plastic bags to maintain sterility, humidity and pH, 

and then transported in thermal boxes in order to maintain the temperature. Here again, the 

cell densities were optimised after irradiation to obtain well-separated colonies. Concentration 

which give 50% of toxicity (IC50) obtained for HSC-3 and MCF-7 were used in order to expose 

both cancer and normal cells with AuNPs for 3 h. This concentration was chosen as it is 

responsible for an uptake in cancer cells and does not affect the normal cell viability, therefore 

is hoped to show a selective radiosensitivity toward cancer cells. Cultures were then irradiated 

with 2-8 Gy of either kilovoltage or megavoltage X-rays. For megavoltage work, the plate was 

imaged in a CT scanner and a treatment plan was computed that involved solid water shielding 

(Gammex) to prevent backscatter build-up and the dose was delivered from below and from 

above the culture plate (50:50) (Figure 2.8 b). For kilovoltage work, the dose was delivered 

through the bottom of the culture plate (Figure 2.7).  
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Figure 2.7: Gulmay Xstrahl 200 clinical orthovoltage system. 

a)  b)  

Figure 2.8: a) Clinical linear accelerator (Versa HD®, Elekta) and culture plate set up, b) treatment plan 

for the irradiation. 

 

Two hundred and twenty kV X-rays were delivered at 0.52 Gy/min for the kilovoltage 

experiment while 6 MV X-rays were delivered at a rate of 5 Gy/min for the megavoltage 

experiments. Control plates were transported to each facility but were not irradiated. Cell 

colonies were counted after 6 days and expressed as the surviving fraction (SF). The survival 

fraction represents the viability of cells exposed to a toxic compared to the control. Its value is 

comprised between 0 and 1. 

A decrease in SF with AuNPs can be attributed to two reasons: an intrinsic chemotoxicity and 

local radiation enhancement. Accordingly, log-linear plots of SF versus radiation dose are 

presented in two ways: the raw data visualising the AuNPs toxicity in addition to the radiation 

one, and the data normalised for chemotoxicity by multiplying the SF data for each type of AuNP 

by 1/SF at 0 Gy. A linear-quadratic function was used to the normalized SF versus dose (D) data, 

in order to transform the data and calculate dose enhancement factors, in the form of: 

𝑺𝑭 = 𝒆𝒙𝒑 (𝜶𝑫 +  𝜷𝑫𝟐) 

 

Radiation enhancement effects are reported as two measurements from normalized SF 

data. The Sensitivity Enhancement Ratio (SER4Gy) is a measure of cell senescence or death 

enhancement by AuNPs at 4 Gy, calculated as the ratio of SF without and with AuNPs (Luchette 

et al., 2014). The Dose Enhancement Factor (DEF0.3) is a measure of the gain in effective radiation 
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dose due to AuNPs, calculated as the ratio of the dose of radiation only with respect to the dose 

of radiation and AuNPs at a SF of 0.3.  

𝑫𝑬𝑭𝟎. 𝟑 = √(𝒂𝟐 + (𝟒𝒃 ∗ 𝒍𝒏(𝑺𝑭𝟎. 𝟑))) 

 

 2.17. Data reductions 
 

All the experiments on cell toxicity, described in Sections 3.2, 3.4, 3.5, 3.7, 3.9, 3.10 and 

4.4.1 and 4.4.4. were performed in triplicate. Data regarding AuNPs toxicity was expressed as 

the mean of the percentage of viability as compared to the control. The standard error of the 

mean (SEM) was shown in order to quantify the precision of the mean value observed. It is 

calculated by dividing the standard deviation (SD) by the square root of the number of samples. 

Genetool and genesis software were used to count the cell colonies on the clonogenic plates. 

In order to explore statistically the effect of different exposure, Graph prism® software has been 

used (Watt et al., 2007). These statistical tests were performed in order to determine if the 

differences between groups were significant and not due to random variability. When 

comparing a difference in two groups, an unpaired t-test was used. To compare a difference in 

more than two groups, a one-way ANOVA was used. In order to set multiple comparisons, a 

post-test was used (Tukey for comparing the difference between all the samples, Dunnett for 

comparing the differences to a control). If a difference due to two factors and between more 

than two groups needed to be explored, a two-way ANOVA was used. Differences with p-value 

<0.05 and lower were verified by multiple comparisons post-test (Bonferroni for comparing 

within each group, the difference between all the time points, Dunnett for comparing, within 

each group, the differences between the time points to a control and Sidak for comparing for 

each time point, the difference between the groups). 

IC50 values were calculated with Graph Prism software as well. A nonlinear regression analysis 

was designed and a logarithm versus normalized response equation with a normalised response 

was used:  

𝒀 = 𝟏𝟎𝟎/(𝟏 + 𝟏𝟎(𝑿−𝑳𝒐𝒈(𝑰𝑪𝟓𝟎)) 

with X being the logarithm of the AuNPs concentration and Y the cell viability. 
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CHAPTER 3: STUDIES WITH SUGAR:PEGAMINE COATED AuNPs 
 

The aim of this work was to explore the potential of different AuNPs to act as 

radiosensitisers.  

The AuNPs uptake in the cells plays an important role on the radiosensitisation effect, as more 

gold inside the cells is linked to more interaction with the beam of radiation. The coating of the 

AuNPs plays a role on their uptake as the molecules around the AuNPs can improve their stability 

and biocompatibility (Gilles et al., 2014). The experiments in this chapter are summarised in 

Table 3.1. 

 

Table 3.1: Summary of the experiments reported in Chapter 3 

EXPERIMENTS RESULTS CONCLUSION 

TEM and DLS for AuNPs characterisation AuNPs have an average size between 

1.68 and 2.32 nm, AuNPs coated with 

high amount of sugar tend to aggregate 

αGal:PEGamine AuNPs seem more 

homogenous and stable than the other 

coated ones. 

Clonogenic assay/toxicity Specific sugars coating the AuNPs have 

different effects on toxicity. α-galactose 

coated AuNPs are more toxic than β-

glucose and N-acetylglucosamine 

coatings  

α-galactose gives the best selective 

toxicity toward cancer cells IC 50 of 1 

µg/ml, 3 h was chosen as a loading time 

 

Clonogenic assay, different ratio of 

molecules coating the AuNP 

A 50:50 ratio of αGal:PEGamine gives an 

higher toxicity toward cancer cells than 

other ratios 

The amount of αGalactose and 

PEGamine is linked to the toxicity and 

stability of AuNPs in solution 

Mass spectrometry and TEM Uptake in skin cancer and normal skin 

cells is different depending on the 

coating of the AuNPs 

The toxicity of the AuNPs is linked, but 

not entirely, to their uptake in cells. 

AuNPs give a better uptake in cancer 

cells and the AuNPs localised in 

cytoplasm and vesicles 

AuNPs sticking and interaction with 

plastic plates 

AuNPs sticks to plastic, but less so when 

NaCl is present 

The sticking does not affect the toxicity 

as even on floating conditions, the 

AuNPs are toxic for cells. This sticking 

seems to be related to electrostatic 

interaction between AuNPs and plastic. 

Coumarin assay The coumarin assays shows increase of 

fluorescence when the samples were 

irradiated and when the citrate AuNPs 

were present 

The coumarin assay gives good 

indication of the hydroxyl radical 

production in water. Having coating 

present decreases the amount of •OH 

radical produced. 

Radiosensitisation effect AuNPs decrease the survival fraction of 

cancer cells with radiotherapy, much 

more with skin cancer cells and much 

more with kilovoltage radiotherapy 

The αGal:PEGamine coated AuNPs have 

a higher effect inside cells than outside 

cells. They give an additive effect with 

both kilovoltage and megavoltage 

radiotherapy. Effect is more 

pronounced and more selective toward 

skin cancer cells than for breast cells 
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 As mentioned in Section 1.3 of the introduction, Monte Carlo simulation, as well as 

experiment on plasmid DNA have shown that AuNPs of 2 nm size can have a radiosensitisation 

effect in combination with radiotherapy (Hainfeld et al., 2004, Haume et al., 2016b). 

AuNPs 2nm in size were therefore selected for tumour radiosensitisation studies, also 

because of their biocompatibility and amenability to surface modification (Hainfeld et al., 2008, 

McMahon et al., 2011). The size of the AuNPs is also important for entering in cells and 

particularly for favouring renal clearance, avoiding long term exposure and potential toxicity 

(Alric et al., 2013, Sancey et al., 2014). AuNP toxicity is often unknown and depends on the 

coating surrounding the AuNPs. However, they are generally non-toxic, unless used at high 

concentrations (Fratoddi et al., 2015, Haume et al., 2016b). In order to better understand the 

role of AuNPs on the radiosensitisation effect, especially regarding the charge, the coating, and 

the localisation of AuNPs in cells, we explored the effect of 2 nm AuNPs coated with αgalactose 

and PEGamine. These two molecules were used in order to improve the biocompatibility of the 

AuNPs and their selectivity toward cancer cells (Chhour et al., 2016, Jokerst et al., 2011). These 

AuNPs were initially tested as potential radiosensitizers but were found to have a selective 

toxicity toward cancer cells and therefore, the impact of the coating on its toxicity was explored. 

This chapter will detail the characterisation of the AuNPs, looking at their potential 

aggregation and agglomeration in water and their size. Then, the toxicity of these AuNPs on 4 

different cell lines will be detailed, looking at the mechanism of action, the potential selective 

toxicity toward cancer cells and their potential to act as radiosensitizers outside of the cells. This 

chapter will end with the potential use of these AuNPs to act as radiosensitisers in cells (Grellet 

et al., 2017). This work has already been published in the Journal PLos One in 2017 (Grellet et 

al., 2017). 

 

3.1. Physiochemical characterisation of the AuNPs coated with 

equal amount of sugar and PEGamine using TEM 
 

The size of the AuNPs core was determined by transmission electron microscopy (TEM). 

This technique was detailed in sections 1.11.2 and 2.1.4. 
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a)   

b)   

c)   

Figure 3.1: Size histograms and TEM images of different NPs. a) αGal:PEGamine AuNPs; b) 

βGlul:PEGamine AuNPs; c) N-aGlu:PEGamine AuNPs. The data are presented as mean AuNP diameter ± 

standard deviation. 

 

The different sugar:PEGamine AuNPs, coated with an equal amount of each molecule, 

have an average core diameter between 1.9 and 2.1 nm (Figure 3.1).  

The αGal:PEGamine NPs are homogeneously distributed on the TEM grids, with a standard 

deviation of 0.79 (40%) while the other AuNPs adhere to the grids in a more ordered and partially 

aggregated way, with a standard deviation superior or equal to 1.1 (50%) (Figure 3.1b, c). In 

addition, these same AuNPs have a tendency to contain a higher proportion of large sized 

AuNPs.  
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3.2. Skin cells exposed to AuNPs, the role of the sugar onto the 

AuNPs 

a)  b)  

Figure 3.2: Bright field images of a) HSC-3 cells; b) HaCaT cells. Scale is unavailable.

 

Figure 3.3: Clonogenic assay of HSC-3 and HaCaT cells exposed to αGal:PEGamine (50:50) AuNPs for 3 

hr. 

 

Two different cell lines, a squamous carcinoma cell line (HSC-3), and a normal 

keratinocyte cell line (HaCaT) were used for toxicity and radiosensitisation experiments (Figure 

3.1). Both skin cancer and skin normal cells have similar cell morphology (Figure 3.2). HaCaT 

cells, were seeded at clonogenic density with the assay detailed in section 2.8, and exposed to 

0.3, 1, 3, 10 or 30 µg/ml Au of αGal:PEGamine (50:50) or βGlc:PEGamine (50:50) or N-

aGlu:PEGamine (50:50) AuNPs for 3 hours. The cells were then washed with medium and 

allowed to grow for 6 days before stopping the assay. Figure 3.3 shows a clonogenic assay. A 

decrease in cell colonies is linked to both toxicity and failure to proliferate, and the number of 

surviving colonies is compared to the control condition without AuNPs. Each AuNP 

demonstrated a dose-dependent cytotoxic/cytostatic effect that was selective for the HSC-3 

cells, compared to HaCaT cells (Figure 3.3).  

The data demonstrate that 50:50 αGal:PEGamine (IC 50, concentration which give 50% 

of toxicity for HSC-3 cells, are between 1.7 and 0.24 µg/ml) and 50:50 βGlc:PEGamine AuNPs (IC 
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50 for HSC-3 cells between 1.4 and 0.33 µg/ml) have an equivalent effect on HSC-3 cells, while 

N-aGlu:PEGamine are less toxic/cytostatic (IC 50 between 3.5 and 0.78 µg/ml) (Figure 3.3). The 

IC50 were estimated using the data analysis software Graph prism and detailed in Section 2.17. 

 

3.2.1. AuNPs toxicity related to the time of exposure and the type of sugar 
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Figure 3.4 Clonogenic assay after AuNPs exposure for different concentrations and different loading 

times. The graphs represent the percentage viability compared to the control. Data are presented as 

mean percentage survival ± standard deviation.  

 

Exposure to AuNPs for different time periods shows clear differences in the HSC-3 cells 

but smaller effects in HaCaT cells that only become apparent above 10 µg/ml following 6 hr or 

24 hr exposure (Figure 3.4). Based on these data, three hours of AuNPs exposure time was 

routinely used as it demonstrated the greatest difference in toxicity between normal and cancer 

cells. 
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Figure 3.5: Dose response curve after a clonogenic assay where both HSC-3 and HaCaT cells were 

exposed to 3 different AuNPs. The graphs represent the percentage of cell colonies compared to the 

control, with increasing AuNPs concentration.  

Data are presented as mean percentage colonies ± standard deviation. Statistical differences in dose 

responses for each AuNPs on each cell line were analysed by two-way Anova followed by a Dunnett's 

multiple comparisons test, while statistical differences in dose responses for each AuNPs comparing 

both cell line was determined by oneway Anova followed by a Sidak’s multiple comparisons tests. 

 

From Figure 3.5, it is shown that all the AuNPs have a more significant impact on HSC-3 

than on HaCaT cells (Annex 2.1.1). The difference in viability compared to the control for HSC-3 
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cells is statistically significant at an exposure of 1 μg/ml for each AuNPs (p<0.001), and even at 

0.3 μg/ml for 50:50 αGal:PEGamine and 50:50 βGlu:PEGamine AuNPs (p<0.01). The different IC 

50 after exposure of HSC-3 cells are respectively, 0.8, 0.45 and 2 μg/ml after exposure to 

αGal:PEGamine, βGlu:PEGamine and N-aGlu:PEGamine AuNPs. 50:50 αGal:PEGamine and 50:50 

βGlu:PEGamine AuNPs are responsible for a statistically significant difference compared to the 

control for HaCaT cells at 3 μg/ml (p<0.0001) but not below, while N-aGlu:PEGamine AuNPs 

exposure do not significantly decrease the viability for HaCaT cells at any concentration used 

(p>0.05) (Annex 2.1.1). 

 

Finally, when comparing the difference in toxicity between HSC-3 and HaCaT cells 

exposed to these three AuNPs, it is possible to note a statistically significant difference between 

cancer and normal cells already at a concentration of 1 μg/ml for αGal:PEGamine, 

βGlu:PEGamine AuNPs, and at 3 μg/ml for N-aGlu:PEGamine AuNPs (Annex 2.1.2). The 

difference in toxicity between the two types of cells exposed to AuNPs confirms the selective 

toxicity of all AuNPs toward cancer cells. 

However, it is important to note that in addition to their toxicity, αGal:PEGamine AuNPs 

have been tested by Midatech in phase I and phase II clinical trials as vectors for drug delivery 

and therefore, have been very well characterised. Following these first results, the following 

work is focused on the optimum αGal:PEGamine coated AuNPs. 

 

3.2.2. The influence of water on toxicity 

 

Stock solution of AuNPs are in water and at concentrations around 1 mg/ml. Therefore, 

the highest concentrations of AuNPs used also contain the highest proportion of water and this 

may provide an additional osmotic stress to the cells. To quantify any contribution from osmotic 

stress, HSC-3 and HaCaT cells were exposed to media containing different volumes of water (as 

if AuNPs were present) for 3 hours. 
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Figure 3.6: Effect of different concentrations of sterilized water on a) HSC-3 and b) HaCaT cultures. The 

graphs represent the percentage of viability compared to the control as a function of water volume. 

The data is expressed as an average with their standard deviation. A one-way ANOVA test was used to 

investigate any significant differences between exposures. The different asterisks show a significant 

difference compared to the control. 

 

Having water present in the cell medium decreases colony number, in both cancer and 

normal cells (Figure 3.6). This effect is statistically significant from 1 to 10 μl/ml for HSC-3 cells 

(p<0.001) and at 10 μl/ml for HaCaT cells (p<0.001) (Figure 3.6). It is important to note that the 

decrease of cell survival is much less pronounced than that one observed with AuNPs exposure, 

with water contributing at most 15% reduction in colony number. 
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3.3. Physiochemical characterisation of the AuNPs coated with 

different amount of sugar and PEGamine  
 

After determining the optimum sugar coating on the AuNPs for selective cancer cell 

toxicity, the impact of different sugar:PEGamine ratios on cell toxicity was explored. Seven 

different AuNPs with the following ratios of αGal:PEGamine coating the AuNPs were used: 

0:100; 20:80; 40:60; 50:50; 60:40; 80:20; 100:0 . Together they represent a broad range of 

different charge and molecular coatings.  

 

3.3.1. AuNPs characterisation using TEM 
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e)   

f)   

Figure 3.7: TEM images of the AuNPs with different ratios of αGal:PEGamine and their size histograms. 

a)100:0; b)80:20; c)60:40; d)40:60; e)20:80; f)0:100. The data are presented as mean AuNP diameter ± 

standard deviation. 

 

The AuNPs vary in average diameter value between 1.7 and 2.3 nm. Some of the AuNPs are 

homogeneously distributed, while others (100:0, 80:20, 20:80) form clumps (Figure 3.7 a,b,e). 

 

3.3.2. AuNPs characterisation by DLS 

 

It is possible to relate the size of the AuNPs obtained by TEM with those obtained by 

DLS, which measures the hydrodynamic size of the AuNPs, as well as the zeta potential, 

representing its surface charge, as discussed in Section 1.11.2 and Section 2.1.4. When looking 

at Table 3.2, it is possible to note a trend that the larger the AuNPs measured by TEM, the larger 

it is by DLS.  
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Table 3.2: Summary of AuNPs diameter from TEM, hydrodynamic diameter from DLS in water and 

zeta potential measured in 3.2% PBS pH 7.4. 

AuNPs  TEM diameter (nm) 

±SD  

DLS diameter (nm) 

±SD 

Zeta potential (mV) 

±SD 

100:0 αGal:PEGamine 1.68 ± 0.90 5.13 ± 1.28 -16.0 ± 6.3 

80:20 αGal:PEGamine 2.32 ± 0.95 3.37 ± 2.66 +26.7 ± 4.2 

60:40 αGal:PEGamine 1.94 ± 0.69 5.27 ± 2.31 +24.5 ± 7.2 

50:50 αGal:PEGamine 1.86 ± 0.79 6.29 ± 2.17 +45.4 ± 7.6 

40:60 αGal:PEGamine 2.23 ± 0.87 4.45 ± 2.35 +21.8 ± 5.7 

20:80 αGal:PEGamine 1.69 ± 0.97 8.76 ± 5.03 +27.4 ± 7.8 

0:100 αGal:PEGamine 1.79 ± 0.39 5.08 ± 3.31 +43.0 ± 5.7 

50:50 βGlc:PEGamine 2.10 ± 1.21 6.15 ± 1.76 +24.1 ± 5.1 

50:50 NaGlu:PEGamine 2.13 ± 1.09 6.11 ± 1.59 +30.9 ± 7.7 

Citrate AuNP 2.04 ± 0.98  6.64 ± 2.17 -45.1 ± 13.9 

 

Moreover, when looking at the charge of the AuNPs, they all have a positive surface 

charge, except the one coated with 100:0 αGal:PEGamine (-16 mV) and the citrate AuNPs (-45 

mV) (Table 3.2). There is no linear trend between the zeta potential NPs and its ratio of 

αGal:PEGamine. Neither is there a linear trend in the mean size of the AuNPs.  

It is also important to note that there is no statistically significant differences in mean 

core size depending on the coating of the AuNPs as shown in Figure 3.8, when comparing all the 

AuNPs to the one coated with 50:50 αGal:PEGamine.  
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Figure 3.8: TEM size comparison of the different AuNPs ±SD.  
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3.4. Skin cells exposed to AuNPs, the role of the coating and its 

ratio onto the AuNPs 
 

In order to explore the potential effect of different coatings on the AuNPs, both cancer 

and normal cells were exposed for 3 hours to each of these seven different αGal:PEGamine 

coated AuNPs at concentrations of 0.3, 1, 3, 10 or 30 µg/ml Au. The cells were then washed and 

grown for 7 days before stopping the clonogenic assay. 
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Figure 3.9: Clonogenic assay after AuNPs exposure for different concentrations and various ratios of 

αGal:PEGamine. a) HaCaT cells, b) HSC-3 cells. The graphs represent the percentage of colonies 

compared to the untreated control. Data are presented as mean percentage colonies ± standard 

deviation. Statistical differences in the dose responses for each AuNPs on each cell line were analysed 

by two way Anova followed by a Dunnett's multiple comparisons test. 

 

HaCaT cells are largely unaffected by any of the different AuNP ratios (Figure 3.9.a) 

especially at low concentrations. However, there is a statistically significant decrease in viability 

compared to the control at 10 μg/ml (p<0.001) for all AuNPs except for the 40:60 (p<0.01) and 

20:80 αGal:PEGamine (p<0.0001) where this decrease is significant at 30 μg/ml. Interestingly, 

dose-dependent toxicity is seen with two AuNPs in HSC-3 cells. (Figure 3.9 b), with a statistically 

significant toxicity compared to the control at 1 μg/ml for the 50:50 αGal:PEGamine and at 3 

μg/ml for the 60:40 αGal:PEGamine (Annex 2.2.1). These two AuNPs show a strong toxicity on 

HSC-3 cancer cells but not on HaCaT normal cells. All the AuNPs appear to have a strong toxicity 

for HSC-3 cells at 10 μg/ml (p<0.01) compared with AuNPs coated with a ratio 100:0 

αGal:PEGamine, which have a statistical effect at 30 μg/ml (Figure 3.9 a). AuNPs coated with 

ratios 80:20 and 100:0 are less toxic for HSC-3 cells than the other ones (Figure 3.9 a) (p<0.01). 

Moreover, these AuNPs have a higher toxicity for HaCaT cells than for HSC-3 cells (Figure 3.9 b) 

(Annex 2.2.2).  
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After exploring the dose response relationship with AuNPs exposure, it was possible to 

estimate, with Graph prism® software, the IC50 values (the concentration which gives 50 % of 

reduction in colony numbers) for each ratio. 

The 50:50 αGal:PEGamine AuNPs were the most toxic for cancer cells (IC50 = 0.8 μg/ml), just 

ahead of the 60:40 αGal:PEGamine coated ones (IC50 = 4.2 μg/ml), (Figure 3.9, Table 3.2). 

The charge is known to have an influence on toxicity. In the particular case of 

αGal:PEGamine coated AuNPs, negative charged AuNPs did not cause toxicity on the cells, while 

high positively charged AuNPs did cause a strong toxicity (Table 3.2). Indeed, AuNPs coated with 

almost only αGalactose or almost only PEGamine are less toxic than the ones which have equal 

amount of both molecule (Table 3.3). In particular, the 100:0 αGal:PEGamine AuNPs, which are 

negatively charged, have a very high IC50, which indicates a small effect on the cancer cells 

(Table 3.3, Figure 3.8). It is important to mention that the toxicity observed here on skin cells 

occurs at a very low AuNP concentration (nM), much lower than in any previous study published 

(µM) (reviewed in (Haume et al., 2016b)) and that this toxicity is highly selective, with a factor 

of 100 in IC50 between the cancer cells and the normal cells. Patra et al. have shown that 30 nm 

AuNPs were able to cause toxicity at a concentration of 100 nM and for 48 h exposure on A549 

lung cancer cells but did not affect HepG2 liver cancer cells (Patra et al., 2007). Demonstrating 

selective toxicity after only 3 h of exposure, the αGal:PEGamine coated AuNPs are a promising 

tool in cancer treatment. 
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Table 3.3: Chemotoxicity of different AuNPs on HSC-3 adherent cells 

HSC-3 exposure for 3 

hours to the different 

AuNPs 

100:0 80:20 60:40 50:50 40:60 20:80 0:100 

IC50 (μg/ml) >100 23 4.2 0.8 6.8 20 13 

 

3.5. Skin cells exposed to the ligands only are unaffected 
 

In order to explore if the coating ligands are directly toxic, HSC-3 and HaCaT cells were 

exposed to different concentrations of αGalactose or PEGamine or a 50:50 mixture of both, at 

the same concentration as the AuNPs exposure. 
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Figure 3.10: Skin cells exposed to different concentration of the molecules coating the AuNPs. a) 

PEGamine exposure, b) αGalactose, c) 50:50 αGal:PEGamine exposure. The graphs represent the 

percentage of viability compared to the control. Data are presented as mean colonies ± standard 

deviation. Statistical comparisons with no-ligand controls was done by two-way ANOVA with Dunett 

post-test. 

 

When looking at the response of both HSC-3 and HaCaT exposed to PEGamine only, the 

molecule itself does not have any statistically significant effect on the HSC-3 cells as the viability 



104 
 

remains constant, whereas it is responsible for a small statistically significant effect for HaCaT 

cells only at 30 µg/ml(p<0.05) (Figure 3.10 a). The same result was seen when the cells were 

exposed to αGalactose, with no obvious toxicity (Figure 3.10 b) being reported for HSC-3 and 

again a small statistical difference for HaCaT at 30 µg/ml (p<0.05). Finally, when looking at the 

cell viability after exposure of a mixture of αGalactose and PEGamine, no significant difference 

where observed for HSC-3 or HaCaT (Figure 3.9 c). These data indicate that the ligands are not 

appreciably toxic by themselves. However, the intracellular concentration of ligands was not 

assessed, and it could be that the combination of ligands with AuNPs acts as a delivery vector to 

greatly increase intracellular ligand uptake. 

 

3.6. AuNPs binding properties to culture plastic 
 

 

Figure 3.11: Silver staining of HSC-3 cells exposed to 50:50 αGal:PEGamine on culture plastic plates. 

 

All the toxicity studies are made on in vitro models, using plastic plates to cultivate and 

expose cell models to AuNPs. Unfortunately, as well as entering into cells, these AuNPs also 

demonstrate some adherence to the plastic (Figure 3.11). For these specific experiments, the 

cells were over-exposed with the AuNPs, and over-silver stained in order to accentuate the 

background of the AuNPs. These experiments are detailed in Section 2.9. The mechanisms of 

AuNPs sticking to the culture plate is unknown, although an electrostatic interaction with the 

negative plastic surface could be a hypothesis. The substrate used to perform the AuNPs 

exposure might have an effect on this sticking. Incubation with different solvents could give 

information on the types of forces that cause this interaction. Moreover, different types of 

washes could help to limit or reduce this sticking. Several pilot experiments were performed to 

investigate AuNP binding to various substrates that could be used for cell culture. 

 



105 
 

3.6.1. Possible electrostatic interaction between AuNPs and surfaces  

 

50:50 αGal:PEGamine AuNPs NPs were diluted in medium with or without 10 % foetal 

calf serum, or in Hank’s solution, and were seeded on 24 well plates for 3 h in the incubator to 

replicate cell culture conditions.  

These same AuNPs were diluted in 15 ml falcon tubes and then were put on glass coverslips and 

culture plastic to examine adhesion to different substrates. 

 

 

Figure 3.12: silver staining observation of AuNPs loading for 3 hours in 50 μl (glass) or 500 μl (plastic) 

of a) Hank’s solution, b) medium without serum, c) medium + serum. 

 

Figure 3.13: schematic view of placement of AuNP drops in a culture plate well 

 

No obvious differences in adhesion were detected using either specific cell medium 

DMEM with or without serum, or Hank’s solution (figure 3.12a, b, c), while the amount of AuNPs 

adhering to plastic is higher than the one observed on glass surfaces (Figure 3.12 and 3.13). 

The PEGamine ligand gives AuNPs a positive charge, which may cause binding to culture 

plastic, which has a negative charge. αGal:PEGamine 50:50 AuNPs were diluted in 500 μl of 

serum containing medium, ethanol, water, Hank’s buffered saline or 5 M NaCl and were put on 

24 well plates to examine their adhesion after 3 hours in the incubator. Ethanol and high 

molarity NaCl solvent were chosen in order to decrease electrostatic interaction of the AuNPs 

with the plastic.  
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Figure 3.14: Silver staining of AuNPs loaded in a) medium + serum, 1 h, b) medium + serum, 3 h, c) 

distilled water, 3 h, d) ethanol, 3 h, e) 5 M NaCl, 3 h, f) Hank’s solution, 3 h. 

 

There is no detectable difference in AuNPs attachment after an hour or 3 hours of 

incubation in DMEM with serum (Figure 3.14 a, b). Moreover, AuNPs bind to plastic when 

applied in water or in Hank’s buffered saline (0.14 M NaCl) (Figure 3.14 c, f), but the binding 

decreases when AuNPs were diluted in ethanol or 5 M NaCl (Figure 3.14 d, e). These data are 

consistent with the hypothesis of an electrostatic interaction.  

 

3.6.2. Effect on AuNP attachment of washing after loading. 

 

After incubation of AuNPs in culture plates for 3 hours, the plates were washed for 3 hours or 

24 hours with medium. 

 

Figure 3.15: Silver staining observation of AuNPs loading for 3 h in 50 μl (glass) or 500 μl (plastic) of 

medium. 

 

Here again, the staining seemed to be the same for both the time washes (Figure 3.15 

a, b). AuNPs sticking seemed to be rapid and, once bound, they were difficult to remove with 

washes. 

 

Finally, after testing different conditions of AuNPs exposure on plates, another type of 

surface loading was explored. Falcon tubes could be an alternative to expose the cells, therefore, 

the AuNPs adhesion was also tested on Falcon tubes. The AuNPs were loaded in 15ml Falcon 

tubes at a concentration of 10 µg/ml, in a volume of 500 µL, for 3 hours in medium. These AuNPs 

do not seem to adhere to Falcon tubes (Figure 3.16) as very little silver staining is observed, 

compared to the staining seen on plastic plates. Cultivating and exposure of floating cells in 
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Falcon tubes would therefore help to verify the toxic effect of 50:50 αGal:PEGamine AuNPs on 

cells, in the absence of AuNP plastic sticking. 

 

 

Figure 3.16: Silver staining observations, after 3h of AuNPs diluted in medium with serum and loaded 

in 15 ml falcon tubes. 

 

3.7. Attachment of AuNPs to substrates and their toxicity under cell 

culture conditions 
 

Cells were loaded with AuNPs in suspension culture, washed and then seeded on culture 

plastic for clonogenic assays.  

The first experiment focused on comparing the AuNP loading of adherent cells with 

suspension culture cells. 
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Figure 3.17: Clonogenic assay of cells loaded in adherent conditions or in suspension. a) HSC-3 cells, B) 

HaCaT cells. The data are expressed in colony numbers with the standard deviation and a paired t-test 

with two-tail p value was used to determine any significant difference.  

 

By comparing the number of colonies after loading the cells directly on plates or first in 

suspension and then adherently, the colony development is not significantly different between 

these two conditions (p=0.82 for HSC-3 and p=0.36 for HaCaT) (Figure 3.17). Therefore, the 

effect of different AuNP ligand ratios on clonogenic survival was determined following cell 

loading for 3 hrs in suspension culture, then plating the cells at clonogenic density. This 

experiment can provide information on the potential toxic role of the AuNPs attachment to the 

plastic surface. 
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Figure 3.18: Clonogenic assay after AuNPs exposure on cells in suspension at different concentrations 

and different ratios of αGal:PEGamine. a) HSC-3 cells exposure, b) HaCaT cells exposure. The graphs 

represent the percentage colonies at various AuNP concentrations, compared to the control without 

AuNPs. The data are presented as mean percentage colonies ± standard deviation. Statistical 

differences in dose responses for each AuNPs on each cell line was analysed by one two Anova followed 

by a Dunnett's multiple comparisons test. 

 

Table 3.4: Toxicity of different AuNPs on HSC-3 loaded in suspension culture. As a reminder, the IC50 

concentrations of cells exposed adherently are also mentioned. 

HSC-3 exposure for 3 hours 

to the different AuNPs 

100:0 80:20 60:40 50:50 40:60 20:80 0:100 

IC50 (μg/ml) suspension 

cultures 

>100 23 ± 

1.10 

1.8 ± 

1.10 

3.4± 

1.12 

6.2 ± 

1.14 

45.5 ± 

1.21 

17.4 ± 

1.12 

IC50 (μg/ml) adherent 

cultures 

>100 23 ± 

1.10 

4.2 ± 

1.13 

0.8 ± 

1.03 

6.8 ± 

1.13 

20 ± 

1.07 

13 ± 

1.10 

 

When studying the dose response of HSC-3 and HaCaT exposed to different AuNPs on 

floating conditions, it was found that the toxicity is similar to when cells were exposed under 

adherent conditions. Indeed, when estimating the IC50 values for cells exposed in suspension, 

these values are equivalent to the ones obtained with adherent cultures (Table 3.3 and 3.4), 

apart for the ratio 20:80 where the IC50 is higher when the cells were exposed in suspension. 

This is unexpected as all the AuNPs were more toxic to the cells when exposed in suspension. 

These specific AuNPs might interact specifically with the plastic surface and therefore give a 

lower response to the cells in suspension due to lower uptake. Moreover, 60:40 αGal:PEGamine 

is the ratio responsible for the highest toxicity on HSC-3 cells on floating conditions (p<0.0001 

at 1 μg/ml exposure), compared to the 50:50 on adherent conditions (Figure 3.18) (Annex 3.3).  
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Figure 3.19: IC50 values for HSC-3 cultivated on plates or in suspension arranged is ascending order of 

zeta potential. 

 

In representing the relationship between AuNPs toxicity and its charge, there is no linear 

relationship between these two factors (Figure 3.19). However, positively charged AuNPs seem 

to have a toxic effect on cells and the 50:50 αGal:PEGamine AuNPs, which give the strongest 

toxicity, have the highest zeta potential, while negatively charged AuNPs seem to be non-toxic 

as the 100:0 αGal:PEGamine AuNPs, which have the lowest zeta potential and negatively 

charged, give the lowest toxicity.  

 

3.8. AuNP toxicity is related to cellular uptake 
 

3.8.1. Amount of gold per cell 

 

50:50 αGal:PEGamine AuNPs were found to be selectively toxic for HSC-3 cancer cells, 

and the AuNPs sticking to the culture plastic is not involved in this effect. So, how does this 

toxicity occur? A simple hypothesis would be that the toxicity for each AuNP is linked to its 

cellular uptake. If the hypothesis is true, therefore, cells loaded with equitoxic concentrations of 

different AuNPs (e.g. each AuNP at its IC 50 concentration) would show an identical intracellular 

concentration. 

 

Cells were loaded with the IC50 concentration of each AuNP under suspension culture 

conditions, to minimise sticking to plastic. The experiment protocol is detailed in Section 2.13. 
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Figure 3.20: Amount of gold per cells. IC50 plotted as a line. The data are presented as mean percentage 

survival with the standard deviation. 

 

The amount of AuNPs per cells was explored by measuring the total amount of gold 

present in the total number of cells. Figure 3.20 shows that of the amount seems to be higher 

inside cancer cells as compared to the normal ones. This uptake inside cells depends also of the 

AuNPs coating. AuNPs coated with 50:50, 80:20 or 0:100 αGal:PEGamine show the highest 

concentration of AuNPs inside HSC-3 cells. These AuNPs are the one also characterised by the 

highest zeta potential, and thus, with the highest positive charge. The charge is known to have 

an influence on toxicity and uptake. In the particular case of αGalactose:PEGamine coated 

AuNPs, negative charged AuNPs did not enter in the cells, while high positively charged AuNPs 

did enter in cells and caused a strong toxicity (Table 3.2, Figure 3.20). One possible reason for 

lack of uptake of these negative charged AuNPs, coated with αGalactose, is their instability in 

solution. Indeed, when looking at their size on TEM, these AuNPs particularly, appear to show 

substantial aggregation in culture media which would lower their bioavailability for cellular 

uptake (Figure 3.7). Moreover, Hauck et al (2008) reported a possible electrostatic interaction 

between the negative charge membrane of the cells and positive charged of the NPs which 

would favours their uptake (Hauck T.S et al., 2008).  

The average quantity of gold per cell measured was between 1 and 2 pg/ml. This 

concentration is smaller than in previous experiments (Cui et al., 2017, Jain et al., 2014). 

However, the concentration used in our case was also much smaller. Indeed, while Jain et al 

showed a concentration of 4 µg/ml inside cells, while they used a concentration of 12 µM on 

MDA-MB-231 cells (Jain et al., 2014), and a concentration of 40 pg/cell was shown after a 

exposure at a concentration of 0.5 mg/ml for Cui et al (Cui et al., 2017) compared to 1-10 µg in 

our case. Finally, although there is a trend, the amount of gold per cell is not directly linked to 
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the toxic concentration, as the 50:50 αGal:PEGamine AuNPs is the most toxic toward cancer cells 

but does not lead to the highest concentration inside cells (Figure 3.19).  

Previous works have mentioned the importance of the AuNPs size for cellular uptake 

and its potential toxic effect (Zarschler et al., 2016). In this case, the combination of 

αGal:PEGamine molecules is more likely to be responsible for this toxic effect. It has been 

suggested that the serum containing medium has an impact on the AuNPs surface and may have 

an impact on the uptake of these AuNPs by cells (Hauck T.S et al., 2008). Indeed, this hypothesis 

is tested in the laboratory and the preliminary results show that without serum, the AuNPs have 

a lower uptake. The protein corona on the AuNPs seems to play a strong role in the cellular 

uptake (Deng et al., 2015). Moreover, the charge seems to strongly play a role in the cellular 

uptake. It could also play a role of the AuNPs localisation in the cells. The next experiment 

focused on the localisation of the two 50:50 and 0:100 αGal:PEGamine AuNPs inside the cells, 

as they both show the highest uptake on cells using ICPMS. 

 

3.8.2. Where do AuNPs accumulate inside cells? 

 

To explore the intracellular localisation of the 50:50 and 0:100 αGal:PEGamine AuNPs, 

TEM analysis was used. This experiment is detailed in Section 2.14. A constant loading 

concentration of 10 µg/ml was used to better visualise the AuNPs in the cells. TEM shows that 

AuNPs accumulate preferentially in HSC-3 cells (Figure 3.21 b, e) mainly within vesicles that may 

be lysosomes (Figure 3.21 c, f). It is possible to notice some accumulation close to the nucleus. 

However, AuNPs were not seen within the nucleus or the mitochondria (Table 3.5). 
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a)  b) c)  

d) e) f)  
Figure 3.21: Observation by transmission electron microscopy (TEM) of both a;d) HaCaT and b,c,e,f) 

HSC-3 exposed for 3 h to 10 μg/ml of either 50:50 αGal:PEGamine on top line or 0:100 αGal:PEGamine 

AuNPs on bottom line. The dotted boxes represent a 10-times zoom of this specific area. 

 

Table 3.5a: Approximation of the number of AuNPs per region of the cell, measured from TEM images 

of cells exposed to the AuNPs for 3 hours at 10 µg/ml concentration 

 50:50 αGal:PEGamine 0:100 αGal:PEGamine 
 

HSC-3 HaCaT HSC-3 HaCaT 

Cytoplasm 

(NP/nm²) 

170*10-5 26*10-5 100*10-5 19*10-5 

Nucleus (NP/nm²) 0 0 0 0 

Surface (NP/nm) 17*10-5 5.8*10-5 5.2*10-5 1.9*10-5 
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Table 3.5b: Average surface area of the cell, its nucleus and its cytoplasm. An unpaired t-test was 

performed to analyse the statistical difference for each surface area between the two types of cells. 
 

HSC-3 HaCaT 

Cytoplasm  

(105 nm²) 

1.06 ± 0.1 0.98 ± 0.1 

Nucleus (105 nm²) 0.56 ± 0.12 0.5 ± 0.1 

Entire cell  

(105 nm²) 

1.62 ± 0.2 1.5 ± 0.2 

 

From 10 images taken of each cell exposure, it was possible to measure the amount of 

AuNP in the different cell organelles. Since the cells were fixed just after exposure, no toxicity 

will be observed. The highest number of AuNPs is found in the cytoplasm, including vesicles and 

is 10 times more in cancer cells than in normal cells (Table 3.5a). In addition, some AuNPs are 

seen on the surface of the cell, and again more are seen on cancer cells than normal cells. This 

could indicate that AuNPs are interacting more with the membrane of cancer cells than normal 

cells, improving the cellular uptake, as suggested in the introduction. It is important to note than 

from the mass spectrometry studies, the 0:100 αGal:PEGamine AuNPs seems to be responsible 

for more gold inside the cells compared to the 50:50 αGal:PEGamine AuNPs (2 pg/cell compared 

to 1 pg/cell) but less NPs/nm² using TEM (100 NP/nm² compared to 170 nm/²). It is important 

to mention that these experiments have been done only and give indication on the NPs uptake 

but no affirmative conclusion on the relative uptake. Moreover, a hypothesis from these 

experiment might be that 50:50 αGal:PEGamine AuNPs accumulate in specific part of the cells 

and in bigger quantity while 0:100 αGal:PEGamine AuNPs could be more spread around the 

different cells. 

From the TEM images, it was also possible to approximate the surface area of skin cancer 

and normal cells (Table 3.5b). It is possible to note that both cells have similar average cell 

surface area and similar nucleus and cytoplasm area, with no statistical difference between the 

two cell lines. Therefore, the surface area of the cells does not seem to be playing a role in the 

difference in uptake observed in this case. 

 

The AuNPs surface also plays a role on the localisation of AuNPs in the cells, and has a 

strong impact on its further toxicity (Connor et al., 2005, Hauck T.S et al., 2008, Mironava et al., 

2010). The AuNPs localisation for the 50:50 αGal:PEGamine AuNPs was seen mainly in vesicles 

after 3h of exposure (Figure 3.21). It will be interesting to explore if this localisation differs 

between the different ratios of αGal:PEGamine. However, at this stage, it is not known whether 

the coating and the charge on the AuNPs remained unchanged, as this can have a further impact 

on the final destination of the AuNPs in the cells (Connor et al., 2005, Mironava et al., 2010). 
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Indeed, for example, Hauck et al. (2008) showed that positively charged AuNPs accumulate in 

vesicles (Hauck T.S et al., 2008). Wang et al (2013) showed in addition that Glucose coated 

AuNPs accumulate in endosomes-lysosomes, which is the final degrading destination of the 

molecules taken up via endocytosis (Wang et al., 2013). Moreover, strong positively charged 

AuNPs would likely be found in the mitochondria (Orosz et al., 2017), which is not seen in the 

case of αGal:PEGamine AuNPs. Finally, the possibility of an exchange reaction with GSH 

molecules inside the cells have already been mentioned, and could explain a specific localisation 

in the cells (Gromnicova, 2017, McCully et al., 2015). For example, Sousa et al. (2008) showed 

that ultrasmall AuNPs coated with GSH accumulated in the cytoplasm of Hela cells (Sousa et al., 

2012). 

 

3.9. AuNPs toxicity on cells, role of oxidative stress and caspase 

dependent apoptosis 
 

3.9.1. Role of oxidative stress in AuNP toxicity 

 

AuNPs could increase intracellular oxidative stress either by inhibiting antioxidant 

pathways, or by promoting pro-oxidant pathways. Indeed, inside the cells, AuNPs can increase 

the amount of radicals due to their chemical reactive surface (Cui et al., 2013). This has been 

described in Section 1.5. AuNPs can also induce apoptosis or inflammation which will then 

engender ROS production (Fu et al., 2014).  

HSC-3 cells were exposed to 1 µg/ml of 50:50 αGal:PEGamine AuNPs in the presence or 

absence of different antioxidants. This AuNP concentration was chosen so as to achieve a 

baseline ~50% toxicity. The antioxidants used were reduced glutathione (GSH), or sodium 

pyruvate (NaP), or N-Acetylcysteine (NAC). While GSH and NAC can detoxify different ROS 

species inside the cells, sodium pyruvate is responsible for the detoxification of H202, particularly 

outside the cells (Kelts et al., 2015, Lord-Fontaine and Averill-Bates, 2002, Franco et al., 2007). 

All three cover different antioxidant pathways and therefore can give an indication of which of 

them is inhibited/interacting with the AuNPs, as detailed below. The following experiment is 

described in Section 2.15.1. 
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Figure 3.22: a) Clonogenic assay of HSC-3 cells exposed to H2O2 in presence or in absence of antioxidants 

(1 mM NAC, or 0.25 mM GSH, or 0.1 mM NaP). b) Clonogenic assay of HSC-3 cells exposed to AuNPs in 

presence or in absence of antioxidants (1 mM NAC, or 0.25 mM GSH, or 0.1 mM NaP). The data are 

expressed in percentage colonies with the standard deviation and a one-way ANOVA, followed by 

Bonferroni post-test was used to quantify any significant differences between each condition. 

 

Figure 3.22a shows the effect of three different antioxidants, in the presence or absence 

of H202, as a positive control for ROS-mediated cell death. None of the antioxidants are toxic for 

HSC-3 cells at the concentration chosen as the number of cell colonies remains similar to the 

control. H202 alone decreases the number of colonies after 6 days of culture. It is responsible for 

78 % decrease of viability compared to the control (p<0.0001), while AuNPs are responsible for 

a 60% decrease (p<0.0001). However, when the cells were incubated with H202 in combination 

with either NaP or NAC, the toxic effect of H202 was entirely inhibited, with a cell viability not 

significantly different to the control. However, GSH did not inhibit the toxicity from H202 as the 

viability remained the same with or without the antioxidant. 
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The same three antioxidants were used in the presence of AuNPs to determine if they 

could decrease the cell toxicity after AuNPs exposure. Sodium pyruvate was used to study the 

possible amount of ROS outside the cells while NAC and GSH are effective inside the cells. 

Indeed, knowing where ROS are produced can give indication on the AuNPs toxicity.(Kelts et al., 

2015). Figure 3.22 b shows that the toxicity from either 50:50 or 0:100 C AuNPs is decrease by 

59% when using NAC and by 21% when using GSH. For of 50:50 αGal:PEGamine, the combination 

with NAC inhibits entirely the toxicity from the AuNPs (p<0.0001). However, NaP did not inhibit 

the toxicity after AuNPs exposure (p>0.05).  

NAC, GSH and NaP do not have the same mechanism of effect, suggesting a particular 

pathway for the oxidative stress. NaP is able to neutralize peroxides , due to its α-keto-

carboxylate structure (Wang et al., 2007) and acts as a peroxide scavenger, mainly outside the 

cells (Gupta S.K et al., 2000). Pyruvate molecule can be transported inside the cells via proton-

monocarboxylate cotransporter. Predominantly extracellular antioxidant, it can also act 

intracellular (Lord-Fontaine and Averill-Bates, 2002). NAC, due to its structure, can act as a direct 

antioxidant via its free thiol group, and as a synthetic precursor of reduced glutathione (GSH), a 

well-known molecule involved in detoxification (Van Zandwijk, 1995, Dekhuijzen, 2004). GSH is 

the most highly concentrated antioxidant in cells and is responsible for the detoxification of 

many reactive oxygen species such as hydroxyl radicals, superoxide anion and nitric oxide, 

however GSH requires the presence of the glutathione peroxidase for the detoxification of H202 

(Lushchak, 2012).  

GSH is not able to prevent the cellular toxicity from H202 but is able, similarly to NAC, to 

decrease the toxicity due to AuNPs, with a statistically significant difference. It  suggests that the 

oxidative stress induced by the presence of AuNPs does not depend entirely on H202 species but 

also on formation of other radical species such as .02• or singlet oxygen (102) (Zhang et al., 2013). 

In addition, as NaP does prevent the toxicity from the AuNPs, suggesting that the ROS formed 

and responsible for the toxicity are more likely inside the cells. 

Cells have developed antioxidant defences to fight against oxidative stress and regulate 

their physiological balance. Xia et al. described in 2008 a hierarchical oxidative stress model after 

NPs exposure (Xia et al., 2008). The cell will fight the oxidative stress differently depending on 

the amount of ROS produced. During the first stage, where the amount of ROS produced is low, 

the cells activate radical scavengers and enzymatic enzymes which are controlled by the nuclear 

factor (erythroid-derived 2)-like 2 (Nrf2) (Havaki et al., 2015, Xia et al., 2008). When the ROS 

production increases, the cells activate preferentially pro-inflammatory pathways, rather than 

antioxidants, through the activation of MAP kinases and NF-κb pathways. 
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Interestingly, Yang et al (2007) have shown that the antioxidant NAC up regulates 

apoptosis (78 % after a concentration of 10 mM NAC) in melanoma cells through a decrease of 

the NF-κB-mediated event, which decreases the expression of anti-apoptotic genes such as Bcl-

2. NAC also affected the mitochondria by lowering their membrane potential (Yang et al., 2007). 

Indeed, at high levels of ROS, a perturbation of the mitochondrial membrane permeability 

occurs, inducing apoptosis (Xia et al., 2008). NF-κB plays an important role in the cell survival. 

Indeed, it is part of a family which is activated by different signals such as ROS or tumor necrosis 

factor (TNF), thus increasing the expression of anti-apoptotic proteins, decreasing cell death, 

and increasing the antioxidant defences (Yang et al., 2007). One possible toxic mechanism of 

AuNPs in the cells is to interact with the NF-κB system, by binding to the NF-κb transcription 

factor and preventing its translocation to the nucleus and the transcription of cell factors, and 

therefore dysregulate the antioxidant defences (Pujalté et al., 2015).  

 

3.9.2. ROS measurement in cells 

 

The general intracellular ROS probe carboxy DCFH-DA was used in FACS analysis to 

quantify reactive oxygen species in cells after exposure to AuNPs or positive control TBHP 

oxidant. This experiment is detailed in Section 2.15.2. DCFH-DA is well known to detect diverse 

ROS, such as H202, HO•, ONOO•. 
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Figure 3.23: Fluorescence measurement of DCFH-DA or its oxidised form DCF, diluted in medium in 

presence or absence of AuNPs. a) Measurements in HSC-3 cells, b) measurements in HaCaT cells, c) 

measurements of AuNPs interaction without any cells. The data are expressed with their standard 

deviation values and a one way Anova followed by a Tukey post-test was used to compare the different 

conditions. The different asterisks show a significant difference compared to the control or to different 

conditions. 

 

In order to measure the potential ROS production inside cells after AuNPs exposure, 

DCFDA probe was used. Figure 3.23 a, b, c does not show any statistical difference compared to 

the control (Figure 3.23 a, b, c), therefore, 50:50 αGal:PEGamine AuNPs do not seem to increase 

the radical production inside the cells. 

However, AuNPs are known to interact with fluorescent probes and quench their 

fluorescence. In order to explore if this phenomenon happened with the αGal:PEGamine coated 

AuNPs, they were incubated with the oxidised, fluorescent probe, but without cells. In the 

presence of AuNPs probe fluorescence was decreased by around 10% (Figure 3.23 c). Assuming 

a similar effect within cells, the fluorescence values in the presence of AuNPs in Fig 3.23 a and b 
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would rise to about 70% and 90% respectively and may have shown significance compared with 

the control. 

AuNPs were responsible for an oxidative stress inside the cells, which did not depend 

entirely on radical production such as •OH and H2O2. Indeed, the DCFHDA probe used in order 

to detect radicals such as •OH and H2O2 did not show any increase of oxidative stress after AuNPs 

exposure for 3 h. The oxidative stress caused by the AuNPs might be a late or cumulative process 

and it will be interesting to look at another time point, such as 24h after AuNPs exposure (Thakor 

et al., 2011). AuNPs could have an impact on the amount of antioxidant, increasing other types 

of radical levels. 

 

3.9.3. Is caspase dependent death involved in AuNPs toxicity? 

 

Apoptosis is a physiological cell death that can happen after a stress and is characterised 

by an absence of inflammation (Egger et al., 2003). Caspase dependant apoptosis involves a 

cascade of caspase activation, culminating in caspase 3 activation. To explore if the caspase 

dependant pathway was involved in AuNPs toxicity, a pan-caspase inhibitor (Z-VAD.fmk) was 

used to explore if this would inhibit AuNPs toxicity, inhibiting particularly caspase 3. The 

experiment is described in Section 2.12. 
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Figure 3.24: Response of HSC-3 exposed to 50:50 αGal:PEGamine AuNPs at a concentration of 1 μg/ml, 

with or without caspase inhibitor. Antimycin A (AMA) was used as a positive control. The graphs 

represent the number of cell colonies depending on the cell exposure. The data are expressed in 

percentage with the standard deviation and a one way Anova, followed by a Dunnett post-test was 

realised to study the difference between numbers of colonies, compared to the control. 

 

Z-VAD.fmk can inhibit caspase activity by crosslinking the fmk group to the cysteine on their 

active site, with different specificity for each caspase (Egger et al., 2003). In this experiment, Z-
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VAD.fmk rescues HSC-3 cells from death due to AMA (Figure 3.24). AMA is a positive control 

here as it can induce caspase dependant apoptosis (Park et al., 2007). The caspase inhibitor also 

partially rescues HSC-3 cells from cell death due to AuNPs (p<0.05) (Figure 3.24). In contrast, 

when HSC-3 cells were incubated with caspase inhibitor only, there was no change in cell colony 

numbers, compared to the untreated control (p>0.05). These data indicate that AuNP-induced 

cell death is partially caspase-dependant. It is important to mention that the caspase inhibitor 

was added to the cells exposed to AuNPs up to 24h after exposure. Apoptosis cell death could 

increase with time after exposure and therefore the timing of the caspase inhibitor might be 

critical for the cell death rescue due to caspase dependant apoptosis. Other caspase-

independent types of cell death, such as necrosis-like programmed cell death, can be associated 

with ROS increase (Kögel and Prehn, 2013). Such mechanisms may also be operating here. 

 

3.10. AuNPs interaction with irradiation 
 

3.10.1. Intrinsic properties of AuNPs to interact with irradiation 

 

The 50:50 and 0:100 αGal:PEGamine AuNPs were selected for radiosensitisation 

experiments based on their selective chemotoxicity and high uptake per cancer cell. 

Radiosensitisation is improved by having a high amount of AuNPs inside cells (Arvizo et al.), 

therefore these two AuNPs should be good candidates for radiotherapy studies. The intrinsic 

radiosensitisation potential of the two different AuNPs was explored by developing a novel 

coumarin assay to measure the amount of •OH radical produced in solution after X-irradiation  

The first experiments were focused on optimising the assay by exploring different 

concentrations of 3-carboxy-coumarin carboxylic acid (3-CCA) in order to obtain the optimum 

response. The effect of buffer to dilute the 3-CCA, as well as the concentration of AuNPs used 

were also explored. Finally, it appeared than when AuNPs were added in the solution, they 

quenched the fluorescence of the hydroxylated product 7-hydroxy coumarin carboxylic acid (7-

OHCCA) and thus the solution needed to be cleared from the AuNPs before being measured 

using 3 KDa cutoff spin filter plates. Here again, optimisation was required, as the 7-OHCCA 

interacted with the plate surface and did not pass the filter. Adding pure EtOH in the solution 

before centrifugation improved 7-OHCCA solubility and passage through the filter. Finally, the 

optimum protocol for measuring the fluorescence of the 7-OHCCA in presence of AuNPs was 

used in subsequent experiments. The optimum protocol for the coumarin assay is described in 

Section 2.15.3. 
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Figure3.25: Coumarin assay in PBS after AuNPs incubation. 3-CCA was used at a concentration of 1 mM 

and 0.5 mM and was irradiated with 10 Gy of 6MeV X-rays. The hydroxylated (fluorescent) form of 7-

OHCCA was used to explore possible interaction with the fluorescent product, at a concentration of 

0.001 mM. The data are expressed in percentage with the standard deviation and a two-way ANOVA 

followed by a Dunnett's multiple comparisons test was used to study the difference, for each group, 

between the exposure and the control. 

 

The first coumarin assay, seen in Figure 3.25 was set up to test the validity of the assay. 

An increase of the 3-CCA fluorescence at both 10 Gy of 6 MeV irradiation and in the presence of 

hydrogen peroxide was noticed, confirming the presence of 7-OHCCA due to •OH reaction. The 

first statement when investigating the AuNPs in PBS is that they do not emit a fluorescence by 

themselves at this wavelength. They do interact with 3-CCA and increase the production of 7-

OHCCA when irradiated, especially at 5 and 10 µg/ml where the effect is significantly different 

to 3-CCA alone (p<0.0001). This increase demonstrates the formation of •OH when AuNPs 

interact with radiation. 

The increase of 7-OHCCA production from the irradiation of 3-CCA is more pronounced 

when 3-CCA was used at a concentration of 1 mM than of 0.5 mM, therefore, this concentration 

has been adopted in subsequent experiments. Moreover, AuNPs concentrations of 5 and 10 
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µg/ml significantly increase 7-OHCCA production; thus, a concentration of 10 µg/ml was chosen 

as a standard AuNPs concentration in order to explore their radiosensitisation effect. 

Finally, when exploring the interaction between AuNPs and 7-OH-CCA, an interaction 

between the fluorescence molecule and the AuNPs was noticed, with a decrease in fluorescence 

at an AuNPs concentration of 5 µg/ml (p<0.01) and of 10 µg/ml (p<0.0001). It seems that AuNPs 

can quench the fluorescence of 7-OHCCA, and therefore decrease the apparent response with 

radiation. 

Filter plates were used in order to clear the AuNPs from the irradiated solution. Figure 3.26 

represents the different solutions containing 3-CCA and 7-OHCCA, irradiated and non-irradiated, 

and using spin filter plates. 
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Figure 3.26: Coumarin assay in PBS. 3-CCA was used at a concentration of 1 mM and the samples were 

irradiated with 10 Gy of 6MeV X-ray photon and without. The hydroxylated form of 7-OHCCA was used 

at a concentration of 0.001 mM to explore possible interaction with the fluorescent product. The 

different products were filtered or not using a spin filter plate in order to explore and potential 

interaction. The data are expressed in percentage with the standard deviation and a two way ANOVA 

followed by a Dunnett's multiple comparisons test was used to study the difference, for each group, 

between the exposure and the control, while a Tukey’s multiple comparisons test was used to study 

the difference between groups. 

 

The conclusion from these experiments are that the spin filter plates have an interaction 

on the fluorescence of the 7-OHCCA as a strong decrease of fluorescence in observed, before 
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and after spin-filtration of 7-OHCCA (p<0.001, Figure 25) for each exposure and after spin 

filtration of 3-CCA (p<0.001, Figure 26) after H202 exposure.  

 

The concentration of 3-CCA was increased up to 5 mM for better quantification after 

filtration. Citrate AuNPs were used in order to explore •OH production, as explained in the 

Section 2. 15. Moreover, in order to help the 7-OHCCA to pass through the filter, pure EtOH (100 

%) was added onto the wells, just before centrifugation, in order to recover more of the 7-

OHCCA formed (Figure 3.27). Indeed, the addition of pure EtOH just before centrifugation helps 

filtering the 7-OHCCA through the filter plate and improves the measurement of the 

fluorescence of this compound. 
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Figure 3.27: Coumarin assay in PBS after citrate AuNPs incubation. 3-CCA was used at a concentration 

of 1 mM and 7-OHCCA at a concentration of 0.001 mM to explore possible interaction with the 

fluorescent product. The different products were filtered with or without pure EtOH (100%). in order to 

explore and potential interaction. The data are expressed in percentage with the standard deviation 

and a two way ANOVA followed by a Dunnett's multiple comparisons test was used to study the 

difference, for each groups, between the exposure and the control. 
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Figure 3.28: Coumarin assay with or without irradiation, with different AuNPs. The graph shows the 

fluorescence of the 7-OHCCA on different condition. A significant difference in fluorescence of 7-OHCCA 

probe following irradiation, compared to irradiated water only are indicated as P<0.05 *, P<0.01 ***, 

P<0.0001 **** (one-way ANOVA with Dunnett’s multiple comparisons post-test). 

 
When exploring the effect of the different AuNPs interacting with radiation via the 

coumarin assay, non-coated AuNPs increase significantly the 3-CCA fluorescence and therefore 

the •OH production (p<0.01) (Figure 3.28). However, when looking at the two AuNPs coated with 

50:50 and 0:100 αGal:PEGamine, it is not clear if they can enhance the •OH production as the 

difference in fluorescence production is not significantly different to the samples with 3-CCA 

alone. The coumarin assay indicates that these two AuNPs do not significantly increase the •OH 

production when interacting with radiation. 

 

3.10.2. Radiosensitisation of AuNPs on skin cells 

 

Following these results, the potential radiosensitisation effect of the two types of AuNPs 

directly on cells was explored, using both cancer and normal cells irradiated over a range of X-

ray doses, from 2 Gy to 8 Gy, with or without AuNPs. 

Here again, some experiments were performed to optimise the cellular concentration for 

clonogenic assays before any exposure. After determining optimal cell seeding density for each 

dose of radiation, which will lead to well separated colonies, skin cells were exposed to both 

AuNPs and radiation. AuNPs were used at their IC50 in order to explore the effect of both chemo 

and radiotoxicity. These experiments are described in Section 2.16. 
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Figure 3.29: HSC-3 and HaCaT cells irradiated with 220 kV X-ray irradiation and exposed to a, b) 50:50 

αGal:PEGamine and c, d) 0:100 αGal:PEGamine AuNPs. a and c show raw survival fraction data. b and d 

show survival fraction data corrected for chemotoxicity (normalised based on zero Gy values). 

 

Both HSC-3 and HaCaT show a response after irradiation with 220 kV X-rays. The survival 

fraction is similar for the normal and cancer cells at the level of 80% after 2 Gy irradiation down 

to 20% after 8 Gy. Interestingly, when the cells were incubated with 50:50 αGal:PEGamine 

AuNPs prior to irradiation, the survival fraction decreased even more than for irradiation only, 

for both cell lines and the cancer cells do show a higher decrease than the normal cells (Figure 

3.29 a).  

When looking at the effect of the 0:100 αGal:PEGamine AuNPs in addition to radiation, 

the same effect was observed. The survival fraction for both cancer and normal cells decrease 

when radiation is combined with AuNPs and a higher decrease is observed for the cancer cells. 

However, this survival decrease for the cancer cells was much more pronounced when 

incubating the cells with 50:50 αGal:PEGamine AuNPs than with 0:100 αGal:PEGamine AuNPs 

(Figure 3.29 c). 

Figure 3.29 a and Figure 3.29 c both show toxicity from AuNPs and irradiation. In Figure 3.29 b 

and Figure 3.28 d, after normalising the data, it was possible to observe the toxicity arising from 

the interaction between AuNPs and irradiation. It is clear that there is still a strong decrease in 

toxicity for skin cancer cells exposed to 50:50 AuNPs or 0:100 AuNPs and irradiation, while the 
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dose response curve for normal cells are almost equal when irradiating, with or without AuNPs. 

Figures 3.29 b and Figure 3.29 d indicate therefore a potential additive effect of these two AuNPs 

with radiation. Not only selectively toxic for the cancer cells, these AuNPs can improve 

radiotherapy efficiency on skin cells and are therefore very interesting as 

chemoradiotherapeutics. 

It is important to note that the AuNPs were used both at their IC50 concentration. 

Another factor seems to be responsible to this radiosensitisation effect than concentration. 

Indeed, the 0:100 AuNPs have a higher IC50, meaning that a higher concentration of AuNP was 

added to cells than the 50:50 AuNPs. The ICP-MS studies demonstrated that under these 

conditions 0.0018 ng/cell 50:50 and 0.0023 ng/cell 0:100 AuNPs are loaded in HSC-3 cells. 

Therefore, it was expected that similar radiosensitisation would be seen or slightly better one 

with 0:100 AuNPs. However, this was not the case and instead 50:50 AuNPs give better 

radiosensitisation (after removing the effects of chemotoxicity) (compare Figure 3.29 b and d). 

Interestingly, Kong et al, have seen the same tendency when using glucose and 

cysteamine coating AuNPs (Kong et al., 2008). They have shown that AET-AuNPs were 

responsible for a fourfold increase of AuNPs uptake inside cells compared to Glu-AuNPs, but 

Glu-AuNPs were responsible for more than 65% of toxicity with radiotherapy compared to 31.7 

% for AET-AuNPs (Kong et al., 2008). 

A mechanism for this radiosensitisation effect could be that the AuNPs interact with the 

cell cycle regulation, blocking the cell into a specific phase of the cell cycle, particularly the S to 

G2/M phase engender toxicity to the cells but also sensitise them to radiation. Roa et al. in 2009 

have shown that glucose coated AuNPs decreased the expression of cyclin A by 97.7 % compared 

to the control, in combination with radiotherapy (Cs-137) after 24h, a kinase responsible for the 

transition from G2 to M phase, and increased the expression of cyclin E by a 4.2 increase in 

combination with radiotherapy after 48 h, kinase responsible for the G1 to S transition phase. In 

consequence, the AuNPs cause acceleration through G1/S (40 % change compared to the 

control) and slowing through G2/M (30 % change compared to the control) (Roa et al., 2009). 
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Figure 3.30: HSC-3 and HaCaT cells irradiated to 220 kV X-ray irradiation and exposed to citrate AuNPs. 

The data represent the survival fraction data corrected for chemotoxicity (normalised based on zero Gy 

values). 

 

When testing the different AuNPs with the coumarin assay, the non-coated (citrate) 

AuNPs show a statistically significant increase of 7-OHCCA, representing a significant increase of 

•OH radicals upon radiation, better than the αGal:PEGamine coated ones. However, when 

exploring their radiosensitisation effect on skin cells, these AuNPs do not increase the effect of 

radiation (Figure 3.30). Indeed, the toxicity of radiation with or without AuNPs remained the 

same. The coating on the AuNPs seem to play an important role on the cellular uptake and the 

coating might be affected when the AuNPs are in medium or inside the cells, allowing further 

electron release. 

Interestingly, the coumarin assay informs on the •OH upon radiation showed a better effect with 

citrate AuNPs, which appear to have much less effect on cells. This assay indicates that these 

specific AuNPs do not seem to improve the •OH production in PBS.  

Retif et al. in 2015 used various fluorescence probes to look at different ROS species 

produced during NP irradiation (Retif et al., 2015). It might be of interest to explore other types 

of ROS potentially produced upon radiation. Even though •OH radicals are known to be the main 

ROS produced, other types of radicals, for example singlet oxygen, might play an important role 

on the radiosensitisation effect and better predict the effect of these AuNPs in cells. For 

example, Gara et al. have shown using furfuryl alcohol, histidine and singlet oxygen sensor green 

(SOSG) more than a fivefold increase of the production of singlet oxygen after irradiation with 4 

MeV X-rays in the presence of silicon NPs in aqueous solution compared to the control (Gara et 

al., 2012). 

The coating of the AuNPs, which seem to interact with the •OH radical production and 

their effect with the environment, seems however to be essential for the AuNPs, once inside the 
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cells, to target a specific part in the cell and have a stronger effect with radiation (Gilles et al., 

2014). It is well-known that the coating is changed when being in contact with other molecules, 

such as proteins. This change must affect the further electron release and radiosensitisation 

effect of these AuNPs. Here again, the hypothesis that the coating is exchanged by other 

molecules such as GSH could explain the difference in radiosensitisation effect observed in and 

outside the cells. Moreover, the localisation of the AuNPs in high amount could locally improve 

the radiosensitisation by releasing some toxic contents in the environment (Kenzaoui et al., 

2012). 
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Figure 3.31: HSC-3 and HaCaT cells irradiated to 6 MeV Xray irradiation and exposed to a, b) 50:50 

αGal:PEGamine AuNPs and c, d) 0:100 αGal:PEGamine AuNPs AuNPs. a and c show raw survival fraction 

data. b and d show survival fraction data corrected for chemotoxicity (normalised based on zero Gy 

values). 

 

The effect of the two types of AuNPs was then explored in combination with MeV X-ray 

radiation. Figure 3.31 a and c show that both coated AuNPs give a decrease in cell toxicity with 

radiation, compared to radiation only. However, the effect is clearly different when the cells 

were irradiated with the different energies of radiation. A stronger decrease is observed in level 

of 63% survival fraction when the AuNPs were combined with kilovoltage energies than with 

megavoltage (in the level of 75%) (Figure 3.31 a and c). 

When the toxicity from AuNPs is subtracted, the dose response curve after irradiation 

with or without AuNPs became almost equal, especially for the 0:100 AuNPs. The investigated 

AuNPs have a very slight additive effect with radiation at Megavoltage energies, which has been 

the case reported in several publications (Figure 3.31 b and d) (Chithrani et al., 2010, Hainfeld 

et al., 2008, Jain et al., 2011, Jeynes et al., 2014). 
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Table 3.6a: Sensitivity Enhancement Ratios and Dose Enhancement Factors calculated for skin cells 

Cell line (AuNP) SER4Gy  

6 MV 

SER4Gy  

220 kV 

DEF0.3  

6 MV 

DEF0.3 

220 kV 

HSC-3 (50:50) 1.40 ± 0,3 1.73 ± 0,3 1.10 ± 0,76 1.52 ± 0,97 

HSC-3 (0:100) 1.02 ± 0,3 1.63 ± 0,5 0.98 ± 0,35 1.16 ± 0,79 

HSC-3 (citrate) N/D 0.97 ± 0,3 N/D 1.03 ± 0,05 

HaCaT (50:50) 1.10 ± 0,2 1.08 ± 0,05 1.18 ± 1,00 1.40 ± 0,32 

HaCaT (0:100) 0.91 ± 0,2 0.99 ± 0,2 0.99 ± 0,31 0.99 ±0,39 

HaCaT (citrate) N/D 0.93 ± 0,1 N/D  1.01 ±0,44 

 

Table 3.6b: linear quadratic factor for skin cells 

Cell line 
(AuNP) 

Linear quadratic parameters kV (220 kV) 

 

Linear quadratic parameters MV (6 MV)) 

  
a b a/b a b a/b 

HSC-3 
control 

0,1808 ± 
0,0267 

0,00728 ± 
0.00516 

24,8 0,1957 ± 
0.0732 

0,0251 ± 
0.0185 

7,8 

       

HSC-3 
(50:50) 

0,1116 ± 
0,2142 

0,06197 
0.07125 

1,8 0,2316 ± 
0.1735 

0,0226 ± 
0.045 

10,2 

       

HSC-3 
(0:100) 

0,1788 ± 
0.1686 

0,0337 
±0.0437 

5,3 0,1394 ± 
0.1228 

0,02499 ± 
0.0289 

5,6 

       

HSC-3 
(citrate) 

0,2224 ± 
0.0339 

0,01176 ± 
0.0075 

18,9 ND ND ND 

       

HaCaT 
control 

0,1522 ± 
0.0385 

0,01111 ± 
0.00795 

13,7 0,4364 ± 
0.694 

(-)0,0044 ± 
0.0168 

-99,2 

       

HaCaT 
(50:50) 

(-) 0,08009 ± 
0.0637 

0,0945 ± 
0.0225 

-0,8 0,4665 ± 
0.062 

(-)0,0076 ± 
0.015 

-61,4 

       

HaCaT 
(0:100) 

0,03166 ± 
0.0689 

0,0404 ± 
0.0173 

0,8 0,278 ± 
0.0766 

0,0197 ± 
0.0205 

14,1 

       

HaCaT 
(citrate) 

0,1703 ± 
0.0561 

0,0138 ± 
0.0117 

12,3 ND ND ND 

       

 

Table 3.6 a shows the results of the calculation of both the SER and DEF for the two 

different types of AuNPs with radiation. These two parameters give slightly different 

information, the DEF gives information on the dose absorbed inside the cells, while the SER gives 

information about the potential of the AuNPs to act as additive effect (Joiner and Van der Kogel, 

2009, Muddineti O.S et al., 2015). In other words, the DEF gives indication on the difference in 

doses of radiation to observe the same effect, while the SER is defined as the difference of effect 

for a same dose. The DEF is observed for a survival fraction of 0.3 while the SER is observed for 
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a dose of 4Gy, which is responsible for a survival fraction of approximately 0.1-0.2. Between 

these two survival rates, a different effect can happen. The determination of these factors is 

described in Section 2.16. A linear-quadratic function applied to the normalised toxicity after 

radiation data gave a good fit up to around 4 Gy dose of irradiation, which is why the SER was 

calculated for a dose of 4 Gy and the DEF for a survival fraction of 0.3, which corresponds to 

around 4 Gy. It can be noted here that the SER are associated with small SD, while the DEF have 

much bigger SD. This is likely to be linked to the linear quadratic model, which needs to be 

applied to in order to calculate the radiotherapy enhancement and with only 5 points (0-2-4-6-

8 Gy), it is difficult to obtain statistically significant data. The DEF gives only in indication of a 

potential effect but the SER seems to be more accurate to predict the effect of the AuNPs on 

radiotherapy. 

A substantially high SER (1.73) at 4 Gy of 220 kV irradiation was observed for HSC-3 

exposed to 50:50 αGal:PEGamine AuNPs, and exposed to 0:100 αGal:PEGamine AuNPs (SER of 

1.63). When HSC-3 were irradiated with 6MV radiation,  lower SERs (1.40 for 50:50 

αGal:PEGamine AuNPs and 1.02 for 0:100 αGal:PEGamine AuNPs) were seen. The 

radiosensitisation effect, is well-known and often observed for AuNPs combined with kilovoltage 

energies of X-rays. The additive effect with radiation observed here is higher than the one 

reported in many publications, particularly with the 50:50 αGal:PEGamine AuNPs (SER of 1.73). 

As already mentioned, a radiosensitisation effect have been shown with a SER = 1.43 after an 

irradiation of 220 kV X-rays using 50 nm AuNPs (Chithrani et al., 2010), a DEF = 1.39 after 225 kV 

X-ray irradiation using 5.81 nm AuNPs (Cui et al., 2017), a SER = 1.41 after 160 kV using 1.9 nm 

AuNPs compared to 1.29 after 6 MV Xrays (Jain et al., 2011). It is important to note as well that 

the SER obtained in our study is linked to a small amount of AuNPs. Indeed, a concentration of 

1 µg/ml was used, which lead to a concentration inside the cells of around 2 pg/ml, which is 

smaller than in the three experiment cited previously (Chithrani et al., 2010, Cui et al., 2017, Jain 

et al., 2011). Indeed, using high concentration of 12 µM or 0.5 mg/ml for 24 h, a concentration 

inside MDA-MB-231 cells of 4 µg/ml (Jain et al., 2011) and 40 pg/ml (Cui et al., 2017) was seen 

respectively. With a smaller concentration inside cells, our AuNPs are responsible for a higher 

SER. As mentioned before, other parameters than the NP concentration inside cells seem to 

affect the radiosensitisation effect, such as the cell type, the cell-cycle, the ROS production 

(Kwatra et al., 2013, Roa et al., 2009). 

The strong radiosensitisation when combining AuNPs with kilovoltage radiation, but 

smaller radiosensitisation when combining with megavoltage radiation is in accordance with the 

literature (Jain et al., 2011). Yet, the SER of 1.40 indicates a strong radiosensitisation for the 

50:50 AuNPs even at megavoltage energies using 6MV X-rays compared to the literature where 

radiosensitisation of 1.29 (SER after 24 h exposure with 12 µM of 1.9 nm NPs) (Jain et al., 2011, 
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Burger et al., 2014b), 1.15 (SER after 24 exposure with 0.197 mg/ml of 1.9 nm NPs) (Rashid et 

al., 2018), 1.49 (SER after 24 h exposure with 20 nm of 13 nm NPs) (Wang et al., 2013). 

 

Table 3.6 b was also presented to introduce the different values of α and β parameters obtained 

from the linear quadratic model used. As mentioned before, the LQ model here is not conclusive 

and very informative on the radiosensitisation effect as few data points were available. In order 

to get more accurate data, more data point would be needed from different doses of radiation. 

Thus, a high uncertainty is obtained for the different parameters. Yet, we can notice that in 

general, α parameter is bigger than β. α/β parameter is often calculated in order to have 

indication on the response of a tissue to radiation as it is linked to the dose where single doses 

and accumulated doses are responsible for the same effect (Joiner and Van der Kogel, 2009, 

Podgorsak, 2003). A high ratio (superior to 7) would indicate an early response of the tissue and 

a high impact of low doses. As mentioned before, it is difficult here to make any conclusion on 

this last effect. The linear quadratic model might not be the best suited model as it does not fit 

exactly all the data points, especially due to the fact that for most in vitro cell lines where the 

curve flatten to become linear at high doses. The linear quadratic linear model have been 

proposed as an alternative to better represent this particular effect (Joiner and Van der Kogel, 

2009, Podgorsak, 2003). 

 

In conclusion, 50:50 AuNPs give a higher radiosensitisation effect with kilovoltage X-rays 

than with megavoltage X-rays. 

It is important to mention that the SER for the different molecules and the two types of radiation 

are close to 1 in all conditions with HaCaT cells. Not much radiosensitisation is occurring with 

this cell line. 

 

 

3.10.3. Toxicity and radiosensitisation of AuNPs on breast cells 

 

The effect of the 50:50 and 0:100 αGal:PEGamine AuNPs was explored in cancer and 

normal breast cells, in order to determine the IC50 concentration for irradiation experiments. 
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Figure 3.32: Bright field images of a) MCF-7; b) MCF-10. 
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Figure 3.33: Clonogenic assay after AuNPs exposure on breast cells. The graphs represent the 

percentage of viability compared to the control, regarding AuNPs concentration. The data are presented 

as mean percentage survival ± standard deviation. 

 

MCF-7 and MCF-10A are represented on the Figure 3.32. Due to lack of time, TEM 

images of the cells could not be taken for these particular cell lines and therefore, the cell surface 

could not be compared to the one for the skin cells. However, it is possible to note from the 

work published by Geltmeier et al in 2015 that MCF-7 cells are bigger than MCF-10 cells (cell 

volume of 3375-16873 µm3 for MCF-7 compared to 678-1317 µm3 for MCF-10) (Geltmeier et al., 

2015) 

Figure 3.33 shows the toxicity response of both cancer and normal breast cells exposed 

to the two AuNPs of interest. Both the AuNPs are more toxic toward breast cancer cells (MCF-

7) than normal cells (MCF-10), but this toxicity is not as selective as on skin cells as there is also 
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a toxicity for normal cells already at 10 µg/ml. The IC50 on MCF-7 are 4 µg/ml for 50:50 

αGal:PEGamine AuNPs and 10 µg/ml for 0:100 αGal:PEGamine. 
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Figure 3.34: MCF-7 and MCF-10 cells irradiated to 220 kV Xray irradiation and exposed to a, b) 50:50 

αGal:PEGamine AuNPs and c, d) 0:100 αGal:PEGamine AuNPs. a and c show raw survival fraction data. 

b and d show survival fraction data corrected for chemotoxicity (normalised based on zero Gy values). 

 

When looking at the radiosensitisation effect at kilovoltage energy, radiotherapy only is 

responsible for a strong decrease of viability for normal breast cells, at the level of 65% survival 

fraction after 2 Gy irradiation, more substantially than for the cancer ones, where the survival 

fraction after 2 Gy of irradiation is 85%. MCF10A breast cells are more radiosensitive than MCF-

7 cancer ones. This result is controversial to previous work which showed a toxicity for MCF-7 

compared to no change for MCF-10 cells after kilovoltage irradiation (Kong et al., 2008, Nicol et 

al., 2018).Figure 3.34 a shows that 50:50 αGal:PEGamine AuNPs gave a decrease in toxicity for 

both cancer and normal cells. Figure 3.34 b indicates that 50:50 αGal:PEGamine AuNPs give an 

additive effect with radiation, both in cancer and normal cells. Additionally, the exposure of 

0:100 αGal:PEGamine AuNPs, shows a substantial decrease in viability with radiation for normal 

breast cells, while the toxicity is less obvious for cancer cells (Figure 3.34 c). Moreover, the 0:100 

αGal:PEGamine AuNPs shows an additive effect with radiation, only for normal cells, while the 

toxicity remains equal for cancer cells, with or without AuNPs (Figure 3.34 d). 
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Figure 3.35: MCF-7 and MCF-10 cells irradiated to 6MeV Xray irradiation and exposed to a, b) 50:50 

αGal:PEGamine AuNPs and c, d) 0:100 αGal:PEGamine AuNPs. a and c show raw survival fraction data. 

b and d show survival fraction data corrected for chemotoxicity (normalised based on zero Gy values). 

 

When investigating breast cells irradiated with radiotherapy at megavoltage energies, 

the toxicity after radiation with AuNPs is more pronounced than with kilovoltage energies 

(Figure 3.35 a, b). Moreover, megavoltage energy X-ray irradiation is more toxic for normal 

breast cells than for the cancer ones (Figure 3.35). Both AuNPs have a stronger effect on normal 

breast cells than on breast cancer cells. 
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Table 3.7a: Sensitivity Enhancement Ratios and Dose Enhancement Factors calculated for breast cells 

Cell line (AuNP) SER4Gy  

6 MV 

SER4Gy  

220 kV 

DEF0.3  

6 MV 

 

DEF0.3 

220 kV 

 

MCF7 (50:50) 1.11 ± 0,15 0.97 ± 0,15  1.15 ± 0,36 1.20 ± 0,16 

MCF7 (0:100) 1.21 ± 0,15 0.90 ± 0,15 1.10 ± 0,13 0.99 ± 0,36 

MCF10 (50:50) 1.12 ± 0,10 1.20 ± 0,10 1.20 ± 0,42 1.04 ± 0,56 

MCF10 (0:100) 1.27 ± 0,10 1.39 ± 0,10 1.10 ± 0,38 1.06 ± 0,36 

 

Table 3.7b: Linear quadratic parameters for breast cells 

Cell line 
(AuNP) 

Linear quadratic parameters kV (220 kV) 

 

Linear quadratic parameters MV (6 MV)) 

  
a b a/b a b a/b 

MCF-7 
control 

0,25 ± 0.03 (-)0,0029 
± 0.0044 

85,4 0,1509 ± 
0.0709 

0,0471 ± 
0.0212 

3,2 

       

MCF-7 
(50:50) 

0,28 ± 0.12 (-
)0,00105 
± 0.025 

-267,8 0,3034 ± 
0.0955 

0,0167 ± 
0.025 

18,2 

       

MCF-7 
(0:100) 

0,2182 ± 
0.0407 

(-
)0,00145 
± 0.0073 

-150,5 0,135 ± 
0.0905 

0,0695 ± 
0.031 

1,9 

       

MCF-10 
control 

0,3354 ± 
0.0441 

-0,00232 
± 0.0095 

-138 0,8002 ± 
0.065 

(-)0,0479 ± 
0.014 

-16,7 

       

MCF-10 
(50:50) 

0,3265 ± 
0.0775 

0,0081 ± 
0.018 

-40,3 0,05 ± 
0.080 

(-)0,06354 
± 0.017 

-14,9 

       

MCF-10 
(0:100) 

0,3621 ± 
0.0619 

0,00055 ± 
0.0143 

658,3 0,8715 ± 
0.16 

(-)0,0542 ± 
0.036 

-16,1 

       

 

The SER and DEF values were calculated when breast cells were irradiated in presence 

of AuNPs. The SER is higher for MCF10 cells than for MCF-7 cells, which indicates that the 

radiosensitisation effect is more pronounced with normal cells than with cancer cells. This may 

be because MCF-10 cells are more sensitive to radiation, as shown in Figure 3.35, although not 

described in the literature before (Kong et al., 2008, Nicol et al., 2018). Indeed, Nicol et al 

showed a SER of 2.57 for MCF-7 compared to 1.19 for MCF-10A after peptide-AuNPs exposure 

at 25µg/ml with kilovoltage radiotherapy (160 kV X-rays) (Nicol et al., 2018).  Moreover, the 

difference in cell surface area might have an effect on the AuNPs uptake as the MCF-10 cells are 

bigger than the MCF-7 (Geltmeier et al., 2015), which may concentrate the AuNPs in the cells 

and may improve the probability of interaction with the beam of radiation. 
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Moreover, a difference can be seen between 50:50 and 0:100 αGal:PEGamine AuNPs, 

with the 0:100 αGal:PEGamine AuNPs having a stronger effect with radiation (SER of 1.21 and 

1.27 for 6MV radiation on both MCF-7 and MCF-10, compared to 1.12 and 1.11 for 50:50 AuNPs) 

(Table 3.7a). The AuNPs have less radiosensitising potential on breast cells than on skin cells. 

Here again, the different parameters explored by the Linear quadratic model are associated with 

substantial errors which makes difficult to draw a conclusion on the DEF values or the α and β 

parameters, although it is possible to note that here again, α is in general bigger than β. 

After exploring the potential effect of AuNPs on skin cells and breast cells, it is possible 

to note that 50:50 αGal:PEGamine AuNPs have a stronger radiosensitising potential with skin 

cells, particularly at kilovoltage energies, damaging specifically cancer cells, whereas it has a far 

more limited effect for megavoltage energies and for breast cells, where the radiosensitisation 

is seen more in normal cells than cancer cells. 
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 3.11. Conclusion of Chapter 3: αgalactose:PEGamine coated AuNPs 
 

In this chapter, the results of many experiments are presented, revealing that AuNPs 

coated with various ratios of αGalactose and PEGamine have different characteristics and 

behaviour. The coating influences their size, their aggregation potential, their charge, and all of 

these characteristics influence their effect on cells (Alkilany and Murphy, 2010b, Pavlin and 

Bregar, 2012, Zarschler et al., 2016). It was shown that, depending on the coating on the AuNPs, 

the uptake and toxicity on skin models is different. Indeed, the first conclusion from this work 

indicates that αGalactose and PEGamine coating the AuNPs improve their uptake and selective 

toxicity toward HSC-3 cancer cells. However, the mechanism of uptake is still unclear. It is 

possible that the positively charge AuNPs interact with the negatively charged cellular 

membrane (He et al., 2010), improving cell interaction and uptake (Beddoes et al., 2015a, 

Goodman et al., 2004). It seems that a positive charge improves the cellular uptake, but a high 

positively charge seems to decrease the uptake and the stability of the AuNPs. Some effort in 

the laboratory are being made trying to understand the mechanism of uptake (active pathways 

seem to be more involved that passive ones) and the role of cell surface structures such as 

filopodia.  

 

Regarding the mechanisms of toxicity, it seems that oxidative stress is involved, as 

antioxidants were able to rescue the AuNPs toxicity on cancer cells, but it is not clear if the 

AuNPs were disrupting the antioxidant defence, were responsible for lysosomes toxicity, or cell 

cycle disruption, as, by themselves, the AuNPs did not seem to increase the ROS production. It 

is important to mention that only a single time point, directly after AuNPs exposure was 

explored. The production of ROS might be a cumulative process and an increase might appear 

after a longer period, such as 24h. It will therefore be interesting to look at possible protein 

dysregulated and implicated in these specific pathways, such as NF-kB for antioxidant properties 

or cyclin A, B1 and E for cell cycle dysregulation (Manke et al., 2013, Bajak et al., 2015). All these 

proteins can be explored using western blot analysis or qRT-PCR for mRNA expression.  

It was also found that caspase dependant death is involved in AuNPs toxicity. A further 

way to explore this death pathway is to look at the subG1 population of the cell cycle, as well as 

western blots to examine the activation of specific caspases (Caspases 8, 9) and their regulators 

(Bcl, Bax, Bid) (Wang et al., 2005). 

These specific AuNPs coatings also improves the radiosensitisation effect. Indeed, the SER 

observed for AuNPs in combination with radiotherapy was higher than in many earlier 

publications. The radiosensitisation effect observed was higher with the 50:50 αGal:PEGamine 

AuNPs than with the 0:100 αGal:PEGamine AuNPs. These two specific AuNPs were chosen 
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because they gave the highest amount of gold inside the cancer cells. The amount of AuNPs 

uptake might not be the only factor on the radiosensitisation effect as the two AuNPs gave 

different responses. Some of the other AuNPs might also be of interest in the radiosensitisation 

effect and might give some clue on the mechanism behind it, such as the cellular localisation. 

 

The coumarin assay was not able to detect the potential radiosensitisation effect here, 

as the different coating onto the AuNP were probably interacting with the electron release. 

Moreover, the coumarin assay explores only the hydroxyl production, which is, with solvated 

electrons, the main radical produced upon radiation but other radicals such as H202 and O2
•- 

could help to predict the effect of the AuNPs. Different probes have been developed over the 

years: coumarin assay looking at •OH; DCFHDA looking at H202, ONOO- O2
•-; SOSG looking at 1O2, 

but they have been rarely used all together to look at a broad range of radicals, after irradiation 

(Lukyanov and Belousov, 2014, Roesslein et al., 2013). 

The exchange of the coating on the AuNPs with molecules in the cell environment seems 

to play an important role in the radiosensitisation effect. Glutathione is one of the most present 

molecule in the cells and is composed of thiol group which can easily interact with the thiol on 

the AuNP. An exchange between thiolated αGalactose molecule or thiolated PEGamine and the 

glutathione molecule may occur within the cells. It will be interesting to test this hypothesis by 

measuring the amount of glutathione inside the cells, and also by looking at the potential AuNP 

change in coating after incubation with glutathione molecule with ICP-MS or high-performance 

liquid chromatography (HPLC).  

 

In the next chapter, new types of AuNPs are investigated, which are slightly bigger in 

size and coated with oligonucleotides, bearing a strongly negatively charge. These AuNPs are 

designed to target the promoter sequence of the c-myc gene, decreasing its transcription. The 

hypothesis is that these new AuNPs, slightly bigger in order to visualise them due to their 

plasmon resonance for characterisation, and with their potential to target and inhibit c-myc 

protein, could improve the interaction with radiation, and thus, better act as radiosensitisers its 

optimised position near the DNA of the cells.  
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CHAPTER 4: OLIGONUCLEOTIDES COATED AuNPs 
 

Triplex structure, described in Section 1.9, is designed to target a specific DNA sequence 

of a gene, and the consequence is the prevention of interaction between the gene and its 

transcription factor or RNA and DNA polymerase. This way, TFOs can inhibit the transcription of 

specific genes or cell proliferation (Carbone et al., 2004, Wu et al., 2007). In Chapter 4, AuNPs 

coated with this structure were designed, in order to achieve sequence-specific targeting of 

AuNPs for radiotherapy, and improve the radiosensitisation effect. Chapter 3 showed that 

specific coating could improve the uptake of AuNPs in cells and increase their radiosensitisation, 

thus encouraging the exploration of TFOs coated AuNPs. 

Here, the 3.5 nm AuNPs were first coated with 4,4'-

(Phenylphosphinidene)bis(benzenesulfonic acid) dipotassium salt hydrate (PN) to limit the 

number of oligonucleotides per AuNP, and later with specific oligonucleotides capable of 

targeting the c-myc promoter. 

C-myc was thought to be a sensible gene to target as it is up regulated in many types of cancer 

and particularly in most of the head and neck squamous cell carcinoma (HNSCC), when 

compared to normal tissues (Chen et al., 2004). 

The design and testing of the above mentioned are the focus of this chapter, where the 

formation of the triplex structure was explored ex vivo using single stranded oligonucleotides 

and plasmid DNA. Moreover, the AuNPs size, charge and distribution have been characterised, 

and the effect (toxicity and radiosensitisation) of these AuNPs were examined on skin cells. All 

the conducted experiments are summarised in Table 4.1. 
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Table 4.1: Summary of the experiments done in Chapter 4. 

EXPERIMENTS RESULTS CONCLUSION 

Duplex and triplex 

formation with 

simple DNA 

sequences, gel 

electrophoresis 

Polyacrylamide electrophoresis exploring the different DNA 

sequences shows that incubating the two complementary 

strands of DNA creates easily a duplex, both with a length 

of 23 bp or 70. The triplex formation is seen with the two 

TFOs dY3 and PR, and the reaction does not depend on the 

temperature (4°C, 25°C) and on the time of incubation. 

The triplex formation is non-

temperature dependant and non-

incubation time dependent. The two 

different TFOs dY3 and PR are able to 

form a triplex. 

Triplex formation 

with the plasmid 

The plasmid interaction was explored using both agarose 

and polyacrylamide gel. No difference is seen when using 

relaxed plasmid, whereas a disappearance of the TFO using 

polyacrylamide gel is seen when incubated with nicked 

plasmid. 

The nicked plasmid may facilitate the 

accessibility of the triplex. 

Polyacrylamide gel is more informative 

than agarose to explore triplex 

formation. 

AuNPs reaction with 

the TFO coating, 

TEM 

characterisation 

The AuNPs with various coatings have a similar average size 

between 4.6 and 5.34 nm observed on TEM but have 

different aggregation profiles 

The different coated AuNPs with 

various coatings seem to have different 

surface charges, which may explain 

their different aggregation. 

Characterisation of 

the oligonucleotide 

attachment using 

DLS, XPS and EMSA, 

looking at the 

interaction between 

the TFO and its 

complementary 

probe 

The DLS experiments did not show differences in 

hydrodynamic size (between 8.3 and 9.8 nm) but slight 

difference in charges, especially with PN-dY3 and PN-PR 

coating. 

XPs is not conclusive on the AuNPs coating as the 

concentration of AuNPs is low, especially regarding the gold 

signal which is very different between the AuNPs. 

EMSA technique shows an interaction between the probe 

and the AuNPs, indicating that TFOs most likely are 

attached on the AuNPs 

DLS and XPS techniques were not 

informative on TFOs attachment to the 

AuNPs. EMSA technique showed that 

the oligo probe, complementary to the 

TFO sequence interact with the AuNPs, 

indicating the presence of TFOs on 

these AuNPs 

Effect of the Oligo-

coated AuNPs with 

irradiation outside 

of the cells using 

coumarin assay and 

Plasmid DNA 

Citrate AuNPs were able to increase the 7-OHCCA 

fluorescence, more than the other coated AuNPs. 

The effect of the different AuNPs on the plasmid in 

combination with radiation and explored by gel 

electrophoresis and PCR did not indicate any 

radiosensitisation of the different AuNPs. 

The coatings of the AuNPs may prevent 

•OH production upon radiation. 

Irradiation affect the plasmid integrity, 

however, the different AuNPs did not 

show any difference relative to the 

non-irradiated plasmid. 

Effect of the Oligo-

coated AuNPs inside 

the cells using 

clonogenic assay 

and TEM  

The different coating on the AuNPs have different impact 

on the cell toxicity. The TFO seem to lower the cell viability. 

Moreover, the TFOs coated AuNPs are able to enter in the 

cells cytoplasm and the cell nucleus, as explored with TEM. 

TFO-AuNPs increase cell toxicity, 

particularly on HSC-3 cells and increase 

the uptake. 

Effect of the Oligo-

coated AuNPs with 

irradiation inside 

the cells 

The oligo-coated AuNPs improve the effect of radiotherapy, 

even more than the citrate AuNPs, showing an SER of 1.39 

for dY3 TFO AuNPs, 1.43 for PR TFO AuNPs and 1.13 for GFP 

oligo AuNPs, compared to 0.79 for citrate AuNPs. 

TFO-AuNPs have a radiosensitisation 

effect, improving the radiotherapy 

efficiency, and this effect is TFO 

dependant as the neutral GFP sequence 

does not show a SER as large as PR or 

dY3 sequence. 
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4.1. Oligonucleotide binding with its target 

 

4.1.1. Oligonucleotide sequence selection  

 

C-myc gene encodes a transcription factor responsible for continued cell division. Under 

normal conditions, without cancer, it is responsible for the regulation of numerous genes, such 

as the ones involved in cell proliferation or glycolysis (Miller et al., 2012). It is a well-known pro-

oncogene that is dysregulated in many types of cancer (at least 40%), allowing them to divide 

uncontrollably (McGuffie et al., 2000). An oligonucleotide targeting this sequence would make 

an interesting cancer therapeutic. McGuffie et al., 2000 and Huo et al. in 2014, described a TFO 

targeting a part of the c-myc P2 promoter, which is its major promoter (Figure 4.1.a) (Huo et al., 

2014, McGuffie et al., 2000). Indeed,  promoter regions in a gene are often rich in purine, which 

favours the formation of the triplex structure (McGuffie et al., 2000). McGuffie and Huo 

demonstrated that their TFO sequence dY3 could target and knock-down c-myc protein 

expression in cells. The dY3 TFO was therefore chosen as a proof of principle with the pBV-

Luc/Del-6 plasmid, which contains the P2 promoter sequence of the c-myc gene. This plasmid is 

about 5 kb long but the entire sequence is not accessible from Addgene, only a 730 bp long 

sequence of the plasmid that is shown in the Figure 4.1.b. The P2 promoter sequence of the c-

myc gene is highlighted in grey (Figure 4.1.b) (Huo et al., 2014, McGuffie et al., 2000). 
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               a)  

   1 TTTGGCGTCT TCCATGGGTG GCTTTACCAA CAGTACCGGA ATGCCAAGCT 50 

 51 TACTTAGATC GCAGATCTCG ATACCGGATC CATTATATAC CCGAATTCGA 100 

 101 TATCGACGTC CAGCTGCAAG GAGAGCCTTT CAGAGAAGCG GGTCCTGGCA 150 

 151 GCGGCGGGGA AGTGTCCCCA AATGGGCAGA ATAGCCTCCC CGCGTCGGGA 200 

 201 GAGTCGCGTC CTTGCTCGGG TGTTGTAAGT TCCAGTGCAA AGTGCCCGCC 250 

 251 CGCTGCTATG GGCAAAGTTT CGTGGATGCG GCAAGGGTTG CGGACCGCTG 300 

 301 GCTGGGGGAT CAGCGGGAGG GCTGGGCCAG AGGCGAAGCC CCCTATTCGC 350 

 351 TCCGGATCTC CCTTCCCAGG ACGCCCGCAG CGCAGCTCTG CTCGCCCGGC 400 

 401 TCTTCCACCC TAGCCGGCCG CCCGCTCGCT CCCTCTGCCT CTCGCTGGAA 450 

 451 TTACTACAGC GAGTTAGATA AAGCCCCGAA AACCGGCTTT TATACTCAGC 500 

 501 GCGATCCCTC CCTCCGTTCT TTTTCCCGCC AAGCCTCTGA GAAGCCCTGC 550 

 551 CCTTCTCGAC TATCGATAGA GAAATGTTCT GGCACCTGCA CTTGCACTGG 600 

 601 GGACAGCCTA TTTTGCTAGT TTGTTTTGTT TCGTTTTGTT TTGATGGAGA 650 

 651 GCGTATGTTA GTACTATCGA TTCACACAAA AAACCAACAC ACAGATGTAA 700 

b) 701 TGAAAATAAA GATATTTTAT TGCGGCCGCT 730   

Figure 4.1: Plasmid pBV-Luc/Del-6, a) map of the plasmid (from: www.addgene.com), b) nucleotide 

sequence of the c-myc P2 promoter region of the plasmid. The TFO binding site is highlighted.  

 

The dY3 sequence designed by McGuffie et al. in 2000 was chosen to be used with TFO, 

along with similar TFO (PR) that was designed in house. These two sequences should be able to 

interact with the c-myc promoter via two different triplex conformations. The dY3 sequence 

contains guanine and cytosine and is designed to form a reverse Hoogsteen pairing via 

guanosine-guanosine-cytosine (G(GC)) and thymine-adenine-thymine (T(AT)) structure (Figure 

4.2.a). The PR sequence is the newly designed one that contains adenine and guanine and 

forming the same structure, where G pairs to G (G(GC), while A to A, forming adenine-adenine-

thymine (A(AT)) structure (Figure 4.2.b). This type of oligonucleotide-containing G and A is 

supposed to form stronger interactions with the DNA double helix (Malvy et al., 1999). All the 

DNA sequences used in this work are listed in Table 4.2, as well as their melting temperature 

and GC percentage. The different sequences are also presented in Section 2.1.5. 
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a)  

b)  

Figure 4.2: Triplex binding between the TFO and the DNA duplex. a) dY3 pairing, b) PR pairing. The loops 

highlight the triplex structure G(GC), T(AT), A(AT) and G(CG) as examples. 

 

Table 4.2: Different DNA sequences used in the Chapter 4. 

Sequence name Sequence composition 5’-3’ Melting 

Temperature 

% G-C 

dR1 23 TCCCTCCCTCCGTTCTTTTTCCC 75 57 

dY2 23 GGGAAAAAGAACGGAGGGAGGGA 75 57 

dR1 70 AACCGGCTTTTATACTCAGCGCGATCCCTCCCTC

CGTTCTTTTTCCCGCCAAGCCTCTGAGAAGCCCT

GC 

94.11 57.1 

dY2 70 GCAGGGCTTCTCAGAGGCTTGGCGGGAAAAAG

AACGGAGGGAGGGATCGCGCTGAGTATAAAAG

CCGGTT 

94.11 57.1 

dY3 TGGGTGGGTGGTTTGTTTTTGGG 73.9 52.1 

Thiol-dY3 [ThioC6]TGGGTGGGTGGTTTGTTTTTGGG 73.9 52.1 

PR AGGGAGGGAGGGAAGAAAAAGGG 71.7 56.5 

Thiol-PR [ThioC6]AGGGAGGGAGGGAAGAAAAAGGG 71.7 56.5 

dY3 

complementary 

CCCAAAAACAAACCACCCACCCA 73.9 52.1 

PR 

complementary 

CCCTTTTTCTTGCCTCCCTCCCT 71.7 56.5 

Thiol-GFP [ThioC6]AATATCGCGGACAGAAGACG 64 50 

 

Table 4.3 indicates the two different ratios described above for each sample. It is 

possible to note that almost all the samples have a purity ratio around 1.8 (between 1.7 and 2), 
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apart from the samples dR1 23 (1.21), dR1 70 (1.57), PR (2.22), which could indicate the presence 

of contaminants. Moreover, almost all the samples have a turbidity ratio above 1.5, instead of 

dR1 23 (1.19), which indicate that the impurity present might be salt in the solution. 

 

Table 4.3: UV-VIS absorption characteristics of the different oligonucleotide samples. 

 Concentration (ng/µl) A260/280 A260/230 

dR1 23 963.8 1.21 1.19 

dY2 23 1166.3 2.18 2.23 

dR1 70 969 1.57 1.81 

dY2 70 1104.5 1.94 2.24 

D23 2833.5 1.86 2.04 

D70 1651.6 1.85 1.70 

DY3 1121.4 1.67 2.70 

PR 994.9 2.22 2.19 

[ThioC6] dY3 68.2 1.65  2.71 

[ThioC6] PR 100.2 2.18 2.83 

[ThioC6] GFP 144.5 2.13 2.70 

Plasmid relaxed 114.5 1.92 2.27 

 

4.1.2. Duplex formation 

 

All the oligonucleotide sequences were supplied by Sigma as single stranded DNA. In 

order to explore the triplex formation with the sequence of interest, a duplex target sequence 

was first prepared. Briefly, two complementary strands of DNA, dR1 and dY2, either of 23 bp or 

70 bp were incubated in order to form double stranded DNA (Table 4.2). 

The details of the incubation can be found in Section 2.14. After 5 min incubation of both 

sequences at 94°C in order to open the structure and then 1h at RT, the DNA duplex was formed. 

The samples were then kept in the fridge. The exploration of the c-myc duplex formation was 

done using polyacrylamide gel electrophoresis. 
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lane 1 2 3 4 5 6 7 8 9 10 11 

sample Ladder  dR1 dY2 X dR1 X dR1 dY2 X dR1 Ladder 

sample    X +dY2 X   X +dY2  

Size 

(bp) 

 23 23  23  70 70  70  

Figure 4.3: 20% PAGE representing the duplex formation. The gel was run in 1xTBE for 1h at 8 V×cm-1. 

 

Single stranded and double stranded DNA migrate with different rates on a gel, due to 

their conformation. Single stranded DNA is lighter and therefore migrates further on a gel. From 

this statement, on Figure 4.3, the duplex formation is noticed on lane 5, where two 

complementary single strands of 23 bases each were incubated. This result is confirmed when 

looking at the DNA ladder, on the right side of the gel (lane 11), which reflects the size of double 

stranded DNA. The band in lane 5, containing the two complementary strands, supposedly 

representing a duplex of 23 bp, migrate comparatively to the ladder, between 20 and 30 bp, 

whereas the single strand migrates between 10 and 20 bp. Single stranded DNA in lane 2 and 3 

migrate faster and have a band signal much lighter due to half the amount of DNA, and due to 

their single strand conformation. The same migration is seen for the sequence of the length of 

70 bp, where the band containing the DNA duplex is brighter than single stranded DNA, and 

migrates less rapidly on the gel, although it is not as clear as for the sequence of 23 nucleotides 

due to less efficient separation with the high percentage polyacrylamide gel. However, the 

increase of brightness for the band on lane 10 compared to the two single strands of 70 bp, 

suggests a possible binding (Annex 3.1). 
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4.1.3. Triplex formation 

 

After preparing the duplex sequence of interest, the triplex formation between the 

duplex and each TFOs was investigated. Two sizes of duplexes were used in order to explore the 

specificity in triplex formation depending on the oligo size, since the triplex binding might be 

different when the TFO recognises its specific target among a long sequence of DNA. Different 

conditions were used, such as varying temperatures and incubation times required to find the 

optimum condition for triplex formation. Figure 4.4 shows the triplex formation with dY3 

sequence while Figure 4.5 shows the triplex formation with PR TFO sequence. 

During the initial experiments, the samples were run in 1xTBE, the standard buffer used to 

explore DNA sequences. However, triplex formation requires the presence of positive ions such 

as magnesium. Therefore, the presence of EDTA in the TBE would interfere with this reaction 

(Carbone et al., 2004, McGuffie et al., 2000). Accordingly, all the triplex-related electrophoreses 

were run in tris-borate-magnesium (TBM) buffer. The protocol is shown in Section 2.3. 
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lane 1 2 3 4 5 6 7 8 9 10 

sample dY3  D23 D70 D23 D23 D70 D70 D23 D70 Ladder 

sample    +dY3 +dY3 +dY3 +dY3 +dY3 +dY3  

temperature    RT 4°C RT 4°C NI NI  

Figure 4.4: 20% PAGE representing the triplex formation between the duplex of DNA and the dY3 

sequence incubated overnight at different conditions. The gel was run in 1xTBM for 2.5 h at 8 V×cm-1 

and at 4 °C. dY3 TFO was added in excess of 10/1 to the duplex; NI-= no incubation 

 

In Figure 4.4, the duplexes of 23 bp (lane 2) and 70 bp (lane 3) can be clearly noticed, 

when compared to the ladder (Annex 3.2.1). Lanes 4 and 5 represent the duplex incubated with 

TFO-dY3 and a band shift is noticed when comparing to the duplex only. The triplex structure is 

heavier than the duplex and therefore migrates less far in the gel. Incubating the triplex 

overnight at different temperatures (4°C, 25°C) does not change the reaction. When looking at 

lanes 6 and 7, it is not clear whether the TFO is able to bind to the duplex of 70 bp (D70) or not. 

Finally, when looking at lane 8, which represents the duplex of 23 bp (D23) in presence of the 

TFO but with an incubation of less than 30 min, a band shift is again noticed, indicating that 

triplex formation happens very quickly. 

 

Figure 4.5 describes the results of triplex formation, as before, but using the PR TFO. A 

band shift is noticed when D23 is incubated with PR TFO. This band shift appears clearly as well 

when PR TFO was incubated with D70. PR and dY3 sequences have two different mechanism of 

triplex formation and therefore, PR might have a stronger binding probability to the duplex 

sequence than dY3 (Vasquez and Glazer, 2002). Once again, no difference between the various 

incubation parameters was observed (Annex 3.2.2), indicating that triplex formation occurs 

rapidly. 

 



149 
 

       

lane 1 2 3 4 5 6 7 8 9 10 11 

sample D23 D70  Ladder D23 D23 D23 D70 D70 D70 PR Ladder 

sample    +PR +PR +PR +PR +PR +PR   

Temperature    RT 4°C NI RT 4°C NI   

Figure 4.5: 20% PAGE representing the triplex formation with PR sequence incubated overnight at 

different conditions. The gel has been run in 1xTBM for 2h30 at 8 V×cm-1 and at 4°C. PR TFO was added 

in excess of 10/1 to the duplex. 

 

After testing different protocols in order to explore the triplex formation, it was possible 

to observe clearly the triplex structure formed between a double stranded DNA and the 

designed TFO. As mentioned in Section 1.9., this structure requires divalent cations (such as 

Mg2+) for triplex stabilisation and formation due to electrostatic interaction with the phosphate 

anions present (Carbone et al., 2004).  

Triplex formation can occur when TFO is used at a concentration of 10/1 TFO/Duplex 

(TFO/D). Thereafter, different ratios of TFO/D were incubated in order to investigate the 

optimum concentration of TFO required for the reaction to occur. A minimum amount of 

oligonucleotide will be favoured in order to further coat AuNPs with these sequences. Indeed, 

too many oligonucleotides on the AuNPs may cause steric hindrance and could form a dense 

coating that restricts secondary electron release upon irradiation, and therefore lowers the 

potential radiosensitisation effect. 

Only the duplex D23 was used for these experiments, as the band shift representing the triplex 

formation is easier to observe with this length of DNA. 
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lane 1 2 3 4 5 6 7 8 9 10 11 12 13 

sample D23 dY3  dY3 dY3 dY3 dY3 dY3 dY3 dY3 dY3 dY3 x Ladder 

sample       +D23 +D23 +D23 +D23 +D23 x  

ratio  0.5 1 2 5 10 0.5/1 1/1 2/1 5/1 10/1   

% 

triplex 

 formed  

(annexe  

3.2.3) 

      2.2% 14.9% 40.7% 86.7% 93.3%   

Figure 4.6: 20% PAGE representing the triplex formation with dY3 sequence incubated overnight at RT. 

The gel has been run in 1xTBM for 2h30 at 8 V×cm-1 and at 4°C.  

 

Figure 4.6 shows the triplex formation after incubating D23 with different 

concentrations of dY3 TFO. Lane 1 shows D23, while lane 7 to 11 represent D23 incubated with 

the TFO at various ratios. At a ratio of 0.5 /1 of TFO/D, almost no triplex is formed (2.2%) while 

at a ratio of 10 /1 of TFO/D, almost all the duplex has reacted with the TFO to form a triplex 

(93.3%) (Annex 3.2.3., gel analysis). It is possible to note a concentration dependence between 

the ratio of TFO/D and the triplex formation. Indeed, the duplex band intensity decreases when 

increasing the amount of TFO and proportionally an increase of band intensity for the triplex 

signature is seen. 
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lane 1 2 3 4 5 6 7 8 9 10 11 12 13 

sample D23 PR  PR PR PR PR PR PR PR PR PR x Ladder 

sample       +D23 +D23 +D23 D23 +D23 x  

ratio  0.5 1 2 5 10 0.5/1 1/1 2/1 5/1 10/1   

% triplex  

formed  

(annexe 

3.2.4) 

      53.8

% 

91% 94% 94.7

% 

98.5

% 

  

Figure 4.7: 20% PAGE representing the triplex formation with PR sequence incubated overnight at RT. 

The gel has been run in 1xTBM for 2h30 at 8 V×cm-1 and at 4°C.  

 

A similar experiment on the exploration of triplex formation and ratio of TFO/D, with PR 

TFO, was performed. At a ratio of 0.5/1 of TFO/D, already 53.8% of D23 has reacted to form a 

triplex. The triplex formation goes up to 98.5% for a ratio of 10 /1 TFO/D (Figure 4.7, Annex 3.2.4, 

gel analysis). As previously mentioned, PR TFO has a different triplex binding complex with the 

purine strand of DNA (Figure 4.2). This TFO can react and form a triplex with the sequence of 

interest more rapidly and more efficiently than the TFO dY3 (53.8% compared to 2.2% at a ratio 

of 0.5 /1 of TFO/D) (Figure 4.6, 4.7). 

 

In order to explore the specificity of the triplex formation with the sequence of interest, 

the duplex of 23 bp was incubated with a non-specific sequence (dY2) of 23 bp, which is not 

supposed to form a triplex. Indeed, it is important to look at the specificity of the triplex reaction, 

if considering creating such structure in cells. Only the sequence designed would be able to 

interact with the targeted gene. 
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line 1 2 3 4 5 6 7 8 9 

sample Ladder DY2 D23 D70 D23 D70 Ladder D23 D70 

sample   +dY2 +dY2    +PR +PR 

ratio  10 10/1 10/1    10/1 10/1 

Figure 4.8: 20% PAGE representing triplex formation with PR and dY2 sequence incubated overnight at 

RT. The gel was run in 1xTBM for 2.5 h at 8 V×cm-1 and at 4°C. 

 

In Figure 4.8, triplex formation is shown with the TFO-PR sequence on lanes 8 and 9. 

When a neutral sequence of 23 bp (dY2) was incubated with either D23 or D70, no interaction 

with the duplexes were observed (lanes 3 and 4). The dY2 sequence is part of the duplex 

sequence of DNA. It was chosen as very similar in nucleotides to the d23 TFO sequence. The 

triplex formation seems to be very specific to the sequence of interest. 

 

4.1.4. Triplex formation with plasmid 

 

The plasmid pBV-Luc/Del 6 was used in order to explore the sequence targeting with 

the TFOs of interest on a more complex model. The plasmid was incubated with the two TFOs 

in order to explore triplex formation. Plasmid DNA was tested either in its relaxed form, or was 

double cut with Bfml and NotI restriction enzymes in order to generate a c.a. ~300 bp long 

sequence containing the c-myc promoter region of interest. Restriction enzymes are bacterial 

enzymes that recognize specifically 4 to 8 bp sequences, called restriction sites, and then cleave 

both DNA strands at this site.  
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a)     b)  

lane  1 2 3 4 5 lane 

 

1 2 3 4 5 6 7 

sample  Pl Pl Pl Pl L sample L Pl Pl Pl Pl Pl Pl 

form  L L L R  form  L L L R R R 

Enzyme  Bfml 

+Notl 

Notl Bfml   Enzyme  Bfml 

+Notl 

Bfml 

+Notl 

Bfml 

+Notl 

   

sample       sample   dY3 PR  dY3 PR 

Figure 4.9: 1.2% AGE showing a) Incubation of plasmid pBV-Luc/Del6 with 2 endonucleases; b) mixtures 

of plasmid pBV-Luc/Del6 with PR or dY3 TFO sequences at a 10/1 ratio of TFO/plasmid incubated 

overnight at RT. The gels have been run in 0.5xTB for 2h at 8 V×cm-1; R - relaxed, L – linear; L-ladder. 

The blue rectangles indicate a 300 bp fragment. 

 

In Figure 4.9, two different forms of the plasmid can be observed. Indeed, the two 

different endonucleases are responsible for cleavage in the relaxed plasmid, thus increasing its 

linear form. The enzyme Bfml seems to recognise and cut different sites in the plasmid (Figure 

4.9 a). As mentioned before, the full sequence of the plasmid is not available from the supplier 

and the restriction enzymes might be responsible for different DNA fragments than expected. 

The combination of both enzyme together produces various breaks and various bands in the 

plasmid (Figure 4.9 a). Interestingly, according to the ladder, a band of about 300 bp is seen and 

could be our sequence of interest (c-myc promoter), which will be able to form a triplex with the 

TFOs.  When looking at the triplex formation, it is difficult to note any changes in the plasmid 

and its different forms (Figure 4.9 b). The agarose gel is not conclusive on whether the triplex 

formation is happening with the plasmid or not. The agarose gel is able to separate rather large 

sequences, but for smaller sequences (like the TFO), polyacrylamide gel is preferred. Therefore, 

plasmid DNA incubated with the TFO of interest was investigated with polyacrylamide gel. 
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lane 1 2 3 4 5 6 7 8 9 

sample Pl  Pl Pl Pl Pl Pl PR Dy3 Ladder 

form        nicked relaxed    

sample PR dY3  PR dY3     

TFO signal 

%/control 

(Annex 3.3) 

40.

3% 

51.5

% 

 95.

7% 

105%  100

% 

100

% 

 

Figure 4.10: 20% PAGE showing mixtures of plasmid pBV-Luc/Del6 with PR or dY3 TFO sequences 

incubated overnight at RT. The gel was run in 1xTBM for 2h at 8 V×cm-1. 

 

In Figure 4.10, the plasmid was incubated with the different TFOs. The samples were 

loaded and run this time on a polyacrylamide gel, which does not allow the plasmid to enter due 

to its large size, but still this could be informative on the possible interaction between the TFO 

and its target sequence within the plasmid. Indeed, if the band showing the TFO alone is 

disappearing from the gel when loaded with the plasmid, it will indicate that an interaction 

between plasmid and TFO took place. From the Figure 4.10, it is possible to notice clearly the 

two TFOs in lanes 7 and 8. These bands are much less pronounced when TFO were incubated 

with the nicked plasmid (Lane 2, 51.5% of the original signal for dY3 and Lane 1, 40% for PR, 

Annex 3.3), indicating a possible interaction with the nicked plasmid. No changes in TFO signal 

intensity were noticed when the TFOs were incubated with the unprocessed plasmid. 

Interestingly, Luigi et al. observed triplex formation when incubating their sequence of 

interest with the nicked form of the plasmid Bluescript KS+ on agarose gel (XODO et al., 1993). 

Moreover, Hampel et al. in 1993 showed a triplex structure on agarose takes place for plasmid 

at pH 4 and in the presence of supercoiled and nicked form (Hampel et al., 1993). The pH4 could 

modify the supercoiled form of the plasmid by creating breaks in the structure, relaxing the DNA 

and therefore aid the triplex structure to happen (Hampel et al., 1993). It is not clear why the 

relaxed form of the plasmid explored in this work on agarose gel does not give indication on 



155 
 

triplex formation. It may be interesting to try this experiment with a different pH. Moreover, 

different restriction enzymes could be used to obtain different fragments of plasmid DNA. 

 

Two TFOs were explored as targets of the c-myc gene, one designed by Mc Guffie et al., 

in 2004 and already shown to enter the cell nucleus and form a triplex, another one designed at 

the Open University laboratory, similar in binding but rich in purine, which is supposed be more 

stable and bind more easily to its target sequence. From the ex vivo experiments performed on 

the double stranded DNA and the plasmid, it seems that the sequence designed at the OU (PR) 

rich in purine binds more substantially to the double stranded target DNA, as more triplex is 

seen by electrophoresis or a greater disappearance of oligonucleotide when incubated with 

plasmid. The next experiment explored the possibility to coat AuNPs with these two TFOs and 

explore their effect on biological models, in order to improve the radiosensitisation effect of 

AuNPs. 

 

4.2. Oligonucleotide coated AuNPs characterization  

 

4.2.1. AuNPs size characterised by TEM analysis 

 

In order to stabilise the AuNPs and try to regulate the number of the oligonucleotides 

attached, AuNPs were coated with PN molecule. PN is characterised by two sulphurs which can 

interact with gold via covalent binding. Moreover, it is known that a ligand exchange reaction 

can easily happen between the PN-stabilised AuNP and another thiol molecule, making it an 

interesting coating for further oligonucleotide functionalisation (Muramatsu and Miyashita, 

2009).  

The coating brings stability to the NPs by avoiding NP-NP interaction, making the AuNPs more 

soluble in water. Interestingly, AuNPs seem to be more stable and more resistant when the 

ligand possesses more than one thiol (Kang et al., 2010). 
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a)   

b)    

c)   

d)   

Figure 4.11: Observation of the core size of the different AuNPs under the TEM. a) citrate AuNPs; b) PN 

AuNPs; c) oligonucleotides -PN-AuNPs; d) citrate-oligonucleotides-AuNPs. Values ±SD. 

 

From the TEM images on the Figure 4.11, it is possible to conclude about the average 

size and the aggregation potential of the AuNPs. All the AuNPs seem to have the same average 

size between 4.6 and 5.34 nm, but the distribution is broad and standard deviation is large for 

some AuNPs (e.g. citrate oligo AuNPs). Looking at the aggregation, AuNPs coated with citrate 
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only or PN molecule seem to be well-separated while the AuNPs coated with DNA seem to be 

more clustered together. The DNA molecules could affect the stability of the AuNPs.  

 

4.2.2. AuNPs concentration measurements 

 

The concentration of the different AuNPs was measured using UV-Vis spectrometry 

(Nanodrop) and gold measurement (Aqua regia, methods explained in section 2.1.2). Two 

methods were used in order to explore if the nanodrop could give accurate data on the gold 

content when a coating on the AuNPs was present, compared to the Aqua regia, which measure 

only the amount of gold in the sample. These two data were converted to µg/ml using the 

molecular weight of the AuNPs. 

 

Table 4.4: Concentration of the different AuNPs. 

NPs Nanodrop 

(Conc in µM) 

Nanodrop (Conc in 

µg/ml) m=n×M 

Aqua regia 

(Conc in 

µg/ml) 

% difference 

Nanodrop/Aqua 

regia 

Citrate NPs 8.9 2.7 4.3 159 

PN NPs 13.2 4 6.5 163 

Citrate-dY3 NPs 9.9 3 3.06 102 

Citrate-PR NPs 9.6 2.96 2.49 84 

Citrate-GFP NPs 6.38 1.96   

PN-dY3 NPs 7 2.1 2.46 117 

PN-PR NPs 5.75 1.7 1.96 115 

PN-GFP NPs 8.72 2.68   

 

For more than half of the AuNPs, the Aqua regia and Nanodrop measurements gave a 

similar concentration of gold in µg/ml, however, for the AuNPs which are the most 

concentrated, the difference between the two methods became larger (Table 4.4). For further 

experiments, only the concentration measured by the Nanodrop was used as it was also used 

for the measurement of DNA, and it was easier and cheaper to perform on a day to day basis.  
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4.2.3. Oligonucleotide attachment to AuNPs and characterisation  

 

Characterization by Dynamic light scattering (DLS) 

The hydrodynamic size of the AuNPs was explored using DLS in UHP water.  

 

Table 4.5: Dynamic Light scattering analysis 

NPs TEM (nm) Hydrodynamic size (nm) Zeta potential (mV) 

Citrate NPs 4.68 ± 1.40 9.2 ± 3.0 - 41.9 ± 9.52 

PN NPs 4.74 ± 1.00 8.9 ± 3.2 - 38.8 ± 6.85 

Citrate-DY3 NPs 4.6 ± 1.97 9.8 ± 4.3 - 43.4 ± 25.3 

Citrate-PR NPs n/a 8.7 ± 3.2 - 37.0 ± 32.2 

PN-DY3 NPs 5.34 ± 1.25 9.0 ± 3.3 - 27.3 ± 9.45 

PN-PR NPs n/a 8.3 ± 3.2 - 55.7 ± 16.2 

 

The hydrodynamic diameters explored by DLS are higher than those observed with TEM 

(Figure 4.11; Table 4.5). This is expected as the DLS gives information on the size of AuNPs with 

their coating in solution. However, no difference was observed between the different coated 

AuNPs. It is not clear, at this stage, whether the attachment between the TFOs and AuNPs has 

happen or not. Zeta potential measurements revealed that all the AuNPs have the same average 

negative charge. Only PN-dY3 AuNPs seemed to have a slight increase in negative charge but 

this difference is not significant.  

 

Characterization by X-ray photoelectron spectroscopy 

In order to explore the coating of the AuNPs and make sure that the dY3 TFO is attached 

to their surface, X-ray photoelectron spectroscopy (XPS) was used. This ultra-high vacuum 

technique allows determining the number of photoelectrons emitted from the sample, as well 

as their binding energy. This information is specific to the interactions between various chemical 

elements in the sample. 

Three different elements were considered, sulphur, phosphorous and gold, and specifically the 

atomic orbitals: S2p, P2p and Au4f, which can be found respectively in the coating or the core 

of the AuNPs. The protocol for this technique is described in Section 2.1.4. 
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Table 4.6: XPS analysis, characteristics of the different peaks, such as their binding energies and their 

intensities in counts per second (CPS) observed for each element, on the different samples measured 

(Annex 3.4). 

 P(2p) S(2p) Au(4f) P/Au 

ratio 

S/Au 

ratio 

Citrate AuNPs   

Peak 

(eV) 

140 133 166 87 83 1.45 2 

Intensity

(cps) 

30 29 40 20 20   

Citrate-TFO -AuNPs   

Peak 

(eV) 

140 133 167.5 89.5 83 17 26.6 

Intensity 

(cps) 

52 51 80 3 2   

PN-AuNPs   

Peak 

(eV) 

140 133 167 89 82.5 1.66 2.29 

Intensity 

(cps) 

42 40 55 24 22   

PN-TFO-AuNPs   

Peak 

(eV) 

140 133 167 87 83 0.98 1.62 

Intensity 

(cps) 

51 49 81 50 51   

 

The differences in electrons spectra from XPS technique can be used to analyse the 

presence of surface coating on the AuNPs (Wang et al., 2016). In all cases, the two characteristic 

peaks of the gold element, Au4f7/2 and Au4f5/2 are observed, for some cases very small, at 83 eV 

for Au4f7/2 and between 87 and 89.5 eV for Au4f5/2 (Table 4.6, Annex 3.4). The standard energy 

positions for bulk metallic gold of these two peaks are 84 eV and 87.3 eV for Au4f7/2 and Au4f5/2 

respectively (Wang et al., 2016).The intensities are very different for each sample and could be 

explained by an interaction with the coating of the AuNPs. However, the highest count levels 

were obtained with the AuNPs coated with PN and TFOs, therefore, these differences in 

intensities could be explain by a difference in gold concentration. Although an equivalent 

concentration (gold amount) of AuNPs was used for these experiments, it will be interesting to 

repeat the XPS counts with the exact same amount of gold. 

Interestingly, analysis of the sulphur element give rise to one single peak, at 166 eV for 
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the citrate AuNPs and at 167 eV for the other coated AuNPs. A peak around 164 eV would be 

characteristic for a thiol group, while a peak at 162.5 eV would be characteristic for the Au-S 

bond (scientific, 2013-2017). In this case, the sulphur analysis is not conclusive whether the Au-

S bond is present in the system or not. It is also possible that the PN and the TFO bind via P-S 

bond (Orthaber et al., 2015). Interestingly, Zhuge et al. found three peaks when exploring the 

interaction between triphenylphosphine molecule and a gold surface, attributing a peak of 132.8 

eV to the oxidation of the phosphorous of the molecule and one at 134.32 eV, attributed to the 

adsorption of phosphorous on the gold surface (Zhuge et al., 2017). In this case, the 

phosphorous analysis gave rise to two peaks, at 133 eV and at 140 eV (Table 4.6, Annex 3.4). The 

peak at 133 eV most likely represents the P-O bond. It is possible to note also that the intensity 

of the peak at 133 eV is increased in all the samples, compared to the citrate AuNPs, which could 

indicate the presence of the coating as the two different molecules PN and TFOs contains 

phosphorous groups. 

When incubating the AuNPs with the different coatings, the AuNPs were washed and all 

the unbound molecules should have been removed from the solution. However, it will be 

interesting to test whether unbound molecules are still present in solution using ICPMS of the 

supernatant after filtering the AuNPs. In order to observe the possible presence of the coating 

on the AuNPs, ratios of P/Au and S/Au were calculated. Because the amount of gold in each 

sample is different, it is difficult to compare the ratio and to conclude on the possible increase 

of phosphorous and sulphur elements. 

 

Different information arise from the element analysis of the various AuNPs, but due to 

insufficient amount of each samples, it was not possible to draw quantitative conclusions 
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Characterization of the coated AuNPs by gel electrophoresis 

  

  

lane 1 2 3 4 5 6 7 8 

AuNPs 

coating 

(ratio 

of oligo 

/AuNP 

citrate  PN  PN 

oligo 

 1/1  

 

PN 

oligo  

1.5/1 

  

PN 

oligo 

 2/1 

 

PN 

oligo  

5/1  

 

PN 

oligo  

10/1 

  

x 

Figure 4.12: 1% AGE representing the AuNPs coated with different molecules. The gel was run in 0.5xTB 

for 2h at 8 V×cm-1. 

 

From the Figure 4.12, it is possible to note that the AuNPs have different migration on 

the gel regarding their coating. They all have the same size, but their coatings are different. The 

citrate AuNPs did not migrate in the gel. A possible explanation could be that the citrate capping 

is easily removed from the AuNPs when entering the gel, and the charge distribution uneven. 

Indeed, we have seen that citrate AuNPs in water are negatively charge, but as soon as they are 

in contact with another buffer, the citrate capping might become too weak and fall apart 

(Kalimuthu and John, 2010). Another possibility would be that they aggregate in salt solution. 

One way to test this hypothesis would be to look at their behaviour under TEM when the citrate 

AuNPs are diluted in such a solution, e.g. PBS. 



162 
 

The opposite behaviour is observed for the AuNPs coated with PN, which migrate quite 

far on the gel and confirm that the AuNPs are negatively charge. PN coating seems to be stronger 

than the citrate one. Finally, when looking at the AuNPs with different ratio of dY3 oligos 

attached to their surface, the band is less clear and more diffuse. Moreover, a band near the 

origin decreases when increasing the amount of oligo, while another band at the end is seen for 

the AuNPs coated with ratios of 5/1 and 10/1. It is most likely that these AuNPs have different 

populations and different numbers of oligonucleotides. 

 

AuNPs interaction with its complementary sequence 

 

            

lane 1 2 3 4 5 6 7 8 9 10 

oligo 1 1  1.5 1.5 2 2 5 5 10 10 

AuNPs  

(Yes (Y)/ No (N) 

Y N Y N Y N Y N Y N 

Figure 4.13: 15% PAGE representing the interaction between the TFO coating the AuNPs and its 

complementary sequence incubated overnight at RT, followed by an EMSA. The gel has been run in 

0.5xTB for 2h at 8 V×cm-1. The concentration of oligo represents the ratio of oligo/AuNP. 

 

Figure 4.13 represents the dY3 oligonucleotide attachment to its complementary 

sequence, forming a duplex. The attachment between the two sequences is designed to form a 

duplex, which is more likely to happen than a triplex, and thus increase the sensitivity of the 

reaction. For example, there is no limitation in the presence or absence of Mg2+ or no limitation 

in the amount of probe to use. Indeed, the duplex was shown in the section 4.1.2 to happen at 

a ratio of 1/1 DNA sequences. The complementary sequence attachment will give information 
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on the number of oligonucleotides attached to the AuNPs as the complementary sequence 

contains a biotin probe which is very sensitive. Since the AuNPs are not able to enter in the gel, 

even at a low percentage, it is very difficult to conclude on the number of TFOs on each AuNPs. 

However, this technique can give information whether the TFOs are indeed attached to the 

AuNPs. Particularly, as the fluorescent probe recognises the TFO and as the AuNPs cannot enter 

the gel, if the TFOs are coating the AuNPs, the probe should be retained at the entrance of the 

gel. This is indeed what can be observed in Figure 4.13. 

The fluorescence signal of the biotin probe alone, which is the complementary sequence 

to the TFO, can be seen at the bottom of the gel on lanes 2, 4, 6, 8, 9 and 10. Different 

concentrations were used to correlate the different amount of TFOs added on the AuNPs. It is 

possible to see on lanes 9 and 10 a saturation of the fluorescence. Moreover, a disappearance 

of the fluorescence of the biotin probe is noticed when this complementary sequence is 

incubated with the TFO-coated AuNPs (lanes 1, 3, 5, 7). The fluorescence of the probe is not 

seen on the bottom of the gel anymore but at the top and in a much brighter signal. The AuNPs 

which seem to react the most are the ones coated with a ratio of 2/1 and 5/1 TFO/NP as a 

complete disappearance of the biotin signal on the bottom of the gel is observed, representing 

the complementary sequence unbound. From the Figure 4.13, it is possible to conclude that 

AuNPs coated with a ratio of 2/1 and 5/1 TFOs/NP seem to have bound with the oligonucleotides 

and seem to react easily with their complementary sequence to form a duplex. Coated AuNPs 

with 2/1 or 5/1 TFO/NP have a chance to enter the cells and possibly to react with the sequence 

of interest and form a triplex. 
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AuNPs interaction with its target 
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Figure 4.14: 20% PAGE showing mixtures of D23 with PR or dY3 TFO coated AuNPs incubated overnight 

at RT. The gel was run in 0.5xTB for 2h at 8 V×cm-1. 

 

The Figure 4.14 shows the migration of the duplex of 23 nucleotides, incubated with the 

different AuNPs. The AuNPs coated with oligonucleotides should be able to form a triplex with 

the duplex of DNA. From the Figure 4.14, the triplex formation with the dY3 sequence is clearly 

seen, while with the thiol-dY3, it is less clear, but a band shift can still be observed. It seems that 

the thiol group affects the triplex formation. It will be interesting to explore different thiol 

spacers in order to find the best steric conformation for the triplex formation to happen. 

However, when looking at the triplex formation with the AuNPs coated with oligonucleotides, 

the band shift is not observed. A diffuse band is observed with the AuNPs coated with a ratio of 

10/1 oligonucleotides, possibly indicating a minor reaction. 

 

Following these results, it was difficult to make a decision on which ratio of TFO/AuNPs 

to use for cell analysis and radiosensitisation. The 5/1 TFO coated AuNPs gave the best duplex 

formation in Figure 4.14 and was taken forwards for possible triplex formation and in the next 

experiments. 
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4.3. Oligonucleotide coated AuNPs effect on cell survival 
 

4.3.1. Cell proliferation and survival 

 

The effect of AuNPs coated with different oligos at a 5/1 ratio of oligo/AuNP was 

explored on skin cells. In order investigate the possible toxicity of the different AuNPs, the 

clonogenic assay was used, which give information on the cell proliferation and the cell viability. 
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Figure 4.15: Clonogenic assay after AuNPs exposure at different concentrations. The graphs represent 

the percentage of viability compared to the control for a) HSC-3 cells; b) HaCaT cells. Data are presented 

as mean percentage survival ± standard deviation. Statistical differences in dose responses for each 

AuNPs on each cell line was analysed by two-way Anova followed by a Dunnett's multiple comparisons 

test. 
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All the AuNPs start to show a toxicity at a concentration of 10 µg/ml on HSC-3 cells 

(Figure 4.15 a, Annex 3.5.1). Citrate dY3, PN-dY3 and PN-PR AuNPs seem to be the most toxic as 

they are responsible for a statistically significant effect compared to the control already at 3 

µg/ml (Annex 3.5.1). However, none of the AuNPs seem to show a strong toxicity on HaCaT cells 

(Figure 4.15 b, Annex 3.5.2). Indeed, the viability compared to the control only decreases up to 

25% when HaCaT cells were exposed to PN-PR AuNPs. From these experiments, it is possible to 

notice that the coated AuNPs, especially with TFO present, give a small but selective toxicity 

toward cancer cells. This toxicity is seen particularly at 10 µg/ml and is statistically significant for 

all the AuNPs (Annex 3.5.1).  

 

4.3.2. Cell proliferation 

 

Figure 4.16 shows the number of cells after AuNPs exposure, at different time points 

after an exposure for 3 hours. The CyQuant assay quantifies the amount of duplex DNA in the 

cells and in a population of unsynchronised cells, this is assumed to be proportional to the 

number of cells present. Not only TFOs coated AuNPs but also AuNPs coated with non-triplex 

forming oligos were explored for these experiments and for the further ones. The oligo GFP is 

not present in the human cells and is moreover not designed to form a triplex. This sequence 

coating the AuNPs was used to explore the specific effect of the TFO inside the cells, compared 

to the effect of a DNA sequence. It is possible to note that all AuNPs decrease significantly the 

cell number compared to the control, without AuNP exposure. However, the number of cells has 

doubled from 48 h to 96 h in all conditions. Moreover, the difference between the number of 

cells without AuNPs exposure and the exposed samples is not statistically different after 96 h. It 

seems that the cell cycle was not impacted by the AuNPs as the cell growth remained unaffected 

in all condition. Moreover, the slope of the curve representing the cell growth for each condition 

is similar, indicating no specific effect on the cell proliferation rate.  
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Figure 4.16: Effect of the different AuNPs on the cell proliferation and survival. CyQuant assay. The data 

are expressed as mean cell number ± SEM. A two-way Anova followed by a Dunnett’s post-test was 

done to explore the difference between the different exposures and the control for each time point. 

 

At this point there is no evidence that the TFO is binding the c-myc promoter sequence 

in the cells. There is no evidence that the cell cycle or the cell growth is dysregulated. The next 

experiment was designed to explore if the AuNPs can enter the cells. Indeed, the effect of the 

TFO will depend on the AuNPs localisations in the cell. In order to explore the effect of these 

AuNPs on both cell lines, their uptake and localisation were evaluated using TEM.  

 

4.4. Oligonucleotides coated AuNPs and cellular uptake 
 

Figure 4.17 and 4.18 represent the coated AuNPs observed in HSC-3 (Figure 4.17) and 

HaCaT cells (Figure. 4.18) after 3 hr exposure. From several different TEM images, it was possible 

to quantify the number of AuNPs within each cell compartment (cytoplasm, nucleus) per nm2; 

and on the cell surface per nm. These quantitative data are shown in Figure 4.19. 
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a)  b)  c)  

d)  e)  f)  

g)  h)  i)  

Figure 4.17: Observation by TEM of HSC-3 cells exposed to a) no AuNPs, b) citrate AuNPs, c) PN AuNPs, 

d) citrate dY3 AuNPs, e) citrate PR AuNPs, f) citrate GFP AuNPs, g) PN-dY3 AuNPs, h) PN-PR AuNPs, i) 

PN-GFP AuNPs. The scale is 1000 nm for all the images. 
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a)   b)  c)  

d)  e)  f)   

g)  h)  i)   

Figure 4.18: Observation by TEM of HaCaT cells exposed to a) no AuNPs, b) citrate AuNPs, c) PN AuNPs, 

d) citrate dY3 AuNPs, e) citrate PR AuNPs, f) citrate GFP AuNPs, g) PN-Y3 AuNPs, h) PN-PR AuNPs, i) PN-

GFP AuNPs. The scale is 1000 nm for all the images. 
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Figure 4.19: TEM analysis of AuNPs/area of the cells after exposure. The data represent mean ± SEM of 

a minimum of 20 images, representing 20 cells. Cytoplasm and nucleus uptake are visualised on the y 

left axis (NP/nm2) while surface uptake is visualised on the y right axis (NP/nm). 
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a) citrate AuNPs, b) PN AuNPs, c) citrate dY3 AuNPs, d) citrate PR AuNPs, e) citrate GFP AuNPs, f) PN 

dY3 AuNPs, g) PN PR AuNPs, h) PN GFP AuNPs. The data are presented as mean number of AuNPs ± SD. 

A two way Anova, followed by a Tukey post-test was used to explore any statistical difference between 

the uptake of the different AuNPs for each cell line, while a two-way Anova followed by a Sidak post-

test was used to explore any statistical difference in uptake between the two cell lines for each AuNPs. 

Detailed values of the number of AuNPs for each condition can be found in Annex 3.6. 

 

Interestingly, having an oligonucleotide coating the AuNPs seems to improve the 

nuclear uptake, compared to citrate coated AuNPs, although this result is only statistically 

significant for the citrate dY3 AuNPs (Figure 4.19). This result in in accordance with the literature 

where Cui et al found an increase of cellular uptake of AuNPs coated with a peptide compared 

to PEG alone with a fourfold increase inside MDA-MB-231 cells (Cui et al., 2017), while Burger 

et al used a DNA transfection agent and showed an increase of uptake inside Hela cells (Burger 

et al., 2014b). Moreover, PN coated AuNPs are responsible for a statistically smaller uptake on 

HSC-3 cells compared to citrate AuNPs (p < 0.05). The PN coating seems to prevent the AuNPs 

uptake. This effect might be due to the negative charge on the AuNPs which decreases the 

interaction with the cell membrane due to charge repulsion. It is clearly noticeable that all the 

AuNPs are found in higher quantity in the cytoplasm of the cells than in the nucleus. Moreover, 

they all give a higher uptake on HSC-3 cells than on HaCaT. Indeed, a statistical difference in 

uptake is observed for all the AuNPs coated with oligo between HSC-3 and HaCaT cells. AuNPs 

coated with citrate dY3 and PN-dY3 seem to give the best cellular uptake (Figure 4.17 d, g) 

(Figure 4.19 c, f), followed by citrate PR and PN-PR coated AuNPs (Figure 4.19 d, g). However, 

only citrate dY3 AuNPs show a statistical difference in uptake compared to the other AuNPs (p 

< 0.05). 

Here again, as mentioned with the AuNPs coated with αGal:PEGamine form Chapter 3, 

the AuNPs are responsible in average for a cellular uptake much smaller than the one described 

in the literature. Indeed in our case, the NPs concentration found is around 0.002 NP/nm² while 

Hanžić et al found a concentration of 1.106 NP/cell after an exposure with 50 µM of 30 nm AuNPs 

inside MDA-MB-231 cells (Hanžić et al., 2018), Wang et al a concentration of 11.8.104 NP/cell 

after an exposure with 20 nm of 13 nm AuNPs in A549 cells (Wang et al., 2013) and Geng et al 

found a concentration of 9.3.106 NP/cell after an exposure with 5 nM of 14.3 nm AuNPs in SK-

OV-3 cells (Geng et al., 2011). 

 The cellular uptake seems to be linked with cellular toxicity. Indeed, the citrate dY3 

AuNPs seem to be the ones responsible for the higher uptake on HSC-3 cells and for the highest 

toxicity on this same cell line (Figure 4.17, 4.23). On the other hand, PN AuNPs show the lowest 

uptake on cancer cells but also the lowest toxicity (Figure 4.19). AuNPs coated with GFP were 

used as a control to observe if AuNPs targeting a sequence non-present in the cell could also 
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improve the uptake. It is also important to mention that the GFP is not a TFO sequence. AuNPs 

coated with citrate GFP show a non-significant trend to improve the nucleus uptake, compared 

to simple citrate AuNPs, but neither citrate GFP or PN-GFP AuNPs seem to increase the amount 

of AuNPs found in the cytoplasm. It is important to note here that these experiments were done 

only once and will need to be repeated in order to conclude of any link between the coating and 

the uptake. 

 

When entering the cells, the oligonucleotide attached to the AuNPs should be able to 

target the sequence of the c-myc promoter via triplex formation process, decreasing the 

transcription of the gene and therefore, the protein activity. A decrease of cell proliferation after 

TFO coated AuNPs exposure would be expected, especially if the AuNPs were able to enter the 

cell nucleus. Indeed, Huo et al. showed a nuclear uptake of dY3 coated AuNPs in the nucleus of 

MCF-7 cells, associated with a decrease of c-myc mRNA level as well as decrease of c-myc protein 

level (Huo et al., 2014). In this study, the TFO coated AuNPs were able to enter the cell nucleus, 

however, a potential decrease of c-myc protein, indicated by a decrease of cell proliferation was 

not observed. Because of lack of time, it was not possible to explore the expression of c-myc 

protein, but this experiment is planned in the laboratory. It was shown in the Figure 4.18 that a 

triplex formation between the TFO and c-myc sequence was not observed when the TFO was 

attached to the AuNPs. The distance between the ligand on the AuNP and its target is critical to 

define its target affinity (Trapani et al., 2012). Therefore, it is possible that the TFOs might not 

have enough space in order to interact with the c-myc sequence. 

 Following these experiments and because the AuNPs are localised in the cell nucleus, a 

potential radiosensitisation with these AuNPs might be observed. The next experiment was 

focused on exploring the radiosensitisation effect of these AuNPs. 

 

4.5. Oligonucleotide coated AuNPs and their effect with 

radiotherapy 
 

4.5.1. Coumarin assay 

 

The coumarin assay, whose protocol was already implemented and used in Section 

3.10.1 of the thesis, was used once again in this chapter. As mentioned in Chapter 3, the 

coumarin assay detects •OH radicals, produced by interaction between the AuNPs, water and 

the beam of radiation. 

For these next experiments, only kilovoltage energy of X-rays was used as it was shown to be 

the one responsible for the best radiosensitisation in combination with AuNPs in Chapter 3. 
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Figure 4.20: Coumarin assay of the different citrate, PN or oligo coated AuNPs in PBS, with or without 

irradiation. The graph shows the fluorescence of the 7-OHCCA for each AuNP, with or without 

irradiation. A significant difference in fluorescence of 7-OHCCA probe following irradiation compared 

to no irradiation is seen for each condition (P<0.0001 ****, two way ANOVA with Sidak’s multiple 

comparisons post-test), while a significant difference in fluorescence compared to irradiated water only 

is seen for the citrate 3.5 nm sample (two way ANOVA with Tukey multiple comparisons post-test). 

 

Figure 4.20 shows the coumarin assay, exploring the intrinsic radiosensitisation effect 

of the different AuNPs. By following the increase of fluorescence, it is possible to follow the 

production of 7-OHCCA and therefore •OH radical production. A statistically significant increase 

of the 7-OHCCA production after irradiation is seen compared to the control, without irradiation. 

Particularly, a statistically significant increase after irradiation in the presence of citrate AuNPs 

is noticed compared to irradiation without AuNPs. However, when looking at the different 

coated AuNPs, it is possible to notice an increase of the 7-OHCCA fluorescence with radiation, 

but not significantly higher than with no AuNPs. The TFOs coating the AuNPs seem to prevent 

the secondary electron release when AuNPs interact with the beam of radiation. As observed 

before in Chapter 3, it seems that the coated AuNPs are not able to increase the •OH radical 

production upon irradiation. 

It will be interesting to see if a similar effect was observed on cells and therefore further 

models (first plasmid, then cells) were exposed with the different AuNPs combined with 

radiation. 
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4.5.2. Radiosensitisation effect on plasmid DNA 

 

  

lane 1 2 3 4 5 6 7 

sample L Plasmid Plasmid Plasmid Plasmid Plasmid Plasmid 

sample  x x Citrate 

AuNPs 

dY3 

oligo 

AuNPs 

PR 

oligo 

AuNPs 

GFP 

oligo 

AuNPs 

irradiation   irr irr irr irr irr 

Signal band 1  144 1629 348 320 355 429 

Signal band 2  14037 11234 13078 13363 12229 12279 

Signal band 3  6718 5276 5561 5582 5542 5218 

Figure 4.21: 2% AGE showing the relaxed plasmid pBV-Luc/Del6 incubated with different AuNPs for 3 

hours and then irradiated with 220 kV X-rays at 20 Gy. The gel was run in 1xTBE for 1h at 8 V×cm-1; irr - 

irradiated 

 

Figure 4.21 shows the plasmid which was irradiated with or without the different AuNPs. 

Lane 1 shows the control plasmid with no irradiation and no AuNPs. The bands representing the 

relaxed form (band 2) of the plasmid, as well as the linear one (band 3, Annexe 3.8) can be seen 

on the gel. It is possible to see a difference when the plasmid was irradiated compared to no 

irradiation. Indeed, a very bright band is observed at the top of the gel (Figure 4.21, lanes 1 and 

2, band 1, Annexe 3.7), which could indicate an increase of DNA damage in the plasmid. 
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Interestingly, this band appears to be increased in all the samples irradiated, but is more 

pronounced in the sample without AuNPs (Annex 3.7). Moreover, the band signals representing 

both the relaxed and linear form of the plasmid (bands 2 and 3, Figure 4.21) appear to be 

decreased in the samples irradiated.  

A possible explanation for the appearance of bands on top of the gel, migrating slower than the 

relaxed plasmid, could be some DNA rearrangements in the plasmid with intermolecular 

connection and dimer formation between duplexes of DNA. Indeed, the dose of radiation given 

here is very high and is expected to cause damage and changes in the plasmid. It is important to 

note here that this experiment has been done once and gives only an indication of a potential 

effect of plasmid irradiation. 

X-ray irradiation seems to affect the plasmid by decreasing both its relaxed and its linear 

form, indicating potential DSBs. Indeed, having multiple DNA damage within the plasmid would 

possible create short fragment of DNA which will migrate faster in the gel and therefore will be 

representing by a decrease of DNA amount. The hypothesis that the coating of the AuNPs 

prevents the production of radicals seems to be confirmed, especially •OH and therefore are not 

able to radiosensitise the breaks in the plasmid. However, even the citrate AuNPs, which were 

able to increase radical production, are not able to radiosensitise the plasmid. This result is 

surprising and indicates that other factors are linked to the radiosensitisation effect in this case. 

It could be related to the solution, or the concentration of plasmid and AuNPs. 

Moreover, the part of the plasmid containing the sequence of interest should be 

targeted by the TFOs coating the AuNPs and in theory, should be a specific part sensitive to 

radiotherapy. In order to analyse specifically the c-myc promoter sequence contained in the 

plasmid, PCR was done to look at this amplified sequence by electrophoresis. This amplified 

sequence should be about 700 bp. 
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lane 1 2 3 4 5 6 7 8 

sample Plasmid Pl Pl Pl Pl Pl Pl L 

sample    Citrate 

AuNPs 

dY3 

oligo 

AuNPs 

PR 

oligo 

AuNPs 

GFP 

oligo 

AuNPs 

x 

irradiation  PCR PCR irr PCR irr PCR irr PCR irr PCR irr  

Signal 

band 1 

49 160 188 0 32 27 6  

Signal 

band 2 

1155 1189 

100 % 

771 

64.8 % 

1108 

93.2 % 

1066 

89.6 % 

1043 

87.7 % 

1023 

86.0 % 

 

Signal 

band 3 

530 0 0 99 146 97 70  

Signal 

band 4 

0 13167 14607 0 0 72 0  

Figure 4.22: 2% AGE showing a 700 bp PCR amplicon, derived from the c-myc promoter region of plasmid 

pBV-Luc/Del6. The plasmid was incubated with the different AuNPs for 3 hours and then irradiated with 

220 kV X-rays at 20 Gy, and then subjected to PCR, with 15 cycles. The gel was run in 1xTB for 1h at 8 

V×cm-1. 
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The effect of both irradiation and AuNPs exposure on the plasmid was explored, as 

before, but this time, with the sequence of interest amplified. The amplification of the sequence 

allows measuring whether DNA damages have occurred in the specific sequence of interest or 

not. Indeed, if the triplex has successfully targeted the sequence of interest, which contains the 

c-myc promoter, DNA damage upon radiation would be observed and therefore, a decrease or 

absence of amplification will occur. However, to confirm this effect, an amplification of a 

different region of the promoter should be done, in order to compare the intensities of the 

different regions and therefore the DNA damages. It could however give an idea on whether a 

change is occurring in this region or not. When amplifying the fragment containing the sequence 

of interest, a difference in band intensity will give information on the possible DNA damage. The 

Figure 4.22 shows migration on the gel of the different samples. The amplified fragment is very 

bright on the gel and appears only for the samples with no AuNPs present (Figure 4.22, lane 1, 

2, Annex 3.8). The different coated AuNPs seem to have an interaction with the DNA polymerase 

responsible for the amplified fragment reaction. Moreover, the intensities of the two bands 

representing the amplified fragments are similar, indicating no damage to this precise region. It 

is important to note that the number of cycles performed was decreased to 15, as compared to 

the 25 advised by the supplier in order to observe potential difference and not to saturate the 

band signal. Details of the protocol can be found in the section 2.6.2. Even after reducing the 

number of cycles of the PCR, the band signal is very bright, indicating either no damage in this 

region, or possibly still a saturation of the signal. A qPCR, looking at the amount of DNA during 

each cycle, would be an interesting method to confirm one of the other hypothesis here. Finally, 

when looking at the samples exposed to AuNPs, it is not possible to conclude whether the 

sequence of interest was targeted or not. However, the relaxed form of the plasmid seems to 

be slightly decreased after irradiation, as the band signal is decreased (between 35.2 and 7.8 % 

decrease of signal) for each sample compared to the non-irradiated ones. 

 

4.5.3. Radiosensitisation effect on cells 

 

After exploring the effect of the different coated AuNPs in addition to radiotherapy on 

plasmid DNA, the potential radiosensitisation effect was also studied on skin cells.  
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Figure 4.23: HSC-3 and HaCaT cells irradiated with 220 kV X-ray irradiation and exposed to a) citrate 

AuNPs, b) PN AuNPs or c) oligonucleotide coated AuNPs. The data show survival fraction corrected for 

chemotoxicity (normalised to zero Gy values). 

 

When the cells were irradiated with the AuNPs, it was possible to see a small decrease 

of the survival fraction after AuNPs exposure (Figure 4.23 a). Interestingly, the citrate AuNPs are 

not the ones giving the best effect on cells, but were the ones showing the highest increase of 

•OH radical formation with the coumarin assay (Figure 4.24). Within the cells, AuNPs coated with 

oligonucleotide sequence are able to better radiosensitise the cells, and especially the cancer 

cells (Figure 4.23). Moreover, the specific TFO dY3 and PR used here radiosensitise the cells, 

more than the neutral GFP sequence. This result suggests that the TFO might have a specific 

effect in the cells and increase the radiotherapy efficiency. Particularly, if the TFO-coated AuNPs 

were able to increase the cellular uptake, they would increase the probability of interaction with 

radiation and therefore the radiosensitisation effect. Several publications have found a similar 

tendency where an active targeting toward cancer cells using peptide/DMA, improved the 

uptake and cancer cells and furthermore the radiosensitisation (Cui et al., 2017, Nicol et al., 

2018). Indeed, Cui et al have shown a fourfold increase of NP uptake in MDA-MB-231 cells with 
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peptide coated AuNPs compared to PEG coating and this was linked to a better 

radiosensitisation effect using 225 kV X-rays (Cui et al., 2017). Moreover, Nicol et al showed 10 

times more increase of uptake in MDA-MB-231 cells with peptide coating compared to PEG 

coating and this was link to an increase in radiosensitisation effect using 160 kV X-rays (Nicol et 

al., 2018). 

This appears to be what is happening here, as shown in the Figures 17-19, where using 

electron microscopy, it is shown that dY3-coated AuNPs showed the best cellular uptake in 

cancer cells. Indeed, with a concentration inside the cytoplasm of about 0.0002 NP/nm², PN-dY3 

AuNPs are responsible for the most additive effect in combination with radiotherapy. However, 

other characteristics might play a role in the radiosensitisation effect. Indeed, PN-PR-AuNPs give 

a similar uptake in cancer cells compared to citrate AuNPs, both in cytoplasm, nucleus and cell 

surface, but still shows a substantial radiosensitisation effect compared to citrate AuNPs.  

Interestingly, there is no evidence in this work that the two TFOs did interact with the 

sequence of interest within cells or were able to knock-down the c-myc gene and reduce 

proliferation. It might be interesting to explore a longer exposure time, as the TFOs might be 

able to form a triplex and target the sequence of interest but the AuNPs might not have enough 

time to realise this process. In addition, as mentioned before, the possibility of the TFO to form 

a triplex when attached to the AuNPs is most likely limited due to the steric limitation, which 

could be solved by using longer spacers. 

 

Table 4.7a: Sensitivity Enhancement Ratios and Dose Enhancement Factors calculated for skin cells 

Cell line (AuNP) SER4Gy  

220 kV 

DEF0.3 

220 kV 

HSC-3 (citrate) 0.79 ± 0,10 0.90 ± 0,18  

HSC-3 (PN) 1.29 ± 0,08 1.07 ± 0,18 

HSC-3 (PN DY3) 1.39 ± 0,09 1.09 ± 0,23 

HSC-3 (PN PR) 1.43 ± 0,09 1.10 ± 0,26 

HSC-3 (PN GFP) 1.13 ± 0,05 0.94 ± 0,12 

HaCaT (citrate) 1.36 ± 0,02 1.11 ± 0,26 

HaCaT (PN) 1.13 ± 0,02 0.95 ± 0,09 

HaCaT (PN DY3) 1.20 ± 0,03 0.99 ± 0,23 

HaCaT (PN PR) 1.25 ± 0,03 0.96 ± 0,20 

HaCaT (PN GFP) 1.11 ± 0,02 0.90 ± 0,20 
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Table 4.7b: Linear quadratic parameters of oligonucleotides AuNPs calculated for skin cells irradiated 

with 220 kV X-rays. 

Cell line 
(AuNP) 

HSC-3 cells HaCaT Cells 

  
a b a/b a b a/b 

control 0,23 ± 0.03 (-
0,015 for BBi 

control) 

0,0331 ± 
0.005 

(0,0076 
for BBi 

control) 

6,94 and -
1,97 

0,1305 ± 
0.03 

0,06095 ± 
0.01 

2,14 

       

citrate 0,05101 ± 
0,06247 

0,08547 ±  
0,0205 

0,60 0,3096 ± 
0,0459 

0,0236 ± 
0,01468 

13,12 

PN 
      

PN 0,1211 ± 
0,0798 

0,07593 ± 
0,0283 

1,59 0,253 ± 
0,01663 

0,0142 ± 
0,00396 

17,82 

       

PN DY3 0,1567 ± 
0,0592 

0,06697 ±  
0,0205 

2,34 0,2209 ± 
0,0548 

0,02699 ± 
0,0147 

8,18 

       

PN PR 0,211 ± 
0,0618 

0,05188 ± 
0,0204 

4,07 0,1563 ± 
0,04622 

0,04029 ± 
0,0131 

3,88 

       

PN GFP 0,111 ± 
0,0325 

0,05624 ± 
0,01003 

1,97 0,1695 ± 
0,04628 

0,02978 ± 
0,0119 

5,69 

 

The SER and DEF ratio were calculated in order to explore any additive effect of the 

different AuNPs with radiation. Table 4.7 a confirms the effect observed in Figure 4.27, showing 

the highest SER for cancer cells of 1.39 and 1.43 for dY3 and PR coated AuNPs respectively, 

followed by a SER of 1.13 for GFP coated AuNPs and 0.79 for the citrate AuNPs. The SER value 

of 0.79 is very surprising as it would indicate that citrate AuNPs have a protective effect with 

radiotherapy. The standard error is higher in this condition and it would be necessary to repeat 

this experiment in the future to explore any significant changes. Moreover, it was shown that 

TFO dY3 seemed to improve the cell cytoplasm uptake, more than the PR and GFP 

oligonucleotides. However, the SER is similar between dY3 and PR TFO. Interestingly, the SER 

value obtained for the AuNPs coated with TFO are smaller than the one obtained with 

αGal:PEGamine coated AuNPs presented in Chapter 3. Indeed, while we showed previously an 

SER of 1.73, the highest SER showed in this case if 1.43. This might be due to the AuNPs uptake, 

which is 10 times higher for αGal:PEGamine AuNPs compared to the TFO coated ones. 

Moreover, this SER value of 1.43 is in the same range as what has been shown previously in the 

literature using KV X-rays (Jain et al 1.41 using 160 kV X-rays, Cui et al 1.39 using 225 kV X-rays, 

Nicol et al 1.54 using 4 Gy of 160 kV X-rays) (Cui et al., 2017, Jain et al., 2011, Nicol et al., 2018). 

As mentioned before, the organelle localisation might play a role in the radiosensitisation effect, 

such as localisation in lysosomes or in the nucleus. It will be interesting to repeat the uptake 
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experiments in order to confirm whether the uptake is indeed linked to the radiosensitisation 

effect, and whether the localisation of the AuNPs in the cells is having an impact on this 

radiosensitisation effect (here the difference in nucleus concentration between the different 

AuNPs are not significant). 

Due to time limitations, it was not possible to explore the radiosensitisation effect of 

citrate dY3 AuNPs in cells, but this experiment will be explored in the future as this particular 

AuNPs exhibited a statistically significant uptake into cell nucleus. 

Although it was shown in Section 4.1 that PR TFO seemed to form more stable triplex with the 

c-myc sequence of interest ex vivo, this effect was not seen in vitro and dY3 TFO showed actually 

more uptake and more radiosensitisation inside the cells 

Finally, PN AuNPs are responsible for an additive effect with radiation, more than the 

citrate AuNPs. It is surprising as these AuNPs did not give a strong uptake on the cancer cells. 

Effectively, it is shown that an SER of 0.79 is seen with citrate AuNPs at a concentration inside 

the cytoplasm of 0.00015 NP/nm² while an SER of 1.29 is seen with PN-AuNPs and at a 

concentration of less than 0.0001 NP/nm². PN-AuNPs might be responsible for different 

reactions inside the cells, such as cell cycle or oxidative stress, which may not show an effect on 

cell viability by itself but could be responsible for an additive effect with radiation. 

The SER is generally lower for HaCaT cells exposed to all the AuNPs, except the citrate 

AuNPs, which surprisingly show the highest SER on this particular cell line.   

When looking at the DEF, this parameter is close to 1 for all the NPs. The highest DEF is seen for 

PN-PR AuNPs, which were responsible for the highest SER. As a reminder, the DEF is defined as 

the dose of radiation needed to cause the same biological effect. A DEF smaller than the SER 

could indicate that the toxic effect observed on cells here may be due to the AuNPs in larger 

proportion, rather than the dose of radiation. This effect was calculated only for a toxic effect 

with a 30 % decrease of viability. It needs to be pointed out once again than the linear quadratic 

model (Table 4.7b) is still linked with high errors, and therefore it is difficult to make any 

affirmative conclusion on the DEF value obtained or on the α and β parameters. Once again, it 

is possible to note a trend that α parameter is in general higher than β, however, it may be 

interesting in the future to explore the linear quadratic linear model to analyze these specific 

parameters (Joiner and Van der Kogel, 2009, Podgorsak, 2003). 
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4.6. Conclusions of Chapter 4: oligonucleotide-coated AuNPs 
 

The second type of AuNP used in this thesis has a bigger size core, of 3.5 nm compared 

to 1.9 nm. This was chosen mainly to make the AuNPs visible, due to plasmon resonance, during 

the stages of TFO attachment and gel characterisation. The AuNP size is also known to have an 

impact on the interaction with radiation. 2 nm AuNPs have been explored for radiosensitisation 

in several studies (Butterworth et al., 2010, Grellet et al., 2017, Jain et al., 2011). A size below 5 

nm was also chosen in order for the AuNPs to enter the cell nucleus passively via the nuclear 

pores. Larger AuNPs could also possibly enter the nucleus but different processes will have to 

take place, such as a membrane disruption and dilatation of the pores, as occurs with nuclear-

localising chaperone proteins (Setua et al., 2014) or the disappearance of the nuclear envelope 

which happens just before cell division (Worman and Courvalin, 2000). 

Oligonucleotide-coated AuNPs are an interesting tool but challenging to purify and to 

characterise due to the sensitivity of oligonucleotides to change with pH and temperature. 

Moreover, their uptake into cells and travel to their target can be compromised by their 

biocompatibility (Herdt et al., 2006).  

Trying to characterise and explore the number of TFOs attached to the AuNP was not an 

easy task. Electrophoresis on the agarose gel gave information on the different coatings but was 

not able to separate the potentially different populations. XPS, using X-ray photons and electron 

release was used, trying to identify the density of the coating. The AuNPs being in small 

quantities made it difficult to obtain a good signal of each element and to fully characterise the 

coating of the AuNPs.  Fast protein liquid chromatography (FPLC) could be useful to look at the 

different population of AuNPs and will be the next step to characterise these AuNPs. Depending 

on the number of TFOs attached to the AuNPs, different effect can be observed, with or without 

radiation, as numerous TFOs can help the AuNPs to enter in the cell and nucleus but can limit 

the accessibility of the TFOs to its target sequence, and the electron release upon radiation, as 

mentioned before. 

 

In general, it is observed that having an oligonucleotide coating the AuNPs does not 

necessarily improve the general uptake of the AuNPs, compared to the αGal:PEGamine coated 

ones for example, but seems to increase their relative accumulation in the cell nucleus.  

Moreover, oligonucleotides coating the AuNPs do not seem to be responsible for a strong effect 

on cell cycle. As mentioned before, it is not clear whether the TFOs coating the AuNPs have 

formed a triplex inside the cells. Indeed, it was successfully shown in the thesis that TFOs were 

able to form a triplex with the double stranded DNA ex vivo when considering simple double 

stranded DNA (up to 70 bp). A possible interaction with plasmid DNA (up to 5000 bp) was seen, 
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with a disappearance of the TFO band, especially when the plasmid was on a nicked form. 

However, it seems more challenging to observe the triplex formation process in vitro when skin 

cells were incubated with these same AuNPs. Moreover, the AuNPs being of a size bigger than 

200 kDa (308kDa), do not enter the polyacrylamide gel, therefore their characterisation and 

interaction with the sequence of interest was difficult to achieve.  

It was challenging to explore the triplex formation in the plasmid, as well as the potential 

DSBs upon radiation. First, the restriction enzyme cut the plasmid differently than expected, 

forming a nicked plasmid with various fragments. Moreover, the relaxed plasmid did not seem 

to react with the TFOs coated AuNPs. The map of the plasmid is only partially communicated. It 

will be interesting to realise a full sequencing of the plasmid in order to understand the role of 

the restriction enzymes and the probability of the TFOs to recognise the targeted sequence.  

Some work is still required in order to improve and characterise the triplex formation in 

vitro. One way to improve TFOs affinity is to use ribose oligonucleotides which should decrease 

the possible degradation from nucleases. Interestingly, Lacroix et al. showed in 1999 that 

replacing tyrosine by 5-(1-propynyl)-2’-deoxyuridine in TFOs could overcome the dependence 

of magnesium to form the triplex structure (Lacroix et al., 1999). Moreover, a spacer between 

the AuNPs and the oligonucleotide sequence, such as polyethylene glycol polymer or different 

oligonucleotides, seem to help the recognition with the sequence of interest (Kang et al., 2010, 

Suzuki et al., 2009). Suzuki et al. in 2009 proposed a new method to control this coating. They 

used phosphine molecules to coat the AuNPs and block the non-specific sites for oligonucleotide 

coating. Then, a neutral oligonucleotide was used in order to form a complex of DNA and allow 

a separation between the different oligonucleotides on the AuNPs. In the final step, this neutral 

oligonucleotide complex was removed from the AuNPs (Suzuki et al., 2009). 

 

When considering the effect of the AuNPs coated with the two different TFOs, the 

coumarin assay did not show any statistical difference in 7-OHCCA production. Only the citrate 

AuNPs showed an increase of •OH radical when irradiated. However, oligonucleotides coated 

AuNPs did show a radiosensitisation effect in the cells with a maximum SER of 1.43 with the 

specific PR TFO coating. These AuNPs were able to enter the cell and particularly the nucleus. 

This specific localisation should improve the radiosensitisation effect when combined with X-ray 

radiotherapy. Indeed, as mentioned before, Fan et al were able to radiosensitise MCF-7 cells 

using mesoporous silica NPs coated with tat protein and encapsulating mitomycin C (Fan W et 

al., 2015). Their treatment was particularly of interest as mitomycin is specific to hypoxic 

tumours as it can inhibit DNA synthesis under hypoxic conditions. They have successfully shown 

an improvement of the radiosensitisation effect with nuclear targeted NPs. They have shown 

more than 50 % decrease of cell number using comet assay after X-ray irradiation (5Gy) in the 
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presence of 10 µg/ml of NPs for 24h compared to irradiation alone (Fan W et al., 2015) and an 

increase of apoptosis and decrease cell proliferation for MCF-7 multidrug resistance cells 

exposed to NPs and radiotherapy by measuring the expression of caspase-3 and p27 protein (no 

quantitative data).  

As mentioned before, AuNPs coated with αGal:PEGamine presented in Chapter 3 were 

able to better radiosensitise the cells with the same dose of irradiation with a SER of 1.73. 

Moreover, the additional effect of the TFO to target c-myc inside the cells and therefore 

potentially amplify the radiosensitisation effect was not seen here. Other criteria might affect 

the radiosensitisation effect and will be discussed in Chapter 6. 

Before concluding this thesis, a small chapter will be dedicated to, cerium oxide NPs, 

which were mentioned in the Introduction and could be of interest in combination with 

radiotherapy due to their capacity to adsorb oxygen. 
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CHAPTER 5: PRELIMINARY WORK WITH METAL OXIDE NPs 
 

As discussed in Sections 1.3 and 1.6 of the introduction, other metal or even non-

metallic NPs have shown promise as radiosensitisers. Taupin et al. in 2015 demonstrated a 

radiosensitisation effect using gadolinium NPs in a concentration range of 2-10 mg/ml on glioma 

cells irradiated with X-rays at different energies (31 keV-1.25 MeV) (Taupin et al., 2015). They 

have shown that the sensitiser enhancement ratio (SER) increases both with NPs concentration 

and X-ray dose. The highest SER was obtained when cells were irradiated with 65 keV. 

Metallic oxide NPs, such as cerium oxide, are of interest due to their catalytic ability to form 

radicals. Such NPs can act either as radiosensitiser or as radioprotector depending on pH and 

oxidation state. Indeed, previous studies reported that cerium oxide NPs can scavenge radicals 

such as H2O2, by acting like catalyse enzyme. However, when in an acidic environment, their 

ability to scavenge H2O2 is much reduced and therefore addition of CeO2 can increase the 

amount of ROS. The explanation for these contradictory effects is probably the oxidation state 

of the cerium, either Ce3+ which is characterised by an oxygen vacancy and acts as radiosensitiser 

(Sun et al., 2012) or Ce4+, which forms a superposition lattice with oxygen in the centre of the 

structure, decreasing the oxidative stress and therefore acts as radioprotector (Figure 5.1) 

(Wason et al., 2013). 

 

Figure 5.1: Geometrical form of a) Ce4+ and b) Ce3+ (Sun et al., 2012). 

 

As discussed in Section 1.6, cerium oxide could be interesting due to its cubic fluorite-

type oxide conformation, where each cerium site is surrounded by 8 oxygen sites, allowing it to 

adsorb oxygen and thus, could help in radiosensitising hypoxic tumours. Combining cerium oxide 

with another high atomic element such as gold, or bismuth could change this radioprotector vs 

radiosensitiser effect and is already on-going work within the laboratory. In this Chapter, some 

preliminary results are reported. Commercially available CeO2 NPs of 5 nm size from Sigma were 

used. Two NPs were tested. They were prepared at two different pH, one being in an acidic 

environment (pH 4) and the other one in a basic environment (pH 8). This difference in 

preparation will lead to a difference in oxidative state, which is known to play a role on the 

radiosensitisation potential (Briggs et al., 2013, Cheng et al., 2013, Park et al., 2008) or 

radioprotection (Arya et al., 2016). 
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5.1. EM microscopy of commercial cerium oxide NPs 
 

 

Figure 5.2: Size histogram and TEM image of CeO2 NPs pH 8. The data are presented as mean NP 

diameter ± standard deviation. 

 

The NPs have an average size of 3.52 nm, and seem quite homogenously distributed, 

which make them good candidate for entering in cells. 

 

5.2. SEM-EDX composition 
 

In order to understand their future role when combined with radiotherapy and cells, 

their chemical element analysis has been performed by SEM-EDX. 

  

Figure 5.3: SEM-EDX spectrum of CeO2 NPs showing their elemental composition. Inset: The data are 

presented as mean NP diameter ± standard deviation. 

 

The SEM-EDX analysis used for these experiments allows measuring the average 

elemental composition of the NPs solution but not of the individual NPs. SEM-EDX confirms the 

presence of Cerium. Interestingly, it seems that Bismuth (4.4 %) is found in the solution, which 

could come from the reaction process to form the NPs, although the manufacturer 

communicated not using bismuth in the reaction and could be of interest for radiosensitisation. 
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Indeed, Bismuth is a high atomic number element which can interact with X-rays. However, 

Bismuth is known to be toxic and needs to be carefully handled. 

Therefore, the toxicity of these NPs were tested on the main cells used in this project, HSC-3 and 

HaCaT. 

 

5.3. Cell exposure to commercial cerium oxide 
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Figure 5.4: Toxicity of CeO2 NPs on HSC-3 and HaCaT cells. The data represent the viability compared to 

the control and are expressed as mean ± standard deviation. A two-way Anova followed by a Dunnett 

post-test was performed to explore any statistical differences between the exposed groups and the 

control. 

 

The toxicity of the different CeO2 appears to change with NPs prepared at different pH. 

CeO2 NPs prepared at pH 8 do not seem to change the viability of the cells as no statistical 

difference is observed compared to the control either for the different concentration of CeO2 

NPs or in both cell lines. However, when HSC-3 cells were exposed to CeO2 NPs prepared at pH 

4, a toxic effect was observed at the highest concentration of 200 µg/ml, which is statistically 

significant (p<0.01) while this effect is not observed for HaCaT, suggesting this is not simply due 

to the pH of the medium. The pH which the NPs were made seems to have an effect on the CeO2 

mechanism of action, and one possible reason for this increase of toxicity could be because of 

an increase of environmental ROS levels. 

After exploring the toxicity of the NPs, their radiosensitisation effect was evaluated, using 

kilovoltage X-rays. 

  



188 
 

5.4. Cell exposure to ceria and interaction with radiation 
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Figure 5.5: Coumarin assay with or without irradiation, with different CeO2 NPs. The graph shows the 

fluorescence of 7-OHCCA on different condition. A significant difference in fluorescence of 7-OHCCA 

probe following irradiation compared to no irradiation is seen for each condition (P<0.0001 ****, two-

way ANOVA with Sidak’s multiple comparisons post-test) while a significant difference in fluorescence 

compared to irradiated water only is seen only for the citrate 3.5 nm sample (two way ANOVA with 

Tukey multiple comparisons post-test). 

 

Figure 5.5 shows the effect of the NPs to interact with X-ray irradiation using the 

coumarin assay. This assay was used in the chapter 3 & 4 and was showing an increase of 7-

OHCCA, representing an increase of •OH radical production in the presence of non-coated 

AuNPs, but no effect was seen in the presence of coated ones. Once again, irradiation of non-

coated AuNPs with radiation show an increase of 7-OHCCA fluorescence, higher than without 

the AuNPs. interestingly, both ceria NPs made at pH 4 and pH 8 do not show an increase of this 

7-OHCCA fluorescence, and this fluorescence was not significantly different than the control 

(without NPs). The ceria NPs therefore do not seem to be able to increase the •OH production. 

However, other ROS species, such as O2- and 1O2 would be interesting to measure for better 

evaluation of the intrinsic radiosensitisation effect of these NPs (Gara et al., 2012). Following 

these experiments, the NPs were tested in cells, in combination with radiation. 
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Figure 5.6: Radiosensitisation of CeO2 NPs on HSC-3 and HaCaT cells exposed to kilovoltage 

radiotherapy. a) HSC-3 exposed to CeO2 pH 8; b) HaCaT exposed to CeO2 pH 8; c) HSC-3 exposed to CeO2 

pH 4; d) HaCaT exposed to CeO2 pH4. The data represent the survival fraction compared to the control 

and are expressed as mean ± standard deviation. A two-way Anova followed by a Dunnett post-test has 

been performed to explore the statistical difference between the exposed groups and the control. 

 

No obvious effect with radiotherapy was observed when using X-ray irradiation at a dose 

of 4 Gy . However, a small decrease of cell viability seems to occur when the cells were exposed 

to high concentration of pH 4 CeO2 NPs compared to the control (Figure 5.6 c and d). However, 

this result is not statistically significant. It seems that the concentration influences the 

radiosensitisation. It is not clear whether NPs were able to enter the cells, therefore, the next 

experiment will be to look at the cellular uptake using ICP-MS as a function of the concentration 

of CeO2 NPs, to explore if an increase of concentration is associated with an increase of uptake. 

Cerium oxide NPs might be able to dysregulate the amount of oxygen and radicals, but it may 

not be electron dense enough to interact strongly with radiation and give secondary electrons. 

One way to improve their radiosensitisation effect might be to combine the metallic oxide with 
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a high atomic weight element such as gold, silver or bismuth and this is now ongoing in the OU 

labs.  

 

Combination of different treatment could be a key to improve the radiosensitisation 

effect. Indeed, it has been shown that a combination of AuNPs with radiotherapy gives an 

additive effect. Using a third therapy such as the use of cerium oxide NPs could enhance the 

radiotherapy and at the same time, increase the amount of oxygen, which could increase the 

amount of radicals (Wason et al., 2013). It has not been shown in these experiments whether or 

not CeO2 NPs were able to absorb oxygen. In the near future, different techniques to explore 

this phenomenon will be considered, such as molecular beam where the oxygen uptake and 

release can be followed by measurement of CO2 production after introduction of O2 in the 

system (Schalow et al., 2005). Thermogravimetry could be another technique used and is 

detailed in the paper by Imagawa et al. (Imagawa et al., 2011). Briefly, it consists on the 

introduction of O2/N2 in the system, followed by H2/N2 and the measurement of the weight 

change of the NPs.  
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CHAPTER 6: CONCLUSION AND FUTURE WORK 
 

6.1. General conclusion 
 

Cancer is one of the leading causes of non-communicable death in developed countries 

worldwide (McMullin, 2016). Considerable efforts are being made to improve cancer treatment, 

including development of new types of radiotherapy, such as the use of nanoparticles, 

presented in this thesis. About 50% of the treatment plans now include radiotherapy (Burger et 

al., 2014a) and one of the major limitations of X-ray radiotherapy is the damage to surrounding 

healthy tissue whilst simultaneously maximising the dose to the tumour (Chauhan et al., 2011). 

In the field of cancer research treatment, different strategies are being developed in order to 

fulfil this goal (Kwatra et al., 2013); either by (1) radioprotecting the healthy tissues surrounding 

the tumour, (2) by suppressing radioresistance, or (3) radiosensitising the tumour to 

radiotherapy.  

The focus of the work presented in this thesis is radiosensitising the tumour using 

AuNPs. 

The main aims of this project were: 

1) To explore the relationship between the different AuNPs characteristics, such as charge, 

cellular uptake, intracellular localisation, and toxicity for a range of AuNPs with different types 

of coatings, in cancer and normal cell lines. 

2) To explore and try to improve the radiosensitisation potential of these AuNPs using clinical X-

ray sources at different energies. 

NPs made of gold were chosen in this thesis work because of their high atomic number, 

their large potential for surface modification, and their well-defined characteristics (Kwatra et 

al., 2013). Indeed, during this work, and as part of the larger ARGENT (Advanced Radiotherapy, 

Generated by Exploiting Nanoprocesses and Technologies) project, within which this framework 

was conducted, research was undertaken to explore the effect of new coatings on the 

radiosensitisation properties of AuNPs. 

 

The concentration of AuNPs in the cancer tissue also plays an important role in the 

effectiveness of radiotherapy (Babaei and Ganjalikhani, 2014a, Mesbahi et al., 2013). Many 

different strategies have been used to increase the concentration of AuNPs inside cells and one 

of them includes the application of a coating to the AuNPs improving their biocompatibility and 

uptake (Babaei and Ganjalikhani, 2014b, Retif et al., 2015). With the proper coating, it may be 

possible to increase the uptake, without reducing the number of electrons released (which 
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drives the subsequent chemistry) thus, improving the radiosensitisation effect (Gilles et al., 

2014, Zhu et al., 2015).  

 In this thesis, two AuNPs of different sizes and with different coatings were explored as 

possible radiotherapeutics. This work showed that αGal:PEGamine coating improves the uptake 

in the cytoplasm and lysosomes and the triplex forming oligonucleotides (TFOs) in the cell 

nucleus. 50:50 αGal:PEGamine coating on AuNPs was shown to have a selective toxicity for 

cancer cells, like the different oligonucleotides coated AuNPs, and they both give a better uptake 

in cancer cells compared to normal cells. 

However, electron microscopy studies showed that the uptake of 50:50 αGal:PEGamine AuNPs 

in the cells is 10 times higher than with oligonucleotides coated AuNPs, and thus using 10 times 

less concentration. Indeed a concentration of 0.002 NP/nm² was seen in skin cancer cells after 

50:50 αGal:PEGamine AuNPs exposure using electron microscopy while a concentration of 

0.0002 NP/nm² was seen after TFO AuNPs exposure. These published results are described in 

Sections 3.8.2 (Grellet et al., 2017) and are compared with the one in Section 4.4.  

 

As shown in Sections 3.10.1 (Grellet et al., 2017) and 4.5.1, the coatings used in this 

project were shown to lower the amount of •OH radical produced from the coated AuNPs when 

irradiated using the coumarin assay, however, both of the coated AuNPs are still able to 

radiosensitise the cells. Further studies on the coating modification within the medium and the 

cell could help to understand how AuNPs with specific coatings act as radiosensitisers inside the 

cells but not outside the cells.  

Several previous studies have focused on improving the cell nucleus’ uptake of NPs to 

improve the radiosensitisation effect. It was difficult, as described in Section 4.4, to conclude 

whether the nucleus uptake had an impact on the radiotherapy efficiency as the amount of gold 

observed in the cell nucleus with the TFOs coated AuNPs tested was very low (10-5 NP/nm2), and 

was not significantly different from that obtained using non-coated AuNPs, although a 50 % 

increase is seen in the presence of oligonucleotides. These results are in preparation for 

publishing. 

Further optimisation of the AuNP coatings could improve this nuclear uptake. Moreover, while 

many studies have shown a high AuNPs uptake after 24h of exposure, a longer exposure time 

will be considered in the future (Chithrani et al., 2010, Cui et al., 2017, Geng et al., 2011, Wang 

et al., 2013, Zhu et al., 2015). Nevertheless, the nucleus might not be the critical organelle to 

target. Indeed, several teams have already observed a selective uptake of NPs in the lysosomes, 

which, if damaged, are capable of releasing acidic contents and enzymes in the cytoplasm, 

thereby damaging the cell. Several groups have shown that the main target of NPs uptake (silica 
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and superparamagnetic NPs) were the lysosome and lead to an increase of ROS production (Ma 

et al., 2011, He et al., 2015, Kenzaoui et al., 2012).  

It is important to point out that although using a smaller concentration of AuNPs (1 µg/ml for 

αGal:PEGamine AuNPs compared to 10 µg/ml for TFO AuNPs), the AuNPs presented in Chapter 

3 and designed in collaboration with Midatech give a better radiosensitisation effect on skin 

cancer cells after 3 hours of exposure. In this particular case, having a TFO does not improve the 

general uptake of AuNPs in cell and does not improve the toxicity as TFO AuNPs did not show a 

strong toxicity while αGal:PEGamine AuNPs showed an IC 50 for skin cancer cells of less than 1 

µg/ml. 

In conclusion, active cellular targeting was not able to improve the cellular uptake with the 

particular AuNPs tested and the AuNPs concentration in cell does not always predict on the 

radiosensitisation effect as the uptake for both AuNPs was much slower than in previous studies, 

with a SER equal or above these same explorations (Burger et al., 2014b, Cui et al., 2017, Jain et 

al., 2011, Rashid et al., 2018, Wang et al., 2013). 

 

When considering radiotherapy treatment, the 4Rs defined by Withers in 1975 should 

be taken into account (Mayles et al., 2007). They correspond to different mechanisms occurring 

within the cells after irradiation, such as repair, which happens a few hours after exposure; 

reassortment, which corresponds to the cell cycle progression; repopulation, where the cancer 

cells which survive the first weeks course of radiotherapy treatment can survive and proliferate; 

and reoxygenation, where the hypoxic cells forming a cancer tumour survive the first dose of 

radiation but thereafter, their oxygen level will increase, as well as their radiosensitivity. 

Radiosensitivity is the fifth R which is now defined as a difference of radioresponse between 

different tissues (Mayles et al., 2007). The repair and repopulation processes will be responsible 

for a radioresistance of these tissues to further doses of radiation, while the reoxygenation and 

reassortment will tend more to make it radiosensitive.  

As discussed in the introduction, different strategies can be used to limit the repair and 

repopulation of the cancer tissues, such as inhibitors of PARP (Shelton et al., 2013) or inhibitors 

of EGFR pathways (Small Jr, 2008). These two strategies could be used in combination with 

AuNPs to radiosensitise even more the cancer cells. Reoxygeneation is also an important factor 

to radiosensitise the cancer cells. Indeed, cancer cells are generally associated with an acidic 

environment, which is characterised by a lower basal level of H2O2 inside the cells, and is 

therefore linked to more resistance to radiotherapy (Wason et al., 2013).  

Hypoxic conditions are not favourable for radiosensitisation as oxygen is an important 

factor in radiotherapy efficiency  (Retif et al., 2015). Several studies have tried to improve ROS 

production during irradiation by using catalytic materials such as ceria (Wason et al., 2013) 

which, due to its valence state, can capture molecules of oxygen, depending on their oxidative 
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state, and can act as antioxidants, radioprotectors or radiosensitisers (Sun et al., 2012, Colon et 

al., 2010, Wason et al., 2013). Previous work has shown ceria based NPs potential as adjuvants 

with radiotherapy (Shcherbakov et al., 2014). In this area, cerium oxide could be of interest in 

order to reoxygenate the tumour quickly and make it radiosensitive. In this thesis, preliminary 

work looking at the characterisation of simple CeO2 NPs have been done and showed that these 

NPs are not able to radiosensitise the cells. 

 

Another parameter used to understand and improve the radiosensitisation effect is the 

use of different energies of radiation, including kilovoltage X-rays, and now megavoltage 

energies of X-rays, which is widely used nowadays and require a selective and more efficient 

toxicity. 

As previously discussed in Section 1.2.1, AuNPs can improve radiotherapy efficiency at 

kilovoltage energy, but are less efficient with megavoltage energies (Butterworth et al., 2012, 

Rahman et al., 2009). Indeed, using higher energies, such as those produced by a linear 

accelerator (LINAC), the photoelectric effect no longer dominates and much lower DEFs are 

expected (Taupin et al., 2015). 

Nonetheless, Jain et al. among other teams, showed a radiosensitisation effect of AuNPs in 

combination with Megavoltage X-ray radiotherapy (Jain et al., 2011). Indeed, in Section 3.10.2 

of the thesis, it is shown that AuNPs could improve radiotherapy efficiency, both with 

kilovoltage, but also megavoltage energies (Grellet et al., 2017). 

Moreover, NPs have shown great interest with new strategies of cancer treatment 

including radiation delivery by charged particles such as proton and heavy ions (e.g. carbon) 

(Mayles et al., 2007). Both protons and heavy ions confer improvement of dose delivery to the 

tumour by controlling the dose distribution and are now being used in the clinic.  

Kim et al. have shown a radiosensitisation effect using AuNPs in combination with proton 

therapy both in vivo and in vitro (Kim et al., 2010), while Porcel et al. showed an improvement 

of carbon ion therapy efficiency using platinum NPs on plasmid DNA (Porcel et al., 2010a).  

 

A challenging task when looking at the interaction between AuNPs and radiation is to be 

able to compare and analyse different radiosensitisation effects. Indeed, as observed during this 

work in Section 3.10 and 4.5, different energies of radiation, as well as different coating on the 

AuNPs and different cell lines can show very different radiosensitisation effects. To be able to 

fully characterise the effect of NPs with radiation, experimental studies using similar 

characteristics of cells, NPs size or charge, and radiation energies are needed, especially when 

considering collaborative works between different laboratories. Moreover, the comparison of 

different parameters to analyse the radiosensitisation effect can also be limited by the model 
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used, such as the linear quadratic model which does not always fit the in vitro measurements, 

as mentioned previously in this thesis. And where the linear quadratic linear model might be of 

interest (Joiner and Van der Kogel, 2009, Podgorsak, 2003). 

In conclusion, optimisation of AuNPs requires still more characterisation and understanding of 

the radiosensitisation effect, such as the impact of the coating on the AuNPs uptake and intrinsic 

effect when interacting with radiotherapy, and the key organelles targeted by the AuNPs. 

 

 6.2. Future works 
 

In this section, future work to build upon the results described in this thesis is presented, 

some of which is being performed by new students. 

 

6.2.1. Oligonucleotide coated AuNPs 

 

As mentioned in the chapter 4, dY3 and PR TFO were able to form a triplex with their 

target c-myc sequence but this structure was perturbed when adding a thiol group to the TFOs 

and when the TFO was attached to the AuNPs. Two different strategies may be developed in the 

future, modifying the size of the gold core or using different spacers between the TFO and the 

thiol group in order to find the best conformation for the TFO to recognise and binds to its target. 

Indeed, molecules such as polyethylene glycol polymer or different oligonucleotides, could help 

the recognition and target of the sequence of interest (Kang et al., 2010, Suzuki et al., 2009). A 

range of spacers between the TFO and the AuNPs will be explored at the Open University in a 

continuation of this project. In addition, trying a range of different AuNPs sizes could modify the 

cellular uptake and improve gene targeting. It would therefore be interesting to compare 

different coatings on comparable and smaller core size AuNPs, such as the αGal:PEGamine 

coated AuNPs which gave a better uptake in skin cells than the uncoated3.5 nm size AuNPs. This 

experimental programme could be part of a collaboration with the commercial company 

Midatech. In the rest of this section a few specific experiments are proposed.  

 

6.4.2. Radiosensitisation effects of the NPs 

 

To measure the intrinsic radiosensitisation effect of the NPs, the coumarin assay, 

measuring the •OH production upon radiation was used in this project. However, the interaction 

between AuNPs and radiation may lead to the production of other types of radicals and 
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therefore, in the near future, studies using different probes such as DCFHDA to monitor H202, 

ONOO- to monitor O2
•-; and SOSG to probe 1O2 is planned. 

The amount of radicals produced inside the cells is a good indicator of the radiosensitisation 

effect and therefore quantifying the type and amount of radicals in the cells after irradiation Is 

critical. Due to lack of appropriate in situ facilities and the long travel time between the hospital 

and the OU laboratory (> 1 hour), quantifying radical production immediately after radiation was 

not possible in the studies reported in the thesis. A collaboration with Queen’s University Belfast 

has therefore been designed in order to explore the radical production with DCFHDA probe, 

immediately after irradiation. 

 

6.4.3. Theoretical work and simulations 

 

Understanding the radiosensitisation effect of NPs requires a multidisciplinary approach 

as this process involves biology, atomic physics and material engineering (Haume et al., 2016a). 

Relating the uptake and toxicity of the AuNPs presented in chapters 3 & 4 with theoretical work, 

by approximating how the coating is link to the metallic NP, and how it can be change with the 

environment (e.g. surrounded by water molecules or proteins) is therefore of high importance, 

if a better understanding of how the characteristics of the AuNPs influence the radiosensitisation 

effect is to be achieved. Moreover, a collaboration between biology and theoretical modelling 

will provide feedbacks on both experiments and simulation codes. 

In order to explore the coating behaviour on the AuNPs, a collaborative project involving 

theoretical modelling has begun, with Kaspar Haume (ARGENT PhD student) and Kurt Stokbro 

at Synopsis/QuantumWise, Denmark, where the AuNPs were designed using the VNL platform 

following the protocol from Haume et al. 2016 (Haume et al., 2016a). Initial results show that 

the presence of a coating reduced the amount of water near the NP and hence reduces the 

number of OH radicals produced during irradiation. A presentation of multiscale models of the 

irradiation process in collaboration with MBN Explorer and has been described in the chapter 

12 of the book Nanoscale Insights into ion beam cancer therapy (Bolsa Ferruz et al., 2017). 

 

6.4.3. Cerium oxide NPs 

 

As discussed in chapter 5, CeO2 NPs might not have sufficient electron density to give a 

radiosensitisation effect, although they are of interest due to their oxygen adsorbing properties. 

One way to improve CeO2 NPs radiosensitisation effect might be to combine this metallic oxide 

with a high atomic weight element such as gold, silver or bismuth. Some work has already been 

performed on this area in the OU labs. Moreover, different techniques to explore the capacity 



197 
 

of CeO2 NPs to absorb oxygen are being explored, such as the measure of oxygen uptake and 

release after introduction of O2 in the system (Schalow et al., 2005) or thermogravimetry. 

(Imagawa et al., 2011).  

 

6.4.4. Alternative strategies 

 

Not only the use of NPs but also different molecules such as inhibitors of DNA repair 

(Inhibitors of topoisomerase II) (Zhu et al., 2015), antioxidant inhibitors (N-acetyl cysteine) 

would be interesting and be the key in developing a synergistic effect with radiotherapy and 

increasing its efficiency (Lushchak, 2012, Yang et al., 2007).  

For example, Inhibitors of topoisomerase, such as doxorubicin (Zhu et al., 2015), have shown 

promising results in combination with NPs and radiotherapy. Moreover, inhibitors of PARP, are 

already used clinically to increase the DNA damage upon radiation, and could also be of interest 

in combination with the AuNPs currently tested (Kouvaris et al., 2007). 

 

Thus there are many experiments to be done before the role and potential of NPs in 

radiotherapy is known. The results presented in this thesis and the wider work of the ARGENT 

Network has created a consortium capable of developing this work and is expected to lead to 

many exciting results in the next decade. 
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ANNEXES 
 

1. Annexes related to Chapter 2 
 

1.1. αGal :PEGamine AuNPs concentration  

 

AuNPs Concentration (µg /ml) 

100 :0 αGal :PEGamine AuNPs 1317 

80 :20 αGal :PEGamine AuNPs 1310 

60 :40 αGal :PEGamine AuNPs 1039 

40 :60 αGal :PEGamine AuNPs 1256 

20 :80 αGal :PEGamine AuNPs 1250 

0 :100 αGal :PEGamine AuNPs 1265 

50 :50 αGal :PEGamine AuNPs 1033 

50 :50 βGlc :PEGamine AuNPs 1000 

50 :50 NaGlul :PEGamine AuNPs 1000 

 

1.2. Consumables 

 

• 15 ml and 50 ml tubes, sterile, graduation and writing area (Greiner bio one®, 188261, 

227270) 

• 0.5 ml Eppendorf (Greiner bio one®, 667201) 

• 1.5 ml Eppendorf (Greiner bio one®, 676201) 

• Pipette 5ml, 10ml, 25ml (Cellstar®, greiner bio one®, 606180, 607180, 760 180) 

• Dispenser tips non sterile, 2.5ml, (Fisherbrand®, 13-668-704) 

• Dispenser tips sterile, 12.5ml (Fisherbrand®, 13-668-717) 

• Aspiration pipette (Cellstar®, greiner bio one®, 710183) 

• Graduated filter tips Tip One® 10 µl, 20 µl, 200 µl, 1000 µl (Starlab®, S1121-3810, S1120-1810, 

S1120-8810, S1126-7810) 

• pH fix 0-14 (Fisherbrand®, AO17986) 
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2. Annexes related to Chapter 3 
 

2.1. Statistical difference between AuNPs coated with different sugars  

 

2.1.1. Statistical differences in dose responses for each AuNPs on each cell line was analysed by 

two way Anova followed by a Dunnett's multiple comparisons test. * represents p value<0.05, ** 

represents p<0.01, *** represents p<0.001 and **** represents p<0.0001. 

AuNPs αGal:PEGamine exposure 

Dunnett's multiple comparisons test Mean Diff. 95% CI of diff. Summary 

HSC-3    
0 vs. 0.3 22.19 2.934 to 41.44 * 

0 vs. 1 61.56 42.30 to 80.81 **** 

0 vs. 3 94.99 75.74 to 114.2 **** 

0 vs. 10 100.0 80.75 to 119.3 **** 

0 vs. 30 100.0 80.75 to 119.3 **** 

Hacat     
0 vs. 0.3 19.22 -0.03321 to 38.47 ns 

0 vs. 1 14.96 -4.298 to 34.21 ns 

0 vs. 3 19.65 0.3926 to 38.90 * 

0 vs. 10 19.26 0.004603 to 38.51 * 

0 vs. 30 26.84 7.585 to 46.09 ** 

 

AuNPs βGlu:PEGamine exposure 

Dunnett's multiple comparisons test Mean Diff. 95% CI of diff. Summary 

HSC-3    
0 vs. 0.3 29.91 15.37 to 44.44 **** 

0 vs. 1 73.81 59.27 to 88.34 **** 

0 vs. 3 98.33 83.79 to 112.9 **** 

0 vs. 10 100.0 85.47 to 114.5 **** 

0 vs. 30 100.0 85.47 to 114.5 **** 

Hacat     
0 vs. 0.3 13.10 -1.436 to 27.63 ns 

0 vs. 1 13.24 -1.292 to 27.78 ns 

0 vs. 3 26.30 11.77 to 40.84 **** 

0 vs. 10 32.67 18.14 to 47.21 **** 

0 vs. 30 36.63 22.10 to 51.17 **** 

 

AuNPs GlcNac:PEGamine exposure 

Dunnett's multiple comparisons test Mean Diff. 95% CI of diff. Summary 

HSC-3    
0 vs. 0.3 16.24 -9.565 to 42.04 ns 

0 vs. 1 31.88 6.078 to 57.68 ** 

0 vs. 3 56.56 30.76 to 82.36 **** 

0 vs. 10 83.64 57.84 to 109.4 **** 

0 vs. 30 100.0 74.20 to 125.8 **** 

Hacat     
0 vs. 0.3 10.57 -15.23 to 36.37 ns 

0 vs. 1 18.93 -6.868 to 44.73 ns 

0 vs. 3 14.13 -11.67 to 39.93 ns 

0 vs. 10 11.31 -14.49 to 37.11 ns 

0 vs. 30 25.60 -0.2005 to 51.40 ns 
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2.1.2. Statistical differences in dose responses for each AuNPs comparing both cell line was 

determined by two way Anova followed by a Sidak’s multiple comparisons tests. 

AuNPs αGal:PEGamine exposure 

Sidak's multiple comparisons test Mean Diff. 95% CI of diff. Summary 

HSC-3 - Hacat     
0 -7.629e-006 -20.28 to 20.28 ns 

0.3 -2.967 -23.25 to 17.32 ns 

1 -46.60 -66.88 to -26.32 **** 

3 -75.34 -95.63 to -55.06 **** 

10 -80.74 -101.0 to -60.46 **** 

30 -73.16 -93.44 to -52.88 **** 

 

AuNPs βGlu:PEGamine exposure 

Sidak's multiple comparisons test Mean Diff. 95% CI of diff. Summary 

HSC-3 - Hacat     
0 -7.629e-006 -15.31 to 15.31 ns 

0.3 -16.81 -32.12 to -1.499 * 

1 -60.56 -75.88 to -45.25 **** 

3 -72.02 -87.34 to -56.71 **** 

10 -67.33 -82.64 to -52.02 **** 

30 -63.37 -78.68 to -48.05 **** 

 

AuNPs GlcNac:PEGamine 

exposure 

Sidak's multiple comparisons test Mean Diff. 95% CI of diff. Summary 

HSC-3 - Hacat     
0 -7.629e-006 -27.18 to 27.18 ns 

0.3 -5.662 -32.84 to 21.52 ns 

1 -12.95 -40.13 to 14.23 ns 

3 -42.43 -69.61 to -15.25 *** 

10 -72.33 -99.51 to -45.15 **** 

30 -74.40 -101.6 to -47.22 **** 
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2.2. Dose response for each ratio of αGal:PEGamine AuNP exposed to adherent cells 

 

2.2.1. Statistical differences in dose responses for the different AuNPs exposure on HSC-3 cells 

was analysed by two way Anova followed by a Dunnett's multiple comparisons test.  

Dunnett's multiple comparisons test Mean Diff. 95% CI of diff. Summary 

 
100:0    
0 vs. 0.3 -1.552 -14.73 to 11.63 ns 

0 vs. 1 0.8618 -12.32 to 14.04 ns 

0 vs. 3 2.795 -10.38 to 15.97 ns 

0 vs. 10 9.202 -3.976 to 22.38 ns 

0 vs. 30 15.21 2.033 to 28.39 * 

80:20    
0 vs. 0.3 0.6235 -12.56 to 13.80 ns 

0 vs. 1 4.336 -8.843 to 17.51 ns 

0 vs. 3 5.765 -7.413 to 18.94 ns 

0 vs. 10 14.00 0.8225 to 27.18 * 

0 vs. 30 59.10 45.92 to 72.28 **** 

60:40    
0 vs. 0.3 4.889 -8.290 to 18.07 ns 

0 vs. 1 10.55 -2.630 to 23.73 ns 

0 vs. 3 47.74 34.56 to 60.91 **** 

0 vs. 10 81.26 68.08 to 94.44 **** 

0 vs. 30 99.25 86.07 to 112.4 **** 

50:50    
0 vs. 0.3 4.227 -8.952 to 17.41 ns 

0 vs. 1 53.47 40.29 to 66.65 **** 

0 vs. 3 90.32 77.14 to 103.5 **** 

0 vs. 10 99.59 86.41 to 112.8 **** 

0 vs. 30 100.0 86.82 to 113.2 **** 

40:60    
0 vs. 0.3 -11.00 -24.17 to 2.183 ns 

0 vs. 1 -10.81 -23.99 to 2.372 ns 

0 vs. 3 2.744 -10.44 to 15.92 ns 

0 vs. 10 84.37 71.19 to 97.55 **** 

0 vs. 30 97.95 84.77 to 111.1 **** 

20:80    
0 vs. 0.3 2.184 -10.99 to 15.36 ns 

0 vs. 1 5.053 -8.125 to 18.23 ns 

0 vs. 3 8.895 -4.284 to 22.07 ns 

0 vs. 10 14.18 0.9992 to 27.36 * 

0 vs. 30 75.73 62.55 to 88.91 **** 

0:100    
0 vs. 0.3 8.046 -5.133 to 21.22 ns 

0 vs. 1 6.056 -7.123 to 19.23 ns 

0 vs. 3 10.62 -2.560 to 23.80 ns 

0 vs. 10 35.67 22.49 to 48.85 **** 

0 vs. 30 85.37 72.19 to 98.55 **** 
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2.2.2. Statistical differences in dose responses for the different AuNPs exposure on HaCaT cells 

was analysed by two way Anova followed by a Dunnett's multiple comparisons test. 

Dunnett's multiple comparisons test Mean Diff. 95% CI of diff. Summary 

100:0    
0 vs. 0.3 13.60 0.6321 to 26.56 * 

0 vs. 1 8.016 -4.950 to 20.98 ns 

0 vs. 3 3.263 -9.704 to 16.23 ns 

0 vs. 10 24.94 11.97 to 37.90 **** 

0 vs. 30 16.75 3.783 to 29.72 ** 

80:20    
0 vs. 0.3 10.87 -2.099 to 23.83 ns 

0 vs. 1 6.325 -6.642 to 19.29 ns 

0 vs. 3 -4.010 -16.98 to 8.957 ns 

0 vs. 10 18.42 5.452 to 31.38 ** 

0 vs. 30 23.05 10.09 to 36.02 **** 

60:40    
0 vs. 0.3 1.845 -11.12 to 14.81 ns 

0 vs. 1 -2.169 -15.13 to 10.80 ns 

0 vs. 3 -2.719 -15.69 to 10.25 ns 

0 vs. 10 38.85 25.88 to 51.81 **** 

0 vs. 30 23.29 10.32 to 36.25 **** 

50:50    
0 vs. 0.3 8.728 -4.238 to 21.69 ns 

0 vs. 1 7.033 -5.934 to 20.00 ns 

0 vs. 3 15.90 2.934 to 28.87 ** 

0 vs. 10 17.68 4.717 to 30.65 ** 

0 vs. 30 24.01 11.04 to 36.98 **** 

40:60    
0 vs. 0.3 -9.971 -22.94 to 2.995 ns 

0 vs. 1 -16.42 -29.39 to -3.456 ** 

0 vs. 3 -2.939 -15.91 to 10.03 ns 

0 vs. 10 9.736 -3.231 to 22.70 ns 

0 vs. 30 14.43 1.460 to 27.39 * 

20:80    
0 vs. 0.3 5.370 -7.596 to 18.34 ns 

0 vs. 1 2.010 -10.96 to 14.98 ns 

0 vs. 3 0.6429 -12.32 to 13.61 ns 

0 vs. 10 6.383 -6.583 to 19.35 ns 

0 vs. 30 24.05 11.08 to 37.01 **** 

0:100    
0 vs. 0.3 14.99 2.027 to 27.96 * 

0 vs. 1 6.897 -6.069 to 19.86 ns 

0 vs. 3 3.318 -9.648 to 16.28 ns 

0 vs. 10 18.58 5.616 to 31.55 ** 

0 vs. 30 39.30 26.34 to 52.27 **** 
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2.3. Dose response for each ratio of αGal:PEGamine AuNP exposed to floating cells 

 

2.3.1. Statistical differences in dose responses for the different AuNPs exposure on HSC-3 cells 

was analysed by two way Anova followed by a Dunnett's multiple comparisons test. 

Dunnett's multiple comparisons test Mean Diff. 95% CI of diff. Summary 

100:0    
0 vs. 0.3 -1.167 -13.02 to 10.69 ns 

0 vs. 1 4.844 -7.012 to 16.70 ns 

0 vs. 3 12.29 0.4358 to 24.15 * 

0 vs. 10 11.36 -0.4971 to 23.22 ns 

0 vs. 30 20.17 8.312 to 32.03 *** 

80:20    
0 vs. 0.3 -2.504 -14.36 to 9.352 ns 

0 vs. 1 -7.748 -19.60 to 4.108 ns 

0 vs. 3 -16.80 -28.66 to -4.946 ** 

0 vs. 10 13.42 1.568 to 25.28 * 

0 vs. 30 49.90 38.05 to 61.76 **** 

60:40    
0 vs. 0.3 -4.579 -16.43 to 7.278 ns 

0 vs. 1 28.96 17.10 to 40.81 **** 

0 vs. 3 73.56 61.70 to 85.41 **** 

0 vs. 10 83.81 71.96 to 95.67 **** 

0 vs. 30 93.09 81.23 to 104.9 **** 

50:50    
0 vs. 0.3 8.806 -3.050 to 20.66 ns 

0 vs. 1 15.30 3.449 to 27.16 ** 

0 vs. 3 62.79 50.93 to 74.64 **** 

0 vs. 10 70.47 58.61 to 82.33 **** 

0 vs. 30 74.96 63.11 to 86.82 **** 

40:60    
0 vs. 0.3 4.814 -7.042 to 16.67 ns 

0 vs. 1 18.88 7.021 to 30.73 *** 

0 vs. 3 38.83 26.97 to 50.69 **** 

0 vs. 10 63.16 51.30 to 75.02 **** 

0 vs. 30 70.97 59.11 to 82.83 **** 

20:80    
0 vs. 0.3 2.041 -9.816 to 13.90 ns 

0 vs. 1 -8.212 -20.07 to 3.645 ns 

0 vs. 3 -1.274 -13.13 to 10.58 ns 

0 vs. 10 5.417 -6.439 to 17.27 ns 

0 vs. 30 30.67 18.81 to 42.52 **** 

0:100    
0 vs. 0.3 2.535 -9.322 to 14.39 ns 

0 vs. 1 13.37 1.510 to 25.22 * 

0 vs. 3 7.346 -4.511 to 19.20 ns 

0 vs. 10 33.61 21.76 to 45.47 **** 

0 vs. 30 66.39 54.54 to 78.25 **** 
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2.3.2. Statistical differences in dose responses for the different AuNPs exposure on HaCaT cells 

was analysed by two way Anova followed by a Dunnett's multiple comparisons test. 

Dunnett's multiple comparisons test Mean Diff. 95% CI of diff. Summary 

100:0    
0 vs. 0.3 4.418 -6.209 to 15.05 ns 

0 vs. 1 0.8283 -9.799 to 11.46 ns 

0 vs. 3 0.6959 -9.932 to 11.32 ns 

0 vs. 10 -0.6885 -11.32 to 9.939 ns 

0 vs. 30 8.307 -2.321 to 18.93 ns 

80:20    
0 vs. 0.3 2.774 -7.854 to 13.40 ns 

0 vs. 1 -4.433 -15.06 to 6.195 ns 

0 vs. 3 -4.924 -15.55 to 5.704 ns 

0 vs. 10 -4.910 -15.54 to 5.717 ns 

0 vs. 30 10.44 -0.1834 to 21.07 ns 

60:40    
0 vs. 0.3 -0.08218 -10.71 to 10.55 ns 

0 vs. 1 -5.935 -16.56 to 4.693 ns 

0 vs. 3 -2.688 -13.32 to 7.939 ns 

0 vs. 10 10.42 -0.2062 to 21.05 ns 

0 vs. 30 17.85 7.220 to 28.47 *** 

50:50    
0 vs. 0.3 6.231 -4.396 to 16.86 ns 

0 vs. 1 -1.979 -12.61 to 8.648 ns 

0 vs. 3 5.070 -5.557 to 15.70 ns 

0 vs. 10 6.882 -3.746 to 17.51 ns 

0 vs. 30 10.90 0.2756 to 21.53 * 

40:60    
0 vs. 0.3 -7.182 -17.81 to 3.445 ns 

0 vs. 1 -2.083 -12.71 to 8.544 ns 

0 vs. 3 0.1385 -10.49 to 10.77 ns 

0 vs. 10 -1.867 -12.49 to 8.760 ns 

0 vs. 30 10.81 0.1838 to 21.44 * 

20:80    
0 vs. 0.3 -1.823 -12.45 to 8.805 ns 

0 vs. 1 -5.729 -16.36 to 4.898 ns 

0 vs. 3 -2.778 -13.41 to 7.850 ns 

0 vs. 10 3.299 -7.329 to 13.93 ns 

0 vs. 30 17.66 7.037 to 28.29 *** 

0:100    
0 vs. 0.3 2.217 -8.410 to 12.84 ns 

0 vs. 1 10.41 -0.2220 to 21.03 ns 

0 vs. 3 11.80 1.170 to 22.43 * 

0 vs. 10 3.062 -7.566 to 13.69 ns 

0 vs. 30 30.17 19.54 to 40.80 **** 
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3. Annexes related to Chapter 4 
 

3.1. Duplex formation with the DNA sequences of 23 bp and 70 bp 

 

Lane Samples Band 1 

1 x  

2 dR1 23 1348 

3 dY2 23 1185 
 

4 dR1+dY2 27660 

5 dR1 70 12790 

6 dY2 70 13256 

7 dR1+dY2 70 19459 

 

3.2. Triplex formation with the two duplexes of DNA 

 

3.2.1. Triplex formation at different temperature with the TFO dY3. 

lane Samples Band 1 Band 2 Band 3 Band 4 

1 dY3    9114 

2 D23   18451  

3 D70 14241    

4 D23+dY3 RT  21277  10038 

5 D23+dY3 4°C  26738  10293 

6 D70+dY3 RT 21832   5906 

7 D70+dY3 4°C 20676   16409 

8 D23+dY3 NI  26923  5768 

9 D70+dY3 RT 23441   3756 

 

3.2.2. Triplex formation with different temperature with the TFO-PR. 

lane Samples Band 1 Band 2 Band 3 Band 4 

1 D23    19651 

2 D70  17296   

3 D23+PR RT  6945  2250 

4 D23+PR 4°C  6664  2231 

5 D23+PR NI  6141  1915 

6 D70+PR RT 8887   2106 

7 D70+PR 4°C  12231   2492 

8 D70+PR NI 17135   2848 

9 PR    3331 
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3.2.3. Triplex formation with different concentration of dY3-TFO 

lane Samples Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

1 D23 17125.6       

2 DY3 0.5 1444.9 
 

      

3 DY3 1 1605.7       

4 DY3 2 2422.4       

5 DY3 5 4652.2       

6 DY3 10 7775.2       

7 DY3 0.5/1 + D23 307.6 

2.2% 

13937.4 

97.8% 

     

8 DY3 1/1 + D23 1830.4 

14.9% 

10390.4 

85.1% 

     

9 DY3 2/1 + D23 4795.8 

40.7% 

6969.9 

59.3% 

     

10 DY3 5/1 + D23 9219.1 

86.7% 

1419.6 

13.3% 

     

11 DY3 10/1 + D23 120091 

93.3% 

874.3 

6.7% 

     

12         

13 Ladder 2129.5 

8.7% 

3894.8 

15.9% 

5755.8 

23.5% 

1505.2 

6.1% 

3910.2 

15.9% 

6421.5 

26.2% 

903.6 

3.7% 
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3.2.4. Triplex formation with different concentration of PR-TFO 

 

lane Samples Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

1 D23 19997.1       

2 PR 0.5 1760.9       

3 PR 1 1763.6       

4 PR 2 2654.9       

5 PR 5 4219.6       

6 PR 10 5968.6       

7 PR 0.5/1 + D23 12299.2 

53.8% 

 

10565.9 

46.2% 

     

8 PR 1/1 + D23 14950 

91% 

1471.3 

9% 

     

9 PR 2/1 + D23 16942.64 

94% 

1070.8 

6% 

     

10 PR 5/1 + D23 16602.23 

94.7% 

916.9 

5.3% 

1450.6     

11 PR 10/1 + D23 14737 

98.5% 

229.5 

1.5% 

4058.9     

12         

13 Ladder 2554.5 8.354 
8.3% 

4925.916

.1% 

7914.7 

25.9% 

1597.

1 

5.2% 

4902.

7 

16.0

% 

6930.

6 

22.7

% 

1769.

9 

5.8% 
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3.3. Triplex formation within the plasmid and the TFOs DY3 and PR 

 

lane Samples Band (percentage are compared to 

PR and DY3 olnly) 

1 Pl nicked + PR 5193 (40%) 

2 Pl nicked + DY3 9251 (51.5%) 

3 Pl nicked x 

4 Pl + PR 12445 (95.7%) 

5 Pl + DY3 18903 (105%) 

6 P X 

7 PR 13010 (100%) 

8 DY3 17959 (100%) 

9 Ladder x 

 

3.4. Oligonucleotides coated AuNPs characterisation by XPS analysis 

a)   
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b)  

c) 
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d)   

Figure A.1 : XPS analysis of the citrate AuNPs. a) broad spectrum of the AuNPs, b)) S2p, c) P2p, d) Au4f 

 

a)   
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b)  

c)   
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d)   

Figure A.2: XPS analysis of the PN AuNPs. a) broad spectrum of the AuNPs, b) S2p, c)) P2p, d) Au4f 

 

a)   
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b)   

c)   
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d)  

Figure A.3 : XPS analysis of the citrate -TFO-AuNPs. a) broad spectrum of the AuNPs, b) S2p, c) P2p, d) 

Au4f 

 

a)  
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b)   

c)   
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d)  

Figure A.4 : XPS analysis of the PN-TFO- AuNPs. a) broad spectrum of the AuNPs, b) S2p, c) P2p, d) 

Au4f 
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3.5. Statistical differences in dose responses for the different oligo coated AuNPs 

exposure on cells analysed by two way Anova followed by a Dunnett's multiple 

comparisons test.  

 

3.5.1. HSC-3 cells 

Dunnett's multiple comparisons test Mean Diff. 95% CI of diff. Summary 

citrate AuNPs     
0 vs. 1.0 5.498 -21.86 to 32.85 ns 

0 vs. 3.0 18.87 -8.481 to 46.23 ns 

0 vs. 10.0 50.68 17.18 to 84.19 ** 

PN AuNPs    
0 vs. 1.0 -7.543 -34.90 to 19.81 ns 

0 vs. 3.0 5.118 -22.24 to 32.47 ns 

0 vs. 10.0 45.38 11.88 to 78.89 ** 

citrate DY3 AuNPs    
0 vs. 1.0 27.31 -0.04791 to 54.66 ns 

0 vs. 3.0 42.37 15.01 to 69.72 ** 

0 vs. 10.0 56.55 23.05 to 90.05 *** 

citrate PR AuNPs    
0 vs. 1.0 -3.225 -30.58 to 24.13 ns 

0 vs. 3.0 21.97 -5.389 to 49.32 ns 

0 vs. 10.0 40.00 6.498 to 73.50 * 

PN-DY3 AuNPs    
0 vs. 1.0 20.77 -6.587 to 48.12 ns 

0 vs. 3.0 26.30 -1.054 to 53.66 ns 

0 vs. 10.0 56.73 23.23 to 90.23 *** 

PN-PR AuNPs    
0 vs. 1.0 20.48 -6.871 to 47.84 ns 

0 vs. 3.0 40.98 13.62 to 68.33 ** 

0 vs. 10.0 51.46 17.95 to 84.96 ** 
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3.5.2. HaCaT cells 

Dunnett's multiple comparisons test Mean Diff. 95% CI of diff. Summary 

BBi     
0 vs. 1.0 -12.33 -32.70 to 8.031 ns 

0 vs. 3.0 -0.9471 -21.31 to 19.42 ns 

0 vs. 10.0 -5.433 -25.80 to 14.93 ns 

PN    
0 vs. 1.0 -3.366 -23.73 to 17.00 ns 

0 vs. 3.0 3.691 -16.67 to 24.06 ns 

0 vs. 10.0 -0.6745 -21.04 to 19.69 ns 

BBi DY3    
0 vs. 1.0 7.520 -12.85 to 27.89 ns 

0 vs. 3.0 11.74 -8.622 to 32.11 ns 

0.1 vs. 10.0 11.22 -9.140 to 31.59 ns 

BBi PR    
0 vs. 1.0 8.542 -11.82 to 28.91 ns 

0 vs. 3.0 9.063 -11.30 to 29.43 ns 

0 vs. 10.0 12.50 -7.865 to 32.87 ns 

PN DY3    
0 vs. 1.0 11.89 -8.473 to 32.26 ns 

0 vs. 3.0 6.667 -13.70 to 27.03 ns 

0 vs. 10.0 18.45 -1.914 to 38.82 ns 

PN PR    
0 vs. 1.0 19.83 -0.5306 to 40.20 ns 

0 vs. 3.0 25.04 4.676 to 45.41 * 

0 vs. 10.0 21.45 1.081 to 41.81 * 

 

 

 

3.6. Oligonucleotide coated AuNPs and cellular uptake using TEM 

 

NP/nm² Cytoplasm (*10-5) Nucleus (*10-5) Surface (*10-5) 

 HSC-3 HaCaT HSC-3 HaCaT HSC-3 HaCaT 

Citrate 

AuNPs 

14.2 

± 2.17 

N=61 

11.7  

± 1.0 

N=33 

0.49 

± 0.07 

N=61 

0.075 

± 0.04 

N=33 

1.24 

± 0.23 

N=61 

0.67 

± 0.10 

N=33 

PN 

AuNPs 

6.2  

± 2 

N=27 

3.6 

± 1.0 

N=31 

0.17 

± 0.10 

N=27 

0.18 

± 0.07 

N=31 

0.49 

 ± 1.03 

N=27 

2.78  

± 1.00 

N=31 

Citrate 

DY3 

AuNPs 

20.1  

± 3.06 

N=52 

10.7 

± 2.49 

N=34 

0.87 

± 0.11 

N=52 

0.76 

± 0.22 

N=34 

10.0 

± 0.23 

 N=52 

6.22  

± 1.8 

N=34 

Citrate 

PR 

AuNPs 

20.0 

± 2.6 

N=32 

1.60 

± 0.30 

N=34 

0.76 

± 0.14 

N=32 

0.11 

± 0.06 

N=34 

1.6 

± 0.56 

N=32 

1.07 

± 0.3 

N=34 

NP/nm² Cytoplasm (*10-5) Nucleus (*10-5) Surface (*10-5) 

Citrate 

GFP 

AuNPs 

11.7 

± 2.31 

N=33 

4.56  

± 1.00 

N=20 

1.31 

± 0.64 

 N=33 

0.63 

± 0.19 

N=20 

0.68 

± 0.21 

N=33 

3.4 

± 1.0 

N=20 
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PN DY3 

AuNPs 

18.99 

± 3.4 

N=48 

3.56 

± 1.00 

N=47 

0.45 

± 0.088 

N=48 

0.27 

± 0.07 

N=47 

1.18 

± 0.57 

N=48 

3.81 

± 1.00 

N=47 

PN PR 

AuNPs 

14.15 

± 1.81 

N=47 

9.02 

± 2.05 

N=37 

0.59 

± 0.11 

N=47 

0.25 

± 0.09 

N=37 

2.22 

± 0.79 

N=47 

3.50 

± 0.71 

N=37 

PN GFP 

AuNPs 

9.60 

± 1.0 

N=54 

2.22 

± 0.31 

N=54 

0.13 

± 0.05 

N=54 

0.18 

± 0.05 

N=54 

4.66 

± 1.0 

N=54 

2.83 

± 1.00 

N=54 

 

3.7. Relaxed plasmid irradiated with or without the different AuNPs 

 

lane Samples Band 1  Band 2 

(relaxed 

plasmid)  

Band 3 Band 4 

(linear 

plasmid) 

1 Pl 144 14037 115 6718 

2 Pl irr 1629 11234 463 5276 

3 Pl citrate AuNPs irr 348 13078 143 5561 

4 Pl DY3 AuNPsirr 320 13363 97 5582 

5 Pl PR AuNPs irr 355 12229 117 5542 

6 Pl GFP AuNPs irr 429 12279 72 5218 

 

3.8. Relaxed plasmid irradiated with or without the different AuNPs and PCR amplicon of 

the sequence of interest 

 
line Samples Band 1 Band 2 Band 3 Band 4 Band 5 

1 Pl 49 1155 0 530 0 

2 Pl PCR 160 1189 77 0 13167 

3 Pl irr PCR 188 771 34 0 14607 

4 Pl citrate AuNPs irr 

PCR 

0 1108 92 99 0 

5 Pl DY3 AuNPs irr PCR 32 1066 95 146 0 

6 Pl PR AuNPs irr PCR 27 1043 94 97 72 

7 Pl GFP AuNPs irr PCR 6 1023 74 70 0 

 


