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Abstract  
 

The automotive industry, like other sectors, faces a number of technological challenges in terms 

of meeting different legislations and developing products highly customised with a short lead 

time. They also have to manage the trade-offs between the price for the customer and the overall 

cost of the product development.  

This thesis argues that design margins are a decisive factor with regard to many trade-offs that 

engineers may wish to make. These margins represent room for manoeuvre in the developing 

design. On the other hand, design margins allow engineers to accommodate new requirements 

without leading to costly engineering changes. If a change becomes necessary, the engineers 

might modify parameters where there are still margins with respect to the new requirements. 

Therefore engineers can avoid major redesigns to their existing components and systems. 

Ultimately this has the potential to enable control of the resulting development time and cost.  

While margins are an intuitive concept, no clear and consistent definitions exist. The concept is 

relatively under-investigated area of design research. A comprehensive literature review and an 

empirical study at Volvo Global Truck Technology, emphasised the main issues and showed 

that there is a strong industrial need for support with margins, especially to understand how 

margins shape the design process. The concept of design margins, consisting of buffer and 

excess is developed.  The key to managing product development is the transition from buffer to 

excess throughout the design process. This gives designers and engineers a rich way to express 

and communicate information about the forthcoming design to other team members, other teams 

and suppliers.  

The thesis proposes a conceptual framework to investigate and capture design margins. The 

overall model indicates that a clear elicitation and an explicit documentation of design margins 



 

can help decision makers implement more efficiently the necessary changes involved in product 

development: design margins are seen as a critical aspect of product design and development.  
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1 Foundations for product development and design 

margins 

 

   

 

 

 

This chapter introduces the research presented in this thesis. The chapter begins with the 

motivation and background after highlighting the importance of design margins in product 

development. An overview of Volvo Trucks and an introduction to the case study follows. The 

chapter ends with a discussion of the key objectives and research questions.  
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The future is uncertain ... and in an uncertain environment, having the flexibility to 

decide what to do after some of that uncertainty is resolved definitely has value.” – R. 

Merton (1997 Nobel laureate). 

 

 

 

 

 

 
 

 

 

 

1.1   Problem definition  
 

The requirements of product design present a major challenge for many companies. Products in 

the automotive sector, particularly in truck design, the case study of this research, have complex 

interrelations between a large number of different components. The dynamic of this complexity 

is increased by the variation in transport missions, which determines the type of vehicle, load 

capacity, weight and body. Typically, companies provide a wide variety of versions for different 

use profiles and customer preferences. Customers demand products that suit their specific, yet 

constantly changing, needs. One approach to meet this demand is mass customisation; offering 

many variants of a product at a very low cost. Another potential solution to this increased 

demand for high variation is flexible systems. This leads to a critical challenge in product 

development. A flexible product means that the product has considerable margins so that it can 

accommodate changes to meet a new set of requirements, while a cost effective one is one that 

is optimised to a set of requirements, i.e. one that is not overdesign. At the heart of this challenge 

is the question; what are margins on components and systems? This is the first research question, 

(RQ1). 

 This thesis reports on an empirical study in Volvo which analyses how different groups in the 

organisation add and remove margins throughout the Product Development Process (PDP). As 

these margins are referred to by different names, such as room for manoeuvre, safety margins 
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or design margins, they can be complicated to manage. Moreover, margins on a component or 

on a system are not universal, but relative to the specific product and its intended use. In a 

product like a truck with a range of options and variability in use, the margins can be difficult 

to determine. However, an awareness of the state of margins throughout the product 

development process can help the designers to accommodate changes and make decisions about 

their design solutions.  

On the other hand, there is a strong financial incentive for Volvo to reuse components from 

existing products to save development costs and minimise the lead time. Using common 

components and systems means that some components have large design margins with regards 

to the properties of particular brands. In some case the properties are highlighted in the 

marketing of one brand, but not of another. For example, the Volvo brand is promoted as an 

eco-friendly brand and has components developed specifically to assure a low level of carbon 

emission. Some of these components are used in other brands, or only introduced in the next 

generation of products when the general expectations on carbon emission will have increased.   

Volvo has a strong brand identity of trying to meet customer requirements, which leads to a 

great option proliferation, which the company wants to control. 

One of the interviewee interviewed while carrying out this research said: “Volvo philosophy is 

the other way round and it creates a lot of complexity and sometimes too much so we have 

maybe to go look into how to limit, how to make product planning reducing the offer when they 

add, when they want to add new things, how to get rid of old stuff and the variants that are not 

sold in the high number” (SS) 

 

Designers need to make trade-offs between many design parameters, which can be difficult to 

model and capture in complex engineering systems. Margins on different elements like 

requirements, geometry and material properties allow them to make these trade-offs. However 
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there is a range of key parameters that determine the performance of the overall product, such 

as emissions and noise. Accordingly, it would be enormously beneficial for companies to know 

the design margins on key components, and understand how these margins evolve over time, in 

order to improve the development process of complex products.  

 

1.2  The challenge  
 

In incremental products, planning is about the changes that are required to meet new design 

requirements. Product planning is often very closely linked with the design of a product platform 

and the flexibility that is designed directly into the platform. Flexibility has also been addressed 

from the view point of individual designs to make sure that a new product will be flexible. This 

research focuses on margins and addresses how they changes can be carried out knowing the 

state of margins. 

Most companies cannot plan their products in isolation, but have to consider implications across 

an entire product platform. As Otto and Simpson, (2014) argues; optimising a platform is the 

key to profit and viability of an entire product offering. Understanding margins lies at the core 

of product planning.  

Volvo GTT (Group Truck Technology) is a global company which develops trucks, construction 

equipment and engines that are used in different markets with different characteristics regarding 

operating environments, legislations and transport missions. A number of different transport 

missions is illustrated in Figure 1-1.  
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Figure 1-1 A number of different transport missions 

 

This requires the company to deal with a large degree of variance and a huge number of 

configurations. For example, European trucks with overall length restrictions have the driver’s 

cabin above the engine whereas US trucks with restrictions only on the lengths of the trailer 

have the cabin is behind the engine.  

Volvo Group is one of the largest truck brands in the world, which develops vehicles that are 

sold and serviced in more than 140 countries. Over the last 20 years Volvo trucks have acquired 

several other brands to reach new markets. Mack trucks offer highly specialist trucks for the US 

market many for off-highway applications, while Renault Trucks designs and produces trucks 

for the European market. They have also acquired a Chinese and an Indian brand, which are not 

yet integrated in the product platform. The trucks of the three main brands are aimed at different 

market segments.  

European trucks have overall length restrictions whereas US trucks have only restrictions on the 

lengths of the trailer which has led to very long cabs with a different configuration. In the 
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European trucks the driver cabin is above the engine and the cooling system, whereas in the US 

trucks, the cabin is behind the engine which give a generous accommodation for the driver.  

In response to the high level of customisation, Volvo GTT has developed a platform called 

Global Transport Application (GTA) to have a common design language across different 

business units within the Group. GTA defines a number of parameters that support the selection 

of ‘the right vehicle for the mission’ according to the market segment, operating environment 

and legislations.  

In this subsection, a description of Volvo products structure and the primary parameters defined 

in the GTA is given. In order to get the optimum vehicle specification, the GTA classifies the 

design parameters as follows:  

Transport mission: the customer transport mission is the starting point that determines the 

vehicle type, size, capacity, gross vehicle / combination weight (GCW) and the body the product 

should have. Without exception, the customer wants to have an optimal load capacity, whether 

with regards to the maximum load for the platform length, or maximum load volume for 

maximum load weight in tonnes. Accordingly, Volvo truck design is predominantly about 

maximising the payload capacity and thus the income generated by the vehicle. However, in 

practice, for most transport operations, the authorities determine the maximum gross vehicle or 

combination weight permitted on the public roads. Therefore, the company has to specify these 

two parameters for which the vehicle is technically approved. 

Vehicle utilisation: the vehicle’s use is largely related to the driver, i.e. the conditions for being 

able to work efficiently. The vehicle utilisation is determined by speed changes, manoeuvring 

and the yearly usage. For each of these parameters GTA classifies a number of levels and ranges. 

Also, the operating cycle reflects how often the vehicle stops to load or unload goods or 

passengers.  
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Operating environment: determined by the type of road which has a major impact on all 

vehicle systems and affects the truck’s operating reliability. The quality and condition of the 

road also affects the fuel economy since a poor road surface causes greater rolling resistance. 

GTA specifies four levels of road conditions: smooth, rough, very rough, and cross country. The 

landscape topography and the gross combination weight GCW are the two main factors 

determining the powertrain’s specification. GTA classifies four levels for topography; flat, 

predominantly flat, hilly and very hilly. Then it classifies by climate and altitude. At very high 

altitude for example, the engine is subject to a higher stress. In a very hot country, the cooling 

requirements are different. Therefore, for a given climate zone, key parameters need to be 

considered so that the truck can still achieves a optimum performance.  

The product offering in the company can be summarised as shown in Figure 1-2. Vehicle design 

based on GTA parameters means that the choice of materials, dimensioning, and performance 

needs to be tailored to each transport operation’s driving and load conditions. However, the 

company wants to optimise the use of components and systems, therefore they increase the 

commonality of their platforms. For example, consider a component in a truck developed for 

rough road conditions and a load of 44 tons GCW (Gross Combination Weight). However, this 

component may also be used in trucks with a GCW of up to 60 tons if the road is classified as 

smooth.  
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Figure 1-2  The product offer in the company (company document) 
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From the above cited parameters, it appears that every operational segment and type of cargo 

imposes its own set of requirements regarding the truck’s specification. The goal for the 

company is naturally to satisfy each customer’s needs. On the other hand, they also want to 

optimise their products and increase the profitability. Therefore, the company has developed a 

large specification database (variants) characterised by a broad scope for offering different cab 

sizes, chassis heights, wheel bases, powertrains and so on. 

 

1.3 Overview and motivation  
 

This thesis reports on research carried out at The Open University in collaboration with Volvo 

GTT and GKN aerospace in Sweden.  The research investigates the concept of design margins 

and proposes a method which explores a way of managing design margins throughout the 

product development process.  

The original motivation for the project came from engineering change and the need to predict 

the impact of changes on different components. A change to a component, can have a 

repercussion on other components. Whether a change propagates depends on whether the 

components can absorb the change or not. If they can absorb the change, they have had a certain 

margin in them, where the original component exceeded its initial requirements, and allowed 

them to accommodate an increase in the requirements. An understanding of the state of the 

components, their parameters and margins would allow engineers to predict the risk of a 

potential change more precisely and enable product planners to understand when components 

need to be changed or upgraded. Margins have a significant impact on how easy or difficult 

it is to incorporate changes in existing products and systems or future generations. 

Exploratory research revealed the industrial receptiveness to evaluate new approaches and 

methods to tackle these challenges, since it would provide additional decision making support. 

Thus, this research reports the need that Volvo engineers expressed in estimating the effects of 
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Knowing and managing design margins will help companies to assess uncertainty and 

handle engineering change more efficiently.  

k 

change in key projects and for support in product planning particularly at the early stages of the 

product development process. Therefore, it was decided together with the project steering 

committee, to study first how margins are handled in the organisation with the aim of identifying 

the company terminology, as well as identifying margins that would not typically be 

conceptualised as such. The starting point for the study was chassis development as many of the 

margin issues around chassis are geometrical and therefore fairly intuitive. Once this was done, 

the second phase of the research looked at how changes into a specific system are carried out. 

The cooling system is selected as a case study for our research because the company needs 

support with its development and because it is one of the systems that are subject to various 

constraints from different features and therefore a number of trade-offs were present. The 

cooling system (Figure 4-5 in Chapter 4) has tight geometrical constraints. It has the cab flooring 

on the top, on the sides the chassis frame, the grille in the front, at the bottom the Front Underrun 

Protection (FUP) and the engine in the back. Therefore, the objective is to establish how margins 

play a role in carrying out changes and how they shape the design process. 

This thesis argues that understanding margins on key parameters, components and systems 

would give engineers valuable insights in predicting and managing uncertainty and support in 

planning for change during complex product development.  

 

1.4 Research Questions 
 

This research aims to understand margins and the way they can be managed throughout the 

product development process. The work in this thesis is based upon two main hypotheses: 
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There is a lack of support approaches or methods to assist engineers to communicate 

design  margins explicitly throughout the product development process. 

This hypothesis was initiated by the published design literature, some of which is highlighted in 

Chapter 2.  

The second hypothesis arose from discussions with academics, designers, engineers and 

managers in the company:  

 

 

 

 

Research questions that arise from these hypotheses and which will be addressed in this thesis 

are: 

RQ 1: How can design margins be defined ? 

Obtaining such understanding first requires identifying:  

What is the different terminology used to describe design margins? 

What terminology is used at different stages of the Product Development Process (PDP) ?            

Answering these questions is achieved by carrying out the following activities. First, the 

literature review (Chapter 2) was followed by a first case study, conducted in Volvo GTT 

Sweden to understand who is adding margins, at which point in the process and how they refer 

to them (Chapter 5).  

 

RQ 2: How are design margins handled in the PDP ? 

The initial issue to be addressed in answering this question was:  

How are design margins managed in current practice? 

How do design margins evolve over the PDP ?  

Workshops and visits to the company were organised to discuss the findings and different 

modelling approaches (Chapter 5). 

11



 12 

 

RQ 3: How can design margins be modelled to manage engineering change? 

To answer this question, it is necessary to understand: 

What is the relationship between the different types of margins ?  

What approach will be most beneficial from the company’s perspective? 

A Design Structure Matrix (DSM) method is used to capture the relationships among 

components and dependencies between components. Further, the Change Prediction Method 

(CPM) is used to analyse the change propagation among components (Chapter 6). The 

understanding of these relations provides useful insights for a better way to model margins.  

The relationship between the research questions and the various sections of the thesis is 

summarised in Table 1-1. 

 

Research Questions Sections Discussed Sections Answered 

Margins definition  Chap 2 & 5 §2.7, §5.3-5.4, §8.1 

Margins handling in the PDP Chap 2, 4 & 5 §4.1.3, §5.1- 5.2 – 5.6- 5.7,  

Margins modelling and 

management  

Chap 5 & 6 §5.7.2, §5.8, §6.5- 6.6, §7.2- 

7.3, §8.1 

Table 1-1 Relationship between Research Questions and Thesis sections 

 

 

The work described in this thesis aimed at improving the understanding of design margins and 

proposes a method to investigate the concept. The aim of this research was to bring new 

knowledge to the area of engineering design that would be of benefit to industry and academia. 

The initial research questions (RQ1, RQ2, RQ3) were the starting point for the investigations in 

this research and informed the analysis of data from a case study undertaken in Volvo GTT as 
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part of the research. Hence, a measure for success for this research was that any method or model 

developed must be of benefit to the company. 

 

1.5 Thesis structure 
 

The thesis argues that a key point in building new designs lies in understanding the margins that 

components have with regards to different set of requirements. It describes an example of a 

truck cooling system including (e.g. pump, heat exchanger, and fan) to demonstrate the 

importance of modelling the connection and the dependency between components (Chapter 4). 

It also looks at the cooling system throughout its life cycle, in order to determine how margins 

at different stages of the process affect the changes that could be made (Chapter 5). This leads 

to a discussion of the concept of components’ and systems’ margins and how companies can 

benefit from understanding and capturing the components’ margins in designing new systems 

(Chapter 7). An overview of the chapters in the thesis is shown in Figure 1-3. 
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Figure 1-3 Overview of the thesis chapters 

 

Having introduced the motivation of the work and the research questions in this chapter, the 

next chapter provides a literature review that was undertaken to examine the concept of design 
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margins in the product development process and related topics. The research methodology 

applied is described in Chapter 3. In Chapter 4, a background to the industrial case study is 

presented. In Chapter 5, a detailed description of the findings from the empirical study carried 

out at Volvo GTT Sweden is provided. A process method for modelling margins is proposed in 

Chapter 6. Finally, Chapter 7 summarises the research contributions, discusses strengths and 

limitations of the proposed method, and provides recommendations for future research direction.  

 

1.6 Summary 
 

This thesis argues through a literature review (chapter 2) and empirical study that:  

▪ Academically, the concept of design margins is an under-researched design area. There is a 

need to carefully ground the topic and bring together different related topics from different 

research areas. 

▪ There is an industrial need for support in the way that margins are managed. 

▪ Margins are present during most phases of the product development process and have a 

significant impact on the working of many engineers, however they are surprisingly unaware 

of margins and do little to communicate them explicitly. Thus, there is a knowledge gap 

among engineers and designers. Moreover, the increase in complexity, subsystems, and 

organizations involved in developing a product increases this knowledge gap. Hence, there 

is a need to reduce this gap, by applying improved analysis methods; detailed 

documentation; and accurate information exchange.  

 

A method to investigate and manage design margins is proposed. It is developed and discussed 

through an industrial case study.
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2 Literature Review 
 

 

 

 

 

The work presented in this thesis is concerned in modelling margins and managing design 

processes through margins. Therefore, this chapter starts with setting the context of product 

development which is subject to many sources of uncertainty that need to be resolved through 

the interrelation of different kind of design activities. One of the sources of uncertainty reviewed 

in this chapter is engineering change.  Next, key concepts related to margins are discussed since 

margins play an important role in how engineering change affects a product and thereby the 

process of developing the product. The chapter ends with a discussion of tools and methods that 

can be used to support the design process . 

 

 

 

 

 

  

16



 

 17 

The design process can be viewed as a system of "interrelated activities" (Wynn et al. 2011) 

which are performed with the purpose of reducing the uncertainties surrounding the design 

solution or, in other words, as a system of design activities organised with the goal of gaining 

knowledge and confidence that the solution will function and perform according to the specified 

requirement.  

Wynn et al. (2007) describes that design is different from repeatable processes which can be 

defined a priori, since uncertainty and complexity forces engineers to explore opportunities, 

master continuous changes, perform complicated trade-offs and solve design problems which 

always exhibit (to some extent) a degree of novelty. 

Another challenging aspect of carrying out design activity is how to accommodate evolving 

requirements. One can see requirements as uncertain information which evolves during the 

design and development process together with the environment in which they operate. 

Fernandes et al. (2013) argues that the classical paradigm of designing for "fixed" requirements 

has been abandoned in industrial practice. Changes in high-level requirements, changes arising 

during sub-system integration and late requirements change, were considered to be the most 

"damaging" by the companies.  

One concept that can help in addressing these challenges is the concept of margins. In the 

available literature margins have been named differently depending on each sector but it was 

seen as a general concept that designers could use to account for imprecision and uncertainty, 

thus allowing design to absorb some changes without the need for major changes or redesign.  

 

However, in most design research, margins have been considered primarily as means to cope 

with uncertainty, not as inputs that define opportunities.  

The following review starts with approaches related to product development, and gives an 

overview of the published literature in engineering design which forms the background and 
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context for examining margins and their role. The second part of the review highlights the 

concepts related to design margins and gives a definition (section 2.7). 

 

2.1 Engineering Design and Product Development  
 

Product development is challenging for companies developing complex products, such as 

aircrafts, cars, trucks and big civil infrastructures. These types of products are composed of 

many multidisciplinary systems. Such systems are constructs of interrelated parts forming a 

complex whole (Blanchard and Fabrycky 2006), functioning together to achieve goals which 

cannot be attained by the elements alone (Clayton and Backhouse 2012). 

The development process in systems engineering is commonly viewed in the literature as a 

decomposition process followed by an integration process (Pugh (1990), Krishnan and Ulrich 

(2001), Pahl and Beitz (2013)). During the decomposition process, the customers’ requirements 

are analysed and defined in engineering terms and then partitioned into a set of specifications 

for several systems or components. The design process defines what the system have to do, how 

well the system must do it, and how the system should be tested to verify the and validate the 

system’s performance.  

The engineering design process illustrated in Figure 2-1, consists of a number of steps to find 

an optimal solution to a specific problem. Throughout this process there is considerable 

feedback and several iterations. First there is a definition of the need and the specification of the 

requirements for the system. This is followed by an investigation of possible solutions to the 

stated problem, leading to a conceptual design. The conceptual design is then analysed and 

refined, until it becomes a detailed design including the adopted solution and the system 

characteristics. The detailed design is then implemented through the process of developing, 

testing and product launch.  
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Figure 2-1  The design process adapted from Pahl and Beitz (2013) 

 

The classical model of product development follows a sequential staging of design and 

development tasks. However, designing a product can be used in its narrow sense to refer to the 

design phase. As shown in Figure 2-2, the design activity starts by developing the product 

concept based on existing technical knowledge and the customer needs. As the process unfolds, 

the company develops new knowledge about how components correlate and interact in the 

product before getting to the detailed design. This knowledge gained throughout each stage 

enables design decisions which allow the next stage of development tasks to proceed.  
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Figure 2-2 Product development process adapted from Ulrich and Eppinger (2000) 

 

 

 

However, some other research makes evident the likelihood of losses and delays in information 

flow, when product development processes are organised in a sequential way. Thus, another 

possible representation of the product development process described in the literature is shown 

in Figure 2-3 (adapted from Buede and Miller, 2016) beginning with the identification of need 

for the system and progressing through the retirement of the system. Some of the phases of the 

process are accomplished in parallel, as shown in the diagram; which phases occur in parallel 

depends upon the type of system, the organisation, and the context.  

The product development phases associated with the engineering design are shaded in Figure 

2.3. Design includes the preliminary system design as well as parts of the identification of need 

and concept definition. 
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Figure 2-3 Product development process adapted from Buede and Miller (2016) 

 

On the other hand, traditional approaches in product design and manufacture consider only 

limited information on the manufacturing issues. The concept of concurrent engineering (CE) 

is then introduced and many researchers such as Yassine and Wissmann (2007), Eastman 

(2012), Hartley (2017)  argue that CE is a way to reduce the lead time between the start of a 

design and the manufacture of a product by ensuring that manufacturing issues are considered 

from the beginning of product design. However, this type of approach might not be applicable 

for all the engineering systems due to the complexity and the uncertainty associated with the 

product development.  

Another approach to the classical development model is the gate review process which has been 

adopted by most companies in the automotive sector. This development process controls and 

coordinates design efforts and provides baselines guiding the development, production and 

operation of the system. The system's life-cycle is normally split into several stages, as shown 

in Figure 2-4. 
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Figure 2-4 Product development process and decision gate at each stage. Adapted from 

Blanchard and Fabrycky (2006) and Volvo GDP. 

 

The conceptual design stage is the first phase in complex system development and follows the 

approval of a new development initiative inside the organisation. It typically includes the 

identification of stakeholder needs, requirements capture, concept exploration and design and 

the overall programme planning. The preliminary design stage occurs subsequently, to refine 

the system's conceptual solution and typically includes the preliminary definition of the key sub-

systems and components. Detailed design and development follow with the full definition of 

sub-systems and components together with all the prototype development and testing activities 

and verification of internal and supplier manufacturing capabilities. Subsequent production 

approval triggers the start of large-scale manufacturing and the beginning of continuous system 

deliveries to the customer. The system is then put into operation and the last stage includes 

maintenance and logistic support to the customer, the release of product improvements and 

collection and analysis of operational data (Blanchard and Fabrycky (2006)). 
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These and other typical activities are performed during the stages of the system's life-cycle and 

are described in Figure 2-4, together with the typical decision gates in each stage. Major 

technical and business reviews (e.g. Concept Review, Preliminary Design Review, and 

Production Release Review) take place at each decision gate. Decision options at each gate, 

determine whether the team should move to the next stage or an iteration should be made in the 

current stage before moving to the next one.  

While most published research on product development is focused on designing new systems 

or products, this is rarely the case in the automotive industry where products are often reusing 

systems or components from the previous generation or using shared systems or components 

across different products.  

 

2.2  Product platform approaches  
 

As discussed in Chapter 1, products in the automotive industry are platform based. Most 

manufacturers carry over a significant number of components between product generations and 

between different brands (models), in order to reduce the design effort and the risk associated 

with the product development. 

In the literature, product platforms are described slightly differently depending on the product 

application. Meyer (1997) defines the product platform as a set of common components, 

modules, or parts from which a stream of derivative products can be efficiently developed and 

launched. Muffatto and Roveda (2002) adds another variant to Meyer’s definition and assumes 

that a product platform is “a set of subsystems and interfaces intentionally planned and 

developed to form a common structure from which a stream of derivative products can be 

efficiently developed and produced”. This definition can be extended according to Hohnen et 

al. (2013) who defines a modular product platform as machines, sub- assemblies and 

components that can be combined as modules to fulfil different overall functions. 
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 The several platform definitions show that there is significant variation in the level of 

concretisation, ranging from sharing specific components to common approaches to more 

general subsystems from which products can be developed. An example from automotive 

platforms where different products (brands) share the same module is shown in Figure 2-5. This 

is an example of a specific suspension module which can be used for different products with 

only few component additions.  

 

 

 

Figure 2-5 Example of a common module shared by different products 

 

Product platforms are generally considered through component/part commonality, but some 

definitions do also include other aspects such as technology, people and relationships. 

Production aspects such as technology, process, operations and resources may also set the 

foundation for identifying and designing platforms. This type of platform is referred to as a 

production platform (Asbjørn and Ditlev 2011)  

Platforms are generally described to be of one of either two kinds: (1) Module-based platforms 

are characterised by sets of components being clustered into interchangeable modules that 
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together form the product. The module-based platform can either be integral, where functions 

are shared by several modules, or modular, where each function is delivered by a separate 

module. (2) The second platform approach is the scalable platform. This platform supports 

adaptation by the stretching or shrinking of the product instances following variations in design 

variables (Jiao et al. (2007)). A platform approach is shown to be an enabler for efficient 

customisation, reuse and production standardisation. 

A platform has implications like the use of common manufacturing processes, as well as 

technology and knowledge shared by multiple products in a family. Therefore, components in a 

product platform need to be designed in such a way that they can contribute to satisfying the 

requirements placed on all the products which are designed to be based on the platform.  

Several works in the literature consider the product platform as the baseline for product family 

development. Product families are a way to increase the product variety while contraining the 

product development and manufacturing effort. Simpson et al. (2001) defines a product family 

as a group of related products that share common features, components and subsystems; and 

satisfy a variety of market niches. A product family comprises a set of variables, features or 

components that remain constant in product platform and others that vary from product to 

product. Krishnan and Ulrich (2001) defines product variety as the diversity of products that a 

production system provides to the marketplace. Product families are based on the idea of reuse. 

Therefore, if the customer needs are anticipated well in advance, modules and variants can be 

reused. 

Martin and Ishii (2002) distinguishes between two types of variety when developing the 

architecture of a product range: variety within the current product line being designed and 

variety across future generations of the product. It refers to variety in the current product being 

designed as “spatial” variety, and the variety across generations as “generational variety”. Du et 

al. (2001) adds to this distinction two other dimensions: “functional variety” and “technical 
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variety”. Whilst functional variety mostly relates to customer satisfaction, technical variety is 

relevant to manufacturability and costs.  

The crucial step in platform design is modularisation. Otto and Simpson (2014) gives an 

extensive overview of modularisation methods. Product platform design can be separated from 

the initial phase of platform planning and the subsequent phase of platform implementation. 

Schuh et al. (2011)  provides a holistic approach for the creation of modular product platforms 

integrating the planning, design and implementation in one process model. The aspect of 

changeability in the lifecycle perspective of a product platform is still a deficiency in current 

approaches. Suh et al. (2008) addresses this issue with his work on flexible product platforms. 

This approach however lacks the focus on functions and ranges of function requirements that 

usually have to be fulfilled by a modular product platform. It is necessary to consider functions 

and ranges of function especially when designing modular product platforms, for mechatronic 

systems for example. 

In the automotive industry, products are generally designed incrementally. New products are 

created by changing certain design parameters of the product. Typically, these changes enable 

an increase in performance or an adaptation to market-specific requirements. 

 

 

 

2.3  Engineering Change   
 

Engineering systems are constantly faced with changes and unpredictability in their 

environments. Engineering change has been tackled and understood from a number of different 

perspectives which are reflected in the literature.  

Wright (1997) restricts engineering change to “a modification to the component of a product 

that normally takes place after the product enters the production phase”. This definition takes 
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into account only the production stage, without considering the number of iterations that occur 

during the design and development of a product. This has been the common approach in much 

of industry which considers engineering change as a manufacturing issue to be addressed in 

order to ensure product quality and to meet delivery deadlines (Wright et al. 2000). Change 

before manufacture is regarded as a natural iteration of the design process.  

Huang and Mak (1999) extend the above definition to “the changes and modifications in forms, 

fits, materials, dimensions, functions, etc of a product or a component”. This definition is, in 

many ways, too general as it makes no mention or reference to the process or management of 

design. Hamraz et al. (2013) defines engineering change as “changes and/or modifications to 

released structure (fits, forms and dimensions, surfaces, materials etc.), behaviour (stability, 

strength, corrosion etc.), function (speed, performance, efficiency, etc.), or the relations between 

functions and behaviour (design principles), or behaviour and structure (physical laws) of a 

technical artefact”. Drawing on the broad definition of engineering change by Hamraz et al. 

(2013), the component design change in the case studied in this thesis certainly lends itself to 

engineering change management processes. Also, subsequent change to the manufacturing 

systems can be described as an implicit change as opposed to an explicit one and may be 

included in the definition. 

Although different terminology can be used, the basic engineering change process is the same 

whenever it is triggered in the design process. However, differences may become apparent in 

the detail of each stage of the engineering change process depending upon when in the product 

life cycle, the change process is triggered.  

On the other hand, change can be considered to propagate through the design process, as well 

as through the design itself. According to this view, change to a task’s input requires the task to 

be revisited, potentially causing a knock-on change to the task’s output and hence to downstream 

tasks. The research conducted by Jarratt et al. (2011) considers the nature of the engineering 
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change process, which combines the procedural handling of design errors with the subtler and 

more substantial resolution of issues arising from uncertainties in designer, customer and market 

requirements and how engineering change is connected to the makeup of the product in terms 

of architecture, complexity and degree of innovation.  Eckert et al. (2004) analyses the formal 

and informal processes that are used to handle changes and specifically looks at the potential 

causes and effects of changes. Ross et al. (2008) explains that the change can be characterised 

by three elements: (1) the agent of change, (2) the mechanism of change and (3) the effects of 

change. 

Change is not only critical, but also difficult to manage. Change occurs across the entire product 

development process starting with the modification of existing products. Whether a change will 

propagate from a component or a system to another one depends on the ability of a component 

or a system to absorb the change.  In fact, the capacity to absorb change means that a component 

or system has some design margins. 

 

 

 

2.3.1 Product classification 

 

According to Jarratt et al. (2011) the change impact on a product is influenced by three elements: 

(1) product architecture (2) product complexity (3) degree of innovation within the product. 

Products are categorised into two main classes based on their architecture. 

Complex Products: For a system, many functional requirements must be satisfied at the same 

time. In this case, the complexity is determined by ability of engineering design to satisfy all the 

functional requirements within the specified design range. It can be difficult to establish a 

definition of complexity because product complexity is conceptualised in many ways. Pahl and 

Beitz, (2013) defines complexity as “the relative lack of transparency of the relationships 
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between inputs and outputs, the relative intricacy of the necessary physical processes and the 

relatively large number of assemblies and components involved”. On the other hand, there are 

numerous opinions regarding complexity from the perspective of engineering change, which are 

brought together in Keller et al. (2005). The main type of complexity from a viewpoint of 

engineering change is connectivity. This measure of complexity describes the connections 

between components and their interaction inside a system. This complexity is mirrored in an 

integrated product architecture, consisting of a complex mapping from functional elements to 

physical components and/or coupled interfaces between the components. The complexity of 

technical systems relies on the diversity and number of distinct elements and their connectivity 

(Keller et al. 2005). 

Modular products: Modules can be defined as a physical structure which has a one-to-one 

relation with the functional structure. More and more products are constructed based on modular 

product platforms, but modules and subassemblies are often developed for individual products 

and not for the entire platform. In function-oriented modularisation, modules are designed to 

independently fulfil partial product functions. These functions can mostly be realised by the 

application of various different technologies. An example is the air conditioning technology for 

a car, which can either be implemented with water or air cooling. Using only one of these 

technological alternatives for the entire product range requires applicability to all planned 

platform products but leads to reduced efforts in testing and design as well as a reduction of 

variance by the realisation of commonalities.  

The modularity that is linked to the application of modular product platforms allows 

independent development of each module. Therefore, each module becomes an independent unit 

of selection (Morkos et al. 2012) . A module is a product block whose structural components 

are strongly linked among themselves and comparatively weakly linked to the other unit 

components. Thus, a change in a module’s component has a high probability of causing changes 
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in components within the same module. A change in a module can propagate to the other 

modules because interfaces and linking parameters exist between them. A change to one module 

can be made without changing the other modules if the interfaces remain unchanged.  

2.3.2 Components / sub-systems classification  

 

The components or sub-systems of the product are interlinked. Clarkson et al.. (2004) identifies 

four types of change propagation behaviours named as multiplier, absorber, carrier and constant. 

These four types of change propagation represent four different situations. When the change is 

initiated by one component and it propagates to other components through linkages, so different 

components behaves in different ways. These classifications are illustrated in Figure 2-6.  

 

Figure 2-6  (a) Component change propagation characteristics (Eckert et al. 2004) ; 

                (b) Component classification based on change risk (Keller et al. 2005) 

 

 

Absorber: An absorber absorbs all the changes without passing them on. Absorbers reduce the 

complexity of the change propagation.  
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Carrier: A carrier can be defined as a component that neither adds nor reduces the number of 

changes. It means that these components pass on the same degree of change as they have 

received. They do not increase the complexity of the overall problem (Eckert et al. 2001). 

Multiplier: Multiplier is a component that causes more changes than it receives. These 

components can provoke an “avalanche” of changes (Mokhtar et al. (2000), Eckert et al. (2004)) 

and is also referred to as the snowball effect (Terwiesch and Loch (1999)). Such changes have, 

potentially, a major effect on the budget, product lead time and the organisation as a whole.  

Constant: This component remains unchanged and the change is being passed without any effect 

(Eckert et al. (2004), Fei G et al.(2011)). It just transfers the change from one component to the 

other components to which it is interlinked.  

The difference between a change carrier and a constant component is that a change carrier 

absorbs and propagates the change to the other components to which it is connected while a 

constant component remains unchanged and passes the change to the other components.  

Change propagation behaviour is not a static property of the part or system, it depends of the 

state of the design (Eckert et al. 2001). A change absorber can easily become a multiplier if the 

particular change is too big to absorb. For example, an engine might be able to support a certain 

increase in weight. However, if the weight-increase is too large the engine must be modified or 

a new engine selected.  

2.4 Requirements Change in Complex Product Development 
 

The importance to engineering of managing requirements more effectively during development 

projects has captured the attention of various research and industrial communities during the 

recent decades. In fact, requirements management appears as an important topic in various 

bodies of knowledge. It arises in the engineering design literature which is concerned with the 
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design and realisation of physical systems (often comprising some kind of mechanical system) 

and has been traditionally focused in consumer products and capital goods (Pahl and Beitz 

1988). Managing requirements is a central topic in software engineering, known to be primarily 

focused on the design, realisation, operation and maintenance of software products such as 

information systems and embedded systems (Sommerville et al. 2012). It is also a key issue in 

the systems engineering literature which is concerned with the design, realisation, management, 

operation and disposal of large technical systems (Blanchard & Fabrycky 2006). 

Academic research, Pikosz & Malmqvist (1998), Fricke & Schulz (2005) and Jarratt et al. 

(2002), for instance, point out that requirements change is one of the main sources of 

engineering change. An industrial survey conducted by the Aberdeen Group (Brown 2009) on 

65 design and manufacturing companies to understand their product development practices 

shows that 40% of the companies experience engineering changes on a weekly basis, and that 

changes causes additional rework and costs to 57% of the companies on a monthly or quarterly 

basis. Delays resulting from engineering change are experienced by 23% on a weekly basis, 

26% on a monthly basis and by 24% of the companies on a quarterly basis. 

Fernandes et al . (2013) suggests that requirements change triggers changes to design solutions 

previously completed for the system, sub-system and components of complex products such as 

gas turbines.  These changes precipitate new design iterations and the rework of many design 

activities and can propagate across sub-systems and components (Clarkson et al .2004)  due to 

design dependencies arising from decomposition, leading to higher development costs and time-

to-market.  However, Unger and Eppinger (2011) argues that design iterations can be employed 

to address various risks. The specific risks addressed depend upon what activities are involved 

in the iterations and upon the timing of the iterations. For example, market risks can be managed 

by iterations that allow market feedback during the design process. Also, Wynn and Eckert 

(2017) advocates that iteration has positive effects, such as enabling progressive generation of 
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knowledge, enabling concurrency, and integrating necessary changes. Nonetheless, iteration  

also increases duration and cost of a project. The industrial survey done by  Brown (2009) shows 

that most companies normally go through 4 to 5 major design iterations before the product is 

released (Figure 2-7) and Souder et al. (1998) estimates the number of rework cycles within the 

aerospace industry to vary between 4 and 9. 

 

 

Figure 2-7  “Typical number of design iterations before product release in design and 

manufacturing companies”. Source: Brown, (2009) 

 

Understanding and managing the uncertainty associated with requirements and the ability for 

products, systems and components to accommodate changes in requirements are both critical 

factors for companies in developing complex projects over a long period of time. Requirements 

change leads to unplanned design iterations during projects. This means that redesign can have 

a large impact in organisations such as Volvo, not only due to the financial resources needed to 
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revisit design activities but also from the large financial penalties that may be demanded from 

customers due to delays in the product's release.   

In addition, the difficulty of understanding when and how much change should be expected is a 

challenging issue for the industry. Designers need to understand the complex system being 

analysed to determine which parameters are most important in satisfying the requirements being 

placed on components or systems. Therefore, one of the main research motivations for the 

research is the importance and difficulty of managing uncertainty and change during the product 

development process. 

 

2.5 Uncertainty 
 

A distinguishing characteristic of complex design processes is the presence of many sources of 

uncertainty that need to be resolved through the interrelation of different kinds of design 

activities. 

An in-depth survey across the social sciences, physical sciences, engineering and management 

sciences by Thunnisen (2004) shows that definitions and taxonomies vary considerably across 

these fields. For instance, Thunnissen (2003) reports that research in economics acknowledges 

the existence of fundamental uncertainty (situations where insufficient information conducts to 

unreliable probabilities) and ambiguity (uncertainties about probabilities that could be known).  

Management science  defines  aleatory  uncertainty  (arising  from  randomness  in  a  system),  

epistemic  uncertainty  (originating  from  lack  of  knowledge  of  a system),  parameter  

uncertainty  (surrounding  the  true  values  in  mathematical  models), model uncertainty 

(coming from approximations in a model) and volitional uncertainty (arising from decision 

making) (Oberkampfa et al. 2004).  In addition, the work of Thunnisen (2004) demonstrates 

that various definitions of uncertainty co-exist in engineering itself. Thunnissen (2003) argues 

that some disciplines, such as control systems,  view  uncertainty  essentially  as  errors  between  
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models  and  reality while others, such as the computational analysis and simulation community, 

view uncertainty simultaneously as variability, lack of knowledge and incomplete information 

in addition to errors.  The topic is therefore far from unified across different sciences and 

applications. 

Various  authors  have  also  defined  and  classified  uncertainty  within  engineering  design. 

For example, Earl et al. (2001) and de Weck et al. (2007) classifies uncertainty in design into 

four categories: known uncertainties, unknown uncertainties, uncertainties in the data and 

uncertainties in the description. Known uncertainties are those that can be described and 

managed well based on past experience. Unknown uncertainties are those where the specific 

event or type of event could not have been predicted, for example the occurrence of Brexit and 

its impact on research. Uncertainty of data includes factors such as precision, consistency and 

quality of the measurements themselves. This is different from uncertainty in the description of 

a system, which focuses on the vagueness of descriptions, the selection of elements and the lack 

of clarity in their scope. 

Another definition of uncertainty, not too different than the one discussed by (Earl et al. 2005) 

is the one proposed by McManus et al. (2004). This latter paper establishes a framework for 

understanding uncertainty that also includes mitigation/exploitation strategies and distinguishes 

between: lack of knowledge, lack of definition, statistically characterised variables, known 

unknowns and unknown unknowns. Both lack of knowledge and lack of definition are similar 

to Earl et al. (2005) uncertainties “in the description”. The subsequent work by de Weck et al. 

(2007) classifies uncertainty relevant to system design according to its source into Endogenous 

and Exogenous uncertainty.  According to this taxonomy, endogenous uncertainty relates to 

factors within the domain of the system itself, such as uncertainties concerning product 

technologies and reliability or the company’s strategy and its business relationships.  On the 
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other hand, exogenous uncertainty relates to those which are outside the company’s control (de 

Weck et al . 2007). 

Performing uncertainty analyses generally involves obtaining the variations in the response 

(design metric) given variations in the input variables. Various approaches are typically used to 

obtain this output variation. Among others, these methods include differential analysis (Cacuci 

and Ionescu-Bujor, 2004), Monte Carlo analysis ((Lévárdy et al., 2006), and Pareto frontier 

analysis (Lewis and Mattson 2012). Pareto frontier-based concept selection, seeks optimal 

decision-making early in the design process where the uncertainty is still significantly high. 

Overviews of these approaches are available in several reviews including; van Griensven et al. 

(2006), Saltelli et al. (2006). 

A second engineering systems challenge is in their cyber-physical nature (Farid, (2016);  De 

Weck and Roos, (2011)). Engineering systems, as expected, are largely physical in order to 

realise their important primary function. In the meantime, by virtue of their size and complexity, 

they require many decision-making components. Farid, (2016) argues that designing, planning, 

and controlling such large-scale cyber-physical systems go well beyond traditional control 

theory research. It now includes more fundamental questions that balance centralisation versus 

distribution, automation versus human decisions, and authority versus cooperative negotiation 

bounded within a context of human stakeholders and actors.  

Many decisions during the product development process, especially at the design stage, are 

made under considerable uncertainty. The uncertainty may come from a lack of information 

regarding the final performance of the product, inaccuracy in simulations, or imprecision in 

requirements definition. Consequently, designers attempt to anticipate these uncertainties with 

a design margin. Uncertainty can be identified as a primary driver of the need for design 

margins. 
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2.6 Conceptual approaches to system protection against uncertainty  
 

As discussed in the previous section, dealing with uncertainty and its effects has attracted a great 

deal of attention in the product development literature. Many of these studies have focused on 

ensuring that products, systems and processes are capable of functioning as intended in the 

presence of uncertainties. The underlying assumption is that all systems have properties that can 

collectively be called “ilities” (Chalupnik et al . 2013). Ilities are systemic properties that arise 

not only from the parts of a system, but also from their interactions. De Weck et al . (2012) 

advises that some ilities are much more prominent than others and discuss them from a “means-

ends” perspective as shown in Table 2.1. A “means-ends” hierarchy is one that represents the 

relationships between ilities in terms of using one ility as a “means” for accomplishing another 

ility (“ends”). For example, modularity can be a means to achieving flexibility and evolvability 

by reducing the switching cost and providing options for swapping system components. 

In this section, some of these ilities are discussed that are related to the concept of design 

margins and the product development. The literature review on ilities is not claimed to be 

rigorously complete. The relationship between the concepts discussed in this section are 

summarised in Table 2-1. Note: S=System, E=Environment, R=Requirements. 
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Concept  Variables  Source of uncertainty  

Reliability    S 

Robustness     S+E 

Adaptability     S+E 

Flexibility     S+E+R 

Table 2-1 A classification of conceptual approaches to system protection against 

uncertainty (adapted from Chalupnik et al . 2013) 

 

 

2.6.1 Flexibility 

 

Flexibility is a “popular” concept used as an attribute for a design, a process, or an organisation. 

In the engineering design literature, despite its popularity, it is a word rich with ambiguity. Saleh 

et al . (2009) defines flexibility as “the property of a system that allows it to respond to changes 

in its initial objectives and requirements both in terms of capabilities and attributes occurring 

after the system has been fielded”. Flexibility is a characteristic which is widely perceived as 

the most effective way to deal with uncertainty in engineering systems (McManus et al . (2004),  

Nilchiani and Hastings (2007), Shah et al. (2008), Saleh et al. (2009), Ryan et al. (2013)). 

However, in many cases the words flexibility and adaptability are used almost interchangeably. 

A definition for product adaptability is given by  Gu et al. (2009) “product adaptability is the 

capability of a physical product to be adaptable to satisfy changed requirements”. Among all the 

“ilities”, the term “flexibility” seems to be the most carelessly employed. 

In a study by Saleh et al .(2009), the authors present evidence showing that the term “flexibility” 

(and its variants) is used in a colloquial sense far more often than other design terms, concluding 
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that the concept of flexibility lacks “scholarly maturity”. However, these authors also support 

the notion that the “concept of flexibility is today where the concept of quality was some 20 

years ago,” (p. 309) suggesting that its definition is destined to mature. 

It is also important to note that there is a fundamental distinction between process flexibility and 

design flexibility. Saleh with his co-authors is one of the few authors to distinguish between the 

two types: “The literature on flexibility in engineering design addresses two distinct problems: 

the first one focuses on the flexibility of the design process, and the second one on the flexibility 

of the design itself (not the process through which a product or a system is designed). This 

distinction between the flexibility of the process and flexibility of the design is not often made in 

the literature, and it sometimes adds to the confusion” (Saleh et al. 2009). 

The process flexibility provides a set of tools for allowing a product development programme 

to better respond to uncertainty, including management reserve, incremental deliveries, iterative 

development, and delayed differentiation (Mikkonen and Pruuden (2001),  Krishnan and 

Bhattacharya (2002)) . On the other hand design flexibility has been mainly defined from the 

point of view of the ability to respond to requirements changes, which “can be known or 

unknown upfront”. 

2.6.2 Adaptability  

 

Adaptability has also been defined in a number of ways. For example, it has been associated 

with a system’s ability to accommodate predictable changes in operating environment (Olewnik 

and Lewis, 2006); to exhibit self-organising and emergent behaviour (McCarthy et al. 2006); to 

be amenable to change in order to fit altered circumstances (Engel and Browning, 2008); to be 

easily changed to satisfy different requirements ( Li et al. 2008) and to change within a given 

state (Bordoloi et al. 2009). However, definitions do not agree on or do not pinpoint whether 

system change is instigated in response to changing requirements and/or changes in the 

environment. 
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Fricke and Schulz (2005) defines adaptability as the ability of a system to be modified in order 

to do its basic job in uncertain or changing environments. Omitting response to requirements 

changes means that the definition covers only a subset of the discussions in the literature, but 

aligns with some definitions and allows the concept of adaptability to be distinguished from that 

of flexibility. 

In this research, it is argued that flexibility refers to designing products that are able to work 

under a wide range of conditions (hot and cold water for e.g.), whereas adaptability means 

designing products that are able to run under a specific set of requirements (hot or cold weather). 

This differs from robustness, where a fixed behaviour is specified for an uncertain range of 

external influences on the system (Banerjee and de Weck, 2004). 

2.6.3 Robustness 

 

 Following the seminal work of  Taguchi and Clausing (1990) the concept of robustness has 

attracted attention in the product development literature. A variety of system types have been 

considered, including product, process, project and organisation. 

Many sources of uncertainty have also been accounted for in the robustness literature, including 

noise, variation in design control variables, uncertain task duration and product development 

project budget instabilities. Consequently, the concept of product development robustness has 

many different interpretations. For example, it has been interpreted as a measure of variation in 

performance (Taguchi and Clausing, 1990); insensitivity to anticipated risks (Floricel and 

Miller, 2001); insensitivity to “unforeseeable changes” in the operating environment (Olewnik 

and Lewis, 2006); insensitivity to both expected and unexpected variations; the ability of a 

system to continue to operate correctly across a wide range of operational conditions (Gribble 

2001) and the ability of a system to absorb change (Yassine and Wissmann 2007). 

40



 

 41 

The understanding of robustness put forward in this thesis builds upon McManus and Hastings 

(2005) definition of robustness: “the ability of a system, as built, designed, to do its basic job in 

uncertain or changing environments”. 

 

2.7 Design Margins 
 

Design margins help the component and system designers understand the key performance 

parameters, their requirements and thresholds, how robust they are to the required inputs and 

constraints, and how they interact with other components in a system or a product. However, a 

key challenge is that the word “margin” has different meanings to different people; moreover, 

there are several types of “margin” that should explicitly be evaluated during the design process. 

Design margins are either discussed from the perspective of engineering change and product 

flexibility or from the view point of negotiation; however individual researchers use different 

terms to express the concept of margin. Although design margins are critical to both functional 

performance and manufacturing cost, they are not well defined either by engineers or 

researchers. From an engineering perspective, a margin refers to a design margin over the 

theoretical design capacity that allows for uncertainty in the design process. There are also safety 

margins introduced to provide the needed “safe flexibility” in operating conditions as defined 

by Gimenez et al. (2002). A safety margin can be seen as an incremental margin introduced to 

account for the estimated total effects of unknown and underappreciated risks (Benjamin et al. 

2016). The main objective of adding this type of margin is to account for the difference between 

unknown risks and actual risks in attempting to validate compliance with probabilistic safety 

goals. 

Designing margins into products gives them flexibility later in the design to meet different 

requirements in particularly those arriving from new options that are added at a later point in 

the design process. Zhao and Tseng (2003) discusses the value of flexibility in multi-level 
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parking garages. In this study, stochastic dynamic programming models the demand and the 

optimal infrastructure expansion process. Then, a model with flexibility was compared with a 

model without flexibility. Zhao and Tseng (2003) argues that the difference in value between 

the two models is the value of flexibility. De Neufville et al. (2006) uses the same example with 

the real options analysis to introduce design (real) options as a form of deliberate planning for 

potential future changes. For an engineering system, there are a great number of design 

variables, and each design variable can lead to a design option. However, it is difficult to 

determine where the flexibility can be and where options can be designed into a project without 

major cost. Ross et al .(2008) develops a method for comparison of the possible options in order 

to understand which designs are more changeable than others. The method assesses the 

changeability of a system by mapping out the trade space, i.e. the range of possible parameter 

values that provides potential solutions. The design margins of a product could be defined by 

the trade space where the design should be. 

The actual parameter values for a component in a design may exceed the predefined values 

under which a component has to deliver the expected function regarding the whole product 

design. Most components are designed with a margin at the beginning to cover the variability 

in manufacturing and assembly, as explained in robust design literature (Zhu and Ting 2001). A 

good specification of dimensional tolerances has always been recognised by the industry as a 

key element to increase the efficiency of their manufacturing process and it is important to 

include manufacturing considerations in the early design phases. Tolerance accumulation in 

assemblies controls the interfaces in a design; however, designers often assign tolerances 

following only limited analysis of the product or base their decisions on insufficient data. On 

the other hand, engineers involved in the production and assembly process know that tight (or 

loose) tolerances increase the cost of production.  Design margin thinking is a way that can solve 

the issues of the competing requirements regarding the tolerance specifications in early and late 
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design phases. It is then an important link between engineering and manufacturing. Design 

margins allow more flexibility while tolerances constrained to stay within certain boundaries. 

Thunnisen (2004) proposes a formal method to propagate and mitigate uncertainty in the design 

of complex multidisciplinary systems. This method uses a probability approach to identify 

design margins on tradable parameters. The technical work is based on distribution based 

assessment of margins for tradeable parameters which are high level including performance, 

cost and schedule. The margins in the research work presented by Thunnisen (2004) requires 

calculations through the physical models for the system components. However, the same 

approach cannot be applied to the Volvo cooling system presented in this work. The company 

uses fixed point estimations with worst case scenarios and ‘known’ performance rather than a 

probability distribution for assessing the performance of the components. 

Margins also contribute to the adaptability of an existing product to particular requirements. 

Such adaptability is designed into an individual product at the beginning to allow for changes 

in the course of the product life cycle or during the design of the follow-on product (Ross et al. 

2008). Both Ross and Hastings (2005) and Qureshi et al. (2006) advocate assessing the 

flexibility of a product by systematically anticipating and rating the potential future changes to 

the design. In Ross and Hastings (2005) this assessment is achieved through mapping out the 

trade space, i.e. the range of possible parameter values that provide potential solutions. Where 

the design sits within this trade space indicates margins on the product. Guidelines and 

principles for design of products for future evolution have been brought together by Tilstra et 

al. (2008) and extended by recent work of Tan et al. (2016) which aims to assess the impact of 

margins on systems performance and develop a composite margin index.  

Tackett et al. (2014) addresses margins from the perspective of how a given design can be 

upgraded by identifying margins in terms of excess, as the “the quantity of surplus in a system 

once the necessities of the system are met” and capacity as “the ability of a system to meet future 
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performance objectives using existing system excess”. It concentrates on system level properties 

as excess factors such as volume and show how these values can be calculated. This is based on 

a functional basis approach given by Hirtz et al. (2002) which offers a set of general functions 

through which systems can be described and differentiated between excess in these functions, 

i.e. flows and excess in the emergent physical properties of the system, like volume, with which 

the functions are realised. The concept of excess developed by Tackett et al. (2014) just looks 

at an existing design at the beginning of a design process to see where changes have to be made. 

White et al. (2015) builds on this idea and argue that excess is deliberately included in a system 

for reasons characterised by four categories. The first three categories: deterministic, epistemic, 

and aleatory are differentiated by their associated uncertainties. The fourth category, 

consequent, originates as a by-product of other design decisions. On the other hand, Cansler et 

al. (2015) explains that the excess that is originally designed into the system may not be constant 

over time, since designers are do not know the future. Rather, the excess present in a system 

may vary due to system evolutions or changes in system specifications while in service. When 

lower than anticipated service requirements are realised, excesses are created in the components 

that are consequently underutilised.  

Although design decisions made during the early development stages have a much larger impact 

on the final design quality and cost, there is a shortcoming in considering how close the key 

components are to their limit (i.e. their margins), at the early stages of the design process. Which 

trade-offs are important at which stage of the design are not well defined and depend on the 

results of other trade-off analyses.  

A company, however, has to consider margins across the design process and also across multiple 

products. As components and systems are deployed in different applications, there might be 

huge margins with regards to one application in order to be optimal for another, so that the cost 

of creating an optimal product has to be traded against the cost of creating a bigger platform and 
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less commonality across applications (Lebjioui et al. 2016). This makes it practically difficult 

to suggest optimal margins for a product if platform commonality needs to be considered. 

However, margins sit at the heart of a trade-off between product cost through optimising 

components and increasingly commonality and process cost through either avoiding rework 

through changes but also the cost incurred through creating optimal platforms.  

In this research, a design margin is defined as “the value a parameter has above and beyond 

what it needs to meet its functional requirements regardless of the motivation for which it was 

included”(Eckert et al. 2013).  

 

2.7.1    Mapping of the related concepts in the literature  

 

The main issue in dealing with margins is the existence of a wide range of taxonomies across 

fields and within engineering design.  This issue was also observed while carrying out the case 

study for this research work as discussed in chapter 4 and 5. This suggests that the meaning of 

margin is wide-ranging and consequently it is interpreted differently according to the particular 

context under consideration. Table 2-2 Mapping of the concepts related to margins

 provides a mapping of the available concepts (in the literature) that are related to margins. The 

outcomes of the related concepts have also been discussed above from the point of view of 

design ilities.
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Table 2-2 Mapping of the concepts related to margins

Reference Domain  Case study Related concept/ 

Exploitation 

Related ility    

(Hockberger, 1982) Conceptual design  

  

Ship design  Assurance margin  Adaptability 

(Sobek, Ward and Liker, 

1999) 

Product 

development 

process  

Example of 

Toyota  

Set based design   Flexibility  

(McManus, Hastings and 

Warmkessel, 2004) 

Conceptual design   Space 

systems 

Uncertainty 

mitigation  

Robustness 

(Ross and Hastings 2005) Conceptual design   Space 

systems 

Trade space  Adaptability  

((Snape et al. 2005)  Meta models  ------- Margins of 

performance  

Robustness 

(de Neufville, Scholtes and 

Wang, 2006) 

Project study  Garage  Options  Flexibility  

(Qureshi et al. 2006) Patent database  Modular 

products   

Future evolution  Evolvability  

(Lewis and Mattson, 2012) Conceptual design   Aircraft   Pareto frontier 

optimisation  

Robustness 

(Tackett, Mattson and 

Ferguson, 2014) 

System in service  Aircraft 

carrier  

Excess  Evolvability 

(Tilstra et al. 2015) Product study  Camera  Flexibility for future 

evolution  

Evolvability  

(Austin-Breneman, Yu 

and Yang, 2015) 

Conceptual design   Aerospace  Biased information  Interoperability  

(Benjamin, Dezfuli and 

Everett, 2016) 

Failure analysis  Space 

systems  

Safety margins  Robustness 
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Domain : The work presented in the literature regarding margins focuses on customised 

engineered systems such as ship design and aerospace systems. This type of product is one-o- 

a-kind, typically designed and built from scratch. In this domain of applicability, margins were 

discussed from the point of view of flexibility and evolution of the product while in service. 

Several probabilistic approaches were developed to mitigate this type of margins. However, 

trucks, the case study of this work, are mass-customised products. This manufacturing approach 

produces products based on individual customer requirements while maintaining the quality and 

efficiency of mass production. Therefore, the approach to margins in this domain is slightly 

different. It focuses on increasing the adaptability of systems and components to satisfy new 

requirements. The approaches that were developed to handle these types of margin tend to be 

more deterministic such as trade-space exploration and real options analysis. 

Exploitation refers to the technical approach which represents an opportunity arising from 

understanding margins. 

Outcomes are attributes of the system that a user may find valuable, specifically those which 

quantify or at least characterise its interaction with margins.  

These attributes (ilities) will be considered/ defined in this thesis as follows:  

Flexibility: Ability of the system to be modified to do jobs not originally included in the 

requirements definition. The modification may be in the design, production, or operation of the 

system; each has a unique flavour as defined by McManus and Hastings (2005) .  

Robustness: Ability of the system to do its basic job in unexpectedly adverse environments. This 

is well understood for non-aerospace products; aerospace products tend to be designed for 

expected adverse environments already, leading to minor ambiguities. There is a tendency to 

use ‘robustness’ for any of the attributes on this list, which can cause confusion. 
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Evolvability: Ability of the system to serve as the basis of new systems (or at least generations 

of the current system) to meet new needs and/or attain new capability levels. This is an area of 

recent research interest (Tackett et al.  2014) 

Interoperability: Ability of the system to “play well with others” both with the systems it was 

originally designed to work with, and with future systems. It also enhances flexibility and 

evolvability of systems. 

After reviewing the literature, it became clear that there is a link between uncertainty and the 

need to accommodate possible changes into products, systems and components. Uncertainty can 

be identified as a primary driver of the need for design margins. Meanwhile, design margins 

have a significant impact on how easy or difficult it is to incorporate changes in existing products 

and systems (or future generations). Therefore, it seems that the available literature focuses more 

on the two aspects: (1) how to anticipate changes (managing uncertainty) and (2) how to 

incorporate changes into the next generation of products. However, there is a gap in the literature 

on how to respond to change using margins (Figure 2-8).  
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Figure 2-8  Margins exploitation in the literature review  

 

The kind of change which arises can be less complex when existing interfaces between the single 

parts of the architecture remain the same. This can mean not having to change all parts 

completely. To gain an overview of the dependencies between single components, it is crucial 

to not only reveal the directly visible connections between them, but also the indirect ones, 

where their linkage is achieved by the interplay of one or several other components. Several 

methods for this visualisation are available, e.g. the Design Structure Matrix (DSM) and the 

Change Propagation Matrix which are both discussed in more detail in Chapter 5.  
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2.8 Summary of key points and research gaps 
 

Margins are of a great importance in the product development process, especially at the early 

stages. However, most of the work related to design margins, has been limited to the margins 

on the parameters, components and systems. Relatively little work has been published on the 

role that margins play in the development process itself. This thesis attempts to provide the 

academic research community and industry with a description of (i) how margins are handled 

in current practice, (ii) the evolution of margins throughout the product development process 

and (iii) how they can be managed. Knowing where the margins are in a product, can inform 

engineers about the actions to take and changes to make during the development process.  

The literature review shows a lack of models and methods allowing organisations to understand 

and quantify the evolvement of margins in key performance variables so that project planning 

activities can take them into account. This thesis argues that this is a major opportunity for 

research, and proposes a method to investigate design margins in complex system development. 

Exploratory findings revealed that companies need to understand how to respond to a change, 

predicting and managing uncertainty and their need for support in planning for change during 

complex product development. A good understanding of margins and how they evolve over the 

development process can greatly enhance the efficiency of product development. Discussions 

with academics and specialists revealed also the industrial receptiveness to evaluate novel 

approaches and methods to respond to these challenges, since it would provide additional 

decision-making support and that was considered to be highly valuable. 
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3 Research Methodology  
 

 

 

 

The study of design margins and product development processes was initially undertaken as a 

descriptive study. The analysis of the design process and the evolution of margins over time 

became the focus later on. Throughout the course of the investigation, multiple sources of 

information have been used, from document analysis, to semi-structured interviews and expert 

knowledge elicitation. This chapter discusses the research methodology that has been followed 

in this thesis.  
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Engineering design is a complex and multi-layered study. The methodological challenge of 

design research lies in understanding the multi-disciplinary and multidimensional aspects of a 

design problem.  In this research project we adopted the methodological framework introduced 

by Eckert, Stacey et al. (2003), which is described in the first section of this chapter, followed 

by the application of the framework. 

 

3.1 Overall research methodology  
 

The research has been set up as an explorative study because there was limited literature directly 

on the topics at the outset of the research. Some of the relevant literature reviewed in chapter 2 

has been published since the research has started and without the analysis carried out for the 

thesis it would have been difficult to recognise it as related work, since the terminology is 

different. In addition, the study of margins across the product development processes at different 

levels is complex since there are different levels of granularity and dependencies between those 

levels. Hence is it necessary to explore which concepts and kinds of support are useful for 

meeting the goal of this project. 

Within the research area of engineering design, Blessing and Chakrabarti (2009) proposes a 

framework for conducting research called Design Research Methodology (DRM). DRM is 

based on descriptive studies to understand the problem in hand and prescriptive studies to 

develop suitable methods and tools and iterations to evaluate the developed methods. The DRM 

has become a standard research methodology in the field, however, there are a number of 

drawbacks to DRM, which have mainly emerged from how people interpret and apply the 

method. This led Eckert et al.  (2003) to propose a spiral model of design research which is 

shown in Figure 3-1 
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Figure 3-1 The Spiral Design Research Model (Adopted from Eckert et al. 2003) 

 

The model consists of eight steps with different research objectives.  

1. Empirical studies of design behaviour; 

2. Evaluation of empirical studies; 

3. Development of theoretical understanding; 

4. Evaluation of theory; 

5. Development of tools and procedures; 

6. Evaluation of tools and procedures; 

7. Introduction of tools and procedures into industrial use; and 

8. Evaluation of the dissemination of tools and procedures. 
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The steps which were undertaken in the course of this PhD and how they were applied will be 

described in the following section. 

All of these activities generate information and insights that can be used to formulate the 

requirements and hypotheses that guide the research within other steps. A research program can 

enter into this cycle at any of the four steps (bold squares). However, in the course of a PhD, an 

individual researcher cannot usually complete all the steps. According to Eckert et al. (2003), 

PhD projects should present at least the first four steps while long- term projects performed 

within a research group normally tackle all or several stages with such in-depth studies. 

Although other approaches to Design Research is  proposed by Checkland (1981), Blessing and 

Chakrabarti (2009) the author selected the approach of Eckert et al. (2003) due to its higher 

generality and also because the framework in this approach takes into consideration the insights 

from the industrial practice and industrial needs. 

 

3.2 Application of the spiral model to this research project  
 

Eckert et al. (2003) suggests that the research that delivers tools or procedures into industrial 

use should address these following four questions: 

▪ How does design happen in concrete situations we can study, in particular within process 

we would like to improve?  

▪ How can we understand the cognitive, social and cultural mechanisms that underlie the 

phenomena we observe, by building theories? 

▪ What computer tools, pencil-and-paper techniques or design methods might be useful, and 

how can we develop them?  

▪ How can we introduce these tools or methods into industrial use, and what happens when 

we do?( Eckert et al. 2003)  
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The work described in this thesis aims to answer question 1, 2 and part of question 3 from the 

above list.  These questions can be answered by following the set of research phases presented 

in the spiral model (Figure 3.1) 

3.2.1 Mapping between Research Questions and Research Phases  

 

The work described in this thesis enters the spiral model at “Empirical studies of design 

behaviour” and carries on until “Evaluation of theory”, in order to answer the research questions 

discussed in Chapter 1 (Figure 3-2). 

 

 

Figure 3-2 Mapping between Research Questions and Research Phases 

 

Empirical studies of design behaviour:   

In this research, the objective was to understand the relevant subjects related to design margins 

and product development processes. In order to elaborate the initial understanding and to 

determine the factors that influence design practice, several interviews were carried out. Also, 

observations and document analysis were used to understand current practice.  
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Evaluation of empirical studies:  

At this stage the main purpose is to validate the information and data in the empirical study. The 

qualitative analysis of empirical data provided a better understanding of design practice carried 

out in Volvo. The evaluation focuses on what has been learnt and how this learning can be 

generalised. 

Development of theoretical understanding:  

The understanding from the empirical study helped to model the cooling system which is the 

case study of this research. A Design Structure Matrix was developed to visualise the 

connections and relationships among the different parts of the truck cooling system. The data 

from the DSM was then used to identify essential relationships and to see how changes in critical 

components may affect key design margins and the overall design process. This information 

was applied to propose a framework which could help the company to get a better understanding 

of design margins and to manage them in an effective way.  

Evaluation of theory: 

 The theories are evaluated in terms of their methodological approaches and assumptions that 

have been made during the first stage. The proposed framework is first validated by checking 

whether the problem definition has been supported. Second, it was later presented to the steering 

committee group on the project to get their feedback and measure the effectiveness of the 

suggested framework. 

In this research, these steps are iterative and often overlapped. Overall, the research starts by 

understanding how margins are currently handled in the company and how much engineers at 

different phases of the design process are aware of them. It then formulates the problem in 

managing margins and proposed a model to describe them effectively. 
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3.3 Research scope and methods  
 

The work described in the thesis was informed by grounded theory as a research method for 

developing theory that is “grounded in data” systematically gathered and analysed (Urquhart et 

al. 2010) with the use of spiral model as an overarching framework for the study.  

The following section gives an overview of the research shown in Figure 3-3 and describes the 

phases of the study. 

After an exploratory research stage leading to the clarification of the research motivation and 

objectives, the author spent over ten weeks at Renault Lyon in France (a company acquired by 

Volvo Group) to learn about the organisation and to understand the existing practices at Volvo 

Group. This first phase of the study helped addressing the first research question (RQ1). Then a 

second phase was initiated to capture how engineers and designers deal with margins during 

complex development projects. This was performed by empirical collection of data from 

different sources in the company and by conducting a first set of interviews (3.3.1 for more 

details). At the end of this phase, research question 2 (RQ2) was answered. Later, in phase 3, a 

case study was conducted to identify how margins can be modelled (RQ3). 
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Figure 3-3 Overview of the research 

 

3.3.1  Interviews  

 

Twenty semi-structured interviews from between 45 minutes and two hours were carried out 

with employees from Volvo GTT which has been designing and building trucks for nearly 100 

years. The interviews were conducted in Gothenburg site by the author and the supervision team; 

Professor Claudia Eckert and Professor Chris Earl between October 2013 and December 2014. 

Three or four interviews were held on a single day every two to three months. Each session was 

recorded on audio tapes and selected conversations were later transcribed for analysis. The 

interviews were carried out in English and were semi-structured in that there was a list of topics 

that the interviewers wished to cover, but the interviewees were allowed to move the discussion 

onto related issues if they felt that it was necessary.  

The first series of interviews took place in October 2013, which focussed on chassis engineering 

across the product life cycle. The second set of interviews was conducted while carrying out the 

case study of this research and took place in December 2014. The interviewees were designers, 
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engineers and managers who work in different departments, with at least five years of 

experience within the company and industry.  

At the beginning of each interview a brief introduction was made to give an overview on the 

project status and introduce the objectives of the session. The questioning was relatively general 

with each person initially asked to describe their role. As the interview progressed the 

questioning focused more on design process and in particular on design margins, and whether 

they have room for maneuver to take up new requirements. An example of the questions asked 

can be found in Appendix A. Practically, the questions can be grouped as follows: 

– Questions on the role of the interviewee. 

– Questions on the main constraints 

– Questions on the company structure and the structure of their products 

– Questions on the new product design process 

– Questions on the design change 

– Questions on the design of the cooling system. 

– Questions on the key parameters of the cooling system. 

During the discussion of design changes, the interviewees were asked if they are aware of the 

design margins they may have on specific parameters and if so how they deal with them. 

In this research two main series of interviews were carried out. The first set of interviews was 

conducted to figure out some of the vocabulary used around margins with the aim of getting a 

definition for margins which is compatible with the language used in the company. For this, ten 

interviews were conducted with ten employees from the Chassis department. The interviewees 

were selected to cover different phases of the design process and different level of detail. These 

interviews helped to establish an understanding of the current practice in the company.  

At this stage of the study, specific research problems started to emerge. Combined with a 

literature review about the concepts related to design margins and the previous empirical 
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research at Volvo GTT, this led to investigation of a new method aiming to support designers 

and engineers, understanding, managing and communicating design margins across the product 

development process. This method and its potential application was investigated through a case 

study. A second set of interviews was planned for this purpose. 

A set of follow-up interviews focused on understanding how design changes affected the 

margins on components during the design process. It was decided to focus on one system to get 

a better understanding of the concept. The cooling system team was interviewed as many of the 

margin issues around the cooling combine geometrical issues which are fairly intuitive with 

thermodynamics and fluid flow issues which are more technically complex. This study gave an 

understanding about the core parameters for the cooling system that the designers and engineers 

need to consider in the first place.  It enabled an examination of how margins on key parameters 

are handled and helped establish how margins play a role in carrying out changes. This allowed 

patterns in the mapping between changes and margins to be identified.  

Fourteen engineers and designers from the cooling system team were interviewed for 60 / 90 

minutes. The interviewees have different positions and functions within the cooling team. 

At a high level, the interviewees could be split into two categories: engineers (14 interviews) 

and managers (6 interviews). This is illustrated in Table 3-1 by a reference code: “Eng” for 

engineer and “Mng” for manager. It should be noted that the managers all had extensive 

engineering experience either with Volvo or with other companies. Each session was recorded 

and the conversations were transcribed for analysis. At the beginning of each interview a brief 

introduction was made to give an overview on the project status and introduce the objectives of 

the session.  
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Interview Role Classification 

1 Specialist in Geometry, high level view of computer tool in the 

organisation 

Eng 1 

2 Design engineer  Eng 2 

3 Specialist in virtual testing  Eng 3 

4 Specialist in virtual testing Eng 4 

5 Product planning Mng 1 

6 Specialist in mathematical optimisation Mng 2 

7 Design Engineer, head of fuel system Eng 5 

8 Design Engineer, focusing on urea tank Eng 6 

9 Manager for the global platform strategy Mng 3 

10 Expert in product options Mng 4 

11 Cooling module team manager  Mng 5 

12 Fan installation engineer Eng 7 

13 Cooling module engineer Eng 8 

14 Cooling module designer Eng 9 

15 Pipes and hoses designer Eng 10 

16 Cooling performance simulations, 3D, CFD Eng 11 

17 Durability feature engineer Eng 12 

18 GTA specialist Mng 6 

19 Coolant pump engineer Eng 13 

20 Cooling performance testing Eng 14 

Table 3-1 list of interviews and interviewees role in the company 
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3.3.2 Summary of the interviews  

 

The first 10 interviews were discussions about a range of topics in product development, product 

planning and company process. These helped to establish an understanding of the current 

practice in the industry. 

The next set of interviews focused on understanding the company’s design process and their 

understanding of design margins concepts. At this stage of the study, specific research gaps 

started to emerge and explicit questions were formulated according to these problems. 

After these two main sets of interviews, a visit to the company in June 2015 mainly focused on 

analysis and evaluation of the proposed solutions.  

3.3.3 Case study  

 

A case study approach has been recognised as a key method that facilitates a deeper 

investigation of a real-life phenomenon in its natural context ((Yin 2009), (Woodside 2010). It 

is suitable for investigations intending to provide "cause-effect" relationship and for explanatory 

types of research, dealing with "how" and "why" research questions (Lindvall, 1997) 

In this empirical study, it was not possible to separate the phenomenon of interest; the concept 

of design margins; from its industrial and technical context. The nature of preliminary answers 

to the research questions RQ1:How can margins be defined ? and RQ2: How are margins 

handled in the product development process?  were also mostly explanatory. The work presented 

in this thesis was concerned in understanding how design margins are handled at present and 

how they can be better managed, as well as how and why design margins vary during the product 

development process. Explaining the causes behind adding or removing margins is about 

understanding a cause-effect type of relationship. All of the above supports the choice of a case-

study approach. Figure 3-4 captures the research approach and methods used throughout the 

case study. 
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Figure 3-4 Research and methods applied in the thesis case study 

 

3.3.4 Document analysis  

 

During the interviews and the placement in the company, documents, diagrams and software 

tools were analysed and all provided useful information on how the company design their 

products. Some of the content of these documents were discussed during the interviews to get a 

better understanding.   

3.3.5 Data analysis  

 

Data analysis involves drawing of inferences from raw data. An important phase of this research, 

was to get the relevant data and to analyse the interviews. This analysis started with a 

transcription of the recorded interviews. Although the transcription exercise is time consuming 

it is an important one to get familiar with the context and the content of the interviews. The 

process of translating the raw data to findings requires interpretation of empirical data. The first 

stage of qualitative data analysis in grounded theory is to use a coding paradigm to ensure 

conceptual development (Strauss and Corbin, 1994). According to Boeije (2009) and Woodside 
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(2010), the coding is usually undertaken at three levels: open coding, axial coding and selective 

coding. Open coding is conducted by distinguishing different themes and concepts found in the 

data. This involved analysing the interview transcription (e.g. a sentence or a paragraph) and 

summarising the quotes by the use of a categories like: platform planning, product development, 

and component design. Once these pieces of data are regrouped based on their relevant content 

categories, the second stage is the interpretation of categories. This interpretation step is axial 

coding. Finally, selective coding is conducted by making logical links between the core 

categories and design margins. The coding exercise helped in understanding the concepts related 

to design margins and the reason behind using different terminology (overdesign, room for 

growth, safety margins) at different stages in the process and during different kinds of activity 

(the categories).  Professor Eckert helped in the analysis of the first set of interviews and further 

details are given in chapter 4.  

The findings were presented to a group of Volvo engineers including the steering committee 

members to which all interviewees were invited.  The participants were invited to comment on 

the presentation and add issues that were missed in the presentation. These comments were 

captured and incorporated into the presentation and checked again with members of the steering 

committee.  

Regarding the ethical concerns about anonymity and confidentiality, it was necessary that all 

the information was approved by the company (i.e. before publication). 

 

3.4 Model development  
 

Evaluating the understanding of the empirical work was undertaken by modelling in two 

different ways: conceptual modelling and mathematical modelling. The motivation for this 

choice is due to one of (at least) three reasons which relate to features of the models : “models 

that describe the behaviour or results observed; models that explain why that behaviour and 
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results occurred as they did, or models that allow us to predict future behaviours or results that 

are as yet unseen or unmeasured” (Dym 2004) . 

The conceptual model helped to get a better understanding of the different types of margins and 

how they are related to the product development phases. The mathematical model in the other 

hand helped to highlight the relationship between the margins and their behaviour. 

3.4.1 Conceptual modelling 

 

The final part of the research aimed at supporting organisations planning complex product 

development processes during the early design stages and across the product development 

process. The literature review conducted an evaluation of existing product development 

modelling approaches and allowed an assessment of the main strengths and limitations of the 

different methodologies and tools.  

To trace the development of margins throughout the design process it is important to understand 

the dependencies between components and systems. A Design Structure Matrix (DSM) was 

used to identify the connection between the components in the cooling system. A DSM is a 

square matrix that displays the interaction between sub-systems and the relationship between 

components. In order to identify the key connections and a reasonable level of granularity for 

the model, we worked with the cooling system team manager and another engineer from the 

team. To understand the potential change behaviour of the components, we used the DSM to 

build a change propagation matrix based on the change prediction method (CPM). This method 

evaluates the risk of changes spreading through a product; risk is the product of the likelihood 

of change propagation and the impact of change (Clarkson et al. 2004).  The Cambridge 

Advance Modeller (CAM) was used as a tool for modelling the DSMs and CPMs models 

developed in this research. The CAM tool was used for visualising and identifying the key 

components and their relationships. This helped to identify patterns in the mapping between 

changes and margins. 
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3.4.2 Mathematical modelling 

 

The company offers a wide range of truck variations and configurations. The product 

development process is aimed at creating platform based products, using common components 

and systems. This means that some components have large margins in performance with regards 

to the requirements of particular installations. 

The fan is one of these critical components that are shared among different variants of a specific 

engine. The fan performance and parameters were studied to understand how margins on 

multiple parameters that need to be traded-off against each other. A MATLAB code was 

generated to simulate and illustrate the margins on fan's parameters. Further details can be found 

in Chapter 6 of this thesis. 

 

3.5 Summary 
 

This research aims at investigating the concept of design margins and better understanding the 

role of margins in the product development process. Through analysis of the current practice in 

handling margins in the company. The research aims at revealing issues and scope for 

improvement. The outcome of this research contributes to academic knowledge about the way 

design margins are handled in the product development process. Further, the research proposes 

methods to investigate design margins and a model to manage those margins in industry. 
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4 An industry example to understand Design Margins in 

the PDP     
 

 

 

This chapter describes an empirical study into design margins carried out at Volvo GTT Sweden. 

The case study was carried out as a part of an industrial project between the Open University 

and Volvo Trucks Technology. The main purpose of the study was to draw attention to the 

concept of design margins. In the first stages, the objective was to review the product 

development process of Volvo Trucks and the wide range of products they are offering. Later 

the focus was on studying the concept of design margins and how these margins are added and 

/ or used by designers during the product development process.  
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4.1 Background to Volvo trucks   

  
Volvo was registered as a trademark back in 1915 and made their first truck in 1928, since then 

the group produces around 200.000 trucks each year. Yet, the average number of identical trucks 

is very small as the automotive industry is increasingly characterised by specialisation and 

customisation. Volvo Group is one of the world’s leading manufacturers of trucks, buses and 

construction equipment. The Group employs about 100,000 people, has production facilities in 

19 countries and sells products in more than 180 markets. The company has acquired several 

other brands including Renault trucks, Mack trucks and UD trucks in order to reach different 

markets. Figure 4-1 illustrates a range of Volvo trucks. 

 

 

 

       Figure 4-1  Range of Volvo trucks 

 

The products developed by Volvo Group are used in different markets with different 

characteristics relative to operating environments, legislations, and transport missions. This fact, 

together with a tough competition, has led to a high degree of specialisation and truck 

customisation for individual customers. 

The research work presented in this thesis has been carried out within the product development 

of Volvo 3P. Volvo 3P is a business unit within the Volvo Group in charge for product planning, 

68



 

 69 

product development and the purchasing for the brands; Volvo trucks, Renault trucks, Mack 

trucks and UD trucks. Their interest in this project was to study the concept of design margins 

and explore the possibilities of using a framework to manage these margins in order to support 

the development process of their products. 

 

4.2 The product development process at Volvo 
 

The global development process in the company, illustrated in Figure 4-2, is divided into six 

phases. Each phase has different objectives that need to be met before proceeding to the next 

one. These phases are:  

Pre-study phase: define the scope of the project, goals, directives, target description and 

requirements development, known in the company as prerequisites. 

Concept study phase: analyse alternative concepts and select one for development. The concept 

is chosen through a process of market research, environmental impact assessment, and the 

business case.  

Detailed development phase: define and approve the solutions to be implemented. This phase 

includes the technical feasibility study and freezing of the requirements.  

Final development phase: the development phase includes developing, verifying, and validating 

the product solution. Market, aftermarket, manufacturing and assembly solutions are refined at 

this stage. 

Industrialisation and commercialisation phase:  is where the industrial system has to be 

installed, prepared and verified to enable production. At this stage the product and the 

aftermarket products are launched. 

Follow-up phase: follow up the project target fulfilment, summarise the experience and close 

the project.  
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               Figure 4-2  Volvo Product Development Process 

 

This development process controls and coordinates design efforts and provides baselines 

guiding the development, production and operation of the system. Major technical and business 

reviews take place at each stage gate (e.g. Concept gate, Freeze gate, Industrialisation gate, 

Production gate and Release gate). Decision options at each gate normally encompass 

proceeding to the next stage, continuing or revisiting development activities of the current or 

preceding stages, putting project activities on hold or terminating the project as described in 

section 2.1 of chapter 2. 

The goal for the company is naturally to satisfy each customer needs. On the other hand they 

also want to optimise their products and increase the profitability. Therefore, the company has 

developed a large specification database (variants) characterised by a broad scope for offering 

different cab sizes, chassis heights, wheel bases, powertrains and so on. 

4.2.1 Product variants  

 

In the automotive industry, the customer has to select his desired product design within a 

predefined solution space, but over and above that a large part of the product needs to be 
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developed according to the customer requirements. Similar-based product configuration 

represents a broad range of potential commonality (form and function) but could have a number 

of parts which are different. Since customers are different and have different needs, companies 

are required to design product variants in order to offer a wide range of product to satisfy 

customers requirements and to target different niches.  

At Volvo, a truck is defined by what they call a vehicle specification. The vehicle specifications 

describes a vast variety of entities named variants, some of them represent physical alternatives 

such as the engine type, while others describe the functional ones, for example the type of road 

the truck will be driven on. Generally, a truck is completely specified by being based on a list 

of variants, in almost all cases, one variant from each variant family is chosen, based on the type 

of the truck. The truck specification, i.e. the list of all variants, can be viewed as the DNA profile 

of the truck. 

Figure 4-3 gives an example of a truck specification each line is a code for a variant from a 

variant family. Some entries are highlighted to give examples of actual variants and variant 

families; these are explained in     Table 4-1 
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Figure 4-3 An example of a truck specification 

 

 

 

Variant Variant family Description of the variant 

RC-ROUGH Road condition  Badly maintained road  

6*2 Axle arrangement  6 wheels of 2 driving  

RFUEL490 Fuel tank at the RHS 490L right side fuel tank  

    Table 4-1 Examples of variants shown in Figure 4-3  
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A truck may have about 500 variants family, each containing at least two variants. Therefore, 

the number of possible configurations is very large; about2500. However, in practice, not all 

variants can be used, due to geometrical, functional and legislative constraints. 

Design and development based on variants implies that the components need to be used 

optimally for a variety of transport missions. For example, a component may be developed for 

rough road conditions and 44 tonnes GCW (gross combination weight). However, this 

component may also be able to be used for up to 60 tonnes GCW if the road is classified as 

smooth. It might also be used for trucks with smaller loads, even if it would be over specified 

for these applications. Considering that, engineers will decide to support the standardisation of 

the components among different configurations in order to increase the payload and decrease 

the product cost.  In this case there will be a margin in the GCW for a specific installation. 

Therefore, the company needs to understand the real cost of having such margins, but also the 

benefits, so they can make better decisions. 

4.2.2 Product Features  

 

Volvo manages product performance and product properties by what they call “Features”, which 

covers everything from fuel consumptions and drivability to load capacity and vehicle safety. 

Volvo has 32 distinct features that they manage separately. The overall product offering is 

described in terms of features and variants. Features represent the customers’ needs and variants 

describe the product offering from a technical point of view. The product offering comprises all 

allowed truck configurations, i.e. each single possible truck configuration that can be sold. 

Basically, the Variant Structure consists of building blocks, called Variants, and rules for how 

these building blocks can be combined. 

The Volvo product offering is very flexible; each truck model comes in many different 

configurations. A configuration is as a combination of features. The most obvious features are 

those offered to a customer. When a customer orders a truck, a series of choices based on the 
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customer’s needs is made for each available feature (Figure 4-4). The sum of the customer’s 

choices becomes a specific truck configuration (order). 

 

            

Figure 4-4 The customer’s choices 

 

Features are focused on customers and are set up to represent customer voice or needs rather 

than presenting technical specifications. Volvo decomposes features into 32 customer features, 

such as: durability, exterior noise, ride comfort, fuel consumption and so on.  

For example the fuel consumption feature expresses the customer’s wish to reduce the fuel 

consumption and has the role to assure that fuel consumption is minimised by translating this 

into technical features which should be quantitatively measurable. However, the measurable 

quantities are dependent on each other which implies that the feature requirements given by a 

design are not obvious from the design itself. Therefore, the margins that are potentially 
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associated with the features requirements can’t be divided into independent measures, which 

can be individually controlled.  

4.2.3 Product Platform  

 

As discussed in the literature review, product platforms are developed in order to reduce the 

amount of redesign effort for future generations of products. Volvo uses the term platform for 

two different but interrelated concepts: commonality across the entire product offering and the 

option package offered for a particular model of truck. In both concepts the underlying idea of 

producing the greatest range of product from the smallest range of components is the same.  

The powertrain technology is used across all the Volvo truck brands as well as construction 

equipment sold by Volvo. There is a range of engines with different properties for each truck 

tailored to different emission legislations and use profiles. At the same time the company aims 

to standardise parts across all of its trucks. This means, components that are used in multiple 

products must be designed to the criteria of the most demanding product or as they call it in the 

company designed for the worst case scenario, which may result in a component that far exceeds 

the requirements of the other models in which it is used. 

The platform for a specific truck is the set of all components required to produce all the versions 

on the market. The product options are usually offered as option packages for particular types 

of trucks, such as truck with integrated trailers, trucks with separate trailers, logger trucks etc... 

Volvo also produces specific component to meet particular customer requirements but is trying 

to keep this to a minimum. The company also wants to reduce the number of these platform 

components to maximise production volumes. Producing an option package requires significant 

design effort because the company needs to assure that the options are compatible or at least be 

aware which options are incompatible. This is a matter of managing demands on space and 

understanding interferences between different product options. Eckert et al. (2014) argue that 

there is an inherent contradiction between an optimal platform, which offers the maximum range 
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of product options and an optimal product in terms of weight or other product specific 

characteristics.  

The design of the product platform is largely driven by the production cost to be offer a product 

that can compete on the market rather than the design effort involved in generating them, which 

is often covered by other budgets. 

 

4.3 Industry example  
 

4.3.1 Introduction to the cooling system  

 

The engineering example presented in this section is a complex product subsystem from the 

automotive industry; namely the cooling system of a truck. This system is subject to different 

competing requirements. The coolant system’s main functionality is to cool the engine so that 

it does not overheat. However, the coolant system can also be used for heating; the heat 

transferred from the engine to the coolant is for example used in the cab heat exchanger in order 

to give the driver a comfortable temperature inside the cab.  

 

 

 

Figure 4-5 A truck cooling system 
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The cooling system (Figure 4-5) has tight geometrical constraints. It has the cab flooring on the 

top, on the sides are the chassis frame, the grille is in the front, at the bottom is the Front 

Underrun Protection (FUP) and the engine is at the back. This system was selected as a case 

study for the research because the company had a need for support with its development and 

because it is one of the systems that are subject to various constraints from different features 

and therefore a number of trade-offs were present.  

Different engine specifications have different cooling needs. Generally, the heat that is produced 

in the engine needs to be cooled. This is performed by the cooling package which is the radiator 

and the fan. Fan performance is critical for an efficient cooling system. 

Radiator 

The vehicle’s radiator is a big heat exchanger located in the front of the vehicle. It utilises the 

air meeting the vehicle when it is moving forward. The purpose of the radiator is to reduce the 

temperature of the coolant leaving the engine by about 5-10 degrees C depending on the driving 

conditions. The radiator consists of two tanks connected together by tubes. The coolant first 

enters the upper tank where it is distributed in the small narrow tubes. Across this tubular system, 

the air passes and cools the coolant. The coolant is then collected in the lower tank of the radiator 

from where it is sucked back to the engine by the coolant pump. 

Fan 

In many driving conditions, the air flow crossing the radiator is not enough to cool the coolant. 

This happens for example in hot climates, or when the engine is running for a long time without 

moving the vehicle. When this is the case, the fan, located behind the radiator, is engaged and 

pulls more air across the radiator.    
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Coolant pump  

The coolant pump is the “heart” of the engine cooling circuit. The pump creates a pressure so 

that the coolant fluid is circulating through the circuit. The pump is usually 1 meter underneath 

the tank. 

The coolant pump, as show in Figure 4-6, has different interfaces with other components. The 

coolant pump has a tight space constraint, but also a long lead time 

 

                    

                Figure 4-6 Coolant pump position in the cooling system 

 

The coolant pump has many interfaces which are listed below: 

Engine block 

Belt drive with pulley  

Coolant inlet manifold  

Fan attachment for some variants  

Block heater for some variants  

Connection between the pump and the fan: 

The fan is driven by the same belt as the coolant pump, however, there is no performance 

connection between the fan and the coolant pump. “There is no performance connection 
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between the fan and the coolant pump, there is only a mechanical connection that we want to 

get rid of…because we have to handle over dimension of the coolant pump bearing” K.J 

The main requirements for the coolant pump are: the pressure drop in the system and the coolant 

flow that this needed. There is a ratio between the speed of the engine and the speed of the 

coolant pump. 

Different components need to get the air flow, the key parameters for the coolant pump are:  

Flow 

Pressure drop  

Absorbed power  

Transmitted torque for different engine speeds 

Coolant temperature 

The pump suppliers are different from one product development project to another. However, 

all suppliers should have the specifications of the coolant used in the engine to verify the 

compatibility. 

Designing the cooling system  

At the beginning of a new project, a project prerequisite (this is a term used specifically within 

Volvo) is sent from the product planning team to the cooling system team which analyses the 

cooling performance needed for the complete system. The cooling need is analysed and broken 

down into requirements for each component. 

When a new requirement is sent to the cooling module team (mainly from the engine developers 

in powertrain) they first consider two things: the size and the amount of the heat they need to 

cool away. At the beginning of the project they send a test matrix with all the tests that should 

be passed, to their suppliers. 

The most difficult requirement for the cooling module team is the endurance (the capacity to 

resist extreme conditions i.e. worst-case scenario), which is identified by testing the truck.  
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Because engineers do not know at the beginning the final load on the truck and they do not know 

the amount of the air flow needed for the cooling until they have tested all components. “The 

most difficult requirement for us is endurance... it is set by test truck so we don’t know from the 

beginning the final load they will have on the cooling until they have tested cooled components”. 

J.B 

 “…in the beginning of our project we use the old knowledge, we use loads from previous 

projects”. K.J 

However, they can still make a judgement regarding the load, by simulation “…You can always 

guess max load, so they can make a judgement of brackets. But it’s tricky to make a good 

simulation of the connection between tubes and header plate and joint… joint is very tricky this 

is the point where it’s usually fails, you really need to do the test and guess this is maybe better 

than that”. M.S. However, some other parameters might be difficult to simulate such as the 

temperature.  

Some components are outsourced. Thus, suppliers play an important role in the design of the 

cooling system. The company has different suppliers for different projects and different markets. 

The component requirements, derived through analysis of the cooling needs, will be sent in the 

form of specifications to potential suppliers. A Request For Quotation (RFQ) is then generated 

and the suppliers make offers. The best offer is selected in terms of cost, quality and the 

requirements target. The components are designed by the supplier, pre-assembled for the 

module then assembled at a Volvo site. Hence, the suppliers can challenge the design. They 

might have a better knowledge about the component’s capability than the company itself.  

The cooling system is subject to many geometrical constraints which include: the size of the 

cooling module cannot be increased because on the top is the cab floor, on the sides is the chassis 

frame, in the front is the grille, at the bottom is the front underrun protection (FUP) and at the 
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back is the engine. “…None of these are changed unless we do a major change to the chassis, 

cab or engine, which we do once every 20 years or so” K.J 

This inability to change is also due to the fact that some components and systems are used in 

several products over a long period of time.  They may be used in several platforms and among 

different brands (models).  

4.3.2 Margins in the cooling system  

 

When it comes to design margins, the concept emerged in discussions of engineering change 

and the process of making the change. For example if powertrain send a change request 

regarding the engine temperature, the engineers start to think about alternative solutions, inter 

alia, margins that could absorb this change “…Let’s say powertrain says we allow 3more 

degrees maybe the expansion tank volume is not good enough maybe we need to increase that, 

then we will start asking the supplier what do you think can we cover 3degrees, if they say yes 

immediately then we do nothing , then if they say am not sure … okay…what kind of test do we 

need to do or simulation then if its critical we must figure out what kind of change do we need 

to do to meet the new requirement, we will have to take it up with the concern of the supplier 

because we have signed all targets that are related to durability or endurance so if it is the case 

we would increase the temperature ...” M.J  

Design margins are also discussed as a form of overdesign. At the beginning overdesign is seem 

as a mean of controlling future development cost and risk, which arises from too much 

innovation in each product generation and as a means to make sure that the product will work 

reliably even if it is not used in the originally intended way. Chapter 5 discusses the types of 

margins in the company in more details. 
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4.4 Summary  
 

At the early phases of the product development, there is a focus on long-term development by 

making sure that the company is designing systems and components that can be reused. 

However, when a project is launched, the focus becomes more on designing cost efficient 

products and the objective becomes to optimise individual components by taking out design 

margins. 

The aim of this study is to understand how design margins shape the design process. Because 

when there is a margin either you don’t make a change or you might change some parameters 

where some margins remain. 

A key aspect in understanding margins is to know what a component can do now and what it 

can do for the next generation of products. However, the dependencies of features across the 

system and the product complexity make it hard to capture margins which are specific to 

different levels (product, platform, system and component). 

In a company that adopts a product platform strategy, where a high variation and a high number 

of configurations are the main characteristics, there will be attention to components and their 

design.  It becomes necessary to consider the margins on components. 
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5 Margins across the Product Development Process 
 

 

 

 

The study conducted in the company aimed, in the first phase, to study the concept of margins 

and how margins are added and used by designers. The next phase of the research demonstrates 

that margins on components profoundly affect how a design process is carried out. We argue  

that designers look for components or subsystems with margins, which are not frozen, to 

accommodate changes and analyse design alternatives. This chapter describes that process. 
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5.1 Design margins and the design process  
 

The design process has been the focus of research for many years. There are a number of design 

models and methodologies available in the literature (Chapter 2). Almost any product, such as 

a washing machine, a mobile phone or a car, requires input from stakeholders of many 

disciplines, including product planners, engineers, designers and this requires considerable co-

ordination.  

On the other hand, finding a satisfactory solution to a design problem is an iterative process 

(Wynn et al. 2017). As the solution to a design problem evolves, engineers continually refine 

the design by adding or removing design margins. While implementing the solution to a design 

problem, they may find out that the solution they have developed is not feasible, too difficult to 

implement or too expensive. They then go a step back and modify the solution until it meets the 

requirements. However, the study carried out at the company showed that there is no explicit 

documentation of the co-evolution of both requirements and design solutions at different levels 

of the product’s hierarchy throughout the product development process. Moreover, the way 

engineers and designers use margins is not recorded explicitly. In this research, we are proposing 

a method to capture this tacit knowledge and to investigate design margins. 

 

5.2 Concepts of margins in the company 
 

Volvo wants to optimise their products in order to reduce their cost and their lead times by 

increasing the commonality among different installations and several brands. Thus, systems and 

components can accumulate significant margins when they are used in different product 

variations.  For example, the company uses a limited number of sizes of cooling fan 

(concentrating on two main sizes) across many engine variants. This means that some trucks 
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which are operating in cold environments for example will rarely need the capacity of a bigger 

fan. 

From the case study conducted at Volvo and after analysing the obtained data, we noticed that 

for most engineers and designers, margins are implied rather than an explicitly stated concept, 

for example the fan module manager said “…And that is one of the dilemmas in engineering is 

very much … you need … a significant part of the workforce managing information throughout 

the business,…, and we’re very poor at that..”  

Margins are considered by different groups in the organisation, who use different terminology.  

Different groups are not necessarily aware of the margins other groups have added. Margins are 

added both to the requirements that are given to the designers and to the design itself by the 

designers. 

5.2.1 Changing terminology across the product development process  

 

The main objective at the beginning of this study was to determine some of the vocabulary used 

around margins with the aim of developing a definition for margins which is compatible with 

the language used in the company. For this, eight interviews were conducted with ten engineers 

from the Chassis department. The interviewees were selected to cover different phases of the 

design process (Chapter 3 gives more details). 

Each session was recorded and the conversations were transcribed for analysis. The questioning 

was relatively general with each person initially asked to describe their role. As the interview 

progressed, the questioning focused more on design process and in particular on design margins. 

The analysis started with a transcription of the recorded interviews (see Appendix A, for a 

transcript example). Although the transcription exercise is a time consuming it enables the 

investigation to get familiar with the context and the content of the interviews. The process of 

translating the raw data to findings requires interpretation of empirical data. The interpretation 
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of the data was made through a coding method (Chapter 3), conducted by distinguishing 

different themes and concepts found in the data. This involved analysing the interview 

transcription (e.g. a sentence or a paragraph) and summarising the quotes by the use of 

categories such as platform planning, product development and production. Once these pieces 

of data are regrouped based on their relevant content categories, the second stage is the 

interpretation of categories. The process is described at the end of Section 3.3. and Figure 5.1 

summarises these findings.  

The interviewees discussed margins and concepts related to margins. They used different 

terminology and that was an underlying issue. The following terminology was used in 

discussion of the concept of margins:  

Room for manoeuvre or future growth: Engineers and product planners talk about margins in 

terms of a room for manoeuvre or a room for growth mainly when it comes into planning for 

the next generation of products. They focus on major systems or sub-systems, such as 

powertrain, which are common across the different brands. To manage the design effort, as well 

as the cost and risk associated with new designs, engineers plan a small number of “fine-tunes” 

to systems in each generation. Each new design requires modifications or changes to the existing 

systems and variants to accommodate them. For example, when a new technology is available, 

such as new types of fuel or hybrid systems the company explores when and whether they can 

be introduced into their trucks. They estimate the demand on other systems arising from these 

technologies and schedule the changes to these systems accordingly. Therefore, they look for 

systems that can directly support the new technology or the ones that need to be modified in a 

way that will only require small changes in a future generation. It also enables them to plan 

margins into systems that are designed to avoid unexpected major redesign on systems.   
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Room for growth is a term mainly used by product planners who are involved at the early stages 

of the product development process. They mainly think of margins when they need to predict 

which systems or components need to be changed to meet new sets of requirements.  

Overdesign: Designers tend to overdesign some components or systems when they are uncertain 

about the final technical solution or cannot accurately predict the final performance of the 

product. Consequently, they add some margins to cater for uncertainty especially at the early 

stages of the development process, in order to avoid having a major redesign later.   “Yes, we 

overdesign but after the project start, we try to optimise the tubes for example …we can see that 

we have the possibility to down the size of the tubes to save cost” (J.B). 

Overdesigning components or systems against some sets of requirements is also seen as a 

measure of assuring maximal product commonality across the product platform and therefore a 

way of reducing production cost; especially when the company are merging brands. However, 

as the development process unfolds, the overdesign is seen progressively as a source of cost. 

The manufacturing engineers therefore look for components or systems that they consider 

overdesigned, and target them to cut down the production cost of the current generation of 

products. Hence, the way overdesign is considered is different at each phase of the development 

process. At the beginning, the engineers think that overdesigning some components or systems 

can help them cope with the uncertainty and/or risk associated with the product development, 

whereas towards the end of the process, overdesign is seen as a source of cost that it is necessary 

to minimise.  

Safety margins: To design a truck a large number of objectives are considered. The company 

tries to meet the customer requirements by developing the right vehicle for the specific mission. 

However, they can neither monitor nor control how the trucks are actually used or potentially 

misused. For example, if a truck is delivered to an European market where the weather is cold 
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with a good road condition, but the company cannot stop a customer using the same truck 

somewhere in the desert where the weather is very hot and the road condition is poor. Therefore, 

the company plans in safety margins, both in terms of safety against failure and misuse by 

customers but also to cater for future changes. “In one way, it means that since you don’t know 

exactly how the truck will be used you need to consider a certain safety margin.  They call it 

safety margin at school but we don’t use that word, but what we mean is that in certain systems 

you need to be very sure that they don’t fail”. (P.J) 

Not all safety margins are added explicitly as an addition to explicit requirements. Some 

properties of the product are difficult to quantify, in particular those associated with product 

features. The specialist feature engineers make generous estimation of the values to give high 

likelihoods that the products can achieve the desired overall performance.  

In the interviews, engineers used “safe” in two ways. First, it meant the safety of the truck in 

use and second, that the design engineers themselves can be assured against changes to 

components or systems. Therefore, they tend to add a “safety margin” to cater for this 

uncertainty. This is an example of an ambiguous use of terminology in the company and raised 

the risk that margins are added many times as engineers and designers miscommunicate and 

misunderstand each other’s intention. For the purpose of this thesis, the term safety margins will 

be used as margins on requirements.  

The capability of components, systems and products is often not known, because the effort in 

testing is concentrate on at meeting the requirements. Only destructive testing would reveal the 

limits of capability of the product. However, this could be simulated. Virtual test data is also 

available earlier in the development process, so that it is possible to consider margins explicitly 

earlier in the design process. Even virtual testing is limited by the number of the scenarios that 

can be tested. It is only possible to test against known unknowns, therefore there is a residual 
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risk. Testing for the actual capability could reveal margins which would allow companies to 

optimise the product further.  

Tolerances: which are added to components for manufacturing variability and robustness. 

Clearances: A specific type of margin considered during the design phase of a product is 

clearances around components. These are considered by the design engineers either as margins 

of components or as components in their own right. Clearances refer to the physical and 

geometrical domain. They often exist at the interfaces between different systems or different 

components, and ensure that parts have space to bed assemble together in a mass-production 

context. For example, the radiator is allocated a defined space at the front and beneath the truck 

cab. The space that is not occupied by the actual radiator then becomes a clearance.  

Clearances are important in managing engineering change, because having clearances means 

that a component’s dimensions can be changed if necessary, using up the clearance without the 

change propagating to the other components. Therefore, they can fulfil this function of 

absorbing change while being at the same time allowing the design to be sensitive to the impact 

of interchangeability and manufacturability of parts.  

Design margin: Designers add margins to their components to avoid making changes to the 

component later in response to emerging changes in requirements, in changes to their knowledge 

of capability through testing or in available technologies. Designing margins into the product 

gives design engineers flexibility later in the design process to meet different requirements, 

particularly those arriving from requirements for new product options that are added at the later 

point in the design process. “… The margin that they want to have a bit more extra than what 

they need…. Because this is question in the future which is something we need to trade how 

much… sometimes you need to see to down size do they really need these huge engines” (S.E).  

Design margin as a term is often used by designers interchangeably with safety margin. 
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However, the emphasis of a design margin is to allow flexibility in the process of design.  A 

design margin allows for uncertainties in the design itself.  For example, engineers may not 

know exactly how a product will perform until after tests have been completed and build in a 

design margin early in the process.  Further, design engineers may envisage that it may be 

necessary to change the design in the future, perhaps to meet new requirements or incorporate 

new and emerging technologies.  For these possibilities, they might introduce a design margin.  

As noted above the emphasis of the safety margin is on requirements and indeed the safety 

margin may be expressed directly in terms of allowances to cover uncertainties on these 

requirements. 

Figure 5-1 illustrates the changing terminology at different stages of the product development 

process. 
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Figure 5-1  Margins related terminology throughout the product development process 

 

This diversity of terms also contributes to margins being hidden from people in other teams. At 

the beginning of the product development process, the main concern is understanding existing 

margins of components and systems scheduled for reuse and specifying the need for future 

margins to avoid changes in future developments. In the organisation two interrelated but 

parallel activities occur: product planning and development and platform planning and 

development. The planning of the platform occurs both before and after the requirements are 

set. Steps in a platform development can be set as requirements or can be responses to the range 
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of requirements that the company is confronted with. Safety margins are added to the 

requirements once a fairly clear picture of the needs has emerged. Design margins are planned 

as soon as the requirements (including the safety margins) are known.  During the design of a 

component or a system the discussion of margins is wrapped up in assessing engineering change 

and the risk of change propagation. Designers are also taking active steps to avoid changes by 

designing flexibility into the details of the systems. Margins are seen as a positive way of 

managing design effort. However, as soon as the product definition is finished and the product 

is tested, margins are seen as a source of cost and engineers look to remove the associated 

overdesign.  

They also talk about tolerances in the context of robust design. Yet, margins are more than 

tolerances, when robustness is essentially associated with manufacturing tolerances delivering 

the required levels of performance. However, robustness can be interpreted more widely, 

especially in terms of the performance against a range of requirements. In this wider sense 

margins (i.e. safety margins) and robustness are similar.  

There were also many discussions around the commonality of components in systems versus 

efficient platforms and in particular when the products have some components which are 

overdesigned for particular installations. This is a clear example of design margins. These 

product platforms could be developed for a determined life, or be evolutionary in design to 

incorporate changes over time. The main outcome of this first study was that margins are 

additive. Some engineers might add a safety margin to a system, other designers might add 

design margins as room for maneuver for future changes that they might foresee while other 

may add manufacturing tolerances. As they do this design engineers can accumulate  several 

different margins as they proceed through the stages of product development.  
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Designer engineers may not be particularly aware of the margins that have been added to the 

requirements as opposed to the margins that have been added to the components above the 

requirements. Figure 5-2 gives a simple illustration of how margins can potentially be 

accumulated throughout the product development process.  

 

Figure 5-2  Cumulative margins 

 

This accumulation, is a result of margins being added and /or used up across the product 

development process, without necessary, all teams that are involved in this activity being aware 

of what their colleagues have added or used. This can result in components or systems being 

largely overdesigned, which potentially adds extra cost to the product. As mentioned above, 

explicit overdesign occurs at two points (marked in red in Figure 5.2); as a room for growth for 

future generations during the product definition phase, and as buffer for changes arising from 

changes in the requirements at the beginning of detailed design. As the product reaches the test 

phase, the features that are identified as overdesigned to meet uncertain requirements in the 
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product definition phase do not necessarily reveal the extent of their overdesign. This is because 

such overdesign types of margin can rarely be quantified exactly since testing of components, 

systems and products is usually conducted for compliance with the requirements rather than 

tested to the limits of their capabilities to see by how much they exceed the requirements. 

 

5.3 Formalisation of margins 
 

Design problems are often vaguely defined by comparison with analysis problems where there 

is only one answer. When conducting the case study in the company one of the engineers stated 

“We know how to do things but it is challenging to describe it in an abstract way”, also “If I 

have a problem I know how to solve it or I don’t have a clue, I know at least whom to ask to 

solve it”(P.G). The research carried out at Volvo GTT, which is described in Chapter 4, indicates 

that the knowledge about the way design is carried out is tacit.  

Different teams are typically working in parallel on different aspects of design, which are 

integrated through several loops of convergent iterations ((Eckert et al. 2001). During these 

design iterations, key requirements and key parameters can still change significantly requiring 

others teams to accommodate these changes. Anticipating potential changes during the design 

process is a key element of managing the risks associated with those changes. The work 

presented in this thesis addresses this problem in terms of design margins and argues that design 

margins are an active mechanism to improve the efficiency of the development process.  

The design activity of a system or a component can be described with regards to four main 

concepts described as follows: 

Constraints: the values parameters should not exceed. Constraints are the controlling elements 

which define an envelope for the total design activity.    
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 Capability: the value a design parameter could reach regardless of a specific requirement or 

constraint (what the system/component can do). 

Requirements: the values parameters must meet in order to get the desired solution. (what the 

system/component should do). 

Technical solution: the final values parameters will have at the end of the design process. This 

represent the solution that will be implemented for a particular design problem. (what the 

system/component will do). 

Margins in the design process can be defined in relation to these concepts.  Margins can refer to 

a simple parameter p or vectors of parameters P = <p1, p2… pn >. This gives the pattern of 

margins in a component or a system, which is described below. The following discussion will 

refer to a “must be exceeded” scenario, i.e. the capability of the system must exceed a certain 

value. For example, the truck must carry at least a load of X kg. In practice, many requirements 

are phrased as “must not exceed”. For example, the engine temperature must not exceed Y 

Celsius. The two cases are analogues and only the must be exceeded case is dealt with here for 

simplicity. The first type of margin M(P) on the parameters P, represents the difference between 

capability of a design and the requirements it is intended to meet. 

M1 (P) = Cap (P) - Req (P) 

The margin of a component or system is expressed as the difference between the values of the 

parameters representing the capability (Cap(P)) of the component and the values of the 

parameters Req (P) which would enable the component to meet the requirements. This is 

illustrated in Figure 5-3. 
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Figure 5-3 Margin M1 between requirement (Req) and capability (Cap) 

 

The second type of margin recognises that parameters are subject to constraints.  If the product 

parameters are constrained to exceed the values for the constraints Const(P) and the product 

actually has capability represented by values Cap(P) of the parameters, then this margin M2(P) 

represents how much the capability exceeds the constraints as shown in Figure 5-4 

M2(P) = Cap (P) - Const(P) 

 

 

Figure 5-4 Margin M2 between capability (Cap) and constraints (Const) 
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The third type of margin considers the case when there are not-to-be-exceeded constraints.  In 

this case, not all of the capability can be used and the margin is reduced to the difference between 

the values for the parameters Const(P) and the values corresponding to the requirements Req(P). 

  M3 (P) = Const (P) – Req (P).  

In situations where the component or the system is subject to both requirements and not exceed 

constraints on the performance, the usable margin of the system lies between the requirements 

and the constraints. This is illustrated in Figure 5-5. 

 

 

Figure 5-5 Margin M3  between constraint (Const) and requirement (Req) 

 

If we consider a simplified example.  In the design of a computer desk, suppose we assume that 

the desk can carry a load of 100kg and the customer requirement is for a desk that can carry 

80kg. The margin in this case will be M1 (P) = Cap (P) - R (P), M1 (P) =100-80=20kg. The same 

design can be constrained by the choice of the material used to build the desk. If the customer 

prefers to have a light desk that he or she can move easily, the designer will have to choose a 

material which is light but strong at the same time so it can carry 80kg.  
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The way different parameters combine depends on the nature of their relationship, most of which 

will be governed by the underlying physics in the product. However, we can detect recurring 

patterns of margins 

Min/max margins, where the overall relationship is governed by the smallest or largest member. 

This applies for example to clearances, where one would intuitively think of the clearance of a 

component or system as the smallest values.  

Additive relationships, where all the parameters accumulate and only the total is more important. 

This applies to weight for example. 

Key equations, where many parameters influence the final outcome, the overall value is 

basically the result of a small number of key parameters that can be expressed in relatively 

simple equations.  

In any system the margins are interrelated, performance margins arise from the relationships 

between different parameters, which each have their own margins arising from either constraints 

or requirements. System margins results from components and sub-systems being put together, 

which in turn have their own margins. However, the margins do not decompose or aggregate in 

a linear way as implied by the nature of the different relationships among the parameters. In 

particular, as margins are hierarchically composed or decomposed, margins can be gained or 

lost through the ways they are combined. 

 

5.4 Design margins and uncertainty   
 

At any stage of product development, the evaluation of performance is to an extent uncertain, 

depending on the maturity of a design proposal as well as the resources and tools employed in 

evaluating the proposal.  These uncertainties push designers to add margins, as allowances made 

in parameters, in order to provide high probabilities of meeting functional requirements. 
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However, an important point to note is that although design margins can exist above these limits, 

margins can also be created or increased by reducing uncertainties, for example by better 

models, more exhaustive simulations or physical testing of components and prototypes. Hence, 

uncertainty tends to decrease as the product development process progresses. 

Margins can be considered as consisting of two elements: a buffer B, which allows for 

uncertainties, and an excess E, which can be used to meet possible new requirements. This type 

of excess margin is primarily concerned with operational capability and performance rather than 

predominately with design as is the case with future growth. 

Mi (P) = B(P) + E(P).  

This view of margins relates into the concept of excess introduced by Tackett, Mattson et al. 

(2014), which addresses margins from the perspective of how a given design can be upgraded. 

They identified margins in terms of excess, as the “the quantity of surplus in a system once the 

necessities of the system are met”, while acknowledging that product design is subject to 

uncertainties. By reducing the uncertainties on a component, for example by conducting tests 

and understanding the capabilities better or by understanding the use profiles better, designers 

can reduce the uncertainty a component is subject to and therefore increase the excess on the 

component for a given margin. The excess is the part of the margin that designers can make use 

of, for example to deal with changes or increasing requirements.  For the margin M1: 

Excess = E (P) = Cap (P) – B (P) – Req (P)  

Product parameters may have buffers, which are not immediately usable in design but offer the 

potential that they can be reduced and release tangible and usable margins. These offer options 

for meeting higher levels of functional requirement or optimising product parameters against 

existing functional requirements. On the other hand, changes in requirements are inevitable 
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during the design process and this is difficult to manage for companies developing large 

technical systems, such as cars, trucks or jet engines. 

While many requirements are fixed at the beginning of the product development process, others 

change during the process due to the dependencies between components and systems in the 

product.  An important finding from this research was that lack of knowledge about the level of 

uncertainty around requirements and other design variables, particularly those communicated 

by one project team as inputs to the tasks of another team (e.g. product planning to design team), 

creates communication and management issues for the company. For example, the designers of 

the cooling system start their activity with an assumed engine temperature as a key requirement. 

This temperature can however change during the design process due to the changes to details of 

the engine or the use profiles considered. However, at some point in the process the engine 

temperature is frozen and remains fixed for the rest of the process. 

Moreover, regarding design margins, we found that there is a lack of quantitative knowledge 

characterising margins which in most cases raised many questions for engineers and designers. 

These design margins are empirically selected, that is, they are specified based on experience 

and/or standard practice and not through a theory or systematic methods. 

 

5.5 Margins as a crisp value vs margins as a range  
 

Designers need to deal with several uncertainties, before defining the physical characteristics of 

the truck design best capable of satisfying a certain set of customer requirements.  To provide 

some protection against those uncertainties, designers tend to anticipate those uncertainties by 

adding a design margin. For example, the product may have the structural strength to carry more 

load or a system may have enough space to accommodate an extra component, thus increasing 

the product capability to meet new requirements or to compensate for uncertainty. 
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In the case study presented in Chapter 4, designers attempt to design for what they call the worst-

case scenario. In this scenario, for example, the temperature for which a cooling system is being 

designed is a single value obtained from simulating the worst-case scenario. The truck is 

generally used in a drive cycle and the variation across the cycle of the heat that needs to be 

transferred by the cooling system is quite large. For example, consider the variation between a  

truck driven in a cold climate on a flat road where the heat that needs to be transferred by the 

cooling system is low compared to another driving condition where the weather is hot and the 

roads are rough. Therefore, designers use simulations and take into consideration one, worst-

case, operating condition which is going uphill (hence at slow speed) and running the engine at 

100% capacity. These extreme driving conditions give them the maximum amount of heat the 

cooling system needs to transfer. However, if for a specific Engine A, the required temperature 

(for the ambient air) that needs to be accommodated is 38°C but they take a design variant that 

can accommodate 46°C, which satisfies the requirement for the worst-case scenario (WCS), the 

Engine A would have a margin in a normal driving condition (Figure 5-6) 

 

 

Figure 5-6 Margin arising from the consideration of the worst case scenario requirement 
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Moreover, some design variables that are communicated by a design team and used as inputs to 

activities performed by other teams are imprecise. Design imprecision is a form of uncertainty 

formulated in the literature (Wood et al. (1990), Antonsson and Otto, (1995)) to express 

uncertainty in decision-making during the design of a new product, especially at the early stages 

of a design process where engineers and designers have not yet acquired sufficient knowledge 

to decide what is the final value that a design variable would have. Moreover, at this stage, 

requirements are not definite and are often subject to change. Therefore, engineers work with a 

range of alternative values for design variables and explore concurrently different concepts for 

systems, sub-systems and components. 

For example, consider the case when the requirements for which a truck is being designed is not 

a single known value but rather a range of possible values forming a distribution having a mean 

µ and a standard deviation σ. The capability of the system to carry that probabilistic load is again 

not a single known value, but a range of possible values forming a second distribution. This can 

be seen in Figure 5-7 which illustrates the relationship between requirements, capability and 

margins. There are two capability distributions.  The one on the left is the capability of an 

existing variant whilst the second represents a redesign of the variant with an enhanced 

capability. 
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Figure 5-7 Relationship between requirements, capability and margins 

 

Therefore, the probability that the system will meets its requirements can be increased by 

considering what the design can do to meet the customer requirements and moving the two 

distributions further as shown in Figure 5.7. The design margin as shown, is effectively added 

to enhance the probability of meeting the customer requirement.  

However, in the company, the capability of a design is not defined in absolute terms, but rather 

as the capability of a system to work under specific conditions. This makes it difficult to capture 

the accurate relationship between requirements, capability and margins. In the case of the engine 

temperature for example, the capability is expressed in terms of requirements, i.e. the engine 

should not overheat after a certain use time.  

On the other hand, trucks have different use profiles, they operate under very different operation 

conditions from smooth, rough to very rough roads and cross country. They also operate under 

different temperature ranges from less than – 40 to over +50 degrees C, so that many 
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components need to be heated or cooled even though they would not need this under most 

circumstances. Thus, to meet the customer requirements a combination of many parameters 

needs to be considered (Figure 5-8).  

In practice designers consider the extreme situations under which a truck should perform. For 

example, using the air conditioning at a full blast, stop and go driving in a very hot day, can 

raise the engine temperature above normal. Still, the driver should be able to deliver his cargo, 

without sustaining long term damage to the truck. These extreme situations correlate with the 

Worst-Case Scenario (WCS) which are concrete and detailed scenarios that help the engineers 

to think through potential failure modes. For example, engineers and designers will think of 

driving a fully loaded truck up a mountain road, like the Sierra Nevada, with a constant slope, 

in hot summer days, with stop-start traffic. This is similar to what was introduced in the literature 

by Taguchi and Clausing, (1990) and defined by Clausing, (2004) as the Operating Window 

which they consider as the boundaries of a critical parameter at which certain failure modes are 

excited. Therefore, the road conditions mentioned in the example above can be considered as 

an operating window, since they consider the worst scenarios (high values) which lead to one 

failure mode and other scenarios (low values) lead to the other failure mode. Hence, designers 

choose a design to maximise the operating window, i.e. they respond to the worst case scenario. 

To minimise variety in the product platform many components have traditionally been designed 

to take the highest demands coming from worst-case scenarios. For example, systems like the 

fan are generally overdesigned for some installations.  Design engineers address this range of 

possible scenarios, and therefore a range of parameters by considering one point which is the 

worst-case scenario, which might generate margins for some applications later on in the 

development process. On the other hand, to be able to more accurately and optimally set the 

limit of the use of components and their reliability, all external parameters such as temperature, 
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are virtually tested by simulation and compared to running time/ running distance up until failure 

occurs. Even if the choice of material, dimensioning and performance is adapted to each 

transport operation’s driving condition and load condition (Figure 5.8), some components are 

used in different products, therefore some these components will only have margins for some 

installations. For example, a component in a truck might be designed initially for a rough road 

condition and 44 ton GCW (Gross Combination Weight, which determine the total weight of 

the truck). However, the same component might be also used in trucks with a GCW up to 60 

tons, if the road is classified as smooth. 

 

 

Figure 5-8 Combination of different requirement’s distribution 
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To assess the values given to the worst-case scenario, and to make sure that the design will meet 

the customer requirement, engineers and designers rely mostly on virtual testing (Tahera et al. 

2012). These virtual tests or simulations are a form of design analysis, which uses the virtual 

models of components or systems to test different scenarios. These tests can give an indication 

where margins might be hidden and have the potential to be an effective way to identify margins. 

However, since the majority of these tests are virtual, margins may be underestimated through 

this process. The company does not test a product until failure. This can be problematic for 

engineers as they might not be able to quantify some margins and can be surprised at later stages 

in product development. This is a particular issue for the outsourced components. Suppliers test 

their components and guarantee that the component meets the requirements, but they might not 

tell their customers by how much. In some cases, even if the suppliers are aware of the margins 

they have, they do not necessarily communicate them.  In this way, they might still be able to 

sell the same or slightly different components for the next generation of products. 

 

5.6 Design margins at different phases of the design stage  
 

Margins arise at different stages of the product development process, especially at the design 

stage. At the concept design phase, when engineers are uncertain about some requirements or 

the final performance of the product, they tend to put margins on some parameters to provide 

high probabilities of meeting the functional requirements (Figure 5-9). This type of margin can 

be seen as a buffer, which is used to cater for uncertainties resulting from deficiencies of 

knowledge. As the design state evolves over time and becomes more detailed, designers are able 

to reduce uncertainty by conducting tests and therefore they get a better understanding of the 

components capabilities or by evaluating the conditions of use. Reducing the uncertainty that a 

component is subject to, allows an increase in the excess on the component. The excess in this 
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case is the part of a margin that the designers can make use of to deal with changes. At this 

stage, it becomes possible to respond to the worst-case scenario in a different way and thereby 

limit redundancy in the product.  

      

Figure 5-9 Margins state at different phases of the design stage 

 

As mentioned earlier, at the beginning of the product development there is a lack of information 

available about the product design or how well the product will perform in relation to the 

conditions of use. Therefore, there is a relationship between requirements / performance and 

unknown/ known dimensions as the uncertainty can be, to some extent, manageable over time 

by allocating buffers. Although these buffers are not immediately usable in design, they do offer 

the potential that they can be reduced and thus release excess which is immediately usable.  This 

gives a relationship between buffer / excess and unknown / known. 
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5.6.1 Example from the cooling system   

 

At the beginning of a new project the cooling system team analyse the pre-requisites which 

contain directives, goals and target descriptions. Accordingly, they define the requirements 

specification and analyse the existing cooling system concepts to select the one that will be 

implemented. However, before getting to the final design stage, designers and engineers need 

to deal with a considerable number of constraints and uncertainties. For example, when 

determining endurance, which is defined by testing the truck, engineers don’t know from the 

beginning, what the final load on the cooling system will be until they have tested all 

components. However, they can still make a judgement regarding the load by simulation. 

Consider this example from the perspective of design margins. The designers use a buffer at the 

beginning of the process in order to determine an endurance parameter because they were 

uncertain about the final load. Therefore, they created a buffer margin. As uncertainty is reduced 

through more exhaustive simulations, the buffer becomes usable excess. 

In the example of truck engine cooling, designers include a design margin which increases the 

load that the system is able to cool by 10%, and a head loss margin which increases the pump 

power by 10%. The design process follow the pattern shown in Figure 5-10 
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 Analysis of existing design 

 Analysis of proposals 

Simulation 

Testing 

Start 
Previous design 

Modification ?

NO

YES

Approve the 
Modification ?
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NO

Compliance ?
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Approve the new design

NO

End 
New design

 

Figure 5-10 The design process model 

 

In setting out the concept design to cover worst-case requirements there is the interesting 

observation that on the one hand the requirements seem to be known accurately and definitely 
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(the details of the worst case) whilst on the other hand the reason for using the worst case in the 

first place is that the actual requirements are not known well.  

Later in the overall product development process there will be a refinement phase. Here designs 

are optimised against many factors, perhaps manufacturing costs for example, and the design is 

improved while still being set broadly against the worst-case scenario of requirements. At this 

stage buffers may be removed or moved across to excess which can be exploited at the next 

stage.  

At a third stage the design team are tasked with designing a product for particular set(s) of 

requirements. Here more is known of requirements and they are considered together, in parallel. 

Because this is later in the overall product development, more is known about performance from 

test as well as use information from earlier versions. So, buffers tend to shift to excesses which 

then offer usable margins against the specific requirements. Consequently, the design team have 

options. Knowing the margins and how they have developed through the first two stages means 

that designers can now make rational and informed choices about their options.  Taking away 

excess margins, might be achieved at considerable design costs, although ultimately product 

costs may be reduced. Note that usable margins are excesses.  The bits of margin which are 

buffers are not usable as they are absorbing uncertainties in requirements and performance. 

Margins can also be discussed from the view point of change and the process to make a change. 

For example, if the powertrain team send a change request regarding the engine temperature, 

the engineers start to think about alternative solutions, inter alia, margins that could absorb this 

change. In this case, the designers can make use of the excess which is the part of the margin 

that has been incorporated for dealing with increasing requirements and small changes. 

Additionally, since the suppliers are highly involved in the product development process, the 

interaction between the company and its suppliers is more than the purchasing and supplying of 
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parts. It also concerns detailed knowledge about margins on these parts which is difficult to 

identify explicitly in the main company who do not have the necessary specialist knowledge. 

 

5.6.2 Design margins across the product development process   

 

Automotive products (the case study of this research) are complex multidisciplinary systems 

which require dozens of different specialists to design as well as significant resources to 

develop. These systems are usually designed by a team of engineers, with other teams each with 

responsibility for different subsystems. The design team aspect means that there is often a lack 

of communication and differing information among the team members. These products are often 

built by more than one organisation since a single organisation rarely has the expertise in all the 

subsystems required in the design. When multiple organisations are involved, the complexity 

and informational asymmetries often increase further as interaction among specialists is more 

difficult.  

Complex multidisciplinary systems are also characterised by increased uncertainty in design. 

They often have hundreds of independent variables that uniquely define a design. A large 

number of interdependent components must all come together for the product to work. These 

systems are both difficult to model and to understand because no single person has the detailed 

knowledge in all discipline areas, all variables, and all components that are required to 

comprehend or predict the final performance of the system.  

At the beginning of the product development process, there is no definitive set of requirements, 

the set will be refined as the design unfolds. Requirements generation consist of elicitation, 

analysis, specification and validation activities. Design margins are planned as soon as the 

requirements are known, mainly to reduce uncertainty in the design process. Margins are seen 
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as a positive way of managing design efforts, however, as soon as the product is proposed for 

production, margins are seen as a source of extra cost which engineers will try to remove. 

Margins are mainly captured at the beginning of the development process, from the 

requirements. By doing calculations and tests design engineers can decide whether the current 

solution can meet new requirements or whether they need another design solution. At the 

beginning of any product development process there are many uncertainties associated with the 

design parameters and how they are described in the project scope. A number of key issues 

related to the evaluation of design margins are identified by the use of probabilistic design 

methods to rationally and analytically make design decisions in the presence of uncertainty.  

According to the company where the case study was conducted, the project starts with the 

prerequisites which contain a description of goals, directives and targets expected by product 

planners for a generation of products. At this stage, the knowledge about the final value of a 

design parameter as well as the overall performance of a system is limited. As the product 

development process proceeds to more detailed design, the knowledge increases because 

designers at this stage are able to better understand the capabilities of their components, for 

example by running simulations. At a later stage, when the design parameters are defined and a 

solution is selected, the level of uncertainty is reduced further.    

At the start of a project, engineers might have an initial requirement value for a parameter which 

may not be the value they will finally design against. For example, Figure 5.11 shows the 

relationship between the requirement (full line) and the capability (dashed line) of a fan. At the 

beginning of the product development process, there is a small margin (M1 in Figure 5.11) 

between the prerequisite and the capability of Fan 1. Later in the process, when the requirements 

are fixed to a value higher than the capability, then the designers need to change to Fan 2, which 

has higher capability and can meet the new requirements. Consequently, this will generate a 
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large margin (M2 in Figure 5-11) for other variants that do not need a bigger capacity for their 

fans. In the case of the binary choices between the two fan sizes, at the product definition stage, 

the company did not leave enough buffer above the prerequisite. 

 

 

Figure 5-11 Margins evolving over time 

 

During early design stages, the prerequisites can be subject to changes as many uncertainties 

have not been considered and the values might be affected by change propagation. The design 

proposed at this stage can exceed the prerequisite in two ways:  

There is a buffer (B) to take account of uncertainties of many types in product performance and 

in the knowledge of the product characteristics which may not yet be defined.  

There is an excess (E) which represents a known or guaranteed ‘extra’ in capability over and 

above what is specified in the prerequisite.  

The process, within the case study company, of translating the prerequisites into requirements 

is an iterative process where designers and engineers make models and run simulations in order 
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to establish the set of requirement values. In the particular case illustrated, the buffer decreases 

and the excess increases to reflect reduced uncertainty and increased room for manoeuvre.  

As the project unfolds, engineers need to select a technical solution which is the result of trade-

offs made between different characteristics such as technical feasibility, expected service life, 

and cost.  

The validation of the selected solution is achieved through further detailed analysis as well as 

an extensive physical test. The result is further reductions in buffer and possible increases in 

excess. However, excess is also eroded in two ways; the requirements can increase using up the 

excess and the design might be optimised by removing the excess deliberately for example to 

reduce the cost of the part.  

In the case study, it was observed that when engineers receive the prerequisite from the product 

planners, they are uncertain about some requirements or the final performance of the product. 

Therefore, they create a buffer by adding margins on some parameters to provide high 

probabilities of meeting the functional requirements or requests for change. Later in the product 

development process, when the requirements are more detailed, and the technical solution is 

more refined, designers were able to reduce uncertainty by conducting tests or by evaluating the 

conditions of use. At this stage, designs are optimised against many factors, for example the 

manufacturing costs. A buffer has effectively been removed or reduced and moved across to the 

excess part of the margin which can then offer a scope for optimisation. At the final stage, the 

design team has a target to design a product for a particular set of requirements. As they know 

more about the requirements they also know more about the final performance from tests and 

simulations. Therefore, the excess can be reduced without compromising the performance or 

the reliability of the component against current requirements. On the other hand, it is observed 
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that as engineers reduce uncertainty on a component, parts of the buffer can be shifted into 

excess, and therefore released for future design changes. 

Engineers and designers tend to freeze requirements at the early phases of product development. 

However, product requirements may themselves have buffers that are not immediately usable 

in a design but give the possibility to be reduced and therefore provide usable margins (i.e. 

excess). These margins provide options for meeting higher performance and allow the trade-off 

between different requirements.  

So far, it has been demonstrated that knowing the status of design margins on parameters in 

terms of buffers and excesses gives a range of possible values that provides potential solutions. 

Therefore, design margins play an important role in framing the design process.  The way 

different parameters are traded off against each other depends on the nature of their relationship. 

These relationships define how margins on different parameters can be considered together. 

Margins effectively act as a range of values that provide possible alternatives to meet 

requirements.  

Nevertheless, margins may not be communicated explicitly across teams. At the early stages of 

the product development process, engineers are not often aware that buffers have been added to 

cope with possible or expected future changes to requirements. Furthermore, engineers in 

different parts of a team may have a little sense of how much excess was used up by another 

part of the project team. This is because margins may not have been explicitly documented.  

 

5.7 Design margins and trade-offs 
 

For a performance parameter ,the margin is the difference between the required and the actual 

performance. This can be illustrated with a simple example. A rectangle that has an area of 4 m2 

but only requires 1 m2 has a margin of 3 m2. If the requirement is increased, but is still < 4 m2, 
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no change is required. However, if the requirement is greater than the area 4m2 then the 

component size needs to be increased. As the area = length * width, either the length or the 

width or both can be changed. In practice one of the parameters might be a constraint, such as 

when the material is cut from a roll with a fixed width. In this case, the length would be 

increased. If both are variable there might be other constraints or requirements that govern the 

ratio of both and the designers might need to make a trade-off between the lengths and width to 

find the best solution for this square. In the case of continuous variables, it might be possible to 

find an optimum through carrying out a multi objective optimisation. This is a trade-off 

involving discrete variables which might employ weighted parameters. For example, when 

selecting a chair a choice might exist between a red chair with armrests and a green chair 

without. Your favourite colour is green, and you prefer armrests. The choice depends on what 

is weighted as more important.  

The margins on an individual parameter provide a space in which to trade-off change. Some 

parameters might be harder to change than others. Figure 5-12 illustrates the different trade-offs 

between two parameters 𝑃𝑎and 𝑃𝑏 that could be made. The designers might want to build a 

margin into the new solution. The values of each of the two parameters includes a margin.  Thus 

𝑃𝑎𝑚𝑖𝑛 a minimum value for parameter Pa which is not an absolute minimum for that parameter 

but includes a margin to allow for upcoming uncertainties.  Pamax might give a maximum value 

for the parameter, for example size.   
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Figure 5-12 Trade-off between two parameters, 𝑷𝒂 and 𝑷𝒃 with regards to their margins 

 

The parameter pair {𝑃𝑎𝑚𝑖𝑛, 𝑃𝑏𝑚𝑖𝑛} represents designs where the values for both parameters 

are at the minimum, that meets the requirements but has no margin. Solutions near or below 

these parameters are not considered desirable by designers. The parameter pairs 

{𝑃𝑏𝑚𝑖𝑛, 𝑃𝑎𝑚𝑎𝑥} and {𝑃𝑏𝑚𝑎𝑥, 𝑃𝑎𝑚𝑖𝑛} represent situations where parameters 𝑃𝑎 𝑎𝑛𝑑  𝑃𝑏 are 

traded-off against each other and represent feasible design solutions. The pair {𝑃𝑎𝑚𝑎𝑥, 𝑃𝑏𝑚𝑎𝑥} 

represents situations where the values for both parameters are at their maximum. Design 

requirements are achieved and the solution is considered desirable. Therefore, the performance 

function F is maximised. However, if the objective is to optimise a performance function by 

minimising some parameters, then {𝑃𝑎𝑚𝑖𝑛, 𝑃𝑏𝑚𝑖𝑛} would indicate the desirable design space 

and {𝑃𝑎𝑚𝑎𝑥, 𝑃𝑏𝑚𝑎𝑥} the undesirable one. The overall value might also be a constraint, for 

example when there is a weight limit on a board with a given area. This approach of trading off 
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parameters that have margins, offers designers and decision makers the possibility to explore 

different areas where the design could be feasible as well as judging the appropriate criteria for 

selecting a specific design solution.  

In order to identify an optimal design conflicting objectives are typically considered 

simultaneously. Mattson and Messac (2005) argues that “one of the most powerful tools for 

resolving such objectives, in a computational setting, is multi-objective optimisation. Generally, 

there are many potential solutions to multi-objective optimisation problems; a particular set of 

optimal solutions is referred to as the Pareto optimal set or Pareto frontier”. By definition, Pareto 

solutions are considered optimal because there are no other designs that are superior in all 

objectives. 

A general multi-objective optimisation problem attempts to find the design variables x that 

optimise a vector objective function f (x) over the feasible design space S. The formulation of a 

multi-objective optimisation problem is defined as follows:  

Minimise x     f(x, p)=[  𝑓1, 𝑓2, … . . 𝑓𝑛]                                                                                 (1a) 

Subject to: 𝑔𝑗(x,p) ≤ 0  ; j=1,...,J                                                                                         (1b) 

                      𝑿𝑳 ≤ x ≤ 𝑿𝑼                                                                                                   (1c)  

Here, x are the component design variables (factors controlled by the designer), p are the 

component design parameters (factors kept constant by the designer), f is the component 

objective functions, 𝑔𝑗  is the inequality constraint. The design variables x are bounded by their 

lower and upper bounds 𝑿𝑳and𝑿𝑼, respectively.  

Because of trade-offs among the objectives, there is generally a set of optimum solutions to (1a). 

This set is called a Pareto set, and the design solutions in this set are called the Pareto designs. 

Extensive reviews of multi-objective optimisation concepts and methods are given by Deb et al. 

(2000) and Gunawan and Azarm (2005).  However, the applications of this type of approaches 
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by industry tend to limit the scope of optimising a design. More often the main objective is to 

minimise the cost for some design attributes A and B such as A>B, A<B or A=B, without 

actually quantifying the capacity of A and B. On the other hand, methods that deal with the 

computational behaviour of different design objectives require a number of iterations and runs. 

Therefore, this involves a need to consider what systems and components can do and how their  

parameters define capability. 

In practice the relationship of the parameters is often not linear as in Figure 5-13.  For example, 

a beam which has a load capacity depending on its length and its diameter, can be optimised 

through a Pareto optimisation. The actual solution is the red point, which is at a distance from 

the optimal solution. Therefore, there is a margin compared to the Pareto curve on the length 

and the diameter. The existence of these margins will help the designers make trade-offs 

between the length against diameter and select the optimal solution that meets the requirement. 

 

 

 

Figure 5-13 Margins on different parameters 
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In industrial applications, the relationships are far more complex than in these simple examples. 

Engineers should find how much they need to give up of a certain objective in order to improve 

another one to a certain quantity. Therefore, they build in the “margins” in the non-linear 

constraints, that is then reflected in different levels of margins for each of the objectives or 

parameters. For example, when calibrating an engine, the levels of emissions are deliberately 

set to a below-legal limit). This can be used to approximate how many units the value of some 

objective function changes if we alter the value of some other objective function by one unit. 

 

5.7.1 Application: truck cooling system 

a. Truck design   

The relationship between margins and trade-offs is now illustrated through an industrial 

example from our truck case study. Trucks are incremental designs. Every 10 to 15 years the 

company launches a new product generation, such as a new heavy weight truck, which sees a 

substantial number of newly designed components and systems. In between these large product 

development cycles, new versions are developed for particular classes of needs. For example, 

after launching a basic version, the company later embarked in developing trucks that can be 

used as fire engines. The automotive industry also needs to meet different and changing 

emission legislations for different markets. The product generation changes are linked to the 

emission legislations, but engines are modified throughout the life cycle of a product generation. 

The automotive industry faces a number of technological challenges in terms of meeting 

different legislations, developing highly customised products to satisfy customer needs, as well 

as particular operating conditions. There are also challenges in terms of the lead time, and the 

trade-offs between cost, the overall product development and performance.  
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To illustrate this, the cooling system of the truck was selected. The cooling system needs to be 

modified, as the engine temperature increases for whatever reason. This could either be a 

different engine, the truck could be operated in a different environment or on a different duty 

cycle. In some driving conditions, the air flow crossing the radiator is not enough to cool the 

coolant. This happens in hot climates, or when the engine is running for a long time without 

moving the vehicle. For example, a truck operating in open mines in the desert requires 

substantially more cooling than a truck running on European motorways and would operate the 

fan most of the time. These challenges force companies to find an efficient way to make these 

trade-offs. Design margins are important for many trade-offs that engineers can make, as they 

represent a room for manoeuvre. Design margins can accommodate new requirements; 

therefore, engineers can avoid redesigning their existing components and systems, which 

ultimately will result in decreasing the development time and cost.  

b. The cooling system   

For most use scenarios, the heat that is produced in the engine needs to be actively cooled. This 

is performed by the cooling package which consists of the radiator and the fan. The cooling 

system’s main function is to cool the engine to stop it from overheating. When the engine 

coolant temperature rises to a threshold level, this will activate a valve, which will in turn send 

air pressure from the truck’s air reservoir to the fan drive and engage the clutch on the fan. When 

engaged, the fan drive activates the fan through a clutch, to cool the engine by pulling air through 

the radiator. The amount of cooling provided is dependent on the airflow generated by the fan.  

The coolant system also can be used for heating. The heat transferred from the engine to the 

coolant is for example used in the cab heat exchanger in order to give the driver a comfortable 

temperature inside the cab. The cooling system (Figure 5-14) has tight geometrical constraints. 

It has the cab flooring on the top, on the sides of the chassis frame, the grille in the front, at the 

121



 

122 

 

bottom the front underrun protection (FUP) and the engine in the back, as illustrated in Figure 

5.14. To increase cooling the airflow needs to be increase.  

 

  

Figure 5-14 A cooling system layout 

 

Different engine specifications have different cooling needs, according to the size of the engine 

and the load on it. The company offers a wide range of truck variations and configurations. 

Specific trucks are built from a product platform, which aims to meet the widest possible range 

of application with the minimal number of components and systems. This means that some 

components have large margins in performance with regards to the requirements of a particular 

configuration. The fan is one of these critical components that are shared across several 

configurations. 
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c. Margins on a fan   

Fans are usually selected from a range of models and sizes, rather than being designed 

specifically for a particular application. Fan selection is mainly based on calculating the airflow 

and pressure requirements of a system, then finding a fan of the right design to meet these 

requirements. Considering that the company only uses a small number of sizes of fan it is 

effectively the rotational speed that is varied in practice.  

As the company needs to be sure that they can meet the requirements under all the given 

scenarios they calculate the size of the fan and the fan speed they would like and use this as an 

input to select the right fan with a suitable fan speed.   

The fan overall performance is determined by the fan capacity, pressure, speed and power, 

which follow the following fan laws (Gullberg and Sengupta, 2011), which address the change 

required compared to an already existing baseline design which has been tried and tested for a 

given set of operating conditions.  

𝑞2 =  𝑞1 × (
𝑛2

𝑛1
) × (

𝑑2

𝑑1
)3                                                                                         (1) 

𝑝2 =  𝑝1 × (
𝑛2

𝑛1
)2 × (

𝑑2

𝑑1
)2 × (

𝜌2

𝜌1
)                                                                           (2) 

𝑃𝑅2 = 𝑃𝑅1 × (
𝑛2

𝑛1
)3 × (

𝑑2

𝑑1
)5 ×  (

𝜌2

𝜌1
)                                                                        (3)                

 

The design parameters are: d for Diameter  [m]; n for Rotational speed  [rpm]; PR for Power  

[rpmkW]; p for Pressure [Pa]; qv for Volumetric flow rate [m3 /s] and ρ for Density of air  

[kg/m3 ]. Subscript 1 refers to the existing conditions and subscript 2 refers to the required 

conditions. 

Higher airflow usually means better cooling. Consider a design requirement regarding the 

airflow that the cooling system must create for a particular engine and operating conditions. 
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From the first fan law (1) we know that the airflow varies in direct proportion to the rotational 

speed. Therefore, the design requirement can be met by two design parameters which are the 

rotational speed of the fan and the fan diameter (size).  

There are existing designs which meet these requirements, but since most of the fans are 

generally overdesigned, the solution exceeds the initial requirement for this particular design. 

For example an existing airflow of q1 = 1.3 CFM (that is normal litre (at 0oC and 1.013 bar)) per 

minute) can be achieved with a fan diameter d1 = 680mm, and a rotational speed n1 = 1.06 RPM.  

Whereas, the needed air flow is only q2 = 1 CFM.  In order to evaluate what is the actual needed 

fan diameter d2 and the rotational speed n2, we apply the first law (1): 

𝑞2 =  𝑞1 × 
𝑛2

𝑛1
  × (

𝑑2

𝑑1
)3 

Then,  

𝑑2 =  𝑑1 × √
𝑞2

𝑞1
∗

𝑛1

𝑛2

3
 

Figure 5-15 shows the variation of the fan diameter with the rotational speed. The Pareto curve 

obtained for this installation shows that at the fan speed ratio 1.06 RPM, the fan diameter would 

be 623.057mm. On the other hand, for a fan diameter of 680mm the fan speed ratio is 0.80 RPM. 

But in reality, the installation is using a fan that operates at a diameter of 680mm at a speed ratio 

of 1.06RPM. Therefore, there is a margin on d the diameter of the fan and a margin on n the 

rotational speed of the fan. 
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Figure 5-15 Different margins in different parameters 

 

If we choose another design that gives the same flow rate, but with a design margin (18% of the 

air flow), it will give us another margin on d the fan diameter and another margin on n the 

rotational speed of the fan (Figure 5-16). 
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Figure 5-16 Relationship between margins in the design requirement and design 

parameters 

 

The airflow depends on the volume of air that the fan can push and the speed with which it 

rotates.  However, both larger fans and higher rotation speed have drawbacks for the design of 

the truck. A larger fan takes up more space and is potentially heavier, which ultimately affects 

the engine efficiency. The fan rotation is generated by taking energy from the engine and 

therefore directly affects engine efficiency. Therefore, the designers need to find the optimal 

balance between fan size and speed.  
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In practice, the company uses only a small number of different fans, with different diameters, 

in an attempt to minimise the number of parts in their product platform. The fans are long lead 

time components. A new fan design would require the production of expensive new moulds. It 

would potentially also be possible to modify the geometry of the fan blades, however this would 

require considerable design effort from their fan supplier. The rotational speed is also not freely 

variable. Therefore, the designer will generally have a margin on the fan capacity.  

The selection of the fan and the rotation speed is not only determined by the airflow, but also 

by other constraints. In particular, as the fan is directly underneath the cab, noise and noise 

regulations are an issue. A bigger fan would potentially generate more noise. These parameters 

might themselves have margins that need to be considered when making changes.  

The designers might also deliberately select a solution which has a certain margin on it, as this 

would give them additional room for growth in case the requirements are exceeded. 

Theoretically the requirements ought to be defined so that they cover these eventualities. This 

is the case for the particular application that they were set for. The designer however knows that 

another variant might have similar, but slightly higher requirements. Understanding the margins 

on their solutions enables the designers to reuse by adapting this solution for another application 

saving themselves considerable design effort.  

This example illustrates how much effort designers are putting into understanding the optimal 

solution for each variant, even if they are constrained by the platform. One reason is that they 

need to be absolutely sure that the components that they have selected will be working reliably 

under all circumstances. In this particular problem, a team of engineers works largely on design 

analysis. They occasionally make small changes to a component or a part of the component. 

However, they try to minimise these as well, as every change to a platform component requires 
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rechecking in each combination through analysis and simulation as well as retesting the physical 

components. 

Therefore, the management of margins is also a means of managing the design effort, even at 

the cost that individual components or systems are overdesigned for a particular application. 

While there is a certain cost, in terms of added fuel consumption due to increased weight, 

associated with an overdesigned fan, there are safety and reliability risks associated with an 

under-designed fan. A greater number of fan variants would result in a greater part cost and a 

greater design effort.  

 

5.8 Summary  
 

It was identified that the changing terminology and the lack of communication around margins 

is one of the key issues in the case study company. This makes it difficult to capture the 

knowledge about margins which is not explicitly documented.  

Also, it was demonstrated that margins on components or systems profoundly affect how a 

design process is carried out. Engineers and designers look for components or subsystems with 

margins, to accommodate potential changes and analyse design alternatives. 

Moreover, due to the fact that there are shortcomings in tracking margins and capturing the 

knowledge related to these margins in industry, the management of margins relies heavily on 

the experience of engineers and designers. There are no specific tools to assist with the 

evaluation of margins. When questioned, a large number of engineers and managers felt that 

there was a need for more support especially with gaining an effective overview of how margins 

can be flagged up at the different stages of the product development process. This thesis suggests 

a model which can help investigating and managing design margins. 
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6 Development of a Conceptual framework to Investigate 

and Manage Design Margins 
 

   

 

 

The empirical study has shown that tracking design margins is complex and can be difficult to 

manage, mainly because margins are not explicitly communicated across the organisation. 

Although some designers and engineers are aware of the margins they have on some 

components, this knowledge is not recorded precisely. Thus, there is a clear industrial need for 

support with the way design margins are managed throughout the product development process.  

This chapter describes a conceptual framework that was developed to investigate and manage 

margins. The framework was developed based on well-known methods used in the industrial 

sector. 

 

 

 

 

 

 

129



 

130 

 

6.1 Background to the conceptual framework development   
 

This research initially focused on understanding the concept of design margins and how there 

are communicated. Work was carried out both to identify the terminology around the concept 

(Chapter 5) and to develop a conceptual framework that could help in managing design margins. 

The empirical study at Volvo GTT highlighted the need for a basic overview or model that could 

help to identify why and how design margins are added and used. Therefore, the focus of the 

research was to bring insights on how to manage design margins and to develop a framework 

that could be used to elicit the data required by the company to shape the entire design process. 

It was important for the success of this research that the framework is taken up by industry. To 

this end, many discussions were held with engineers and designers to identify why certain tools 

and methods were used in industry whilst others were not. During this investigation, it became 

clear that tools and methods that are accepted and used in companies are techniques like Quality 

Function Deployment (QFD), Failure Mode and Effects Analysis (FMEA), and Design 

Structure Matrix (DSM). These methods can be implemented in stages and do not require 

significant initial input or learning from the engineers in order to begin, yet can provide 

structured guidance to difficult engineering problems.  

The core intent of quality functional deployment (QFD) is to quantify the relationship between 

design decisions and product quality. These relationships are documented in a series of matrices, 

or “houses” to produce quantifiable relationships. The first of these houses is the house of quality 

(HoQ), which relates customer requirements with the associated technical requirements. The 

required input to the HoQ is an unambiguous statement of the customer requirements (CRs) and 

their associated importance weighting (IW).  

Based on these CRs, which are often subjective, the designer defines a series of measurable 

technical requirements (TRs), and their preferred sense, i.e., to maximise, to minimise , or target 
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a certain value. Correlations between the CRs and TRs are identified in the relationship matrix 

(Leary and Burvill, 2007). One of the interviewed engineers said: “Function Deployment 

method. The sort of house of quality stuff. Where you would take user requirements and then 

relate them to proper functions, and then in the next step relate the functions to components, 

and then you work your way through from... requirements to... essentially manufacturing” (PL). 

However, with regards to design margins identification this method can give an extra layer of 

difficulty, because it provided a limited comprehension of how the importance of each 

requirement is weighted.  

The process of carrying out an FMEA can be divided into several steps. Basically, each failure 

mode considered in the FMEA technique is evaluated by three factors as severity (S), likelihood 

of occurrence (O), and the difficulty of detection (D). A number between 1 and 10 (with 1 being 

the best and 10 being the worst case) is given for each of the three factors, and a risk-priority-

number (RPN) is obtained. Although FMEA is probably the most popular tool for reliability and 

failure mode analysis in the automotive industry, several limitations are associated with its 

support to identify or manage design margins. First, the failure data gathered from suppliers, 

engineers, and testing is often missing or unreliable. Hence, the assessment information of three 

risk factors (severity, occurrence, and detection) is mainly based on experts’ knowledge and 

experience. Second, in the traditional FMEA methodology, the three risk factors are assumed to 

have the same importance (Braglia, 2000). However, it is observed that engineers give more 

preference to the fault detection factor (based on discussion with test experts at Volvo).  

One key recommendation was that any model should be simple enough to be outlined in a matter 

of minutes, yet if required, extra layers of complexity could be added in the future. 

In this research, it was argued that the complexity of large development projects, the availability 

of limited data regarding design margins and the time required to follow these projects, make 
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the explorative methods to elicit the margins data and how they shape the company’s processes 

an appropriate methodology.  It appears that alternative methodologies have difficulties in 

addressing the goals of this research and its associated research questions. Regardless of many 

limitations and the caution that is necessary in the interpretation of results arising from 

“exploratory-based” models, this thesis claims that it provides ways to investigate design 

margins from which qualitative and quantitative insights can be obtained about product 

development processes. These insights can then support product planners, engineers and 

designers analysing different scenarios and making more informed decisions about product 

development. 

 

6.2 Outline of product and process modelling  
 

The design of complex products usually involves the coordination of many activities over 

multiples sites before getting the final product. Thus, there is a large amount of connectivity 

between the products that a company produces and the processes that are used (Earl et al. 2001). 

A key issue in any proposed method or tool that supports the modelling of products and design 

processes is the development of an appropriate underlying model. However, the modelling of 

facets of design is a large area and will be discussed briefly in this chapter. The main focus will 

be on methods and tools that were used in this research. A detailed review of modelling and the 

design process is given by Wynn et al. (2007) and Engel and Browning (2008) who reviewed 

the key aspects of product models. 

In the literature related to this area, models for product development adopt approaches which 

emphasise the following two main aspects: 

Design-focused, which supports the generation of better products by the application of 

prescriptive models and methods to the design process ( Pahl and Beitz 2013) 
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Project-focused, which advocates approaches to support or improve the management of the 

design project, project portfolio, etc.  ( Hales, 2011).  

In industry, the main focus of product modelling is from a development perspective with models 

used to examine how key systems and components can be manufactured and assembled to create 

the final product. The importance and the difficulty of planning complex systems development 

has been recognised by many authors in the literature. For instance, Eckert and Clarkson (2010) 

have explained that complexity and uncertainty in such products forces industrial organisations 

to produce and manage a multitude of plans in parallel during projects: product plans focusing 

on cost, on the bill of materials and in procurement issues, process plans targeting the control of 

milestones, lead-times or project activities; resource plans; and quality plans. 

A greater part of the modelling activity occurs during the early stages of the development 

process, mainly at the design phase where a range of models may be used as different concepts 

are investigated and evaluated. Conventionally, product models and especially process models 

have provided a basis for planning and managing projects. By listing the activities, deliverables 

(often generated from a product breakdown) and their interconnection, product planners can get 

an idea of several key aspects of a project, including project duration, cost and the critical path 

for project activities.  

6.3 Challenges for modelling  
 

The design and development process of large and complex systems and products is itself 

complex. Understanding and predicting the way design is carried out is a difficult task for both 

researchers and industry. The design process can be viewed as a “system of interrelated 

activities" (Wynn et al. 2011), which are performed with the objective of reducing uncertainties 

surrounding the design solution or, in other words, as a system of design activities organised 
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around the goal of gaining knowledge and confidence that the solution will function and perform 

according to the specified requirements. 

A distinguishable characteristic of complex design processes is the presence of many sources of 

uncertainty that need to be resolved through the interrelation of different kind of design 

activities. De Weck et al.  (2007) mentioned both exogenous (such as changes in operational 

environments, in customer demands or in regulations) and endogenous (such as those arising 

from the maturation of technologies and corporate strategies) sources of uncertainty. 

On the other hand, the design and product development process has been recognised as a “social 

and collaborative process” (Shai and Reich 2004), where many aspects of collaborative 

behaviour have been found. This thesis takes the view of the dimensions of design iteration 

adopted from Wynn et al. (2007) where it is described as an adaptive decision making behaviour 

(Figure 6-1).  
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Figure 6-1  Dimensions of design iteration proposed by Wynn et al. (2007) in the context 

of gas turbine design 

 

 

Wynn et al. (2007) argued that design is different from repeatable processes which can be 

defined a priori, since uncertainty and complexity forces engineers to accommodate evolving 

requirements, explore opportunities, oversee continuous changes, perform complicated trade-

offs and solve design problems which always exhibit, to some extent, a degree of novelty. 

For the reasons mentioned above, capturing knowledge about margins becomes difficult. 

Margin knowledge can be hidden at different stages of the product development process, or the 

knowledge about some of these margins can get lost when the company moves from developing 

one generation of products to another one. Although designers and engineers, might know about 
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the margins that key components or systems have, this knowledge is generally tacit. It is not 

modeled or documented explicitly.  

Considering that the majority of models, especially the process models, are a combination 

between the ‘as-is’ and ‘to-be’, the most important issues involved in the modelling of products 

and processes are the level of granularity and the level of abstraction. The challenge is to find 

the right balance between the amount of effort required to elicit the model and the level of 

information required. Overall, one of the key requirements of a useful product or process model 

is to be flexible to quick and easy modification and improvement. The method used to model 

design margins which is described in this thesis aims at satisfying these key requirements while 

combining different methods and approaches.  

 

6.4 Modelling approaches  
 

This section discusses the modelling approaches that were used to investigate the concept of 

design margins throughout the product development process. These are the elicitation and 

representation aspects of DSMs coupled with the Change Propagation Matrix. Both of these will 

be briefly discussed before the process of implementing these methods is outlined. Then the 

application of these methods will be illustrated with an example. 

6.4.1 Design Structure Matrix 

 

Among the methods and tools used in capturing the complex interaction of design activities, 

Design Structure Matrix (DSM) is considered to be a “popular representation and analysis tool 

for system modelling, especially for purposes of decomposition and integration” (Browning 

2001). There has been a large interest in DSMs over the past decade. Many authors and 

industrials have acknowledged the utility of this method. The main aspect of DSM is that it 

displays the interaction between sub-systems and the relationship between components. 
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DSM is a binary matrix, where the rows and columns are named and ordered identically (Figure 

6-2). All the elements of the domain of analysis are assigned along rows and corresponding 

columns. The dependencies of elements with others are represented by placing entities (such as 

0, 1, X, etc.) within the matrix. 

 

          

 

Figure 6-2  Design structure matrix 

 

The entities in a single row represent all the elements whose output are required to perform the 

task corresponding to that row. Similarly, reading down a specific column reveals which 

element receives information/dependency from the element corresponding to that column. 

Marks above the diagonal show information fed back to earlier listed elements (i.e. Feedback 

mark) and indicates that an upstream task is dependent on a downstream task.  
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Browning (2001) identified four types of DSM in product development: the Activity-Based (or 

Schedule) DSM, to model the information ow between design process activities; the Parameter-

Based DSM, to model design parameter interdependencies; the Component Based (or 

Architecture) DSM, useful for modelling system component relationships and investigate 

architectural decomposition; and the Team-Based (or Organisation) DSM, aiming to capture the 

interactions between people or organisational structures. 

Design Structure Matrices were selected as one of the main approaches for the modelling 

method for the following reasons: 

▪ In comparison with other modelling methods (examined in another work) like GRAI method 

(Graph with Results and Actions Inter-related) or IDEF (function modelling method),  a 

DSM clearly displays the relationships between components of a system, in a way that is 

easy to comprehend and one that supports analysis of the system. 

▪ DSMs provide a precise framework within which models can be elicited. This is because the 

matrix format means that every single possible connection must be addressed. By examining 

each cell of a matrix in turn, every possible connection has to be considered. 

▪ DSMs are the basis of the CPM tool which was used to generate these matrices and evaluate 

the change propagation. 

▪ Last, but not least, DSM was used (section 6.5.2) to focus on key components and capture 

where the margins could be. 

6.4.2 Change Propagation Matrix  

 

Based on the DSM that allows the visualisation of direct linkages (parts, subsystems..),  

Clarkson et al. (2004) developed the Change Prediction Method (CPM), to show how change 

propagation data can be visualised in the context of change propagation and how multiple Figure 

6-3 shows the main features of the Change Prediction Method. 
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Figure 6-3 Change Prediction Method proposed by Clarkson et al. (2004) 

 

The method has been applied in many industrial studies, including change impact prediction in 

helicopter design (Clarkson et al. 2001) diesel engine (Jarratt et al.  2004) and jet engine fan 

design (Koh and Clarkson, 2009) to estimate the impact of engineering changes defined as 

"alterations made to parts, drawings or software that have already been released" (Jarratt et al., 

2011). Clarkson et al. (2001) method generates two types of DSMs: a direct likelihood matrix, 

representing the probability of a change in one component leading to a change in another; and 

a direct impact matrix, representing the amount of rework needed to implement that change. 

Then the algorithm developed is used to predict the total impact of the change from the whole 

propagation tree. 
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CPM shows how change propagation data can be visualised in the context of change propagation 

and how multiple views are used in this context. The Change Prediction Method uses 

architectural DSMs to model the connectivity between the components and sub-systems that 

make up the product. Numerical values are used to weight the relationships in terms of impact 

and likelihood of change propagating between the two components (Keller et al. 2005). Matrices 

for likelihood and impact are generated by replacing the crosses (×) of the component DSM 

with values between 0 and 1. Likelihood is defined as the average probability that a change in 

the design of one component will lead to a design change in another by propagation across their 

common interface. Impact is defined as the average proportion of the redesign that will need to 

be redone if the change propagates. The two matrices can then be combined to create a direct 

risk matrix. This stage of the process is shown in Figure 6-4. 

 

Figure 6-4 Generation of component DSM followed by the likelihood and impact DESMs 

from Clarkson et al. (2001) 
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This method has been turned into a software tool (CAM) that supports engineering change 

management in various ways, from model building to visualisation of change data (Keller, 

Eckert et al. 2005). The tool was used to develop the DSMs and CPMs. 

The CPM method was applied to analyse the change impact and the possible propagation paths 

in the cooling system. The outcome of this analysis was to study the role design margins play 

in shaping the design process. This was initially motivated by the argument that if a component 

or a system is able to absorb some degree of change, it means that component or system has 

some margins that allow for the change to be absorbed and not propagating. 

These two methods were the basis for developing a model to illustrate the importance of 

considering design margins, especially at the early phases of the product development and to 

bring the focus more on what the component can do rather than what it has to do. 

The key strength of both models is its cost-effectiveness to model moderate size and well-

structured development processes. Because of that and their intuitive graphical notation, they 

have been applied in industrial practice and support well process visualisation, planning and 

execution monitoring and control. Its limitations include the difficulty to include various forms 

of iteration and to account for collaboration and adaptive behaviours often observed during 

development projects. 

 

6.5 The process of building a design margins model     
 

The design margins model was defined as a simple four step process, which is illustrated in 

Figure 6-5. This process uses a combination of the DSM and CPM construction methods as the 

basis of the model development.  
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Figure 6-5 Overview of margins investigation method 

 

 

The four steps of the method are as follows: 

Selecting the product or the system to be modelled and identifying a suitable level of 

decomposition depending on the purpose of use of the model and at which stage during the 

product development process the model is generated. As discussed above, identifying the level 

of granularity is important when building a model. A precise model could follow a specific 

product or system throughout its life cycle. Hence, the model could be used to evaluate where 

142



 

143 

 

there remain margins to accommodate potential changes and then can be updated as changes are 

implemented.  

Identifying types of connections. These can be selected from a list of key connections between 

systems or components common to most products (e.g. mechanical and spatial). (Keller et al. 

2005) has developed a method to identify key linkages and argues that there are four main 

questions that must be considered. 

Is there a connection (linkage) between these parts of the product? 

If so, what type of connection is it? Two parts of the product may be connected by more than 

one linkage type. 

Considering the linkages between the two parts, what is the likelihood of a change to one of the 

parts propagating to the other? 

If a change was to propagate between the two parts, what would the impact of it be? 

The CPM tool can be then used to assess the overall connection between two components and 

therefore evaluate the potential change behaviour. 

Knowing the different connections between the components gives the opportunity to design 

engineers to have a better understanding of how a system or a product works. It also allows them 

to identify what are the critical components and obtain the change probabilities and impact for 

use in the Change Propagation Method (CPM). Therefore, they can identify the components that 

have margins. If a component is able to absorb some degree of change it means that it has 

margins.  

The elicitation stage requires a further analysis of the state of the margins in terms of buffer and 

excess over the product development process.  When there is a margin either engineers do not 

make a change or they might change something where there is still some margin. To make a 

decision, engineers need to consider the two aspects of design margins which are the buffer and 
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excess. The buffer is a range of uncertainties associated with the component and its use. The 

excess represents the range that engineers can make use of to redesign or make a change. 

Therefore, if they can do anything to reduce uncertainty they can shift some of the uncertainty 

buffer to excess (see chapter 5). 

The development of the model in the company was carried out in collaboration with the cooling 

system team as mentioned in chapter 4. This section follows each of the steps described above, 

using one of the cooling systems modules produced by the company. The identification of a 

suitable decomposition of the system and the types of connection was made with the cooling 

system team manager and carried out over a period of a few months. The coolant system’s main 

functionality is to cool the engine to prevent it from overheating. However, the coolant system 

also can be used for heating; the heat transferred from the engine to the coolant is, for example, 

used in the cab heat exchanger in order to provide the driver with a comfortable temperature 

inside the cab.  

 

6.5.1 Decompose the system to be modelled  – Step 1      

 

The cooling system (Figure 6-6) has tight geometrical constraints. It has the cab flooring on the 

top, on the sides the chassis frame, the grille in the front, at the bottom the front underrun 

protection (FUP) and the engine in the back.  
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Figure 6-6 A truck cooling system package at the front of the whole engine assembly 

 

This system was selected as a case study because it is one of the systems that are subject to 

various constraints from different features and therefore a number of trade-offs were present. 

One of the most challenging tasks for the coolant system engineer is to make sure that all 

components in the system get enough flow. Depending on the different components’ resistance, 

pipes dimensions and where the different components are connected in the system, the resulting 

performance can be significantly different. 

 

6.5.2 Identification of system decomposition and key connections – Step 2 

General functionality 

 

Figure 6-7 illustrates a typical flow schematic of the cooling system in a heavy-duty truck. After 

the pump, the flow enters the oil cooler which is a heat exchanger that sits behind the coolant 

duct cover. From the coolant duct cover the main flow goes through the engine. 
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Figure 6-7 Schematic cooling flow of a heavy duty truck 

 

At the engine outlet, a thermostat is located. When the coolant is warm, the thermostat is open 

and the coolant will be cooled in the vehicle radiator before the coolant goes back to the pump. 

During the start engine, when the coolant still is cold, the thermostat is closed and the coolant 

bypasses the radiator and goes directly to the pump. 

System decomposition and key connections 

The identification of a suitable decomposition and the key connections was a long process, 

which involved several stages. Several meetings were conducted with the cooling system team. 

The result of these discussions was an overview of the system functionality and a system 

decomposition.  

The first stage was to break down the cooling system illustrated in Figure 6-7 into subsystems 

(charge air, coolant and coolant air): 
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Charge air subsystem (shown in blue Figure 6-7): the ambient air is taken through the air intake, 

via the air filter to the turbo compressor (shown in the Figure 6-8). When the air is compressed, 

it gets hot, so before entering the engine it is cooled in the Charge Air Cooler (CAC), as 

illustrated in Figure 6.8 

 

 

Figure 6-8 Charge air flow  

 

Coolant subsytem (shown in red Figure 6-7): The coolant flow is driven by the coolant pump. 

After the pump the coolant cools the engine oil and then the engine itself via coolant channels. 

At the outlet of the engine the thermostat (Th in Figure 6-9) ”decides” how much coolant that 

should be cooled in the radiator. The expansion tank is connected to the radiator and engine 

outlet. The tank allows the coolant to expand when heated up, and is also used for level 

detection, filling and reservoir in case of leakage (Figure 6-9). 
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Figure 6-9 Coolant flow 

 

Cooling air subsystem: The cooling air is pushed through the grille openings by the forward 

motion of the vehicle. As illustrated in Figure 6-7, when the coolant temperature is high the fan 

starts engaging, to suck more air through the CAC and radiator. Recirculation shields are 

installed around the heat exchangers, in order to make sure the air is directed effectively. 

After the system decomposition we (the author and the cooling system team manager) identified 

the system’s key components listed below:  

Coolant pump 

Engine  

Radiator  

Expansion tank  

CAC (Charge Air Cooler) 

Turbo 

Grille 

Fan module 

Thermostat  

Engine oil cooler  
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Recirculation shield  

Connection pipes  

Bypass line 

After defining the main components, we then identified three main linkage types; see (Keller et 

al. 2005) :  

S: Spatial connection when components are adjacent or they are in close proximity and therefore 

might be affected by changes to each other without necessarily having a physical or functional 

link  

M: Mechanical connection when components are physically, joined or held together.  

F: Flow connection when there is a flow between two components. The most evident flow 

connection is how the flow is transmitted between the different parts of the cooling system. In 

the case of the flow connection the case study identified five specific types of linkage:  

CAF: Cooling Air Flow 

CF: Coolant Flow 

ChAF: Charge Air Flow 

OF: Oil Flow 

ExF: Exhaust Flow 

Once the decomposition and connections were identified, an initial model was created in DSM 

form with the help of the cooling system team manager. A specific DSM was created for each 

type of connection (Figure 6-10) and these were combined into a single matrix (Figure 6-11).  
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Figure 6-10 DSMs for flow, mechanical and spatial connections in the cooling system 

 

However, since mechanical links can be seen as a special type of spatial connection, it was 

decided that for the analysis to consider only the flow connections (CAF, CF, ChAF, OF, ExF) 

and spatial connection (S) as shown in the combined matrix in Figure 6.11. 
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Figure 6-11 DSM for the flow connections and spatial connection in the cooling system.  

 

Once the DSM was completed, it was decided to run an exercise involving two engineers and 

one manager from the cooling system team to verify whether this decomposition was suitable 

and to build the Change Propagation Matrix (CPM). For that, the engineers and the manager 

were asked to evaluate by grading high, low and medium the likelihood and the impact of a 

potential change. It was suggested that they consider two scenarios; when they have major 

changes (new big project) and when they have minor changes. They had to build a CPM for 
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each scenario. The likelihood and impact data was converted to rating values: high= 0.8, 

medium=0.5 and low=0.1. The values were then put into the algorithm from the CPM tool. The 

output, illustrated in Figure 6-12, shows the components that are most susceptible to change and 

those that are most likely to influence a change. The highest risk elements are in red, medium 

in yellow and low in green. For the analysis, we considered the scenario where they need to 

make major changes and evaluated how design margins can guide that process.  

   

Figure 6-12 Change Propagation Matrix for Major changes 
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The participants in the exercise completed it separately, and different questions were raised 

during the exercise. However, they all acknowledged the importance of such models and found 

the exercise interesting and potentially useful.   

The findings from this exercise were quite different in terms of how engineers thought about 

change, and the events and features that could trigger a change. Further the differences extended 

to how they evaluated the impact of a potential change. However, all of them showed relatively 

good agreement on the mechanical connections between components, besides some divergent 

interpretations of component assemblies (fan). Spatial connections led to slightly more 

divergence between the engineers, yet, the flow connections were easier to agree on.  

The filling of the matrix was strongly influenced by what the engineers knew about the design 

and how much they were involved in it. For example, the fan specialist (P.G) knew most about 

flow links, because they fell into his area of expertise. 

6.5.3 Identifying components which have margins – Step 3 

 

Design margins are planned as soon as the requirements are known.  During the design a 

component or system is discussion of margins is wrapped up in assessing engineering change 

and the risk of change propagation. Designers are also taking active steps to avoid changes by 

designing flexibility into the details of the systems.  

The output reordered in Figure 6.12, can help engineers to identify the components most likely 

to influence a change (i.e. cause it to propagate) and the components most likely to be 

susceptible to a change (i.e. be affected by change propagation). From the matrix, it can be seen 

that the engine is the component that causes potentially the most changes; i.e. it is a change 

multiplier (chapter 2). The engine is an expensive component with a long lead time, and it is not 

changed in response to other components changing. Therefore, the engineers need to look for 
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alternative components that either have margins which absorb the change, or can be readily 

changed.  

 

6.5.4 Elicit design margins and put into a decision tree – Step 4 

 

As chapter 5 argues, margins can be seen to have an element of buffer and an element of excess 

or contingency. The concepts mentioned in the interviews also can be thought of as either buffer 

or excess concepts, but the division is not always clear. Safety margins and tolerances are both 

buffers which are added to deal with uncertainty. Safety margins deal with uncertainty in use 

and, in particular, uncertainty arising from misuse of products. Tolerances are catering for 

uncertainty arising from manufacturing variability. In trucks an element of buffer is already 

incorporated in the requirements, as they include the variability in ordinary and intended use 

that will be covered by a system or component. 

Room for growth is an explicit excess concept, which allows the designers to meet higher 

requirements in the future. Overdesign can be seen as a both an excess and a buffer, as the 

designers see their colleagues raising requirements as an uncertainty against which they protect 

themselves through overdesigning a component. Once the uncertainty of knock-on effects of 

changes is removed the overdesign moves from a buffer into an excess. Later in the process 

overdesign is seen as a form of costly waste, i.e. a form of excess that can be eliminated.  

Given the fact that the engineers’ decision regarding the design margins may vary, depending 

at which stage of the process the decision is made, it was decided to use a decision tree to model 

a specific situation that a designer or an engineer might have to deal with. Decision trees are a 

simple, yet powerful form of multiple variable analysis. They are produced to identify various 

ways of splitting a data set into branch-like segments (chapter 2). Decision trees attempt to find 

a strong relationship between inputs and targets in a group of observations that form a data set. 

154



 

155 

 

A strong input-target relationship is formed when knowledge of the value of an input improves 

the ability to predict the value of the target. For example, if designers have to select a material, 

knowing its strength improves the ability to predict how much load the material can carry.  

The general form of this modelling approach which was used to build the decision tree is shown 

in Figure 6-13. 

 

Figure 6-13 Design strategies based on margins state  

 

 

Once the margin is known, the analysis moves to identifying how much of that design margin 

is considered as a buffer and how much of it is considered as excess. Then the investigation 
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starts by evaluating different possibilities (inputs for each node) and considers the decision 

actions that need to be taken (target), as shown in Figure 6-13.  

The left hand branch in Figure 6-13 considers when the margin is a buffer. When he uncertainty 

is very high, engineers consider a range of parameter values to compensate for those 

uncertainties. However, engineers want to have control over those uncertainties and be able to 

predict their probability of occurrence. As described in Chapter 2, the uncertainty can be 

endogenous or exogenous. If the uncertainty is endogenous, it means that engineers gave some 

control over the probabilities they are facing. Therefore, they can conduct further tests and 

simulations and try to reduce the buffer. If the buffer is reduced then that part moves into excess, 

otherwise the engineers can wait until they get more feedback from the physical test. In both 

cases, the decision made at this level regarding the design margin is more accurate. Even if there 

are buffers which are not immediately usable in design but offer the potential that they can be 

reduced and release tangible and usable margins. These offer options for meeting higher levels 

of functional requirement or optimising product parameters against existing functional 

requirements. 

The right hand branch of the decision tree in figure 6.13 considers when the margin is excess. 

When the value of the margin is known and clearly exceeds requirements, it is an excess. The 

excess part of a margin provides design flexibility; it is the part that designers can make use of, 

for example to deal with changes or increasing requirements.  In this case designers need to 

decide whether or not to design with that excess (surplus). As soon as the requirements are 

known the role of design margins is to reduce uncertainty in the design process.  At the early 

phases of the development process design margin are seen as a positive way of managing design 

effort. However, as soon the product reaches the production stage, design margins are seen as a 

source of extra cost and engineers look for excess to remove. Yet, if engineers have a global 
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view over the design margin state throughout the PDP, they can see that for specific scenarios, 

introducing design margins as a form of deliberate planning for a number of potential changes, 

can reduce the cost of making changes from scratch. For these reasons it is important to follow 

and update the model of design margins across all phases of the product development and update 

the design strategies based on the margin state.  

 

6.6 Eliciting, collecting and documenting design margins  
 

The work presented in this research suggests that the company needs to change their protocol 

or the way they are carrying design, and propose to investigate design margins at the early 

phases of the product development. 

Margins can be related to several aspects of the product including capability, requirements, 

performance, and quality. Given these, the proposed framework will analyse, transform, and 

integrate design margins into design process. Once the new requirements are assessed and high-

level concept definitions are completed, the next step is to elicit, collect, analyse and identify 

design margins on key component parameters. At the early stages, margins on key components 

and / or parameters can be elicited and analysed by using the CPM, because if a component is 

able to absorb some degree of change it means it has some margins. The stakeholders then need 

to agree which margins they want to consider. Later in the process, the actual margin can be 

quantified using simulations and / or tests. At this stage stakeholders, can decide which part of 

the margin they can make use of, so they can incorporate some excess into a system or a 

component. Therefore, the changes that need to be made to the new design can be done without 

consequent changes propagating across the design. One aspect of this elicitation process is to 

maintain a documentation of how and when margins were flagged up, so that this knowledge 

can be used when developing other products or making changes.  

157



 

158 

 

Start 
Previous design 

Identify new 
requirements 

Elicit and analyse 
margins on key 

components 

Stakeholders 
agree ?

Modify, remove 
margins

Stakeholders 
provide identified 

margins

Margins 
clarified? 

YES

NO

Stakeholders 
identify buffer and 

excess

Design with 
margin (excess)?

Document and 
revise margins as 

needed 

Incorporate design 
margins

Propose changes 

Add, modify and 
track margins 

Are changes 
Feasible? 

Review change 
request

Maintain 
documentation 

Continue 
simulation / test

YES

NO

NO

YES

YES

NO

Question, decision 

Activities after margins 
elicitation ends 

Actions for margins elicitatin

 

Figure 6-14 Eliciting, collecting and documenting margins 

 

Figure 6-14 highlights the process of collecting and evaluating margins. The framework shows 

activities and milestones that need to be considered for margins collection and management. 
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Each step within the margin elicitation sequence is completed before moving on to the next step. 

Activities may be added, modified, deleted, and their sequences changed, depending on the 

scope and type of the project or the task. Generally, subtasks within a larger project focus on 

fewer activities and may have different stakeholders and finer grained criteria for success than 

the project itself. 

Margins need to be communicated explicitly across the organisation, because they are part of 

the discourse in informal negotiations. Some critical margins are flagged up as part of concerns 

for the safety of the product, but large margins are often left uncommented. As designers are 

often aware of the state of the margins of their own components, they often try to protect 

components with critical margin in the design process from changes.  

The overall framework implies that elicitation and a good documentation of margins would help 

decision makers implementing changes more efficiently. 

 

6.7 Evaluation of the model, application to the cooling system 
 

The model was evaluated in two ways. Firstly, with regards to the change propagation matrix, 

by setting up, together with engineers from the cooling system team, two scenarios and 

evaluating how the knowledge about margins informs the change behaviour. Secondly by 

presenting the decision tree (shown in Figure 6-13) and the model (shown in Figure 6-14) to top 

managers who have a global overview of the product development strategies in the company, to 

investigate whether the elicitation of margins was of benefit in its own right (i.e. the margin’s 

elicitation model could act as a guide to engineers evaluating engineering change). 

6.7.1 CPM Analysis  

 

As was stated earlier in this chapter, the cooling system design manager and the cooling system 

engineer were requested to participate in this phase of the model building exercise. They were 
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asked to build a Change Propagation Matrix (CPM) considering two scenarios; when they have 

major changes (new big project) and when they have minor changes. For the evaluation phase 

the first scenario when they have major changes is considered for its relevance. 

      Scenario 1: New project  

Based on the linkages identified in a previous exercise (see section 6.5.2) the participants were 

asked to build a CPM in case they have major changes. Each participant did the exercise alone, 

in a separate session, and was guided through the exercise by the author. After the initial model, 

a refinement iteration was undertaken. The author reviewed the model to check that the linkages 

which should be symmetrical (i.e. spatial and mechanical connection) were symmetrical in the 

model. 

Once the linkage model is created for the system, the participants were asked to assess the 

likelihood and the impact of change propagating.  

The impact and likelihood values from the model were scale between 0 and 1, then run through 

the CPM tool (Figure 6-15) 
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Figure 6-15 Results from the CPM tool for the cooling system 

 

The results were recorded to identify the components most likely to influence change (cause it 

to propagate) and the components most likely to be susceptible to change (affected by change 

propagation). 

These lists were discussed with the cooling system design manager and the cooling system 

engineer; they were also presented at a meeting to the other engineers working in the cooling 

system team.  

Overall the results from the evaluation exercise appear good, as there were no major 

contradictions. However, this scenario highlights an interesting point: the fact that the fan case 

assembly is likely to be affected by change, but unlikely to be redesigned as a result of a change. 
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This means that margins would have been built into it in the first place to avoid a re-design. The 

fan case assembly has a long lead-time for design and assembly. As a result, it is designed with 

enough margins in the components around it to allow it to absorb changes. The cooling system 

manager and the cooling system engineer had different thoughts on this. After discussion, it was 

decided to consider the fan as a module to simplify the exercise. Some discussion was carried 

out between the sessions to identify how the knowledge about margins can inform the 

engineering change. The outcome of this exercise helped in developing the process shown in 

Figure 6-14. 

It appeared from this aspect of the evaluation that the data from the CPM tool was a useful basis 

for eliciting margins and implementing changes.  

6.7.2 Model Visualisation: decision tree and elicitation process  

 

Designers can take active design steps to generate margins within a product. The obvious 

example is to overdesign a system or component and thereby generating an excess that can be 

used up in future changes. This does not mean that all parts of a system are overdesigned, rather 

than that designers design or redesign specific components so that the overall system has a 

greater flexibility. For example, if a system is getting too heavy, it might be enough to redesign 

one component to make it substantially lighter in order to give the whole system a weight margin 

that can be used for future changes. Usually this can only be justified if there is an immediate 

benefit for the current system. This was the basis of the discussion with two senior managers 

and a senior engineer who visited The Open University to discuss the findings and evaluate the 

proposed model. 

During the evaluation exercise the need for visualisation techniques arose frequently. The 

managers and the engineer involved felt that the ability to manipulate the model to focus on the 

areas of interest raised by a particular scenario are valuable.  
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During the first session, the decision tree was presented to demonstrate how the knowledge 

about the margin state can inform the design strategies. The model was useful because it helps 

“distinguish different states of margins” and “structure our thinking in terms of buffer and 

excess before taking any decision about the margins” (O.I senior manager). 

Afterwards, in the second session the elicitation process was discussed and refined based on the 

participants insights. Overall, the model was relevant as it gives a whole system perspective. 

This is particularly important in a big company such as Volvo, where components are often 

geographically dispersed in major projects and therefore the opportunity to view the system and 

the product as a whole is extremely helpful. 

 

6.8  Summary  
 

It is important to capture the knowledge about margins throughout the product development 

process. This can help the company to manage the development process more efficiently, since 

margins have obvious benefits for design processes in accommodating changes and reducing 

the risk of additional iteration loops. 

A conceptual framework was developed to investigate and capture margins. The overall 

framework indicates that a clear elicitation and an explicit documentation of margins can help 

decision makers implement more efficiently the necessary changes involved in product 

development. 

The exercise can be summarised as:  

i. Although DSM looks like a simple for dependency modelling but it is not as simple as it 

appears. Deep understanding of the studied system is required for the modelling. There is a 

tendency to put too much information in a link (for example to put two types of connection 
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for a link between two parts). But to make it understandable and transferable, it is 

recommended to identify just a single type of information in a link.  

ii. Case studies revealed that the approach used in this research forces engineers to examine 

products from a different perspective and that building the models themselves is a valuable 

exercise in its own right. A key point about the conceptual framework is that it gives 

engineers a global product overview and also make them think over the uncertainties they 

face during the design process; such as the evolving precision in requirements, emerging 

constraints or changes. This perspective helps people appreciate the complexity of their 

products and it makes them view design margins in different terms. Design margins are seen 

as an important aspect of product design. 
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7 Discussion 
 

 

 

 

This chapter provides a general discussion to the thesis. It also discusses margins from two 

different perspectives.  
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7.1  General Discussion     
 

This thesis argued that margins play an important role across the entire design process. However, 

margins are not recognised as a unified concept which is clearly communicated and tracked 

throughout the design process. Rather different people have different notions of margins and do 

not disclose the rationale behind adding margins or the amount that they have added. This can 

ultimately lead to products which are more costly to develop than necessary. However, margins 

also enable designers to avoid design changes as they know the extent to which existing 

components and systems can accommodate new requirements and thereby saving significant 

design time. Hence, having a clear picture of the state of the margins on component parameters, 

together with managing the ways that requirements are met as a product is developed, are 

important aspects of product development. Understanding margins will be of a great benefit to 

the company to cope with product optimisation without compromising the platform strategy. 

Therefore, how well a manufacturing company is able to understand the margins of their design 

concepts is crucial in successfully dealing with changes that occurs throughout the development 

process.  

Margins are a combination of buffers built into a design to cater for uncertainty and excess 

which is a genuine surplus in a component, system or design. While different notions of margins 

favour one or other aspects, it becomes clear that both aspects have to be looked together. As 

the excess part of a margin provides design flexibility, designers can try to reduce uncertainty, 

for example by reducing the variability in use, to move parts of the buffer element of the margin 

into a useable excess.  

At a general level, the work presented in this thesis has helped define the concept of design 

margins. As was described in Chapter 2, there are relatively few publications on the topic and 

what has been published is usually unlinked and only focuses on specific aspect of margins such 
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as performance margins. There are very limit references in the available literature that have 

examined design margins in companies in detail or addressed the concept from a process view.  

This thesis redresses this by reporting upon an empirical study carried out in Volvo GTT. One 

of the findings from this study was that there is a clear industrial need for support with design 

margins and how they are communicated in teams or across teams. An explorative process 

method grounded in the needs of industry has been proposed to model design margins. The 

method focused on understanding the product and the connections among different parts in order 

to capture margins and the role they play throughout the product development process. Without 

understanding the details of a product, it is difficult to predict its exact behaviour or understand 

the margins associated to key components or systems. 

Margins on key parameters can apply to the whole system, such as the engine design 

temperature, or as margins for specific parameters, like the temperature a material can handle. 

Another important group of margins to capture are those on critical components where a 

company knows that they will not be able to absorb change. However, if they are aware they 

might be able to compensate through making fundamentally different design choices. These 

design considerations are highly relevant where alternative configurations and variants are 

considered, with princely different margins behaviour. This critical margin information can be 

flagged up and shared across an organisation.  

 

7.2  Knowing and communicating margins  
 

Generally, designers have a sense of the margins some key components have, rather than 

knowing an explicit value of margins they had a sense of whether their component would be 

able to absorb more change or be able to be changed easily without requiring a major redesign. 
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However, this knowledge is usually not recorded explicitly. The product planners and designers 

in the early phases of a new product did not know to which extent a component could still be 

changed. The designers in later stages where usually not aware that margins have been added to 

the requirement or had little sense of how much margin was added.  

Margins are not communicated explicitly across the organisation, but become part of the 

discourse in informal negotiations within the company. Some critical margins are flagged up as 

part of concerns for the longevity of the product, but large margins are often left uncommented. 

As designers are often aware of the state of the margins of their own components, they often try 

to protect components with critical margin in the design process from changes.  One way of 

doing this by embedding the parameter values deeply in the sequence in which dependent 

decisions are being made, so that they parameters and their components cannot be changed 

without undoing a large part of the design process. For example much of a product in the case 

study is designed around the harmonic frequencies. If these are changed most components 

would need to be altered, therefore values from which the harmonic frequencies are derived 

usually remain unchanged.  

 

7.3  Designing margins into the product 
 

Some major systems are designed explicitly so that a system does not have to be redesigned in 

the next product generation. For example, the truck company recently redesigned their wiring 

harness and created a new harness with several unused ports in the expectation of needing them 

in a future product generation. In this example, the margins are clearly visible to everybody 

including the customers, as the additional cost is minimal for the current generation but with a 

clear advantage in the future. 
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Designers can take active design act steps to generate margins within a product. The obvious 

one is to overdesign a system or component and thereby generating an excess that can be used 

up in future changes. This does not mean that all parts of a system are overdesigned, rather than 

that an engineer designs or redesigns specific components so that the overall system has a greater 

flexibility. For example, if a system is getting too heavy, it might be enough to redesign one 

component to make it substantially lighter to a give the whole system a weight margin that they 

can use for future changes. Usually this can only be justified if there is an immediate benefit for 

the current system.  

Sometimes the design itself can be flexible so that it can be used in different contexts without 

requiring a change. A simple example is that the engineers designed a fixing where screws where 

screwed into slides rather can holes, so that they could be moved around without needing to add 

additional holes. Similar decisions can be taken about far more complex components. In fact, 

some of the motivation between a move from hardware to software comes from a need for 

increased flexibility. 
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8 Conclusions 
 

 

 

 

This chapter concludes the thesis. It includes the main conclusions, the research contribution 

made by this work and reviews the research questions. Limitations of the work are discussed 

along with suggestions for future work.

As stated in the introduction (Chapter 1), the aim of the project is to investigate the concept of 

design margins and how the industry is handling that in the current practice. The principal 

objective in this thesis is to describe design margins in a suitable language and propose a method 

to model margins in a way that can be linked to the existing product representations. 
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8.1  Answering the Research Questions   
 

The three main research questions of this thesis have been supported by the findings of the 

literature review (Chapter 2) and the empirical study (Chapter 4). A number of sub-questions, 

which were outlined in Chapter 1, arose from the main research questions. Although some have 

partially been answered in the previous chapters, each will now be addressed in turn.  

The first question is aimed at defining design margins:  

 

RQ1 : How can margins be defined? 

The case study conducted at the company showed that margins can be referred to by many terms. 

Margins are considered by different teams in the organisation, who use different terminology 

and are not necessarily aware of the margins other teams have added. Margins are added both 

to the requirements that are given to the product planners and the design itself by the designers. 

Chapter 4 discusses the different terms used for margins and the motivations behind adding 

these margins.  

During the product definition phase, the customer needs are analysed in order to generate 

requirements for the design team. At this stage a safety margin might be added to the customer 

requirements to anticipate changes in the use conditions. For example, if a truck is designed to 

carry a certain load, the company can’t control or prevent customers from overloading the truck. 

Therefore, they plan in a safety margin. The design team used the specified requirements to 

generate their design definition, in which they add a design margin to cope with uncertainty 

(buffer). Towards the end of the design process the tolerances are added to assure a reliable 

manufacturing process. Both the product definition team and the design team might add a 

margin as a room for growth to allow for future changes in requirements. 
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This thesis proposes a definition to margins which covers all these terms. A margin is: “the 

value a parameter has above and beyond what it needs to meet its functional requirements 

regardless of the motivation for which it was included” (Eckert, Earl et al. 2013). 

The second research question concerns the way design margins are handled. 

 

RQ2 : How margins are handled in the PDP ? 

This research has studied the way margins are handled in the company. A distinction between 

two elements; buffer and excess, was proposed to help understanding the concept of margins in 

order to manage them.  

As argued in Chapter 5, margins can be seen as an element of buffer and an element of excess. 

The terms mentioned in the interviews also can be thought of as either buffer or excess concepts, 

but the division is not always straightforward. Safety margins and tolerances are both buffers 

that can be added to deal with uncertainty. Safety margins deal with uncertainty in use and in 

particular uncertainty arising from misuse of products. Tolerances are catering for uncertainty 

arising from manufacturing variability. In trucks an element of buffer is already incorporated in 

the requirements, as they include the variability in the use conditions. 

Room for growth is an explicit excess concept which is aimed at generating an excess to allow 

designers to meet higher requirements in the future. Overdesign can be seen as a both an excess 

and a buffer. At the early stages, overdesign is considered as a buffer to cater for uncertainty or 

changes in the requirements. Once the uncertainty of knock on effects of changes is removed 

the overdesign moves from a buffer into an excess. Later in the process overdesign is seen as a 

form of costly waste, i.e. a form of excess that can be eliminated. However, the designers think 

of overdesign as a buffer against future changes either through new versions or in the next 

product generation and do not wish to drop out their overdesign. 
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From this study, it become clear that design margins are added or used up across the entire 

product development process. Also, margins can potentially be accumulated throughout the 

design without other parties necessarily being aware of this occurring, which makes tracking 

margins difficult. However, throughout this thesis and particularly in Chapter 5 we 

demonstrated how design margins shape the whole product development process. 

The third question looked at the possible ways to explore and model margins to manage the 

engineering change; 

 

RQ3 : How margins can be modelled to manage the engineering change? 

Design Structure Matrix (DSM) method was used to capture the relationships among 

components and dependencies between components. Further an activity based on Change 

Prediction Method (CPM) was used to analyse the change propagation among components 

(Chapter 6). The understanding of these relations provided useful insights for a better way to 

model margins.  Needing to have an overview of the product goes beyond being able to predict 

the performance of a part and the impact of a change to it. It is vital for managing the design 

and development process. 

The work described in this thesis aims at improving the understanding of design margins and 

proposes a method to investigate the concept. The objective of this research is to bring new 

knowledge in the area of engineering design that would be of benefit to industry and academia. 

 

8.2 Research Conclusions and Contributions    
 

The notion of margins, consisting of buffer and excess and the transition from buffer to excess 

throughout the design process give designers a rich way to express and communicate 

information about the forthcoming design. These design considerations are highly relevant 
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where alternative configurations and variants are considered. This critical margin information 

can be flagged up and shared across an organisation.  

On the other hand, a company, has to consider margin across a particular the design process and 

also across multiple products. As components and systems are deployed in different 

applications, there might be huge margins with regards to one application and be optimal for 

another, so that cost of creating an optimal product has to be traded off against the cost of 

creating a bigger platform and less communality across applications.  

8.2.1 Main conclusions  

 

▪ Design margins have always been an important part of the product design and development 

process, but today they are a critical aspect.  

▪ The knowledge about design margins is tacit. Most of this knowledge is present in the minds 

of some engineers. It was found that there was no formal way to capture and communicate 

margins in teams or across teams. Sharing this knowledge is vital to the company success.  

▪ Design margins were identified as being a way to respond to uncertainty in the product 

development.  

▪ Design margins shape the entire product development. When known, design margins can 

enable designers to avoid unnecessary design changes as existing components and systems 

can accommodate new requirements and thereby saving significant design time. 

▪ Design margins are a core element in the trade-off between the product cost and the process 

cost (the cost of designing with margins vs the cost of designing new components for each 

application). 

▪ Design margins allow the trade-off between the optimisation and customisation.  
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8.2.2 Contributions to knowledge  

 

▪ The case study provides evidence that margins are added by different stakeholders for 

different reasons without using an accurate method of documenting them or communicating 

them in teams or across teams. 

▪ Design margins can be seen as a combination of two elements; a buffer built into a design 

to cater for uncertainty and an excess which is a genuine surplus in a component, system or 

design. 

▪ When the margins in the product are known they guide the engineers in their actions or 

decisions that they make in the process. 

▪ As most of the design activity is constrained by the lead-time, knowing the margins helps 

the designers to design quicker. Design margins set out options and possibilities. 

▪ This research proposes a conceptual framework for exploring the concept of design margins. 

It tracks the margins through stages of a process, particularly in the transfers between buffer 

and excess and using up excess in meeting new requirements 

▪ This research highlights the potential application of design margins such as in; change 

prediction and management, knowledge management and cross functional team support. 

 

8.2.3  Contributions to the company  

 

▪ Comparison between the company terminology and literature on the topic of design margins. 

▪ The company obtained external views and different insights on issues related to the product 

development, the used terminology and the need to explicitly document the knowledge about 

design margins. 
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8.3 Limitations and Future work     
 

Alongside the contributions described above, the research has several limitations. This section 

attempts to cover some of these possible limitations. 

One of the limitations is that findings are based mainly on a single case study. Although it was 

planned to study another system or consider another case study from aerospace industry, it 

wasn’t possible to carry out another in depth study within the three years of the PhD. Therefore, 

analysis of another system or other products would be recommended to generalise the research 

findings. 

Designers need a variety of different visualisations of the data to be guided to important 

information. The method proposed in this thesis tried to combine well known methods used in 

industry to draw conclusions on how margins can be managed. However, the models are only 

as good as the knowledge that is put into them. Who is in the team creating the model will 

depend upon the purpose to which it will be put. For example, a team of novice designers will 

produce a very different model from a group of experienced engineers, but the act of building 

the representation itself might be a useful learning process.  

One of the important limitations of this method is how it currently links with the Change 

Prediction Method (CPM). In this thesis, the CPM was only used to examine a single connection 

between two parts and the potential change behaviour. Understanding margins is the key to 

carrying out engineering change processes efficiently. The concept of margin can therefore 

inform more accurate change prediction. 

Future work will further develop the understanding on how margins aggregate. Detailed studies 

in this sense will enable to link back the concept of margins to the Change Prediction Method 

(CPM). This could potentially be incorporate to Cambridge Advanced Modeller (CAM) the 

software used to model DSMs and CPM. 
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Another important aspect of future work is to examine other modelling methods especially 

mathematical ones. During this research, we were confronted with many complex aspects 

related to design and product development such as, multi-objective optimisation, uncertainty, 

controllable uncertainty and it would be very important to consider these aspects in more details. 

This will offer significant potential for supporting product planners and senior managers with 

potential product offers and configurations. 

Analysis and reflection over the previous research contributions have led to the author to identify 

some opportunities for future research arising from this thesis. These opportunities are: 

Investigation of the relationship between design margins and probability  

Chapter 5 analysed and discussed margins as crisp values versus margins as a range of possible 

values. This has led to the conclusion that there is no systematic way to accurately determine 

the value a margin could have. Further investigation of the relationship between design margins 

and probability will serve to help identify how to quantify and calculate margins and how this 

information can be used in design. 

Empirical research on the cost of design margins  

Chapter 5 discussed that there is a cost associated to design margins. The question that arises 

from this point is the trade-off that needs to be made between the costs of developing a new 

component versus the cost of designing with margins (i.e. what excess is acceptable).  

Performing further empirical study to quantify the actual cost of designing components with 

margins and make comparison with the total cost of developing new components for projects 

that are subject to major changes, is an opportunity for future research arising from findings 

reported in chapter 5. 
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8.4 Summary  
 

Throughout this thesis we have been arguing that margins occur during most phases of the 

design process and have a big effect on the working of many engineers, however they are 

surprisingly unaware of margins and do little to communicate them explicitly. Design processes 

are subject to many uncertainties coming both from the outside and the design process itself, 

which affect requirements and design implementations. Any change to the product at any point 

affects the margins on other components, which either have to be changed and operate under 

different conditions. However, the effects are cumulative and not tracked throughout the design 

process. The thesis presents a model of margins allowing them to be tracked through the stages 

of the design process.  The motivation, development and validation of this model took place in 

collaboration with the Volvo Trucks who provided access to design engineers and their data.  

This access to data and personnel covered the general design processes in the company enabling 

an examination of the role and potential for margins at several stages in the design lifecycle.  

The collaboration facilitated the investigation of a detailed case study on a truck cooling system 

which provided a testing ground for the proposed method.        
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9 Appendix  
 

Questions asked during the interview with the durability manager  

1. Can you please tell us about you work?  

2. What does durability mean? How does it differ from reliability or robustness? Is that covered 

by other features? 

3. What areas of the truck cause durability issues? 

4. How does this differ with use scenarios? 

5. How do you account for them? 

6. What happens when you raise a concerns about an element of the truck? 

7. How do you estimate risks associated with durability.  

8. How do you measure durability/reliability? 

9. How do you test the components for durability? Do you consider the worst case scenario 

and you test accordingly? 

10. Are your tests integrated with other tests? 

11. What are the failure mechanisms? 

12. Do you use any specific tools or methods like FMEA? 

13. How do you make sure that you maximise the reliability during service life? 

14. How do you insure that a level of reliability is maintained when some components are too 

optimised or overdesigned? 

15. I guess you can collect data from the field by looking at the product performance and identify 

any systematic faults that can be fixed in the current product generation or future one. How 

do you do that? 
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A part of the chassis testing manager interview transcription:  

Interviewer: So how easy is it to get people to accept the new process at Volvo? 

Respondent: It’s depending on how the process is evolved.  If it’s a top down command it’s 

very difficult, but if it’s coming from beneath up then I don’t think it’s 

difficult.  There is a tendency that it will come from above or from the side 

more, from people who have not maybe enough knowledge of how we work 

today so therefore there is a big gap between how we judge the current 

situation and therefore it could be some difficulties. 

Interviewer: So you don’t like consultants coming in and telling you how to do your 

processes. 

Respondent: No, no, it doesn’t work very well but we do it. 

Interviewer: Why doesn’t it work?  What is the problem? 

Respondent: The problem is the obvious, quite complicated and the people coming from 

outside have a tendency to simplify it a bit and then come with advice that fits 

this simplified world but it doesn’t cover the daily work for the engineers 

because we have very complex product here.  People can see we do trucks but 

it’s better to say that we do parts that you can put together in a million different 

trucks, like Lego toys.  Of course this part must fit together and it must be a 

decent truck, not always a complete optimised truck because then we need to 

look at those million different combinations that is possible.   

There is a big gap between those who come outside and they look at the car 

industry and come with advice.  A car, it’s complicated in some way but 
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compared to the truck chassis it’s not in the same category at all.  The 

complexity we have on a car we have on the cab, you can say, different styling, 

different colour, different interior but the chassis is more special, more unique 

or different. 

Interviewer: So where does this added complexity come from, in your opinion ? 

Respondent: First of all there is a natural complexity because if you look on a truck outside 

that they use for various purposes, you have long timber trucks, there’s short 

tractors as we call them and you have different loads, you need to carry a 

different amount of load.  Some are doubled rear axle because they carry more 

load and some have one because they are…and they are very tailored for the 

legal requirement of how long and how heavy a truck can be.  Then we have 

all the timber trucks, construction trucks, trucks for garbage, rosary.  They are 

all different so therefore the chassis has a natural big variation.   

Then we have the sales organisation who want to have as few mutations as 

possible.  They don’t like gaps in door frame so it’s not necessarily that they 

sell a lot of it and that they earn a lot of money on those variants, but it’s a 

culture or a company…they want us to provide a lot and we can by the way 

we are working provide a lot.  It’s from two sides, partly we have learnt how 

to handle them so therefore there’s no break or block and then the sales 

organisation and they want a lot because the customer came in and said, “I 

want this truck but I want another fuel tank size.”  It could be any small 

changes, that they want a different tyre brand or big changes that they want.  
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So they see this on the market, this demand of various, I think I can call it 

tailored trucks and we try to do them as serial trucks and not as unique trucks. 

Interviewer: Is there anything where Volvo would say, “No we’re not going to develop 

that” or “that’s not where we’re going to go to”? 

Respondent: Yes sometimes and of course there are technical problems sometimes to do it.  

Then of course it will cause the restrictions.  They are this gap in the doorframe 

and then of course there are some combinations that are ridiculous, that you 

don’t do a high feature from them and a low feature robust rear ends it’s no 

use or a very heavy truck with a very small engine.  There are of course natural 

limitations but if it’s requested and if it’s possible and product planning can 

present a business case and we estimate that we will sell 100 of these, then we 

do it. 

Interviewer: Then it becomes a small project and you do it. 

Respondent: Yeah.  Now we have in the base product we have a lot already and then if it 

becomes a new project we take all the variants we can do into the new project 

and then only add something. 

Interviewer: How easy is it for you to judge whether it’s feasible to do something if it comes 

from sales and they say, “We’re going to need 100 of those”?  Do you know 

whether you can do it or at what cost you need to do it? 

Respondent: We have a certain process that we follow.  Normally this will change, request 

goes out in the organisation and we estimate.  First we try to figure out what 

do we need to do?  Then we estimate the cost of that and then it goes to a 
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decision [inaudible 00:10:57] and they do this, if it’s a business case or not.  

They have a way to calculate the payback time for such an investment.  So that 

is the regular process.  Every week I think they have…there’s a lot of these 

small changes and then sometimes it’s big, like a new truck that you saw 

maybe on the job here. 

Interviewer: But can you always estimate that you’re not having to do big changes because 

of these relatively small projects? 

Respondent: Sometimes we get into surprises because this pre-study, as we call it, had not 

been done properly and then of course they have to reconsider.  There are these 

gates, I don’t know how much you know about the process but there is a 

checkpoint at each, so at those you should update your cost estimate and if you 

figure out, I guess, 100 hours but we need 1,000 then that goes into the next 

steering committee and then they have to consider should we close this or 

should we do it?  So it happens of course.  Normally of course there is a 

tendency to underestimate work.  You do a full investigation of everything 

before you answer, it’s a little bit simplified but if the right people are involved 

they are fairly accurate, but easy.  Nowadays it’s where there are more and 

more software in the truck it’s more complicated.  Mechanically I think we are 

quite skilled in seeing what we need to do but it’s more complicated because 

the software is connected to all these variants and loaded on the truck, so each 

truck you need to know exactly how many axles and everything 
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A part of the cooling system engineer interview transcription 

[Markus] …..We then translate those into... design briefs. And we give those to the, ah what we 

call the engineering systems organisation, which is made up of the CPPD teams focused on 

engine systems, cooling, you know, lubrication, erm performance, emissions and so on. And ah 

then the deliverables. So we’re the requirements gatherers, the they actually deliver the product. 

OK. I’m te, I’m moving out of the talk-about-it organisation and into the doing organisation, to 

run what we call the systems engineering group. And the systems engineering group model total 

machines, and, trade off the requirements at an engine level, decide what’s feasible and what’s 

not, so yeah our customers might say they want ah the smallest engine in the world at the 

cheapest price, putting out the most power. Mmm. Which is sort of mutually exclusive.  

[Markus] Mmm. 

And somebody’s got to arbitrate between what do we give the customers, what would be 

competitive, and what have we got the capability to deliver. And umm, that’s where the the 

requirements are brought in, and then expectations are set by the systems engineering group to... 

trade those off. So, here’s the “what”, here’s the “how”, the “how much”, we don’t know until 

the systems engineering have really looked at, OK if you want this fuel consumption you realise 

you need this heat breeze????, you need this packing size, you need this power and so on. So 

that’s, that’s the way it goes. 

[Claudia] So essentially you have to check whether that all adds up to some extent? 

[Markus] Yes, it’s, it’s, within our... product objectives. What we’ve done differently…as you 

may know is we’ve mapped the voice of the customer down through the business…So umm, 

we now have tools which we’ve developed to do that, so we can look at this highly complex 

interactions, it’s a bit like an SDM 
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[Claudia] Yeah. 

[Markus] But it’s now done against requirements, and in fact we’ve complemented it by using 

the SDM-type approach. So we’ve now mapped... 

[Safaa] Sorry, what do you mean by SDM? 

Sorry, yeah. Structural... 

[Claudia] Do you mean DSM? 

[Markus] DSM, sorry, right, OK. (Laughter) Little bit of a mix-up in letters, you’ll notice that 

with me. It’s always names, ????. So yeah, the SDM side of it, the structural... matrices, it’s all 

about mapping and how much detail you want go in to. 
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